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Abstract

This thesis was written by Djurre Tijsma from October 2017 until July 2018 as part of
the master’s programme Mathematical Sciences at Utrecht University. The research was
supervised by prof. dr. Gunther Cornelissen and the second reader is prof. dr. Frits Beukers.

We use automata theory to study the finite order elements of the Nottingham group
N (Fp) over the finite field Fp with p a prime number. From 2010 the only known elements
of order not a prime number were three different elements of order 4. After introducing
some preliminaries and the theory of p-automata, we present a method for constructing
algebraic equations for finite order elements of N (Fp) over the rational function field. In
the specific case p = 2 we use a 2-automaton to construct for five different elements of
order 4 an explicit power series. These five power series are different from the three known
power series found in the literature.
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Introduction

The main object of study in this thesis are the finite order elements of the Nottingham
group N (Fp) = {σ ∈ FpJtK | σ(t) ≡ t mod t2} with p a prime number and with group
operation composition of power series. Group theoretically this an interesting group as
it contains for example every finite p-group as a subgroup. Specifically of interest are
the finite order elements of N (Fp), which all have as order a power of p, and one of the
questions one can ask is the following:

What do elements of order pn in N (Fp) look like and can we give explicit power series
for them?

Klopsch considers in [12] the order p elements, he gave up to conjugation a standard
form for every conjugation class of elements of order p. The next case to consider are the
order p2 elements. Since 2010 there are only three known explicit power series of non prime
order and they all have order 4, see [9] and [6].

Using the theory of p-automata we study these elements of order pn. A p-automaton
can be considered as a machine that computes a sequence an (or equivalently a power series∑

n≥0 ant
n) when fed the base p expansion of n. In this way we have obtained five new

explicit power series of order 4.
In Chapter 1 we introduce some concepts, tools and theory which we need in the

remainder of the thesis. In Section 1.1 we start by recalling some basic notions of power
series and we introduce the Cartier operators and some of their properties. These operators
will be important for the chapter on p-automata. In Section 1.2 we give a small introduction
to Witt vectors and the Artin-Schreier-theory describing the cyclic extension of a field
of prime characteristic. In Section 1.3 we discuss valued fields and we a give a basic
introduction to function fields.

In Chapter 2 we introduce the Nottingham group, the group of interest in this thesis.
In Section 2.1 we define and treat some basic properties of the Nottingham group. The
last two sections are about the finite order elements in the Nottingham group. Specifically,
in Section 2.2 we look at the case of order p elements which was completely classified by
Klopsch in [12]. In Section 2.3 we have a look at the order pn elements for n > 1, which is
less well understood.

In Chapter 3 we develop the theory of p-automata, which is essential to us for solving
some algebraic equations in chapter 4. We start by defining in Section 3.1 concepts such as
p-automaton and p-automatic sequences, and we finish with the theorem of Christol relating
algebraic power series to automatic sequences. In Section 3.2 we give a direct algorithm
for constructing the minimal p-automaton of the power series (1 + at)−1/n, which has a
nice description.

In Chapter 4 we apply the theory from the previous chapters to give in Section 4.1 a
method for constructing algebraic equations of order pn elements in N (Fp) and in Sec-
tion 4.2 we use this method to find five new explicit power series of order 4.
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Chapter 1

Preliminaries

In this chapter we recall and introduce some basic properties of power series and Laurent
series, we define the Cartier operators and treat a theorem of Ore. Then we discuss the
existence and properties of certain n-th roots. We continue with introducing Witt vectors
and a part of Artin-Schreier-Witt theory which we will use in Section 4.2 to create a cyclic
Galois extension of degree 4 of a field of characteristic 2. After this, we give some results
about Galois theory for complete fields and we finish by introducing the basics of function
field theory. Throughout this whole chapter k will denote a field and p a prime number.

1.1 Formal power series and Cartier operators

In this section we start by recalling some basic properties of power series including n-
th roots of power series. Then we introduce the Cartier operators on the field of Laurent
series Fp((t)). These operators are crucial for the development of the theory for p-automatic
sequences as is done in Chapter 3.

Recall that the ring of formal power series in the variable t over k is given by

kJtK = {
∑
n≥0

ant
n | an ∈ k}

where the addition and multiplication laws are the usual one. It is well known that kJtK
is a domain and that the power series

∑
n≥0 ant

n ∈ kJtK is invertible (with respect to
multiplication) if and only if a0 6= 0. The fraction field of kJtK is the field of formal Laurent
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series k((t)), which is given by

k((t)) = {
∑
n≥m

ant
n | an ∈ k,m ∈ Z} .

So for any element of k((t)) only finitely many coefficients of the negative powers of t are
non-zero. The field k((t)) comes equipped with a discrete valuation

v : k((t))→ Z ∪ {∞} ,

which is defined by v(f) =∞ if f = 0 and

v(f) = min
n∈Z
{n | an 6= 0}

if f =
∑

n∈Z ant
n ∈ k((t)) is non-zero. That this is indeed a discrete valuation is easily

verified. This turns kJtK into a complete local ring.

For f ∈ k((t)) and g ∈ tkJtK, we define the composition f ◦ g ∈ k((t)) by

(f ◦ g)(t) := f(g(t)) .

This definition makes sense, because the coefficient of t0 in g is zero and hence we have for
each n ∈ Z that the coefficient of tn in f(g(t)) is a finite sum of non-zero elements of k.
For an element f ∈ tkJtK denote the n-fold composition of f with itself by f ◦n, so

f ◦n(t) = (f ◦ . . . ◦ f︸ ︷︷ ︸
n times

)(t) .

In Section 2.1 we show that if f ∈ tkJtK has a right or left compositional inverse g ∈ tkJtK,
then g is a two-sided inverse. We write f ◦−1 for this element g, we set f ◦0 = t (the identity
in N (k), see Section 2.1) and for n ≥ 1 we write f ◦−n := (f ◦−1)n.

In our investigation of the Nottingham group, in Section 2.1, we need the existence and
uniqueness of n-th roots of certain power series. For this we need Hensel’s Lemma which
is stated below, a proof can be found in F13 on page 58 in [13].

Theorem 1.1.1 (Hensel’s Lemma). Consider the complete local ring R = kJtK and a
monic polynomial f ∈ R[T ]. If α ∈ k is a simple root of f then there exists an element
a ∈ R with a ≡ α mod t and f(a) = 0.

Corollary 1.1.2. Let m,n ∈ Z be two integers with gcd(p, n) = 1 and B ∈ 1 + tkJtK a
power series. Then there exists a unique power series A ∈ 1 + tkJtK satisfying An = Bm.

Proof. Consider the polynomial f(T ) = T n − Bm ∈ kJtK[T ]. We see that f(1) ≡ 0 mod t
and f ′(1) = n 6≡ 0 mod t because p - n. Applying Hensel’s Lemma shows that there exists
a unique power series A ∈ 1 + tkJtK such that An = Bm.
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For the polynomial 1 + t ∈ Fp[t] we can be more precise about its n-th roots. That
is, we can give a formula for its coefficients by means of the generalized binomial theorem.
We therefore first introduce the generalized binomial.

Definition 1.1.3 (Generalized binomial). For each n ≥ 0, define the polynomial
(
t
n

)
∈

Q[t] by (
t

n

)
:=

t(t− 1) · · · (t− n+ 1)

n!
.

Note that
(
t
0

)
= 1 since we regard the empty product to be equal to 1.

Because of its use in the generalized binomial it is important to extend the binomial
coefficient to Fp. This lemma was stated in Exercise 11 in [2], we give our own proof.

Lemma 1.1.4. Let a
b
∈ Q be written in lowest form and suppose that p - b. Then p does

not divide the denominator of
(a

b
n

)
.

For the proof of the above lemma we are going to work with the p-adic integers Zp

inside the field of p-adic numbers Qp.

Proof. It is clear that fn(t) :=
(
t
n

)
is a polynomial in Qp[t] and so a continuous map from

Qp to Qp. Since a
b
∈ Zp we can write a

b
= limm→∞

∑m
i=0 cip

i for some integers 0 ≤ ci < p.
Using the continuity of fn, this gives(

a
b

n

)
= fn(a

b
) = lim

m→∞
fn

(
m∑
i=0

cip
i

)
.

For each m ≥ 0 we have
∑m

i=0 cip
i ∈ Z ⊆ Zp, because fn is continuous and Zp is a closed

subset of Qp. We see that the limit fn(a
b
) also lies in Zp. It follows that fn(a

b
) is an element

of Zp ∩ Q and hence p does not divide the denominator of
(a

b
n

)
when written in lowest

form.

Remark 1.1.5. We use the notation of the previous lemma. Since p doesn’t divide the
denominator of

(a
b
n

)
we can reduce this fraction modulo p to obtain an element of Fp. We

take this as the definition of
(a

b
n

)
∈ Fp.

For a rational number a with p not dividing the denominator of a, we define the power
series

(1 + t)a :=
∑
k≥0

(
a

k

)
tk ∈ FpJtK (1.1)
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which is well-defined by Lemma 1.1.4. One can show that the power series in Equation (1.1)
behaves exactly as one hopes: for a, b ∈ Q with p not dividing the denonimator of a and b
we have (1 + t)a(1 + t)b = (1 + t)a+b and ((1 + t)a)b = (1 + t)ab.

We move on to Cartier operators. The Frobenius map x 7→ xp is an automorphism of
Fp, so for A(t) =

∑
n∈Z ant

n ∈ Fp((t)) we have

A(t)p =

(∑
n∈Z

ant
n

)p

=
∑
n∈Z

ant
pn = A(tp) .

