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Abstract: Despite the burgeoning literature on knowledge spillovers, the regional branching thesis            
describes the relationship between technological relatedness and co-location as a unidirectional           
process. However, co-location could equally result in relatedness due to knowledge spillovers. Yet             
despite emerging insights on ‘coevolutionary processes’ in the proximity dynamics literature, a            
dualistic approach to date remains unexplored. Building forth on US patent data from 1850 till 2005                
this study will add to the regional diversification literature by examining the ‘coevolving’, dynamics              
between two proximity configurations underlying knowledge spillovers and regional branching;          
technological relatedness and spatial co-location. The results confirm co-location does indeed also            
influence technological relatedness. Moreover, the results show a significant mediating role of            
technology age and complexity. Consequently, policy implications and directions for further research            
include the acknowledgement of regional differences in relatedness, given its ‘emergent’           
characteristics.  
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Introduction 
In the past, policymakers have devoted a large amount of attention to the development of               
‘successful clusters’ and high-tech industries. However, many such policies apply a           
‘one-size-fits-all’ approach, and the economic returns to such policies are subject to debate             
(Crespo et. al., 2017). Storper (1995) argues specific capabilities embedded in the region,             
referred to as ‘untraded interdependencies’, are at the basis of region-specific assets and             
competitiveness. Because regions host a number of spatially bounded, social- and economic            
processes (e.g. Scott and Storper, 2003; Morgan, 2004), that lead to positive feedback             
mechanisms (Dobusch and Schüßler, 2013), these untraded interdependencies are         
influential in determining the future development path of regions due to a path-dependent             
development (Martin and Sunley, 2006). 

Recently, the ‘Regional Branching’ thesis (Boschma and Frenken, 2009) has made a            
useful addition to the debate on regional diversification. The regional branching thesis builds             
forth on this path-dependency by arguing new technological knowledge in a region ‘branches             
out’ of the existing technological base of a region towards ‘technologically proximate’ fields.             
Following the Proximity School (Torre and Rallet, 2005; Boschma, 2005; Balland et. al.,             
2014; Broekel, 2014) and knowledge spillover literature (Jaffe, 1986; Jaffe et. al., 1993;             
Audretsch and Feldman, 1996a), actors search for new knowledge in a geographically-,            
socially-, organizationally-, institutionally- and cognitively bounded space. Since        
geographical proximity plays an important role in facilitating, complementing and substituting           
the other forms of proximities (Boschma and Frenken, 2010; Audretsch and Feldman,            
1996a, Boschma, 2005), geographical proximity is an important determinant in the formation            
of knowledge networks. Moreover, these proximity configurations have been found to be            
dynamic and interdependent in nature (Balland et. al., 2014). Therefore, some call for the              
examination of ‘coevolutionary proximity dynamics’ (Broekel, 2012). After all, “real evolution,           
biological or technological, is actually a story of coevolution” (Kauffman and Macready, 1995,             
p. 27). 

However, despite the acknowledgement of the importance of geographical proximity,          
the regional branching thesis seems to treat the relationship between technological- and            
geographical proximity as a uni-directional process. It nevertheless seems highly plausible           
that geographical proximity could lead to technological proximity. Due to spillover effects and             
(localized) proximity dynamics, exposure between previously unrelated technologies, and         
consequently their relatedness, could increase. This process where (local) spillovers lead to            
relatedness, has to date been largely ignored (yet see Castaldi et. al., 2015), despite the               
potential existence of a reciprocal, coevolutionary process between both.  

In this paper I will therefore add to the debate on regional diversification patterns by               
empirically examining the extent to which co-location leads to relatedness. I will depart from              
a point of view where the process of regional branching, and knowledge spillovers, are a               
mutually dependent processes of emergence and feedback (Levin, 1998). Using the newly            
available histpat dataset (Petralia et. al., 2016) combined with the NBER patent database             
(Hall et. al., 2001), I derive measures for technological- and geographical proximity between             
technologies for over 150 years of innovation in the US. Using panel data regression;              
long-term, short-term and autocorrelation dynamics are examined.  
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The results empirically show a reciprocal relationship between technological         
relatedness and co-location, subsequently pointing out a crucial gap in the proximity            
dynamics and regional diversification literature. Moreover, the results empirically show a           
mediating role of technological complexity and technologies’ age. The results urge for further             
research on the interdependent nature of the variables under study. Crucially, the results             
show relatedness ‘emerges’ out of co-location, which points towards future research           
directions that could increase knowledge on regional technological diversification, and the           
application of region specific relatedness to determine opportunities. 

The next section will present the relevant literature. The third section will outline the              
data and methodological approach. The fourth section outlines and interprets the results.            
The last section will discuss the validity of the current study, and discuss the implications for                
further research and policy. 

Theory 

Technological Relatedness & Regional Branching 

Innovation is frequently compared to the biological process of evolution. Wagner and Rosen             
go as far as to argue that ‘the process of innovation reflects almost everything we have                
learned about biological evolution’ (2014, p. 2). One of the most typical similarities is the               
view that innovation results from a (re-)combination of previously unrelated technologies           
(Nelson and Winter, 1982). This recombination resembles that of bacteria, taking place            
horizontally between many different individuals (Wagner and Rosen, 2014). The already           
existing pool of technologies, like genes, forms the ‘building blocks’ for future recombination             
efforts (Strumsky et. al., 2015), upon which development of new technologies is dependent             
for recombination (Nelson and Winter, 1982).  

However, not all technologies combine in the same manner, nor with equal or             
random probability. In their seminal work, Engelsman and van Raan (1994) exploit the             
classification of patents in technological classes indicating underlying knowledge, to map the            
technological relatedness between these classes in what is referred to as the knowledge- or              
technology space (e.g. Kogler et. al., 2013). The technology space is a network             
representation of the proximity between technological classes, referred to as relatedness.           
Within this network, technologies can be related due to a variety of reasons. In a study on                 
firm diversification, Breschi et. al. (2003) mention three potential reasons for technological            2

proximity. To start, ‘knowledge commonalities’ imply a process where firms’ product           
diversification tends to steer towards products that require similar capabilities, problem           
solving, or heuristics of search. In this case, the same piece of knowledge might be applied                
in different new inventions, resulting in economies of scope. Second, knowledge           
complementarities imply a relatively high recombination potential between technologies. In          
this instance, the ‘whole is more than the sum of it’s part’. Third, knowledge proximity refers                
to both intended- and unintended learning outcomes. Unintended learning occurs through           
knowledge spillovers resulting from firms’ innovative activities, intended learning results from           
search processes, often in fields that are somehow related to their current economic             
activities.  

