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This thesis presents the automated generation of sloped nonograms based on
input drawings. Sloped nonograms are similar to regular nonograms except for the
fact that they are constructed using edges and faces as opposed to rows, columns and
cells. The generated sloped nonograms satisfy three main constraints: they do not
contain small faces, their topology remains identical to that of the input and they
belong to the simple class of nonograms. Simple nonograms are those which can be
solved by incrementally assigning a colour to faces without the need of backtracking
or assumptions.
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Chapter 1

Introduction

Nonograms, also known as Japanese puzzles, are logic puzzles based on a rectan-
gular grid of arbitrary size. The goal is to determine the colour of each cell, either
black or white, using the number sequence, called description, given for each row
and column. Figure 1.1 shows a nonogram with its solution. Each number si part
of a description (s1, ..., sk) informs the user that a black run of si consecutive black
cells is expected in the current row or column. There should be at least one white
cell between consecutive black runs. This thesis introduces a new variation of nono-
grams called sloped nonograms. Those puzzles have edges and faces instead of rows,
columns and cells. Figure 1.2 shows a generated sloped nonogram. We want to be
able to generate such sloped nonograms from input drawings. Moreover, we do not
want sloped nonograms to have small faces, since those are not pleasant to colour.
In addition, we want the output sloped nonograms to be topologically identical to
their input. We also want to make sure that the generated sloped nonograms are
uniquely solvable and simple, meaning they can be solved iteratively and never re-
quire multiple pieces of information simultaneously.

Figure 1.1: Regular nonogram with its solution [15].

A review on some of the key information regarding regular nonograms, as well as
some of the geometric and algorithmic tools required for this thesis will be given in
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CHAPTER 1. INTRODUCTION

Section 2. Section 3 will formally define the problem, describing and explaining any
rule or assumption used throughout the thesis. Section 4 will describe the method
used to generate sloped nonograms satisfying the aforementioned constraints. Sec-
tion 5 will analyse the quality of output puzzles, the speed of the generation process,
and more results. Section 6 will conclude the findings. Finally, section 7 will look
at future work in the field.
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Figure 1.2: Generated sloped nonogram.
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Chapter 2

Related work

2.1 Logic puzzles in computer science

Logic puzzles are popular in computer science research because they usually are
straightforward to model while still allowing for vast solving performance investiga-
tions. Several logic puzzles such as: ‘Pic-a-Pix’, ‘Cross-a-Pix’, ‘Fill-a-Pix’, ‘Link-a-
Pix’, ‘Sym-a-Pix’, ‘Maze-a-Pix’ and ‘Dot-a-Pix’ [7] are generated using input draw-
ings. Multiple interesting extensions of the ‘Dot-a-Pix’ puzzle have been investi-
gated. The classical version amounts to generating a set of dots, each associated
with a number. The puzzle is solved by starting at the dot with associated number
0 and connecting it with the dot with associated number 1, and so on. The output
usually is a drawing. Extensions investigated in [12] and [11] use direction indica-
tors, and distance and colour respectively as opposed to numbers to indicate the
order in which points must be connected.

2.2 Literature review

Solvable nonograms are split into two categories: simple and non-simple nonograms.
Simple nonograms can be solved iteratively by finding the colour of as many cells
as possible in single rows or columns. Non-simple nonograms however, require
information on multiple rows and columns to determine the colour of single cells [1].
They sometimes also require assumption making. Nonograms may also be either
unique and have a single solution, or non-unique and have multiple solutions. We
can therefore classify four types of nonograms:

• Simple nonograms; they have one unique solution and are solvable iteratively
row by row and column by column, see Figure 2.1.

• Non-simple unique nonograms; they have one unique solution but require in-
formation about multiple rows and columns simultaneously and sometimes
assumptions for solving, see Figure 2.2.

• Non-simple non-unique; they have multiple solutions and need information
about multiple rows and columns simultaneously and sometimes assumptions
for solving, see Figure 2.3.

• Non-solvable; they have no solution, see Figure 2.4.

7



CHAPTER 2. RELATED WORK

In nonograms shown in Figures 2.1, 2.2, 2.3 and 2.4 a grey cell represents un-
known colour.

Figure 2.1: Left: empty simple nonogram. Right: the solution [17].

(a) (b)

Figure 2.2: Non-simple unique nonogram. Figure 2.2a shows where iterative solv-
ing gets stuck. Figure 2.2b shows the final solution [17].

Figure 2.3: Non-simple non-unique nonogram. Last two puzzles show the possible
solutions [17].

Figure 2.4: Non-solvable nonogram. In the middle puzzle, if the first five cells are
coloured in row 3, there is no solution in rows 2 and 4 [17]. If the last five cells are
coloured in row 3, there is no solution in row 4 [17].

Most puzzles handed out to the public are simple, so most solvers tackle simple
nonograms. We shall look at some key ideas put forward in [4] for solving simple
nonograms, as well as more complex ideas presented in [17] to solve any nonogram.
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For simple nonograms, solvers operate row by row and column by column.
Showing that solving a single row or column can be done in polynomial time is
a sufficient condition to develop a fast algorithm. For a row or column descrip-
tion d = (d1, ..., dk), where k is the number of values in the description, we have
dj = σj{aj, bj}, where σj ∈ Σ (an alphabet {0, 1} in which 0 is white and 1 is
black), and aj, bj ∈ {0, 1, 2...} with aj ≤ bj (j = 1, 2, ..., k) [4]. The aj and bj can
be considered as the leftmost starting index and rightmost ending index, in the
row or column, respectively for a black run j. For instance, for a row of length 5
with description d = d1 = (3), the leftmost starting index and rightmost ending
index are 0 and 4 respectively. In the two extreme configurations we have a1 = 0
and b1 = 2, and a1 = 2 and b1 = 4, thus we get {a1, b1} = {0, 4}. A description
(0{0,∞}, 1{a1, a1}, 0{1,∞}, 1{a2, a2}, ..., 1{ak, ak}, 0{0,∞}), where ∞ is a suit-
ably large number, is equivalent to the nonogram-type description d = (a1, a2, ..., ak)
[2]. This description can be written as 0∗1a10+1a20+...1ak0∗. A finite string s over Σ
adheres to such a description d = (a1, a2, ..., ak) if s satisfies the regular expression
0∗1a10+1a20+...1ak0∗ [1]. The following recursion can then be defined:

Fix(i, j) =

min(i−aj),Bj−1∨
p=max(i−bj ,Aj−1,L

σj
i (s))

Fix(p, j − 1), (2.1)

where Aj =
∑j

p=1 ap, Bj =
∑j

p=1 bp, and A0 = B0 = 0. For a string s = s1, ..., s`
of length ` and description d = (d1, ..., dk), the value of Fix(`, k) determines whether
s is fixable with respect to d. Given a string s over an alphabet Γ (Σ ∪ {x}, where
x represents the unknown cell colour) which is fixable to a description d, if in all
fixes, a certain cell has the same value from Γ, then it must have that value in the
solved puzzle. The process can be repeated until the colour of every cell is known.
Refer to [4] for more information and for proof of the recursion.

A procedure capable of solving simple as well as non-simple nonograms is devel-
oped in [17]. The procedure described to solve simple nonograms closely resembles
the one presented in [4], except that it is shaped as a set of logical rules instead of
a recursion. The authors also describe a depth-first search procedure which, when
combined with the aforementioned logical rules, can prune the search space and
yield all possible solutions for any nonogram. The authors explain that depth-first
search is a valid brute force approach for solving nonograms with small dimensions
but it becomes infeasible time-wise as the dimensions increase. Thus they develop
logical rules to determine the colour of as many cells as possible in between depth-
first search runs, in order to extensively prune the search space. The logical rules
apply to single rows and columns and can be encompassed into the recursion shown
in equation 2.1. We shall describe the first logical rule, but refer to [17] for the full
set. The authors use the range notation (rjs, rje) for a black run j. The range of a
black run j is defined as the leftmost starting index rjs, and the rightmost ending
index rje. The first logical rule is: For a black run j of length LBj, cell ci will be
coloured if rjs + u ≤ i ≤ rje − u, where u = (rje − rjs + 1)− LBj [17]. It basically
states that if in all possible configurations of black run j, a cell is coloured, then it
must be coloured in the solved nonogram.

9



CHAPTER 2. RELATED WORK

Rules are divided into three categories: determining the colour of as many cells as
possible, refining ranges of description pieces, and combining both aforementioned
goals. The mechanism for the overall nonogram solving procedure is as follows:
first, use the logical rules on each row and column to find the colour of as many
cells as possible and refine as many ranges as possible. We are either done or stuck
once this step terminates. If stuck, generate all possible solutions for the first un-
solved row. Verify whether the solutions generated are in accordance with column
descriptions. If so, visit the first solution and apply the logical rules again until
no more information can be discovered. Repeat this procedure until the colour of
all cells is determined. Whenever a generated solution does not satisfy the column
descriptions, it is discarded. This routine quickly discovers all solutions for a nono-
gram, thanks to the pruning obtained by using the logical rules. Refer to [17] for
benchmarking of the algorithm.

2.3 Doubly connected edge list

Our solution for generating sloped nonograms deals with holding information about
a geometric subdivision. The optimal data structure for such a task is the doubly
connected edge list (DCEL). In this section we shall discuss the advantages and
strengths of this structure. The DCEL consists of three main entities: the ‘Vertex’,
the ‘Half-Edge’ and the ‘Face’. Each of those entities has several useful attributes
used to explore a subdivision [6].

A vertex v stores its coordinates, as well as a pointer to each of its incident
half-edge.

A half-edge e stores a pointer to its origin, a vertex instance. It also stores a
pointer to its twin half-edge. For a half-edge e, with origin P0, the twin of e, twin(e),
has origin P1, where P1 is the destination of e and P0 the destination of twin(e). A
half-edge also stores a pointer to its incident face, the adjacent face which has e as
part of its boundary. The boundary is always defined counter-clockwise. Finally a
half-edge stores a pointer to its next and previous half-edge, both on the boundary
of the incident face of e. From a half-edge, one can easily travel along the boundary
of the incident face by recursively using the next or previous pointers.

A face f stores a pointer to its outer component, a half-edge on the boundary of
the f . It also stores a list of inner components, which amounts to a pointer to one
half-edge on the boundary of each hole present in the face [6].

2.4 Linear programming

The next necessary ingredient to be able to generate sloped nonograms from draw-
ings involves optimising the size of the faces in the subdivision. To optimise these,
we chose to use linear and quadratic programming. In this section we will review the
basic layout of linear programmes. We will also briefly discuss the simplex algorithm
for solving such problems.

