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Abstract
One of the exciting new phenomena that have risen from quantum mechanics is quantum
entanglement. In this paper we study the basic mathematical properties of an entangled
state as well as its entanglement entropy. These concepts together with the formalism of
second quantization will be studied with respect to finite one-dimensional transverse field

Ising models.

I would like to thank Lars Fritz and Sonja Fischer.
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CHAPTER 1

Introduction

Entanglement is a very interesting phenomenon that appeals to the imagination. The
paradoxical concept that two entities can be in a united state of being without physically
being in touch is hard to grasp. It defies time and space and it makes the universe less
detached than we thought it was.

The existence of entanglement has been confirmed experimentally[6], but it is still a rela-
tively new field in physics. In this article I will try to give an overview of how entanglement
manifests itself in a theoretical system: the Ising model.

We will look at chains of elementary particles with simple interactions. Each particle is
affected equally by an external field and has an interaction with its nearest neighbors.
States of such a system will naturally contain a certain amount of entanglement.

Chapter 2 will be an introduction to entanglement and entanglement entropy and con-
tains some basic examples. In chapter 3, I will introduce second quantization, which is a
method for efficiently describing many-particle systems. Chapter 4 contains the definition
of the Schmidt decomposition and some basic implication this has for the entanglement in
quantum mechanical systems. Chapter 5 and 6 finally deal with the transverse field Ising
model, bringing into use everything from the previous chapters.
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CHAPTER 2

Introduction to Entanglement

2.1 Entanglement

Entanglement is a quantum mechanical property which has met a lot of controversy in the
past. It causes some counter intuitive and paradoxical phenomena which makes it very
interesting to study.

When two quantum mechanical particles, that is, particles obeying quantum mechanical
laws, are entangled, they are in a fundamentally joint state. The state of the first particle
is always correlated with the state of the second particle. In that sense, it really is a
joint state: the particles cannot be seen as independent but have to be described by their
mutual wave function.

The controversy that this brings is that it seems like the two particles communicate with
each other. This would not be a problem were it not that they seem to communicate
instantaneously. Even if two entangled particles are both at another end of the universe,
two observers would make correlated measurements. It seems like information has traveled
across the universe to tell that because the first observer measured ‘a’, the second observer
should measure ‘b’. It seems also, that this means that the observers could exchange
information instantaneously without being bothered by their distance. All this would
contradict the principle that nothing can travel faster than light, not even information.

Unfortunately, or luckily, this is not the case. What has not been taken into account
here is the unpredictable nature of quantum particles. When you measure a property of a
quantum particle, it could always be ‘a’ or ‘b’ and you cannot know in advance. This also
means it is impossible to force a particle in the exact state you want, making it impossible
to exchange information; it is as if you write with a magic pen that writes down only
random letters not taking into account its user.

The phenomenon of entanglement can be described mathematically. We want to express
that the joint state of the two particles cannot be separated into two independent states.
We start by considering the Hilbert space of the two particles. If particle 1 is in space
HN1 of dimension N and particle 2 is in space HM2 of dimension M , the Hilbert space
in which we can describe the two particles simultaneously is given by the tensor product
space HN1 ⊗HM2 of dimension N ×M .[4] If {|n〉} is an orthonormal basis of HN1 and {|m〉}
of HM2 , then the tensor product {|n〉} ⊗ {|m〉} forms an orthonormal basis for HN1 ⊗HM2 .

The most general state in this joint Hilbert space can be expressed as

|Ψ〉 =
∑
n,m

bnm |n〉 ⊗ |m〉 , (2.1)

3



4 CHAPTER 2. INTRODUCTION TO ENTANGLEMENT

where bnm are constants such that
∑

n,m b
2
nm = 1. An entangled state is a state which

cannot be written as a tensor product of two states from the different Hilbert spaces, i.e.
a state |Ψ〉 which cannot be written in the form |a〉 ⊗ |b〉 where |a〉 ∈ HN1 , |b〉 ∈ HM2 . In
our notation, this means we cannot factorize bnm into the form cndm; we cannot write
equation 2.1 in the form

∑
n,m

cndm |n〉 ⊗ |m〉 = (
∑
n

cn |n〉)⊗ (
∑
m

dm |m〉) = |a〉 ⊗ |b〉 . (2.2)

An entangled state cannot be considered as the product of two independent states, in this
sense.

2.2 Entanglement Entropy

Let us start by introducing a classic example of an entangled state. We consider two
spin-12 particles and use the shorthand notation |ij〉 := |i〉1 ⊗ |j〉2: i represents the state
of particle 1 and j the state of particle 2. We denote 0 for the state down and 1 for the
state up.

We consider the state

|Ψ〉 =
1√
2

(|01〉 − |10〉).

Although not obvious, this state cannot be separated and is therefore entangled. One
could try to prove this, but another way to check for entanglement is by determining
the ‘entanglement entropy’. Besides indicating whether your system is entangled, the
entanglement entropy is also a measure of the amount of entanglement.

We first introduce the density matrix ρ = |Ψ〉 〈Ψ|. The reduced density matrix ρ1 of
particle 1 is defined by the partial trace of the density matrix over the Hilbert space of
particle 2. In our example:

ρ1 = tr2ρ

=
1

2
〈0|2 (|01〉 − |10〉)(〈01| − 〈10|) |0〉2

+
1

2
〈1|2 (|01〉 − |10〉)(〈01| − 〈10|) |1〉2

=
1

2
(|0〉1 〈0|1 + |1〉1 〈1|1),

which is simply a diagonal matrix. The entanglement entropy S1 of particle 1 is given by

S1 = −tr(ρ1 log ρ1) = −tr[

(
1/2 0
0 1/2

)
.

(
log 1/2 0

0 log 1/2

)
] = log 2.

In general, when we divide a system into two subsystems A and B, the entanglement
entropy of system A is given by

SA = −tr(ρA log ρA) (2.3)

where ρA = trBρ is the partial trace of the density matrix over the Hilbert space of system
B.
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Figure 2.1: A representation of a system consisting of two subsystems A and B.