2 Empirically distinguishing between these different forms of relatedness could prove a meaningful addition to the 
current effort, unfortunately, no method to empirically do so has been put forward yet.  
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Using countries’ export data, Hidalgo et. al. (2007) combine mentioned mapping of            
proximities with the revealed comparative advantage (RCA) measure to construct the           
‘product space’, which identifies proximities between different export products. Their findings           
suggest that countries tend to diversify towards products that are ‘proximate’ to their current              
current export basket. As with technological relatedness, the exact reason for given            
proximities remains uncertain . Regions have been shown to follow a similar path-dependent            3

development progress where current capabilities influence the opportunities for, and          
direction of, future diversification. Within the framework of evolutionary economic geography,           
technological relatedness has therefore achieved an important role in describing why certain            
locations develop a specific sort of knowledge (e.g. Kogler et. al., 2017; Neffke et. al., 2011,                
Boschma, 2017). Boschma and Frenken (2009) refer to this process of regional related             
diversification as ‘regional branching’. Boschma et. al. (2014) empirically show that when            
relatedness increases, probability of entry increases and exit probabilities decrease. Four           
different mechanisms through which technological relatedness influences regional        
diversification patterns have been identified. Although I will briefly discuss each, for a more              
detailed overview I would like to refer to Boschma & Gianelle (2014). To start, firm               
diversification leads firms to diversify towards related fields as a result of learning processes              
(Breschi et. al., 2003). Secondly, spin-offs tend to build on rather similar though slightly              
different knowledge, spin-offs therefore tend to start in related industries. Thirdly, labour            
mobility is a crucial mechanism for transferring knowledge, skills and experience between            
firms and industries within regions. Lastly, social- and collaboration networks may lead to             
social- and cognitive proximity on an actor level, hence increasing collaboration (Boschma            
and Gianelle, 2014). 

Local Knowledge Spillovers and Dynamic Proximity Configurations 

The importance of geographical proximity for learning and innovation networks has long            
been recognized. Marshall (1890) claimed “The mysteries of the trade become no mysteries;             
but are as it were in the air” (chapter 10). Arrow (1962 in: Glaeser et. al., 1992) ascribes this                   
observation as a result of the non-exclusive and non-rival nature of knowledge. However, in              
explaining knowledge spillovers both emphasized intra-industry spillovers. Only after the          
pioneering work of Jacobs (1969), the role of diversity and inter-industry spillovers became             
more apparent. Jacobs additionally ascribes localized processes of learning to the           
difference between information and knowledge, the latter of which is embedded in            
individuals, firms and organizational routines, and therefore less easily transferred.          
Transmission of such embedded, or ‘sticky’ (von Hipple, 1994), knowledge can be enhanced             
by face-2-face contact (Audretsch and Feldman, 1996a). Hence, knowledge does not flow            
freely out of its own, rather it needs to be embedded and driven by actors.  

The Proximity Literature (e.g. Torre and Rallet, 2005; Boschma, 2005) builds forth on             
these findings by arguing geographical proximity does not only have a direct-, but also an               
indirect effect on learning and knowledge networks. The indirect effect of geographical            
proximity is due to the interdependencies that exist between different forms of proximities.             
Boschma (2005) mentions four other forms of proximity; organizational, institutional, social           

3 Hidalgo et. al. (2007) mention as possible reasons; ‘physical capital, labor, land, skills or human capital, 
infrastructure,  and institutions’ 
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and cognitive , which also influence the formation of knowledge networks (Boschma and            4

Frenken, 2010). For these proximity configurations it is argued that: “too much and too little               
proximity are both detrimental to learning and innovation” (Boschma, 2005, p. 71). However,             
the different forms of proximities can compensate for one another. Geographical proximity            
plays an especially important role in this compensating, since it can facilitate, complement             
and substitute other types of proximities (Broekel, 2012). Empirically, geographical proximity           
has been shown to influence social- (Morgan, 2004) and cognitive proximity (Audretsch and             
feldman, 1996a), and be interdependent with organizational- and institutional proximity          
(Torre and Rallet, 2005). Orlando (2004) adds technological proximity as a sixth proximity             
configuration to the list of those that interact with geographical proximity. Interestingly,            
Orlando finds technological proximity can act as a substitute for geographical proximity.            
Cassi and Plunket (2015) refer to interactions within proximities as ‘closure’ and refer to              
‘bridging’ as interactions between different types of proximities.  

Balland et. al. (2014) add to the literature by questioning the ‘uni-causal’ logic             
underlying much of the earlier proximity literature, which assumes (dynamic) knowledge           
networks result from (static) proximity configurations. Rather, Balland et. al. argue, proximity            
configurations themselves are subject to change as well due to the constant reconfigurations             
of knowledge networks, and are consequently ‘dynamic’ in nature. These dynamics, explain            
the interdependencies between different forms of proximity, as they imply that changes in a              
particular proximity configuration, through changing the knowledge networks, could lead to           
consecutive changes in other proximity configurations. Broekel (2015) describes these          
reciprocally interdependent proximities as ‘coevolving’, and describes three types;         
simultaneous coevolution implies a correlation between changes in a single time period, long             
term coevolution describes reciprocal changes occuring in a subsequent period, temporal           
autocorrelation dynamics imply that if a configuration changes in a certain period, this same              
configuration is likely to change in the subsequent period as well.  

Technological Relatedness as an Emergent Property 

Within the Complex Adaptive Systems framework, Levin (1998) raises awareness for the            
relationship between structure and functioning. “Macroscopic system properties … emerge          
from interactions among components, and may feed-back to influence the subsequent           
development of those interactions” (p. 431). While the literature on region branching seems             
to assume relatedness influences co-location in a unicausal manner, the process described            
by Levin seems to more accurately describe their causal relationship. Different ‘bits’ of             
technological knowledge make up the diversity among which ‘local’ interactions take place.            
These interactions between technologies are of course embedded in the the actors that             
carry knowledge. Hence, the five different forms of proximity have a large influence on which               
interactions take place. In other words, both directly and indirectly, geographical proximity to             
a large extent influences what interactions take place between technologies. Technologies           
that are highly co-located, have a larger chance to be recombined due to spillover effects               
following their proximity configurations. This was already reflected in the work of Jacobs             
(1969), who argues localized diversity enables the (re-)combination, or ‘cross-fertilization’, of           
different knowledge and ideas. After going through a process of trial and error, successful              

4 It is beyond the scope of the present paper to go into the different types of proximities and their 
linkages in detail. For a concise overview I refer to Boschma (2005) and Boschma and Frenken 
(2010). 
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recombinations lead to new technological breakthroughs and applications that, if adopted,           
influence the ‘global’ measure of relatedness (e.g. the pattern of the technology space). This              
in turn feeds back through the branching processes as described in the literature.             
Hypothesis one will test this proposition. 

 
Hypothesis 1: “spillover effects and regional branching form a positive coevolutionary 

feedback loop” 

The effects of Technologies’ Life-Cycle  

Some argue the need for geographical proximity is dependent on the type of innovation              
(Torre and Rallet, 2005; Castaldi et. al., 2015) and related to that, the age or life-cycle phase                 
technologies are at (Ter Wal, 2013; Puga, 2001; Audretsch and Feldman, 1996b). Puga             
(2001) introduces the concept of ‘nursery cities’. Nursery cities are highly diverse cities which              
although less cost efficient, offer new firms the possibility to ‘invest’ in learning and              
exploration in their early development stages. Castaldi et. al. (2015) find that unrelated             
variety increases the likelihood of technological breakthroughs. These findings are in line            
with the idea of Jacobs (1969) that diversity breeds recombination potential. Audretsch and             
Feldman (1996b) find that industries tend to concentrate less in space as they mature. Ter               
Wal (2013) argues geographical proximity is crucial especially in the early stages of an              
industry, while triadic closure (co-operating with partners’ partners) becomes more prominent           
in later stages. Torre and Rallet (2005) argue that the role of face-to-face contact for               
knowledge transmission depends on the type of innovation process, with in decreasing            
order; exploration, exploitation and imitation. These earlier findings all point towards the fact             
that geographical proximity is crucial especially to establish technological compatibility.          
However after technologies have successfully emerged, the emphasis might shift towards           
other forms of proximity. As Menzel (2008) points out, temporary clusters such as             
conferences or industry fairs can serve as a means to provide temporary proximity (Torre              
and Rallet, 2005). Building forth on the theory, we can thus expect new technologies to be                
creating new relatedness (patterns), often in a short time period (Castaldi et. al., 2015;              
Schumpeter, 1942), resulting from spillovers (Jacobs, 1969) and therefore initiated by           
geographical proximity. However, as technologies age and the type of innovation changes,            
the need for geographical proximity might become a less crucial factor, while patterns in the               
technology space might become a more important driver of regional technological           
diversification.  