This is a useful property of Laurent series that we will encounter multiple times. The next
definition introduces the Cartier operators.

Definition 1.1.6 (Cartier Operator). Let 0 ≤ r < p be an integer. The Cartier operator
Λr is defined on the monomials tn ∈ Fp((t)) with n ∈ Z by

Λr(t
n) =

{
tm if n = pm+ r for some m ∈ Z;

0 otherwise.

Extending this definition Fp-linearly to Fp((t)) gives the definition of the Cartier operator
Λr on Fp((t)). In particular we have for a power series A =

∑
n≥0 ant

n ∈ Fp((t)) that

Λr(A) = Λr

(∑
n∈Z

ant
n

)
=
∑
n∈Z

apn+rt
n .

We may apply the Cartier operators any number of times to a Laurent series. It turns
out to be useful to extend the Cartier operators from a one-dimensional sequence over Fp

to a k-dimensional sequence over Fp.

Definition 1.1.7 (Multi-dimensional Cartier operator). Let ` be some positive integer
and consider an element r = (r0, r1, . . . , r`−1) ∈ F`

p. Define the Cartier operator Λr on the
monomials tn ∈ Fp((t)) with n ∈ Z by

Λr(t
n) =

{
tm if n = p`m+ r0 + r1p+ . . .+ r`−1p

`−1 for some m ∈ Z

0 otherwise
.

Extending this definition Fp-linearly to Fp((t)) gives the definition of Λr on Fp((t)).

For ` = 1 the above definition reduces to the one given in Definition 1.1.6.

Remark 1.1.8. In a similar way as in Definition 1.1.6 we can define the Cartier operator
Λr with 0 ≤ r < p of a sequence a = (an)n≥0 by

Λr(a) := (apn+r)n≥0 .

In an analogous way to what we did in Definition 1.1.7 we can define the Cartier operator
Λr for r ∈ F`

p on a sequence in Fp.
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The Cartier operator has some useful properties.

Lemma 1.1.9. For two Laurent series A,B ∈ Fp((t)) and an integer 0 ≤ r < p we have

(1) A =
∑

0≤r<p
tr(Λr(A))p;

(2) Λr(A
pB) = AΛr(B).

Proof. Write A =
∑

n∈Z ant
n then

A(t) =
∑

0≤r<p

∑
n∈Z

apn+rt
pn+r =

∑
0≤r<p

tr
∑
n∈Z

apn+r(t
n)p

=
∑

0≤r<p

tr

(∑
n∈Z

apn+rt
n

)p

=
∑

0≤r<p

tr(Λr(A))p ,

which proves the first equality. If B(t) =
∑

n∈Z bnt
n then

ApB =

(∑
n∈Z

ant
np

)(∑
n∈Z

bnt
n

)
=
∑
m∈Z

∑
pi+j=m

aibjt
m

which gives

Λr(A
pB) =

∑
m∈Z

∑
pi+j=pm+r

aibjt
m .

On the other hand we have

AΛr(B) =

(∑
n∈Z

ant
n

)(∑
n∈Z

bpn+rt
n

)
=
∑
m∈Z

tm
∑
i+j=m

aibpj+r .

Combining the last two equations shows that Λr(A
pB) = AΛr(B).

Remark 1.1.10. For a polynomial A ∈ Fp[t] and an integer 0 ≤ r < p it follows directly
from the definition of the Cartier operator that deg Λr(A) ≤ bdegA

p
c ≤ degA

p
.

The next theorem shows that there exists an algebraic relation over Fp(t) between the
p-th powers of a power series in Fp((t)) if it is algebraic over Fp(t). This special form will
come in handy because it behaves well with respect to the Cartier operator. We sometimes
call it the Ore form.

Theorem 1.1.11 (Ore). Let A ∈ Fp((t)), then A is algebraic over Fp(t) if and only if
there exists an integer n ≥ 1 and polynomials B0, B1, . . . , Bn ∈ Fp[t], not all zero, such
that

B0A+B1A
p +B2A

p2 + . . .+BnA
pn = 0 . (1.2)

Moreover, one can even assume that B0 6= 0.
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Proof. The direction (⇐) follows immediately from the definition of being algebraic over
Fp(t). For (⇒) we know that there exists a polynomial P (T ) ∈ Fp[t][T ] of degree degT P =
n such that P (A) = 0. Consider the powers T, T p, . . . , T p

n
, by Euclidean division there

exists polynomials Si, Ri ∈ Fp(t)[T ] such that

T p
i

= SiP +Ri

for i = 0, 1, . . . , n with degT R
i < n. We now have n+ 1 polynomials Ri of degree between

0 and n−1 and so these polynomials are linearly dependent over Fp(t). Hence there exists
C0, . . . , Cn ∈ Fp(t), not all zero, such that

0 =
n∑
i=0

CiRi .

This gives
n∑
i=0

CiT
pi = P

n∑
i=0

CiSi +
n∑
i=0

CiRi = P
n∑
i=0

CiSi

and since A is a zero of the right hand side it follows that A is also a zero of the left hand
side. By multiplying with a suitable polynomial we can take the coefficients of the T p

i
to

be in Fp[t]. This shows that A is a zero of an equation of the form in (1.2).

We will now show that we can take B0 6= 0. Assume that we have a relation

B0A+B1A
p +B2A

p2 + . . .+BnA
pn = 0

with Bi ∈ Fp[t], not all zero, and n minimal. Since the Bi are not all zero we can find an
integer 0 ≤ r < p such that Λr(Bj) 6= 0 for some j. If B0 = 0 then

0 = Λr

(
n∑
i=0

BiA
pi

)
=

n∑
i=1

Ap
i−1

Λr(Bi) ,

using Lemma 1.1.9, which is an equation of a similar form with not all coefficients non-zero
and smaller degree in A. This implies that n is not minimal, a contradiction. Hence we
must have B0 6= 0.

Remark 1.1.12. In the above proof we use Euclidean division to obtain the polynomials
Ri ∈ Fp(t)[T ] and then we use linear algebra to find a linear dependence between the Ri’s.
In practice, these polynomials can have big coefficients and the Ci’s from the proof can
get complicated. Putting an equation in Ore form can therefore be challenging. With the
help of a computer for small equations it is feasible, but if the degrees of the equations get
large then it becomes tedious and it can take a while.
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1.2 The ring of Witt vectors and Artin-Schreier-Witt

theory

In this section we introduce the ring of Witt vectors of an arbitrary ring. We use these
Witt vectors to construct cyclic Galois extensions for a field k of prime characteristic. This
section is written in an expository way and we have left out almost all of the proofs. For a
careful treatment with proofs of the theory of Witt vectors we refer to Chapter 26 of [13].
Throughout this section, p denotes a prime number.

In order to define the ring of Witt vectors for an arbitrary ring it turns out to be
useful to define it first for the ring R = Q[x0, y0, x1, y1, . . .], the polynomial ring over Q in
countably many variables. Consider the set RN, the set of all sequences (a0, a1, . . .) with
ai ∈ R. For an element a = (a0, a1, . . .) ∈ RN define its ghost component a∗ ∈ RN by
a∗ = (a(0), a(1), . . .) where

a(n) = ap
n

0 + pap
n−1

1 + . . .+ pnan for every n ≥ 0 .

Moreover we write F (a) for the element (ap0, a
p
1, . . .) ∈ RN. We work in the ring R so we

may divide by powers of p. Using the identity

a(n) = F (a)(n−1) + pnan

we can recover the element a ∈ RN from its ghost component a∗. This fact enables us to
define an addition and multiplication law on RN. This can be done as follows, for a, b ∈ RN

we define its sum a+ b ∈ RN as the unique element in RN satisfying

(a+ b)(n) = a(n) + b(n) for all n ≥ 0 .

Similarly we define the product a · b ∈ RN as the unique element in RN satisfying

(a · b)(n) = a(n) · b(n) for all n ≥ 0 .

At the level of ghost components we just have coordinate-wise addition and multiplication.
The next lemma shows that this defines a ring structure on RN.

Lemma 1.2.1. Let R be as above. The set RN becomes a commutative ring with zero ele-
ment 0 = (0, 0, . . .) and unit element 1 = (1, 0, . . .) if we define addition and multiplication
as above. We write W (R) for this ring and call it the ring of Witt vectors over the ring R.

The proof of Lemma 1.2.1 is not difficult. We therefore only illustrate it by giving a
proof for the distributive law and leave the rest to the reader. Let a, b, c ∈ W (R), using
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the definitions of addition and multiplication in W (R) we see that

(a · (b+ c))(n) = a(n)(b+ c)(n)

= a(n)(b(n) + c(n))

= a(n) · b(n) + a(n) · c(n)

= (a · b)(n) + (a · c)(n)

= (a · b+ a · c)(n)

holds for every n ≥ 0. It follows that we have for all a, b, c ∈ W (R) the identity

a · (b+ c) = a · b+ a · c

and so the distributive law holds.

Let x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ W (R), we can recover the entries of x + y from
the entries of its ghost component (x + y)∗. In this recovering process we only divide by
powers of p, this shows that (x+ y)n is a polynomial in the entries of x and y, so

(x+ y)n ∈ Q[x0, y0, . . . , xn, yn] .

Consider the homomorphism f : R → R which sends xi to ai and yi to bi. Applying this
to the polynomial (x+ y)n shows that we have more generally that

(a+ b)n ∈ Q[a0, b0, . . . , an, bn]

for all a, b ∈ W (R). A similar result holds for (a · b)n. It turns out that even more is true,
which is captured in the next theorem. See Lemma 1 on page 97 in [13] for a proof.

