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Abstract

Proximity between inventive actors is important for the spread of new
ideas. However, in the current literature there is little attention to mea-
sures of accessibility - a form of functional proximity - which depend on
infrastructural connections. This article tries to fill this gap by analysing
the effect that railroad, canal and river connections have on the diffusion
of electrical technology in US counties between 1850-1900. The results
of the linear probability analysis show that both railroads and canals are
linked to the probability of patenting in electrical technology within a
county.

1 Introduction

In the past two centuries, technological diffusion has been a key ingredient shap-
ing the difference in economic growth between countries (Baldwin, 2016). The
great divergence in economic growth since 1820 between the Western world
and the rest of the globe is partly attributable to the fact that areas can
have geographical, environmental and social circumstances that impede the
diffusion of new technologies (Bloom et al., 1998). Bloom et al. (1998) for
instance, attribute Africa’s dissapointing technological and economic growth
to unfavourable geographical circumstances, such as having a relatively short
coast line compared to the hinterland coupled with few navigable rivers inland.
However this focus on geographical conditions doesn’t explain the technologi-
cal blossoming of the US in the same period, under comparable geographical
circumstances as Africa. One of the reasons for the US’s remarkable growth
in the past two centuries is suggested to lie in the ‘transportation revolution’
(Taylor, 1951) of canals and railroads, that connected much of inland America
to the coastal economic hubs. It is this key role of infrastructural connections
in technological development that warrants further research, starting with this
paper.

Proximity between actors is an important mediator for the success of knowl-
edge diffusion. Cognitive, social, organisational and institutional proximity can
link up pools of knowledge to create new knowledge (Boschma, 2005; Balland,
2012). Geographical proximity - simply being located close to one another in
space and time - matters for innovative activity (Jaffe et al., 1993; Sonn & Stor-
per, 2008; Feldman et al., 2015). Recently, Feldman et al. (2015) have shown
that the Euclidean distance between MSAs is a significant factor in explaining
how new recombinant DNA (rDNA) technology spreads between them. While
being interesting in their own respect, the proximity and diffusion literature
tends to focus on absolute geographical proximity, and leaves the importance of
functional proximity, or accessibility (Andersson & Karlsson, 2004), untouched.
There is little attention to the improvements in transportation and communi-
cation that have greatly increased accessibility of cities and towns in the past
centuries, and subsequently facilitated greater possibilities for inventive flows
between actors.
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On the other hand, the literature that does focus on the effect that infras-
tructure has on diffusion of invention is scarce, and does not depart from a
proximity framework or focus on the diffusion of a single technology. A topic
that is often researched in economic papers, but less so in innovation papers,
is that of the development of the railroad network in the US. This infrastruc-
tural revolution is a suitable object of study, since while road transport cost
did not change from the early 19th century to the early 20th, railroads offered
an alternative that connected cities on a longer distance than ever before, be-
ing cheaper than the transportation alternatives (Perlman, 2016). It has been
shown by Perlman (2016) that areas that have been newly connected to the rail-
road network have seen an increase in innovation, as measured by the average
amount of patents per 1,000 people.

To connect the loose ends of the proximity and transportation literature,
I make a longitudinal analysis of historical transportation connections in 19th
century US. Specifically, I will focus on US counties in the period between 1850-
1900, when big transport innovations such as railways and canals changed the
economic and technological landscape (Perlman, 2016). This historical approach
is made possible by novel data initiatives on the geographical distribution of
patented knowledge (Petralia et al., 2016) and infrastructural connections (At-
ack, 2016). Specifically, I will focus on the diffusion of patents in the Electrical
& Electronic (E&E) class. To measure diffusion, the use of a single, albeit broad
class of technology is an advantage over using the aggregate of all patents, which
could be of all kinds of technologies and thus signify the diffusion of very unre-
lated knowledge. The E&E class of technology possesses the traits of a General
Purpose Technology (GPT), making it a suitable subject of study when tracking
diffusion of technology (Petralia, 2017). Since this technology is both new and
suitable for general applications, it can serve as a realistic proxy for diffusion.
More concretely, the aim of this paper is to examine the effect of infrastructure
accessibility on the diffusion of patented knowledge in the E&E class.

