Procedural generation of populations for storytelling

September 22, 2015

ACKNOWLEDGEMENTS

I would like to thank Rafael Bidarra and Ben Kybartas for allowing me to
do my thesis with them in Delft, and their patience in helping me with the
project. Ben has helped a great deal coming up with solutions for
problems that arose, brainstorming together to get possible solutions.
Rafael and Ben pushed me toward writing a paper about my thesis and
helped me write it, resulting in a publication[8]. I would like to thank
John-Jules for being my supervisor-from-afar in Utrecht, letting me do my
own thing in Delft, but there for me once I needed to conclude things in
Utrecht. Finally, I would like to thank my parents for supporting me
throughout my studies.

Abstract

Procedural world generation is often limited to creating worlds devoid of
people and any background. Because of this, creating a vibrant, living world
is still a problem that requires a skilled designer. In this thesis, we present a
method that generates a socially connected population in any virtual terrain,
using a mixed-initiative simulation of settlements that adapt to the world
and to a designer’s input. Using this simulation, we develop a number of
sample worlds that convey the expressive potential of the approach. We
further evaluate ease of use with a user study. As a proof-of-concept, we
implement the system to bridge the output of a terrain generation tool to
the input of a narrative generation tool.

Contents

Motivation

Introduction
2.1 Related Work
2.2 OVEIVIEW o

Method description

3.1 Definitionso
3.2 Designing the virtual world
3.3 Simulating the virtual world
3.4 Population generation,
Method design
4.1 Biases e
4.2 3D visualizationo Lo Lo
4.3 Procedural terrain Lo
4.4 Two stage algorithm
4.5 Evolutionary Algorithm
4.6 Prototypes
4.7 Mixed initiative approach
4.8 Resource-based heuristic oL
4.9 Districts
4.10 Hierarchical design,
4.11 Relations
Implementation
5.1 Overview e
5.2 Method implementation
5.2.1 Landscapeloading
5.2.2 Population Simulator

10
14
16

18
18
19
19
19
20
20
21
21
22
23
23

5.2.3 Optimization
5.3 GUI Implementation

6 Application
7 Evaluation
8 Conclusion

Appendices

33

38

40

44

Chapter 1

Motivation

Whenever someone asks me what artificial intelligence will allow us to do
in the future, first I ask them what their job is. Then, I proceed in telling
them that their job will almost certainly be taken over by robots... and that
I will be making those robots. To me, the question is not if robots take
over every single one of humankind’s jobs, it’s when - preferably, as soon as
possible! We are not there yet though, and my thesis is meant to contribute
to this arguably noble goal. Of all the possible jobs robots and computers
could take over, my thesis focuses on taking the jobs of story writers.

As I have always been interested in procedural content generation, it
was clear to me I wanted to do something in that field. To me, procedural
generation is very interesting because in a way it allows a computer to
be creative - and creativity is a typical trait that gets attributed solely
to humans, and perhaps animals. I do not believe humans are all that
special - we have no secret hidden ingredient that allows us to be creative,
an ingredient that computers supposedly cannot have. Still, jobs involving
creativity will probably be among the last to be stolen by computers, and
with my thesis I hope to contribute in making this process faster.

When I first heard the term "Procedural Storytelling’ I was immediately
intrigued by the idea of having computers create stories by the press of a
button. Just imagine feeling like reading a book and being able to create
one simply by stating what it should be about, or playing a computer game
that has infinite story content because it just generated its plot!

Utrecht University did not really have a department dealing with pro-
cedural population, so instead I visited Rafael Bidarra at TU Delft and
got introduced to Ben Kybartas. Ben was already working on procedural

storytelling and together we made a plan for my own thesis. Procedural
generation of stories is not a trivial problem, and of a much greater scope
than a master’s thesis project. Also, Ben had already done research and
created ReGEN, a system that can automatically generate narratives based
on an existing world.

Since procedural terrain generation tools already exist, and Ben’s system
needed a populated world for input, the missing link was clear, and with it
our research question:

How can we procedurally generate a population fit for storytelling using
an existing terrain?

Chapter 2

Introduction

Procedural generation techniques are often necessary for creating the di-
verse, rich worlds found in many exploration and role-playing games. Games
like SKYRIM [2] make use of procedural landscapes and, uniquely, procedu-
ral story generation (in the form of the Radiant Quest system). However,
the landscapes by themselves are boring and lifeless, and fail to provide the
most important elements for a story, the people. We argue that to better
integrate story generation into existing procedural generation techniques, we
need to explore methods for creating populations that contain the necessary
data to be used for story generation. DWARF FORTRESS [1] notably creates
worlds filled with an overwhelmingly diverse population, by simulating the
history of the world, creating towns, populations and social relations out
of the evolution of this world over time. This leads to very diverse results,
however the methods of DWARF FORTRESS do not allow for designer intent
and are therefore inescapably tied to one context.

This thesis describes a method that takes a landscape as input, and
uses a designer-driven historical simulation to generate an entire popula-
tion, complete with settlements, individual people and social relations. The
designers can customize their worlds in a number of ways, and work at the
level of population building rather than individual character design. Us-
ing the definitions provided by the designer, a world is simulated, using an
optimization algorithm based upon evolutionary algorithms to accurately
determine whether populations migrate, collapse, or develop new relations
with each other. In the case of offline generation, the designer is granted fur-
ther interactions during simulation, to be able to fine-tune the positions and
layouts of their populations as seen fit. A massive set of characters are cre-
ated as the result of this simulation, complete with relations and properties

relating to their corresponding settlement. Since the population is created
after the simulation, the user has full control over its size. For experimenta-
tion, the algorithm has been tested with a variety of input landscapes and
population designs, and an evaluation was performed to determine the ease
of use and openness of the algorithm to iterative design. Furthermore, as
a proof-of-concept, the algorithm has been successfully used to connect a
sketch-based landscape generation tool [15] to a narrative generation tool
specifically geared towards creating quests for RPG games [9)].

2.1 Related Work

Storytelling systems which work with large populations are quite rare. In
interactive fiction, the worlds are typically populated with a small number
of well-defined, complex, hand-authored characters. Even larger scale emer-
gent storytelling games such as McCoy et al.’s PROM WEEK [13] contain
relatively few characters.

Typical approaches to combining procedural content with game worlds
have focused on tying the story directly into the world generation, by cre-
ating dungeons [4], maps [16] or even entire game worlds [7]. In the latter
case characters are generated, but only to serve particular events in a given
plot. Our approach, instead, targets emergent game environments, in that
we do not care about the representation of a single story, but in creating
what Mateas [11] describes as a narratively pregnant world, one rich with
potential for many stories.

Lebowitz [10] explored methods for creating characters to be used for
storytelling in his UNIVERSE system. His focus was on creating characters
with a personality that was consistent and coherent with an existing world.
However the goal of that study was to create complex new characters that
integrate properly into a hand-authored set of characters. Our method does
not focus on creating complex, completed characters, but instead on large-
scale populations with plausible and consistent interrelations.

The history generation of DWARF FORTRESS [1] served as inspiration for
our approach to population generation. While the details of the generation
are unknown, the game creates relatively templated characters, but situates
them in a world in which several hundred years of history are simulated.
Likewise, the large scale approach to having relations between settlements
is inspired by the complex social relations present in CRUSADER KINGS
IT [14], where European countries develop alliances and conflicts based on
events during game play.

Even though population generation is never mentioned, Emilien et al. [5]
use an algorithm based on lichen growth [3] to determine the placement of
villages in an arbitrary terrain. Inspired by the results of this method, we
expand upon the original method to integrate social interactions and support
population generation.

2.2 Overview

Our method can produce a world populated by virtual characters that can
be used for storytelling, using an empty landscape as input. The result-
ing population is not just a large set of randomly generated characters -
each character has a little background and relations to other characters and
places in the world. Characters generated by our method are simple, but
still contain enough information to allow them to become a believable and
interesting part of a story, while all of this information is still consistent
with other characters from the population.

To create our population, we simulate a number of settlements in the
landscape, much like the method described by Emilien et al. [5]. These set-
tlements form the basis of the creation of the population, as each settlement
represents a sort of blueprint for the characters that are generated from
them.