The expression −tr(ρ log(ρ)) is called the ‘von Neumann entropy’. It is generally used to
determine whether a state is a pure or a mixed state. When the Neumann entropy is zero,
it is a pure state; when it is not zero, the state is mixed. In this context the entanglement
entropy tells us whether subsystem A is in a pure, independent state, or whether it is
mixed and entangled with its surroundings.

Let us look at what happens if we calculate the entanglement entropy of a non-entangled
product state: |Ψ〉 = |a〉 ⊗ |b〉 ∈ HA ⊗HB. We expect it to be zero. The reduced density
matrix becomes:

trB(|Ψ〉 〈Ψ|) = trB [(|a〉 ⊗ |b〉)(〈a| ⊗ 〈b|)]
= |a〉 〈a| trB(|b〉 〈b|)
= |a〉 〈a|

We can find a linear basis transformation U (using the Gram-Schmidt process [12]) such
that |a〉 is one of the new basis vectors. In this basis, |a〉 〈a| is a very simple matrix we
call m̂a. Mathematically:

|a〉 〈a| = U−1


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

U = U−1m̂aU.

For the entropy we get:

SA = −tr [|a〉 〈a| log(|a〉 〈a|)] = −tr
[
U−1m̂aU ln(U−1m̂aU)

]
= −tr

[
U−1m̂aUU

−1(ln m̂a)U
]

= −tr [m̂a(ln m̂a)]

= −tr




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .


0 0 · · · 0
0 ∞ · · · 0
...

...
. . .

...
0 0 · · · ∞


 = 0,

which is what we expected.

In order to tackle the problems and complexities that arise when dealing with many particle
systems, we first need to cover a few other concepts which we will do in the next chapters.



CHAPTER 3

Second Quantization and Fermionic Operators

3.1 First Quantization

3.1.1 Indistinguishability

When talking about more than one particle in quantum mechanics, one has to be careful.
Different physical properties play a role which should always be taken into account in
order to get the right results. At the quantum level, things do not work as we are used to
and counter-intuitive rules dominate.

The first concept we have to introduce is the notion of indistinguishability. In our daily
experience, when we see two similar objects, we can still always distinguish between them.
When you have two green balls, you could place one in your left and one in your right
hand. You could also paint one of the balls another colour to make distinguishing even
more easy.

In quantum mechanics this is not possible. One can never distinguish between two identical
particles.[1] When looking at electrons, for example, there is no way of tracking or labeling
one single particle. This property relates to the fact that observing particles in quantum
mechanics inevitably affects them: when we do not (want to) influence the system, we
cannot observe it and thereby cannot distinguish between identical particles.

3.1.2 Multi-particle Wave Function

When you want to describe a quantum-mechanical system of two particles, for example,
the statement ‘particle one is in state a and particle two is in state b’ wouldn’t make sense.
If it would, one could simply write for the total quantum state:

Ψ(x1, x2) = ψa(x1)ψb(x2),

where x1, x2 are the positions of particle one and two respectively. This statement doesn’t
take into account that one cannot distinguish between particle one and two, however. In
practice, we can only say ‘there are two particles in two different states’. Which particle
is in which state is unknown. To express this mathematically, we write:[1]

Ψ±(x1, x2) =
1√
2

[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)].

6
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Finding particle one in state a and two in b is equally likely as finding one to be in state
b and two in a. This requirement of symmetry can be written down more generally as:

Ψ(x1, x2) = ±Ψ(x2, x1).

Whether there should be a plus or a minus depends on the type of particle. A minus sign
implies that no two particles can be in the same place: if x1 = x2, we get

Ψ(x, x) = −Ψ(x, x),

which can only hold true when Ψ is zero. Particles with this property of not being able to
be in the same place (or state in general) are called fermions. The other type of particles
with a plus sign are called bosons. This thesis is focused on fermions, however.

If we want to describe a system with more than two fermions, this symmetry problem
quickly becomes more complex. For example, for the three particle wave function to
satisfy the symmetry conditions it is written down as:

Ψ(x1, x2, x3) =
1√
6

[ψa(x1)ψb(x2)ψc(x3)− ψa(x1)ψb(x3)ψc(x2)

− ψa(x2)ψb(x1)ψc(x3) + ψa(x3)ψb(x1)ψc(x2)

+ ψa(x2)ψb(x3)ψc(x1)− ψa(x3)ψb(x2)ψc(x1)].

Swapping two coordinates in this equation results in the same equation with a minus sign,
so as before, no two particles can be in the same place. In general, for many particles the
wave function is given by (here, we label states by numbers instead of letters):

Ψ(x1, x2, ..., xn) = det


ψ1(x1) ψ2(x1) · · · ψn(x1)
ψ1(x2) ψ2(x2) · · · ψn(x2)

...
...

. . .
...

ψ1(xn) ψ2(xn) · · · ψn(xn)

 ;

the so called Slater determinant.[9] When working with many-particle systems, this nota-
tion is very inefficient.

3.2 Second Quantization

3.2.1 Multi-particle Wave Function

Second quantization is a notation which makes it much more easy to work with wave
functions involving more than one particle.

The idea is that states are built up from the so-called vacuum, or empty state |0〉. The
empty state is the state where none of the possible states of the system is occupied by a
particle.

Assume the system we are looking at has different states that we label by numbering them.
A state with one particle in state 1 can be ‘created’ by working with a so-called creation
operator on the empty state:

|11〉 := c†1 |0〉
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here, c†1 is the creation operator that creates a particle in state one. We can also create a
state with two particles in state 1 (bosons):

|21〉 := c†1c
†
1 |0〉 = (c†1)

2 |0〉 ,

or a state with two particles in different states:

|11, 12〉 := c†1c
†
2 |0〉 .

Besides the creation operators, there are also annihilation operators which are in fact the
daggered version of the creation operators: c1 = (c†1)

† . They remove a particle from the
wave function:

c1 |11〉 = |0〉 .

If there is no particle in that state to begin with, the state is destroyed; it is impossible
to remove a particle from the empty state. Note that 0 is in this sense different from the
empty state. For example:

c2 |11〉 = 0 6= |0〉 .

These types of creation and annihilation operators are called ‘fermionic operators’ when
they regard fermions and ‘bosonic operators’ when they regard bosons.

