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Abstract

Agile manufacturing becomes more important to provide high-mix, low-volume
production for more customized products. Reducing time to market and up-
scaling from R&D is required to meet changing market demand to stay com-
petitive. Grid manufacturing is agile manufacturing paradigm that uses low-
cost equipment, so called equiplets. This is based on the paradigms of Re-
configurable Manufacturing Systems with Agent Technology. Reconfiguring an
equiplet will change its capability to adapt based on the manufacturing demand,
without downtime of the manufacturing process. An agent-based architecture is
presented where autonomous agents coordinate the manufacturing of products
through communication. The agents need to handle fluctuations in product de-
mand and disturbance in the manufacturing process. To effectively counter the
consequences of disturbances and uncertainties during production, strategies are
investigated in a stochastic model. A simulation is built to investigate the cur-
rently unexplored aspect of reconfiguration equipment during production. The
simulation imitates external events to validate the systems’ functionality.
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Chapter 1: Introduction

Manufacturing has come a long way since the early production lines. As tech-
nology evolves, more operations are automated in the production process. In
current manufacturing processes, dedicated equipment is used for product as-
sembly. To stay competitive there is a paradigm shift towards more upgradable
and flexible production to provide more customized products. Industrializa-
tion of new product developments usually starts with R&D prototypes to serve
mainly for testing the functionality of the product. After this phase more ded-
icated platforms are required to handle higher volumes and increase manufac-
turing speeds. The manufacturing strategies often lack a clear public roadmap,
for example for micro assembly. Therefore, more agile manufacturing strategies
are needed to deal with unplanned changes [1]. This has the most impact on
high-mix, low volume production.

Changing manufacturing environments are characterized by competition on
a global scale. Rapid changes in market demand and process technology require
production systems that are easily upgradeable. In addition, these systems
require to be prepared for integration of new technologies and functions [2].
Changing market demands are handled by increasing uptime and the speed of
dedicated production machines. Invested capital and project risk would increase
if new equipment is required to be purchased. Unexpected delays will lead to
delayed market introduction. Replacing equipment or changing product design
ceases actual production, which leads to loss of income and increasing project
risks [3].

Overall trends in various manufacturing sectors are the following: restruc-
turing in all levels of organizations due to globalization of markets; moving
management systems from hierarchical structures to more levelled systems re-
ducing middle management; putting more emphasis on decentralized teamwork;
acquiring more skills and knowledge to make more intelligent decisions at a lower
level. These are trends towards more modularity, autonomy, and self-sufficiency
at the lowest possible levels [4].

Manufacturing strategies are improved by adopting more flexible and reusable
manufacturing technologies. The equipment would preferably remain unchanged
when scaling the production from R&D. In this way scalability issues are pre-
vented and technology is reused. Furthermore, upgrading existing equipment
reduces investments in new equipment significantly.

This research continues on the manufacturing paradigm, Grid manufactur-
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ing, where low-cost manufacturing equipment is used with agent technology to
provide an agile manufacturing system [5]. Industrial applications are still rare
as most prototypes lack robustness that is required by the industry [7]. More
proven techniques need to be developed for the industry to adopt flexible and
reusable manufacturing [6]. This thesis presents an implementation of an archi-
tecture for a production grid that is based on Grid Manufacturing. Furthermore,
a simulation that enables the software to be validated and the performance to
be tested in a dynamic manufacturing environment.

In this thesis, the first chapter describes the concept of intelligent manufac-
turing system and outlines different manufacturing paradigms to show context
of the research. In the second chapter the problem description and research
questions are given. Chapter 3 describes the architecture of the system and
the Grid Manufacturing paradigm which is applicable on the architecture. In
chapter 4 a part of the architecture is described in more detail and optimization
strategies to improve the production are explained. In chapter 5 the simula-
tion model is described and the results of the simulations are given. Chapter 6
reflects on this research where-after in chapter 7 related work is reviewed. In
chapter 8 conclusions are drawn and chapter 9 describes opportunities for future
work.

1.1 Intelligent Manufacturing Systems

Intelligent manufacturing goes beyond classical manufacturing as the latter uses
a dedicated production line where machinery or craftsmen are used to do one
task of the production process. Intelligent manufacturing systems aim to be
more flexible and reactive to uncertainty and changes in production.

1.1.1 Manufacturing Paradigms

Manufacturing systems can be categorized in the related paradigms:

Figure 1.1: Manufacturing Paradigms [8]
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Dedicated Manufacturing Systems Dedicated Manufacturing Systems (DMS)
prescribes the use of inexpensive, fixed automation equipment to produce high
volumes over long periods of time. The systems are usually designed to produce
a single part in a production process with a high production rate [9].

Flexible Manufacturing Systems Flexible Manufacturing Systems (FMS)
facilitate changes to produce a variety of products with the same manufac-
turing system in a short time. FMS describes a generalized flexible design to
anticipated variations in products which are built-in a priori [10]. Although pro-
duction rate is lower it provides more flexibility compared to dedicated systems
[9].

Reconfigurable Manufacturing Systems Reconfigurable Manufacturing
Systems (RMS) aims to combine the high throughput of dedicated systems and
the flexibility of FMS [4] [11]. The objective of RMS is to provide the func-
tionality and capacity depending on demand by rapid adjustment of production
capacity and functionality. The system structure, hardware, and software com-
ponents are capable to change. Important properties that come with the RMS
paradigm are modularity, integrability, customization, and scalability [2].

1.1.2 Manufacturing Control Systems

An industrial control network is a system of interconnected equipment used to
monitor and control physical equipment in industrial environments. This differs
from traditional enterprise networks due to the specific requirements of their
operation [12]. The industry requires more reliable and real-time networks than
for usage by consumers. Industrial networks are composed of more independent
layers and specialized components as Programmable Logic Controllers (PLCs),
Supervisory Control and Data Acquisitions (SCADA) and Distributed Control
Systems (DCSs).

Production control can be divided into layers, see figure 1.2. The agility of
production process is controlled within the business layer. The direct control of
hardware is done in the process control layer. Two intermediate layers in these
industrial systems are of interest in this research: production management and
process management. Manufacturing Execution System (MES) is production
management software to enable high level control over production facilities in
a broad sense. SCADA is a process management layer to supervise the process
control devices. These systems are purely software based control systems to
supervise process control devices, acquire and monitor production data. The
technological advantages, such as Ethernet, started to blur the lines between
industrial and commercial networks. Due to the underlying hardware improve-
ments the life cycle and security issues of entire SCADA systems are important
considerations to avoid becoming obsolete.
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Figure 1.2: Automation Pyramid [13]

1.2 Agile Manufacturing

Agile manufacturing (AM) focuses on the manufacturing enterprise and the
business practices needed to adapt to a changing global uncertainty. Agility is
defined as “a comprehensive response to the business challenges of profiting from
the rapidly changing, continually fragmenting, global markets for high-quality,
high-performance, customer configured goods and services” [2].

An agile manufacturing environment creates processes, tools, and a knowl-
edge base that enables the organization to respond quickly to the customer needs
and market changes whilst still controlling costs and quality [14]. Flexibility is
the key in agile manufacturing. The approach can be achieved through sev-
eral aspects, e.g., scalability, modularity, and a number of classifications. These
manufacturing approaches are applicable when new products are produced that
have a short time to market and flexible volumes.

1.2.1 Holonic Manufacturing System

A Holonic Manufacturing System (HMS) is a paradigm describing entities of an
organization in living organisms and social organizations. The concept can be
used to achieve agile manufacturing systems [15]. The word holon is a combi-
nation of the Greek word holos, which means whole, and the suffix on, which
means particle. A holon can represent a physical or logical activity. Examples
of holons are a robot, a machine, a product order, a flexible manufacturing
system, or a human operator. A holon can be composed by several lower-level
holons, in contrast to an agent. A holarchy is defined as a system of holons that
is organized in a hierarchical structure. The holons cooperate to achieve the
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systems goals by combining their individual skills and knowledge [7]. Holonic
manufacturing concepts can be realized using agent technology. Implementa-
tions of holonic concepts in manufacturing are motivated by: 1) improving the
evolution of products within an existing production facility and 2) maintaining
a satisfactory performance outside of normal operating conditions [15].

1.2.2 Agent Technology

Agent Technology (AT) is a software paradigm bringing concepts from artifi-
cial intelligence into distributed systems. A commonly accepted definition by
Wooldridge and Jennings [16]: “An agent is an encapsulated computer system
that is situated in some environment and that is capable of flexible, autonomous
action in that environment in order to meet its design objectives”. Agent-
Oriented Programming (AOP) essentially models an application as a collection
of components called agents. These agents are characterized by, among other
things, autonomy, pro-activity and an ability to communicate [17]. The Multi-
Agent Systems (MAS) paradigm is characterized by decentralization and paral-
lel execution of activities based on autonomous entities, called agents. Agents in
a multi-agent based system have a high level of autonomy, organize themselves
in a heterarchical structure and intelligently cooperate to a common goal. Agent
architectures range from reactive to deliberative agents. A BDI architecture is
a deliberative architecture. It is designed to implement cognitive agents de-
pending on manipulation of Beliefs, Desires, and Intentions of the agents. This
makes the agents more robust against disturbances than reactive agents due to
their capability to only react and not anticipate the future [18].
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Chapter 2: Problem Description

The goal of this thesis is to provide validation and improve upon the devel-
oped production grid that is based on the Grid manufacturing paradigm [5].
A production grid consists of modular and reconfigurable manufacturing plat-
forms, called equiplets. The control system is based upon a distributed and
hybrid architecture, and uses agent technology. Both equipment and product
are represented by intelligent agents, i.e. a product agent and equiplet agent.
The equiplet agent is a virtual representation of the physical equiplet and aims
to utilize its capabilities by providing them to the grid. The product agent is
responsible during its product manufacturing lifespan in the grid. The manu-
facturing of a product is divided into product steps that can be performed by an
equiplet. The manufacturing system aims to achieve flexibility and scalability
through the modularity, reconfigurability and autonomy of the equiplets and
product agents.

Based on the previous chapter the following observations can be made:

• Modern manufacturing is characterized by a paradigm shift towards more
agile and reconfigurable architectures.

• Changing market demand provides uncertainties and variance in the pro-
duction process. This is added to existing uncertainties in manufacturing
environments [19].

• Industry requires mature and proven technology that are more than just
prototypes.

The first observation identifies the challenge: how can reconfiguration be
adopted by the production grid. From the second observation follows two prob-
lems: what will be the impact of uncertainties and how can the production
grid deal with it efficiently. Before addressing these issues, there is the question
of how to evaluate functionality and validate the system. This leads to four
research questions in the following section.

2.1 Research Questions

1. Is it possible to emulate and validate the MAS software of a grid with a
simulation?
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The literature of agent-based manufacturing is mostly limited to proof of
concepts. The reviewed literature confirms the conclusions drawn by Leitão [7]
and Trentesaux [6] that to adopt the use of intelligent software in industry, more
implementations are needed that go beyond proof of concepts.

The current developed grid manufacturing software is proven with practi-
cal approaches. Proof of concepts were developed to validate the system from
software to hardware. These concepts are far from real production situations
where each part of the system should perform deterministic and in a proven
manner [5]. Emulating external events enable the software to be validated by a
simulation.

Simulation technology holds tremendous promise for cost reduction, qual-
ity improvement, and shortening of the time-to-market for manufactured goods
[20]. It plays a significant role in evaluating the design and operational per-
formance of fields including manufacturing systems. Simulations have proven
its effectiveness in practice. Discrete simulation is one of the most commonly
used techniques for analyzing and understanding the dynamics of manufactur-
ing systems. A brief overview is given of the use of simulation in manufacturing
with respect to analysis, performance, verification, and validation [23]. It fol-
lows that the following performance evaluations should be examined: product
throughput, utilization of equipment, and the accuracy of the schedules.