We use an algorithm that optimizes the fitness score of each settlement,
which is determined by the landscape and the designer-defined way the
settlement interacts with this landscape and other settlements. Our method
lets these settlements optimize, and also allows relations between them.
We allow a designer to create populations by looking at the landscape and
specifying how characters would live there. They can design the types of
settlements they’d like to see as well as the relations that may exist, and
simulate the world until the results are satisfactory.

Chapter 3

Method description

In this section, we take an in-depth look at the proposed method, how to
design a population, and how the simulation and character generation take
place.

3.1 Definitions

The input of our method, the landscape, is defined as
(Hp, T, (F))

where H,, is a height map, T, is a terrain type map, and F' is an optional
set of terrain features such as forests and rivers. The height map repre-
sents the height of the terrain in meters as a float value for each pixel. The
terrain type map simply indicates the terrain type for each pixel on the ter-
rain. Examples of these terrain types are grasslands, mountains, hills, etc.
Both the terrain types and terrain features can be defined by the designer
and are used later to determine where settlements, and their inhabitants,
prefer to be. In the implementation, we used input directly from SKETCHA-
WORLD [15], which contains both this height data, terrain type data and
terrain feature data. It was very easy to convert this to our own format,
allowing us to use SKETCHAWORLD to quickly create a landscape with.

The output of our method is a population composed of virtual characters.
A character is defined as
(S,D, R)

where S is the character’s settlement, D is the character’s district, and R is
the set of relations this character has to other characters and settlements.

The characters generated by our method are relatively simple: they do not

have a strong personality, life goals or a specific history. What they do have,

however, is a general but consistent background and social network, which

should make it fairly easy for a storyteller to adapt them to be more specific.

Essentially, our characters are nodes in a population’s social network. We

define no id, but instead leave it up to the storytelling system to define that.
A settlement is defined as

<P7DZ7R7PT>

where P is a position in the virtual world, D is a list of one or more districts,
R is the set of relations this settlement has with other settlements and
P, is this settlement’s prototype. Settlements are used as the main tool
for creation of the population, as they serve as a blueprint for characters
generated from them.
A district is defined as
<N s Fa, Ra>

where IV is a list of needs, Py is a list of products and R, is a list of rela-
tions this district allows its parent settlement to use. A settlement adopts
needs, products and allowed relations from its districts, making districts an
important building block of settlements.

A product is a resource function, much like those used by [5] and [3].
These functions can be seen in figure 3.1. Examples for use of these functions
are distance from water (Close distance function), terrain slope (Balance)
and terrain types that provide resources - woods, mountains, water (for
fishing) and fertile land (Open distance function). These functions are es-
pecially well suited for our optimizing algorithm, as their gain diminishes as
they approach the optimum. To illustrate the difference between an open
and a close distance function, consider a village that wants to be as close to
the water as possible because fishing will be easier (open distance function).
If the village gets too close however, it might be victim of a flood. Similarly,
a hunting village might not want to live too close to a wood because of wild
animals attacking villagers.

A relation is defined as a

(T, Ss, Dy, Re, (A))

where T' is the relation’s type, Sy is the set of settlements the relation ap-
plies to, D is the pair of distances relevant for this relation (a preferred
distance and a maximum distance), R, is the set of resources that can be

Attraction-Repulsion Open

Balance Close

Figure 3.1: The resource functions[5] used by a district to determine its
resource production efficiency. The x-axis is the relative distance from the
terrain feature that allows resource income, the y-axis is the resource fitness
- the amount of resource produced.

exchanged for this relation, and A is the relation’s optional attitude, which
might restrict other relations from forming once an attitude is established.
Relations form an important way for settlements to exchange resources, and
also a strong basis for the relationships between the characters in the pop-
ulation.

3.2 Designing the virtual world

To create a world, a designer needs to define three of the method’s main
ingredients: Districts, Relations and Prototypes. Also, designers must tell
the system how many settlements they want of each prototype, and from
there they can just watch the world unfold, interfering if desired.

The relations and districts are strongly tied to the population that is
later generated: Any relation that is between two settlements will cause
such relations to exist between members of their respective populations,
while districts can say a lot about a character’s background. Prototypes
have an indirect effect, as they force settlements to adopt a certain stereo-
type. The effect is that rather than adapting to the world, the settlement

10

Figure 3.2: Left: A simple island with only fishers and farmers, no relations
and no defined prototypes. Right: A simple island with only fishers, farmers,
no relations, but with two prototypes that cause a designer-defined amount
of fishers (8) and farmers (8) to exist.

should instead find its optimal place in the world. Essentially, prototypes are
an additional modifier for the evolutionary algorithm’s objective function,
causing those settlement that conform to their prototype to score higher.
The effect on a settlement’s fitness is strongly determined by the user’s
design of the prototype, making it a efficient tool for guiding the popula-
tion’s generation. To illustrate the strong effect of prototypes on designing
a world, consider Figure 3.2. In the first image, we did not design any pro-
totypes, and designed fishers to be slightly more efficient at producing food
when close to the sea. As a result, most settlements decide to be fishing
settlements. In the second image, we introduce two prototypes: Fishers,
which demands the settlement has a fishing district and no agricultural dis-
trict, and Farmers, which works the other way around. Both examples were
allowed 15 iterations of optimization.

Designing a district is very simple. Throughout the thesis, please refer
to Table 3.1 for some definitions. In these examples, the resource functions
should be read as:

5(R, Rma Ta Dmin: Dmaa:)

where § is the type of distance function, for example distance_open, R is the
resource that is being produced, R,, is the multiplier, signifying how much
of the resource is being generated, T is the type of terrain feature, Dy

11

is the minimum distance to this terrain feature and D, is the maximum
distance to this terrain feature.

By adding the option of a resource multiplier, one can make certain
districts more efficient at producing them. In effect, a multiplier of 1.0
means that under optimal conditions (for example, a fishing village at its
minimum distance to water), will produce exactly enough food to sustain
itself.

Using only the definitions from Table 3.1, we can create military settle-
ments raiding fishing settlements, while other settlements are optimized to
have agricultural, mining and military districts and to be self-sufficient. In
this example, we are using only three resource types and two types of rela-
tions. Recall that the open distance function has optimal results for close
distances, but declines as it gets closer to the maximum. In the Fishing
district, the production of food is an open distance function using water as
terrain feature, a minimum distance of 30 and a maximum distance of 150.
This means that such a settlement’s fitness will be optimized by moving
closer to water, until its distance is 30, or closer. The Military district, de-
scribed in Section 6, behaves similarly, but our domination map used values
in a range [0.0 1.0], hence the smaller range. This domination map was gen-
erated from the height map, and is useful to determine relative height for
each terrain pixel. The military district has two resource production func-
tions, one that relies on the terrain’s domination, and one that produces its
resource manpower at a constant rate. All resources and types of districts
are simply examples we came up with, so a designer can define any named
resource by defining it as need or product for a district.

Designing relations is quite easy, as they are modeled as restrictions
on a resource exchange. In Table 3.2 we can see two basic relations we used
during testing. In this example, the Trade relation has no restrictions on its
import or its export resources, it has a preferred distance of 550, a maximum
distance of 650 and it requires the existing attitude not to be Negative. The
attitude of a relation prevents another relation that has a different attitude
to also establish between two settlements. For example, if settlement A raids
settlement B, we would not expect B to establish a trading relation with A.
To do this, we allow relations to have an attitude effect, and an attitude
requirement, which can take the value "Positive’, '"Negative’ or 'Neutral’. As
soon as two settlements have a relation between them that has such an effect,
the attitude between those takes on this value. For example, a raid relation’s
effect is 'Negative’, while a trade relation’s requirement is 'not Negative’.