The results of the Linear Probability Model analysis show that both railroads
and canals have a positive effect on the diffusion of E&E technology, even when
controlled for various contextual variables and state fixed effects. This result
suggests, along with the earlier work on the diffusion of rDNA by Feldman et
al. (2015), that the role of proximity deserves more attention as a mediator
for technological diffusion. More specifically, the focus on accessibility as a
distinct form of geographical proximity shows that transport links, rather than
just being a stimulant for ‘hard’ economic variables, can mediate the ‘invisible’
process of knowledge flows.

The structure of the paper is as follows: first, theory on General Purpose
Technologies, diffusion, proximity and transportation will be outlined; second,
the data sources will be evaluated, thereby assessing their strengths and weak-
nesses; third, I will explain the choice for a linear probability model and the
inclusion of the variables in the methodology section; fourth, the results of the
regression are analysed; fifth and last, the results are discussed and the paper
is summarised.
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2 Theory

Not all inventions are of equal technological and economical value (Balland &
Rigby, 2017). Whereas most inventions offer incremental changes to an already
existing technology, others have the power to change the economic landscape of
a county or even the world. Inventions of this magnitude are considered to be
General Purpose Technologies (GPTs). As the name suggests, GPTs can be ap-
plied to many parts of the economy and thus have a greater impact than regular
technologies (Bresnahan & Trajtenberg, 1995; Lipsey et al., 2005). Focusing on
the second half of the 19th century, recent research by Petralia (2017) has shown
that inventions classified in the Electrical & Electronic (E&E) patent class be-
tween 1860 and 1930 possess the characteristics of a GPT. Petralia comes to this
classification because E&E technology matches the essential characteristics of
having a ‘wide scope for improvement and collaboration’, alongside a ‘potential
for use in a wide variety of products and processes’, and ‘strong complemen-
taries with existing or potential new technologies’ (Helpman & Trajtenberg,
1998a; Helpman & Trajtenberg, 1998b; Moser & Nicholas, 2004; Jovanovic &
Rousseau, 2005; Lipsey et al., 2005).

Although E&E technology eventually managed to have an astounding world-
wide impact, it originated in a certain place at a certain time. Whereas the
initial geographical area in which a new technology is known can be ’lumpy’
(Mensch, 1975), a technology can diffuse to other places and induce inventors
to find new applications. The fact that invention diffuses slowly across space
and time means that for invention, location matters. More specifically, it has
been shown that co-location of inventive actors in space fosters the transfer of
innovative ideas (Jaffe et al., 1993). Jaffe et al. (1993) and Thompson (2006)
proved that patents in the US cite other patents from the same country, state
and even metropolitan statistical area in a quantity that is above average.

While the - empirically proven (Ellison et al., 2010) - agglomeration the-
ory of Alfred Marshall (1920) focused on knowledge spillovers that occurred
between actors in close proximity, later research has suggested that linkages to
less geographically proximate actors are also of great importance. Bathelt et
al. (2004) coined the idea of global pipelines, through which clusters have access
to knowledge that fits their specialisation. By establishing linkages to non-local
actors, technological lock-in can be prevented (Boschma, 2005). Consequently,
acquiring new technology is a mix between the local and the non-local: ‘In any
economic system, the accumulation of knowledge depends on the economys in-
ternal capacity to produce innovation and also on its ability to acquire the stock
of knowledge generated in other areas and put it to work’ (Paci et al., 2014, p.
10).

How well a region can make use of external knowledge, is partly dependent
on whether it proximate in a cognitive sense with regards to the knowledge that
is being transmitted. It is argued that cognitive proximity indicates the way
different actors in regions and industries share knowledge structures (Feldman et
al., 2015). The higher the cognitive proximity, the greater is the overlap between
routines, skills, institutions and knowledge, creating potential for absorptive
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capacity (Cohen & Levinthal, 2000; Nooteboom, 2000). It is also argued that
higher levels of cognitive proximity lead to ’enhanced collaboration as well as
knowledge sharing’ (Feldman et al., 2015). When viewing new technology as
the recombination of old knowledge, it is argued that high levels of cognitive
proximity facilitate the integration of different elements of knowledge into new
knowledge (Weitzman, 1998; Fleming & Sorenson, 2001; Kogler et al., 2013;
Rigby, 2013).