 
Hypothesis 2: “When Technologies age this results in a shift in emphasis from 

co-location towards relatedness” 

Technological Complexity as Mediating Factor 
Sonn and Storper (2008) show that despite the improvements in ICT-technologies, the            
proportion of local citations has increased rather than decreased between 1975 and 1997.             
Some argue technological complexity increases the difficulty of passive learning (Pintea and            
Thompson, 2007), making complex knowledge more ‘sticky’ (Balland and Rigby, 2017).           
Recent studies refer to this technological complexity and attempt to measure technologies’            
complexity (e.g. Kauffman and Macready, 1995; Fleming and Sorenson, 2001; Balland and            
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Rigby, 2017; Broekel, 2017), as well as the influence of technological complexity on a              
number of economic processes (e.g. Pintea and Thompson, 2007).  

Kauffman and Macready (1995) compare technological innovation with biological         
evolution, and describe innovation as a search for ‘peaks’ within the ‘fitness landscape’. The              
topology of this fitness landscape is dependent upon the amount of components and the              
interdependency between these components. With an increasing amount of components          
making up this fitness landscape, the amount of peaks greatly increases, while the average              
height of these peaks declines (Kauffman, 1993). When interdependence increases, the           
‘whole is more than the sum of its parts’, and differences in the heights of the peaks                 
increase. Consequently, local search is favorable for less interdependent landscapes, as the            
landscape contains less variation in the height of its peaks, and hence incremental             
innovation is preferred. However, as interdependence increases, the amount of peaks           
increases while only some are relatively high. Consequently, with high interdependence,           
local search will be less useful (Fleming and Sorenson, 2001), as it could lead to               
(suboptimal) technological lock-ins. This implies that higher interdependency could result in           
a need to bridge ‘distances’. 

Broekel (2017) argues complexity increases over time, and that complex          
technologies require more R&D and more cooperation. Complex technologies require more           
R&D because the difficulty of ‘incremental improvement’, that is improvement on the same             
‘hill’ in the fitness landscape, doubles with each incremental improvement (Kauffman and            
Macready, 1995). More cooperation is needed because the amount of different bits of             
knowledge required increases (Broekel, 2017). Given bounded rationality, because R&D and           
innovation are subject to increasing returns to scale (Schumpeter, 1942), and because            
geographical proximity serves as a strong facilitator for learning and cooperation and thus             
spatially constraints diffusion (Balland and Rigby, 2017), it makes sense that complex            
technologies concentrate in space (Broekel, 2017). Balland and Rigby (2017) find empirical            
evidence that complex technologies are more ‘sticky’ and concentrate in space, implying            
complexity thus constraints diffusion. They show that citing between patents in different            
localities is less likely when it involves complex knowledge, hence complex technologies            
have been found to be less mobile than non-complex technologies. These findings could be              
interpreted as a result from the tacitness of knowledge (von Hipple, 1994), because of which               
the need for face-2-face contact is higher. Hence, for complex technologies, it can be              
expected that co-location is extra important.  

Following the idea of the fitness landscape, in order for a locality to diversify towards               
more complex technologies, technologies will have to be (re)combined in ‘better’           
configurations. As pointed out, interdependence leads to many possible sub-optimal peaks.           
As higher complexity implies more different bits of knowledge, distances somehow have to             
be bridged. It seems likely that even specialized localities therefore need some ‘influx’ of              
new knowledge. However, it seems likely that with growing complexity, a relatively higher             
compatibility is needed to obtain a successful improvement. Since relatedness is a way to              
approach this compatibility, I expect an increase in the influence of relatedness on             
co-location with increasing complexity.  

 
Hypothesis 3: “Technological Complexity amplifies the coevolutionary process 

between relatedness and co-location” 
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Empirics 

Data and Variables 

The difficulty of empirically measuring knowledge flows and networks has long been            
recognized (e.g. Jaffe, 1986). However, patent data has emerged as an accepted way of              
doing so (Griliches, 1990). For this study, I will therefore make use of the Histpat dataset                
(Petralia et. al., 2016) combined with patent data provided by the United States Patent and               
Trademark Office [USPTO]; the CPC classification file (USPTO, 2018) and the NBER patent             
data (Hall et. al., 2001). Consequently, data on the location and classification (CPC) of              5

patents granted in the US from 1840 till 2005 is constructed. Patent classifications can be               
considered as indicating different ‘bits’ of knowledge, and consequently they can be used to              
obtain information about the specific type of technological knowledge on which a patent             
builds (see e.g. Jaffe, 1986). Since the used data also includes geographical location, it is               
possible to subsequently examine the occurrence of classes within locations. Given this            
study’s focus on regional (diversification of) technological capabilities, this is crucial           
information. By building forth on network analysis methods, proximity configurations among           
the different classes can be calculated in both the technological- and the geographical             
dimension.  

Since these proximity dimensions are dyadic in their nature, the main units of             
analysis are not those individual CPC classes, but rather it is every possible dyad between               
these individual classes, amounting up to n2-n pairs of the n CPC classes under study. For                
most of the technological classes under study, especially in earlier time periods, the amount              
of patents assigned to each specific class are either (i) relatively small, (ii) or the patent class                 
does not yet exist at all. Because the calculated variables are relative measures, small              
differences can result in a large variability. Therefore a tradeoff has to be made between               
aggregating and thus losing detail in the data on the one hand, while on the other hand                 
allowing a too fine grained level of technological knowledge will result in a large variability. I                
therefore make use of the main, 4-digit class level (n=641). This 4-digit level is considered to                
be detailed enough to capture different types of knowledge that require cooperation, while at              
the same time restricting to a certain extent the amount of zero’s appearing in the data. In                 
addition, variables are calculated over five year periods in order to get more stable values.  