Designing prototypes involves determining what the restrictions are
for a settlement. The main restrictions the designer can apply are:

12

Table 3.1: Example district definitions

Fishing

needs: food
produces: distance_open(food, 2.0, water, 30, 150)
relations: Trade

Agricultural

needs: food
produces: distance_open(food, 3.0, fertility, 0, 5)
relations: Trade

Military

needs: food, metals

produces:
distance_open(manpower, 4.0, domination, 0, 0.3)
constant(1.0)

relations: Raid

Mining

needs: food
produces: distance_open(metals, 1.0, mountains, 0, 200)
relations: Trade

Table 3.2: Example relation definitions

Trade

n(*)

out(*)

distance_open (550, 650)
attitude_required(not Negative)
Raid

n (%)

out(manpower)
distance_open(250, 400)
attitude_effect(Negative)

13

e Which district and relation types are (not) allowed?

e How many districts/relations are allowed?

e How does the settlement respond to proximity of other settlements?

With these simple properties, prototypes become a powerful tool for
designers to steer their settlements in their desired direction. For example,
by limiting the maximum number of relations and districts, we can force
settlements to specialize. We can also create a simple raiding prototype by
using Military as the only allowed district, and having Raid as preferred
relation.

Finally, we allow our designer to determine a prototype’s social type,
which helps determine how the settlement deals with other nearby settle-
ments. The social type can have two values, or it can be undefined: Master
or Slave. A master settlement has a territory and benefits from having slave
settlements in that territory, and is penalized when its territory overlaps
other masters’ territory. A slave settlement benefits from being in any mas-
ter’s territory, and only has slight penalties for being close to other slave
settlements. If no social type is defined, a settlement simply benefits from
keeping its own preferred distance from other settlements. A master’s ter-
ritory and regular settlements’ preferred distances can be defined for each
prototype, making it very easy to introduce a degree of size to each pro-
totype’s settlement. We experimented with around 5 master settlements
and around 20 slaves, and simulating the world quickly caused the masters
to take their own space in the world, while the (smaller) slave settlements
quickly distributed in these territories. In the resulting population, there
was a clear social network between masters and their slaves, while settle-
ments without a social type tended to be solitary. Table 3.3 shows a few
prototype definitions. Note how definitions can be used as ’parent’ defini-
tion, copying all properties from it; in this way, for example, Small Food
has all properties from the Small prototype.

3.3 Simulating the virtual world

In this section, we discuss the simulation of the virtual world, and the mixed-
initiative interaction between the simulation and designer. It is possible to
simply simulate a number of generations, then generate a population with
the press of one button. However, if designers have a certain world in mind,
we wish to enable them to create it just as they want it. For this reason,

14

Table 3.3: Example prototype definitions

Extra_Large
social_type: Master
master_territory_size: 450

Small_Raider : Small
districts:Military
relations: Raid
districts: not Fishing

not Agricultural

Large_Military

districts: Military
social_type: Master
master_territory_size: 350

Small
max_districts: 2
max_relations: 3

Small_Food : Small
districts: not Military
max_districts: 1
social_type: Slave

Small_Mining

social_type: Slave
districts: Mining
max_districts:1

we designed the method to be mixed-initiative, allowing the designer to
proceed to the next generation of settlements, make customizations, and
continue. We designed our interface to allow designers to simply drag and
drop settlements, and change a settlement’s properties, immediately seeing
the effect that it has on their fitness. At any time, designers can allow the
system to simulate the next generation. Once the designers are done, they
can generate the population from the current generation, and still keep going
after that too.

Before the initial generation can be created, the designers specify the types
of settlements they would like to see in his world, by supplying a list of
prototypes. Each prototype is assigned to a settlement and placed in the
world by randomly picking, or 'polling’, a number of locations (we polled 15
times) in the landscape, and determining the fitness of the settlement, should
it be placed there. For each settlement, the best scoring poll is selected for
the first generation. The advantage of using a polling method is that the
resulting locations are nondeterministic and cause the settlements to be in
local optima rather than global optima after simulating. After all, we are
not looking for the optimal situation of the simulated world - rather, we
want to generate a possible way a population may exist in that world. The
fitness of a location for a settlement is determined by the following factors:

Landscape : is the slope suitable, is the spot legal (e.g. no water)?

Resource : based on the settlement’s districts and relations, how well will it
do resource-wise?

Spacing : are we too close or too far from other settlements. This depends

15

on the social type of the settlement.
Prototype : is the settlement true to its prototype?

Because we are working with an optimization algorithm, we scored all
these factors on a scale from 1.0 to potentially negative infinity (but usually
-1.0). For example, if the landscape is perfect - no slope and the position
is legal - the score for that will be 1.0. For resources, this was trickier,
since more should always be better. For this reason, meeting all needs
gives a score of 0.5, and as the amount of resources approaches infinity, the
score approaches 1.0. We use similar strategies for the other fitness factors
and compute the final fitness by taking their equally weighted sum, causing
settlements to optimize on all fronts.

The spacing fitness is determined by distance to all nearby settlements.
It depends on the social type of the settlement, but each settlement always
has a preferred distance to each other settlement. A settlement with no other
settlements in its preferred distance radius has a spacing fitness of 1.0, while
each nearby settlement diminishes this value. Master and slave settlements
are an exception: Master settlements do not lose fitness when slaves are in
their territory, while slaves lose fitness if they are not in a master’s territory,
proportional to the distance to the nearest master (causing them to move
toward that master).

When a new generation is created, each settlement makes copies of itself
and mutates them slightly. Mutation involves a change in one or more
properties including position, relations and districts. The ’child’ that has
the highest scoring fitness is chosen and used in the next generation. To
prevent a settlement from becoming less optimal by mutation, we always
include the original settlement in the selection process.

3.4 Population generation

When the designer is satisfied with the world, the population generation
can take place. For each settlement (prototype), the designers can deter-
mine how many characters they want to have generated by the method.
In this phase, the settlements act as character generators: each settlement
now has districts, which help determine the background for a character.
For example, a settlement with a Military district might produce soldiers
or raiders (depending on relations), while fishing villages should produce
mainly fishermen. Furthermore, settlements have relations to other settle-
ments, and often they already have attitudes to other settlements too. So, if
we have settlement A raiding settlement B, the attitude between these two

16

settlements is Negative (see Table 3.2). If we now generate a character for
settlement B, it can automatically inherit this from its settlement: it has
a negative attitude towards A, and anyone from A. To give the character
more flavour, we can even give this attitude flavour: the attitude is negative
because A raids B.

However, if we generate all characters like this we end up with a whole
group of characters from settlement B that hates every single person from
settlement A. For a number of reasons, this is undesirable. For example, a
story such as Romeo and Juliet would not be possible. It also makes sense
that many characters from settlement B do not even know anyone from
settlement A. This is why we allow the designer to set a few simple values
for character generation:

inter_settlement_relation_chance: the chance a character knows another
character from a different settlement.
inter_district_relation_chance: the chance a character knows another char-
acter from a different district (in the same settlement).
intra_district_relation_chance: the chance a character knows another char-
acter from the same district.
attitude_change_chance: the chance a random attitude change occurs be-
tween any two characters.

These values can be used to add some variation to the initially generated
characters. We found that if these values are not used, an enormous amount
of relations is being generated: every character will have a relation to every
other character in the settlements their own settlement has a relation to.
However, since we expect the output of our method to be used by a pro-
cedural story generator, it can also be considered the responsibility of that
system to tune these possibilities.

17

Chapter 4

Method design

Throughout the development of the method, we have had many brainstorm-
ing sessions on how to tackle certain problems and because of this, a number
of solutions that didn’t work out were redesigned. In this section, we will
consider the most important ones, some of which were not used in the even-
tual method.

4.1 Biases

When we started testing the evolutionary algorithm, it quickly became clear
that it was very good at optimizing the individual settlements. While this
was good, it also made it very hard to make interesting worlds - many of
the settlements were the same because this just happened to be the optimal
solution for them! To counter this problem we eventually came up with
prototypes. Before the prototypes we first tried a similar idea: Biases. Like
prototypes, they are a property of a settlement and influence the settle-
ment’s fitness score in the selection process. With a fantasy world setting
in mind, a bias such as Race would be possible, ie Human, Elf or Dwarf.
Furthermore, we wanted to see biases such as Wealth (Rich versus Poor) and
even Alignment (Good versus Evil). However, even though these concepts
can be very strong aspects in a story, we found it impossible to relate them
to the evolutionary algorithm because it was very hard to link these often
abstract concepts to actual heuristics for the algorithm. Since these biases
were part of the user design, this would have made that process much more
complex.