Although contact between actors can be established over long geographical
distances - involving other proximities in the form of cognitive, social, organisa-
tional and institutional proximity -, geographical proximity is still very impor-
tant (Boschma, 2005). One of the reasons for this, as is suggested by Audretsch
& Feldman (1996) is that, ‘Although the cost of transmitting information may
be invariant to distance, presumably the cost of transmitting knowledge rises
with distance’ (p. 630).

Usually, geographical proximity is seen in an absolute, Euclidean sense, but
there is also a functional interpretation of geographical proximity. As Lagendijk
& Lorentzen (2007) argue, geographical proximity is partly ‘a product of the
historically accumulated construction of transport infrastructures’ (p. 460). By
shortening time and financial cost to connect to other actors, this functional
geographical proximity influences the abilities of actors to become more cog-
nitvely, socially, organisationally and institutionally proximate (Shaw & Gilly,
2000).

According to Coenen et al. (2004), this kind of functional proximity requires
a different approach to the concept of proximity, as ‘... it would be more valid
to understand functional proximity as accessibility rather than distance’ (p.
1010). Andersson & Karlsson (2004) further elaborate on accessibility as a form
of relative geographical proximity, by linking it to Hägerstrand’s (1970) idea of
time being a constraint to geographical proximity. Furthermore, borrowing from
Weibull (1980), it can be argued that accessibility indicates, amongst others, the
‘ease of spatial interaction’, the ‘potential of opportunities of interaction’, and
the ‘potentiality of contacts with activities or suppliers’ (p. 54). Based on these
theories, Andersson & Karlsson (2004) hypothesise that:

It is possible to claim ceteris paribus that a region characterised by
high accessibility to face-to-face-contacts is likely to produce and
diffuse new knowledge at a higher speed than a similar region with
lower accessibility. Such a region is able to develop a dense human
interaction network. Also, frequent contacts between regional actors
imply that they are prone to developing common norms and bilateral
understanding. The regional actors are likely to develop reciprocal
understanding of codes essential for the sharing of tacit knowledge.
Taken together, regions with high accessibility to relevant opportu-
nities should, ceteris paribus, have a higher innovation potential and
a higher innovation rate (p. 13).

Following this line of thinking, when geographical proximity facilitates in-
vention, and transportation matters for geographical proximity, it follows that
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transportation links affect the inventive output of spatial entities.
While the literature on the effect that physical infrastructure has on eco-

nomic growth is quite large, the literature connected to innovation and inven-
tion is significantly smaller. Agrawal et al. (2016) show that interstate highways
in the US increase patenting in nearby cities and make knowledge ‘travel’ over
longer distances between cities. As a result of these findings, they are able to
state that: ‘In addition to facilitating the flow of human capital into cities (ag-
glomeration), transportation infrastructure, such as interstate highways, lowers
the cost of knowledge flows within regions between local innovators’ (p.1). Cru-
cially, the effect that roads have on invention is found to be especially large in
newer fields of technology (Agrawal et al., 2016).

Returning railroad to connections, which shaped the great transport revo-
lution of the 19th century, Perlman (2016) has shown using historical patent
data that being connected to a railroad track increase innovatived output in US
counties. The two suggested mechanisms for this are connectivity and increased
market access. While support for the latter theory was not found, the first
theory has yielded significant results: newly connected counties have a higher
patent output than before the establishment of the connection, suggesting a
greater spatial diffusion of knowledge (Perlman, 2016). Phillips (1992), who re-
searched the railroad network in Virginia, further elaborates on the effect that
this railroad connectivity might have, by stating that:

[ . . . ] improved rail connections made it easier for prospective inven-
tors to receive information on the viability of their ideas and engage
in the patent application process. The improved access to ideas out-
side the region stimulated the inventive minds in the affected areas,
prompting them to think about solutions to new problems or to
think about old problems in new ways (p. 395).

With Agrawal et al. (2016) and Perlman (2016) being the only authors that
have researched the impact of physical infrastructure on diffusion of technology
on a US wide scale, there is still a great wealth of knowledge left to discover,
especially since these authors didn’t differenciate between different technology
classes. Summarising the existing literature on proximity and knowledge diffu-
sion, it can be stated there is still an empirical gap connecting the concepts of
proximity and accessibility to diffusion of general purpose technologies. What
this paper tries to find is whether absolute geographical proximity (distance),
accessibility (infrastructure connections) and cognitive proximity (knowledge re-
latedness) determine the spatial diffusion of E&E technology across US counties.
To test for this relation, I investigate the E&E patent output in all US counties
between 1850 and 1900 using a linear probability model.