 

Technological Relatedness 

Following the pioneering work of Engelsman and van Raan (1994), this study will make use               
of a co-occurrence analysis of patent classifications within patents. Since the total amount of              
(co-)occurrences of technological classes are highly heterogeneous, the co-occurrences (Cij)          
have to be normalized to account for this size effect (S) of the classes i and j involved in the                    
dyad, as well as for the total amount of co-occurrences (T) in the data. In order to get any                   
meaningful values for the link strengths. Van Eck and Waltman (2009) find that for              
normalizing co-occurrence counts, probabilistic similarity measures are preferred. Equation         
one depicts the probabilistic method for normalization used in this study .  6

5 For the data prior to 1977, the locations of patents could be either applicant or inventor. For data after 1977 
locations are those of the inventor. 
6 Following the method used in the EconGeo Package for R (Balland, 2017). 
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(1)   ELij  R =  Cij
(Si/T )·(Sj/T ) + (Sj/T )·(Si/T−Sj)·(T /2)  

Co-location  

Given the emphasis on processes that are highly dependent on labour mobility and             
commuting ties, the geographical unit of analysis will be the ‘core based statistical areas’              
(cbsa) as provided by the US census bureau. Cbsa’s consist of a group of US counties that                 
share at least one core area with at least 10.000 inhabitants. More importantly, adjacent              
cbsa counties share important social- and economic linkages, measured in commuting ties            
(United States Census Bureau, 2018). Since patents can be ascribed both multiple locations             
and multiple classes, weights are assigned to the occurrence of classes within regions in              
such a way that they add up to unity for each individual patent . 7

To measure co-location of technologies in a region, I will combine the RTA measure              
with a co-occurrence analysis as described above. The RTA measures the share of             
technological output that is ascribed to class i in the region’s r total patent output, divided by                 
the share this technology class has in the total patent output of the complete sample. In                
other words, the RTA reflects whether the share of technology i in region r is larger than the                  
share of i ‘globally’. When RTA < 1 this implies a technological disadvantage of region r in                 
technology class i, if RTA > 1 this implies a technological advantage. A relatively high RTA                
implies that a region possesses specific assets that enable this relatively high patenting rate.              
Following Balland and Rigby (2017) The RTA of region r in patent class i is given by                 
equation two. Here P is the amount of patents, i is the technological class, and r is the                  
region. 

 

(2) TA r,  R i =  Pr,i /Σi Pr,i
Σr Pr,i /Σr Σi Pr,i  

 
To derive the final measure geographical co-location between i and j, a co-occurrence             
analysis (see eq. 1) will be performed to measure to what extent technologies tend to be                
‘co-located’ within regions. Only technological classes for which a region has a revealed             
technological advantage (RTA > 1) will be considered. Note that such a measure treats              
geographical proximity as a duality rather than a measure of decaying geographic distance.             
It empirically reflects the tendency for two classes to be overrepresented within the same              
regions. Also note that co-location does not imply concentration, as the measure is dyadic,              
nor co-concentration, given the fact that high RTA values are set to one. 

Technological Complexity 

Different measures of technological complexity exist. Fleming and Sorenson (2001) argue           
technologies are more complex if recombination is difficult to achieve. Consequently,           
Fleming and Sorenson assume that complex recombinations are more scarce than simple            
ones. Based on the ‘fitness landscape model’ (see e.g. Kauffman and MacReady, 1995),             
they derive a measure that approaches this hypothetical ‘ease of recombination’ of individual             
patent classes based on past recombinations. Following Hidalgo and Hausmann (2009),           
Balland and Rigby (2017) put forward a ‘spatial approach’ to measuring complexity. The             

7 For example, a patent with three classes and two locations gives 0.167 times each class for each location. 
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theoretical argument is that producing a technology requires ‘building blocks’, some of these             
blocks or their combinations are more complex than others. To produce complex            
technologies, the constraints due to the required building blocks are larger, and therefore             
less regions produce complex technologies. At the same time, the diversity of a region is               
assumed to represent the total amount of capabilities (building blocks) possessed by that             
region. Balland and Rigby use the RTA’s of regions to calculate ubiquity of technologies and               
diversity of regions. By iteratively ‘reflecting’ the ubiquity and diversity, they derive a             
complexity measure. Hence, rather than scarce in frequency, Balland and Rigby assume            
spatial scarcity of complex technologies.  

Broekel (2017) criticises both methods for the fundamental role of scarcity in the             
measurements. He argues less frequent combinations might also be the result of little             
economic or technological interest. Technologies’ spatial distribution is driven by other           
factors as well, such as history, policy and geography. Furthermore, measuring complexity            
based on spatial scarcity results in high endogeneity when analysing spatial phenomena,            
making it impossible to test the assumption of complexity truly being spatially scarce.             
Broekel (2017) therefore proposes a third alternative, referred to as structural complexity.            
Similar to Fleming and Sorenson (2001), Broekel assumes innovation is a process of             
recombination, where complexity is determined by the difficulty of recombination. However,           
rather than using past recombinations, recombination difficulty is proxied by measuring the            
structural complexity of the recombination network among technological classes. For each           
technological class c respectively, a binary matrix Gc is constructed containing the            
co-occurrences between subclasses for the subset of patents containing class c specifically.            
Gc therefore represents the ‘combinatorial network’ of technology c. In order to measure the              
complexity of Gc a composite of four network variables, the Network Diversity Score [NDS],              
is calculated (Emmert-Streib and Dehmer, 2012 in: Broekel, 2017). To increase robustness,            
this is done for a series of samples from Gc.  

The structural complexity measure has multiple advantages over the other two           
measures for application in this study. Firstly, the structural complexity measure circumvents            
the potential bias introduced by the scarcity assumption. Especially when combined with the             
relatedness variable based on patent co-occurrences (recombination frequency) and         
co-location on RTA’s (spatial frequency), this is an important determinant. Secondly,           
variability of the structural measure is considerably lower than that of its peers (Broekel,              
2017). The complexity values calculated in Broekel (2017b) for CPC classes from 1840 till              
2010 have therefore been used in the current study. 

Life-Cycle position 

In order to approach technologies’ life-cycle position, the average technological age of each             
dyadic pair ij is calculated. For each specific technological class i, age is calculated by taking                
the average age of all patents that have been assigned this specific class i. The variable                
AGEij then represents the average age of i and j combined. 
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Empirical Model and Method of Estimation  

Broekel et. al. (2014) outline four methods that are commonly used in economic geography              8

to examine knowledge and innovation networks. Especially promising for modelling network           
(co)evolution is the SAOM model (see e.g. Snijders, 2014). The SAOM model allows to              
combine variables from different network levels, that is; actor specific characteristics, dyadic,            
and network or graph level statistics. However, since technological classes are subject to             
random ‘evolution’, they are not real actors, and such a model would build on unrealistic               
assumptions. Another commonly used methodology is the gravity model, currently well           
established in economics to explain the quantity of trade between countries. Moreover,            
studies on migration have similarly used the gravity model to explain the quantity of              
migration in relation to trade (e.g Fagiolo and Mastrorillo, 2014)). Hence, gravity models are              
currently used to describe proximity (dynamics) between different ‘networks’. More recent           
applications have shifted from focussing on locational attributes towards trying to include            
measures inspired by network analysis (e.g. Dueñas and Fagiolo, 2011), such as for             
instance triadic closure (Ter Wal, 2009). Nevertheless, it is well known that modelling dyadic              
data brings with it difficulties that result from violating the i.i.d. assumption (Wasserman and              
Faust, 1994), as errors are highly interdependent. As it turns out the error terms are highly                
heteroskedastic when examining using the gravity model (using different distribution          9

families). Consequently an alternative to the common approaches has been employed.  
The longitudinal nature of the data has three main advantages. Firstly, it allows to              

regress rates of change rather than absolute values, which is preferred given the dynamic              
nature of the processes under study. After all, a certain proximity relation might be              
dependent on other characteristics, such as for instance AGE. A ‘static’ approach of             
measuring correlation between the variables would give an (unrealistically) persistent view of            
these influences/interdependencies. Moreover, using growth rates eases interpretation        
despite the large variability present in the observed data. Secondly, (absolute) starting            
values can be included in order to account for path-dependency. Thirdly, and crucially, it can               
serve as a way to control for both time- and individual unobserved heterogeneity present due               
to omitted variable bias. Large variability between technologies’ characteristics cannot be           
measured, nor are time-related trends related to economic, political and technological events            
included, such as i.a. the emergence of new technological paradigms and GPT’s. 