Theorem 1.2.2. For two elements a, b ∈ W (R) we have

(a+ b)n − (an + bn) ∈ Z[a0, b0, . . . , an−1, bn−1]

and
(a · b)n ∈ Z[a0, b0, . . . , an, bn]

for all n ≥ 0.

So all the coefficients of these polynomials actually belong to Z. This is of crucial
importance for the construction of the ring of Witt vectors W (S) for an arbitrary ring S.
Using these “universal” identities and the fact that W (R) is a ring we can transfer the ring
structure from W (R) to W (S) (as a set W (S) is just SN). A way to this is as follows. Let
a, b ∈ SN and consider the evaluation homomorphism g : R→ S which maps xi to ai and
yi to bi. Define the sum a+ b and product a · b by

(a+ b)n := g((x+ y)n) and (a · b)n := g((x · y)n)

15



for every n ≥ 0. One can show that this turns W (S) into a ring with zero element
0 = (0, 0, . . .) and unit element 1 = (1, 0, . . .) but we won’t do this here.

The formulas for addition and multiplication, i.e. (a + b)n and (a · b)n, in W (R) (and
hence in W (S) for any ring S) become very complicated if the index n gets large. Knowing
these formulas is important for the applications of the Witt vectors. We will give two ways
for finding these formulas. One possibility is to start with the ghost components and try to
solve successively for the addition formula and multiplication formulas. For a, b ∈ W (R)
we find that the first three components of a∗ are

a(0) = a0, a(1) = ap0 + pa1, a(2) = ap
2

0 + pap1 + p2a2

and we have similar formulas for b(0), b(1) and b(2). The ghost components of the sum a+ b
are

(a+ b)0 = (a+ b)(0) = a0 + b0

(a+ b)p0 + p(a+ b)1 = (a+ b)(1) = ap0 + bp0 + p(a1 + b1)

(a+ b)p
2

0 + p(a+ b)p1 + p2(a+ b)2 = (a+ b)(2) = ap
2

0 + bp
2

0 + p(ap1 + bp1) + p2(a2 + b2)

and for the product a · b we find

(a · b)0 = (a · b)(0) = a0b0

(a · b)p0 + (a · b)1 = (a · b)(1) = (ap0 + pa1)(b
p
0 + pb1)

(a · b)p
2

0 + p(a · b)p1 + p2(a · b)2 = (a · b)(2) = (ap
2

0 + pap1 + p2a2)(b
p2

0 + pbp1 + p2b2) .

We see that (a+ b)0 and (a · b)0 are precisely the ordinary laws for addition and multipli-
cation. Solving these equations for (a+ b)1 and (a · b)1 we find

(a+ b)1 = a1 + b1 +
ap0 + bp0 − (a0 + b0)

p

p
and (a · b)1 = pa1b1 + ap0b1 + bp0a1 . (1.3)

Because the formulas for (a + b)2 and (a · b)2 become too big, we don’t write them out
explicitly. Note that (a + b)1 is indeed a polynomial in Z[a0, b0, a1, b1] since p divides the
binomial coefficient

(
p
k

)
for every 1 ≤ k ≤ p− 1.

Another way to find these formulas is a bit mysterious and the relation with the Witt
vectors is not so clear at first sight. It arises from a different way (as in Lemma 1 on page
97 of [13]) to prove Theorem 1.2.2, see for example [16]. For a, b ∈ W (R) and n ≥ 0 the
polynomial −(a+ b)n can be read of from the power series∏

k≥0

(
1− bktp

k
)
·
∏
m≥0

(
1− amtp

m) ∈ RJtK ,

as the coefficient of tp
n

and the polynomial −(a · b)n can be read of from the power series∏
d,e≥1

(
1− am/p

d

d bm/p
e

e tm
)pd+e/m

,
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where m = pmax{d,e}, as the coefficient of tp
n
.

Another important property of the construction of the ring of Witt vectors is that it is
functorial. This means that if ϕ : S → T is a ring homomorphism then we get an induced
ring homomorphism

W (S)→ W (T ) : (s0, s1, . . .) 7→ (ϕ(s0), ϕ(s1), . . .) .

which we will also denote by ϕ.

We introduce three more important maps on the Witt ring W (S) where S is an arbitrary
ring. First we have the so-called Verschiebung map, German for shift map,

V : W (S)→ W (S) : (a0, a1, . . .) 7→ (0, a0, a1, . . .)

This is an endomorphism on the additive group of W (S) but not necessarily of the ring
W (S). For every n ≥ 0 the subset V n(W (S)) is an ideal of W (S) consisting of all elements
in W (S) having a zero in the first n components, so

V n(W (S)) = {(a0, a1, . . .) | a0 = . . . = an−1 = 0} .

This allows us to define the truncated Witt vectors of length n over S by

Wn(S) := W (S)/V n(W (S)) .

Basically we forget about everything that happens outside the first n components. We will
use these truncated Witt vectors in the next section.
Let k be a field of characteristic p, then the Frobenius map F : z 7→ zp on k is a ring
endomorphism and hence induces a ring endomorphism

F : W (k)→ W (k) : (a0, a1, . . .) 7→ (ap0, a
p
1, . . .)

which restricts to a ring endomorphism on Wn(k). Lastly, define the map ℘ on W (k) by

℘ = F − id ,

it is an endomorphism of the additive group of W (k) but not necessarily of the ring W (k).
The map ℘ restricts to an endomorphism on the additive group of Wn(k).

From now on let k be a field of characteristic p. We will show how one can use the
truncated Witt ring Wn(k) to construct cyclic Galois extensions of degree pn of k.

Consider the map ℘ : Wn(k)→ Wn(k) defined in the previous section, the kernel of ℘ is
precisely Wn(Fp) (where we have identified Fp with the prime field of k). Let x ∈ Wn(k),
one can show that there exists an α ∈ Wn(k) such that ℘(α) = x (here k denotes an
algebraic closure of k). A way to do this is to use induction on n, for n = 1 this reduces

17



to finding an α0 ∈ k such that αp0 − α0 = x0. Suppose α, β ∈ Wn(k) are two elements
satisfying ℘(α) = ℘(β), then since ℘ is additive we get α − β ∈ ker℘ = Wn(Fp). This
shows that solutions to the equation ℘(α) = x only differ up to an element of Wn(Fp).
This allows us to write unambiguously

k(℘−1(x)) = k(α) := k(α0, . . . , αn−1) .

It turns out that the extension k(℘−1(x))/k is a Galois extension of degree at most pn.

We are now ready to state the central theorem of Artin-Schreier-Witt theory (see also
Theorem 5 on page 107 in [13]), which was first proven in [19].

Theorem 1.2.3 (Artin-Schreier-Witt, 1936). A field extension k′/k is a finite cyclic
Galois extension of degree pn if and only if k′ = k(℘−1(x)) for some x ∈ Wn(k) satisfying
x0 /∈ ℘(k). Moreover, if α ∈ Wn(k′) is an element such that ℘(α) = x, then a generator σ
for the Galois group Gal(k(℘−1(x))/k) is defined by σ(αi) = (α+ 1)i for all 0 ≤ i ≤ n− 1.

We will look more closely at the above theorem by considering the cases n = 1 and
n = 2. For n = 1 we will show that it reduces to the well known Artin-Schreier theory
and for n = 2 we will demonstrate how to construct cyclic extensions of order p2 using the
truncated Witt ring W2(k).

Example 1.2.4. Suppose n = 1, then we know that W1(k) is just the field k. The
requirement that x0 /∈ ℘(k) ensures us that the polynomial T p− T − x0 is irreducible over
k. Let α0 ∈ k be a zero of T p − T − x0 then k(α0)/k is a degree p extension and since the
other zeros of T p−T −x0 are given by α0 + i with 1 ≤ i ≤ p− 1 we conclude that k(α0)/k
is a cyclic Galois extension of degree p.

Example 1.2.5. Suppose n = 2, let x ∈ W2(k) be a truncated Witt vector of length 2
with x0 /∈ ℘(k) and α ∈ W2(k) an element satisfying ℘(α) = x. Writing out the equation
℘(α) = x in coordinates gives

(αp0, α
p
1)− (α0, α1) = (x0, x1)

which rewrites (using Equation (1.3)) to

(αp0, α
p
1) = (x0, x1) + (α0, α1) =

(
x0 + α0, x1 + α1 +

xp0 + αp0 − (x0 + α0)
p

p

)
.

Note that we first have to expand (x0 +α0)
p and divide by p for this formula to make sense

over a field of characteristic p. Theorem 1.2.3 ensures us that the extension k(α0, α1)/k is
a cyclic Galois extension of degree p2 where α0 and α1 satisfy the equations

αp0 − α0 = x0 and αp1 − α1 = x1 +
xp0 + αp0 − (x0 + α0)

p

p
.
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That any cyclic Galois extension of degree p2 can be obtained by such a system of equations
is more difficult to prove. A generator σ of the Galois group is defined by

σ(α0) = α0 + 1 and σ(α1) = α1 +
αp0 + 1− (α0 + 1)p

p
.

In Chapter 4 we are particular interested in the case p = 2. Therefore we have a closer
look at the addition and multiplication formulas in the case p = 2 and we give the formulas
for constructing a cyclic Galois extension of degree 4 and of degree 8 together with formulas
for a generator of the Galois group.