18

4.2 3D visualization

Our application now uses a simple two dimensional user interface and visual-
izer. Originally, we modeled the terrain in a three dimensional environment,
using Ogre3D as rendering engine. Because of the complexity of modify-
ing aspects of the world rendering, and the overhead in compilation time
we decided to use a two dimensional engine instead. The implementation
still allows for easy modification of its rendering engine, and can be easily
adapted to work with another.

4.3 Procedural terrain

Since the method is designed to work with arbitrary terrains, originally we
wanted to include a simple terrain generator. Even though the terrain gen-
erator worked, we very much preferred working with pre-designed terrains
because they allowed us more control to include or exclude certain terrain
features. Since we hardly used this generator halfway through the project,
it was removed so it would not be a distraction later.

4.4 'Two stage algorithm

When we were designing the evolutionary algorithm, the original plan was
to have it simulate two stages: a nomad/settling stage and a survival/opti-
mization stage. In the nomad stage, settlements would start out in a random
position and attempt to find the perfect spot to ’settle down’ in. Then, in
the survival stage, these settlements would actually compete for resources
and be able to initialize relations between them. During testing we found
that modifications to a settlement such as addition of districts or relations
can drastically influence their optimal position. Because of this, being able
to change locations after the nomad stage would be beneficial and improved
the results of the simulation. Furthermore, some user defined districts and
prototypes might require relations in order to work at all, for example - a
raider prototype that permits its settlement to gain resources solely by steal-
ing them will be very inefficient if no relations are allowed (yet). Because
of this, these kinds of settlements fall back to just being fishers instead of
raiders, and this gives them a bias that’s unfit for the raiders they might
become in the survival stage. The two stage approach is no longer used,
and now the evolutionary algorithm simply uses a single approach where
settlements can both optimize their relations and districts, as well as their

19

position.

4.5 Evolutionary Algorithm

For the optimization process, we chose for an evolutionary algorithm, as
it has some desirable features. Our problem is an optimization problem
with multiple objective functions, which is especially suitable for evolution-
ary algorithms. The inspiration for this is the growth of lichen, detailed
in [3] and [5]. Another less obvious advantage is the algorithm’s tendency
to get stuck in local minima - in our method, this actually corresponds to
the settlements’ lack of knowledge about the world. One missing element is
crossover. In an attempt to include crossover we tried having multiple gen-
erations of settlements evolve at the same time in the same landscape, and
using crossover between those generations for future generations. However,
the generations were too dependent on their own distribution of settlements,
and these crossovers did not improve the algorithm, while the overhead of
having so many generations did have a negative impact on the performance
of the algorithm. The most challenging aspect of designing the evolutionary
algorithm was the fitness functions. We are optimizing a number of different
and often conflicting criteria, and weighting these objective functions took
much experimentation and planning. For example, how do you compare the
score of a settlement’s location to its resource amount score? And does this
apply to every user design or input world? Because these questions are not
answerable to an acceptable degree, the weights of the objective functions
are made user-definable as well.

4.6 Prototypes

For a great part, our method is a creative tool, which should allow designers
to create a world as they envision it, assisted by the tool as efficiently as
possible. Using just an algorithm to populate a world and simulate it does
nothing to actually assist the designers in reaching their goals. To help
with this, we came up with prototypes, which serve as settlement blueprints
that can be defined by the designer. Introducing prototypes increased the
amount of tasks for the designers, but should decrease their overall amount
of work.

A very important aspect of the prototypes is that they are not part of the
algorithms optimization because they cannot change during the simulation.
This also means that the user will have to define the number of times each

20

prototypes should exist in the world, since every settlement now needs to
have a prototype assigned to it. With prototypes, settlements still attempt
to reach a optimum, but their prototype helps define what that optimum
should be. This way, designing a world becomes much more intuitive since
the designer can now determine what certain settlements should look like
when they are optimized.

4.7 Mixed initiative approach

Since we want our method to be both flexible and autonomous, we designed
it with a mixed initiative approach in mind. Once the designer finished
defining the districts, relations and prototypes, the method can automati-
cally take over and finish. However, the designer might have planned certain
things like settlements in certain places or relations between certain settle-
ment types. If these are not found in the world, we still want the designer to
be able to modify such things, for example by dragging around settlements
or simply modifying properties of them or their relations. Thanks to this
approach, we can now easily create a world without any intervention, but at
the same time we can fine tune a world to any extent, making the method
very flexible.

4.8 Resource-based heuristic

Even though we are using a resource-based heuristic for the evolutionary
algorithm, we are explicitly not interested in resource management. Track-
ing actual resources, resource sources and trades of resources would make
the simulation very complex, not to mention the amount of extra research
required in such fields. Instead, we take a very abstract approach concerning
resources: Settlements can produce resources, they can need them and they
can trade their resources using relations. Even though settlements keep track
of an arbitrary value representing an amount for each of their resources, we
leave it to the designer to define what a certain amount means. During
testing, we found out that this requires some degree of trial-and-error - for
example in the amounts of food produced by certain districts. However,
the effects of changing these values was usually quite clearly visible in the
simulation and therefore intuitive.

A particularly hard problem has been the design of the evolutionary algo-
rithm’s objective functions for the resources of a settlement. Since resource
quantities are not strongly defined, it is very hard to determine how fit a

21

candidate solution is based on its resources. What we do have is a needed
quantity to compare the ’have’ quantity to, so we are able to measure the
shortage or excess compared to the needed amount. However, this brings
another problem: If the objective function is based on percentages instead
of absolute values, more can be less - If a settlement gains a need by gaining
a district, its resource fitness may suddenly become lower because of it! This
has been an unsolved problem for a while, but it was partly solved by the
addition of prototypes in the method.

The formula used for determining a single resource’s fitness score is:

0.5 if have = need
fz) = { 0.5 x have if have < need
0.5 .
1.0 — Tave need otherwise

A settlement’s final resource fitness score is the average of all its re-
sources’ values. A settlement that has exactly sufficient resources (or no
needs) has a resource score of 0.5, while settlements with shortage have lin-
early lower scores, and those with excess have exponentially declining higher
scores, up to 1.0. This way, settlement can keep improving their resource
score even when ’sufficient’ - selection pressure still is a factor at that point.

4.9 Districts

When designing the user interaction with the method, we considered the
question ’what gives a character personality?’. A very defining property
of a character and his background is his profession - what he does all day.
For example, when asking 'who is Jack Sparrow?’; his profession - a pirate
- is the first thing that comes to mind. An agricultural village would not
make a whole lot of sense as background for Jack Sparrow, and it is clear
that it might not make sense to try to fit a character into a background
after creating it. However, it should be noted that even though it’s unlikely,
such a background is still possible! Instead of creating a background for an
existing character, we decided to focus on creating characters the other way
around, by starting out with the background. Districts are the very core of
the method, as they are the components in settlements that are most alike
the characters that are being created from them. When a district is being
designed, the designer’s main thought should be what the characters in it
should be like.

22

Settlement A Settlement B

Fshirig ion: Rai Militar
Trading <¢—Relation: Raid y
Fishers _— ;r:‘ir;c;ﬁ; | Soldiers
Traders Raiders
Fisher Fisher Trader Raider Soldier

Figure 4.1: An early image showing the design of the character generators,
and their place in our system.

4.10 Hierarchical design

Even though the characters created by our method are relatively simple,
they still have a strong background because of how the method is set up: A
character is generated from a district, which is part of a settlement, which
is somewhere in the world. This hierarchical design is meant to not only
add a sense of uniqueness to characters, it should also allow the designer
to fine tune characters to a great degree, since their background isn’t very
specific yet. Image 4.1 shows an early image of this design. The most
important aspect of the hierarchical design is that all generated characters
inherit properties from the layers above them. In this design, all characters
generated from the same district are identical. This may not seem desirable,
but we chose to keep it that way so instead, the storytelling system can make
these types of adaptations to the characters.