One might wonder how the required symmetries of the fermions and bosons are represented
in this notation. It is the commutation relations of the operators that take care of the
symmetry: instead of worrying about how to write down a complicated state, one simply
has to take into account the commutation relations to get the right symmetry. This will
become clearer in the next subsection.

3.2.2 Fermionic Operators

I will now elaborate on the different relations of the fermionic operators. The bosonic
operators are not relevant for this thesis.

First of all, we have, by the Pauli exclusion principle, that every state can be occupied
by at most one particle. Adding another particle in the same state will destroy the wave
function:

c†1c
†
1 |0〉 = c†1 |11〉 = 0, (3.1)

so c†1c
†
1 = 0. Similarly, c1c1 = 0.

Another feature is that when creating or destroying a particle, a minus sign might arise
depending on the amount of particles in the preceding states. Mathematically:

c†j |n1, n2, ..., nj−1, 0, nj+1, ...〉 = (−1)
∑

i<j ni |n1, n2, ..., nj−1, 1, nj+1, ...〉 , (3.2)

where all ni are 0 or 1. Here, we assume the jth state is not occupied: if it were, the state
would have been destroyed. We see that a minus sign arises precisely when the amount of
occupied states before the jth state is odd. E.g.:
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c†2c1 |1, 0〉 = c†2 |0〉 = |0, 1〉

c1c
†
2 |1, 0〉 = −c1 |1, 1〉 = − |0, 1〉

The above example brings us to the following: the fermionic operators have anti-commutation
relations. These are the same as commutation relations except that the minus is a plus:
{a, b} = a.b+ b.a. The anti-commutation relations can be checked on random states using
properties 3.1 and 3.2 and are as follows:[2]

{ci, cj} = 0 (3.3)

{c†i , c
†
j} = 0 (3.4)

{ci, c†j} = δij . (3.5)

These commutation relations are conserved under Fourier transformations. This can be
seen by explicitly working out the anti-commutator of k-space operators a and a† and
using the inverse Fourier transformation:

{ak, a†l } = aka
†
l + a†l ak

=
1

N

∑
j

e−ikjcj
∑
j′

eilj
′
c†j′ +

1

N

∑
j′

eilj
′
c′†j
∑
j

e−ikjcj

=
1

N

∑
j,j′

e−i(kj−lj
′)(cjc

†
j′ + c†j′cj)

=
1

N

∑
j

e−i(k−l)j (because (cjc
†
j′ + c†j′cj) = δj,j′)

= δk,l.

One can easily see that {a†k, a
†
l } = {ak, al} = 0 by looking at the third line of the above

equation and using {c†i , c
†
j} = {ci, cj} = 0.

Now we have some tools to deal with many particle systems. We will first look at some
useful properties of large systems and in the last chapter combine everything to get some
real results.



CHAPTER 4

Spin Chains, Schmidt and Entanglement

What does entanglement entropy say about systems that consist of more than two spins?
Consider a chain of N spins with a subsystem A consisting of k spins. We define B as the
complement of subsystem A.

� � � � � �� � �

�� � � �

Figure 4.1: A schematic representation of a chain of spins divided into subsystems A and
B.

The entanglement entropy of subsystem A tells us how many spins of A are entangled
with B.[3] Remember that the most general state is written down as:

|Ψ〉 =
∑
{si}

cs1...sN |s1〉 |s2〉 ... |sN 〉

where the si’s are up or down and the c’s are complex numbers such that
∑
{si} c

2
s1...sN

= 1.

This sum contains 2N elements, so for large N it is difficult to deal with this expression.

We are helped here by the ‘Schmidt decomposition’. It comes from a theorem that can be
formulated as follows:[10]

Assume we have a Hilbert space which we divide in two subsystems HA and HB such
that the total space is HA ⊗HB. Assume subspace A has dimension m and subspace B
dimension n, and m ≤ n. Then for any vector |Ψ〉 from HA⊗HB there exist orthonormal
bases {|1〉A , ..., |m〉A} of HA and {|1〉B , ..., |n〉B} of HB such that

|Ψ〉 =
m∑
i

λi |i〉A |i〉B , (4.1)

where λi are positive real numbers such that
∑m

i λ
2
i = 1. With this decomposition, we

have reduced the amount of elements in the sum to the dimension of the smaller subspace.

Returning to the chain of length N with a small subsystem A of k spins, this means we
can express any pure state from this system in the above form where the sum goes to 2k.

10
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A first result is that, in a pure state, the entanglement entropy of system A is equal to
that of B; system A is entangled to B the same amount B is entangled to A. This is so
because the reduced density matrices ρA and ρB have the same eigenvalues:[10]

ρA =
∑
i

〈i|B (
∑
i′,i′′

λi′λi′′ |i′〉A |i
′〉B 〈i

′′|A 〈i
′′|B) |i〉B

=
∑
i

λ2i |i〉A 〈i|A

and similarly ρB =
∑

i λ
2
i |i〉B 〈i|B. In both cases, the entropy becomes

SA = SB = −
2k∑
i=1

λ2i log(λ2i ).

We expect a random state, where the weights of all the product states are from a uniform
distribution, to be almost maximally entangled. There is a theorem saying that for such
a random state, in the Schmidt decomposition (in the limit 1 � k � N) we have that
λi = 1√

2k
for all i.[3] The Schmidt-decomposed state is thus a very simple state, contrary

to the original state. We find the entanglement entropy to be

SA = −
2k∑
i=1

1

2k
log(

1

2k
) = 2k ∗ 1

2k
∗ k log(2) = k log(2).

Here it becomes clear that the entropy scales linearly with the subsystem-size k. This is a
result for random, maximally entangled states however, and we are also interested in more
specific states. In the next chapter, we will look at the groundstates from the transverse
field Ising model.



CHAPTER 5

The Ising Model for Small Systems

The model we are going to look at is called the ‘transverse field Ising model’. Its Hamil-
tonian is given by

H = −J
N−1∑
i=1

Sxi S
x
i+1 − h

N∑
i=1

Szi , (5.1)

where Sx, Sz are spin operators.[7] The coupling constant J expresses the interaction
between neighboring spins: the energy gets lower if they have the same orientation in the
x-direction and higher when they have different orientations. h expresses the interaction
of the spins with a field pointing in the z-direction: for a spin, pointing along the positive
z-direction is energetically more favorable then pointing in the negative direction. This
model is more elaborate than the classical one: the fact that quantum spins can be in
a superposition of two states plays a role in this model because spins have x- as well as
z-interactions.

x

z

J
h

Figure 5.1: A schematic representation of the Ising model.