Example 1.2.6. In the case p = 2 we give the formulas for addition and multiplication in
the truncated Witt ring W3(k). For a, b ∈ W3(k) we have

(a+ b)0 = a0 + b0

(a+ b)1 = a1 + b1 + a0b0

(a+ b)2 = a2 + b2 + a1b1 + a0a1b0 + a0b0b1 + a30b0 + a0b
3
0

and

(a · b)0 = a0b0

(a · b)1 = a20b1 + a1b
2
0

(a · b)2 = a21b
2
1 + a40b2 + a2b

4
0 + a20a1b

2
0b1 .

The formulas given in Example 1.2.5 simplify a lot in the case p = 2 and even the formulas
for a cyclic degree 8 extension are manageable. Let x ∈ W3(k) with x0 /∈ ℘(k) and
α ∈ W3(k) an element such that ℘(α) = x. The system of equations for a cyclic degree 8
extension then becomes

α2
0 − α0 = x0 (1.4)

α2
1 − α1 = x1 + x0α0 (1.5)

α2
2 − α2 = x2 + α1x1 + α0α1x1 + α0x0x1 + α3

0x0 + α0x
3
0 (1.6)

and a generator σ of the Galois group is defined by

σ(α0) = α0 + 1 (1.7)

σ(α1) = α1 + α0 (1.8)

σ(α2) = α2 + α0α1 + α3
0 + α0 . (1.9)

1.3 Completion of valued fields and function fields

In this section we start by introducing valued fields and their completions. Then we say
something about the Galois theory for completions of valued fields. This is followed by an
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introduction to function fields which is largely based upon Stichtenoth [18]. In Chapter 4
we apply this theory to give a method for constructing algebraic equations of finite order
elements of the Nottingham group.

Let F be a field and v : F → Z ∪ {∞} a discrete valuation of F . The pair (F, v) is
called a valued field. We already encountered one example of a valued field, namely the
field k((t)) with the valuation defined in the beginning of Section 1.1.

Let (F, v) be a valued field, then one can use v to turn the field F into a metric space.
For example |x| := 2−v(x) for x ∈ F and |0| := 0 defines a norm on F . It therefore makes
sense to talk about convergence in a valued field. We say that a sequence (xn)n≥0 in F is
convergent if there exists an element x ∈ F which satisfies: for every c ∈ R there is an
index N ∈ N such that v(x − xn) ≥ c whenever n ≥ N . Furthermore we call a sequence
(xn)n≥0 a Cauchy sequence if it has the following property: for every c ∈ R there is an
index N ∈ N such that v(xn − xm) ≥ c whenever m,n ≥ N .

The following definition defines when a valued field is called complete and it lists some
properties of a completion of a valued field.

Definition 1.3.1. A valued field is said to be complete if every Cauchy sequence in it
converges. Let (F, v) be a valued field, a completion of F is a valued field (F̂ , v̂) with the
following properties:

(1) F ⊆ F̂ , and v̂|F = v;

(2) F̂ is complete with respect to v̂;

(3) F is dense in F̂ , that is, for each z ∈ F̂ there is a sequence (xn)n≥0 in F with
z = limn→∞ xn. The valuation v(z) is given by v(z) = limn→∞ v(xn).

It turns out that every valued field has a completion (see for instance Chapter 4 of [18])
and that it is unique in a certain way. More precisely, if (F, v) is a valued field for which
(F̂ , v̂) and (F̃ , ṽ) are both completions, then there is a unique isomorphism f : F̂ → F̃
such that v̂ = ṽ ◦ f . We may therefore speak of the completion of a valued field and we
write Fv for the completion of the valued field (F, v).

We continue with some results about Galois extensions of valued fields. We state two
theorems and for their proofs we refer to Theorem 4.8 and Proposition 9.6 from Chapter
2 of [15].

Theorem 1.3.2. Let K be a complete field with respect to some valuation v. The valu-
ation v may be extended in a unique way to a valuation of any given algebraic extension
L/K. When L/K is a finite extension the field L is complete with respect to the extended
valuation.
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Theorem 1.3.3. Let (K, v), (L,w) be two valued fields such that L/K is a finite Galois
extension and w|K = v. Consider the completion Lw of (L,w) and let Kv be the completion
of K inside Lw. We then have that the extension Lw/Kv is Galois with

Gal(Lw/Kv) ∼= Galw(L/K) := {σ ∈ Gal(L/K) | w ◦ σ = σ} .

We are going to use Theorem 1.3.3 for constructing finite order elements of the Not-
tingham group. First we need some basics of function field theory in order to apply this
to a specific extension of function fields in Section 4.2.

Definition 1.3.4. An algebraic function field F/K is a field extension F/K such that F
is a finite algebraic extension of K(x) for some element x ∈ F which is transcendental
over K.

Example 1.3.5. The simplest example of an algebraic function field is the rational function
field. An algebraic function field F/K is called rational if F = K(x) for some x ∈ F which
is transcendental over K.

We now introduce the notions of valuation rings, places and the residue class field.

Definition 1.3.6. A valuation ring of the function field F/K is a ring O ⊆ F with the
following properties:

(1) K ( O ( F , and

(2) for every z ∈ F we have that z ∈ O or z−1 ∈ O.

Example 1.3.7. Consider the rational function field K(x)/K. For an irreducible monic
polynomial p(x) ∈ K[x] consider the set

Op(x) :=

{
f(x)

g(x)
| f(x), g(x) ∈ K[x], p(x) - g(x)

}
.

It is easily verified that Op(x) is a valuation ring of K(x)/K.

We now state some properties of a valuation ring of a function field.

Proposition 1.3.8. Let O be a valuation ring of the function field F/K. Then the fol-
lowing hold:

(a) O is a local ring with P = O\O× as its unique maximal ideal, here O× is the group
of units of O.
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(b) Let 0 6= x ∈ F , then x ∈ P ⇔ x−1 /∈ O.

(c) The maximal ideal P is a principal ideal.

(d) If P = tO for some t ∈ O, then each 0 6= z ∈ F has a unique representation of the
form z = tnu for some n ∈ Z and u ∈ O×.

Definition 1.3.9. A place P of the function field F/K is the maximal ideal of some
valuation ring O of F/K. Every element t ∈ P such that P = tO is called a uniformizer
for P . We write

PF := {P | P is a place of F/K}

for the set of all places of F/K.

Note that if O is a valuation ring of F/K and P is its maximal ideal, then O is uniquely
determined by P . Hence OP := O is called the valuation ring of the place P . That the
set of places is always non-empty is something that has to be proved, it is not immediate
from the definitions. A proof can be found in Theorem 1.1.19 from Chapter 1 in [18]. To
each place of a function field we can associate a discrete valuation as follows.

Definition 1.3.10. Let F/K be an algebraic function field and P ∈ PF a place. We
associate to P a map vP : F → Z∪{∞} which is defined as follows. Choose a uniformizer
t for P . Then every 0 6= z ∈ F has a unique representation z = tnu with u ∈ O×P and
n ∈ Z. Define vP (z) := n and vP (0) :=∞.

The above definition of vP depends on a choice of uniformizer (which always exists),
however one can show that the value of vP (z) is independent of this choice of uniformizer.
So vP is a well-defined map. We have the following theorem.

Theorem 1.3.11. Let F/K be a function field.

(a) For a place P ∈ PF , the function vP defined above is a discrete valuation of F/K.
Moreover we have

OP = {z ∈ F | vP (z) ≥ 0},
O×P = {z ∈ F | vP (z) = 0},
P = {z ∈ F | vP (z) > 0} .

(b) An element x ∈ F is a prime element for P if and only if vP (x) = 1.

(c) Conversely, suppose that v is a discrete valuation of F/K. Then the set P := {z ∈
F | v(z) > 0} is a place of F/K, and OP = {z ∈ F | v(z) ≥ 0} is the corresponding
valuation ring.
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(d) Every valuation ring O of F/K is a maximal proper subring of F .

For a place P of a function field we saw above that OP is a local ring, so we can look
at its residue class field.

Definition 1.3.12. Let P ∈ PF . Since P is a maximal ideal the residue class ring FP :=
OP/P is a field. For x ∈ OP we define x(P ) ∈ FP to be the residue class of x modulo P ,
for x ∈ F\OP we put x(P ) := ∞. The map x 7→ x(P ) from F to FP ∪ {∞} is called the
residue class map with respect to P . We have K ∩ P = {0} so we can consider K as a
subfield of FP . We write degP := [FP : K], the degree of P .

Example 1.3.13. Consider the case of the rational function field K(x)/K and a monic
irreducible polynomial p(x) ∈ K[x]. We write P = Pp(x) for the maximal ideal of the

valuation ring Op(x). For z ∈ F (x) we then have vP (z) = n if z = p(x)n · f(x)
g(x)

with

n ∈ Z, f(x), g(x) ∈ K[x] and p(x) - f(x)g(x). For the residue class field of P we have
K(x)P ∼= K[x]/(p(x)).

We now turn towards extensions of function fields.

Definition 1.3.14. An algebraic function field F ′/K ′ is called an algebraic extension of
F/K if F ⊆ F ′ is an algebraic field extension and K ⊆ K ′. A place P ′ ∈ PF ′ is said to lie
over P ∈ PF if P ⊆ P ′, and we write P ′ | P .

Proposition 1.3.15. Let F ′/K ′ be an algebraic extension of F/K. Suppose that P (resp.
P ′) is a place of F/K (resp. F ′/K ′), and let OP ⊆ F (resp. OP ′ ⊆ F ′) denote the
corresponding valuation ring, vP (resp. vP ′) the corresponding discrete valuation. Then
the following assertions are equivalent:

(1) P ′ | P .

(2) OP ⊆ OP ′.

(3) There exists an integer e ≥ 1 such that vP ′(x) = evP (x) for all x ∈ F .