Consequently, a dynamic panel data approach is employed. In order to account for             
both time and individual unobserved heterogeneity, a two-way fixed effects model is            
employed where and are the time and individual fixed effects dummies . While λt   αi             10

alternative methods would have been the within and first difference estimators, this would             11

mean a loss of information on the time-fixed effects. With relatedness and co-location being              
X and Y depending on the direction, the regression equation can be presented in a               
‘bidirectional way’ as given in equation 3. Regardless of the dependent variable [DV];             X  Δ  

ij,t

8 These are the; Gravity Model, MRQAP regression, ERGM’s and SAOM’s, see Broekel et. al. (2014) for a 
detailed overview. 
9 This implies an omitted variable bias, which given the interdependent data, might be solved using network 
measures that have been found common in networks (evolution).  
10 For OLS regression, the hausman test rejects the null hypothesis of random effects with p < 2.2*1016.  
11 Moreover, as the ‘population’ of technological classes under study is dynamic (after all, classes emerge and 
disappear over time), only pairs that are non-zero over three consecutive periods are considered. The panel is 
therefore highly unbalanced and fixed effects dummies are preferred. 
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represents simultaneous coevolution, long term coevolution, is used to   X  Δ  
ij,t−1    Y  Δ  

ij,t−1    
examine temporal autocorrelation, and represent the starting values. The   X  Δ  

ij,t−2   Y  Δ  
ij,t−2      

starting values make sense when assuming path-dependency, but more importantly,          
combined with growth rates combined, lagged (dependent) variables serve as instrumental           
variables reducing potential endogeneity bias due to the simultaneity of the variables. Note             
that for growth relatedness as DV, the process of knowledge spillovers is approximated,             
while for growth co-location as DV regional branching is considered. Also note technological             
complexity is not included. From the theory it is expected that complexity influences not              
merely the response variable, but instead alters the causal relationship between relatedness            
and co-location. To give insight in this mediating role of technological complexity, interaction             
effects between a dummy variable for complexity and the independent variables relating to             
co-location and relatedness are added . The dummy variable for complexity is set to 1 if the                12

structural complexity COMij,t > COMt. 
 

(3)    Y  α λ   ΔY    ΔX     ΔX    Y    X    AGE  Δ  
ij,t =   

i +   
t + β  

1
 
ij,t−1 + β  

2
 
ij,t−1 + β  

3
 
ij,t + β  

4
 
ij,t−1 + β  

5
 
ij,t−1 + β  

6
 
ij,t + μ  

ij,t  
 

As it turns out the error terms are highly heteroskedastic when using OLS , a quantile               13

regression is employed as method of estimation (see Koenker and Basset, 1978). While             
OLS regression is based on the squared deviation from the conditional mean, quantile             
regression is based on the absolute deviation. Quantile regression allows the estimation of             
coefficients for different quantiles of the response variables separately . As a result, quantile             14

regression is less sensitive to outliers, Consequently, quantile regression is less sensitive to             
outliers (Koenker and Basset, 1978), and robust to heteroskedasticity (Koenker and Hallock,            
2001). Koenker (2004) outlines the application of quantile regression to panel data with fixed              
effects .  15

Results & Discussion 

The Coevolutionary Process between Co-location and Relatedness  

Table one (next page) shows all estimated coefficients, except for AGE and            Relatedness Δ  
ij,t  

on growth co-location are significant on the 99% level. For both relatedness growth and              
co-location growth as DV, the beta’s for on are negative, which implies a       Y  Δ  

ij,t−1  YΔ      
process of negative temporal autocorrelation. In contrast, positive beta’s are observed for            

and on in both cases. Hence, positive feedback exists betweenX  Δ  
ij,t−1   X  Δ  

ij,t  YΔ          
relatedness and co-location in both directions and both simultaneous and long-term.           
Negative temporal autocorrelation serves a stabilizing/suppressing role. The relatively large          
magnitudes of the beta’s for long-term influence compared to short-term imply this process is              
mostly a long-term one. Although this seems to be more evident for the influence of growth                
relatedness on growth co-location than that of growth co-location on growth relatedness.            
Beta’s for the starting values are positive for  and negative for . X  

ij,t−2  Y  
ij,t−2  

12 Alternative compositions can be found in table two in the appendix. 
13 Arguably because of simultaneity bias 
14 Hence, the regression coefficient for explanatory variable X is given for a specific quantile of the response 
variable Y. Different quantiles could be examined to test e.g. for U-shaped patterns. However, this is beyond the 
scope of the present paper. 
15 The Quantreg package (Koenker, 2018) has been used for estimation. 
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Simply put, these results confirm the existence of a coevolutionary process between            
relatedness and co-location. Not only does relatedness influence regional diversification          
through a branching process, locally available capabilities also lead to recombination of            
previously unrelated technologies. Hence, the concept of emergent macro-properties as a           
result of local interactions, as outlined by Levin (1998), seems to apply to co-localization of               
technologies and technological relatedness as well. However, since growth is negatively           
autocorrelated, this effect is somewhat suppressed in the long run, matching the idea that              
neither too much nor too little proximity is beneficial for innovation (Boschma, 2005). This              
idea is further confirmed by the negative influence of the starting values for . Again,             Y  

ij,t−2   
the starting values for have a positive influence, showing a long-term tendency to     X  

ij,t−2           
positive feedback mechanisms.  
 

Table 1: Panel Model Regression Coefficients  16

 Dependent variable: 
  

  ΔRelatedness    
ij,t  Co ocation  Δ − l  

ij,t  
AGE(t)    .328*** -.076***  

ΔRelatedness    
ij,t  - .007***  

ΔCo ocation   − l  
ij,t  .126*** - 

ΔRelatedness    
ij,t−1  -.126*** .003*** 

ΔCo ocation   − l  
ij,t−1  .065*** -.434***  

Co ocation   − l  
ij,t−2  3.297***  -15.739***  

Relatedness    
ij,t−2  -.028*** .030***  

OMij Relatedness  C * Δ  
ij,t  - -.002  

OMij Co ocation  C * Δ − l  
ij,t  -.088*** - 

OMij Relatedness  C * Δ  
ij,t−1  .024*** .001  

OMij Co ocation  C * Δ − l  
ij,t−1  -.064*** -.022***  

OMij elatedness  C * R
 
ij,t−2  -.007* .061***  

ij,t-2OMij Co ocation  C *  − l  -5.688*** -2.616***  
Note: 5 year lags, tau = 0.5, p<0.1*, p<0.05**, p<0.01***, time- and individual fixed effects included, n=236.916 

 

The Influence of Age on Co-location and Technological Proximity 

For AGE, a positive influence is observed on relatedness growth, while a negative influence              
is observed for co-location growth. This matches the expectations derived from the theory,             
since ‘older technologies concentrate less in space’ (Audretsch and Feldman, 1996b). It            
seems highly plausible that new technologies develop in nursery cities, as described by             
Duranton and Puga (2001). Subsequently, if technologies develop, they establish          
themselves within the technology space, influenced by the technologies they are co-located            
with. The type of innovation switches from exploration to exploitation to imitation (Torre and              

16 In order to ease interpretation despite high variance, variables are mean centered. time dummies for growth 
relatedness range between 15 and 60, time dummies for growth colocation range between -25 and -40.  
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Rallet, 2005). Or as Castaldi et. al. (2015) put it, breakthrough technologies appear due to               
recombination of unrelated technologies, and might become related over time. These results            
also match those of Ter Wal (2013) and Orlando (2004). One might also interpret these               
results with the view that this initial phase of radical innovation is a search for a ‘new’ peak in                   
the fitness landscape, once a position on this landscape is taken, the type of innovation               
might change towards incremental innovation that builds forth on the initially established            
patterns. However, in line with Torre and Rallet (2005), this might be a consequence of a                
shift towards temporary proximity. Temporary proximities could equally result in an emergent            
pattern of relatedness. 