5.1 Solution for Two Spins

5.1.1 Finding the Eigenstates

The model is relatively easy to solve for two spins. To do so, we first simplify the Hamil-
tonian by including the factors ~

2 into the constants J and h. The Hamiltonian can now
be expressed in terms of Pauli matrices:

H̃ = −J
N−1∑
i=1

σxi σ
x
i+1 − h

N∑
i=1

σzi . (5.2)

12
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For two spins:

H̃ = −Jσx1 ⊗ σx2 − h(σz1 + σz2)

= −J
(

0 1
1 0

)
⊗
(

0 1
1 0

)
− h(

(
1 0
0 −1

)
⊗
(

1 0
0 1

)
+

(
1 0
0 1

)
⊗
(

1 0
0 −1

)
)

= −


2h 0 0 J
0 0 J 0
0 J 0 0
J 0 0 −2h

 ,

where the Hamiltonian is now expressed in the 2-spin z-basis: {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}. This
Hamiltonian can be diagonalized. Its eigenvectors and corresponding eigenvalues are given
in the table below:

Eigenvector:


0

1

1

0




0

−1

1

0




2h+

√
4h2 + J2

0

0

J




−J

0

0

2h+
√

4h2 + J2


Eigenvalue: −J J -

√
4h2 + J2

√
4h2 + J2

Table 5.1: Eigenstates (not normalized) and corresponding eigenvalues of a two spin trans-
verse field Ising model.

When plotting the eigenvalues as a function of J (setting h to 1), it becomes visible that
in the limit of large J , states 1 and 3 as well as states 2 and 4 become degenerate.

:   -J

:    J

:    - √4h2 + J 2

:    √4h2 + J 2

�

�

Figure 5.2: The eigenvalues of the two spin Ising model plotted as a function of J . Al-
though no units are specified for the eigenvalues, physically they should correspond to
energy.

5.1.2 Entanglement Entropy

The groundstate (the third state from table 5.1.1), when normalized, can be expressed as:
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|ψ〉gs =
1√

2(4h2 + J2 + 2h
√

4h2 + J2)

[
(2h+

√
4h2 + J2) |↑↑〉+ J |↓↓〉

]
.

The reduced density matrix of this state is given by

ρred =
1

2(4h2 + J2 + 2h
√

4h2 + J2)

[
(2h+

√
4h2 + J2)2 |↑〉 〈↑|+ J2 |↓〉 〈↓|

]
.

This reduced matrix can be plugged into equation 2.3 directly, giving an analytical ex-
pression for the entanglement entropy. Setting h to 1, we can plot it as a function of
J .

S

�

Figure 5.3: The entanglement entropy S in a two spin transverse field Ising model is
plotted against the interaction factor J . The field h is set to 1.

We see that if J is zero, there is no entanglement. This is intuitive because zero J means
there is no interaction. The groundstate will simply be all states aligning along the field h
in the z-direction. For large J , meaning the interaction dominates, the state approaches
maximum entanglement: 1 log 2.

The first two eigenstates, corresponding to the middle two values in the energy spectrum,
are given by 1√

2
(|↑↓〉+ |↓↑〉) and 1√

2
(− |↑↓〉+ |↓↑〉) respectively. Both are independent of J

and maximally entangled (they have entanglement entropy log 2). They are very similar
to the example given in section 2.2.

The fourth state exhibits the exact same entropy as the groundstate; their graphs overlap
entirely. This is not very surprising because of the symmetry of the model. As can be
seen in table 5.1.1, states with opposite energies are very symmetrical with respect to each
other, in this case resulting in equal entanglement entropies.

5.2 Solution for 3 and 4 Spins

The 3- and 4-spin models are more complicated; their states have dimension 8 and 16
respectively. The matrix representation of the two models can be easily determined by
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computing the tensor products (again setting h = 1):

H3 = −J(σx1 ⊗ σx2 + σx2 ⊗ σx3 )− 1(σz1 + σz2 + σz3)

=



−3 0 0 −J 0 0 −J 0
0 −1 −J 0 0 0 0 −J
0 −J −1 0 −J 0 0 0
−J 0 0 1 0 −J 0 0
0 0 −J 0 −1 0 0 −J
0 0 0 −J 0 1 −J 0
−J 0 0 0 0 −J 1 0
0 −J 0 0 −J 0 0 3



and

H4 = −J(σx1 ⊗ σx2 + σx2 ⊗ σx3 + σx3 ⊗ σx4 )− 1(σz1 + σz2 + σz3).

In the 3-spin model, the groundstate could be computed analytically. The 4-spin model
was solved numerically, i.e. a value for J was entered first and then it was solved.

The reduced density matrices of the found eigenstates were computed using mathematica
code.[11]

We can now compare the entropies of different subsystems of the groundstates.

When the system size is increased, the entanglement entropy of the leftmost spin increases
as well. For larger systems, there are more spins this leftmost spin can entangle to. It
still has a limit of 1 log 2, as could have been expected of a subsystem of size 1. Due to
symmetry, the same result holds for the rightmost spin.

:

:

:

�

��

Figure 5.4: Entanglement entropies of the leftmost spins increase with the system size.
Plotted here are the entropies of the leftmost spin in systems with 2,3 and 4 spins as a
function of J .

In a system with 3 spins we can look at the entropy of the middle spin compared to a spin
on the edge of the system. The middle spin has a larger entanglement entropy, which is in
a way intuitive because this spin is more embedded in the system and can therefore mix
more with its surroundings.

In a system with 3 spins, one could also take a subsystem of 2 spins, but the complement
of this subsystem would then contain only 1 spin. As seen in chapter 4, the entanglement
entropy of a subsystem and its complement are equal, so essentially we would again be
dealing with a subsystem of size 1.
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:

:

Figure 5.5: Comparison of the entanglement entropy of the middle and leftmost spin in a
system of 3 spins.