Moreover, if P ′ | P then
P = P ′ ∩ F and OP = OP ′ ∩ F

For this reason, P is also called the restriction of P ′ to F .

A consequence of the preceding proposition is that for P ′ | P there is a canonical
embedding of the residue class field FP = OP/P into the residue class field F ′P ′ = OP ′/P ′,
given by

x(P ) 7→ x(P ′) for x ∈ OP .
Therefore we can consider FP as a subfield of F ′P ′ .
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Definition 1.3.16. Let F ′/K ′ be an algebraic extension of F/K, and let P ′ ∈ PF ′ be a
place of F ′/K ′ lying over P ∈ PF .
(a) The integer e(P ′|P ) := e with vP ′(x) = e · vP (x) for all x ∈ F is called the ramification
index of P ′ over P . We say that P ′ | P is ramified if e(P ′|P ) > 1, and P ′ | P is unramified
if e(P ′|P ) = 1.
(b) f(P ′|P ) := [F ′P ′ : FP ] is called the relative degree of P ′ over P .

Proposition 1.3.17. Let F ′/K ′ be an algebraic extension of F/K and let P ′ be a place of
F ′/K ′ lying over P ∈ PF . Then
(a) f(P ′|P ) <∞⇔ [F ′ : F ] <∞.
(b) If F ′′/K ′′ is an algebraic extension of F ′/K ′ and P ′′ ∈ PF ′′ is an extension of P ′, then

e(P ′′|P ) = e(P |P ′) · e(P ′|P )

f(P ′′|P ) = f(P ′′|P ′) · f(P ′|P ) .

Let F ′/K ′ be an extension of F/K of degree [F ′ : F ] = n and let P ∈ PF . We then say
that P is totally ramified in F ′/F if there is a place P ′ ∈ PF ′ with P ′|P and e(P ′|P ) = n.
The next theorem shows how the ramification index and the relative degree of all places
in PF ′ above a place P ∈ PF are related.

Theorem 1.3.18. Let F ′/K ′ be a finite extension of F/K and let P1, . . . , Pm be all the
places of F ′/K ′ lying over P . We then have the equality

m∑
i=1

e(Pi|P )f(Pi|P ) = [F ′ : F ] .

An extension F ′/K ′ of a function field F/K is said to be Galois if F ′/F is a Galois
extension of finite degree. Let P be a place of F/K. Then Gal(F ′/F ) acts on the set of
all extensions {P ′ ∈ PF ′ | P ⊆ P ′} via σ(P ′) = {σ(x) | x ∈ P ′} and the corresponding
valuation vσ(P ′) is given by

vσ(P ′)(y) = vP ′(σ
−1(y)) for y ∈ F ′ . (1.10)

The following proposition is important for the applications of this section in chapter 4.

Proposition 1.3.19. Let F/K be an algebraic function field of characteristic p > 0.
Suppose that u ∈ F is an element which satisfies the following condition:

u 6= wp − w for all w ∈ F .

Let F ′ = F (y) with yp − y = u. For P ∈ PF we define the integer mP by

mP :=


m if there is an element z ∈ F satisfying vP (u− (zp − z)) = −m < 0

and m 6≡ 0 mod p

−1 if vP (u− (zp − z)) ≥ 0 for some z ∈ F .
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The integer mP is well-defined. We then have that F ′/F is a cyclic Galois extension.
Moreover P is totally ramified in F ′/F if and only if mP > 0 and in that case P ′ is the
unique place above P . If z ∈ F is an element such that vP (u − (zp − z)) = −mP , then
vP ′(y − z) = −mP .

For a place P of an algebraic function field F/K we get a discrete valuation vP and
hence we can consider the completion of F with respect to this valuation.

Theorem 1.3.20. Let F/K be an algebraic function field and P ∈ PF a place of degree
1. Consider the completion F̂P of F with respect to the valuation vP . Then every element
z ∈ F̂P has a unique representation of the form

z =
∞∑
i=n

ait
i with n ∈ Z and ai ∈ K ,

where t is a uniformizer for P , and each element of this form is contained in F̂P . If we
write vP also for the extended valuation on F̂P then we have for z 6= 0 that vP (z) = min{i |
ai 6= 0}.
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Chapter 2

The Nottingham group

In this chapter we introduce the Nottingham group of a field. The finite order elements
in this group are the central object of study in this thesis. We first define the group itself,
prove some properties of it and then we look at its finite order elements. Throughout this
whole chapter k is a field of characteristic p with p a prime number.

2.1 The Nottingham group

Definition 2.1.1. The Nottingham group of a field k is the set

N (k) = {σ ∈ kJtK | σ(t) ≡ t mod t2}
with as group operation composition of power series.

Note that the assumption that k has characteristic p is not necessary for the definition
of the Nottingham group (and also for some other results in this chapter). Later on we
will be looking at finite order elements of N (k) and if k has characteristic zero then t is
the only element of finite order. In Theorem 2.1.2 we show that N (k) is a group under
this operation. Sometimes the Nottingham group is also introduced as the subgroup of the
automorphisms group Aut(kJtK) consisting of the normalized automorphisms, i.e. those
automorphisms σ of kJtK satisfying σ(t) ≡ t mod t2. This point of view arises naturally
in algebraic geometry.

Lemma 2.1.2. The set N (k) with group operation composition of power series is a group.

Proof. For any two f, g ∈ N (k) it is easily verified that the compositions f ◦ g and g ◦ f
exists and are elements of N (k). Composition of functions is always associative so the
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group operation is automatically associative. The element t ∈ N (k) is clearly the identity
with respect to the operation and so we are left to show that every element has an inverse.
Let f be an element of N (k) and write

f(t) =
∑
n≥1

ant
n

with a1 = 1. Define the sequence (bn)n≥1 recursively by b1 = 1 and for n ≥ 2 (note that
the coefficient for bn equals an1 = 1):

n∑
m=1

bm
∑

(i1,...,im)∈Zm
>0

i1+...+im=n

ai1 · · · aim = 0 . (2.1)

To the sequence (bn)n≥1 we associate the power series g(t) =
∑

n≥1 bnt
n ∈ N (k). Looking

at the coefficient of tn in g(f(t)) we see that it equals 1 if n = 1 and it equals the left hand
side of Equation (2.1) if n ≥ 2. It follows that g(f(t)) = t. In the same way we can show
that there exists an h ∈ N (k) such that h(g(t)) = t and then

h(t) = (h ◦ (g ◦ f))(t) = ((h ◦ g) ◦ f)(t) = f(t) . (2.2)

So g is a two-sided inverse of f for the operation. Hence every element in N (k) has an
inverse. This concludes the proof that N (k) is a group.

The following definition introduces the depth of a power series and its initial coefficient.
These are important invariants in our later study of the Nottingham group.

Definition 2.1.3. For the element f = t+ an+1t
n+1 + . . . ∈ t+ t2kJtK define its depth and

initial coefficient by respectively

δ(f) = n and ico(f) = an+1 .

Under conjugation in N (k) the depth and the initial coefficient of an element remain
unchanged.

Lemma 2.1.4. For any two elements f, g ∈ N (k) we have

δ(g ◦ f ◦ g◦−1) = δ(f) and ico(g ◦ f ◦ g◦−1) = ico(f) .

Proof. Write h for the inverse g◦−1 of g. Suppose f(t) ≡ t + atn mod tn+1 and g(t) ≡
t+
∑n

i=m bit
i mod tn+1 where a, bm 6= 0 and m ≥ 2. We have

t = g(h(t)) ≡ h(t) +
n∑

i=m

bih(t)i mod tn+1 . (2.3)
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For each i ≥ m ≥ 2 we have

f(t)i mod tn+1 = ti mod tn+1 ,

this gives

(g ◦ f)(t) ≡ f(t) +
n∑

i=m

bif(t)i mod tn+1 ≡ t+ atn +
n∑

i=m

bit
i mod tn+1

and so we find

(g ◦ f ◦ h)(t) ≡ h(t) + ah(t)n +
n∑

i=m

bih(t)i mod tn+1 .

Using Equation (2.3) the above equation turns into

(g ◦ f ◦ h)(t) ≡ t+ ah(t)n mod tn+1 ≡ t+ atn mod tn+1 .

This proves the lemma.

Definition 2.1.5. For an element σ of N (Fp) of order pn we define its depth sequence
by the n-tuple

(δ(σ), δ(σ◦p), . . . , δ(σ◦p
n−1

)) .

Clearly the depth sequence is an invariant of a finite order element. We can use the
depth of an element of the Nottingham group to show that over a field of characteristic p
any element of finite order has order a power of p. First we need an intermediate lemma.

Lemma 2.1.6. For an element f ∈ N (k) we have δ(f ◦n) = δ(f) for every positive integer
n with gcd(p, n) = 1.

Proof. The statement is clear if f(t) = t, so assume f(t) 6= t. Write f(t) = t + atm + . . .
with a 6= 0 and m ≥ 2. We will prove by induction on n that

f ◦n(t) ≡ t+ natm mod tm+1 . (2.4)

The induction base n = 1 is clear, so suppose Equation (2.4) holds for some n ≥ 1, then
for n+ 1 we have

f ◦(n+1)(t) = f ◦n(f(t))

≡ f(t) + naf(t)m mod tm+1

≡ t+ atm + na(t+ atm)m mod tm+1

≡ t+ atm + natm mod tm+1

≡ t+ (n+ 1)atm mod tm+1 .