2. What impact does reconfigurability of the production platforms have on the
production efficiency of the grid?

A key aspect of agile manufacturing is the ability to adapt to a changing
environment. The system should be capable to handle variable and chang-
ing product demand regardless the capabilities of the production grid. In this
RMS, all modular equipment can be reconfigured during runtime to change the
capability of the equiplet. An equiplet agent should be able to handle a re-
configuration without interference to manufacturing process of other equiplets.
The behavior and impact of reconfiguring an equiplet in a full size grid should
be investigated.

3. How do disturbances impact the manufacturing system?

Manufacturing environments are subject to many uncertainties and variance
in the production process. Uncertainties about machine breakdowns, mainte-
nance, and the randomness of processing times have major impact on realization
of a schedule. The cheap and modular equiplets will likely be more prone to
variance in the manufacturing process than more expensive and dedicated equip-
ment. Another factor of variance is the changes in product demand. Both the
time between requests to manufacture a product and the type of products, i.e.
the combination of product steps, are subject to variation. The actual values of
these random factors are unknown beforehand, but become known at the time
the variance occurs. So for example the processing time of a product step is
known after completion. This affects scheduling of the products and the coor-
dination of the manufacturing process between the product and equiplet agent.
Strategies should be developed to deal with these changing factors.
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An important factor in the performance of the grid is the planning of prod-
ucts. Van Moergestel has researched scheduling mechanisms and introduced a
solution for this scheduling problem [24]. The schedule algorithm is tested in
a deterministic setting. This might prove to be insufficient in a more dynamic
and stochastic environment.

4. What strategies or optimizations can counter the effect of disturbances in
the manufacturing process?

What is the best action when the schedule can’t be executed as planned. The
scheduling algorithm describes three sequential steps to identify the best route
of equiplets in the grid. It should be investigated whether these sequential steps
could be performed and would yield the same results. A schedule algorithm
that is more focused on robustness can be a solution. A possibility would be to
follow the planning less strictly and use this as a guideline.

2.2 Research Methodology

The research is conducted at an applied university which implies there is a more
practical approach. Functionalities are proven with proofs of concepts lacking
a complete integration of all developed concepts.

The agent-based software needs to be developed. It should combine the func-
tionalities of the proof of concepts. The system should work with the already
developed software for initiating the production of a product and the software
modules for controlling the equipment. The ability for equiplets to reconfig-
ure should be integrated in the MAS. Furthermore, the strategies should be
implemented for improving the performance of the production grid.

For emulation of the manufacturing grid, the agents need to be able to
receive external events from a simulation. A simulation layer needs to be devel-
oped extending the software. Interfaces of the agents should intercept outgoing
messages in order to produce new external events. This enables that agents
can be tested on a large variety of cases. The cases range from executing a set
of product steps on a real equiplet to manufacturing many products in a large
manufacturing grid within a dynamic environment.

Below, a list of functionalities/constraints is given for the development of
the software. However, not directly applicable in the current research these are
identified as potential problems during up-scaling of the production [7]. The
system should considered to be placed in a larger context of industrial flexible
manufacturing. In future stadia of the project possibilities will become available
for testing functionalities or constraints.

• The MAS should aim not to overflow the system with communication
messages which can put too much stress on the system. A product agent
inquires whether an equiplet agent is capable to perform certain services.
The equiplet agents should also return their planning and the agent that
are scheduled in a certain time period. By giving the product agent how

11



much free time they still have, the agent can choose the equiplet agent
with the smallest workload. This should result in a more robust product
schedule and a more distributed workload divided between the equiplets.

• Agents in the grid should be pro-active and cooperate with each other.
When agents receive requests they should reply with a constructive answer.
When a product agent asks an equiplet agent whether it could perform
a production step a certain time, the agent should not merely reply ‘no’,
but also give an alternative time for the production step.

• Product agents should be able to be initialized by multiple entities. The
production of a product can be optimized by dividing the product into
half-products. These sub-products will consist of parts that are separately
manufactured to enable parallel production. For example, when parts
required to be produced by different equiplets it does not matter in which
order. However, this optimization is not yet applicable and omitted in
the current research. Within the design of the product agent it should
be considered that the product agent could report to a parent agent or a
human interface.

• The product agent will have to allocate resources for the production of
the product. This would be either before or as a part of the initialization
process. It is possible that certain resources remain after the production
process. Product agents should be able to delegate the return of the
otherwise wasted resources in order to be used by other product agents.

• Test-Driven Development (TDD) is a software developing paradigm where
the developer writes automated test cases for functionality or part of code
which would benefit the overall quality of the software. This will con-
tribute to a more proven system. The simulation and MAS is a distributed
system where there is communication between many entities. Testing the
system to its maximum capacity needs to be possible while maintaining
an overview of the correct working of functionality. Debugging while in-
creasing the entities becomes more difficult as the communication between
these entities increases. If possible, dedicated test code should be written
for part of the software to verify the functionality.
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Chapter 3: Architecture

The REXOS architecture is based on a hybrid system using MAS for the de-
liberative aspects and Robot Operating System (ROS) [27] for the reactive as-
pects. The term REXOS comes from Reconfigurable EQuipletS Operating Sys-
tem where the abbreviation of eqs is evolved to ex. The architecture consists of
three layers, MAS, HAL, and ROS. Basically, autonomous entities in the MAS
have cognitive abilities to make the necessary decisions using entities in ROS for
direct hardware interfacing. The Hardware Abstraction Layer (HAL) layer is
responsible for the translation of product steps to instructions for the equiplets’
hardware.

This chapter first describes grid manufacturing which is used in REXOS.
Thereafter, an overview is given of the implemented system with the ROS and
HAL layer.

3.1 Grid Manufacturing

Grid Manufacturing (GM) is a new production paradigm [26]. It is based upon
the use of standardized and modular Reconfigurable Manufacturing Systems.
A production grid, or in short a grid, is a group of low-cost manufacturing
platforms in a dynamic logistic set-up that can individually be reconfigured, so
product and parts can be transported between all systems. The modular and
reconfigurable manufacturing platforms are called equiplets. The concept has
been introduced by Puik [1].

Definition 1 (Equiplet). An equiplet is a reconfigurable manufacturing device
that consists of a standard base system upon which one or more front-ends with
certain capabilities can be attached.

Advantages of grid manufacturing are more flexibility and risk reduction
during scaling of the production. Manufacturing tasks are distributed over a
large number of production systems to achieve the flexibility and risk reduction.
Adding equiplets to the grid could lead to increased uptime as multiple equiplets
can work parallel. This way bottlenecks in the production process are reduced.
During runtime individual equiplets are able to be reconfigured without affecting
other equiplets. Consequently, the production grid changes without downtime
of the manufacturing process.
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Agent technology provides opportunities for the use in grid manufacturing.
Grid manufacturing increases the flexibility by providing a heterachical software
architecture where product and equiplet agents negotiate directly to create new
products.

3.1.1 GEM Architecture

The implementation of the GEM architecture consists out of three layers, a
Grid, Equiplet, and Module layer shown in figure 3.1. In the GEM architecture
the equiplets in the grid are represented by an agent and nodes. The equiplet
agent is a virtual representation of a physical equiplet. A node is a process that
performs computations for controlling equiplet modules and is implemented in
ROS. A module is a component of an equiplet with the controlling software.
The modules directly control the hardware modules. The equiplet is capable to
perform manufacturing steps with a combination of modules. The agent is able
to communicate through a blackboard with his underlying hardware.

Figure 3.1: Grid system overview - GEM architecture - Grid, Equiplet, Module
[26]

An equiplet is represented as an equiplet agent. The agent will publish its
capabilities in a global accessible place therefore providing a service to the grid.
A product is represented by a product agent during its manufacturing lifetime
in the grid. The agent chooses the equiplet agents to perform product steps on
basis of the published production steps. When a product agent is instantiated,
it will try to plan a path among the equiplets. If the production path is feasible
and planned, the corresponding time of the equiplets will be claimed by the
product agent. If the deadline is not feasible, the product agent will negotiate
with other product agents to see if they are willing to adjust their scheduling.
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3.1.2 Decomposition of Products

The goal of a product agent is to complete a product. Products need to be
decomposed into steps lower level control software can understand in order to
create the product, i.e. the product agent needs to split-up the production of
the product into steps which equiplet agents can understand. The products
steps can be classified into four classes: altering the shape of the product (e.g.
drilling, heating), adding components to the product (e.g. gluing, welding),
inspecting the product for quality control, and testing the product.

Definition 2 (Production Step). A production step is an action or group of
coordinated or coherent actions on a product, to bring the product a step further
to its final realization. The states of the product before and after the step are
stable, meaning that the time it takes to do the next step is irrelevant and that
the product can be transported or temporally stored between two steps.

Before executing of these steps, more specific instructions need to be formu-
lated. These steps do not prescribe the necessary hardware, but only the action
that needs to be performed. Equiplets translate these steps into instructions
the underlying modules can execute.

3.1.3 Hardware Representation

In grid manufacturing an equiplet agent is a virtual representation of a manufac-
turing machine. This equiplet contains multiple modules that control hardware,
i.e. sensors and actuators. Modules are specific systems that can individually
receive instructions. Each module has its unique state that is the direct rep-
resentation of the hardware [26]. An error that can be detected at the (lower)
device level will influence the modules’ state.

3.2 Overview

Before explaining the architecture in more detail, an overview is given of the
exchanged information between entities is shown in figure 3.2. To achieve mod-
ularity in the system, a clear division is made between the layers. The product
agent receives product steps containing a required services and more detailed
information about the execution of service. The equiplets register the provided
services by the Directory Facilitator. The capabilities depend on the installed
modules which are provided by a controller within the HAL layer. The software
for module control is given by a user and stored in the HAL layer. The product
agent will confirm the capabilities of the equiplet agent before the execution of
product steps. Product steps are translated into instruction in the HAL layer
and executed in the ROS layer.
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Figure 3.2: REXOS dependencies

Compared to previous implementations [5] the hardware, service, and equiplet
agents are merged to equiplet agent and a HAL. As information for manufac-
turing a product steps is translated by the HAL and passed through the correct
software module in ROS. Information of completed instructions, failures, or
other complications is passed from ROS to the equiplet agent in order to take
the necessary actions.

In figure 3.3 an overview is given of the architecture. The loosely coupled and
highly autonomous entities in the distributed manufacturing system resemble
a heterarchical control architecture. The grid is a combination of heterarchi-
cal and hierarchical approaches [28]. The equiplet agents have a hierarchical
structure while being inside a heterarchical MAS architecture. The entities in
MAS are able to run on different computers provided that there is an Ether-
net connection between the computers. The grid has one central server from
which the system is started and therefore contains the Directory Facilitator,
Grid Data Acquisition, Logistic Manager, and other central agents not shown
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i.e. the Agent Management System as this comes with the used framework.
Furthermore, the grid is capable of containing multiple products, equiplets, and
transport agents. The equiplet agent itself is designed to work on the same
computer as the software for controlling the hardware.