Now when looking at a system with 4 spins, we can actually take subsystems larger than
1. There are 3 possible different subsystems we can take (taking into account that the
entropy of a subsystem is equal to the entropy of its complement). Taking spin 1 and 3
gives the smallest entropy; spins 1 and 3 have no direct interaction so they do not form
a coherent subsystem. Taking spins 2 and 3 gives a larger entropy, but their complement
is very disconnected. The largest entropy is achieved by taking the subsystem containing
spins 1 and 2. We see that the entropy actually exceeds our previous limit of log 2, which
is possible now the subsystem is larger than 1. It reaches a maximum value at a finite J
but then returns to the limit of log 2. This can be explained by the fact that in the limit
of large J , the model becomes a simple fieldless ferromagnet where the groundstate is a
superposition of all spins pointing left and all spins pointing right (along the x-axis). The
entanglement of such a ‘superposition of two states’ is always log 2.

:

:

:

Figure 5.6: Comparison of the entanglement entropy of different subsystems in a system
of 4 spins.

So far, we have looked at relatively small systems. Because the dimension of the system
grows exponentially with ∼ 2N , the method used above quickly becomes too inefficient
or even impossible. In the next chapter, methods are introduced which are used to solve
larger systems.



CHAPTER 6

The Ising Model in Fermionic Language

6.1 Jordan Wigner Transformation

In order to deal with larger systems, it is convenient to express the Hamiltonian of the
model in terms of fermionic operators. Somehow, there is a correspondence between the
binary system of spins up or down and a system of fermions with occupied or unoccupied
states.

The first thing we can note is that the correspondence between spins and fermions must
lie in the creation and annihilation operators. In spin language, the dimensionless creation
and annihilation operators are given by the Pauli matrices σ+ and σ−.[1] We cannot simply
impose a 1-1 correspondence between spin and fermionic operators: spin operators have

the wrong commutation relations. The spin operators commute (
[
σ+i , σ

−
j

]
= 0 if i 6= j)

while fermionic operators anti-commute.

The following transformation remedies this:[5]

σ+i = Πj<i(1− 2c†jcj)c
†
i σ−i = Πj<i(1− 2c†jcj)ci, (6.1)

where (1 − 2c†jcj) is equal to 1 if site j is empty and equal to -1 if it is full. In total,

Πj<i(1− 2c†jcj) will be +1 if the amount of filled sites before i is even and -1 if it is odd.

We have now expressed the spin creation and annihilation operators in terms of fermionic
creation and annihilation operators such that the commutation relations are right. These
transformed spin operators create and annihilate fermions instead of spins, but they be-
have in the exact same way, so this transformation gives us a 1-1 correspondence between
fermions and spins. The benefit is that working with fermionic operators is easier than
working with spin operators.

Now we are able to express σxi σ
x
i+1 and σzi in terms of fermionic operators. We use that

σx = (σ+ + σ−) and σz = (σ+σ− − σ−σ+).

σxi σ
x
i+1 = (σ+i + σ−i )(σ+i+1 + σ−i+1)

= Πj<i(1− 2c†jcj)(c
†
i + ci)Πj<i+1(1− 2c†jcj)(c

†
i+1 + ci+1)

= Πj<i(1− 2c†jcj)
2(c†i + ci)(1− 2c†ici)(c

†
i+1 + ci+1),

where in the last step, the commutation relations 3.3 were taken into account. We note
that since (1− 2c†jcj) is either +1 or -1, its square is always 1. This means we can throw

17
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away all the terms in the product:

σxi σ
x
i+1 = (c†i + ci)(1− 2c†ici)(c

†
i+1 + ci+1)

= (c†i −����2c†ic
†
ici + ci − 2cic

†
ici)(c

†
i+1 + ci+1)

= (c†i + ci − 2(1−
�
�c†ici)ci)(c

†
i+1 + ci+1),

so that finally
σxi σ

x
i+1 = (c†i − ci)(c

†
i+1 + ci+1). (6.2)

For σzi we find

σzi = (σ+i σ
−
i − σ

−
i σ

+
i )

= (Πj<i(1− 2c†jcj)c
†
iΠj<i(1− 2c†jcj)ci −Πj<i(1− 2c†jcj)ciΠj<i(1− 2c†jcj)c

†
i )

= (c†ici − cic
†
i ),

(6.3)

where it was used again that (1 − 2c†jcj) will always be 1 when squared. We now have
everything to express the transverse field Ising model in terms of fermionic operators.
Using equations 6.2 and 6.3 we find:

H̃ = −J
N−1∑
i=1

σxi σ
x
i+1 − h

N∑
i=1

σzi

= −J
N−1∑
i=1

(c†i − ci)(c
†
i+1 + ci+1)− h

N∑
i=1

(c†ici − cic
†
i ).

(6.4)

Having expressed the Hamiltonian in more familiar fermionic operators, we can move on
to solving the model more efficiently for larger systems.

6.2 Reproducing the Result of 2 Spins

We want to compare results of the two-site fermionic Hamiltonian to the results we found
directly for spins in section 5.1.1. For two sites, the Hamiltonian becomes (now in fermionic
language):

H2 = −J(c†1 − c1)(c
†
2 + c2)− h(c†1c1 − c1c

†
1 + c†2c2 − c2c

†
2)

= −J(c†1c2 + c†1c
†
2 + c2c1 + c†2c1)− h(c†1c1 − c1c

†
1 + c†2c2 − c2c

†
2)

=
(
c†1 c†2 c1 c2

)
−h −J/2 0 −J/2
−J/2 −h J/2 0

0 J/2 h J/2
−J/2 0 J/2 h



c1
c2
c†1
c†2


= ~c†H~c,

(6.5)

where the matrix was made symmetrical by using the commutation relations 3.3, e.g.
c†1c2 = 1

2(c†1c2 + c†1c2) = 1
2(c†1c2 − c2c

†
1).