3 Data

This study concerns the US because it played a major role in the transportation
revolution that I am assessing here, but also because there is a lot of histori-
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cal data available. One of the extensive data sources that I use, the HistPat
dataset (Petralia et al., 2016), contains all data on patented inventions in the
US between 1790 and 1975. The inclusion of patents as indicator of inventive
activity in this paper, stand within a longer tradition in economic and geograph-
ical research. Patents, defined by Griliches (1998) as ‘a document, issued by an
authorized governmental agency, granting the right to exclude anyone else from
the production or use of a specific new device, apparatus, or process for a stated
number of years’ (p. 288), have been a favoured proxy for invention in economic
research. Patent statistics have many applications in studies on knowledge and
diffusion (Scherer, 1984; Griliches, 1998; Jaffe & Trajtenberg, 2002), but are not
without its flaws either; patents are more of a juridical concept signifying an
invention, rather than an indicator of all knowledge produced, as knowledge of-
ten goes unpatented (Pavitt, 1985; Griliches, 1998). For this reason, this paper
prefers to call it the diffusion of invention, rather than the diffusion of knowl-
edge. However, patents still carry valuable information, of which the assigned
technology class of an invention is something that has only recently been utilised
in research (Fleming & Sorenson, 2001; Nesta, 2008; Quatraro, 2010; Strumsky
et al., 2012). It is this focus on technology class and the interaction between
classes, that this paper will make further use of.

For the geographic analysis, I use geographically located patents, which are
coded by technology class and assigned to US counties. The patents in this
HistPat database (Petralia et al., 2016) are linked to shapefiles of US counties’
historical borders. The border changes are updated every tenth year, which
means that a patent filed between 1840 and 1849 will be assigned according to
the county borders in 1840. As a fire destroyed much of the USPTO patent
archives in 1836, and the next census update and establishment of county bor-
ders took place in 1840, the period under research starts in 1850 (as the co-
variates are lagged and recorded in 1840). As E&E patents are the variable
of interest here, all patent classes that are supposed to belong to this supra-
class (consisting of 54 existing classes) as indicated in the HistPat dataset have
been recoded to a common class according to the taxonomy made by Hall et al.
(2001).

Datawise, the counties used are identified by their FIPS code, rather than
their name, since many duplicate names exist. In the dataset, some counties
were not coupled to a FIPS code because they did not have one, and have
subsequently been dropped. As a result, inventions made in these counties are
not used in this research. This is however not the only example of a sizeable
reduction of the available data. The fact that a time lag is used, has implications
for the base of counties that is used. Since between 1850 and 1900 the number
of counties in the US greatly increased, it is not unusual to find a county that
existed in time period t, but did not yet exist in t-1. Given that the covariates
are all lagged by one period, this means that only use those counties that exist
in both t and t-1 are used. A result of this approach is that, for instance, of
the 1618 counties that existed in the 1850-1859 period, only 1277 are used in
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the analysis, since only these counties also existed between 1840-1849.1 One
could also opt for an analysis in which the county borders are held constant
at the earliest border configuration. Although this method is used by Perlman
(2016), I have chosen not to use it here since keeping these borders stable does
no right to the historical process of constantly shifting and splitting counties.
Furthermore, in the HistPat dataset, the patents have been assigned to the
counties according to their actual borders at the time, making it difficult to
assign patents according to an earlier border configuration.

The geographical information on railroads, canals and navigable rivers is
taken from the extensive work of Atack (2016) on this subject, whose work covers
all years between 1776 and 1911. Atack’s (2016) data consists of geocoded lines
that represent railroad, canal or river connections, which can be selected by years
of operation. Canals and rivers are included since they formed the most efficient
way of transport before the arrival of the railroad (Perlman, 2016), thus being
a suitable control to assess the impact of the railroad. Canals reached their all-
time highest mileage in 1851, right at the beginning of the period under research
(Grübler, 1996). According to Grübler (1996), ‘...after reaching its maximum
size, the canal network declined rapidly because of vicious competition from
railways (p. 27-28)’. These rapidly growing railroads then experienced peak
growth in 1891, right at the end of the research time frame, meaning that the
period under research covers the crucial phase of emergence of the railroad and
the replacement of canals as main mode of transport. The transformation of
this geographical data into a variable is as follows: when a linear infrastructure
segment intersects a county polygon within a ten-year bracket, a county gets
coded value 1, and 0 otherwise.