Figure 3.3: Architecture

3.2.1 ROS

ROS is a software framework that provides a middle-ware system and libraries
for hardware abstraction [27]. The ROS platform is used to directly control all
hardware modules. The middle-ware system uses simple autonomous objects
called nodes which communicate through a publish and subscribe service. ROS
has an extensive library for robot sensors and actuators. Every module has
a ROS node that is used as an interface for a module. Since modules can be
adapted when an equiplet is reconfigured, a spawner node is used to start new
modules when required. The environment node is used together with a computer
vision module to find the location of products within the working environment
of the equiplet.
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3.2.2 HAL

The Hardware Abstraction Layer enables the equiplet agent to translate product
steps to specific hardware instructions and therefore to execute product steps.
Each device in the production environment has certain properties and behaviors
which can be classified as functional capabilities [29]. Capabilities have parame-
ters, which represent the technical properties and constraints of resources, such
as speed, torque, payload, and so on. For example, the capability with concept
name ‘moving’, has parameters ‘velocity’ and ‘acceleration’. The capability pa-
rameters enable to determine which resource has the capability that best fits
the need of the given product or production requirement.

Combinations of modules define the equiplets capabilities. The HAL layer
contains the software for controlling the underlying modules which is stored in
a knowledge database. For an equiplet it is common that multiple modules
are dependent on each other. From these module dependencies a tree structure
emerges where a sub-tree comprises an equiplets capability. For example, a
delta robot module with a gripper module will enable the equiplet to pick and
place or a delta robot with a pen module will enable it to make drawing.

With a tool or interface the required module software can be loaded to the
equiplet. An equiplet can be set in a ‘safe’ mode where it uses a camera system
to detect 2D bar-codes that identifies a module. These QR codes are used
to identify a unique identifier and type of the connected modules. This way
the corresponding nodes that belong to the modules can be removed or added
from the equiplet by scanning the correct QR codes. Before loading software
of new modules specific parameters that are required for correct use should be
configuration.
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Chapter 4: MAS

In this chapter the developed MAS is described. First an explanation of the
agents in MAS is given. The equiplet and product agents are described in more
detail. These agents have the most influence on the manufacturing process.
The product agent has a scheduling procedure for planning its product steps.
It consists of finding equiplets for its product steps and planning these steps
at the equiplets. Manufacturing environments are subject to uncertainties and
variance in the production process. The strategies to improve the production
are rescheduling, queue jumping, and reconfiguration.

The Multi-Agent System is a major part of the system. It is responsible for
the deliberative aspect in the grid. The MAS consists of a collection of agents
in the JADE framework [30]. The MAS architecture is organized according to
the following characteristics:

• Autonomy: agents make independent decisions and are responsible for the
execution of the decisions toward successful completion.

• Cooperation: agents work together as a group to respond to events and
toward completion of their goals.

• Communication: agents share a common language for communication in
order to cooperate.

• Reactive: agents should be able to react on changes in their environment
and have the capability to detect failures and to isolate failures based on
the environment.

Agents in MAS are capable to interact using a common language. The
language used in the grid is compliant with the standard of the Foundation
for Intelligent Physical Agents (FIPA). FIPA is an organization founded to
standardize agent systems [31]. The structure of a message is defined by the
Agent Communication Language (ACL) which prescribes messages to contain:
sender, receiver, content, performative, conversation-id, in-reply-to, language,
and ontology. The sender and receiver are the agents who communicate the
content. Prescribed by the custom defined grid-ontology, the content that is
communicated between agents is formatted in JSON. The performative denotes
the type of the communicative act of the ACL message, e.g. inform, request,
propose, or other performatives. The conversation describes the topic of the
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communication, e.g. can-execute, product-arrived. The agent will reply with
the appropriate information or an acknowledgement to incoming messages. The
agent will match on the performatives and conversation to correctly de-serialize
content and respond accordingly.

For transporting parts between equiplets an Automated Guided Vehicle
(AGV) is used. The AGV is represented by a transport agent. A product
schedules a transport agent during the lifespan of a product assembly. Although,
transport agents could be scheduled for designated trips between equiplets. The
AGV needs to be capable of transporting all the required parts for the produc-
tion from begin of the assembly until a product is finished. Thereafter the AGV
could be reused for the next product assembly.

On grid level a logistic manager agent is responsible for the coordination of
the transportation units. The logistic manager knows the routes between the
equiplets in the grid and therefore has useful travel information for product agent
during scheduling. Depending on the capabilities of the transportation units,
the logistic manager is able to assign routes to transport units to avoid collisions.
This could be a solution when the units cannot drive completely autonomous
when there is no sufficient collision detection available or it is not desirable
as paths are too narrow to avoid each other. Alternatively, transport units
could coordinate through communication and whenever there is a disagreement
resolve the allocation of a route with an auction. The best solution would
heavily depend on the available transport units, grid set-up, and manufacturing
facility.

Before discussing the equiplet and product agent, the overall properties of
MAS are described.

4.1 MAS Properties

A grid G consists of a set of product agents P , a set of equiplet agents E, a set
of transport agents T , and the management agents M . The management agents
are a monitoring agent, Logistic Manager Agent, Agent Management System
(AMS), and DF agent. From these agents there is usually one instance in the
grid.

G = 〈P,E, T,M〉

A grid is capable of manufacture a product Pi if all the product steps are
capable of be manufactured by the grid.

A product to be built is divided into product steps. A product step σ consists
of a service and criteria: σ = 〈s, c〉, where s is the service that can be provided
by a grid and c are the criteria of the product step to be performed. For example,
a service can be pick and place with the criteria where the object needs to be
picked up and coordinates where to place the object. Furthermore, the criteria
of a product step provide information about the dimension and material of the
objects needed for the execution of the product step.
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Whether a grid is capable to manufacture a product step depends on the
capabilities of the equiplets.

Definition 3 (Capability of Equiplet). A capability Ce of an equiplet e is
defined as the services that the equiplet provides to the grid combined with the
limitations of this service. Ce = 〈s, l〉, where s is a service and l is the limitations
of the service s. The limitations contain among others the boundaries of the
service. For example, a service pick and place only works with object not too
large, heavy, and within the equiplets reach.

An equiplet is capable of manufacturing a product step, if the equiplet pro-
vides the service and the criteria are within the limitations of the equiplet. The
product agent can search for a path along the equiplets if the grid is capable to
manufacture its product steps.

Definition 4 (Production Path). The product is characterized by a sequence
of production steps. Consider a product p to be built with three production
steps, this product has production path: 〈σ5, σ2, σ4〉

The order in a production path is important as most assembly steps have
priorities. Normally, each product step requires the completion of the step
before it. However, there are situations where first two half-products are made
and combined. When the order of two or more product steps is irrelevant these
can be viewed as half or sub products. The product agent can choose to spawn
child agents to manufacture half products in parallel. When the child is finished
it will transfer the production information to the parent agent that will finish
the production. If there is a deadline, the parent will coordinate the scheduling
of the children with its own scheduling. There are cases where it is desirable to
have half products in stock. When a product requires one of these half products
it includes the product steps if the stock is empty. In a car factory certain half
products can be identified such as the engine and chassis.

4.2 The Equiplet Agent

The equiplet agent is a virtual representation of a physical equiplet and is aware
of the capabilities of the hardware. The goal of the agent is to utilize his
capabilities by providing them to the production grid. The agent will initialize
the HAL through which it will receive the knowledge about its capabilities.
Furthermore, the equiplet agent has knowledge about his position in the grid,
the product steps that need to be executed and have been executed. On the basis
of the executed task the equiplet could provide a more specific time indication for
product steps which is needed for product scheduling. This first time indication
should be provided along with the capabilities.

The equiplet agent has one behavior that listens to communication from
for example the product agent. Incoming message conversations are product-
arrived, product-release, product-delayed, schedule, can-execute, and information-
request. A description of these conversations is:
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• product-arrived : A product informs the it has arrived at the equiplet and
its product step is ready for execution. The equiplet will begin with the
execution of the product step if it is favorable according to his schedule.

• product-release: A product agent releases its reserved time slots at the
equiplet. The equiplet removes the time slots of its schedule.

• product-delayed : The product indicates that it will be delayed. The
equiplet will tolerate this if is it does not affect other product agents.

• schedule: The product agent requests to reserve one or more timeslots at
the equiplet.

• can-execute: The product agent seeks confirmation whether the equiplet
can execute product steps. The equiplet agent will check whether the
criteria of the product step are within the limitation of his capabilities.

• information-request : A monitoring agent is able to request information
of the equiplet. The equiplet agent can provide information about the
schedule, current state, history and/or more.

4.3 The Product Agent

The products that are manufactured by the grid are represented by a product
agent. The product agent is responsible for the production of a product from the
moment there is a product order until the created product leaves the grid. The
agent will be initialized with the required parts ready for manufacturing or claim
the parts by an appropriate resource manager in the grid. The goal is to ensure
that the product order is completed and to supervise the progress. The agent
will inform the creator of faults and other state changes during manufacturing.

A product agent is able to have 6 different states: scheduling, traveling,
waiting, processing, error or finished. A state transition diagram is shown in
figure 4.1. After the scheduling is successfully completed the agent the state
transitions from scheduling to traveling. The product will travel to an equiplet
where it will wait until the equiplet agent informs it starts processing its product
step. The state transitions from traveling to waiting, and when the equiplet
begins with manufacturing the product step, to processing. If the equiplet agent
informs the product that its step is finished, the product is either done with
production or will travel to the next equiplet in its production path. So the agent
will be in the state finished or the same transitions happen as after successful
scheduling. If it is the same equiplet, the product agent immediately notifies it
has arrived. If the scheduling was not successful the product agent will be in
the error state. The agent informs the creator of the product as either product
cannot be made within the deadline or the required equiplets are not available
in the grid.
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A product agent has two behaviors: a listener and a scheduling behavior.
The listener behavior is similar to that of the equiplet agent. It is active during
the lifetime of the product agent. The incoming messages the agent can expect
are:

• product-processing : The equiplet agent informs the product agent it starts
with the processing of his product step.

• product-delayed : The equiplet agent informs the planned product step will
be delayed such that the product agent can take precaution to arrive in
time at other equiplets in the production path.

• product-finished : The equiplet agent informs the product agent it is fin-
ished with the execution of the product step. The product agent will be
able to commission the transportation to the next equiplet or the product
is finished.

• information-request : A monitoring agent is able to request information of
the product. The product agent provides information about his current
state, location and progress.

The schedule behavior will be instantiated when the agent is in the scheduling
state. It will schedule time slots with the equiplet agents according to the
product scheduling goals. A product agent can prefer to minimize its make-
span or balance the load between equiplets depending on the goal of the agent.

4.4 Scheduling

In manufacturing, allocation of resources is of major importance to the system.
The goal is to optimize production and therefore maximize the utilization of
the production machines. The problem is similar to that of job shop scheduling
where jobs are assigned to resources at certain times. The products steps can
be seen as jobs and the equiplet as resources. There are different approaches
in methods for solving this scheduling problem. The problem is well known
to be NP-hard [19]. Many heuristic algorithms have been developed including
dispatching priority rules, local search, and shifting bottleneck procedure [32].

There are fundamental differences in scheduling of equiplets compared to
classical job shop scheduling. Usually, the scheduling algorithms assume jobs
are known beforehand and take some computing time to calculate a schedule.
As products can arrive at any time, a lot of processing power is necessary to cal-
culate a new schedule each time a product arrives. This would lead to redundant
use of processing time as the newly arrived product makes the current schedule
infeasible when it is not scheduled. So scheduling can begin from scratch with
the new situation. Further, scheduling is usually done by a central scheduling
entity. This entity needs to have knowledge of all the machines and products in
the system. Assigning tasks in a more distributed way gives the agents a higher
degree of autonomy [33].
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Van Moergestel [24] describes a combination of a heterarchical and hierar-
chical approach where product agents schedule their product steps on a central
plan blackboard. If the product agent fails to schedule its product steps within a
deadline, the agent asks other agents if they could release or exchange time slots
to make its schedule feasible. The schedule procedure looks first for equiplets
providing the services to match product steps where after it schedules the prod-
uct steps with the equiplets.