The eigenvectors and eigenvalues of the above matrix H (the above matrix inside the
c-operator vectors) are as follows:
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Eigenvectors:


2h+

√
4h2 + J2

2h+
√

4h2 + J2

−J

J




2h+

√
4h2 + J2

−2h−
√

4h2 + J2

J

J




J

J

2h+
√

4h2 + J2

−2h−
√

4h2 + J2




−J

J

2h+
√

4h2 + J2

2h+
√

4h2 + J2


≡ ~u1 ≡ ~u2 ≡ ~u3 ≡ ~u4

Eigenvalues: 1
2(−J −

√
4h2 + J2) 1

2(J −
√

4h2 + J2) 1
2(−J +

√
4h2 + J2) 1

2(J +
√

4h2 + J2)

≡ −ε1 ≡ −ε2 = ε2 = ε1

Table 6.1: The (not normalized) eigenvectors with corresponding eigenvalues of H.

Note that these are not yet the eigenvectors and eigenvalues of the Hamiltonian.

Let U be the orthonormal matrix consisting of the normalized eigenvectors of H: U =
{~̂u1, ~̂u2, ~̂u3, ~̂u4} where ~̂ui = ~ui

|~ui| are the normalized versions of the vectors above. We can
rewrite equation 6.5 as follows:

H2 =
(
c†1 c†2 c1 c2

)
UU−1


−h −J/2 0 −J/2
−J/2 −h J/2 0

0 J/2 h J/2
−J/2 0 J/2 h

UU−1


c1
c2
c†1
c†2



=
(
c†1 c†2 c1 c2

)
U


−ε1 0 0 0

0 −ε2 0 0
0 0 ε2 0
0 0 0 ε1

U−1


c1
c2
c†1
c†2



=
(
~̂u1 · ~c† ~̂u2 · ~c† ~̂u3 · ~c† ~̂u4 · ~c†

)
−ε1 0 0 0

0 −ε2 0 0
0 0 ε2 0
0 0 0 ε1



~̂u1 · ~c
~̂u2 · ~c
~̂u3 · ~c
~̂u4 · ~c



=
(
γ1 γ2 γ†2 γ†1

)
−ε1 0 0 0

0 −ε2 0 0
0 0 ε2 0
0 0 0 ε1



γ†1
γ†2
γ2
γ1


= ε1(γ

†
1γ1 − γ1γ

†
1) + ε2(γ

†
2γ2 − γ2γ

†
2).

One can easily check that γ†1 := ~̂u1 · ~c is indeed the daggered version of γ1 := ~̂u4 · ~c by
using the symmetry of the vectors ~u1 and ~u4. These gammas are new fermionic operators
that create and destroy what are called ‘Bogoliubons’. Expressed in the language of
Bogoliubons, the Hamiltonian is easy to solve. The groundstate is simply given by the
empty Bogoliubon state |VAC〉:

H2 |VAC〉 = ε1(�
��γ†1γ1 − γ1γ

†
1) + ε2(�

��γ†2γ2 − γ2γ
†
2) |VAC〉 = (−ε1 − ε2) |VAC〉 ,

where −ε1 − ε2 = −
√

4h2 + J2. This energy is the same one we found in section 5.1.1.

We now also want to find the groundstate in terms of regular fermions, instead of Bo-
goliubov fermions. In other words: we want to express our Bogoliubov vacuum |VAC〉 in
terms of fermions. To do so, we first write down |VAC〉 in the most general way possible:

|VAC〉 = αc†1c
†
2 |0〉+ βc†1 |0〉+ γc†2 |0〉+ δ |0〉 ,
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with |0〉 the fermion-vacuum and α, β, γ, δ constants that we have to determine. We impose
two requirements on the vacuum:

γ1 |VAC〉 = 0

γ2 |VAC〉 = 0;

in other words: the Bogoliubov annihilation operators should destroy it. These require-
ments give a series of relations from which finally follows:

|VAC〉 =
1√

2(4h2 + J2 + 2h
√

4h2 + J2

(
(2h+

√
4h2 + J2)c†1c

†
2 + J

)
|0〉

=
1√

2(4h2 + J2 + 2h
√

4h2 + J2

(
(2h+

√
4h2 + J2) |11〉+ J |0〉

)
,

which is indeed what we found to be the groundstate in section 5.1.1, only now in language
of fermions instead of spins. Because of the 1-1 correspondence we established, they can be
regarded as equal. This Bogoliubov vacuum is known from the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity and it is often referred to as the BCS state.[8]

6.3 Solution for a Periodic Chain of N Sites

We are now going to look at periodic 1-dimensional Ising chains. The reason for the
periodicity is that it will allow us to perform a Fourier transformation. Periodicity simply
means here that if we have N sites, the (N +1)th site will be again the first site. On every
site, there can be 1 or 0 fermions corresponding to spin up or down.
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Figure 6.1: Schematic representation of a periodic chain of N different sites.

6.3.1 Periodic and Anti-periodic Boundary Conditions

Because of the periodicity, we have that for the spin matrices:

SxN+1 = Sx1 , SzN+1 = Sz1 .

This does not simply imply that cN+1 = c1, however. We have to be careful and keep
in mind that fermionic operators might give a minus sign depending on the amount of
particles before them, as stated in equation 3.2.
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We will explicitly determine SxNS
x
N+1 = SxNS

x
1 = (σ+N +σ−N )(σ+1 +σ−1 ) in terms of fermions.

Using the Jordan Wigner transformation:

σ−1 = Πj<1(1− 2c†jcj)c1 = c1

σ−N = Πj<N (1− 2c†jcj)cN = (−1)
∑N−1

j=1 njcN ,

where nj is 1 if site j is occupied and 0 if it is not. We get:

(σ+N + σ−N )(σ+1 + σ−1 ) =
(

(−1)
∑N−1

j=1 njc†N + (−1)
∑N−1

j=1 njcN

)(
c†1 + c1

)
= (−1)

∑N
j=1 nj

(
(−1)nN c†N + (−1)nN cN

)(
c†1 + c1

)
= (−1)F

(
(1− 2c†NcN )c†N + (1− 2c†NcN )cN

)(
c†1 + c1

)
,

where F is the amount of fermions in the system. (−1)F is called the parity of the system.
This expression can be simplified further using the commutation relations 3.3:

= (−1)F
(

(1− 2(1−���
cNc

†
N ))c†N + (1−����2c†NcN )cN

)(
c†1 + c1

)
= (−1)F

(
−c†N + cN

)(
c†1 + c1

)
= (−1)F+1

(
c†N − cN

)(
c†1 + c1

)
.