The Mediating Role of Complexity 

The interaction effects with complexity show that for both DV’s the effect of age is amplified                
for complex technologies, the effect on co-location is not significant however. Simultaneous            
coevolution is, in both cases, less for complex technologies. Long term coevolution is to a               
very large extent suppressed for relatedness growth as DV. For growth co-location as DV              
long-term co-evolution is increased by complexity, but only significant on the long-term. For             
growth relatedness, complexity decreases the extent of negative temporal autocorrelation,          
while for growth co-location complexity increases negative temporal autocorrelation. Lastly,          
for co-location as DV complexity amplifies the effect of both starting values. For growth              
relatedness as DV the negative effect of is slightly decreased while the effect of        Y  

ij,t−2         
becomes negative for complex dyads. X  

ij,t−2  
For the process regional branching, only the effect of the starting value is             X  

ij,t−2  
significant. Hence, the branching process seems is amplified by complexity, while the            
emphasis seems to shift towards the long-term. This matches the expectations that            
face-to-face contact is more important for complex technologies. As learning and           
cooperation is improved by co-location, actors might to a larger extent actively locate in an               
area devoted to a specific technological domain when dealing with complex technologies.            
This explanation is in line with the finding that complex knowledge is ‘sticky’ (Balland and               
Rigby, 2017).  

The effect of co-location on relatedness, both short- and long-term, is greatly reduced             
for complex technologies. This contrasts the expectation that complexity would increase the            
need for face-2-face contact and hence increase the causal relationship. The suppressing            
effect technological complexity has on the effect of co-location on relatedness growth could             
be explained by the inverted U-shaped pattern that exists between returns to spatial             
proximity and complexity (Sorenson et. al., 2006). Perhaps a mix between local and             
non-local knowledge (Bathelt et. al., 2004) better suits complex technologies, as paths for             
potential development are less in quantity (Kaufmann and MacReady, 1995), and the            
likelihood of (suboptimal) lock-in effects is thus larger. Since complex technologies require            
more collaboration (Broekel, 2017), and the integration of more ‘different’ types of            
knowledge, actors might benefit from a higher degree of ‘bridging’ to fill knowledge gaps              
(Cassi and Plunket, 2015). Following the view of the fitness landscape, this would imply              
making a jump towards a different ‘peak’ (i.e. leading to a breakthrough development). After              
all, the main driver of changes in proximity configurations is bridging (Menzel, 2008), and              
proximity also has a temporary dimension (Torre and Rallet, 2005). Face-2-face contact            
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could therefore also be stimulated by organized events such as conferences (Menzel, 2008).             
This would allow actors to overcome negative lock-in effects. 

 

Conclusion 
This study has empirically shown that co-location of technologies can lead to technological             
relatedness, a process often overlooked in the scientific literature. Moreover, both age and             
complexity have been found to have significant effects on the causal mechanisms between             
relatedness and co-location. Combining the current results with previous literature suggests           
co-location plays an important role in the development of new (non-complex) technologies.            
However, as complexity increases, bridging knowledge gaps in different ways might become            
more important in order to avoid suboptimal (“local”) lock-in on the fitness landscape. In the               
words of Levin (1998), this coevolutionary process results in the emergent property of             
relatedness, which consequently feeds back to local interactions.  

However, the current study is not without its limitations. As discussed by Griliches             
(1990) Hall et. al. (2000) and Pavitt (1988), the use of patent data is subject to debate. An                  
important disadvantage of using patent data for the current study is that firms tend to ‘split’                
their patents among locations, this could potentially introduce noise in the data used for              
location. Moreover, patenting behaviour is subject to change over time (Pavitt, 1988). Apart             
from these data-related issues, future research could improve on this study in a number of               
ways; To start, while arguably an important determinant in innovation networks, this study             
fails to account for ‘temporary proximity’ (e.g. Torre and Rallet, 2005). Secondly, while this              
study builds on the use of network data, the application of network analysis methods is               
limited in scope. Further research could make use of recent developments in the field to               
empirically examine the (network) processes occurring. Moreover, this might be combined           
for a multitude of different networks representing the different forms of proximity. Thirdly, the              
methodology of this study has build on highly skewed ratio variables, which constrained the              
possible methods for examination. Nevertheless, using logit methods, such difficulties might           
be overcome and more advanced methods could be applied. Fourth, it can reasonably be              
expected that the examined processes take place between more generally defined           
industries, using groups of patent classes to indicate industries (e.g. SIC’s) could give further              
insight , as well as provide more practical knowledge for policy decisions. Lastly, it is not               17

examined whether significant differences in patent value or originality (available via NBER)            
exist as a consequence of the examined proximity configurations. Such an approach could             
give additional insights in ‘breakthrough patents’, and further confirm results from this and             
other studies. 

Despite its shortcomings, this study has shown an important gap in the current             
scientific literature that asks for further attention. Relatedness is considered to influence            
regional co-location in a ‘top-down’ manner. However, by comparing the relationship           
between relatedness and co-location to a system of feedback and relatedness as an             
emergent property, it can be expected that much like the different development paths taken              
by species depending on their location/environment, relatedness is not the same at every             
locality. Biologists refer to a process of ‘adaptive speciation’, when a single species mutates              

17 This would have the additional benefit of solving to a large extent the amount of zero’s measured and issues 
with outliers.  
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into different directions, evolves towards different fitness peaks, and ultimately different           
species (e.g. Weissing et. al., 2011). Ofcourse, this idea is not new to Economic              
Geographers, as path-dependency plays an important role in describing spatial development           
paths. However, while seemingly taken for granted, the ‘global’ measure of relatedness            
might be suboptimal, as this implies differences in locational opportunities. An interesting            
direction for further research would be the examination of a more ‘local’ measure of              
relatedness. Building forth on the extensive literature and methodology developed by           
(evolutionary) biologists and ecologists, this could be compared to (i) the ‘global’ technology             
space, (ii) regional diversification, and (iii) local measures of relatedness among each other.             
Insights might be relevant for those interested in; radical- and incremental innovation, the             
diversification vs. specialization debate and technological lock-in effects.  

Bibliography 
Arellano, M. & S. Bonhomme (2017). Quantile Selection Models with an Application to understanding Changes  

in Wage Inequality. Econometrica 81(1), pp. 1-28. 
Audretsch, D. & M.P. Feldman (1996a). R&D Spillovers and the Geography of Innovation and Production.  