4.11 Relations

Relations are one of the most important components of any story. During the
design of our relations we have had to make some very important decisions
about relations and the way they work. We encountered a few problems,

23

and during development we have had to re-design the relations to cope with
them.

One-way versus two-way

Originally, we designed relations to work in a two-way fashion: When a re-
lation exists from settlement A to settlement B, this would imply that there
is also a relation from B to A. Intuitively, it makes sense to look at relations
in such a way, however we found a few problems with this approach. First
of all, having relations be a property of two settlements is not desirable in a
evolutionary algorithm, because it affects both at the same time. A relation
that is beneficial for one settlement might be detrimental for another, im-
mediately introducing a problem for the algorithm: Do we allow settlements
to terminate any relation as part of their optimization? If we would, we can
expect to no longer see any relations like these, so this was not an option.
One possible solution we considered was to isolate the relation optimiza-
tion from the settlement optimization. Instead of having relations be a
settlement’s property, they would have their own evolutionary optimization
algorithm and objective function. However, modeling different relations was
still hard: How do we design an objective function that allows both rela-
tions that benefit both settlements and relations that benefit only one, while
being disadvantageous to the other? For this, we tried to come up with a
system that allowed ’altruistic’ and ’egoistic’ relations, but we quickly found
out that this made the system more complex than it ought to be. Finally,
we decided relations should be part of a settlement after all, so that they
could be part of their evolution. This meant relations had to be one way,
instead of two-way.

Having one way relations still had its problems, but we have been able to
solve them. The one way relations were initialized from a settlement, with-
out directly affecting the other settlement. This means that when settlement
A raids settlement B, settlement B has no negative effects, and will not at-
tempt to, for example, move away. Even though this feels unintuitive, we
are not modeling a real progressive history for our world, so it is very much
acceptable. An important choice has been how to model resource exchanges
for relations. Essentially, all relations are exchanges of resources between
settlements, but modeling all resource quantities in the world is far outside
the scope of this project, nor is it of any significant consequence for the
story.

24

Attitude

When designing relations we kept some important ’base’ relations in mind:
a mutually beneficial trade relation, and a relation that only benefits its
initiator, for example a raid relation. A variant of the latter would be a
relation that would only benefit the target, for example a protect relation
where military assistance is given to the target. Since we’re working with
an optimalization algorithm, having relations that are bad for one side can
pose a problem, since that side will try to optimize the relation away. Using
one way relations partly solved this, but still left a problem. Intuitively,
when a settlement raids another settlement, we would (normally) not ex-
pect any other relations between them. However, during testing we found
out that a settlement that is being raided would casually initialize a trade
relation with that settlement, too. Throughout the project, we’ve tested a
few different approaches to tackle this problem (including Biases), but none
of them worked out in a satisfactory way. For example, the addition of Bi-
ases worked well with relations, but it made the design too complex and too
abstract. We want to have a general system that does not force users to use
specific and potentially complex concepts like ’good’ and ’evil’. However, we
also needed to be able to distinguish harmful and helpful relations, and for
this we introduced attitudes. Starting with ’good’ versus ’evil’, we moved to
‘altruistic’ versus ’egoistic’ and eventually ended up using ’positive’, 'neu-
tral’ and 'negative’ (and none). Even though we have been quite skeptical
about the attitude system, during testing it has not been a limiting factor
during relation design.

25

Chapter 5

Implementation

In this chapter, we look in detail at the implementation of the method,
and discuss some of the choices made in it. We look at the main method’s
implementation, and also discuss the GUI implementation briefly.

5.1 Overview

We implemented our method in C++, using Simple and Fast Multimedia
Library (SFML) for simple 2D rendering. Most tests were done on a com-
puter with a Intel Core i7 @2.20 GHz. Our implementation is capable of
automatically iterating through 50 generations of settlements in under 2 s
on average, then generate around 1450 characters in under 1 s on average.

To create our landscape model, we used the procedural terrain sketching
tool SKETCHAWORLD [15]. SKETCHAWORLD allowed us to make landscapes
in minutes, which made the whole progress much more streamlined.

Other libraries we used include:

e libnoise, a C++ library that allows the use of many different procedu-
ral generation techniques such as perlin noise.

e A number of boost libraries, including boost::regex for regular ex-
pressions (parsing of user files), boost::thread for multithreading and
boost::geometry for working with polygons.

e pugixml, a C++ library that allowed us to read xml files fast and
easily.

e visual leak detector, a library that keeps track of allocated memory
and notifies when a memory leak is detected.

26

Our main goal is to make characters fit for storytelling, and to test
this goal, we successfully integrated our system with REGEN [9], a graph-
rewriting tool that can be used for narrative generation. We were success-
fully able to generate narratives within our populations, and further have
the population be updated by changes made within each narrative.

Our method has shown to be an effective tool for designing a population
for a world. It is true that one cannot fully control or predict how exactly
certain ideas play out, since many factors have influence on settlements in
the world. For example, when a designer wants a world with lots of farms
and fisher villages, but fails to define prototypes, they might find all of them
become fishers (if those are defined to be more efficient). However, even if
the design is nontrivial, the mixed-initiative designer interaction during the
simulation makes up for that.

5.2 Method implementation

5.2.1 Landscape loading

Since we want to be able to work with multiple types of landscape sources
for the method, we designed a TerrainLoader base class that can be used
as base for any new terrain loader. Currenly, we have 2: SketchAWorldTer-
rainLoader and LibNoiseTerrainLoader, which is used for generating terrains
using the libnoise library. We will primarily consider the SketchAWorld Ter-
rainLoader since that was used for all the examples seen in section 6. The
LibNoiseTerrainLoader is a terrain loader that uses libnoise, a c++ noise
generation library, to load random procedural terrains on the fly. How-
ever, working with more predictable pre-defined terrains was almost always
preferable. This class makes use of a few optimization techniques which are
discussed in section 5.2.3.

The SketchAWorld TerrainLoader loads the following data from any SketchA-
World project:
Ecotope definitions:
Ecotope data as provided by SketchAWorld. Contains information about all
ecotopes, including name, id, (debug) colours, as well as nutrition, rockiness
and wetness values which allowed us to determine properties like fertility for
each ecotope.
Terrain features:
Terrain features are saved in a separate XML file in a SketchAWorld project,
and imported by our method. Recall that terrain features are special zones
in the terrain like forests, rivers and lakes. These zones are described in

27

float* height_data_;

unsigned charx type_data_;
float+ slope_data_;

float+* dominance_data_;
unsigned charx feature_data_;
float+ water_distance_map_;
float* mountain_distance_map_;
float* forest_distance_map_;
float* fertility_distance_map_;

Figure 5.1: The data held by the chunk datatype. Most data is dynamically
allocated after the chunk’s size is determined.

the XML file by series of points that form polygons. However, because
we actually needed the spacial data for these polygons, we converted them
to boost::multi_polygon format, allowing us to perform fast operations like
boost::multi_polygon::within() to find out whether a point is within the poly-
gon.

Terrain height/type data:

Even though our SketchAWorld landscapes are of a fixed size, we designed
the method in such a way that terrains of arbitrary sizes can be loaded fully
or partially. To achieve this, our TerrainLoader classes work with a datatype
called ChunkGroup, which loads in only a part of the terrain, a Chunk, on
demand. This approach worked very well with SketchAWorld landscapes
since they are already saved as chunks in a project. The Chunk data class
holds all relevant data for a chunk of the loaded terrain. The data that is
used can be seen in Figure 5.1. Because we are using large arrays for all
the 'raw’ data a chunk uses, the memory usage is quite large. However,
accessing the data is also very fast since it requires no further computation
once the chunk is initialized. We chose for speed over memory efficiency
because the world data will be (randomly) accessed by every settlement and
its candidate solutions during each generation of the simulation of the world.
Chunk data

The data saved in the Chunk class is partly derived data which is saved for
faster performance. We will consider each one shown in Figure 5.1 briefly.

e Height data: The height of the terrain in meters, one float per pixel
of the map.

e Type data: The type of the terrain, one byte per pixel of the map.
The possible values are defined by SketchAWorld for the SketchA-

28

WorldLoader, and need to be defined by the user for any other terrain
loaders.