This is precisely the statement for n+1, which proves the induction. Finally if gcd(p, n) = 1
then na 6= 0 so it follows from Equation (2.4) that δ(f ◦n) = δ(f).
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It follows immediately from the identity in Equation (2.4), which is also valid in the
case that the characteristic of k is zero, that t is the only element of finite order in N (k)
if the characteristic of k is zero. We can use the previous lemma to prove the following
important result.

Lemma 2.1.7. Any element of finite order in N (k) has order a power of p.

Proof. Suppose f ∈ N (k) with f(t) 6= t has order n ≥ 2. Write n = mpk with p - m,
m ≥ 1 and k ≥ 0. The element f ◦p

k
clearly has order m. Using Lemma 2.1.6 this implies

that
δ(f ◦p

k

) = δ(f ◦mp
k

) = δ(t) =∞

and so f ◦p
k

= t. The order of f is mpk, so we must have m = 1. This proves the lemma.

Having established that N (k) is indeed a group and that any finite order element
has order a power of p we can ask ourselves what the structure of this group is. By an
unpublished result by Leedham-Green and Weiss, which Camina proves in [5], we have the
following theorem about subgroups of N (Fp).

Theorem 2.1.8 (Leedham-Green and Weiss, 1997). Every finite p-group (order of
the group is a power of p) embeds into N (Fp).

Even more is true. In [5] Camina shows that every countably based pro-p group can
be embedded, as a closed subgroup, in the Nottingham group N (Fp). A special case of
Theorem 2.1.8 are the cyclic p-groups Z/pnZ for any n ≥ 1. This gives the following
corollary.

Corollary 2.1.9. For any n ≥ 1 there exists elements of order pn in N (Fp).

The next question is central to this thesis.

Question. What do finite order elements in the group N (Fp) look like? Can we give
explicit power series of order p, p2, etc.?

Using the theory of automata, developed in Chapter 3, we will study finite order el-
ements and we will give a few elements of order 4 in N (F2) which were not previously
known.

Example 2.1.10. The power series

f(t) =
t

1 + t
= t+ t2 + t3 + . . .
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is a power series in N (Fp) of order p, as one can easily check. More generally the power
series

t
n
√

1 + atn
∈ N (Fp)

where a ∈ F×p and n is a natural number with gcd(p, n) = 1 has order p. In the next
section we show that this power series is the only example of an order p element up to
conjugation, a result due to Klopsch [12].

We will have a look at the Question by considering the two cases n = 1 and n > 1.
In the order p case we will treat the complete classification up to conjugation and in the
order pn with n > 1 case we state some known results.

2.2 Order p elements in the Nottingham group

In this section we look at the first non-trivial case of the question raised in the previous
section. Up to conjugacy in N (k) this question was completely answered by Klopsch [12].
He provides a standard form for an order p element up to conjugation.

Theorem 2.2.1 (Klopsch, 2000). Let f ∈ N (k) be an element of order p, then f is
conjugated to the power series

F (n, a) :=
t

n
√

1 + natn
=
∑
`≥0

(
− 1
n

`

)
(na)`tn`+1 = t− atn+1 + n+1

2
a2t2n+1 + . . .

for some integer n > 0 with gcd(p, n) = 1 and a ∈ k×. Moreover both n and a depend
uniquely on f .

A power series of the form F (n, a) is said to be of Klopsch’s form. We have the relation

F (n, a) ◦ F (n, b) = F (n, a+ b)

for all a, b ∈ k. This is easily verified, we have

F (n, a) ◦ F (n, b) =

t
n√1+natn

n

√
1 + na tn

1+nbtn

=
t

n
√

1 + nbtn + natn
= F (n, a+ b) .

So for a ∈ k× we have F (n, a)◦p = F (n, pa) = F (n, 0) = t and hence F (n, a) has order p.
Note that

δ(F (n, a)) = n and ico(F (n, a)) = a .
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From Lemma 2.1.4 we know that the depth and the initial coefficient of a power series
are invariant under conjugation. This shows that a ∈ k× and n depend uniquely on f .
Moreover the depth and the initial coefficient of a power series of order p are all that we
have to know in order to determine to which Klopsch form it is conjugated.

In [2] a proof of Theorem 2.2.1 is sketched by breaking it up into a few exercises. The
solutions we have come up with are pieced together to form a full proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. Write K for the field of Laurent series k((t)). Since f ∈ N (k) the
map

σ : K → K : g 7→ g ◦ f ,

is well-defined and it defines an automorphism of K as one can check (it doesn’t necessarily
fix K), its inverse is given by g 7→ g ◦ f ◦−1. Let G = 〈σ〉 be the group of automorphisms
generated by σ and write F = KG for the fix field of G. Because f has order p we have
G ∼= Z/pZ. By Artin’s lemma the extension K/F is a Galois extension with Galois group
G. The trace map of the extension K/F is defined by

TrK/F : K → K : x 7→
∑
τ∈G

τ(x) .

Note that the image of TrK/F lies in F . We will first show that there exists an element
α ∈ K\F with TrK/F (α) = 1. Assume that α ∈ K\F satisfies

TrK/F (α) = TrK/F (α2) = . . . = TrK/F (αp−1) = 0 .

Using the Newton’s identities between the elementary symmetric polynomials and power
sums it follows that the coefficients of T, T 2, . . . , T p−1 of the minimal polynomial of α over
F , mα(T ), are zero, that is

mα(T ) :=

p∏
τ∈G

(T − τ(α)) = T p − β

for some β = (−1)p
∏

τ∈G τ(α) ∈ F . Clearly F ( F (α) ⊆ K and since the degree
[K : F ] = p is a prime number we conclude that F (α) = K. This gives a contradiction
with K/F being Galois because the minimal polynomial mα(T ) of α is inseparable over F
(note charK = p and mα(T ) ∈ F [T p]). It follows that there exists an element α ∈ K\F
such that TrK/F (αi) 6= 0 for some 1 ≤ i ≤ p − 1. The element αi

TrK/F (αi)
has the desired

property since αi /∈ F , TrK/F (αi) ∈ F and its trace equals 1.

Before we continue, we need an intermediate result about the ramification index of
the extension K/F (similarly to Definition 1.3.16. Let e ∈ Z>0 be the integer satisfying
v(F×) = eZ, this integer e is called the ramification index of K/F . Since K is complete
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with respect to v and K/F is Galois we have that F is complete with respect to v as well.
Theorem 1 on page 69 of [13] then shows that e divides [K : F ] = p.

Let α ∈ K\F be an element with trace 1, so TrK/F (α) = 1. Define the element β by

β =

p−1∑
i=1

i · σi(α) .

Computing σ(β) gives

σ(β) =

p−1∑
i=1

i · σi+1(α)

=

p−1∑
i=1

((i+ 1) · σi+1(α)− σi+1(α))

= (β − σ(α))− (TrK/F (α)− σ(α))

= β − 1 .

Suppose γ ∈ F is some element for which v(β + γ) ≥ 0. We then have

−1 = σ(β)− β = σ(β + γ)− (β + γ) ≡ 0 mod t

where we used that σ ∈ Gal(K/F ) so σ(γ) = γ and that f ∈ N (k). This gives a
contradiction. For every γ ∈ F we have therefore v(β + γ) < 0. This allows us to
choose γ ∈ F such that v(β + γ) is maximal. If p | v(β + γ) then since e ∈ {1, p} we can
find another element δ ∈ F which has the same valuation and leading coefficient as β + γ.
This implies that v(β + γ) < v(β + γ − δ) contradicting the maximality of v(β + γ). It
follows that p - v(β + γ).

We finish the proof by giving an explicit element of N (k) to conjugate f to F (n, a).
Write n = −v(β + γ), c for the coefficient of tn in β + γ and

b = t

(
(β + γ)tn

c

)−1/n
∈ N (k)

(note that (β+γ)tn

c
≡ 1 mod t so we may extract the n-th root by Corollary 1.1.2). First

we compute σ(b) = b ◦ f , this gives

b ◦ f = f

(
σ(β + γ)fn

c

)−1/n
= f

(
(β + γ − 1)fn

c

)−1/n
. (2.5)

Write g = f(1− 1
β+γ

)1/nb−1 (note that 1− 1
β+γ
≡ 1 mod t so we may extract the n-th root).

Since (β + γ)bn = c we have gn = (β+γ−1)fn
c

. Both
(

(β+γ−1)fn
c

)−1/n
and g are elements of
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1 + tkJtK so Corollary 1.1.2 assures us that g equals
(

(β+γ−1)fn
c

)−1/n
. Combining this with

Equation (2.5) we get

b ◦ f = fg−1 = b

(
1− 1

β + γ

)−1/n
=

b

n

√
1− bn

c

= F (n,− 1
nc

) ◦ b .

This shows that f is conjugated (by b) to the Klopsch’s form F (n,− 1
nc

). This concludes
the proof.

2.3 Order pn elements in the Nottingham group

The order p case is very well understood, but this is different for the order pn case if n ≥ 2.
There are some general results known about order pn elements with n ≥ 2, which we will
discuss at the end of this section. What makes the pn case so different is that there are
almost no explicit power series expansions known of order pn elements.

In Jean’s PhD-thesis [9] from 2008 she uses formal groups together with Lubin-Tate
theory to construct an element of order 4.

Theorem 2.3.1 (Jean, 2008). The power series

σ(t) =
∑
n≥0

t2
n

(1 + t)3·2n−1
(2.6)

= t+ t2 + t5 + t7 + t10 + . . .

in N (F2) has order 4.