A basic linear programme consists of two main items: an objective function, to
maximise or minimise, and a set of constraints to satisfy. Consider the following

10
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linear programme defined as:

Minimise c1x1 + c2x2 + ...+ cnxn

Subject to: a11x1 + a12x2 + ...+ a1nxn ≥ b1

a21x1 + a22x2 + ...+ a2nxn ≥ b2
...

am1x1 + am2x2 + ...+ amnxn ≥ bm

x1, x2, ..., xn ≥ 0

(2.2)

or equivalently:

Minimise cx

subject to Ax ≥ b

x ≥ 0

(2.3)

where:

c =
[
c1 c2 . . . cn

]

x =


x1
x2
...
xn

b =


b1
b2
...
bm

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


(2.4)

The set x1, ..., xn represents the decision variables. The first line in equation
2.2 is the objective function, which depends on the decision variables and on the
cost coefficients c1, ..., cn. The following three lines represent the constraints, with
aij and bi given for i = 1, ...,m and j = 1, ..., n. Finally the last line represents
the nonnegativity constraints. To solve the problem, one needs to find the optimal
value for each xi, i = 1, ..., n such that the objective function is minimised, while
all constraints are still satisfied [5]. To solve such problems, we use the simplex
algorithm. The next section will briefly explain how this procedure works, refer to
[5] for more details.

Given a linear programme:

Min cx

subject to Ax ≥ b

x ≥ 0,

(2.5)

where bold symbols represent vectors or matrices.

• First, add one slack variable xsi per constraint to transform it into an equality.
The matrix A = [a1, ...,an], becomes [a1, ..., an, as1 , ..., asm ], where asi

represents the coefficient vector of slack variable xsi in A.

11
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• Find a basic feasible solution. It can be extracted from A. The basic feasible
solution basis B must be of correct dimensions, namely performing B−1b must
be possible. Call xi, ..., xk basic variables xB, if they define the basis of B. Call
all other variables non-basic xN .

• Once B is found, solve BxB = b for xB , obtaining xB = b̄. Let xB = b̄, xN

= 0 and z = cBxB, where cB represents the coefficients of the basic variables.

• Solve the system wB = cB for w, where w = (w1, ..., wdim(cB)). Calculate
zj − cj = waj - cj for all non-basic variables. Let zk − ck = maxj∈R zj − cj,
where R represents the indices associated with the non-basic variables. If
zk − ck ≤ 0, stop with the current solution as optimal solution. Else, solve
Byk = ak. If yk ≤ 0 then stop with the conclusion that the optimal solution
is unbounded. Else, xk enters the basis and xBr leaves the basis, where r is
determined by the following minimum ration test:

b̄r
yrk

= min
1≤i≤m

{
b̄i
yik

: yik > 0

}
(2.6)

Update the basis B, where ak replaces aBr , the index set R and repeat the
procedure.

12



Chapter 3

Formal definition

This section formally introduces the problem, going into great details regarding
choices and rules further applied in the thesis. As previously mentioned, the aim of
the thesis is to build a method for generating good sloped nonograms from input
drawings. In other words, output solved sloped nonograms must resemble their in-
put.

Regular nonograms are played on a rectangular grid, although extensions may
use non rectangular grids, with a description for each row and column. The descrip-
tion is a set of k numbers s1, ..., sk, representing how the cells in the row or column
must be coloured. For a row with description d = (s1, ..., sk), the row must contain
k black runs [17] , with length s1, ..., sk respectively, with at least one white cell in
between consecutive blocks. In other words, the colouring must satisfy the following
regular expression: 0∗1s10+...1sk0∗ [1], where 0 represents a white cell and 1 a black
cell.

The difference between regular nonograms and sloped nonograms is that instead
of having rows, columns and cells, we will use edges and faces inside a square bound-
ing box. From a visual point of view, every regular unsolved nonogram looks similar,
simply an empty grid. In addition, all cells have the same size which brings a sense
of balance to the puzzle. For sloped nonograms however, that is not the case. The
overall subdivision is less balanced because faces may have arbitrarily many sides.
Another visual disadvantage of sloped nonograms is that the size of faces is not
fixed. Depending on the geometry of the input, one may obtain a wide variety of
face sizes. This aspect may become problematic for users when very small faces
are present in the puzzle. We realise that colouring small faces can be cumbersome
and may make solving puzzles less enjoyable. Moreover, sets of adjacent small faces
cramp the subdivision making it less visually appealing. It may not always be the
case that small faces can be dealt with. Large faces are not an issue from a visual
point of view and they are, to some extent, advantageous for solving purposes, be-
cause they tell more about the final drawing than smaller faces. Overall, we wish
to create sloped nonograms which do not contain any small faces, yet, when solved,
they must resemble their input.

We can partially solve both aforementioned issues by using well defined con-
straints on edges in the subdivision. To tackle the number of sides in faces, we can

13
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constrain the slope of each edge in the subdivision. This is derived from the tangram
idea. Tangram drawings only encompass raw contours while not taking any details
into account. Different classes of tangram exist, however most are constructed using
lines constrained to four slopes: horizontal lines (slope 0◦), vertical lines (slope 90◦),
positively diagonal lines (slope 45◦) and negatively diagonal lines (slope -45◦). We
will use these slope constraints to decrease the maximum number of sides for faces
in our subdivision to 8.

For the problem regarding the size of faces, we will use linear and quadratic
programming to shift entire lines in the subdivision, such that no more small faces
are present in the puzzle. This method may not work for all inputs. However,
since we want output solved sloped nonograms to still resemble their input, we must
minimise total deformation. To obtain this result, we need to define a distance
threshold wt, such that if a face is smaller than wt, it is considered small. We also
need a proper distance measure to keep track of the size of a face.

The distance measure used to compute the size of a face is the width. The width
is the smallest distance out of all distances defined by opposite sides of a face. Using
the width as distance measure, resulting puzzles will probably not be as deformed
as with other measures such as area, since the width takes the geometry of faces
into account.

Let us assert that a face is small if its width is less than 2 millimetres (wt = 2).
We chose such a wt because faces with that width are large enough to colour. It is
not certain yet whether 2 millimetres is the best value for wt. Therefore, we shall
perform optimisation three times using wt = 2, wt = 3 and wt = 4.

Another constraint on output sloped nonograms is that of topology. Output
sloped nonograms must be topologically identical to their input. This constraint
is defined in order to keep the optimised puzzle similar to the input, and simplify
the modelling process. This topology constraint amounts to certifying that no face
is created or removed, from the initial subdivision, during optimisation. To imple-
ment this constraint, we define the following rules to be satisfied during optimisation:
triple and quadruple intersections must remain, edges must keep the same neigh-
bours (defined by the edges left and right of the intersection point of the current
edge with the bounding box), and edges may not change side of the bounding box
with which they originally intersected. In addition we force the bounding box to stay
fixed, such that the optimised output sloped nonogram lies inside the same bound-
ing box as its input drawing. The reason is that we do not want to find scaled-up
optimised sloped nonograms which satisfy the face size and topology constraints,
because that would cause problems for rendering those sloped nonograms.

Lastly we must make sure that the sloped nonograms generated are simple,
namely that they are uniquely solvable in an iterative way. We chose to apply this
rule because from a user point of view, the solution must be unique in order to make
sure that the original drawing re-appears when the sloped nonogram is solved. In
addition, documentation on solving simple nonograms is widely available as opposed
to the case of non-simple nonograms. Lastly, the main goal is to generate sloped
nonograms, making them very difficult is not a priority yet.
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Now that we have put forward the primary goals, let us discuss secondary inter-
esting investigations undertaken in this thesis. As previously stated, we are using
linear and quadratic programming to optimise subdivisions such that each face has
a width larger or equal to wt (2, 3, and 4 millimetres). In principle, all lines can
move, however we want them to shift as little as possible, while still satisfying the
constraints on face size and topology, such that the puzzle, when solved, still re-
sembles the input. For minimising line movement from original position, defined
by the input, we will use three different objective functions. We will use: min sum
of squares (min

∑2), min sum (min
∑

) and min max (min max). We chose these
three functions because they are often used in the field and also because they often
exhibit different results.

When using min
∑2, the optimisation direction, namely positive or negative,

does not matter; however this function is highly sensitive to outliers [8]. We believe
that an optimised sloped nonogram will not show very large edge shifts as these
greatly penalise the objective score.

Min
∑

derives from minimising the sum of the absolute values of the decision
variables. This function is used to avoid getting the large values obtained when
using min

∑2 [8]. However a programme using min
∑

is not linear because of the
absolute value involved. Nevertheless, it may be transformed into a set of linear
programmes.

Min max amounts to minimising the maximum displacement such that an opti-
mal solution is found in which each decision variable can take a value of magnitude
at most displacement. This objective may involve many small shifts, with magni-
tude less or equal than displacement, as those do not penalise the overall score. This
objective function is often used in problems involving preferences. Using other ob-
jective functions such as min

∑
, the overall sum of preferences is minimised without

looking at personal preferences [8].

An interesting investigation is to compare all three objective functions according
to both visual results and speed. Visual results are important to the users as they
do not want the final product to be completely deformed from their initial draw-
ing. The speed criterion is crucial since generating a sloped nonogram should be fast.

We also want to compute the maximum possible minimal width (max minwidth)
for each sloped nonogram such that all faces have a width greater or equal to max
minwidth. From those results, a conclusion may be drawn between max minwidth
and the number of lines in the sloped nonogram. This can allow us to understand
the features needed for a sloped nonogram to have large faces. This can be used by
users to design inputs which will lead to sloped nonograms with large faces.

We also want to find the difficulty of each sloped nonogram. This is useful to
users who do not want to start with a complicated sloped nonogram, or conversely
want to be challenged. In addition, investigating how the difficulty increases based
on the number of lines is also interesting. Users can be informed of these results,
and use them to design inputs which will lead to complex sloped nonograms.

15



Chapter 4

Method

4.1 Brief recipe

In this section, an overall recipe for generating sloped nonograms from input draw-
ings is given, allowing for further in-depth explanations. The nonograms are gen-
erated from specific inputs drawn inside a square bounding box of fixed size. An
input is transformed into a set of coordinates representing the vertices of the draw-
ing. Edges are created connecting pairs of vertices, then extended to the bounding
box. From the set of extended edges and the bounding box edges, we create a DCEL
to hold relevant information regarding faces, edges and vertices of the subdivision.

We use linear and quadratic programming to try to increase the width of all
small faces up to wt while other faces still remain large enough. A decision variable
is associated with each extended edge, monitoring the shift of the extended edge. For
each face in the subdivision, a set of constraints is generated, forcing the extended
edges to be far enough from each other so that the width of the face is larger or
equal to wt. To keep the subdivision topologically identical to the input, we generate
constraints forcing triple and quadruple intersections to stay intact, and set specific
values to both upper and lower bounds on the magnitude of each extended edge shift.

If optimisation was successful, we update the subdivision. As the topology of
the optimised subdivision is the same as that of the input, the same faces must be
coloured in both versions. A depth-first search procedure on the original subdivision
is done to assign a state, either coloured or white, to each face in the subdivision.
Descriptions are now easily computable by just walking along extended edges and
checking whether incident faces are coloured or not. The sloped nonogram is now
essentially constructed, remains only to solve it to make sure it is of the simple type.
If that last test is successful, we render the puzzle.