4.4.1 Product Step Matching

When product agents are created in the grid, they need to find equiplets for
executing their product steps. In JADE there is a DF (Directory Facilitator)
that provides a yellow pages service by means of which an agent can find other
agents providing the services it requires in order to achieve his goals [17]. The
“yellow pages” service allows agents to publish one or more services they provide
so other agents can find each other. An agent wishing to publish one or more
services must provide the DF with a description. A service description includes
the service type, the service name, the languages, and ontologies required to use
the service.

Figure 4.2: Communication from initialization until performing a product step

Figure 4.2 shows a equiplet agent registers their services with the DF. The
product agent asks the DF with a description containing the service for the
equiplets providing the service, which is represented by searchEquiplets in al-
gorithm 1. After finding the equiplets, the product agent will ask whether the
equiplet is capable to execute the step and information about its schedule. This
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is to check if certain criteria of the product step are set. The equiplet tests if the
step can be translated into instructions for its modules. The time the product
will take to travel to each equiplet will be provided by the logistic manager.
With this information the product calculates a feasible production path which
can be scheduled by the equiplets.

Algorithm 1 Product Step Matching

for all σ ∈ Pi do
(s, c)← σ
E ← searchEquiplets(s)
Ecapable := {}
for all e ∈ E do

if Ce(σ) then
Ecapable := Ecapable ∪ {e}

end if
end for

end for
travelT imes := retreiveTravelTimes(Ecapable)
productionPath := schedule(Ecapable, travelT imes)

4.4.2 Schedule Algorithm

After the necessary information is gathered, a schedule algorithm will match
the product steps with equiplets. The schedule algorithm is implemented by
performing a sequence of steps [24]: A matrix is created, where each row is a
product step σ and each column an equiplet e. If the step σi is supported by
the equiplet ej then, the cell αij = 1, otherwise αij = 0. The next step is to
minimize the transport between equiplet by increasing the cells of equiplets that
are capable to manufacture multiple consecutive product steps. The algorithm
will search for a sequence of values αij ≥ 1 and changes these values to the length
of the sequence. This is an example of a matrix constructed by a product agent
with the products steps < σ1, σ2, σ3 > and 4 equiplets in the grid:

e1 e2 e3 e4
σ1 2 1 1 0
σ2 2 0 0 2
σ3 0 1 1 2

Table 4.1: Scheduling matrix

The next step is to take workload into account to balance the work among
the equiplets. A high load of an equiplet decreases the associated values in the
matrix. The load is a value between 0 and 1. The load µe of an equiplet e is as
followed defined:
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µe = 1− Sr

St

where Sr is time scheduled and St the timespan. The timespan is given by
the product agent. This will be the product deadline as this period is of interest
to the product agent.

The product agent chooses a production path from the matrix with the
highest score. The agent will request the first possible timeslots at the equiplet.
The process of planning, optimizing, and scheduling is an atomic action of the
product agent. One product agent can schedule its product steps at the same
time. It is shown that a high load of the equiplets in the grid can be achieved
if the total production time, i.e. the total time taken by all production steps, is
shorter than the time between the release time and the deadline of the product
agent.

To summarize, the algorithm identifies three values that affect the score of an
equiplet: whether the equiplet can perform the product step, if the equiplet can
manufacture multiple consecutive product steps, and the load of the equiplet.

The schedule algorithm has a few drawbacks. It does not take processing or
travel times into account. Further, the algorithm takes gaps in the schedules
not into account. This can lead to inefficient situations:

Example 1. Suppose there is a situation where a product agent must choose
between two equiplets with the same capability to plan its product step. Figure
4.3 shows the planning of the two equiplets in this situation. The product agent
chooses to plan at the equiplet e1 as this has a lower load. However, the product
step can be processed sooner at equiplet e2 with a higher load.

Figure 4.3: Equiplet schedules

A shortest path algorithm can be used for finding the equiplets with most
favorable load to execute the product steps. The pair (G, c) consists of a directed
graph G and a cost function c : A → Z. A graph is G = (N,A), where N are
the nodes and A the arcs between the nodes. The set of nodes consists of the
set product steps and an equiplet that is capable to execute the product step.
There is an arc between these nodes if the equiplet is capable to execute the
next product step. A source node is added with an arc to each node associated
with the first product step. Similar, a sink node is added with an arc from each
node associated with the last product step. The shortest path from the source
node to the sink node gives a production path. Figure 4.4 shows a graph where

27



a product has three product steps to schedule. For the first and third product
step there are 3 options and 2 options for the second product step.

Figure 4.4: Scheduling Graph

This graph can be solved with single-source shortest path algorithm such as
Dijkstra [34]. Depending on the cost function different strategies can be chosen.
Similar to the previous described scheduling algorithm the emphasis could be on
balancing the workload of equiplets. This would give the following cost function:

c(u, v) = µv

Compared to the matrix approach, the production path constructed by the
algorithm is less favorable to equiplets capable to execute multiple consecu-
tive product steps. Equiplets with multiples capabilities will be preferred over
equiplet with less capabilities. Even when there is little room in a equiplets’
schedule, i.e. the equiplet has a high load. If an equiplet is preferred for the
first product step in the sequence it is preferred for the second product step.

Alternatively, the cost function could depend on the first time a equiplet
is available. This would give production paths similar to an earliest due date
(EDD) algorithm.

c(u, v) =
d− av
d− t

where d is the deadline of the product, av is the first available time for
the product step, and t is the current time. The first available time of node
v depends on the finish time of the previous product step, the travel time be-
tween the equiplets associated with node u and v, and the available time in the
equiplets’ schedule.

As the cost to a node depends on the equiplets associated with the previous
nodes in the path leads this to a problem. Suppose a product agent needs to
schedule the product steps σ1 at equiplets e1 or e2 and σ2 at equiplet e3. In
figure 4.5 the schedules of the three equiplets can be seen with the possibilities
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for the two product steps. The product step σ1 will be executed earlier at e1
than e2, however, the production path with e2 is faster. This is because the
travel time from e1 to e3 takes so long that the product step will be scheduled
behind the already scheduled product step.

Figure 4.5: Scheduling Problem

To calculate the path with the lowest cost an algorithm will add a node to
a path that has the lowest cost until the sink node is reached. By adding each
iteration a node the cost of the path increases, so if the sink node is reached the
best production path is found. The algorithm shown below works as follows:
a worklist paths is initialized; for each neighbor of the last node in the best
the path, a new path is added to the worklist. The algorithm uses a list of
paths sorted on score, such that if the first path in the worklist contains the
destination than there is no better solution.
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Algorithm 2 Scheduling Product Steps

paths := {} a sorted (on score) set of pro-

cessed subpaths

for all (e, load, duration, available) ∈ options(σ1) do
arrival := thiscreated + travelT ime(thispos, epos) arrival by equiplet
time := max(arrival, available) first possibility an equiplet

can be scheduled
score :=score(time, load) score of path
path := [Node(e, time, duration)]
paths.append(path, score) add path to processing paths

end for
while paths is not empty do

path := paths.first(); get and remove the path with
the best score

node := path.last();

if node = destination then best path reaches the desti-
nation

return path
end if

add all neighbors to new sub-
path

for all neighbor ∈ neighbors(node) do
travel := travelT ime(nodeequiplt, neighborequiplet)
time := firstPossibleT ime(nodefinished + travel, neighboravailable)
score := pathscore×score(time, neighborload) score of new path
path.append(Node(e, time, options[neighbor]duration))
paths.append(path, score)

end for
end while

function Score(t, l)
return thisdeadline−t

thisdeadline−current time

end function

The product agent has also the option to balance the workload while trying
to minimize its due date. This is a combination of the two cost functions:

c(u, v) = µv
d− av
d− t

4.5 Rescheduling

It would be ideal to predict the exact processing and travel times such that
no conflicts arise in the schedules. In real situations there are always variances
in the manufacturing process. Little is yet known about the fluctuation of
executing a job on an equiplet. When the equiplet finishes a job earlier or on
time nothing will go wrong. The equiplet can wait for the next job or start with
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the next job when it is ready. The latter is preferable as jobs are then more
likely to finish on time. When a job is tardy such that the next job would be
delayed, the product agent of the delayed job needs to be informed. There are
a number of possibilities what could happen next:

• An approach would be to keep the order of jobs in the schedule, but ignore
the start times. When a job is delayed, nothing would change in the
schedule. This could decrease the gaps in the schedule, but conflicts could
arise when delayed products have many equiplets left in their production
paths. This results in a snowball effect as the products in the affecting
equiplets schedules will also be delayed and so on.

• The equiplet shifts all the jobs until everything fits while remaining the
order of jobs. This would compress the schedule such that there is an
opportunity for better utilization, but also a higher risk of affecting more
jobs when there is another tardy job. The equiplet should inform the
product agents of the jobs that are shifted. When there is a tight schedule
this would mean informing a lot of product agents. The product agents
should in turn inform the equiplet agents. This approach would lead to a
snowball of communications.

• If the product agent discovers that a product step did not start on the
agreed time, it can take his loss and reschedule his remaining product
steps. This approach would not affect the scheduled jobs of other agents.
When the product agent reschedules his product steps, it naturally takes
as much as possible released time slots back. Although, there is a good
chance that there is only room at the end of the equiplets schedule. This
could lead to products not meeting their deadlines.

Both the first and the third options are implemented. The product agent
schedules a trigger to ensure its job has started before affecting other product
steps in its production path. If the triggers fire before the job has started the
agent reschedules its remaining product steps. The procedure of rescheduling is
as follows: the product agent will release the scheduled time slots and initiates
a new schedule behavior to schedule its remaining product steps.

4.6 Queue Jumping

Many times there are products waiting at equiplets ready to be processed while
the equiplet is idle. This happens when the first product in the schedule has not
yet arrived. The equiplet will be idle until the arrival of that product. The cause
of delays range from processing times that are longer than expected to break-
downs and unexpected maintenance for equiplets. This causes an unwanted
effect in all the scheduled products behind the delayed product.

Queue Jumping is a procedure where products that are available (i.e. have
arrived) at the equiplet can start before they are scheduled in case the next
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scheduled product has not yet arrived. The product can jump q places ahead in
the schedule of the equiplet. It gives products that have already arrived priority
over products that are scheduled to start next, but have not arrived in time to
start. The product that is too late is placed behind the current product that
starts. This might result in some products not completing within their expected
completion time.

4.7 Reconfiguration

In the grid manufacturing there are no assumptions made about the products
that will be manufactured in the future. Although, the configuration of equiplets
could be optimized for the products to be made as there is a relation between the
available resources and the product demand. The product demand is subject
to variance in an agile environment. The production needs to adapt quickly to
the market demand. The equiplets are easy to reconfigure to reduce downtime
of the equipment. The reconfiguration procedure of an equiplet agent consists
of de-registering its services with the DF and finishing the product steps in
its schedule. After reconfiguration, when the equiplet is functional, the agent
registers the changed services with the DF and is able accept work from product
agents.

In the grid an entity is made to suggest that equiplets change their capability.
The entity will suggest capability changes based on results of a simple algorithm.
After a certain time has elapsed the simulation enables this algorithm to change
an equiplet if necessary. The algorithm identifies the equiplet with the highest
utilization and for each capability two equiplets with the lowest utilization.
The equiplet with the lowest utilization will be reconfigured to the capability of
equiplet with the highest utilization. The two lowest utilizations combined need
to be lower than a threshold to prevent equiplets changing their capability when
it is not beneficial to the grid. The two lowest equiplet are taken into account
as an equiplet can have an unfortunate schedule such that the load drops below
the threshold. If the utilizations together were less than 100% the work could
have been done by one equiplet. To prevent equiplets changing capabilities
too much the threshold is set on 110%. The grid will always keep one of each
capability to prevent that certain products no longer could be manufactured
after reconfiguration.
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Chapter 5: Simulation

A discrete-event simulation model is developed for the purpose of investigating
the presented model. After each event the state of the system changes to a new
situation. The simulation is structured in the following way: initiation of the
simulation, while the simulation is not ended: get the next event from the event
stack, advance the simulation time, handle the event, add new events to the
event stack, and update statistics.