The historical transportation data is not without its limitations: while tra-
jectories of railroads, navigable rivers and canals are known, there is no large
scale information on the location of train stations or ports in rivers and canals.
The solution of coding counties either 1 or 0 whenever one of these connections
are located within their borders is not ideal, as it is not known whether the local
people actually could transport themselves or their produce via these connec-
tions. This binary approach has however been used in previous research that
made use of this data source (Atack et al., 2010) which is why I am opting for
the same approach.

As for the control variables, US population census data is gathered from the
NHGIS project,which is updated every tenth year. Besides US census data, this
dataset also includes variables that are the results of earlier scientific research.
The census data is aggregated at the county level, so no further computation was
needed, besides transforming some variables from absolute values to percentages

1An alternative approach would be to link the independent variables of time t-1 to the
county borders in period t, e.g. link the 1840-1849 observations to 1850 borders. On the plus
side, this results in more counties to be used in the analysis. On the downside, counties might
wrongfully be considered to (not) have patented in time t-1 or to (not) have been connected
because they have split from another county or merged into a new one. Both approaches have
been tried, and resulted in very similar outcomes. The current approach is used in this paper,
because it is more theoretically waterproof, but results wise the difference is negligible.
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(Table 1), to prevent multicollinearity. Since not all variables have been collected
regularly, some have been extrapolated between two existing collection dates.

4 Methodology

The analysis is made by using a Linear Probability Model (LPM). This model
is a regression with a binary dependent variable, indicating whether the event -
patenting in E&E - will happen or not. As a result, the probability of this event
happening is always between 0 and 1. In this paper, I will only use a repeated
measures approach to monitor diffusion. This means that everytime a county
shows to patent in E&E, it is given value 1, rather than only giving value 1 to
the very first time a county patents. The approach of using a binary dependent
variable to indicate diffusion is borrowed from the approach used by Feldman
et al.’s (2015) paper on the diffusion of rDNA technology and Boschma et al.’s
(2014) on relatedness and technological change, as in their research an MSA
gets value 1 for producing at least one patent in a specific class.2 An alternative
model, such as the Cox Hazard model, as utilised by Feldman et al. (2015) is
not feasible given the quality of the available data: Hazard model analyses start
at the very first occasion of a certain event, and in the case of E&E patenting,
this would be before the earlier mentioned year of 1836. This would mean less
reliable information on patents and their place of origin, plus the fact that the
earlier in the 19th century we go, the fewer control variables are available.

To guarantee accuracy of statistical significance inf the model (Table 2),
standard errors have been White clustered to control for heterogeneity. All
independent variables have been centered to allow for an estimation of their
relative effect on the propability of producing at least one patent in the E&E
class.

The period under research, 1850-1900, is segmented into five decade-long
parts. To prevent endogeneity, all covariates are lagged by one period. The rea-
sons why these periods are ten-year, rather than shorter periods often used in
research, are twofold. Firstly, ten-year periods reflect the process of developing
a patent, which is often the work of years of research, trial and error. If there
would be one-year or three-year brackets for instance, developing a patent in
these periods could be unrelated to the work on these patents and the variables
that influenced them in much earlier periods. The longer the period under re-
search, the smaller this negative effect will be; however never zero. Too long
periods on the other hand, could reduce the explanatory power of this research,
because the relation between two very long periods is much less obvious (i.e.
logically, it is much more likely that something in 1850 will influence something
in 1860, rather than in 1900). Secondly, data availability and quality is an issue

2This stands in contrast to the earlier research done on railroads and the production of
patents by Perlman (2016). Perlman’s research focuses on the average production of patents
per person regardless of technology class. The latter approach would not be accurate in this
paper, since I am tracking the diffusion of a certain GPT, rather than measuring the total
shift in inventive production in general.
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of importance when using historical databases. Despite the work done by At-
ack (2016), tracing down the opening and closing years of railroad connections,
there is always a risk of having a measuring error, leading to wrongly assuming
that railroad X started operations sooner or later than was actually the case.
Using longer time periods reduces this chance (i.e. assuming a one-year aver-
age misestimation of the opening of a connection, a ten-year period is much
more accurate than a one-year period). This also accounts for the census data
borrowed from the NHGIS project, which is only measured every tenth year,
meaning the years in between cannot be estimated with precision.