American Economic Review, 86(3), pp. 630-40.  
Audretsch, D & M.P. Feldman (1996b). Innovative Clusters and the Industry Life Cycle. Review of Industrial  

Organization 11(2), pp. 253-273.  
Balland, P.A. (2017). Economic Geography in R: Introduction to the EconGeo package. Papers in Evolutionary  

Economic Geography #17.09, pp. 1-75.  
Balland, P.A., R. Boschma, J. Crespo, & D. Rigby (2017). Smart Specialization Policy in the European Union:  

Relatedness, Knowledge complexity and Regional Diversification. Regional Studies, forthcoming.  
Balland, P.A., R. Boschma & K. Frenken (2014). Proximity Dynamics: From Statics to Dynamics. Regional  

studies 49(6), pp, 907-920.  
Balland, P.A. & D.L. Rigby (2017) The Geography of Complex Knowledge, Economic Geography, 93(1), pp.               
1-23.  

Bathelt, H., A. Malmberg & P. Maskell (2004). Local Buzz, Global Pipelines and the Process of  
Knowledge Creation. Progress in Human Geography 28(1), pp. 31-56. 

Boschma, R. (2005). Proximity and innovation: a critical assessment. Regional Studies 39(1), 61–74.  
Boschma, R. (2017). Relatedness as driver of regional diversification: a Research Agenda. Regional Studies  

51(3), pp. 351-364.  
Boschma, R., P.A. Balland & F.D. Kogler (2014). Relatedness and technological change in cities: the rise and fall  

of technological knowledge in U.S. metropolitan areas from 1981 to 2010. Industrial and Corporate  
Change 24(1), pp. 223-250. 

Boschma, R. & K. Frenken (2009). Technological Relatedness and Regional Branching. In: Bathelt, Feldman and  
Kogler (eds.). Dynamic Geographies of Knowledge Creation and Innovation. Routledge: Taylor and  
Francis, pp. 1- 16. 

Boschma, R. & K. Frenken (2010). The spatial evolution of innovation networks: a proximity perspective. In  
Boschma and Martin (eds),.The Handbook on Evolutionary Economic Geography. Cheltenham, UK and  
Northampton, MA: Edward Elgar, pp. 120–135. 

Boschma, R. & C. Gianelle (2014). Regional branching and Smart Specialization Policy. S3 Policy Brief Series n°  
06/2014. 

Bottazzi, L & J. Peri (2003). Innovation and Spillovers in Regions: Evidence from European Patent Data.  
European Economic Review 47, pp. 687-710. 

Breschi, S., F. Lissoni & F. Malerba. (2003). Knowledge-relatedness in firm technological diversification.  
Research Policy 32(1), pp. 69-87. 

Broekel, T., P.A. Balland, M. Burger & F. van Oort (2014). Modelling Knowledge Networks in Economic  
Geography. A Discussion of four Methods. The annals of regional science 53(2), 423-452. 

Broekel, T. (2014). The Co-evolution of Proximities - A Network Level Study. Regional Studies: The Journal of                 
the  

Regional Studies Association 49(6), pp. 921-935. 

16 

http://www.ingentaconnect.com/content/routledg/cres;jsessionid=17bv44g2yha7y.x-ic-live-03
http://www.ingentaconnect.com/content/routledg/cres;jsessionid=17bv44g2yha7y.x-ic-live-03
http://www.ingentaconnect.com/content/routledg/cres;jsessionid=17bv44g2yha7y.x-ic-live-03


Broekel, T. (2017). Measuring Technological Complexity - Current Approaches and a new Measure of Structural  
Complexity. https://arxiv.org/abs/1708.07357, pp. 1-37. 

Cassi L., & A. Plunket (2015). Research Collaboration in Co-inventor Networks: Combining Closure, Bridging  
and Proximities. Regional Studies 49(6), pp. 936-954. 

Castaldi, C., K. Frenken, & B. Los (2015). Related variety, unrelated variety and technological breakthroughs :  
an analysis of US state-level patenting. Regional Studies, 49(5), 767-781. 

Cohen, W.M. & D.A. Levinthal (1990). Absorptive Capacity: A New Perspective on Learning and Innovation.  
Administrative Science Quarterly 35(1), pp. 128-152. 

Crespo, J., P.A., Balland, R. Boschma & D. Rigby (2017). Regional Diversification Opportunities and Smart  
Specialization Strategies. Luxembourg: Publications Office of the European Union pp. 1-26. 

Dobusch, L. & E. Schüßler (2013). Theorizing path dependence: a review of positive feedback mechanisms in  
technology markets, regional clusters, and organizations. Industrial and Corporate Change 22(3), pp.  
617–647.  

Duranton, G. & Puga, D. (2001). Nursery Cities: Urban Diversity, Process Innovation, and the Life Cycle of  
Products. The American Economic Review 91(5), pp. 1454-1477.  

Van Eck, N.J. & L. Waltman (2009). How to normalize Cooccurrence Data? An Analysis of some well-known  
Similarity Measures. Journal of the Association for Information Science and Technology 60(8), pp.  
1635-1651. 

Engelsman, E.C. & A.J.F. van Raan (1994). A Patent-based Cartography. Research Policy 23(1), pp. 1-26.   
Fleming, L. & O. Sorenson (2001). Technology as a Complex Adaptive System: Evidence from patent pata.  

Research Policy 30, pp. 1019–1039. 
Glaeser, E.L., H.D. Kallal, J.A. Scheinkman & A. Shleifer (1992). Growth in Cities. The Journal of Political  

Economy 100(6), pp. 1126-1152. 
Glaeser, E.L. (2011). Triumph of the City: How our Greatest Invention makes us richer, smarter, greener,  

healthier, and happier. New York, NY: Penguin Press. 
Griliches, Z. (1990). Patent statistics as economic indicators: a survey, Journal of Economic Literature, Vol. 28(4),  

pp. 1661-1707. 
Gross, T. & B. Blasius (2008), Adaptive coevolutionary networks: a review, J. R. Soc. Interface 5(20), pp.  

259–271.  
Hall, B.H., A.B. Jaffe and M. Trajtenberg (2001). The NBER Patent CItation Data File: Lessons, Insights and  

Methodological Tools. NBER Working Paper 8498, pp. 1-74. 
Hidalgo, C.A., B. Klinger, A.L. Barabási & R. Hausmann (2007). The Product Space conditions the Development  

of Nations. Science 317(5837), pp. 482-487. 
Hidalgo, C.A. & R. Hausmann (2009). The Building Blocks of Economic Complexity. Proceedings of the National  

Academy of Sciences of the United States of America 106(26), pp. 10570-10575. 
Hipple, E. von (1994). "Sticky Information" and the Locus of Problem Solving: Implications for Innovation.  

Management Science 40(4), pp. 429-439. 
Jacobs, J. (1969). The Economy of Cities. New York: Random House. 
Jaffe, A.B. (1986). Technological opportunity and spillovers of R&D: evidence from firms' patents, profits and  

market value. National Bureau of Economic Research, Working Paper 1815. Cambridge:  
Massachusetts.  

Jaffe, A.B., M. Trajtenberg & R. Henderson (1993). Geographic Localization of Knowledge Spillovers as  
evidenced by Patent Citations. The quarterly Journal of Economics 108(3), pp. 577-598.  