In the simulation a discrete time is used. These time steps are relative to
the start of the simulation. The simulation time start at zero and each iteration
after an event the simulation jumps to the next discrete time step.

5.1 Simulation Model

Eight different events are generated: product creation, product arrived at equiplet,
product started, equiplet finished with a job, equiplet breakdown, equiplet is re-
paired, reconfigured, and simulation is done.

Figure 5.1: Simulation event graph

In figure 5.1 the events can be seen in an event graph. The graph shows an
edge from the black dot to the events that are on the event stack at the start
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of the simulation and an edge to the circled dot for the event which causes the
simulation to end. There is an edge between events if it causes the scheduling of
an event. The dashed edge indicates that the scheduling of the event is optional,
i.e. depends on certain conditions.

• A product creation event triggers the creation of a product agent with a
certain set of product steps and a deadline. When the agent manages to
schedule his product steps, a product arrived event is added to the event
stack.

• A product arrived event will trigger when a product arrives at an equiplet
where after the product agent informs the equiplet agent that it has ar-
rived.

• A started event is triggered at the latest time that a product should have
been started. If this is not the case the product knows that it has to
reschedule the remaining product steps.

• An equiplet is finished with a product step. He informs the correspond-
ing product agent which results in, if needed, the simulation schedules a
product arrived event.

• The simulation gets a breakdown event when an equiplet breakdown or is
in need of maintenance.

• The simulation gets a repaired event when the equiplet can continue his
activities. After an equiplet is repaired a new breakdown event is sched-
uled.

• A reconfig event is scheduled when the equiplet can be shut down and
reconfigured into a new configuration. The event will trigger when the
capabilities of the equiplet are changed and can register these services
with the DF agent.

• The done event will end the simulation. The required procedures, such
as saving statistics and terminating the living agents, are executed. This
event can be added at the beginning of the simulation to ensure a certain
run time or can be added after a number of products are created.

The equiplet can be in the states idle, busy or error. The equiplet has, next
to these states, three additional simulation states:

• error finished : when the equiplet should have finished with the job, but
has broken down in the meantime. When the simulation receives the
finished event, the equiplet still needs to take the time that it was broken
to finish the job.

• error repaired : when the equiplet is repaired but the simulation does not
know when the job would have been finished. When the simulation receives
the finished event it can be reset.
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• error ready : when the equiplet would have started with executing a job
of the product that arrives, but is broken down.

The simulation requires the distinction between these states to identify the
correct handling of an event. It is for the simulation not possible to look into
the future, i.e. look at or edit the event stack. So certain events need to be
disregarded or handled differently. Equiplets need to make a distinction between
the state busy, when they are normally busy with a job or when they continue
with a job after been broken. The same goes for the distinction in the error
state, when the equiplet would have been finished or when a product arrives
while being broken. In the figure 5.2 the relation between the 6 states are
shown. The three additional states are specializations of the equiplet states.

Figure 5.2: Equiplet states

To get more insight into the state transitions the following graph is made,
shown in figure 5.3. The graph focusses on the transitions when equiplets break-
down. The first two cases are when the equiplet is executing a job and breaks
down. The finished event is generated by the simulation that presumes the
equiplet will not breakdown. The distinction between the two first cases is the
time the equiplet is broken, so whether the equiplet is repaired before or af-
ter the finished event fires. The finished event is postponed with the time the
equiplet was in the error state. The third case shows that the simulation can
add a finished event to the event stack as the equiplet directly continues after
being repaired. The last cases are when the equiplet is idle, breaks down and
remains idle.
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(a) equiplet should have finished during a breakdown

(b) equiplet should have finished after a breakdown

(c) product arrived during breakdown

(d) equiplet breaksdown while idle

Figure 5.3: Equiplet timeline

It is possible that the equiplet breaks multiple times before its finishes a job,
although this is not likely in real situations. While an equiplet is busy with
the remainder of a job, after being repaired, the state of the equiplet is error
repaired.

When the duration of a job is longer than the uptime between breakdowns,
the equiplets state transitions from error repaired to error which changes the
behavior when the repair is finished. An example of this would be a 3D printer
that requires multiple refills, i.e. maintenance, before completion. After being
repaired the time remaining will be the current time subtracted with the break-
down time of the previous breakdown. The time remaining becomes the sum of
the equiplets downtime. The two cases in figure 5.4 show the method that can
work for two or more breakdowns.
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(a) equiplet should have finished during a second breakdown

(b) equiplet should have finished after a second breakdown

Figure 5.4: Equiplet timeline

For the simulation, interfaces were made to simulate external and/or internal
events incoming at agents. The simulation takes over tasks from for example
the transport agent, seen in figure 3.3. A simplified class diagram can be seen
in figure 5.5. The simulation will create the product agent and takes over the
task from a transport agent to inform the product agent it has arrived at the
equiplet. Similarly, the simulation fakes the notifications that a job is executed
and malfunctions generated by the equiplets hardware.

The agents are built within the JADE framework [30]. As the communica-
tion between agents is asynchronous, a lock mechanism guarantees events are
completely handled before the next event. This ensures the discrete property of
the simulation. When a product agent is created and finished with his schedul-
ing, the simulation gets a callback from the agent. Similarly, the product agent
informs the simulation thread when it is travelling, starts with processing, and
finishes processing.
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Figure 5.5: Simulation UML

The interfaces provide three methods to the simulation for simulating events:
notifyJobFinished, notifyBreakdown, and notifyRepaired. For the equiplet the
state transitions caused by these are shown in figure 5.6. The communication
between the product and equiplet agents are used to inform the start of manu-
facturing a product step and a product has arrived at the equiplet. These events
are handled by notifyProductArrived and informProductProcessing.
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5.1.1 Product Generation

The time between product arrivals, i.e. product events, is chosen to have an
exponential distribution. The exponential distribution is common and powerful
modeling tool because of its lack of memory [35]. Also, the lack of memory
allows a steady-state modeling approach to be used. Normally, distributions are
derived from empirical data which is in this project still unknown. The inter
arrival times of products follow a Poisson distribution with a mean depending
on the target utilization of the grid:

ρ =
E(S)

E(A)

where the utilization ρ is the expected service time E(S) divided by the
expected inter arrival time E(A).

A product is spawned by the simulation with a certain amount of product
steps. Depending on the simulation configuration, the number of product steps
can be either deterministic or with an average and minimum number of product
steps. The utilization is the given target load for each simulation run. The
number of products that are produced is dependent on the average load of the
equiplets.

E(S) =
1

|Pi| × |E|
∑
e∈E

1

|Se|
∑
s∈Se

E(s)

The formula above calculates the expected average service time for a grid,
where |Pi| is the number of product steps, |E| is the number of Equiplets in the
grid and E(s) is the given expected processing time of a service s.

5.1.2 Breakdowns

It would be ideal to have production equipment that always works perfectly
and never need maintenance or breaks down. In the simulation no distinction
is made between an equiplet breaking down or the equiplet needing mainte-
nance. The reason makes no difference for whether the equiplet can continue
production. The equiplet receives from the simulation the information that it is
broken. Normally, a failure would be detected by an internal monitoring behav-
ior or a signal from a hardware controller. After breakdown of the equiplet the
simulation adds a repair event to the event stack. For each equiplets an average
breakdown time and repair time can be set. These two variables will, similar to
product generation, have an exponential distribution.

5.1.3 Steady State

Each simulation will run for 1000000 time steps. This period will be sufficient
for each equiplet to breakdown often enough and produce a certain amount
of products to simulate a long period of manufacturing. Little’s law states
variations such as product arrival rate, processing time, and other variables will
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converge to the average as time increases. The runtime chosen is similar to
previous simulations in relation of the largest variable time compared to the
runtime i.e. processing time versus run time. A certain time is required until
the production grid runs at a reasonable capacity when the simulation starts.
When there is little difference between the utilization and the capacity to the
grid it takes a long time until a steady state emerges. To speed up the process
a time period is taken where products are spawned at a faster rate to bring the
grid up and running. Statistics are only collected from this point and onwards.

Figure 5.7: Simulation warm-up period

In the warm-up period a certain number of products will be spawned such
that thereafter a plausible number of products in the system exist. A test case
is used to validate the choice of a warm-up period of 3000. Three runs are done
with a target utilization of 100%, 80%, and 60%. The data in figure 5.7 shows
after the warm-up period around 200 products were created. Afterwards this
number will decrease with an utilization of 60% and increase with an utilization
of 100%. With an utilization of 80% the products in the system will remain
roughly stable. The number of products will eventually increase to above 300
products.

5.1.4 Verification and Validation

The verification and validation comes down to the “process of determining
whether a simulation model is an accurate representation of the system for
the particular objectives of the study.” To ensure the correct programming
and implementation of a model the following steps are used: 1) Debugging the
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program; 2) Checking the internal logic of the model; 3) Comparing the model
output with the information obtained from previous simulation results.

In figure 5.8 a graphical interface for the simulation is shown. This enables
to see the current state of the grid during the simulation. In the interface
the equiplets can be seen with different colors corresponding to their equiplet
state. Each box represents an equiplet containing the supported services, the
queue, i.e. the products arrived by the equiplet, product steps scheduled and
product steps executed. The simulation can be paused and run step by step.
Furthermore, a delay between events can be set to view the effects and progress
more clearly. Statistics can be plot during the simulation. For example, a Gantt
chart of the schedule and history can be seen. In the right panel there are state
and statistical information like time, the created products with the number of
product steps, and products traveling.

Figure 5.8: Simulation GUI

The settings has a verbosity level which adjusts the level of output in order
to view 0) nothing during the simulation, 1) only debug information, 2) only
the gui, 3) the gui with debug and state information, and 4) the gui with more
debug such as scheduling information. However, the simulation will run slower
by showing the gui and debug information.

For different parts of the equiplet agent unit tests were written. Function-
alities like availability and load give correct results at first sight while in later
stages of the simulation the production of products can come to a standstill by
inaccurate implementation of these functionalities. These lead to incorrect infor-
mation for the product agent and eventually to miscommunication or infeasible
equiplet schedules.

When the grid is running live, some situations can occur that are impossible
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in the discreet event simulation. Due to the discreet nature of the simulation
there cannot be two events handled simultaneously. Vice versa, the simulation
interfaces of the agents cannot receive some events when they are in certain
states. For example, an idle equiplet cannot receive an event that the product
step is finished. To find these kind of problems there will be an exception thrown
to stop the simulation, which is not desirable in a real situation. Usually, these
are only symptoms of the problem but through tracing debug information the
source can be discovered.

For verification of the simulation, runs can be done with settings where the
results are known beforehand. For example, a simulation run without break-
downs or stochastic processing times would result in product agents that are
always at the equiplets on time and equiplets finish the product steps on time,
so there is no latency and products finish always within their deadline.

5.1.5 Assumptions

Still much is unknown about the implementation and the use of a production
grid. Additionally, the grid should perform as well as possible independent of
the available hardware. For this research certain simulation settings are chosen
or omitted as they are still unknown, have no effect on the result, or are beyond
the scope of this research. The following assumptions are made about the grid:

• It is assumed that the distributions of the processing times are unknown
by the system. The actual processing time of job becomes only known
upon completion. An equiplet agent only knows the average time it takes
to perform a job and not the exact time a priori.