Comparing this with the term
(
c†N − cN

)(
c†N+1 + cN+1

)
we would naively get from the

sum, we can conclude that

cN+1 = c1 if F is odd, (6.6)

cN+1 = −c1 if F is even. (6.7)

These conditions are called periodic and anti-periodic boundary conditions respectively.

6.3.2 Fourier Transformation

We write our Hamiltonian for an N -site periodic chain as

H = −J
N−1∑
i=1

(c†i − ci)(c
†
i+1 + ci+1)∓ J(c†N − cN )(c†1 + c1)− h

N∑
i=1

(c†ici − cic
†
i )

where we have a minus at the second term if the amount of fermions in the system is odd
and a plus if it is even. In other words: in the case of an odd number of fermions the
Hamiltonian has periodic boundary conditions and in case of an even number anti-periodic.

We do not know in advance what the amount of states in the eigensystems will be. Fur-
thermore, we do not know how an anti-periodic system will behave under a Fourier trans-
formation.

Let us concentrate on anti-periodic boundary conditions. From the condition cN+1 = −cN
we get a restriction on the possible momenta k of our momentum operators:

cN+1 = −c1
⇒
∑
k

ei(N+1)kak = −
∑
k

eikak

⇒ eiNk = −1⇒ Nk = −π + 2πj

⇒ k = − π
N

+
2πj

N

(6.8)
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where k now has N different values for j ∈ {0, 1, 2, ..., N − 1}.

We perform a Fourier transformation on the components of the anti-periodic Hamiltonian:

• −J
∑N−1

j=1 (c†j − cj)(c
†
j+1 + cj+1) becomes:

−J
N−1∑
j=1

∑
k,k′

[e−ik
′
e−ij(k+k

′)a†ka
†
k′ + eik

′
e−ij(k−k

′)a†kak′ + e−ik
′
eij(k−k

′)a†k′ak

− eik′eij(k+k′)akak′ ].

(6.9)

• J(c†N − cN )(c†1 + c1) becomes:

J
∑
k,k′

[e−ikNe−ik
′
a†ka
†
k′ + e−ikNeik

′
a†kak′ + eikNe−ik

′
a†k′ak − e

ikNeik
′
akak′ ]

= −J
∑
k,k′

[e−iN(k+k′)e−ik
′
a†ka
†
k′ + e−iN(k−k′)eik

′
a†kak′ + eiN(k−k′)e−ik

′
a†k′ak

− eiN(k+k′)eik
′
akak′ ]

(6.10)

where was used that eik
′N = e−ik

′N = −1.

• −h
∑N−1

i=1 (c†ici − cic
†
i ) becomes:

−h
∑
k

(c†kck − ckc
†
k)

It becomes visible that expressions 6.9 and 6.10 match: expression 6.10 is simply the Nth
term of the sum in 6.9. Combining everything, we get:

H = −J
N∑
j=1

∑
k,k′

[e−ik
′
e−ij(k+k

′)a†ka
†
k′ + eik

′
e−ij(k−k

′)a†kak′ + e−ik
′
eij(k−k

′)a†k′ak

− eik′eij(k+k′)akak′ ]− h
∑
k

(c†kck − ckc
†
k),

so that finally, using
∑N

j=1 e
ij(k+k′) = δk,−k′ ,

∑N
j=1 e

ij(k−k′) = δk,k′ :

H = −J
∑
k

[eikc†kc
†
−k + eikc†kck + e−ikc†kck − e

−ikckc−k]− h
∑
k

(c†kck − ckc
†
k). (6.11)

This expression for the Hamiltonian is actually not only right for the even (anti-periodic)
case, but also for the odd (periodic) case. The difference between the two cases lies in
the k-values. In equation 6.8 we saw the possible values for the even case. For the odd
(periodic) case we have (again, j ∈ {0, 1, ..., N − 1}):

eiNk = 1⇒ k =
2πj

N

6.3.3 Bogoliubov Transformation

We now want to find the eigenvalues and eigenvectors of the Fourier-transformed Hamil-
tonian 6.11. To do so, we first rewrite it in a more symmetrical way. We rewrite (using
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commutation relations):∑
k

eikc†kc
†
−k =

1

2

∑
k

(eikc†kc
†
−k − e

−ikc†kc
†
−k) =

∑
k

i sin(k)c†kc
†
−k,

(and similarly) −
∑
k

eikckc−k = −
∑
k

i sin(k)c−kck,

and ∑
k

(eikc†kck + e−ikc†kck) =
∑
k

cos(k)(c†kck − c−kc
†
−k),

so that

H = −J
∑
k

[i sin(k)(c†kc
†
−k − c−kck) + cos(k)(c†kck − c−kc

†
−k)]− h

∑
k

(c†kck − ckc
†
k).

This can be rewritten as

H =
∑
k

(
c†k c−k

)(−J cos(k)− h −iJ sin(k)
iJ sin(k) J cos(k) + h

)(
ck
c†−k

)
. (6.12)

This above matrix can be diagonalized: its eigenvalues are±λk = ±
√
J2 + h2 + 2Jh cos(k)

with corresponding eigenvectors

~v+ =
1√

2λk(λk + J cos(k) + h)

(
−iJ sin(k)

J cos(k) + h+ λk

)
for + λk (6.13)

~v− =
1√

2λk(λk + J cos(k) + h)

(
J cos(k) + h+ λk
−iJ sin(k)

)
for − λk. (6.14)

With these orthonormal vectors we can construct a matrix U which diagonalizes the above

matrix. Let U =
(
~v+ ~v−

)
, U−1 = U † =

(
~v+
†

~v−
†

)
. Then equation 6.12 becomes:

H =
∑
k

(
c†k c−k

)
UU−1

(
−J cos(k)− h −iJ sin(k)
iJ sin(k) J cos(k) + h

)
UU−1

(
ck
c†−k

)

=
∑
k

(
γ†k γ−k

)(+λk 0
0 −λk

)(
γk
γ†−k

)
=
∑
k

λk(γ
†
kγk − γkγ

†
k),

where(
γk
γ†−k

)
= U−1

(
ck
c†−k

)
=

1√
2λk(λk + J cos(k) + h)

(
iJ sin(k)ck + (J cos(k) + h+ λk)c

†
−k

(J cos(k) + h+ λk)ck + iJ sin(k)c†−k

)
(6.15)

is now a vector consisting of two linear combinations of ck and c†−k. These two linear
combinations define new fermionic operators, just like we saw in section 6.2. This ‘trans-
formation of fermionic operator basis’ is called a Bogoliubov transformation.[8] The new
operators γ and γ† destroy and create ‘Bogoliubov particles’.