4.2 Allowed inputs

The sloped nonograms built using the aforementioned recipe require fairly strict
inputs. Our sloped nonograms only allow four slopes: horizontal (0◦), vertical (90◦),
positively diagonal (45◦) and negatively diagonal (−45◦), therefore inputs should
only allow these slopes. Any input where two consecutive vertices cannot be joined
by an edge of valid slope will be considered non-valid (see Figure 4.1b). Moreover,
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an input must be a single or multiple closed polygons. A set of edges creating an
open polygon will be rejected even if, when extended, a closed polygon is obtained
(see Figure 4.1c). The model will still run if polygons intersect but it then becomes
ambiguous as to which face should be coloured and which should be a hole, so it is
better to avoid these intersections. Figure 4.1 shows a example of a valid and two
non-valid inputs.

(a) Allowed input.

(b) Non-valid input, slope
constraints are not satis-
fied.

(c) Non-valid input, poly-
gon is not closed.

Figure 4.1: Valid vs non-valid inputs. Outer square represents the bounding box.

Inputs are originally stored as ‘scalable vector graphics’ (.svg) files and need to
be converted into sets of Cartesian coordinates representing vertices. A polygon is
represented as a sequence of points: (x0, y0), (x1, y1), ..., (xn, yn), which can be con-
verted into a set of n line segments: ((x0, y0), (x1, y1)), ...,((xn, yn), (x0, y0)), where
for a general line segment: ((xk, yk), (xk+1, yk+1)), (xk, yk) represents its starting
point and (xk+1, yk+1) its ending point. For each polygon, all of its line segments are
extended to the bounding box B using a line to line intersection algorithm [16]. For
two line segments L1 and L2 represented as ((x1, y1), (x2, y2)) and ((x3, y3), (x4, y4)),
their intersection point (Px, Py) is:

(Px, Py) =

(
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
,

(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)
(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

) (4.1)

If L1 and L2 are parallel, one obtains (x1− x2)(y3− y4)− (y1− y2)(x3− x4) = 0,
which reflects that the gradients of the two line segments are equal, which results
in undefined x and y coordinates for the intersection point. Using equation 4.1, the
intersection point of each line segment with all four line segments of the bounding
box is computed. They are then checked to verify which, out of the four, lie within
the range of the bounding box, as shown in Figure 4.2. From the extended edges
previously computed and the bounding box, a DCEL is built.

4.3 Optimisation

In this section, the linear programming formulation is given and explained. In ad-
dition, the formulation of the constraints and the objective functions are detailed.
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Figure 4.2: Four intersection points between extended edge e and B, only P2 and
P3 are in range.

The criterion we are dealing with is the size of each face. Since we extended the
edges to the bounding box, all faces in the subdivision are convex: “A subset S
of the plane is called convex if and only if for any pair of points p, q ∈ S the line
segment pq is completely contained in S”[6].

We want to use a distance measure which takes into account the geometry of
the face, therefore disallowing overly stretched faces. The area, as a measure, does
not satisfy the aforementioned condition. For instance, suppose we have a unit such
that 100 of it is considered large. Then a rectangular face of 1 by 100, with A = 100,
is large. However its geometry is overly stretched, and according to another mea-
sure, which takes the geometry into account, it may be considered small, since two
of its sides are of length 1. Using the area as distance measure would enable the
linear programming solver to abuse these characteristics and deliver an optimised
subdivision containing overly stretched faces.

The width of a face is a better distance measure. The width of a polygon is the
smallest distance out of all distances from one side of the polygon to its opposite.
In the previous example, the width of our rectangular polygon is min(100, 1) = 1,
so this rectangular face would probably require optimisation to increase its width.
This distance measure is well-suited to the problem as it takes the geometry of the
face into account.

For each extended edge ei we create a decision variable δi with initial value 0,
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which monitors the amount by which ei shifts. Edges can shift positively or nega-
tively. For a vertical, positively diagonal and negatively diagonal edge, a positive
shift relates to a shift rightwards, and a negative shift relates to a shift leftwards.
For a horizontal edge, a positive shift relates to a shift upwards and a negative shift
relates to a shift downwards, refer to Figure 4.3.

(a) Horizontal edge. (b) Vertical edge.

(c) Positively diagonal
edge.

(d) Negatively diagonal
edge.

Figure 4.3: The four different types of edges. The blue dotted line represents a
negative shift and the green dotted line represents a positive shift.

4.3.1 Face width constraints

Generating constraints which force the width of each face to be larger than wt is
greatly simplified by the slope constraints.

Lemma 1. With only four allowed slopes, each face has four different distances
between its opposite sides, of which one or more is the width:

• a horizontal distance: from the rightmost point or edge to the leftmost point
or edge,

• a vertical distance: from the highest point or edge to the lowest point or edge,

• a positively diagonal distance: from the highest leftmost point or edge to the
lowest right point or edge,

• a negatively diagonal distance: from the lowest leftmost point or edge to the
highest right point or edge.
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Proof. Let us define an axis-aligned square S = {(x0, y0), (x1, y0), (x1, y1), (x0, y1)},
with (x0, y0) being its bottom left vertex, and the sequence of vertices moving
counter-clockwise. The first maximum distance from one side to another in S is

dist(((x0, y0), (x1, y0)), ((x1, y1), (x0, y1))),

which is the vertical distance, i.e. the length of the vertical sides. The second
maximum distance in S is

dist(((x1, y0), (x1, y1)), ((x0, y1), (x0, y0))),

which is the horizontal distance, i.e. the length of the horizontal sides. The last two
maximum distances in S are the diagonal distances,

dist((x0, y0), (x1, y1))

and
dist((x1, y0), (x0, y1)).

The same characteristics can be found for convex polygons up to degree 8 satisfying
the slope constraints. Therefore there are never more than four constraints per face
to check if the width is large enough, since one or several of these distances must
be the smallest, hence the width. Refer to Figure 4.4 for the four distances in a
triangular face.

The analysis can be taken further. As a matter of fact, in some cases, some of
the aforementioned distances can be discarded as they will never define the width of
the face. For the square S, we can identify that the vertical and horizontal distances
are always shorter than the diagonal distances.

Lemma 2. Due to the restrictions on slopes, any point-to-point maximum distance
will never define the width of the given polygon.

Proof. Assume without loss of generality that there is a polygon P with extreme
left and right points P1 and P2 respectively. Assume that the width of P is defined
by the distance between l1 and l2, two vertical lines through P1 and P2 respectively.
Any clockwise or counter-clockwise simultaneous rotation of l1 and l2 will decrease
the distance from l1 to l2 while still enclosing the polygon, decreasing the width.
The width can always be decreased up until either l1 or l2 is collinear with one of
the edge of P . Therefore two extreme points cannot define the width.

In addition, the geometry of the faces can be further exploited in the case of
triangular faces.

Lemma 3. A triangle satisfying the slope restrictions must be right-angled isosceles.

Lemma 4. The width of a right-angled isosceles triangle is always its height.

So for any triangle, the only constraint is that its height must be larger or equal
to wt.

For an arbitrary face, if all maximum distances are larger than wt, the width is
also larger than wt.

20



CHAPTER 4. METHOD

Figure 4.4: Right-angled isosceles triangle, distances are the length between dot-
ted lines of the same colour. Horizontal distance (black), vertical distance (red),
positively diagonal distance (green) and negatively diagonal distance (blue).

Let us now demonstrate how to compute a horizontal constraint. For the hori-
zontal constraint, we first compute the number of vertical edges in the face, it may
be zero, one or two. Convex properties are such that if the face has two vertical
edges, the horizontal distance is defined by the distance between those two edges.
To compute the distance, we use the x-coordinate of the vertical lines.

Let there be a face with two vertical lines segments l0 = ((x0, y0), (x0, y1)) and
l2 = ((x2, y2), (x2, y3)) with x2 > x0 (so l0 is the leftmost vertical line segment and
l2 is the rightmost vertical line segment in the face), refer to Figure 4.5a. Each line
segment li has an associated variable δi which monitors how much the line segment
li shifts, leftwards or rightwards. The constraint is formulated as:

(x2 + δ2)− (x0 + δ0) ≥ wt

δ2 − δ0 ≥ wt − x2 + x0
(4.2)

Therefore, on the one hand, if the distance |x2− x0| is already equal to or larger
than wt, we may set δ0 and δ2 to 0 or negative to decrease the distance between l0
and l2. On the other hand, if the distance is not large enough, the values of δ0 and
δ2 must be set such that the constraint is satisfied.

Let there be a new face in which the horizontal distance is defined by one line
segment l0 = {(x0, y0)(x0, y1)} and one point p1 = (x2, y2), which is the intersection
point of line segments l1 and l2, refer to Figure 4.5b. The horizontal constraint will
be generated using the distance from l0 to p1. It can be formulated as:
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(a) Horizontal constraint defined by
two line segments.

(b) Horizontal constraint defined by
one line segment and one point.

Figure 4.5: Two cases for computing the horizontal constraint.

(x2 +
δ2√

2
+

δ1√
2

)− (x0 + δ0) ≥ wt

δ2√
2

+
δ1√

2
− δ0 ≥ wt − x2 + x0

(4.3)

If there is no vertical line segment in the face, then the horizontal distance is
defined by two points, and therefore may never define the actual width of the face;
so this case is not explored.

The vertical constraint is computed similarly, except that instead of using the
x-coordinates of the vertical line segments or points to measure the distance, we use
the y-coordinates of horizontal line segments or points.

For the positively diagonal constraint, the number of positively diagonal line
segments in the face is computed, either zero, one or two. If two positively diagonal
line segments are found, then the positively diagonal distance is defined by the
distance between those two line segments.

To get the distance between two diagonal line segments, we need to find a refer-
ence point for each line segment. The y-intersect is used as reference point for each
line segment mainly because it is easy to compute.

Lemma 5. A positively diagonal line segment containing a point P = (x, y) inter-
sects the y-axis at point Pintersection = (0, x− y). A negatively diagonal line segment
containing a point P = (x, y) intersects the y-axis at point Pintersection = (0, x+ y).

For a face with two positively diagonal line segments l0 = ((x0, y0), (x1, y1)) and
l2 = ((x2, y2), (x3, y3)), where l0 is above l2 (refer to Figure 4.6a), the positively
diagonal constraint can be formulated as:

1√
2

[(y0 − x0 −
√

2δ0)− (y2 − x2 −
√

2δ2)] ≥ wt

−
√

2δ0 +
√

2δ2 ≥
√

2wt − y0 + x0 + y2 − x2
(4.4)
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(a) Positively diagonal constraint
defined by two line segments.

(b) Positively diagonal constraint
defined by one line segment and one
point.

Figure 4.6: Two cases for computing the positively diagonal constraint.