The econometric equation that is used in the model can be written as follows:

PatentEEc,t = β1ACc,t−1 + β2GPc,t−1 + β3CPc,t−1 + βXc,t−1 + φc + εc,t

The dependent variable, ’patentEE’, is binary, indicating whether in period
t, a county has at least one patent in class E&E. When a county patents in E&E
it is assigned value 1, and 0 otherwise.

The most important independent variables in this research are the accessibil-
ity variables, ‘AC’, consisting of the variables ‘RRconnect’, ‘Riverconnect’ and
‘Canalconnect’, indicating whether a county is connected to a railroad, naviga-
ble river or canal in period t-1. Like the dependent variable, these accessibility
variables are binary, giving value 1 when a county is connected to a form of
infrastructure, and 0 otherwise.

Three measures of absolute geographical proximity, ‘GP’, have been tried in
the model, and are calculated the same way as in the Feldman et al. (2015)
paper, by measuring the distance in kilometers between the centroids of the
county boundaries. The first measure is the average distance from any county
to all other counties that patented in E&E in period t-1. If the county itself
patented in E&E, it is included, thus reducing the average distance to all coun-
ties that have patented in this class. The second measure is the distance between
a county and the closest county that has patented in E&E in period t-1. Again,
the county itself is included, assigning value 0 to this county if it has indeed
patented in this class. The third measure is measuring the mean distance from a
county to all other counties, regardless of whether these counties have patented
in the class under research. Due to multicollinearity issues and the fact that the
minimum distance between a county and a patenting county is the most robust
under different model specifications, only this measure is included in the final
model. Interestingly, the ‘mindist’ variable was also the most stable of the three
geographical proximity variables in the Feldman et al. (2015) paper, perhaps
suggesting that this measure has predictive power both in 19th and 20th century
diffusion of GPTs.

In its operative form, the variable ‘CP’ shows the relatedness of a county’s
inventive portfolio to the class of E&E. Cognitive proximity is an index number
based on the co-occurence of any class with the E&E class. This measure was
constructed the same way as in the Feldman et al. (2015) paper, besides the fact
that I have recoded multiple existing classes into the E&E class. Mathematically,
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this measure consists of some simple steps. Firstly, Fip = 1 if a patent record
p lists technology class i, and 0 otherwise. Here, the technology classes are
consisting of the original ones as coded by the USPTO, but with 54 classes
recoded to the E&E class. Secondly, for each of the five decades under research
here, the total number of patents listing a specific class is given by Ni =

∑
p Fip.

Thirdly, I calculate how often two patent classes appear together on the same
patent with the count Nij =

∑
p FipFjp. Lastly, to get the standardised co-

occurence matrix, I use the following equation:

Sij =
Nij√
Ni ∗Nj

What we have now is a symmetric matrix with a principal diagonal that is
given value 1, showing the standardised co-occurence of every technology class.
Now, to show how related a county’s knowledge in period t is to E&E technology,
I use calculate the following:

ARct =

∑
j S

t
CBj ∗Dct

j

N ct

Here, ARct is the measure that is a proxy for cognitive proximity: it is the
average relatedness index value for a county c in decade t. St

CBj is the tech-
nological relatedness between E&E patents and patents in j other technology
classes, including E&E itself. Dct

j is the number of patents in technology j in
county c in decade t. N ct represents the total amount of patents in a county c
in decade t. Since the E&E class is much broader than the rDNA class (which
is only a subclass of one technology class) used by Feldman et al. (2015), the
cognitive proximity to E&E that comes out of the above equation might be
much less robust, as it will co-occur with many more patent classes than rDNA
does. The variable name used for cognitive proximity is ’CogProx’.

The variable ‘X’ indicates the use of several time-lagged control variables,
including the log of the population in a county, the percentage of people living
in urban areas (> 2,500 people), the percentage of people born outside the US,
the average amount of patents per 1,000 people, the percentage of improved
land, the percentage of people working in manufacturing, and the percentage
of people in school. The control variables are based on the first year of each
period, e.g. for the 1850-1859 period, the census data of 1850 is used.