• The sequence of product steps needing to be performed to make a product
is important i.e. a product must perform σi before σj if i < j.

• No distinction is made between the reasons of downtime of an equiplet.
The reason could be the equiplet requires maintenance, a failure in one of
its modules, or other reasons the equiplet cannot complete a job. Also,
no distinction is made between maintenance or repair time. The averages
of both breakdown and repair time are given for each equiplet in the
simulation.

• The chance the equiplet breaks down is not affected by the state of the
equiplet i.e. whether an equiplet breaks down does not depend on the time
it is idle or busy. This can be different in real situations as, for example,
a 3D printer needs only maintenance after performing a certain number
of product steps. Contrary, there is equipment that does not depend on
whether they manufacturing a product step or is idle.

• There is enough room for every product at an equiplet. The maximum size
of the queue depends on the room available at the equiplets and the size
of a waiting product. Many factors play a role here; size of the products
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and parts, size equiplets, production facility, transportation method, and
other choices. All is related to the implementation of the production grid.

• Travelling between equiplets always succeeds and takes a certain time per
distance to be covered. Whether paths to equiplets are free, transport
units have enough room to avoid each other, or other transport issues are
not taken into account.

5.2 Simulation Experiments

First we look at the scheduling results compared with the previous experiments.
The difference between the scheduling methods and objectives are investigated.
Further, the impact of disturbances and strategies to counter these effects are
tested. Finally, the impact of reconfiguration during the manufacturing process
is examined.

All results of each experiment are based on the average of 10 runs. Each
product has a deadline of 10000 in which it is required to plan its completion.
When the product is not able to schedule its product steps it is marked as
failed and does not enter the grid, i.e. does not start with processing. Prod-
ucts that start with processing but are delayed by variable processing times or
other manufacturing disturbances will still try to complete. These products are
marked as overdue. The production time of a product is the time it has taken
to manufacture the product.

To verify the simulation and the schedule algorithm the aim is to achieve a
load i.e. ρ = 0.8 without products failing to schedule. This 80% was discovered
by van Moergestel [24] to be the limit in which all product production is feasible.
In this case there is a grid with 9 equiplet having each a unique capability. The
results in figure 5.9 show the grid has an average load of almost 80%. The
difference can be explained by the randomness of the product steps of a product.
As each product consists of different product steps some equiplets will be used
more, up to a point that products fail to schedule, despite that the average load
lower is than the feasible target load. Changing the grid to have 3 capabilities
gives the product less variety of product steps and for each step two alternative
equiplets. This will result in a load that converges to the 80%.
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Figure 5.9: Results of load 80%

A slightly different approach, compared to previous simulations, is taken
when products fail to schedule. For the investigation of the grid utilization, when
the product fails to schedule it will not enter the grid and will be marked as failed
to schedule. As it is unknown whether the utilization is feasible, the products
will not coordinate with each other to search for a complete feasible schedule.
When the target utilization is below a certain threshold, coordination is not
necessary as all products are able to schedule. When the target utilization is too
high, coordination to search for a feasible schedule will keep occurring each time
a product enters the grid. This results in a snowball effect of communication
and eventually not leads to improvement.

Finished Failed Production Time Load
Matrix 36055.8 0 1342.06 0.8034

Table 5.1: Matrix scheduling results with ρ = 0.8

Table 5.2 shows the average result of 10 runs with a range of 0.7 ≤ ρ ≤ 0.9.
The results confirm the threshold of 80% load as all products succeed to schedule
with ρ = 0.8, but there 0.8% of the products fail to schedule with ρ = 0.85.

It is interesting to the see the average production time increases rapidly
between ρ = 0.8 and ρ = 0.85. The grid is at its maximum production be-
tween these utilizations. The average production time will near the deadline
of the products, which is 10000 time steps. As the grid becomes overcrowded
the products can only just schedule within their deadline. The moment when
the average production time comes close to the deadline products will fail to
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ρ Finished Failed Production Time Load

0.70 31592 0 696,43 0,704
0.75 33830 0 859,79 0,754
0.80 36056 0 1342,06 0,803
0.85 37663 313 8967,07 0,840
0.90 37733 2481 9624,30 0,841

Table 5.2: Matrix scheduling result with 0.7 ≤ ρ ≤ 0.9

schedule. Increasing the utilization above ρ = 0.85, would only yield a small
increase of finished products but more failed products.

5.2.1 Scheduling

To see whether different scheduling techniques would affect the performance of
the grid each scheduling algorithm is tested between a range of 0.7 ≤ ρ ≤ 0.9.
The following scheduling techniques are investigated: Matrix, Load, EDD, and
Load × EDD. The simulation is initialized with a grid of 9 equiplets with 3
unique capabilities taken each 20 time steps to complete. A product consists of
10, randomly chosen between these capabilities, product steps and a deadline
of 10000 time steps after the creation.

To see differences between the scheduling algorithms the results are plot in
figure 5.10. For the four metrics: equiplet load, products finished, products
failed, and average production time of a product a graph is plot with the results
of each algorithm. Looking at the result, when ρ ≤ 0.8 all scheduling techniques
perform similar. All products are able to schedule and complete in reasonable
similar time. The first algorithm that has difficulty is EDD. There is a slightly
longer production time at ρ = 0.8 and from that point the maximum production
is reached such that products will fail and the load does not increase linear.
Matrix scheduling performs overall the best. Products taking a more selfish
approach in scheduling their products steps with EDD scheduling, i.e. try to
finish as quickly as possible, does not benefit the overall production of the grid.
Balancing the load between equiplets results in an overall better performance.

46



(a) equiplet load (b) products finished

(c) products failed (d) average production time

Figure 5.10: Deterministic scheduling for 0.7 ≤ ρ ≤ 0.9

From the scheduling results different patterns can be seen. The four metrics
are heavily correlated with each other. The equiplet load shows the same results
as the products finished. The utilization matches the average equiplet load in a
simulation run, if it is not for the products that are still in production. Further,
products start to fail when the capacity of the grid is reached. From that point
on the average production time increases rapidly until the system’s capacity is
reached and the average production time comes close to the products’ deadline.

To show a more realistic case, the effects of stochastic processing times are
taken into account. The same set-up is used, but products are able to reschedule
remaining product step. The simulations are run between a range of 0.6 ≤ ρ ≤
0.8. The results in figure 5.11 show an overall reduction of the production.
This is due to the products steps taking longer than expected up to the point
that products reschedule their remaining products steps as the production path
becomes infeasible.
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(a) equiplet load (b) products failed

(c) average production time (d) products overdue

Figure 5.11: Stochastic scheduling for 0.6 ≤ ρ ≤ 0.8

With variable processing times there is a reduction of 15% products produced
at ρ = 0.8. The average production time even increases above the deadline. Due
to products able to reschedule with an increased deadline also more products
are overdue. The results show the products’ average production time follows a
similar pattern as the overdue products.

With stochastic processing times the Load × EDD algorithm yield the most
manufactured products. The matrix algorithm gives the least overdue products.

Looking at both the deterministic and stochastic scheduling results, it be-
comes clear that the schedule algorithms have an optimum production. From
that point on trying to make more products does not yield more finished prod-
ucts. Moreover, attempting to produce slightly more than the optimum would
decrease production. With deterministic processing times the point in time that
products start to fail are discrete.

Comparing the computation time of the 3 algorithms with that from the
Matrix algorithm, the latter calculates a solution in a faster and less varying
time. The algorithm iterates twice over the matrix; first to construct the ma-
trix and then calculating the production path. The other approaches would in
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the worst case compute all the production paths. While load of the equiplets
increases the algorithm takes longer to compute. The product agent has to
consider the algorithm to use. Whether a longer computation time outweighs a
shorter production time depends on the application of the production grid.

5.2.2 Queue Jumping

Variable processing times reduces the effectiveness of the production grid. The
grid will perform worse as products steps will not complete in time and delay all
other products that scheduled behind the delayed product step. Queue jumping
aims to counter the effects of these disturbances by allowing a product to jump
q places in the queue. A product arriving at place less than q in the queue can
start immediately with processing. The grid has the same set-up as previous
simulations, i.e. of 9 equiplets with 3 capabilities.

(a) products finished (b) products failed

(c) products overdue (d) average production time

Figure 5.12: Queue jumping results

The results show a correlation between q and the products that fail to sched-
ule or are overdue. More products are able to schedule the greater q is. With
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q = 15 the load can be increased to 90% and with q = 25 almost to 95%. In
the latter case, only around 100 products fail to schedule. With an infinite q all
products successfully schedule and overdue products are reduced to 0.

Increasing q will have first a negative effect on the overdue products and
average production time. With q = 5 there is a peak in overdue products when
ρ > 0.8. For ρ > 0.9 the average production time will first decrease and then
increase until q > 10 where after the time decreases. These two phenomena
can be explained by the increase of products in the system and therefore more
products are negatively affected by a queue jump. The greater q, the more
products that would be affected by a queue jump fall within the threshold q
and have therefore no delay. This increases the overall performance of the grid.

q Finished Failed Overdue Production Time Load

infinite 43631 1033 1429 9067.33 0.985

Table 5.3: Result of queue jumping with ρ = 1.00

The results of ρ = 0.95 give wonder to what the result would be when trying
to utilize the equiplets 100%. As table 5.3 show the result when ρ = 1. The
production load could be increased to 0.985. However, the breakdown or need
for maintenance prevents the production would be increased to 100%.

5.2.3 Reconfiguration

An aspect of agile manufacturing is the ability to adapt to the product demand.
For testing the reconfiguration procedure the grid is initialized with a subop-
timal equiplet set-up i.e. not suited production of the arriving products. The
reconfiguration procedure reconfigures equiplets for a more optimal production
grid set-up. Simulations are done to test the ability of the grid to reconfigure
its equiplets. The set-up consists of 24 equiplets with 4 different capabilities.
The set-up has an even distribution of capabilities. However, the time it takes
to complete a product step is different. In this case the average production
time for σ1 = 15, σ2 = 15, σ3 = 30, and σ4 = 120. The simulation will have
ρ = 0.8 such that fewer products will fail to schedule while the grid adapts to
the product demand.

Finished Failed Production Time Load
base 10637 10631 9546 0.353
reconfig 20636 617 5879 0.773

Table 5.4: Results of a non-reconfigurable vs. reconfigurable system

Table 5.4 shows that when producing a variety of products, reconfiguring
the manufacturing machines proves to be more efficient. This was expected
since that product steps take a different amount of time to complete, as such a
bottleneck will likely occur, since systems cannot adapt to the demand. Figure
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5.13 shows this result over time, clearly the reconfigurable systems adapt with
the demand and saturates to a 77% load. This is a 94% increase in products fin-
ished. Drops in load with the reconfigurable systems are due to the changeover
time when an equiplet has to be reconfigured to be able to provide another
capability to the products.

Figure 5.13: Results of one run with none vs. reconfigurable systems over time

Looking closely to figure 5.13, utilization drops occur after the grid has
reached an optimum. The grid aims to improve further than the current opti-
mum resulting in a capability change of an equiplet. However, this leads to a
sub-optimum grid and changes back shortly after. It occurs when it is believed
that changing the capability of an equiplet could result in a higher load of the
equiplet. The cause is due to the randomness of the required capabilities for
products such that predicting the future is too difficult.