For the positively diagonal constraint when the positively diagonal distance is
defined by one line segment l0 = ((x0, y0), (x1, y1)) and one point p1 = (x2, y2), as
shown in Figure 4.6b, the constraint can be formulated as:

1√
2

[(y0 − x0 −
√

2δ0)− (y2 − x2 − δ2 + δ1)] ≥ wt

−
√

2δ0 + δ2 − δ1 ≥
√

2wt − y0 + x0 + y2 − x2
(4.5)

If the face does not have any positively diagonal line segments, then the posi-
tively diagonal distance is defined by two points and therefore will not define the
width of the face, so it will be disregarded. The negatively diagonal constraint is
computed analogously.

For each face in the subdivision, we generate up to four constraints, forcing each
maximum distance (horizontal, vertical, positively diagonal and negatively diagonal)
to be larger or equal than wt. As at least one of those four distances must define
the width, having them all large enough ensures that the width of the face is large
enough.

4.3.2 Intersection constraints and bounds

The constraints ensuring that faces are large enough do not prevent creation or
deletion of faces. While optimising, new small faces may be created, which would
be very counter-productive. Not handling triple and quadruple intersections during
optimisation results in the creation of new faces, see Figure 4.7a. In addition, if edges
in the subdivision are not bounded on the amount they can shift, faces bordering
the bounding box may be created or removed, see Figure 4.7b.

In order to not create or remove faces, we must keep triple and quadruple inter-
sections intact and bound each δi. Let there be three line segments l0 with slope
90◦, l1 with slope 0◦ and l2 with slope 45◦, intersecting at point p0, see Figure 4.7a.
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(a) Face creation at triple intersec-
tion after optimisation, l′1 is the op-
timised l1.

(b) Face creation near bounding
box, l′1 is the optimised l1.

Figure 4.7: Possible face creation when optimising only with constraints on the
size of faces.

In order to keep the triple intersection in the optimised subdivision, the following
constraint must be satisfied:

δ1 − δ0 +
√

2δ2 = 0 (4.6)

If one or more of the line segments l0, l1, and l2 are shifted during optimisation,
the others will be forced to shift accordingly, to keep the triple intersection intact.
Let l1 shift 1 unit up (δ1 = 1), see Figure 4.7a. Due to this shift, a new face is created,
therefore either l0 or l2 or both must be shifted to keep the triple intersection and
thus removing that new face. Assume that δ0 is set to 0 by some other constraint.
Only l2 can be shifted to keep the triple intersection. We have δ1 = 1 and δ0 = 0:

(1)− (0) +
√

2δ2 = 0
√

2δ2 = −1

δ2 =
−1√

2

(4.7)

The triple intersection constraint forces l2 to shift δ2 = −1√
2

units. Table 4.1 shows
the possible configurations for triple intersections and their respective constraint. To
generate a quadruple intersection constraint, just model it as two triple intersection
constraints.

Let us introduce the concept of neighbour for extended edges, crucial to bound-
ing δi for all extended edges ei in the subdivision. Each extended edge intersects the
bounding box twice. Extended edges may have up to two neighbours on sides of the
bounding box with which they intersect. They have no neighbour on the other sides
of the bounding box. We call extended edge ej the neighbour of extended edge ei on
a particular side of the bounding box, sidek, if they both intersect the bounding box
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slope l0 slope l1 slope l2 Constraint

0 45 90 δ0 − δ1 +
√

2δ2 = 0

0 -45 90 δ0 + δ1 −
√

2δ2 = 0

0 45 -45 δ0 +
√
2
2
δ1 −

√
2
2
δ2 = 0

90 45 -45 δ0 −
√
2
2
δ1 −

√
2
2
δ2 = 0

Table 4.1: Triple intersection constraints.

on sidek at (xj, yj) and (xi, yi) respectively, and if (xj, yj) is one of the potentially
two closest point to (xi, yi) on sidek.

For each extended edge ei, we must bound the amount by which it can shift. We
define the lower and upper bound of δi as lbi and ubi respectively. We must enforce
lbi < δi < ubi, where lbi is the magnitude of the maximal possible negative shift
(lbi ≤ 0), such that ei keeps the same previous neighbour, and ubi is the magnitude
of the maximal positive shift (ubi ≥ 0), such that ei keeps the same next neighbour.
Three cases can be distinguished:

• an extended edge ei intersecting the bounding box has two neighbouring ex-
tended edges, a previous neighbour ei−1 and a next neighbour ei+1, see Figure
4.8a,

• an extended edge ei intersecting the bounding box has only one neighbouring
extended edge, either a previous neighbour ei−1 or a next neighbour ei+1. On
the other side is the corner of the bounding box, either c2 or c1, see Figure
4.8b,

• an extended edge ei intersecting the bounding box has no neighbouring ex-
tended edge, only corners of the bounding box c1 and c2, see Figure 4.8c.

For the first case, see Figure 4.8a, extended edge ei intersects the bottom side
of the bounding box at (xi, yi), its previous neighbour is extended edge ei−1, inter-
secting the bottom side of the bounding box at (xi−1, yi) and its next neighbour is
extended edge ei+1, intersecting the bottom side of the bounding box at (xi+1, yi),
with xi−1 < xi < xi+1. The lower bound on δi is lbi = −1√

2
|(xi−xi−1)|, and the upper

bound on δi is ubi = 1√
2
|(xi+1 − xi)|. Depending on the slope of ei, the factor of 1√

2
may need to be replaced by 1.

In the case in which the two intersection points of ei with the bounding box have
the corners of the bounding box as neighbours, the two sets of bounds on δi found
are pairwise the same. All other cases yield two sets of lower and upper bounds on
δi. The lowest absolute value for the lower and upper bounds are kept as the actual
lower and upper bounds for δi. Remember that in order to simplify the model, we
do not allow extended edges to change the side of the bounding box with which they
intersect. Therefore, for the example shown in Figure 4.8b, the lower bound on δi
is lbi = −1√

2
|(xi − xi−1)| and the upper bound on δi is ubi = 1√

2
|(xc2) − xi|. If there

is no neighbour, we use the corner of the bounding box on both sides to define the
bounds of δi. For the example shown in Figure 4.8c, we get lbi = −1√

2
|(xi − xc1)| and

ubi = 1√
2
|(xc2 − xi)|. Since the bounding box must remain the same, we force the δ

values for its edges to be 0 by fixing both their lower and upper bound to 0.
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(a) Extended edge ei with its pre-
vious neighbour ei−1 and its next
neighbour ei+1.

(b) Extended edge ei with only one
neighbouring extended edge ei−1
and the corner of the bounding box
c2 on the other side.

(c) Edge ei with no neighbouring
edge, only the two corners of the
bounding box, c1 and c2.

Figure 4.8: Three possible arrangements for a single extended edge ei intersecting
the bottom side of the bounding box. Points c1 and c2 represent the corners of the
bounding box, with x-coordinates xc1 and xc2 respectively.

4.3.3 Objective functions

For our application, it is interesting to use multiple objective functions in order to
compare visual outputs originating from optimisation. We will be using three func-
tions: min sum of squares (min

∑2), min sum (min
∑

) and min max (min max).
The function min

∑2 minimises the sum of the squared values of the δs, see equation
4.8. This function does not take into account the direction in which extended edges
are shifted. However it greatly penalises large extended edge shifts because of the
squaring function. When optimising with min

∑2, the most natural output seems
to be small shifts over many extended edges.
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min
n′∑
i=0

δ2i , (4.8)

where n′ is the total number extended edge (n) plus the four bounding box edges.

The second objective function is min
∑

. It amounts to minimising the sum of
all δs. We previously saw that this problem is not linear because of the absolute
value involved. Yet we can transform it into a set of linear programmes. To do so,
we create 2n different linear programmes, where n is the number of extended edges
excluding the bounding box edges. Each different linear programme has a different
configuration of the bounds on the δs, they are either forced to be positive (lb = 0)
or negative (ub = 0). If an extended edge ei is forced to shift negatively by setting
ubi = 0, its value in the objective is changed to −1× δi, since minimising a negative
value does not make sense.
For instance, if we have a subdivision with two extended edges e0 and e1, the two
optimisation variables are δ0 and δ1. We construct 2n different linear programmes,
see Table 4.2. We can then solve all 2n linear programmes.

δ0 δ1 Objective
≤ 0 ≤ 0 min−δ0 − δ1
≤ 0 ≥ 0 min−δ0 + δ1
≥ 0 ≤ 0 min δ0 − δ1
≥ 0 ≥ 0 min δ0 + δ1

Table 4.2: All 2n different linear programmes for a two extended edges subdivision.

The final objective function is min max. It minimises the maximum shift on
all edges such that all constraints are satisfied. This function heavily penalises
large shifts. A new optimisation variable displacement is defined, as well as several
constraints involving displacement. The linear programme becomes:

min displacement

such that face size, topology constraints, triple and quadruple constraints and new
constraints:

δi ≤ displacement,−δi ≤ displacement,

∀δi, i = 0, ..., n′ are satisfied.

4.4 Sloped nonogram construction

Once the optimisation of the subdivision is completed, we shift each extended edge
ei by its optimisation value δi. For a vertical extended edge ei originally from
pa = (xa, ya) to pb = (xa, yb) being optimised by δi, the new endpoints become
p′a = (xa + δi, ya) and p′b = (xa + δi, yb). Similarly, for a horizontal extended edge
ej originally from pa = (xa, ya) to pb = (xb, ya) optimised by δj, the new endpoints
become p′a = (xa, ya + δj) and p′b = (xb, ya + δj). For a positively diagonal extended
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edge ek from pa = (xa, ya) to pb = (xb, yb) optimised by δk, if its starting point pa
intersects the left side of the bounding box and pb the top side of the bounding box,
the new endpoints become p′a = (xa, ya −

√
2δk) and p′b = (xb +

√
2δk, yb). If ek’s

starting point pa intersects with the bottom side of the bounding box and pb with the
right side of the bounding box, then the new endpoints become p′a = (xa +

√
2δk, ya)

and p′b = (xb, yb −
√

2δk). For a negatively diagonal extended edge el optimised by
el, always shift the appropriate endpoint by +

√
2δl. This new subdivision represents

the optimised puzzle satisfying the face size and topology constraints.

4.4.1 Depth-first search

This section describes how faces in the original subdivision are visited and assigned
the status of coloured or that of white. We use the original subdivision since our
optimisation is topologically identical to the original, therefore the same faces are
coloured or white in both subdivisions. We can travel through the faces of the
subdivision using a depth-first search (DFS) method and check whether input edges
are crossed. Input edges are edges which belong to the input only, thus not the
extensions to the bounding box. When crossing such an edge, we are either entering
or exiting the drawing, so if the previous face was white, the new one must be
coloured and vice versa. We need a way of knowing whether the first face in which
we start our search is white or coloured. Outside the subdivision, faces are always
white, so if the boundary of the first face is part of the input, then the first face is
coloured else it is white. The search ends when all faces have been explored and
assigned either coloured or white.