Slope data: Derived from height data, the slope data ranges from 0.0
at no slope to 1.0 at any slope steeper than 45 degrees.

Dominance data: Derived from height data, the dominance value of
a pixel represents how relatively high that part of the terrain is. We
calculate this value by taking samples from a 9 x 9 grid around the
source pixel, and taking the average of these values. The resulting
value ranges from 0.0 to 1.0, where 0.0 means the surrounding terrain
is higher on average, and 1.0 means the surrounding terrain is lower
on average. The algorithm used is detailed in Appendix 1.

Feature data: Even though SketchAWorld saves all terrain features in
a single file, we wish to access relevant data for each seperate chunk.
To achieve this, we load in the whole terrain feature and add the
appropriate parts of it to each chunk, by taking the set intersection of
the chunk’s rectangle and the full terrain feature.

Water /Mountain /Forest /Fertility distance maps: The pixels in each
of these maps simply represent the euclidean distance from that pixel
to the nearest occurrence of that terrain feature. These maps were
make using Distance Transforms of Sampled Functions[6]. These dis-
tance maps are one of the most important components of the objective
functions of the evolutionary algorithm, and adding more is simply a
matter of linking a terrain feature or terrain type with a resource. Our
method then automatically generates a distance map for this resource,
which can be used to determine the distance from that resource.

5.2.2 Population Simulator

The core of our method is the PopulationSimulator class, which loads the
user definitions, and then runs the population simulation. The simulator
uses a Generation class that represents a single generation of settlements,
and saves a copy of each generation in a vector for later reference. To sim-
ulate the world, the simulator calls the Generation class’ NextGeneration
method, causing it to use an evolutionary algorithm to attempt to improve
each settlement’s fitness. The algorithm detailed in Appendix 2 shows how
a Generation object saves different fitness values for each settlement:

Location fitness, which returns 1.0 if the location is valid, and 0.0 otherwise.

29

Settlement distance fitness, which is a quite complex function and can be
reviewed in Appendix 3. The complexity of the function is caused by the dif-
ferent ways the system deals with distances between settlements, and their
effect. For example, a master-prototype settlement will want to be close to
slave settlements, but not too close. On the other side, all slave settlements
want to be close - but not too close- to their master, and also not too close
to other slaves.

Next, resource fitness is determined by looking at all of a settlement’s needs
and produces, including those it can get from relations. Exchange of re-
sources between settlements is done in a quite abstract manner - the only
requirements for a trade to be possible are that the delivering party can
provide one of the receiving party’s needs, and that the receiving party has
any type of spare resource to exchange it for. This means that the trades are
not very realistic, but at the same time they are defendable because the re-
sources do exist, and are produced. But most importantly, designers aren’t
required to understand the complex underlying mechanics of realistic trades
and resource management, meaning they can focus on the design aspects
that are actually important!

The relation distance fitness is measured by how well the distances between
a settlement and the settlements it has a relation with conform to their re-
lation’s minimum and maximum distances. If all distances are within their
bounds, the fitness is 1.0. For each distance that is too far away, a fixed
penalty (we found out a value of 0.15 worked well) is applied linearly as the
distance exceeds the difference between a relation’s maximum distance and
its preferred distance. For example, if the maximum distance is 10.0 and
the preferred distance is 6.0, the difference is 4.0 - if the actual distance is
8.0, the penalty is 0.15 * (8.0/4.0) = 0.30.

The prototype fitness works with a similar penalty system - for each property
of a settlement that does not conform to its prototype, it’s fitness is deduced
by a fixed penalty, in this case a more severe, non-linear penalty of 0.35 was
used. Because these penalties are subtracted from the fitness value directly,
the fitness value can drop below 0.0. For the evolutionary algorithm, this is
no problem, and it works very well because every improvement in the set-
tlement is of equal value fitness wise, meaning there will always be a similar
pressure for it to improve.

5.2.3 Optimization

We implemented a number of optimization techniques to speed up the ter-
rain preprocessing and the population simulation. In the project, we often

30

worked with large landscapes, with a lot of image processing involved. When
a landscape’s height map was loaded, all other maps needed to be generated
from it - the slope map, dominance map and all distance maps. To speed
this up, we used binary files to save all the raw data to. Now, when a terrain
was loaded for the second time, its derived data could be loaded from the
hard drive directly - this change decreased the terrain loading time from 11
seconds to 2 seconds!

To further increase the program’s speed, we used the OpenMP multithread-
ing API in various placed throughout the implementation. For example, the
creation of all the data maps for the terrain is highly optimized this way.

5.3 GUI Implementation

When we decided to try to get a paper published, we also decided the appli-
cation needed a graphical user interface so it could be shown off. For this,
we used Simple and Fast Multimedia Library (SFML) and Texus’ Graphi-
cal User Interface (TGUI). The GUI for the method was really a separate
project that managed all the simple text files used by the simulator, and
made adapting the values in them more user-friendly. The design of the
GUI can be seen in Figure 5.2. The files containing the user definitions for
the districts, relations and prototypes are simple text files that are inter-
preted by a parser. An example of the districts file is shown in Appendix 4.

31

districts relations prototypes world

Needs Relations
food Trade

-]+ -]+

Produces
Distance function: distance_open
Terrain resource: mountains
Resource multiplie
Preferred distance:

Maximum distance:

Mining

Figure 5.2: The Graphical User Interface, allowing users to modify defini-
tions of districts, relations and prototypes, and run the simulation when
they are done.

32

Chapter 6
Application

To test our method, we have built a number of different input landscapes,
and designed varying sets of districts, relations and prototypes. In this
section, we present a few designs we made, and show how our method deals
with these inputs. We show a simple world in detail, and consider some
others more broadly.

Our first world is a medieval-themed design, and has also been the run-
ning example throughout the thesis. We used exactly the districts as pre-
sented in Table 3.1, the relations in Table 3.2 and the prototypes in Table 3.3.
The initial generation of the resulting world can be seen in Figure 6.1 (top).
The images under a circle signify which districts a settlement has. Even
though no optimization has yet taken place, the settlements often have lo-
cations that are quite suitable for their prototype. However, without simu-
lation the social graph is quite limited. Figure 6.1 (bottom) shows the same
world after 10 generations without user intervention. It is clear that most
settlements remain true to their stereotype, but without user intervention,
some others have not been able to escape their local maxima (yet). For
example, the settlement in the far left bottom should be large and have a
military district, but since there are absolutely no other settlements around
to have relations with, it became a fishing settlement instead. Of course,
this problem was already there in generation 0, and could have been fixed
by the designer, e.g. by simply dragging it to a new position.

Expanding this first example to be more specific is quite simple. We
added a hunter-gatherer district that generates food from forests, and to
give our world a fantasy game-like feeling, we introduced a few prototypes:
FElven : Using the new hunter-gatherer district only, making them drawn
to forests. Dwarven : Using the mining district, making them drawn to

33

Figure 6.1: The initial generation of g4medieval—themed world, defined with
the values presented in the example tables. A plus sign is a Raider prototype,
a cross is a Mining prototype, settlements with a territory are the Large
(Military) prototypes, and all the others Small. Top: Initial generation.
Bottom: world after 10 generations.

Figure 6.2: Simulation of a SIMCITY [12] like world. Commercial, industrial
and residential districts of low, medium and high wealth form cities that
exchange resources like workers, materials, products and even influence and
money.

mountains. Orcs : Only allowed to use Military districts, and Raid rela-
tions. By making only these simple changes, the designer can expect elven
settlements (usually) in forests, dwarven settlements in the mountains, and
orcs raiding everyone, everywhere. Although interestingly, sometimes an orc
settlement would be too far away to raid anyone and would instead become
a self-sustaining fishing settlement.