Table 5.5 contains for three cases the result of a base setting, rescheduling
turned on, and queue jumping (qj) with a queue of 20. The 3 cases are all with
reconfiguration turned on, which is compared to when there are stochastic pro-
cessing times and to the third when also the equiplets are possible to breakdown.
As can be seen both stochastic processing times and breakdowns greatly affect
the amount of products that can be finished. Together they halve the amount
of products that can be completed in the base case. Both rescheduling and
queue jumping counter these effects, almost doubling the amount of products
that can be manufactured within the same time frame when these disturbances
occur. The impact of stochastics and breakdowns prove to bring the products
created under the level of the original base configuration (without reconfigura-
tion). Rescheduling brings the load from 35% to 54% and queue jumping brings
this up to 73%.

51



reconfig
Finished Failed Overdue Production Time Load

base 20636 617 0 5878.9 0.773
resched. 20685 578 0 5721.7 0.775

qj 20924 397 101 3283.0 0.791

reconfig and stochastics
Finished Failed Overdue Production Time Load

base 9693 11567 5879 11223.7 0.363
resched. 16380 4691 14063 17161.2 0.587

qj 20830 434 138 5507.6 0.763

reconfig, stochastics, and breakdowns
Finished Failed Overdue Production Time Load

base 9295 11971 5759 11592.6 0.353
resched. 15089 6024 12608 16940.2 0.541

qj 19654 1540 607 8382.7 0.731

Table 5.5: Reconfiguration results

Looking at the average production time of products when there are distur-
bances, rescheduling products will increase the average processing time with
around 300% compared to 200% without. This result in 85% finished products
that are overdue. Without rescheduling the finished products that are overdue
are around 60%. Although, the average production time of products that fin-
ishes later than planned is substantially less. With the deadline set to 10000
time steps, products that reschedule take around 70% longer than they are
supposed to with the possibility of disturbances.
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Chapter 6: Discussion

The results of the simulation depend on the assumptions and the chosen pa-
rameters for the examined cases. It is difficult to choose objective parameters
to achieve unbiased results. The literature simplifies this problem by removing
unknown factors. In the dynamic environment the processing times of product
steps, downtime of equiplets, number and type of products are subject to vari-
ance. If the system is capable to efficiently handle a high level variance in the
system the performance would be at least equal or better. Although, it is diffi-
cult to optimize the configuration of the manufacturing system to an optimum
with the unknown configuration.

A stochastic model is used to validate more realistic cases with variable
processing times and breakdowns. However, it is a challenge to provide distri-
butions of the random variables without knowing the actual performance of the
hardware. More research is required on the performance of the hardware. Em-
pirical data should confirm the chosen distributions to improve the quality of
the results. For the processing time an exponential distribution is used affecting
the realization of the schedule. A distribution with less variance would have less
impact on the realization of the schedule.

The comparison of the schedule algorithms depends less on the chosen pa-
rameters, although certain cases would give different results. The matrix schedul-
ing approach would perform worse for cases where equiplets have multiple ca-
pabilities. The product agent would prefer equiplets with multiple capabilities
rather than equiplets with one of these capabilities, as explained before. The
challenge is to test fair cases without making specific cases for a certain result.
For now the cases have equiplets with equal processing time and distributions.
This affects the scheduling. Therefore, different cases could give different results.
Furthermore, the equiplet set-up, number of capabilities in the grid, travel times,
and other factors affecting the results. More cases should be tested to verify the
current results.

The assumption that equiplets have room for infinite products is not realistic.
The amount would depend on the application of the production grid, i.e. type
of products, type of equiplets, manufacturing facility, and so on. It is expected
that the utilization of equiplets would drop when the amount of products allowed
in the grid is limited. The results show that the average production time of a
product will decrease with lower target loads. So, certain optimizations should
be applied depending on the objective of the manufacturing facility.
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The results of reconfiguration show a clear improvement in performance.
This shows the ability of the production grid to adapt to the current demand.
The increase in performance depends on the start configuration. The results can
vary greatly between different cases. The correlation between the production
capabilities and the product demand depends on the available resources and
the intensity of product orders, which are both unknown. The actual values of
both factors make it difficult to give a prediction about the performance gain
of reconfiguration.

Research in this area is more focused on describing an agent-based control
system rather than testing the performance of the system. There is more re-
search on scheduling in stochastic models. The literature identifies that agent
technology is well suited to be used in manufacturing systems as agents can
deal with uncertainties. However, research combining agent-based systems in
stochastic environments is limited. Comparing the agent-based systems to con-
ventional systems would imply building both systems and defining metrics for
evaluation. The latter would be difficult in itself as these are usually tailored
systems depending on the needs of the production company.
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Chapter 7: Related Work

This research shows an implementation of an agent-based system for a manufac-
turing system based on the RMS and Agent Technology paradigms. The system
combines a heterarchical architecture of MAS for controlling the manufacturing
process and equiplet agents that have a hierarchical architecture. Manufactur-
ing control systems are traditionally implemented using centralized or hierarchi-
cal control approaches. Unfortunately, no algorithm can foresee every possible
failure of a highly complex system, neither can a strategy be deterministically
designed for every situation [36]. This article from Duffie summarizes the ad-
vantages of scheduling in a heterarchical versus hierarchical manufacturing sys-
tems. Intelligent and distributed manufacturing control systems can be divided
into four basic types of control architectures: centralized, hierarchical, modified
hierarchical and heterarchical [37]. Leitão [7] and Trentesaux [6] present sur-
veys of the intelligent and distributed manufacturing control systems using the
emerging paradigms. Overall trends in various manufacturing sectors are the
shift from hierarchical management structures to more levelled structures that
reduces middle management, i.e. moving towards more modularity, autonomy,
and self-sufficiency at the lowest possible levels [2].

Jarvenpaa targets more planning and adaptation than operational control
of the system [38], [29]. Jarvenpaa describes a capability-based adaptation
methodology to supports adaptation of production systems. During the study,
the initial assumption that humans cannot be removed from the adaptation
planning process was confirmed. A capability-based methodology is applied
for combining modules to define the equiplets’ capability. Equiplet agents can
utilize these capabilities through the HAL and therefore making it easy to re-
configure an equiplet by adding or removing modules.

Simulation in manufacturing literature over the last decade is reviewed, an-
alyzed and categorized by Negahban et al. [39]. The review identifies three
general classes of manufacturing system design, manufacturing system opera-
tion, and simulation language/package development which can be subdivided
based on application area. While research in this area becomes more available,
these contributions are often informal and fragmented. However, simulation
use, applications, and software have been addressed in several books [21] [22].
Komma et al [40] focuses on modeling different agents in a manufacturing do-
main in JADE, where machines and Automatic Guided Vehicles (AGV) are
modeled as agents. The application leads to an agent-based simulation with
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a reactive agent architecture. Barbosa and Leitão [25] state that simulation is
crucial in analyzing behavior during the design phase and present a simulation
designed for studying agent-based control systems for deployment into a real
operation. A holonic control system architecture for design and development
of agile shop floor control systems is presented by Langer and Alting [41]. The
concept combines the best features of hierarchical and heterarchical organiza-
tion as it preserves the stability of a hierarchy while providing the dynamic
flexibility of heterarchy. A multi-agent system for modelling and controlling
the manufacturing process in a job shop system is developed and presented by
Florea and Cristea [42].

By the lack of proven technologies, the industry is hesitated to adopt agent
technology. By developing a simulation that extends the agent-based system, the
research contributes with a practical implementation while enabling to test the
performance of the system. Probably the first full-scale industrial agent-based
manufacturing system brought into operation was Production 2000+ [43][44].
An overview of an agent-based solution developed by the Rockwell Automation
company for the purpose of industrial control is given by Marik et al. [45].
Maturana et al. [46] presents an agent-based control system that has been
implemented for a chilled-water system and a heating, ventilation, and air-
conditioned system.

An important factor influencing the utilization of the grid is the performance
of the agents scheduling behavior. Scheduling and optimization is subject of
many research [19]. The scheduling in this research is closely related to dy-
namic job shop scheduling. Dynamic job shop scheduling differs from static
shop scheduling in the arrival of jobs which are arriving continuously over time
in a random manner. Many approaches can be taken to tackle different aspects
of this NP-hard problem. Scheduling algorithms diverge from integer linear
programming and branch and bound techniques to bottle neck heuristics, con-
straint satisfaction, and local search methods [47–51]. An extensive literature
review of job shop scheduling is given by Jain [32] and Cheng [52]. Brun and
Portioli [53] argue that distributed systems have an edge over centralized sys-
tems and propose a multi-agent system for simulation of shop floor scheduling.
However, there is not many research on agent-based systems in stochastic en-
vironments while agent-based system should then have the advantage. With
the simulation it is shown that in a stochastic environment the performance
drops significant. However, the agents can improve the performance with the
investigated strategies.

A good overview of multi-agent scheduling is given by Weerdt and Clement
[33]. A distributed scheduling method for heterarchical systems is described by
Duffie and Prabhu [36]. The article summarizes the advantages of scheduling in
heterarchical versus hierarchical manufacturing systems. A comparison between
these types of manufacturing systems, related to this research, shows that the
hierarchical approach has an advantage when problems arise at equiplets [54].
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Chapter 8: Conclusion

This thesis presents an architecture and simulation for production in an agile
manufacturing grid of equiplets. The implemented MAS is based on the Grid
manufacturing paradigm. The agents in MAS have been provided with strate-
gies to improve the performance of the production grid. The product agent has
gained the ability to reschedule its product steps and the scheduling objectives:
Load, EDD, and Load × EDD. Furthermore, queue jumping and reconfigura-
tion of equiplet agents is implemented in the production grid. The simulation
provides a tool for verification and analyzing of the production grid. This gives
the possibility for evaluation of the production grid and gives insight into the
efficiency of developed strategies.

Based on the results conclusions can be drawn. This answers the research
questions:

1. Is it possible to emulate and validate the MAS software of a grid with a
simulation?

MAS can be validated by imitating the behavior of the underlying equiplet
software. This enables to verify the quality of the software. During the de-
velopment and testing of the simulation software bugs have been found which
otherwise would not be exposed. By developing a simulation that works with
operational software a more proven result of the technology is given. Further-
more, the simulation enables to evaluate the performance of the production
grid.

2. What impact does reconfigurability of the production platforms have on the
production efficiency of the grid?

The reconfigurable production platforms have impact on the architecture
and the performance of the production grid. The MAS is structured in a heter-
archical architecture while equiplet agents itself are structured in a hierarchical
architecture. Defining the equiplets’ capability by combinations of modules al-
low these capabilities to be provided as a service to the grid. The architecture
enables the underlying hardware of the equiplets to be easy reconfigured during
runtime of the system. In a dynamic production environment this allows for
a more extendable and maintainable system when equipment can be added or
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adapted separately. By adopting the RMS paradigm the architecture overcomes
shortcomings of more conventional manufacturing systems.

Furthermore, the reconfiguration results show that the production grid is
able to advice and handle reconfiguration of equiplets. This prevents shutting
down the production during reconfiguration. Reconfiguring equiplets to fit the
product demand improves the performance depending on the capabilities of the
grid, i.e. the set-up of the equiplets. The simulation can be used to advice a set-
up for the manufacturing of certain products. This gives insight in the equiplets
that should be reconfigured to another capability before or during production.

3. How do disturbances impact the manufacturing system?

To answer the third research question: disturbances in the manufacturing
process have great impact on the performance of the production grid. The grid
will perform worse as products steps will not complete in time and delay the
other products that scheduled behind the delayed product step. An utilization
of 80% cannot be achieved. With the simulation the effectiveness of strategies
for countering the effects of disturbances were investigated.

4. What strategies or optimizations can counter the effect of disturbances in
the manufacturing process?

In a deterministic model, balancing the load between equiplets with the
Matrix scheduling approach results in an overall better performance. Products
taking a more selfish approach in scheduling their products steps with EDD
scheduling, i.e. try to finish as quickly as possible, does not benefit the overall
production of the grid. In a stochastic model the algorithm Load × EDD that
combines the two objectives give the best result when not all products are able
to be manufactured.