4.4.2 Collinearity and distance

Note that in the DFS procedure a DCEL is used to store the faces, edges and vertices
of the subdivision. Some of those DCEL-edges might only be small parts of input
edges. We can easily compute whether a DCEL-edge is collinear to an input edge,
then using a distance property, we can compute whether the endpoints of the DCEL-
edge are on or within the endpoints of the input edge. If those two conditions are
met, then moving across the DCEL-edge amounts to moving across an input edge.
Collinearity between three points a, b, c is true if the following expression is true:

(bx − ax)(cy − ay) = (cx − ax)(cy − ay)
cy − ay
cx − ax

=
by − ay
bx − ax

mac = mab,

(4.9)

where mab represents the gradient of the line segment from point a to point b.
If both gradients are equal and both line segments have point a as an endpoint,

then the three points are collinear. Checking whether the endpoints of the DCEL-
edge are on or in between the endpoints of the input edge is done by comparing
the x-coordinates or the y-coordinates of the endpoints. If three points a, b, c are
collinear on a non-vertical line segment, we can check if c is between a and b by com-
paring the x-coordinates: ax < cx < bx. If the line is vertical, use the y-coordinates:
ay < cy < by.
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4.4.3 Total edges

Total edges are custom data structures used to gather information about extended
edges, such as description (sloped nonogram related) and the number of adjacent
faces. For any extended edge ei, two total edges are needed, see Figure 4.9. The first
one, T1 monitors information about the above adjacent faces to the extended edge
ei and T2 monitors information about below adjacent faces to the extended edge ei.

Using the DCEL-edges from the subdivision, we can easily step into the adja-
cent DCEL-faces and check whether they are coloured or white. Moving along an
extended edge ei amounts to moving along a set of DCEL-edges. DCEL-edges are
separated by DCEL-vertices, from which we can travel to any incident DCEL-edge.
To travel along an extended edge ei, we start at one of the DCEL-vertex of ei on the
bounding box. We walk along the first DCEL-edge of ei. We remember the slope
of that DCEL-edge. Once arrived at a DCEL-vertex, we check whether that vertex
has an incident DCEL-edge with the same slope as the DCEL-edge we came from,
while not being the twin of the DCEL-edge we came from. If it does, walk along
that new DCEL-edge and repeat the procedure, else we must be at the other side
of the bounding box and done with our walk.

Each time we walk along a new DCEL-edge, we check if its incident DCEL-face
is coloured or white. It is important to realise that we only use DCEL-faces which
are edge adjacent to DCEL-edges, as opposed to vertex adjacent. This means that
for a face to be adjacent to an edge, they must share an edge, and not a vertex
only. This detail becomes very important when solving sloped nonograms. We can
construct the description: s1, ..., sk, for k black runs along the total edge, since we
know which adjacent DCEL-faces are coloured and which are white. We repeat this
process for every total edge.

Figure 4.9: An extended edge ei and its two respective total edges T1 and T2.

4.4.4 Solvers

This section explores the two solvers used throughout the project, the linear and
quadratic programming solver and the simple regular nonogram solver. Firstly let
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us discuss the Gurobi LP solver used for the optimisation of the size of the faces in
the subdivision. Secondly we will discuss the simple nonogram solver.

Gurobi solver

To optimise the subdivision, the Gurobi LP solver was used. Its basic functionality
closely resembles the theoretical recipe, with definition of decision variables, gen-
eration of an objective function, to be either minimised or maximised, creation of
constraints and setting of lower and upper bounds for each decision variable.

Nonogram solver and difficulty measure

Given a nonogram, we must be able to say whether it is uniquely solvable and how
difficult it is. We used a third party software which can solve all simple regular
nonograms [14]. Although our generated sloped nonograms are not regular, since
they use faces instead of cells, and edges instead of rows and columns, they can
be solved analogously to regular nonograms. For a regular nonogram, most solvers
operate row by row and column by column, so no information regarding multiple
rows and columns is needed simultaneously. The solver starts in a row or column
and generates all possible solutions for that row or column. In a solution, each cell
is either coloured, white or unknown. If some cells are already coloured or white,
the solver takes that into consideration and returns fewer possible solutions. From
all the different solutions, if one cell has the same state (coloured or white) in all
of them, then that cell must have that particular state in the solved version. The
solver determines the final state of as many cells as possible in the current row and
updates the entire structure with those new states. For instance in Figure 4.10, we
see a row with 4 cells and a description of d = (1,2 ). The only possible solution
for the solver is: coloured, white, coloured, coloured. In this case there is only one
solution which completely solves the row. The puzzle would then be updated and
the solver would move onto another column. When no more information can be
determined about a certain row or column, the solver moves onto the next column
or row. The solver stops when the state of all cells is either coloured or white, or
when no more progress can be done in any row or column, in other words, the puzzle
is not simple.

Figure 4.10: A solved row with four cells and description d = (1,2 ).

The main strength of the solver is that it only changes the state of a cell if and
only if the new state is certain. As mentioned, the solver cannot solve all nonograms,
because more complex puzzles require assumptions or even information about mul-
tiple rows and columns to determine the state of a single cell. Those features are
not implemented in the algorithm.
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As aforementioned, the solving routine for sloped nonograms is analogous to
that of regular nonograms. For our puzzles, the solver works as follows: the state
of all faces is initialised to unknown. The solver starts at a total edge. From the
description of that total edge and the configuration of faces adjacent to that total
edge, the solver generates all possible solutions and compares them to see if one
or more faces have the same state in all solutions. If so, the state of those faces
are set and the whole subdivision is updated. While the state of all faces is not
known, the procedure is repeated using the next total edge in either clockwise or
counter-clockwise order. Eventually, the state of all faces will be found and the
puzzle solved. It can happen that for a total edge, the state of none of its adjacent
faces can be determined. If so, then the solver moves onto the next total edge. If
for all total edges, the solver cannot find the state of any face, then it gets stuck
and the puzzle cannot be considered of simple type. The difficulty measure of a
solvable simple sloped nonograms is the number of total edges, where progress is
made (the state of at least one face is determined), required to know the state of
all faces in the subdivision. It may be more than the amount of total edges, if after
going through all total edges, the state of some faces is still unknown. We defined
the difficulty as such because it is simple and straightforward to compute, and we
believe it will scale well with the complexity of the sloped nonograms. The main
shortcoming of this measure is that it truly computes the number of steps required
to solve the puzzle, as opposed to the actual difficulty. As a matter of fact, a puzzle
solved through many straightforward steps will be considered more difficult than a
puzzle consisting of few complex steps according to our difficulty measure. However,
since we are only investigating iteratively solvable sloped nonograms, our difficulty
measure is quite acceptable. Appendix 8.2 shows several of our generated sloped
nonograms with their solution.
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Experiments

5.1 Experimental set-up

The sloped nonogram generation process must be a fast process, as we want inter-
active use with users, so the waiting time for generating a sloped nonogram from an
input drawing should be short. Moreover, the process should generate quality out-
put sloped nonograms. The criterion for the quality of an output sloped nonogram
is the resemblance, once solved, with its input drawing. As the puzzle generation
process is based on optimisation, we want to compare how well each objective func-
tion: min

∑2, min
∑

and min max performs from both a speed and quality output
point of view. In addition, we want to investigate the relationship between the max-
imum minimal width obtainable, and difficulty, both as functions of the number of
lines n (excluding bounding box lines). To test the generation process speed for
each objective function, we will benchmark the speed1 of the optimisation process,
because other parts of the generation process such as formatting data and rendering
the puzzle are the same in all three generation processes (using min

∑2, min
∑

and
min max). With regards to quality of output sloped nonograms, we will visually
determine whether an output sloped nonogram, when solved, resembles its input.
The maximum minimal width will be calculated using a binary-search technique.
Finally, the difficulty of each puzzle will be monitored using the nonogram solver
previously described. For experimenting we will use the inputs shown in Figure 5.1.
An explanation of why such inputs were chosen is given in Appendix 8.1.

It seems clear that solving all 2n linear programmes for min
∑

becomes infea-
sible as n becomes too large. Using 7 inputs with n = 3, 6, 9, 12, 13, 14 and 15
respectively (Figures: 5.2a, 5.2b, 5.2c, 5.2d, 5.2e, 5.2f and 5.2g), we timed how fast
min

∑
performed for solving all 2n linear programmes for each input, see Table 5.1.

Using these results we determined the value of n, nmax, until which we allow min
∑

to solve all 2n linear programmes such that the time taken by min
∑

is feasible. For
inputs with n > nmax for min

∑
, we shall only create m, with m < 2n, different

linear programmes and solve these. Those linear programmes will be constructed
through the use of random numbers. For all m linear programmes, a different ran-
dom number k in the range 0 ≤ k ≤ 2n − 1 is drawn, converted to binary of length
n. Each of the binn(k)i, (binn(k)0, binn(k)1, ..., binn(k)n) where binn(k) is the binary

1Throughout the thesis, we use elapsed time, however all computations do not require I/O or
user input, thus we believe elapsed time to be comparable to CPU time.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 5.1: The 19 inputs used for testing.

equivalent of k with length n, and i is used for indexing, is either 0 or 1. If it is 0
then δi is forced to be negative, else it is forced to be positive. By choosing different
values of k, we always create different linear programmes.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.2: Inputs with n = 3, 6, 9, 12, 13, 14, 15, Figures 5.2a, 5.2b, 5.2c, 5.2d,
5.2e, 5.2f and 5.2g respectively, used to time min

∑
.

Since min
∑

requires solving 2n linear programmes, we expect a relationship of
the form O(2n) between optimisation solving time and n. From the data shown in
Table 5.1, we notice an overall relationship slightly faster than doubling. We believe
that this is due to the setting up of the linear programmes before solving. As a
matter of fact, the larger n, the more δ variables need to be assigned bounds (either
positive or negative). This set-up increases the total time required for min

∑
, so we

get an increase slightly faster than doubling. We see that for small values of n the
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n time (s)
3 0.063
6 0.797
9 12.105
12 134.143
13 227.647
14 572.110
15 1341.302

Table 5.1: Optimisation time for min
∑

for inputs with n = 3, 6, 9, 12, 13, 14 and
15.

relationship grows faster than for larger values of n. It is explained by the fact that
the time required for solving the linear programmes, once they have been set-up, for
small n, is very short, so the setting up time heavily affects the overall time. For
large values of n, the solving time, once the linear programmes have been set-up, is
rather large compared to the setting up time, so the influence is not as large. Figure
5.3 shows a superposition of the data with a best fit function of the form f(n) = a2n

plotted on both a regular and a logarithmic scale.

(a)

(b)

Figure 5.3: Figure 5.3a shows min
∑

data for n = 3, 6, 9, 12, 13, 14, 15 and the
best fit function. Figure 5.3b uses logarithmic scale on the y-axis.
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As n increases, the time-feasibility of solving all 2n linear programmes in min
∑

shrinks. To solve this issue, we chose nmax = 12. In the extreme case n = 12, 212 =
4096 linear programmes require solving, which is feasible from a time point of view
(see Table 5.1). Therefore, for inputs with 12 lines or fewer, min

∑
will solve all 2n

linear programmes. For inputs with more than 12 lines, min
∑

will use the aforemen-
tioned sampling process, using several values for m, m = 10, 50, 100, 500, 1000, 5000.
We used values only up to 5000 because it was a close value to 212 = 4096, and is
still large enough to probably generate linear programmes with configurations of δs
which allow for feasible optimisation with min

∑
.