Kauffman (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press:  
New York.  

Kauffman, S. & W. Macready (1995). Technological Evolution and Adaptive Organizations. Ideas from Biology  
might find Applications in Economics. Complexity 1(2), pp. 26-43. 

Koenker, R.W.  (2004). Quantile Regression for Longitudinal Data. Journal of Multivariate Analysis 91(1), 74–89. 
Koenker, R.W. & G.W. Bassett (1978). Regression quantiles. Econometrica 46(1), 33-50. 
Koenker R. & Hallock K. F. (2001). Quantile Regression. Journal of Economic Perspectives 15(4), pp.  

143–156.  
Koenker, R.W. (2018). Package ‘Quantreg’. Cran R-project.org. 
Kogler, F.D., D. Rigby & I. Tucker (2013). Mapping Knowledge Space and Technological Relatedness in US  

Cities. European Planning Studies, 21(9), pp. 1374-1391. 

17 

https://arxiv.org/abs/1708.07357
https://econpapers.repec.org/article/inmormnsc/


Kogler, F.D., J. Essletzbichler & D.L.Rigby (2017). The Evolution of Specialization in the EU15 Knowledge               
Space.  

Journal of Economic Geography, Oxford University Press 17(2), p. 345-373. 
Levin, S.A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems 1, pp. 431-436. 
Marshall, A. (1980). Principles of Economics. London: Macmillan and Co.  
Martin, R. and Sunley, P. (2006). Path Dependence and Regional Economic Evolution. Journal of Economic  

Geography 6(4), pp. 395-437.  
Fagiolo, G. & M. Mastrorillo (2014). Does Human Migration Affect International Trade? A Complex-Network  

Perspective. PLoS One 9(5), pp. 1-20. 
Menzel, M.P. (2008). Dynamic Proximities - Changing Relations by Creating and Bridging Distances. Papers in  

Evolutionary Economic Geography #08.16, pp. 1-27. 
Morgan, K. (2004). The exaggerated death of geography: learning, proximity and territorial innovation systems,  

Journal of Economic Geography 4, pp. 3–21. 
Neffke, F., M. Henning & R. Boschma (2011). How do regions diversify over time? Industry relatedness and the  

development of new growth paths in regions. Economic Geography 87(3), pp. 237- 265. 
Nelson, R.R. & S.G. Winter (1982). An Evolutionary Theory of Economic Change, Harvard University Press,  

Cambridge, MA.  
Orlando, M.J. (2004). Measuring Spillovers from Industrial R&D: On the Importance of Geographic and  

Technological Proximity. The RAND Journal of Economics 35(4), pp. 777-786.  
Pavitt, Keith (1988). Uses and Abuses of Patent Statistics. in: A. F. J. van Raan (eds). Handbook of Quantitative  

Studies of Science and Technology. Amsterdam: Elsevier Science Publishers. 
Petralia, S., P.A. Balland & D.L. Rigby (2016). Histpat Dataset. Scientific Data 3, 160074. Harvard Dataverse:  

Cambridge. 
Petralia, S., P.A. Balland & A. Morrison (2017). Climbing the Ladder of Technological Development. Research  

Policy 46(5), pp. 956 - 969.  
Pintea M. & P. Thompson (2007). Technological Complexity and Economic Growth. Review of Economic  

Dynamics 10(2), pp. 276-293. 
Ponds R., F. van Oort & K. Frenken (2007). The Geographical and Institutional Proximity of Research  

Collaboration. Papers in Regional Science 86(3), pp. 423-443.  
Saviotti, P.P. & A. Pyka (2013). The Co-evolution of Innovation, Demand and Growth. Economics of Innovation  

and New Technology 22(5), pp. 461-482. 
Scott, A.J. and M. Storper (2003). Regions, globalization, development. Regional Studies 37(6). pp. 579-593.  
Schumpeter, J.A. (1942).  Capitalism, Socialism, and Democracy. New York: Harper and Brothers. 
Storper, M. (1995). The Resurgence of Regional Economies, Ten Years Later: The Region as a Nexus of  

Untraded Interdependencies. European Urban and Regional Studies 2(3), pp. 191-221.  
sorenson, O., J.W. Rivkin and L. Fleming (2006), ‘Complexity, networks and knowledge flow’, Research Policy,               
35  

(7), pp. 994–1017. 
Strumsky, D., J. Lobo & S. van der Leeuw (2012). Using Patent Technology Codes to Study Technological  

Change, Economics of Innovation and New Technology, 21(3), pp. 267-286. 
Ter Wal A. L. J. (2013). The dynamics of inventor networks in German biotechnology: geographic proximity  

versus triadic closure. Journal of Economic Geography 14(3), pp. 589-620. 
Torre A. and Rallet A. (2005). Proximity and localization, Regional Studies 39(1), 47–59. 
United States Census Bureau (2018). https://www.census.gov/geo/reference/gtc/gtc_cbsa.html. 
USPTO (2018). http://patents.reedtech.com/classdata.php  
Wagner, A. & W. Rosen (2014). Spaces of the Possible: Universal Darwinism and the Wall between                
technological  

and biological Innovation. Journal of the Royal Society Interface 11(97), pp. 2-11. 
Weissing, F.J., P. Edelaar & G.S. van Doorn (2011). Adaptive Speciation Theory: a Conceptual Review.  

Behavioural Ecology and Sociobiology 65(3), pp. 461-480. 
 
  

18 

http://patents.reedtech.com/classdata.php


Appendix 

 
Table 2: Alternative Specifications 

 ΔRelatedness   
ij,t  ΔCo ocation  − l  

ij,t  
 

AGE(t)    .290*** .321***  .328***  .290*** -.005 -.073*** -.076*** -.072***    

ΔRelatedness   
ij,t  - - - - .008***  .006***  .007***  .007***   

ΔCo ocation  − l  
ij,t  .060***  .062***  .126***  .126*** - - - -  

ΔRelatedness   
ij,t−1  -.112**

*  
-.114**

*  
-.126*** -.126*** .004***  .004***  .003***  .003***   

ΔCo ocation  − l  
ij,t−1  .023***  .026***  .065***  .065*** -.338***  -.442*** -.434***  -.434***    

Co ocation  − l  
ij,t−2  - .014  3.297***  3.166***  - -16.592***  -15.739***  -15.731***    

Relatedness   
ij,t−2  - -.028**

*  
-.028***  -.028*** - .044***  .030***  .030***    

OMij GE(t)  C * A   - - - .082*** - - - -.010    

OMij Relatedness C * Δ  
ij,t  - - - - - - -.002  -.002   

OMij Co ocation C * Δ − l  
ij,t  - - -.088***  -.087*** - - - -  

OMij Relatedness C * Δ  
ij,t−1  - - .024***  .024*** - - .001  .001    

OMij Co ocation C * Δ − l  
ij,t−1 - - -.064***  -.062*** - - -.022***  -.023***    

OMij o ocation C * C − l  
ij,t−2  - - -5.688***  -5.299***  - - -2.616***  -2.679***    

OMij elatedness C * R
 
ij,t−2  - - -.007*  -.011*** - - .061***  .062***    

Loglikelihood 5710 5810 5959   5965 15389 21384 21651 21652   

Degrees of freedom 156 158 164 165 156 158 164 165  
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