Furthermore, rescheduling the product steps is better than sticking to the
schedule after an infeasible product schedule emerges. This results in a produc-
tion grid that is able to manufacture more products. Although not all products
are able to complete within their deadline.

In addition, queue jumping aims to counter the effects of disturbances. It
allows a product to jump certain places in the queue at the equiplet. The
procedure will increase the production, as products will have to wait shorter on
other products.
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Chapter 9: Future Work

The simulation together with the implemented architecture provides the possi-
bility to investigate more schedule techniques and objectives. Objectives which
are not yet explored are to minimize product work span, shortest queue first or
other objectives [19].

The result of simulations with queue jumping gives an indication scheduling
becomes redundant if equiplets do not stick to their schedules. It would be
interesting to investigate whether products need to plan their production path
before entering the grid and just take ad-hoc decisions where to go before pro-
duction of a product step. An advantage could be a reduction of products in
the grid with the same performance compared to when products schedule their
product steps. The difficulty would be to decide whether products can enter
the grid without overcrowding but maximizing the production.

A real-time simulation is needed to investigate the need for atomic schedul-
ing. In a previous scheduling investigation [13] one planning board was used
for all the schedules which one product agent could access. In the current im-
plementation the schedules are distributed among the equiplet agents such that
products can plan simultaneously. The equiplet agents are responsible for their
own schedules. The performance could increase without atomic scheduling as
multiple products can plan simultaneously. This would be the case when agents
plan a few product steps such that the schedule procedure is fast enough to
complete before the next product enters the gird or no conflicting time slots are
scheduled. However when two agents try to reserve the same time slot, one of the
agents needs to restart his scheduling procedure. A rule should prescribe which
agent has priority: a given priority of the product, closest deadline, smallest of
completion time of the preferred production path, or another rule depending on
the objective of the gird. The rule could apply to the whole production path
or only to the conflicting time slots. Although, when one conflicting time slot
is not available the time slots thereafter become probably infeasible and should
be released.

AGV systems play an important role in flexible manufacturing systems. The
implementation of techniques to satisfy minimizing congestion, vehicle utiliza-
tion, and throughput adds more complexity to the grid. Including the use of
AGV’s within the simulation adds more uncertainties as the reliability of the
AGV’s in service and travel times will affect the tardiness of the executing of
product steps.
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The simulation could be used to evaluate the effectiveness and efficiency of
the grid layout to reduce manufacturing cost. At this stage of the research there
is little known about the preferences of future implementations and therefore
equiplet allocation in a facility layout design. To include these preferences in
the simulation more has to be known about the possible equiplets available and
products to be manufactured. Furthermore, research should show whether the
simulation is sufficient to evaluate different layout alternatives or an extension
has to be developed to optimize the layout.

Similar to industrial manufacturing systems, SCADA needs to be incorpo-
rated into the system to monitor and control the system [12]. The correct
dependencies and communications need to be established to ensure safety of
equipment, information, and execution of commands. At this stage a monitor-
ing agent takes partially the responsibility of data acquisition i.e. to monitor
the state and performance of the equiplets. This information is passed on to
a human interface as a website. A possibility would be that an agent in the
grid would be responsible to subscribe or poll equiplets for information and
relay this to a human interface. Another approach would be that equiplets di-
rectly communicate with a human interface. As a control or optimization agent
must have the same or similar information, the latter option would increase
the communication in the grid. Such an optimization agent would be respon-
sible to suggest reconfiguration of an equiplet. Either way, the implementation
of providing information would be handled within a listener behavior of the
equiplet agent. An alternative would be a web-service hosted by the equiplet
to present information. The latter would be preferable when there are, next
to an overview interface, local interfaces of the equiplet distributed over the
manufacturing facility. The kind of information that would be displayed is still
unknown. Which terminal or interface should display information as equiplet
states, machine states, module states, communication logs, equiplet schedules,
equiplet histories, and/or equiplet performances. From this information the
relevant data needs to be chosen for each interface, control, and optimization
entity in the grid.

The presented model is applied on a manufacturing production line. The al-
location of resources is a natural application of the presented simulation model.
Although due to the generalization of capabilities of the resources and prod-
ucts to be produced, the simulation model could be applicable in other field
than manufacturing. An application that can be considered is the allocation of
resources in the workplace. The products are the natural counterparts of the
product or service a company develops or offers to customers. The equiplets
would be the counterparts of the employees working on these products. The
capabilities of the equiplet agents would be defined by abilities and skills of
the employee. The agents could have, next to the time a service takes also,
a performance index for solving or working on certain services. These indexes
would be updated after finishing product such that the allocation of resources
for next products would be more accurate. The agents learn from the given
feedback on the quality and time worked on products. The reconfigurability
of the grid would be achieved by sending employees to training courses. The
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challenging part of this would be the classification of the employees’ abilities
and skills which is more of a psychology nature.

To improve the productivity of employees in the company more performance
measurements and metrics could be taking into account when planning the em-
ployee on certain tasks. The variation in work could lead to higher productivity.
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Appendix A: Simulation Results

Scheduling

Matrix Scheduling
ρ Finished Failed Production Time Load

0.70 31592 0 696,43 0,704
0.75 33830 0 859,79 0,754
0.80 36056 0 1342,06 0,803
0.85 37663 313 8967,07 0,840
0.90 37733 2481 9624,30 0,841

Load Scheduling
ρ Finished Failed Production Time Load

0.70 31595 0 592,83 0,704
0.75 33832 0 766,58 0,754
0.80 36053 0 1627,09 0,803
0.85 37489 481 9044,14 0,836
0.90 36968 3248 9752,46 0,824

EDD Scheduling
ρ Finished Failed Production Time Load

0.70 31593 0 695,4 0,704
0.75 33829 0 858,9 0,754
0.80 36059 0 1350,85 0,804
0.85 37477 491 9136,35 0,835
0.90 37152 3060 9792,51 0,828

Load × EDD Scheduling
ρ Finished Failed Production Time Load

0.70 31593 0 695,4 0,704
0.75 33829 0 858,9 0,754
0.80 36059 0 1350,85 0,804
0.85 37477 491 9136,35 0,835
0.90 37152 3060 9792,51 0,828

Table 1: Deterministic scheduling for 0.7 ≤ ρ ≤ 0.9
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Matrix Scheduling
ρ Finished Failed Overdue Production Time Load

0.60 27154 0 226 1294,90 0,601
0.65 29373 0 607 2337,92 0,649
0.70 30730 418 18677 15781,31 0,683
0.75 30777 2609 19378 16790,53 0,684
0.80 30835 4788 19659 16986,92 0,685

Load Scheduling
ρ Finished Failed Overdue Production Time Load

0.60 27162 0 180 1033,45 0,600
0.65 29384 0 352 1597,97 0,650
0.70 31421 0 10387 8689,17 0,696
0.75 31186 2183 21755 16993,05 0,692
0.80 31205 4403 22287 17250,68 0,693

EDD Scheduling
ρ Finished Failed Overdue Production Time Load

0.60 27150 0 227 1314,62 0,601
0.65 29371 0 653 2395,84 0,649
0.70 30576 544 20367 16633,90 0,680
0.75 30463 2895 22189 17825,99 0,678
0.80 30434 5150 22658 18178,86 0,677

Load × EDD Scheduling
ρ Finished Failed Overdue Production Time Load

0.60 27159 0 256 1105,46 0,601
0.65 29386 0 552 1909,2 0,650
0.70 30745 388 20169 16291,54 0,683
0.75 30848 2516 21276 17205,56 0,686
0.80 30867 4730 21773 17484,36 0,687

Table 2: Stochastic scheduling for 0.6 ≤ ρ ≤ 0.8

Queue Jumping

ρ = 0.70
q Finished Failed Overdue Production Time Load

0 21551 9942 7420 7745.60 0.490
5 30278 1138 1398 6685.67 0.686
10 31596 0 0 746.30 0.713
15 31592 0 0 715.90 0.713
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20 31594 0 0 714.52 0.714
25 31593 0 0 710.08 0.713

infinite 31592 0 0 706.55 0.713

ρ = 0.75
q Finished Failed Overdue Production Time Load

0 22563 11183 8270 7999.01 0.514
5 31369 2301 2883 6470.12 0.710
10 33829 0 0 892.87 0.764
15 33835 0 0 801.25 0.763
20 33830 0 0 795.58 0.764
25 33835 0 0 792.59 0.764

infinite 33834 0 0 785.91 0.764

ρ = 0.80
q Finished Failed Overdue Production Time Load

0 23620 12396 9239 8281.30 0.538
5 32770 3087 4922 6752.27 0.742
10 36048 0 0 1369.52 0.813
15 36072 0 0 950.10 0.814
20 36070 0 0 918.18 0.814
25 36072 0 0 911.75 0.813

infinite 36069 0 0 904.82 0.814

ρ = 0.85
q Finished Failed Overdue Production Time Load

0 24145 14074 10378 8717.91 0.550
5 33518 4581 11506 7553.73 0.759
10 37854 194 943 7089.48 0.854
15 38302 0 0 1348.60 0.864
20 38306 0 0 1152.40 0.864
25 38304 0 0 1111.90 0.864

infinite 38306 0 0 1092.41 0.864

ρ = 0.90
q Finished Failed Overdue Production Time Load

0 24485 15892 11519 9097.00 0.557
5 33621 6683 17090 8345.34 0.762
10 37749 2475 5989 9456.90 0.853
15 40465 0 0 3284.14 0.912
20 40517 0 0 1901.08 0.914
25 40524 0 0 1616.84 0.913

infinite 40535 0 0 1488.03 0.915
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ρ = 0.95
q Finished Failed Overdue Production Time Load

0 24584 17981 12329 9478.14 0.560
5 33821 8687 20495 8813.64 0.765
10 37825 4638 7748 9608.30 0.853
15 40763 1679 2355 9322.15 0.920
20 41839 596 834 8856.75 0.944
25 42348 112 131 7701.46 0.956

infinite 42711 0 0 2884.60 0.963

Table 3: Queue jumping results

Reconfiguration

base
Finished Failed Overdue Production Time Load

base 10637.3 10630.5 0 9546.25 0.3531
resched. 10639.9 10624.7 0 9546.27 0.3532

qj 12083.0 9173.50 1174.60 9323.91 0.4108

reconfig
Finished Failed Overdue Production Time Load

base 20636 617 0 5878.9 0.773
resched. 20685 578 0 5721.7 0.775

qj 20924 397 101 3283.0 0.791

stochastics
Finished Failed Overdue Production Time Load

base 7103 14181 5463.7 11617.5 0.2376
resched. 9042.5 12188.6 5653.1 15063.9 0.2939

qj 11547.3 9722.10 1991.70 8901.64 0.3921

reconfig and stochastics
Finished Failed Overdue Production Time Load

base 9693 11567 5879 11223.7 0.363
resched. 16380 4691 14063 17161.2 0.587

qj 20830 434 138 5507.6 0.763

stochastics and breakdowns
Finished Failed Overdue Production Time Load

base 6731.50 14563.5 5117.10 11955.30 0.2309
resched. 8912.30 12317.70 5817.40 15433.79 0.2946
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qj 11308.4 9961.70 1926.80 8840.24 0.3916

reconfig, stochastics, and breakdowns
Finished Failed Overdue Production Time Load

base 9295 11971 5759 11592.6 0.353
resched. 15089 6024 12608 16940.2 0.541

qj 19654 1540 607 8382.7 0.731

Table 4: Reconfiguration results
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