We want to visually compare the solutions found using each objective function for
wt = 2, wt = 3 and wt = 4, to check which objective function yields the best visual
results, where we judge how similar the output solved sloped nonograms are to their
input. The more deformed an output is from its input, the worse it visually appears.

For each input, the final value of the objective for min
∑2, min

∑
and min max

will be monitored for comparison. When optimising the subdivision according to a
method A, we shall measure the value of the objective for the other two methods
B and C, according to decision variable values found through optimising according
to A. The objective value obtained when optimising according to method A should
be smaller or equal to that of the objective value for method A measured from the
optimised variables found through optimising according to B or C.

The maximum minimal possible width threshold of each puzzle will be calculated,
to gain insight on how the number of lines n affects the final maximum minimal width
of all faces in the subdivision. To compute this maximum minimal possible width,
we use a binary-search procedure. We know that optimisation is always possible
for a target width of length 0. Therefore, we label passedthreshold = 0. If opti-
misation is possible for a target width of length 1, then passedthreshold = 1 and
target threshold becomes 2 × passedthreshold, else failedthreshold = 1 and tar-
get threshold becomes the middle point between the last passedthreshold and the
failedthreshold. While no failedthreshold is found, target threshold is obtained by
doubling the last passedthreshold. This search is continued until the width result
starts to converge towards a value.

Lastly we want to investigate the difficulty of a sloped nonogram, according
to the difficulty measure described in Section 4.4.4, as a function of the number of
lines n. The difficulty measure keeps track of the number of total edge passes, where
progress is made, the solver requires to completely solve the sloped nonogram. This
measure is not as representative of difficulty as of the number of steps required to
solve the sloped nonogram; however in our case that is acceptable.

5.2 Results

All tests were performed using Python 2.7.9 on a machine with an Intel(R) Core
(TM) i7-4720HQ @ 2.60GHz with 8 GB of RAM. Table 5.2 shows the abbreviation
used to reference input files (input drawings) in plots, as well as information regard-
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ing the inputs.

file / input drawing figure reference abbreviation n
back seven 5.1a b 8
dragon bird 5.1b db 33

fish 5.1c f 35
house 5.1d h 16
lion 5.1e l 21

man holes 5.1f mh 18
rabbit 5.1g r 15

random 5.1h ra 16
random hole 5.1i rah 20
recurs holes 5.1j re 17

running 5.1k ru 18
simple triangle 5.1l s 3

simple triangle hole 5.1m sh 7
simple triangle hole tangent 5.1n sht 7

swan 5.1o sw 14
tan cat 5.1p t 14

tan cat new 5.1q tn 13
two lads 5.1r tl 27

two squares 5.1s ts 2

Table 5.2: Input drawing names, references, abbreviations and n.

5.2.1 Visual comparison

Given an input drawing, we wish to generate a sloped nonogram which satisfies the
face size and topology constraints while still looking similar to its input once solved.
For this investigation, we shall look at three different values for wt: wt = 2, wt = 3
and wt = 4. Inputs used for investigating wt = 2 and wt = 3 are: ‘house’, ‘swan’ and
‘tan cat’. We chose those inputs because optimisation results were more noticeable
than for other inputs. For wt = 4, in both ‘house’ and ‘tan cat’ optimisation was
infeasible, we therefore used ‘back seven’, ‘swan’ and ‘simple triangle hole tangent’.

Optimisation for wt = 2 yielded uninteresting results, since none of the inputs
contain faces with a width smaller than 2. Therefore, face size constraints were
satisfied without use of optimisation. So all our inputs can be converted into sloped
nonograms in which each face has a width larger or equal to wt = 2. We thus de-
cided to investigate output sloped nonogram using wt = 2.6 instead. We chose this
value since it is fairly larger than 2, so optimisation may be more fruitful, while still
being far enough away from the next step, namely wt = 3.

Let us now compare the objective values obtained using min
∑2, min

∑
and

min max for wt = 2.6 (Table 5.3), wt = 3 (Table 5.4) and wt = 4 (Table 5.5). We
measured the objective values for each objective function using the decision variable
values obtained using each objective function sequentially. Tables 5.4, 5.3 and 5.5
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show the score of each objective function, for inputs where optimisation occurred,
thus excluding infeasible models and models in which no optimisation was required.
The first main column shows values for min

∑2, min
∑

and min max when opti-
mised according to min

∑2. The second main column, when optimising using min
∑

(m = 5000 if n > 12), and the third main column when optimising using min max.
We use m = 5000 in min

∑
, because the probability of obtaining a better solution

is higher than when using smaller values for m. The sub-columns show the score
of the three objective functions. The coloured values show the best optimal values
according to different objective functions, red is for min

∑2, blue is for min
∑

and
green is for min max.
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For each objective function the best score is obtained when optimising according
to the same function; in other words, sub-column min

∑2 shows its best results in
column min

∑2 and so on. It may be the case that the same score is also obtained
in another sub-column, nevertheless, we never encounter the case in which a score,
when optimised using method A, is worse than the score of method A computed
using the results found when optimising with method B or C. Whenever min

∑
found multiple solutions, only the one with best min

∑
score is shown.

This section explores the output solved sloped nonograms generated for ‘house’,
‘swan’ and ‘tan cat’ when using wt = 2.6. For the three inputs chosen: ‘house’,
‘swan’ and ‘tan cat’, we display four output solved puzzles. The first is a solved
unoptimised puzzle, equivalent to the user’s input. The small faces are circled in
red. The second is a solved puzzle optimised using min

∑2. The third is the best,
out of the solutions found, solved puzzle optimised using min

∑
. The last is a solved

puzzle optimised using min max.
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(d) Min max

Figure 5.4: Input ‘house’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 2.6.
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(a) Unoptimised
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Figure 5.5: Input ‘swan’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 2.6.

For all three inputs, using wt = 2.6 yielded some results. Nevertheless, looking
at Figures 5.4, 5.5 and 5.6 we can hardly notice a difference between the unopti-
mised and optimised versions. It can be noticed that in the three optimised outputs,
the width of the small faces have been increased. From Table 5.3 we can see that
for ‘house’, min

∑2 and min
∑

both obtained the same scores, namely (0.02, 0.2,
0.1) whereas min max scored (0.09, 0.9, 0.1). The solution of min

∑
may not be

the best possible since we only sample 5000 different linear programmes as opposed
to the 216 = 65536 possible. Looking closely at Figures 5.4b and 5.4c we can see
that the solutions are identical. Figure 5.4d however shows a different solution. We
see that when using min max, multiple extended edges shifted to satisfy the face
size and topology constraints. This can be explained by the nature of the min max
objective function. As a matter of fact, shifting arbitrarily many lines by amounts
smaller or equal to 0.1, in the case of ‘house’, does not worsen the overall score
of min max, which is what occurred in Figure 5.4d. Evaluating which of the three
objective functions yields the best visual output is difficult since all three outputs
(two different solutions), closely resemble the unoptimised version (Figure 5.4a), and
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Figure 5.6: Input ‘tan cat’, unoptimised vs min
∑2 vs min

∑
vs min max, wt =

2.6.

each other. Therefore, visually speaking, it seems that all three objective functions
perform equally well for input ‘house’ and wt = 2.6.

For input ‘swan’, a different solution was found by each objective function. From
Table 5.3, we notice that the solution found using min

∑
only shifts a single extended

edge by 0.14. We can infer this since the minimum maximal shift has magnitude
0.14 and the sum of all shifts is also 0.14. As n = 14 for ‘swan’, we used 5000
different configurations of the problem. Looking at the unoptimised solved puzzle
of ‘swan’, we notice that the width of the two small faces can be increased by pos-
itively shifting the negatively diagonal edge bounding them. This extended edge
only bounds fairly larger faces on its right side, hence a small positive shift will not
create new small faces. Out of the 5000 random configurations, one was created in
which the bounds on the δs allowed for such a shift, thus solving the problem. Had
we used a smaller value for m, this configuration may not have been created and a
worse solution may have been found.
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The solution found using min max shifted many extended edges by small amounts.
As a matter of fact, the minimum maximal shift obtained using min max is 0.094,
but the score for sub-columns min

∑
is 0.73. This means that the sum of all shifts,

where shifts have a magnitude of 0.094 or less, equals 0.73, so many extended edges
were shifted. From a visual point of view, it is once again hard to notice a difference
between the three solutions as they all closely resemble the unoptimised solved puz-
zle. Therefore, it seems that all three objective functions visually performed equally
well for input ‘swan’ and wt = 2.6.

For input ‘tan cat’, three different solutions were found. Similarly to the other
two inputs, the solution found by min max shifted many extended edges, that is
inferred by the fact that the measurement of min

∑
in the min max column of Ta-

ble 5.3 shows a score of 2.73, as opposed to the much lower score obtained for the
min

∑
scores in the min

∑2 and min
∑

columns. However, it is difficult to visually
notice a great difference between the three solutions. Once again, since there is no
clear visible deformation in each solution, it seems that the three objective functions
visually performed equally well for input ‘tan cat’ and wt = 2.6.
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Let us now investigate output puzzles when using wt = 3. Once again, each
Figure shows a solved unoptimised puzzle, equivalent to the user’s input, where
the small faces are circled in red, a solved puzzle optimised using min

∑2, the best
solved puzzle, out of the solutions found, optimised using min

∑
and a solved puzzle

optimised using min max.
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Figure 5.7: Input ‘house’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 3.

Regarding the results for ‘house’, looking closely at Figures 5.7b and 5.7c, we
see that they are identical. As a matter of fact the solution found using min

∑2

and min
∑

involves shifting the same extended edges as for wt = 2.6 except by a
greater magnitude. Min max, however, found a different solution, in which many
extended edges were shifted by small magnitudes. Overall, it is difficult to say which
of the two different solutions displayed looks better, since they look so similar. It is
clear however that the two solutions very closely resemble the unoptimised. From
our solutions for ‘house’ with wt = 3, the three objective functions seem to visually
perform equally well.
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Figure 5.8: Input ‘swan’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 3.

These results for ‘swan’ show that when using min
∑2 and min max, several ex-

tended edges were shifted, whereas when using min
∑

only a single extended edge
was shifted. The solution found using min

∑
is the same as for wt = 2.6, except that

the extended edge which moved was shifted by a larger amount, which make sense
as the width threshold increased from wt = 2.6 to wt = 3. Even though different
extended edges shifted in all three output puzzles, they all look very similar to the
unoptimised. From those outputs puzzles, there is no clear better objective function
for ‘swan’ with wt = 3.