It turns out that we can explicitly write down the power series expansion of ?? as
follows:

σ(t) = t+
∑
k≥0

(
t2+8k + t7+8k +

∑
`≥0

(
t4·2

k(4`+3) + t4·2
k(4`+1)+1

))

= t+ t2
1 + t5

1 + t8
+
∑
k≥2

t2
k t2

k+1
+ t

t2k+2 + 1
.

The series in this form was independently obtained by Byszewski and Cornelissen [4] in
2017 using a different method, namely by means of p-automata, to find new power series
of order pn.
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In 2010 Chinburg and Symonds [6] gave a new example of an order 4 power series σ and
in [3] they also give a formula for its inverse τ . They found this example by considering
an elliptic curve in P2

k which is stabilized by an order 4 automorphism σ of P2
k, considering

the action on the completion of a local ring of a fix point of σ gave the power series in the
next lemma. In [3] is shown that this specific method for constructing finite order power
series is limited to the case pn = 4.

Theorem 2.3.2 (Chinburg and Symonds, 2010). The power series

σ(t) = t+ t2 +
∑
k≥0

2k−1∑
`=0

t6·2
k+2`

= t+ t2 + t6 + t12 + t14 + . . .

and its inverse

τ(t) =
∑
k≥0

t3·2
k−2 +

∑
`≥2

t2
`−2

= t+ t2 + t4 + t6 + t10 + . . .

both have order 4 in N (F2).

The above three examples of finite order power series in N (Fp) were since 2010 the only
examples of non-prime order elements. In Chapter 4 we construct, using 2-automata, five
more explicit power series of order 4 in N (F2). The formulas are however not as simple as
the previous three.

Each of the above three power series of order 4 satisfies an algebraic equation over
F2(t). In particular we have for the power series σ(t) in Lemma 2.3.1 that

(1 + t)σ(t)2 + (1 + t2)σ(t) + t = 0 .

The power series σ(t) and τ(t) in Lemma 2.3.2 satisfy

(1 + t2)σ(t)2 + σ(t) + t = 0

and
t2τ(t)2 + τ(t) + t+ t2 = 0 .

The fact that each of these three equations has degree 2 makes it straightforward to find
an expression for the power series expansion of σ. The first thing we have to do is putting
the algebraic equation of σ into the form A2+A = B. Then a solution (given that it makes
sense) is given by

A = B +B2 +B4 +B16 + . . . .
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Working backwards to a formula for σ, we need to check that σ is the only solution to the
algebraic equation satisfying σ(t) ≡ t mod t2. Doing so for σ and τ in [6] gives

σ(t) =

∑
n≥0(t+ t3)2

n

1 + t2

and

τ(t) =

∑
n≥0(t

3 + t4)2
n

t2
.

From the point of view of solving algebraic equations these three power series are not
difficult to construct if the algebraic equation is known. It turns out in general that
generating algebraic equations for order pn power series in N (Fp) is not difficult (see
Section 4.1). However, solving these algebraic equations becomes almost impossible if the
degree exceeds 2. Moreover it is not known whether we can read off from an algebraic
equation if it has a power series expansion which can explicitly be written down.
An algebraic equation can be used to compute the coefficients of one of its solutions up
to an arbitrary order, but this gives no insight in the existence of a closed formula for it.
We propose to solve this in certain cases by using p-automata. Our strategy is basically
this: we construct a directed graph which “computes” the coefficients of an algebraic power
series and then we hope that this graph contains some structure which we can use to give
an explicit closed formula.

There are some more general things known about order pn elements in N (Fp). We will
use some parts of it later.

In [10] Jean gives a description of the conjugacy classes of elements of order pn in N (Fp)
(Fp denotes the algebraic closure of Fp) in terms of the Witt vectors Wn(Fp). Using Witt
vectors she constructs a totally ramified cyclic Galois extension of Fp((t)) of degree pn for
which a generator of the Galois group 〈σ〉 corresponds to an order pn element in N (Fp).
She shows that by choosing the Witt vector in an appropriate way one can also specify
the depth sequence of an order pn element (Jean actually does not use the terminology of
a depth sequence but instead the lower breaks, these two notions are equivalent as Lubin
remarks in Observation 8 in [14]).

Using local class field theory Lubin [14] gives an iterative method for calculating a
power series of an order pn element up to some order. Also he shows that there are up
to conjugacy only finitely many elements with a given depth sequence. In particular he
shows in the case p = 2 for the depth sequence (1, 3) that there are at most 2 different
conjugacy classes. It follows that from the three known order 4 elements in this section
at least two are conjugated. The following Proposition makes precise which are and which
are not conjugated.

Proposition 2.3.3. The two power series in Lemma 2.3.2 are not conjugated and the
power series in Lemma 2.3.1 is conjugated in N (F2) to the second power series in Lemma
2.3.2.
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Proof. Suppose the two power series in Lemma 2.3.2 are conjugated. Then there exists an
element f ∈ N (F2) such that f ◦ σ = τ ◦ f . Write f(t) = t+ a2t

2 + . . .+ a5t
5, computing

the coefficients of t4 and t5 in f ◦ σ = τ ◦ f gives

a2 + a3 + a4 = 1 + a22 + a4 and a3 + a5 = a5 .

We are working over F2 so the first equation gives a3 = 1 and the second equation gives
a3 = 0, a contradiction. In a similar way we can prove the second assertion (again only
the coefficients of t4 and t5).
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Chapter 3

Automata

In this chapter we introduce the theory of p-automata and p-automatic sequences. The
most important theorem of this chapter is a theorem by Christol which relates p-automatic
sequences to algebraic power series. The first two sections are based upon the treatment of
the theory of p-automata in [1], but are completely rewritten, including the proofs. In this
way a quick introduction is possible. Throughout this chapter p denotes a prime number.

3.1 p-Automata

In this section we start by introducing a directed multigraph with a label for every vertex
and edge. This a generalisation of the notion of a (directed) graph. This is followed up with
the introduction of the p-automaton, p-automatic sequences and their corresponding p-
kernel. Finally we give a proof of a theorem by Christol, that relates p-automatic sequences
to the algebraicity of the corresponding power series.

Definition 3.1.1. A directed multigraph is a pair (V,E) consisting of a subset V of S× I
and a subset E of V ×V × I where S, I are two sets. The sets V and E have to satisfy the
following two conditions:

• For every s ∈ S there exists precisely one i ∈ I such that v = (s, i) ∈ V . This i ∈ I
is called the label of v.

• If e = (v, w, i) ∈ E then v, w ∈ V . The elements v and w are called respectively the
initial and terminal vertex of e; the element i is called the label of e.
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Elements of S, V and E are called respectively vertices, labeled vertices and labeled di-
rected edges; the set I acts as the set of labels. An element of E of the form (x, x, i) is
called a loop. We call a directed multigraph (V,E) finite if the sets S and I are both finite.

Remark 3.1.2. We will only work with labeled vertices and labeled directed edges and
not with ordinary (unlabeled) graphs. Therefore we call elements of V and E respectively
vertices and edges. Note that we allow multiple edges between two vertices; these edges
then necessarily need to have different labels.

Definition 3.1.3. Let (V,E) be a directed multigraph and v ∈ V a vertex. Write N+(v)
for the set of edges in E with v as initial vertex, so

N+(v) = {w ∈ V | (v, w, i) ∈ E for some i}

and define N−(v) as the set of edges having v as terminal vertex, so

N−(v) = {w ∈ V | (w, v, i) ∈ E for some i} .

Write deg+(v) and deg−(v) for the cardinalities of the sets N+(v) and N−(v) respectively.

Loops centered at some vertex v are counted in both N+(v) and N−(v).

Example 3.1.4. One can visualise a directed multigraph by using the usual visualisation
of a graph, but we have instead of points large circles with a label inside, arrows instead of
lines and each arrow has a label. An example of a directed multigraph is given in ??, circles
are vertices, arrows are edges and numbers are labels (the word “Start” will be explained
later).

Recall the base p expansion of a natural number. Let n ∈ Z>0 be a natural number.
Then there exists a unique integer m ≥ 0 and unique integers 0 ≤ x0, . . . , xm ≤ p− 1 with
xm 6= 0 such that

n = x0 + x1p+ x2p
2 + . . .+ xmp

m =
m∑
i=0

xip
i .

The next definition introduces the set Sp of all finite sequences in Fp which we equip
with the operation of concatenation.

Definition 3.1.5. Write Sp for the set of all finite sequences in Fp, so

Sp =
∞⋃
n=1

Fn
p .

Let a, b ∈ Sp be elements with a = (a0, . . . , am−1) and b = (b0, . . . , bn−1). Define the
concatenation of a and b, denoted by ab, by

ab := (a0, . . . , am−1, b0, . . . , bn−1) ∈ Fm+n
p ⊆ Sp .
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For an element a ∈ Fn
p we write |a| = n for the number of entries of a. Let n ≥ 0, we

write 0n for the sequence (0, . . . , 0) ∈ Fn
p (if n = 0 then we regard 00 as non-existent).

Note that Sp is just short of an identity element to being an associative monoid. In
order to go back and forward from Sp to Z>0 we need the following two maps.

Definition 3.1.6. Define the map (.)p : Z>0 → Sp by

(n)p = (x0, x1, . . . , xm)

where n =
∑m

i=0 xip
i with xm 6= 0 is the base p expansion.

Conversely define the map [.]p : Sp → Z>0 by

[a]p =
n∑
i=0

aip
i

for a = (a0, . . . , an) ∈ Sp.