Beyond this quite straightforward example, we developed some very dif-
ferent approaches. Figure 6.2 shows a region of the same landscape for our
fantasy-themed example, but modern settlements are being simulated in-
stead. Aiming to mimic the basic mechanics of SiMcITY [12], we defined
residential, commercial and industrial districts of different social classes:
low wealth, medium wealth and high wealth. We model unique relations
between cities, allowing trade and freight shipments, but also allow cities
the option to use influence and bribery to get resources from other cities.
The result is a much darker, more corrupt vision of modern society that may
be more befitting of storytelling.

Another popular setting for storytelling and games is the wild west, so

35

we simulated a world where the collection of gold is the goal for (most of)
the population. We set up our landscape to contain just a few places where
gold can be collected, and designed a specialized prototype that can collect
gold while the others cannot. Other settlements are allowed to be towns that
provide workers and earn gold by having them work in the mines, bandits
that can steal gold, and ’lawbringers’ that can arrest bandits. In Figure 6.3,
we can see how all settlements converge toward each other, even though we
did not define any master or slave prototypes in this scenario.

Exploring alternative forms of resources, our final population example
aimed to mimic zombie apocalypse worlds. This setting uses people and
zombies as the main resources, allowing zombies to infect human settlements
and humans to cure zombie settlements. Relations are mapped to scaveng-
ing, zombie hunting, resource gathering, and acquiring medical supplies. To
demonstrate the versatility of the system, we generated four different pop-
ulations in very different landscapes, as shown in Figure 6.4. Likewise, we
split the prototypes into one large city which contains the medical center
and laboratory needed to create zombie cure, several cities largely infected
with zombies, and then a number of small scavenger or survivor groups.

Figure 6.3: A wild west scenario, with only gold as terrain-based resource.
Because of this, all settlements tend to converge to these locations.

36

(a) Lakes and Desert (b) Desert Oasis

(c) Frozen Island (d) Natural Valley

Figure 6.4: Four different populations of the zombie apocalypse scenario.
Each contains radically different resources available, yet the system is still
able to create logical populations for each landscape.

37

Chapter 7

Evaluation

With our method, designers can populate a virtual world by designing dis-
tricts, relations and settlement prototypes. Since this approach is rather
involved, we wanted to test how easily people unfamiliar with the system
could use it to create a population.

For the experiment, we asked 9 persons to do a number of tasks with our
method. Our participants were all between 20 and 26, 5 were female, 4 were
male and none of them has a background in computer science, although two
have experience playing computer games. We briefly explained what the
method does, how the designer can interact with the system and introduced
the medieval population example shown in Figure 6.1. Furthermore, the
participants were given a ’cheat sheet’ that displayed the main options and
available terrain features for the landscape they worked in. After this in-
troduction, the participants were given definitions of the Fishing district as
shown in Table 3.1, the Trade relation as shown in Table 3.2 and the Small
prototype as shown in Table 3.3 to serve as a start for their design. Using
this, they were asked to do the following tasks to incrementally improve
their world.

1. Add an agricultural district that produces a resource ’food’ from the
terrain feature ’fertile’.

2. Create a world that has around 8 settlements that have the Agricul-
tural district only, and around 8 that have the Fishing district only.

3. Create a large settlement that has surrounding villages.
4. Create small settlements that cannot produce food, but rather have

to steal it from other settlements (raiders).

38

5. Make the raider settlement rely on 'metals’ as well, and create a district
that can generate this resource from mountains.

We were primarily interested in seeing how many times participants had to
make a change to their design after getting results that differed from their
expectations. After working with the system ourselves, we already noticed
that trial-and-error is a common way of fine-tuning your world, and this is
visible in the retries of participants for each trial shown above:

Task | 1 2 3 4)
Average retries | 1.6 | 5.7 | 2.3 | 4.0 | 2.9

Task 2 proved especially challenging, as our landscape had a great amount
of fertile land. Because of this, the chance of a settlement becoming agri-
cultural was greater, and participants needed to utilize prototypes to make
fishers appear more often. We required the participants to have 7 to 9 of
each settlement type in the first generation, without user intervention, in
order to complete this task. Similarly, task 4 required participants to define
a new relation, and this was especially interesting because that boils down
to using the more abstract resource 'manpower’. Four of our participants
used similarly abstract resources (’soldiers’, ’barbarians’ and 'manpower’),
while the rest used resources like 'weapons’.

After the tasks, we allowed our participants to freely try adding districts,
relations and prototypes to the world, and asked them if they felt how
well the method could help them to create a population as they wanted
it. The responses were rather similar: Most participants found the method
to be quite complex, but also rather intuitive once they understood the
basics. In particular, 8 out of 9 participants mentioned ’trial-and-error’,
meeting our expectation, especially considering none of the participants had
a background in computer science.

39

Chapter 8

Conclusion

In this thesis, we presented a method for the generation of large populations
of virtual characters, with basic but intuitive relations between them. A
designer is required to do the creative work, while the method itself simulates
a believable world based on the designer’s ideas. Even when the designers
do not get exactly what they want, they can still strongly influence the
outcome of the program. The method is quite fast, making it easy for the
designer to experiment and try different approaches. After the designers are
satisfied with their world, they can proceed to the generation of meaningful
characters who have a real place in the world they were created in, and
personality traits that are derived from their origin.

We applied our method to fundamentally different scenarios, proving
that it can deal with a wide variety of worlds and populations, from me-
dieval /fantasy themed worlds to wild west and apocalyptic settings.

By letting a small number of people without background in computer
science test our method, we have seen that technical knowledge is no pre-
requisite for using our method. However, the method is not trivial either,
and requires designers to understand a few basic concepts before they can
start. The experience of our participants has shown that effectively creating
a world requires some degree of trial-and-error, since the interaction between
settlements, the world and the designer can become quite complex.

For future work, we will improve the interaction the designer has with
the method. Right now, designers can edit their designs, then reload the
program to see their changes take effect. Instead, being able to make changes
to districts, relations and prototypes while running the program would make
the interaction even more fluent. Our method is particularly well suited for
this kind of editing, because it will simply keep optimizing based on its new

40

inputs.
The paper on our method was published in the Proceedings of the FDG
workshop on Procedural Content Generation in Games [8].

41

Bibliography

1]

T. Adams. Slaves to Armok: God of Blood Chapter I1I: Dwarf Fortress.
Bay 12 Games, August 2006.

Bethesda Game Studios. The Elder Scrolls V: Skyrim. Bethesda Soft-
works, 2013.

B. Desbenoit, E. Galin, and S. Akkouche. Simulating and modeling
lichen growth. Computer Graphics Forum, 23(3):341-350, 2004.

J. Dormans and S. Bakkes. Generating missions and spaces for adapt-
able play experiences. Computational Intelligence and Al in Games,
IEEE Transactions on, 3(3):216-228, Sept 2011.

A. Emilien, A. Bernhardt, A. Peytavie, M.-P. Cani, and E. Galin. Pro-
cedural generation of villages on arbitrary terrains. Visual Computer,
28(6-8):809-818, June 2012.

P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled
functions. Theory of Computing, 8(19), September 2012.

K. Hartsook, A. Zook, S. Das, and M. O. Riedl. Toward supporting
stories with procedurally generated game worlds. In Computational
Intelligence and Games (CIG), 2011 IEEE Conference on, pages 297—
304. IEEE, 2011.

B. in het Veld, B. Kybartas, R. Bidarra, and J.-J. C. Meyer. Procedural
generation of populations for storytelling. 2015.

B. Kybartas and C. Verbrugge. Analysis of ReGEN as a graph-rewriting
system for quest generation. IEEFE Transactions on Computational In-
telligence and AI in Games, 6(2):228-242, 2014.

M. Lebowitz. Creating characters in a story-telling universe. Poetics,
13(3):171-194, 1984.

42

[11]

[12]
[13]

[16]

M. Mateas. Interactive Drama, Art, and Artificial Intelligence. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, December 2002.

Maxis. SimCity. Electronic Arts, March 2013.

J. McCoy, M. Treanor, B. Samuel, A. Reed, M. Mateas, and
N. Wardrip-Fruin. Social story worlds with Comme il Faut. Computa-
tional Intelligence and Al in Games, IEEE Transactions on, 6(2):97-
112, June 2014.

Paradox Development Studio. Crusader Kings II. Paradox Interactive,
February 2012.