The output puzzles for ‘tan cat’, resulting from optimisation using min
∑2 and

min
∑

are identical, but differ from the one resulting from min max. Once again,
the difference between the two solutions and the unoptimised puzzle is hardly no-
ticeable, so we cannot state that one objective function yields better visual results
than the others for ‘tan cat’ and wt = 3.
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(d) Min max

Figure 5.9: Input ‘tan cat’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 3.
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Let us now investigate output puzzles when using wt = 4. We are using two
different inputs: ‘back seven’ and ‘simple triangle hole tangent’, since optimisation
with wt = 4 in both ‘house’ and ‘tan cat’ is infeasible. Once again, each Figure
shows a solved unoptimised puzzle, equivalent to the user’s input, where the small
faces are circled in red, a solved puzzle optimised using min

∑2, the best solved
puzzle, out of the solutions found, optimised using min

∑
and a solved puzzle opti-

mised using min max.
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Figure 5.10: Input ‘back seven’, unoptimised vs min
∑2 vs min

∑
vs min max,

wt = 4.

With wt = 4, we start to notice a visual difference between the unoptimised
version and the solutions found using min

∑2, min
∑

and min max. Regarding
‘back seven’, we clearly see that in the optimised versions, the vertical part of the
inverted seven is thinner. From the input, Figure 5.10a, we see that the two small
faces are located on both sides of the vertical part of the inverted seven. Therefore,
one way to increase the width of those faces is to thin-out the vertical part of the
inverted seven, which is what occurs in all three solutions. The solution found using
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min max once again shifts many more extended edges than the other two solutions.
Although a difference is noticeable between the input and the solutions found, the
solutions look very similar to each other, so we cannot state that one objective func-
tion performs better than the others for input ‘back seven’ and wt = 4.
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Figure 5.11: Input ‘swan’, unoptimised vs min
∑2 vs min

∑
vs min max, wt = 4.

For input ‘swan’, we see a clear difference between the unoptimised and optimised
puzzles. The small faces, at the bottom of the neck are much larger in the optimised
versions. Although the three solution all look different from the input, we cannot
say which objective function produces the best output puzzle for input ‘swan’ and
wt = 4, as all solutions still look like swans and do not heavily differ from each other.
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Figure 5.12: Input ‘simple triangle hole tangent’, wt = 4.

For input ‘simple triangle hole tangent’, we once again notice a visual difference
between the unoptimised and the optimised puzzles. All three solutions look similar
to each other, so we cannot state that one objective function is better than the
others for ‘simple triangle hole tangent’ with wt = 4.

Overall, for width threshold wt = 2.6 and wt = 3, differences between unop-
timised puzzles and their optimised solved output puzzles, using either objective
function, were hardly noticeable. For wt = 4, we can see a difference between unop-
timised puzzle and the optimised output solved puzzles, however, there is not clear
difference between the solutions themselves. It is therefore not possible, given the
current data, to state that one objective function yields better output sloped nono-
grams than the others. From our results, we never experienced a great deformation
in which the input is not recognisable anymore. It seems, given the current data,
that the optimised puzzles still look very similar to their input, no matter which
objective function is used. More work should be done, using more inputs, to clearly
identify whether the use of one particular objective function yields better sloped

48



CHAPTER 5. EXPERIMENTS

nonograms.

5.2.2 Speed

We compared the speed of all three optimisation techniques: min
∑2, min

∑
and

min max. The prediction is that min
∑2 and min max will be approximately equally

fast, since they both only require solving a single quadratic / linear programme. We
predict that min

∑
will perform 2n times slower than min

∑2 and min max for in-
puts with n ≤ 12, and m times slower for inputs with n > 12. The prediction
originates from the number of linear programmes min

∑
is required to solve.

The data is gathered from running the optimisation on all inputs for wt = 3.
Optimisation was performed six times, each time varying m, (m = 10, 50, 100, 500,
1000, 5000). For all inputs we calculated the average time required to optimise
a single quadratic / linear programme for each optimisation routine. For min

∑2

and min max, that was just the time taken to solve the whole problem, whereas
for min

∑
, that was

tmin
∑

2n
if n ≤ 12, where tmin

∑ is the time taken by min
∑

to

solve 2n linear programmes, and
tmin

∑
m

m
if n > 12, where tmin

∑
m is the overall time

taken by min
∑

for solving m linear programmes. The results are shown in Table
5.6, as well as in Figure 5.13. In Figure 5.13 red dots represent individual times for
min

∑2, blue dots for min
∑

and green dots for min max.

input n taverage min
∑2 taverage min

∑
taverage min max

b 8 0.0158 0.0127 0.0158
db 33 0.2782 0.2793 0.3017
f 35 0.2863 0.2850 0.3123
h 16 0.0312 0.0349 0.0367
l 21 0.0957 0.0953 0.1030

mh 18 0.0678 0.0713 0.0810
r 15 0.0415 0.0422 0.0467
ra 16 0.0547 0.0486 0.0547

rah 20 0.0782 0.0801 0.0856
re 17 0.0470 0.0413 0.0442
ru 18 0.0833 0.0713 0.0780
s 3 0.0155 0.0033 0.0160

sh 7 0.0157 0.0094 0.0155
sht 7 0.0150 0.0086 0.0155
sw 14 0.0317 0.0332 0.0440
t 14 0.0337 0.0393 0.0392

tn 13 0.0363 0.0370 0.0390
tl 27 0.1403 0.1434 0.1563
ts 2 0.0155 0.0040 0.0160

Table 5.6: Average solving time for a single programme using min
∑2, min

∑
and

min max for wt = 3.
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Figure 5.13 shows that as n increases, the time required for optimising a single
programme, no matter the objective function, also increases. This is what was ex-
pected, as with larger n, more constraints are generated, increasing the time needed
to find a solution. The actual relationship between optimisation time of a single
programme and n could be determined because the inputs used do not spread the
n range evenly enough. As a matter of fact, many inputs contained similar number
of lines. Fitting a function to the data would have been heavily affected by the few
inputs with much smaller or larger n, such as ’two squares’ and ‘fish’ respectively.
Moreover, we did not have much information regarding the theoretical running time
of the linear programming solver as a function of the number of constraints.

The data from Table 5.6 shows that for most inputs, the time taken to solve a
single programme using min

∑2, min
∑

and min max is approximately the same.
A large difference, between min

∑
and the rest, is noticed for ‘two squares’ and

‘simple triangle’, which are the inputs with fewest lines, n = 2 and n = 3 respec-
tively. This is also noticed, to a lesser extent, for inputs with n < 10. Overall, we
believe that a single programme optimised by min

∑
should be solved faster than

when using min
∑2 or min max, because the search space for values of δ is greatly

reduced by forcing each δi to be either positive or negative. As n increases, setting
up the min

∑
problem becomes longer, since we must assign bounds to each δ, so

the pruning of the search space may not make as much of a difference in terms of
optimisation speed compared to min

∑2 and min max.
It also seems that as n grows, min max becomes slower than the other two

techniques, for solving a single programme. This is observed in ‘lion’, ‘two lads’,
‘dragon bird’ and ‘fish’. A reason may be that by nature, min max requires two ex-
tra constraints per decision variable compared to min

∑2 and one extra constraint
compared to a single linear programme from min

∑
. The time spent satisfying those

extra constraints may only become apparent when n grows.
For the rest of our inputs, taverage min

∑2 ≈ taverage min
∑
≈ taverage min max, so

we can conclude that min
∑2 is approximately as fast as min max, and that min

∑
is slower than the other two by a factor of 2n when n ≤ 12 or by a factor of m when
n > 12, which is what was predicted. More work on larger inputs should be done to
verify whether min max does slow down compared to min

∑2, and if so, how fast.
If that were the case, min

∑2 would be considered the fastest technique.

5.2.3 Maximum minimal width

Let us now look at another experiment, aimed at finding the maximum minimal pos-
sible width max minwidth such that all faces in the subdivision after optimisation
have a width greater or equal to max minwidth. This measurement is interesting
because it gives us insight on how much the width of each face can be optimised
as a function of n. The prediction for this measurement is that as n increases, the
maximum minimal possible width for each face decreases. The reason for such a
prediction is fairly straightforward: when more lines are added to the subdivision,
more constraints are generated, making optimisation for a large width more difficult
and sometimes impossible. Results on the maximum minimal width for each input
are shown in Table 5.7.

51



CHAPTER 5. EXPERIMENTS

input n max minwidth
b 8 7.125
db 33 2.5
f 35 2.5
h 16 3.0625
l 21 2.5625

mh 18 2.75
r 15 2.75
ra 16 2.75
rah 20 2.5

input n max minwidth
re 17 3.75
ru 18 2.625
s 3 23.5625
sh 7 10.25
sht 7 11.25
sw 14 4.25
t 14 3.015625

tn 13 3.125
tl 27 2.5
ts 2 50

Table 5.7: Maximum minimal width max minwidth for each input, such that all
faces have width larger or equal to max minwidth.

Figure 5.14: Relationship between maximum minimal width max minwidth and
number of lines n.

Figure 5.14 shows a rapidly decreasing relationship between the maximum min-
imal width and n for small n and a slowly decreasing relationship for large n. Using
the pigeon-hole principle, we can explain that the relationship should be an inverse
function of order O( 1

n
). Let us have a subdivision with n lines arranged as n

2
hori-

zontal and n
2

vertical lines equally spaced creating a grid with n
2

+ 1 square cells per
row and column. The entire subdivision therefore has (n

2
+ 1)2 square cells, which

is O(n2). We use that arrangement such that the maximum size of the smallest cell
can be identified. Label the size of a cell in the grid arrangement scell. Using any
other arrangement would create larger and smaller faces than the cells, therefore
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the smaller face would have size sface < scell, so no upper bound on the size of
the smallest face could be identified. However, we can derive an upper bound on
the size of cells in the grid arrangement. If the entire subdivision has area 1, then
the upper bound on the area of cells is 1

(n
2
+1)2

which is O( 1
n2 ). Since all cells are

squares and their areas are O( 1
n2 ), then their width must be O( 1

n
). Mathematically

speaking, as n → ∞, then max minwidth → 0. The can be explained by the fact
that with more lines, faces become smaller, so optimisation for large width is no
longer possible. Therefore as the number of lines increases in the subdivision, the
maximum minimal possible width max minwidth for all faces decreases.

Figure 5.15 shows a best fit inverse function of the form f(x) = b
x
, namely:

f(x) =
84.4303

x
(5.1)

Figure 5.15: Relationship between maximum minimal width max minwidth and
number of lines n, with fitting inverse function.

5.2.4 Difficulty

Table 5.8 shows the difficulty as computed by the solver for each input. Notice that
for ‘two squares’, the solver got stuck and returned -1. That is what was expected
as ‘two squares’ does not belong to the class of simple nonograms.