φ is a state fixed effect, controlling for omitted variables relating to insti-
tutional circumstances. These institutional factors might include state laws,
taxation and culture. ε is the error term.

5 Analysis

In multiple different model setups, the connection variables of interest, RRcon-
nect and Canalconnect, remain positive and significant (Table 2). The first
three setups of the model consist of regressing the ‘patentEE’ variable on just
one transport variable at a time. The results show that both railroad and canal
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Table 1: Descriptive statistics
Variables Observed Mean Standard deviation Min Max
patentEE 9788 0.23 0.42 0 1

RRconnect 9788 0.55 0.50 0 1
Riverconnect 9797 0.34 0.47 0 1
Canalconnect 9791 0.08 0.28 0 1

mindist 9788 106.84 123.16 0 2763.78
CogProx 9788 0.01 0.05 0 1.04

pop 9779 9.41 1.03 1.39 14.23
urbpct 9778 0.08 0.18 0 1

forbornper 9778 0.09 0.12 0 0.80
relpatpp 9779 0.79 1.85 0 100

schoolpct 9175 0.20 0.14 0 0.95
implandshare 9727 0.49 0.23 0 1

manper 9545 0.02 0.03 0 0.34
Note: The ‘pop’ variable is log transformed because its original distribution contains a

limited number of very high values that skew the results. The ‘relpatpp’ variable indicates
the amount of patents per 1,000 people. ’Schoolpct’ is calculated using extrapolation, as it is

not observed every tenth year. Measures for ’manper’ seem to differ between different
censuses, as the minumum age of a worker is not consistent.

connections, when used as the sole independent variable, have a positive and
significant effect on the probability that a county will patent in E&E technology.
This is in line with the expectation that accessibility improves the flow of ideas.
However, navigable river linkages show a negative coefficient. It could be that
counties next to rivers - which were less efficient than railroads and canals -
saw their inventive activity move to areas which were better connected to more
modern modes of transport. Thus, patenting in the very novel technology of
electricity would be lower in those counties.

In the fourth model, all transportation variables are used. Results show that
railroad and canal linkages remain positively significant, with canals having a
slighty larger coefficient (0.2968) than railroads (0.2585). Here, river connections
show to be no longer of significance.

In the fifth model, the control variables are added. The first variable that is
of interest, is the mindist variable, indicating how close a county is to the nearest
county that patented in E&E. As expected from the earlier work by Feldman et
al. (2015), this variable’s coefficient is negative and significant, indicating that
the further away a county is from a county that patented in E&E in period t-1,
the less likely it is to patent itself in period t.

Cognitive proximity is added as another main variable of interest. Again,
as expected, this variable is positive and significant, indicating that the higher
cognitive proximity is in period t-1, the more likely a county will patent in
period t. However, contrary to Feldman et al.’s (2015) findings, its effect on the
r-squared is very small, and it takes away only a small bit off the coefficients of
the other variables. This result was already hypothesised in the methodology
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section, and likely is the result because of the technology of interest being a
broad class, co-occuring with a lot more classes than a regular technology class
would.

The control variables that have to do with a county’s population are added,
reducing as expected the coefficients of RRconnect and Canalconnect. The
effect that this addition of population variables has, indicates that just being
accessibile likely doesn’t yield many patents if a county has few people living in
it. The same accounts for the urban percentage: since it is argued that mainly
people in urban environments patent, it is no more than expected that the urban
percentage variable takes some away from the coefficients of the connection
variables. The percentage of a county that is foreign born might indicate the flux
of new people bringing new ideas, rather than the flow of the ideas themselves,
which is what this paper tries to reveal.

Also added are the control variables that resemble the existing knowledge
and economic expertise in a county. All added variables show significant and
positive coefficients, reducing the coefficients of the variables of interest.

In the sixth model, state fixed effects are added to account for institutional
factors that might yet be unobserved in the data. Institutional factors can
be things such as legislation and taxation which might influence the output of
patents in the E&E class. Now, it is the Canalconnect variable who’s coefficient
is reduced. Apparently, the institutional factors that are included are of a bigger
influence to canals than to railroad connections. Most importantly, including
these state fixed effects, it can be stated for now that the variables of interest
have been robust in the fact that their coefficients remain positive and significant
throughout all the alterations of the model.