With the Bogoliubov transformation, the Hamiltonian becomes a very simple expression.
The groundstate is given by the empty Bogoliubov state with energy Egs = −

∑
k λk.
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6.3.4 Reproducing the Results of Two Spins

We can compare this energy with what was found in section 5.1.1. A two site model without
periodicity is equivalent to a two site model with periodicity with half the interaction
energy. In other words, if we replace J by J/2 we expect to get the same results. We
now have to be careful and distinguish between the cases of an even and odd amount of
particles.

� ���

���

Figure 6.2: Similarity between a 2-site periodic and non-periodic chain.

We start with the case of an even amount of particles (where we expect to find the
groundstate, as can be seen in table 5.1.1). In this case, k ∈ {−π/2, π/2}. We find for
the highest and lowest possible eigenenergies (corresponding to empty and full Bogoliubov
states):

Eeven
gs = −

∑
k

λk = −
√
J2

4
+ h2 + Jh cos(−π/2)−

√
J2

4
+ h2 + Jh cos(π/2)

= −
√
J2 + 4h2,

Eeven
ex =

∑
k

λk =
√
J2 + 4h2,

which is what we had. For an odd amount of particles, we have k ∈ {0, π}, corresponding
to energies

Eodd
gs = −

∑
k

λk = −
√
J2

4
+ h2 + Jh cos(0)−

√
J2

4
+ h2 + Jh cos(π) = −J,

Eodd
ex =

∑
k

λk = J.

We have reproduced the correct energies as eigenenergies of the empty and full Bogoliubov
states. States containing only one Bogoliubov particle are also eigenstates, but they do not
give right energies. These ‘extra results’ are inconvenient. Usually, we are only interested
in the groundstate, however, which is always the empty Bogoliubov state.

Finding the groundstate (now in k-space) is a matter of determining what exactly the
empty Bogoliubov state, let’s call it |VAC〉, is in terms of regular fermionic momentum
operators. This is done by expressing |VAC〉 in the most general way possible as a super-
position of all possible states and then imposing

γk |VAC〉 = 0. (6.16)

For two particles we can take the ansatz that the groundstate must be even, thus of the
form |VAC〉 = (α + βc†−π/2c

†
π/2) |0〉. Using the γk from equation 6.15 (with J/2) we get

the conditions (we neglect the cosine terms since they become zero):

γ−π/2 |VAC〉 = (−iJ
2
c−π/2 + (h+

√
J2/4 + h2)c†π/2)(α+ βc†−π/2c

†
π/2) |0〉

= (−iJ
2
β + (h+

√
J2/4 + h2)α)c†π/2 |0〉 = 0,
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and similarly

γπ/2 |VAC〉 = (−iJ
2
β + (h+

√
J2/4 + h2)α)c†−π/2 |0〉 = 0.

We see that α = iJβ

2h+
√
J2+4h2

. This together with the condition that |α|2 + |β|2 = 1 gives

the following result for |VAC〉:

|VAC〉 =
1√

2(4h2 + J2 + 2h
√

4h2 + J2)
(J − i(2h+

√
J2 + 4h2)c†−π/2c

†
π/2) |0〉

=
1√

2(4h2 + J2 + 2h
√

4h2 + J2)
(J + (2h+

√
J2 + 4h2)c†1c

†
2) |0〉 ,

where in the last step a Fourier-transformation was taken. This is indeed the result we
expected.

Condition 6.16 can also be solved in general, for any amount of particles. The general case
is a quite well-known problem and it is solved in the Bardeen–Cooper–Schrieffer theory of
superconductivity.[8] The result is that if

γk = ukck + vkc
†
−k,

with uk, vk momentum dependent variables, then

|VAC〉 =
∏
k

(uk − vkc†kc
†
−k) |0〉 .

where |0〉 is the regular vacuum state. In our case:

|VAC〉 =
∏
k

1√
2λk(λk + J cos(k) + h)

(iJ sin(k)− (J cos(k) + h+ λk)c
†
kc
†
−k) |0〉 .



CHAPTER 7

Conclusion and Outlook

The concepts of entanglement and entanglement entropy have been introduced. They have
been applied to the eigenstates of small sized transverse field Ising models.

In small models, we have seen that the groundstate naturally contains some entanglement
provided the interaction constant is bigger than zero. The entanglement generally grows as
a function of the interaction. For subsystems larger than one spin, we have seen that they
can surpass the limit of log 2 of one-spin subsystems. In the limit of large interaction, the
model will behave as a fieldless ferromagnet and the groundstate will be a superposition
of all spins left and all spins right. This means that in this limit, the entanglement again
goes to log 2, regardless of the size of the subsystem.

The formalism of second quantization has been introduced and applied to the transverse
field Ising model in the form of a Jordan-Wigner transformation. Expressed in the more
manageable fermionic operators, the Hamiltonian could be solved using a Fourier and then
a Bogoliubov transformation.

The next step would be to try and find a way to determine the entanglement entropy
efficiently from states in the fermionic language.

The groundstate that was determined at the end of chapter 6 is expressed in terms of
fermionic momentum operators, instead of spacial fermionic operators. Transforming the
groundstate from its momentum form back to its spatial form is not at all trivial so it is
a question whether this process could be generalized.

For the entropy, the dimensions of the subsystems are very relevant. It remains a question
whether the entropy can be determined efficiently without constructing enormous density
matrices. The Schmidt decomposition has given a hopeful indication in that regard. In
the Schmidt decomposition, the reduced density matrix still grows exponentially with the
subsystem size, so there is still a limit.

If these difficulties are dealt with, the entanglement of different (small sized) subsystems
of momentum states or spatial states could be studied and compared for any system size.
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