It is obvious that as n increases the difficulty will increase too, but predicting
by how much is complicated. With more lines, more faces are created, thus creating
more possibilities for colouring the faces. Figure 5.16 shows the difficulty of puzzles
as a function of n. As expected, from the data, we see that as n increases, so does
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input n difficulty
b 8 11
db 33 79
f 35 89
h 16 32
l 21 42

mh 18 34
r 15 23
ra 16 25
rah 20 28

input n difficulty
re 17 26
ru 18 32
s 3 4

sh 7 12
sht 7 11
sw 14 22
t 14 23
tn 13 22
tl 27 56
ts 2 -1

Table 5.8: Difficulty of each input.

the difficulty. Fitting a function to the data cannot be done properly since we have
neither enough data, nor a theory from which the basic shape of the fitting function
could be determined. It seems that n plays a large role in determining the diffi-
culty, however as much variation in difficulty, for puzzles with 13 ≤ n ≤ 20, occurs,
it seems to indicate that n is not the only factor which affects the difficulty. We
believe that the geometry of the input also plays a large part in determining the
difficulty of a puzzle. More work should be done to identify all parameters which
affect the difficulty and determine how they affect difficulty.

Figure 5.16: Relationship between difficulty and the number of lines n.
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Conclusion

The main goal of this project was to create a method for generating good sloped
nonograms from input drawings. Those nonogram were forced to satisfy multiple
constraints: the width of their faces had to be larger or equal than some threshold
wt, they had to be topologically the same as their input, and they had to belong to
the simple nonogram class. Moreover, the solved sloped nonograms had to resemble
their input. Some of those constraints were not always satisfied, due to the nature
of the inputs. All inputs could be converted into sloped nonograms in which each
face has a width larger or equal to wt = 2. That was the original size we considered
small. Regarding larger values of wt, for many inputs, optimisation was infeasible.
In addition, all inputs but ‘two squares’ belong to the simple type of nonogram,
so they are uniquely solvable and can be solved iteratively. ‘Two squares’ has two
solutions, so it is not simple.

Looking back at the project, we can generate sloped nonograms from input draw-
ings if the drawings are valid. The face size constraint is taken care of through the
optimisation procedure. For some inputs, optimisation is infeasible. Optimisation
enforces minimal deformation of the inputs, so the solved output nonograms look
very similar to their input. Optimisation also enforces the topology of the puzzle
to stay intact. The simpleness of the output nonograms is checked by the nono-
gram solver. Therefore the main goal was achieved. Regarding our other goals:
investigating which objective function performs best, investigating the relationship
between the maximum minimal width and the number of lines n, and investigating
the relationship between the difficulty and the number of lines n, the results were
not as clear as we wanted.

Finding which objective function performed best was based on speed and visual
aspects of the output solved sloped nonograms. Both min

∑2 and min max seem
to perform at similar speeds for inputs with n < 30. We noticed that for larger
inputs, min max seems to be slower, however, more investigating needs to be done
to confirm this observation. Regarding min

∑
, it performs slower by a factor of 2n

for inputs with n ≤ 12 and by a factor of m for inputs with n > 12 since we sam-
pled m random linear programmes. Therefore from the speed point of view min

∑
definitely is the worse objective function. We cannot yet say which of min

∑2 and
min max is fastest at the moment.

With regard to visual quality of output solved sloped nonograms, we cannot state
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which objective function performs better, as with all inputs tested, solutions found
by each objective function very closely resembled the input. We never experienced
a great deformation in which the input was no longer recognisable. It seems that,
with our tested inputs, the choice of objective function does not heavily influence
the quality of output puzzles.

Investigating the relationship between the maximum minimal width obtained
through optimisation against the number of lines n yielded very interesting results.
The inverse relationship found of order O( 1

n
) tells us roughly how fast the maximum

minimal width obtainable through optimisation shrinks as n increases.

Computing the difficulty measure was done using a nonogram solver. The main
issue with the measure used is that it does not really take into account difficulty,
but rather the number of steps required for solving. However, because all our puz-
zles were of the simple type, the main degree of difficulty is the number of steps
required for solving. Investigating the relationship between the difficulty and n did
not yield great results. There were variations in the data, which probably means
that difficulty also depends on other factors than n. We believe that the geometry of
the input influences the difficulty greatly, however we did not investigate this further.
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Future work

Regarding the work done in this thesis, much still remains to be done to either
strengthen our findings, or actually further investigate questions we did not manage
to answer. Determining which of min

∑2 and min max is fastest needs to be looked
at for large inputs. We noticed a time increase in solving time for min max for large
n, but we only have few inputs with such characteristics, which is not enough to
reach any conclusions. Regarding visual output quality, more investigating should
be done to determine whether one of the objective function yields better visual re-
sults than the others.

Exploring in greater details the parameters which affect the difficulty, as defined
in the thesis, is needed. We saw that n does heavily influence the difficulty but
the data seems to show that other parameters also play a role. Moreover, we realise
that using the number lines n for determining relationships with optimisation speed,
maximum minimal width and difficulty was not the best solution. Using the num-
ber of faces would have yielded more interesting results, because those are clearly
connected to the number of constraints in the problem.

Regarding the field, a great amount of research is still possible. First of all,
defining a proper difficulty measure is required, as the one we used monitors the
number of steps required for solving the puzzle. For a proper difficulty measure to
be defined, there first needs to be work done on creating difficult sloped nonograms.
Research is being done on creating difficult regular nonograms, which could then be
converted into sloped nonograms. Moreover, extensions of sloped nonograms such
as coloured sloped nonogram could be investigated.

The initial idea was to create sloped nonograms with arbitrary slopes. Trying
to implement arbitrary sloped nonograms should be interesting and quite challeng-
ing, since the geometry of the faces is not as simple as when only using 4 slopes.
Along the same lines is the generation of nonograms based on curves as opposed to
lines. The overall framework is fairly similar to arbitrary sloped nonograms, but the
implementation differs.
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Chapter 8

Appendix

8.1 Inputs

• Back seven (Figure 8.1a) is a fairly simple input, consisting of 8 lines. From
its geometry, it is quite clear that the width of its faces can be increased by a
considerable amount, making it an interesting example from the optimisation
point of view more than from the sloped nonogram point of view.

• Dragon bird (Figure 8.1b) is a very complex input. It contains 33 lines and
two entities, which allows for more complicated total edge descriptions.

• Fish (Figure 8.1c) is the most complicated input, as far as number of lines
goes. It contains 35 lines and three entities, one on the left, one in the middle
and one on the right, each at somewhat different heights. A very complicated
puzzle should be generated for this input.

• House (Figure 8.2a) is somewhat complex, consisting of 16 lines. Moreover it
contains holes to depict the windows. However it seems like its optimisation
possibilities are quite limited, as the geometry of the figure will not allow for
face width optimisation.

• Lion (Figure 8.2b) is a somewhat complex input with 21 lines.

• Man hole (Figure 8.2c) is a more interesting input as it is complex and rep-
resents an actual entity. It consists of 18 lines forming three main polygons:
the body and the head, and the hole in the chest, whose sole purpose is to
complicate the input.

• Rabbit (Figure 8.3a) is interesting as its left bottom side, where the paws
and legs are located is a fairly compact and dense region. The results of the
optimisation for that particular area should to be interesting. Moreover, it is
quite different from the previous inputs as most of its lines are diagonals.

• Random (Figure 8.3b) does not represent anything, nevertheless it was con-
structed under specific guidelines. As a matter of fact, we can see that in
two parts of the input, the lines go into the centre of the drawing while not
creating an entire hole. It should be interesting to see how such characteristics
will behave under face width optimisation.
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• Random hole (Figure 8.3c) is the same as the previous input with the addition
of a non-rectangular hole. It should be interesting to see how this input differs
from the previous one, and the conclusions which can be drawn on the effects
of holes on face width optimisation. Moreover, non-rectangular holes may
behave differently from rectangular ones.

• Recurs holes (Figure 8.4a) also does not represent anything, but its main char-
acteristic is that it consists of a polygon within a hole. From a nonogram point
of view, it is fairly interesting as it will undoubtedly generate more complex
total edge descriptions, which can then be further exploited by the user for
solving purposes.

• Running (Figure 8.4b) is quite a complex input. Face optimisation will proba-
bly not result in great changes as it seems that some faces will be constrained
to remain small. The nonogram on its own should to be interesting and fairly
complex to solve.

• Simple triangle (Figure 8.4c) is very simple. The reason for such an input is to
see how far face width optimisation can go. It seems like the triangle can grow
until the faces bounded by the bounding box decrease in width up until they
are just large enough to satisfy the face size constraint. Therefore this input
should be a good test for face width optimisation, yet from a puzzle point of
view, it is totally superfluous.

• Simple triangle hole (Figure 8.5a) is the same as the previous input except for
the hole it contains. Once again, the input will be used to compare optimisa-
tion results of a subdivision, with and without holes.

• Simple triangle hole tangent (Figure 8.5b) is also the same as 5.1l except that
the hole is now tangent to the hypotenuse of the triangle. The difference is
that now we have a quadruple intersection which must stay intact in the final
subdivision. Comparing the face optimisation results of this input with that
of simple triangle hole will give some insight on how the placement of a hole
affects face optimisation results.

• Swan (Figure 8.5c) is interesting because its contour is fairly round. However,
it is not as complicated as other inputs, so it should yield good optimisation
and puzzle results.

• Tan cat (Figure 8.6a) is an input with some interesting characteristics such
as the narrow part of the tail. The tail will create two small triangular faces,
which will need to be optimised.

• Tan cat new (Figure 8.6b) is slightly less complex than the previous tangram
cat. Comparisons with the other tangram cat could be interesting.

• Two lads (Figure 8.6c) is one of the most complex input. It consists of several
distinct polygons. Optimisation-wise it probably will not perform well because
the subdivision will be very cramped and will not allow small faces to increase
in width. From a puzzle point of view, it is very interesting as it should be
quite complex to solve. Its difficulty should probably be the highest of all
inputs.
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• Two squares (Figure 8.7a) is interesting from the solver point of view because
it is not uniquely solvable. Therefore it is a good test to check whether the
solver will get stuck or not.

(a) Back seven (b) Dragon bird (c) Fish

Figure 8.1: Back seven, dragon bird, and fish.

(a) House (b) Lion (c) Man hole

Figure 8.2: House, lion and man hole.

(a) Rabbit (b) Random (c) Random hole

Figure 8.3: Rabbit, random and random hole.

(a) Recurs holes (b) Running
(c) Sim-
ple triangle

Figure 8.4: Recurs holes, running and simple triangle.
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(a) Sim-
ple triangle hole

(b) Sim-
ple triangle hole tangent (c) Swan

Figure 8.5: Simple triangle hole, simple triangle hole tangent and swan.

(a) Tan cat (b) Tan cat new (c) Two lads

Figure 8.6: Tan cat, tan cat new and two lads.

(a) Two squares

Figure 8.7: Two squares.

8.2 Sample sloped nonograms
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(a) Dragon bird

(b) Dragon bird solved

Figure 8.8: Dragon bird nonogram.
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(a) Fish

(b) Fish solved

Figure 8.9: Fish nonogram.
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(a) Lion

(b) Lion solved

Figure 8.10: Lion nonogram.
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