After this last robustness check, the effects of the variables of interest can
be estimated. The presence of a railroad in time t-1 increases the probability
of patenting in E&E in period t by 23.7% (0.0402/0.1694). The presence of a
canal does so by 30.7% (0.0520/0.1694). This result is unexpected, as canals
have been argued to be mainly of importance in earlier decades (Atack, 2010),
whereas the railroad is supposed to be more important in the second half of
the 19th century that is under research here. A reason for the railroad being of
lesser importance could be because the system had not yet reached its point of
saturation, whereas canals had theirs in 1851 (Atack, 2010).

6 Discussion

In this article, I have shown that between 1850 and 1900, physical infrastructure
connections in the form of railroads and canals facilitated a sizeable share of the
diffusion of new Electric & Electronic technology in US counties. This result
reinforces the idea of accessibility as used by Andersson & Karlsson (2004) as a
mediator of possible contact between inventors, leading to more inventiveness.
By showing the relevance of the concept of connectivity, these outcomes warrant
a revival of interest in the concept of accessibility and other measures of relative
geographical proximity that have been neglected in the literature.
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This paper furthermore confirms the existing literature on physical infras-
tructure and diffusion by showing that infrastructural connections spread paten-
ted knowledge. However, in contrast to earlier work, by focusing on a single co-
herent class of technology and by taking cognitive relatedness into account, the
results of this paper make it much more likely that this diffusion is a process of
knowledge spread rather than a process in which entirely unrelated knowledge
is spread by the railroad.

Connecting to the GPT diffusion literature, this paper has revealed some
remarkable consistency between newer and older examples of technological dif-
fusion. Up until the addition of state fixed effects, the results are congruent
with Feldman et al.’s (2015) work on diffusion of rDNA, regarding the positive
role of cognitive and geographical proximity in the diffusion of technology.

However, one should be cautious by stating a causal link between the arrival
of transportation links and the development of E&E patents. It could be hy-
pothesised that a new technology like electricity would be in higher demand in
areas where people lived that could actually afford the technology. In fact, there
could be not a direct link between connections and the diffusion of technology,
but rather an indirect one, with transport networks increasing wealth, which in
turn leads to a higher demand of new technology. In that case, the connectivity
would be a measure of market access after all, and not solely of accessibility.

Adding to the notions of accessibility and the proximity literature is not
without policy implications. This result of this paper help building the idea
that physical infrastructure is not just important for ‘hard’ economic factors
such as logistics and market access, but also for a harder to track concept
such as knowledge flows. This result is especially important, since this paper
concerns the diffusion of a GPT, a technology with the potential to transform
the economy, which should be of special interest for the policy maker. Especially
now, with potentially huge infrastructure investments in the US on the cards,
policy makers should assess the effects that this will have on knowledge diffusion.

There are quite a few additions that future research could make to this pa-
per. Firstly, as new statistical approaches emerge, other model specifications
could be tried to see whether the results remain robust. Specifically, the use of
a suitable instrumental variable (IV) could be very valuable here to disentangle
the effects of market access and accessibility from each other. Hereby, one could
think of using mineral resources as IV, since many infrastructural projects were
initially built for transporting bulk goods, rather than for connecting people.
This IV has been tried in the development phase of this paper, but did not be-
have as expected. Rather, the addition of mineral resources as an instrumental
seemed to spring more from theoretical reasoning than from statistical reality:
the IV violated the assumption of being both correlated with the transportation
variables but uncorrelated to the independent variable, as in fact it was corre-
lated to neither. This resulted in a very weak instrument that only watered
down the findings, instead of reinforce the outcomes. It is up to future research
to find a suitable IV, as I wasn’t able to find a variable that was correlated to
an accessibility variable, but uncorrelated to patenting in E&E.

Secondly, with the increasing availability of data, more detailed approaches
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as to how knowledge flows through time and space could be made. It would be
valuable to filter out all the E&E patents that are directly related to railroad
technology, because these patents signify a spread of the railroad rather than
a spread of knowledge because of the railroad. Furthermore, a more refined
dataset could focus more on the link between accessibility and social proximity,
since infrastructural connections might increase the likelihood that people from
different geographical locations might come together to collaborate. Lastly,
this experimental approach, making use of the concepts of both proximity and
accessibility could be reproduced or expanded into different eras to see whether
the results hold, and subsequently might show some universal pattern.
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