R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra. Interactive
creation of virtual worlds using procedural sketching. In Proceedings of

the 2010 Workshop on Procedural Content Generation in Games, pages
1-8. ACM, June 2010.

J. Valls-Vargas, S. Ontanon, and J. Zhu. Towards story-based content
generation: From plot-points to maps. In Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, pages 1-8, Aug 2013.

43

Appendices

44

float GetDominance(const int& global_x, const int& global_z , ChunkGroup& chunk_group, const int&
chunk_sizem1) {

#define GRID_SAMPLES_SQRT 9
#define GRID_SIZE 450
#define HEIGHT SCALE 10.0f // The height scale to base the dominance map on. This is the presumed maz

height difference

const int grid_point_distance = GRID_SIZE / GRID_SAMPLES_ SQRT;
float values [GRID_.SAMPLES.SQRT][GRID_SAMPLES_SQRT];

for (int i = 0; i < GRID.SAMPLES.SQRT % GRIDSAMPLESSQRT; ++i) {
int _x = ((i % GRID_.SAMPLES.SQRT) — GRIDSAMPLESSQRT/2) x grid_point_distance;
int _y = ((i / GRID.SAMPLES.SQRT) — GRID_SAMPLESSQRT/2) * grid_point_distance;
Chunk* chunk;
int local_x;
int local_y;
chunk_group . GlobalToLocal (global_-x + _x — 1, global_z + _y — 1, &chunk, local_x, local_y);
values [i % GRID_SAMPLESSQRT][i / GRID.SAMPLES SQRT] = chunk—>height_data()[local_x 4+ chunk_sizeml
* local_y];
}
float mid = values [4][4];
float total = 0.0f;
for (int i = 0; i < GRID.SAMPLES.SQRT % GRID_SAMPLESSQRT; -++i)
total += values[i % GRID.SAMPLES SQRT][i / GRID_SAMPLES SQRT] — mid;

return std::min(1.0f, std::max(0.0f, 1.0f — (1.0f + total / (HEIGHT.SCALE % GRID_SAMPLESSQRT s
GRIDSAMPLESSQRT)) / 2.0f));

Figure 1: The algorithm used to determine dominance values for SketchAWorld terrains. The amount of samples from
the terrain is GRID_SAMPLES_SQRT * GRID_SAMPLES_SQRT.

void Generation :: NextGeneration () {
++generation_number_;
for (std::map<unsigned int, SettlementData >::iterator it = settlements_.begin(); it != settlements_.
end(); ++it) {
// Recalculate this settlement’s fitness:
it —second.location_fitness = it—>second.settlement.GetLocationFitness();
it —>second.settlement_distance_fitness = GetSettlementProximityFitness(it—>second.settlement.
GetPosition (), settlements., it—>second.settlement.GetPrototype(), it—>second.settlement.GetID
0);
it —>second.settlement . SetTradingQuantities (GetBestRelationResources (it—>first));
it —>second.resource_fitness = it—>second.settlement.GetResourceFitness();
it —second.relation_distance_fitness = GetSettlementRelationDistanceFitness(it—>first);
it —>second . prototype_fitness = it —>second.settlement.GetPrototypeFitness();
// Create this settlement’s offspring:
std :: vector<SettlementData> offspring;
unsigned int offspring_size = settings_.offspring_size;
offspring .reserve(offspring_size);
// Add the original settlement to the offspring:
offspring . push_back (it —>second);

for (unsigned int i = 0; i < offspring_size; ++i) {
SettlementData child (it—>second);
child .settlement . Mutate () ;
// 1 to 8 times max:
if (rand() % 6 = 0)
for (unsigned int i = rand() % 3; i < 3; ++i)
switch(rand () % 3) {

case 0:

AddRandomRelation (child . settlement); break;
case 1:

RemoveRandomRelation (child . settlement); break;
case 2:

ChangeRandomRelation (child . settlement); break;

}

UpdateRelations (child . settlement);

child .location_fitness = child.settlement.GetLocationFitness();

child . settlement_distance_fitness = GetSettlementProximityFitness(child.settlement.GetPosition (),
settlements_, child.settlement.GetPrototype(), child.settlement.GetID());

child .settlement . SetTradingQuantities (GetBestRelationResources (it—>first , &child.settlement));

child . resource_fitness = child.settlement.GetResourceFitness () ;

child . relation_distance_fitness = GetSettlementRelationDistanceFitness (it—>first , &child.
settlement) ;

child . prototype_fitness = child.settlement.GetPrototypeFitness();

offspring . push_back(child);
éettlementData constx winner = NULL;
winner = PickBest (offspring);
it —second = xwinner;
// Update all relations, since they might have all changed (position)
for (std::map<unsigned int, SettlementData >::iterator it = settlements_.begin(); it != settlements_

cend () ; ++it)
UpdateRelations (it —>second . settlement);

Figure 2: The algorithm used to proceed from a generation to the next generation.

float GetSettlementProximityFitness(Point2Df const& position, std::map<unsigned int, SettlementData>
const& settlements, SettlementPrototype const& prototype, unsigned int exclude_id = —1) {
float result = 1.0f;

float best_master_penalty = 9999999.9f;

bool use_penalty = false;
for (std::map<unsigned int, SettlementData >::const_iterator it = settlements.cbegin(); it !=
settlements.cend (); ++it) {
if (exclude_id != -1 && exclude_id = it—>first) continue; // Don’t compare with self
Settlement const& other_settlement = it—>second.settlement;

Point2Df posl = other_settlement.GetPosition();

SocialType other_social_type = other_settlement.GetPrototype().social_type;
float dx = posl.x — position.x;

float dy = posl.y — position.y;

float distance = std::sqrt(dx * dx + dy = dy);

float min_distance prototype.settlement_distance_min;

float max_distance = 999999.9f;

bool use_max_distance = false;

if (exclude_id != —-1) { // Some special situations change the min distance:
Settlement const& this_settlement = settlements.at(exclude_id).settlement;

switch (prototype.social_type) {
case ST_Master:
if (other_social_-type = ST_Slave) // Other is slave
min_distance = 0.0f; // No penalty for slaves being near
else if (other_social_type = ST_Master)

min_distance = prototype.master_territorium_max + other_settlement.GetPrototype() .
master_territorium_max ;

break;
case ST _Slave:

if (other_social_type == ST_Master) { // The other is a master..
SettlementPrototype master_prototype = settlements.at(it—>first).settlement.GetPrototype();
min_distance = master_prototype.master_territorium_min;
max_distance = master_prototype.master_territorium_max ;
use_max_distance = true;
} else if (other_social_type = ST_Slave) { // Both slave, same master
// Right now this can’t work (since we can’t determine the master of this settlement)
//min_distance = master_prototype.master_slave_distance_min ;
}
}
break;

}
}

if (distance < min_distance) {
float fitness = distance / min_distance;
if (fitness < result) result = fitness;
}
if (use_max_distance)
if (distance > max_distance) {
float penalty = (distance / max_distance) — 1.0f;
if (penalty < best_-master_penalty) {
best _master_penalty = penalty;
use_penalty = true;
}
} else {
// distance <= max_distance
best_master_penalty = 0.0f;
use_penalty = true;

}

if (use_penalty)
result —— best_master_penalty;

return result;

}

Figure 3: The algorithm used to determine a settlement’s proximity fitness.

district Fishing {

needs {
food

}

produces {
food {

distance_open (3.0, water, 30.0, 150.0)

}

relations {
Trade
}
image (icons/fishing64 .bmp)
}
district Military {
needs {
food
metals
}
produces {
military_supplies {
distance_open (8.0, domination, 0.0, 0.3)
constant (1.0)

}
}

relations {
Raid
Protect
}
image (icons/military64 .bmp)
}
district Mining {
needs {
food
}
produces {
stone {
distance_open (2.0, mountains, 0.0, 200.0)
}

metals {
distance_open (1.0, mountains, 0.0, 200.0)
}

}

relations {
Trade

}

image (icons/mining64 .bmp)

Figure 4: The districts.dat file, containing the user-defined district definitions.