The map (.)p associates the p-adic digits to a natural number and [.]p associates a
natural number to a sequence of p-adic digits. For a natural number n we see that |(n)p|
equals the number of digits of n in the base p expansion and moreover we have the identity
[(n)p]p = n which is easily verified. Note however that ([a]p)p = a does not hold for all
a ∈ Sp. Take for example a = (1, 0). Then [(1, 0)]p = 1 and (1)p = (1) but (1) 6= (1, 0).
The definition of [.]p allows us to rewrite the definition of Λr(t

n) in Definition 1.1.7 by

Λr(t
n) =

{
tm if n = p`m+ [r]p for some m ∈ Z;

0 otherwise.

The next definition introduces the concept of a p-automaton.

Definition 3.1.7 (p-Automaton). A p-automaton is a triplet (V,E, s) consisting of a
finite directed multigraph (V,E) and an element s ∈ V , called the start vertex, which satisfy
the following two properties:

• The set of labels I as in the definition of a directed multigraph (Definition 3.1.1)
equals Fp.

• For every vertex v ∈ V and label i ∈ Fp there exists a unique w ∈ V such that
(v, w, i) ∈ E.

Moreover, a p-automaton is called leading zeros invariant if it has the property that the
labels of the initial and terminal vertex of any edge with label 0 are equal.
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0 1

1

1

0 0

Start

Figure 3.1: A 2-automaton generating the Thue-Morse sequence.

See Figure 3.1 for an example of a leading zeros invariant 2-automaton, the arrow with
“Start” next to it points towards the start vertex. An example of automaton which is not
leading zeros invariant can be found in (3.2). The second condition says that every vertex
has precisely p outgoing edges and each of those edges has a unique label from Fp. The
next definition introduces a way to walk through a p-automaton using an element of Sp.
We will use this to turn a p-automaton into a machine which generates a sequence.

Definition 3.1.8. Let G = (V,E, s) be a p-automaton and x = (x0, . . . , xn−1) ∈ Sp some
element. We say that the vertex v ∈ V is defined by x if there exists a sequence v0, v1, . . . , vn
of vertices in V satisfying v0 = s, vn = v and (vi, vi+1, xi) ∈ E for all 0 ≤ i ≤ n − 1.
Although we have not defined (0)p, we make the convention that (0)p defines the start
vertex s.

Note that every element of Sp defines a unique vertex in a p-automaton. We are ready
to define the notion of a p-automatic sequence in Fp.

Definition 3.1.9 (p-Automatic sequence). Let a = (an)n≥0 be a sequence in Fp. The
sequence a is called p-automatic if there exists a p-automaton G such that an equals the
label of the vertex defined by (n)p in G. In this case we sometimes also say that G generates
a or that G generates the power series

∑
n≥0 ant

n ∈ FpJtK.

Example 3.1.10. Define the sequence a = (an)n≥0 as follows: if (n)2 contains an even
number of ones then an = 0 and if (n)2 contains an odd number of ones then an = 1. This
sequence is known as the Thue-Morse sequence. A 2-automaton generating a is given in
Figure 3.1.

To every sequence in Fp we can associate the so-called p-kernel Kp(a) defined below.
It turns out that this is a crucial object in the theory of p-automata because it allows
us to distinguish between p-automatic sequences and ordinary sequences in Fp, see also
Theorem 3.1.12.

Definition 3.1.11 (p-Kernel). Let a = (an)n≥0 be a sequence in Fp. Define the p-kernel
of a as the set

Kp(a) = {(apmn+r)n≥0 | m ≥ 0, 0 ≤ r < pm}
consisting of all subsequences of a for which the indices form an arithmetic progression
with difference pm and initial number r.
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For a sequence a in Fp the elements of the p-kernel Kp(a) are generated by a p-
automaton which is closely related to the p-automaton that generates a. The first part of
the proof of Theorem 3.1.12 shows this.

Theorem 3.1.12 (Eilenberg). Let a = (an)n≥0 be a sequence in Fp, then a is p-automatic
if and only if the p-kernel Kp(a) of a is finite.

Proof. For (⇒), we first consider some general construction. Let G = (V,E, s) be a p-
automaton, v ∈ V a vertex and let w ∈ V be a vertex defined in (V,E, v) by an element
(0, . . . , 0) ∈ Sp of some finite length or just v itself. Construct a new p-automaton, Gv,w,
out of G as follows:

• Add a new vertex t with the same label as the vertex v.

• For each (w,w′, iww′) ∈ N+(w) add the directed edge (t, w′, iww′).

• Change the start vertex from s to t.

One can verify that all conditions of a p-automaton are fulfilled, so Gv,w is a p-automaton.
What we have basically done here is that we have added a new vertex t which is in every
aspect, except possibly for its label, the same as the vertex w.

Suppose the p-automaton G = (V,E, s) generates the p-automatic sequence a. Fix a
sequence b ∈ Kp(a) with bn = apmn+r for all n ≥ 0 for some fixed m ≥ 0 and 0 ≤ r <
pm. Let v and w be the end vertices of the walks defined by (r)p and (r)p0

m−|(r)p| in G
respectively. We claim that the p-automaton Gv,w generates the sequence (bn)n≥0.
For n = 0, note that the label of t is the same as the label of v by definition which equals
ar = b0. By construction of Gv,w we have for each n ≥ 1 that the vertex defined by
(r)p0

m−|(r)p|(n)p = (pmn+ r)p in G is the same as the vertex defined by (n)p in Gv,w. This
proves the claim. It follows that every sequence b ∈ Kp(a) is generated by a p-automaton
of the form Gv,w for some v, w ∈ V . Since V is finite this shows that there can only be
finitely many elements in Kp(a).

For (⇐), suppose that the p-kernel Kp(a) is finite. We will construct a p-automaton
which generates a. Take for the set of vertices V the pairs (b, b0) where b = (b0, . . .) ∈ Kp(a)
and let the set of edges E be defined by ((b, b0), (c, c0), i) ∈ E if and only Λi(b) = c where
b = (b0, . . .), c = (c0, . . .) ∈ Kp(a). Consider the p-automaton (V,E, (a, a0)), we are left to
show that this p-automaton indeed generates a. If n = 0, then (0)p defines by definition
a0 and if n > 0 consider the walk defined by (n)p, it has as its final vertex (Λ(n)p(a), an)
since Λ(n)p(a) = (an+mp|(n)p|)m≥0. It follows that a is a p-automatic sequence.

Remark 3.1.13. Using the notation of the first part of the proof of Theorem 3.1.12, note
that if G is leading zeros invariant then any element of Kp(a) is generated by (V,E, v) for
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some v ∈ V . Indeed, then we have in the construction v = w, hence #Kp(a) ≤ #V . In
particular the whole construction of Gv,w is unnecessary. On the other hand, if G is not
leading zeros invariant then something similar still holds. Namely, for any b = (bn)n≥0 ∈
Kp(a) there exists a vertex v ∈ V such that the sequence (cn)n≥0 generated by the p-
automaton (V,E, v) satisfies bn = cn for all n ≥ 1 (but possibly b0 6= c0). This shows that
we always have the bound #Kp(a) ≤ p · #V . Theorem 3.1.15 shows that we can indeed
have Kp(a) > #V .

It is straightforward to construct two different p-automata generating the same se-
quence. This brings us to a notion of equivalent automata: two p-automata are called
equivalent if they generate the same sequence. This notion of equivalent automata gives
a partition of the set of all leading zeros invariant p-automata. Consider a class of p-
automata in this partition. In this class there is a p-automaton with a minimal number of
vertices. The following lemma relates this number to the p-kernel.

Lemma 3.1.14. Let a be a p-automatic sequence. There exists a leading zeros invariant
p-automaton generating the sequence a with a minimal number of vertices, more specifically
this minimal number of vertices equals #Kp(a).

Proof. The second part of the proof of Theorem 3.1.12 shows the existence of a leading
zeros invariant p-automaton (V,E, s) generating a with precisely #Kp(a) vertices. Indeed,
if ((b, b0), (c, c0), 0) ∈ E then Λ0(b) = c which implies that bpn = cn for all n ≥ 0 and
specifically b0 = c0. On the other hand, the first part of Theorem 3.1.12 shows that if
a p-automaton is leading zeros invariant then the number of vertices is at least #Kp(a).
This proves the lemma.

Example 3.1.15. Consider the 2-automaton in Figure 3.2, generating the sequence a. It
is clear that this is an example of an automaton which is not leading zeros invariant. This
is illustrated by the fact that #K2(a) = 9 but the number of vertices equals 6.

Example 3.1.16. Consider the 2-automaton in Figure 3.3. This 2-automaton is leading
zeros invariant as one can see from the graph. By the proof of Theorem 3.1.12 we see that
the 2-kernel K2(a) is contained in the set

{(an)n≥0, (a2n)n≥0, (a1+2n)n≥0, (a2+4n)n≥0, (a1+4n)n≥0, (a5+8n)n≥0}

where a is the sequence generated by the 2-automaton. By computing the first 7 terms of
each sequence one finds that all these sequences are different, hence #K2(a) = 6.

The next lemma gives an equivalent criterion for a sequence to be p-automatic.

Lemma 3.1.17. Let a = (an)n≥0 be a sequence in Fp. Then a is p-automatic if and only
if there exists a finite set S satisfying the following two conditions:
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Figure 3.2: A 2-automaton which is not leading zeros invariant.
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Figure 3.3: A 2-automaton generating the power series A(t) = t
3√1+t3

∈ F2JtK.
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(1) A =
∑

n≥0 ant
n ∈ S;

(2) for all B ∈ S and for all integers 0 ≤ r < p we have Λr(B) ∈ S.

The last condition says that the set S is “stable” under the Cartier operator.

Proof. Write Kp(a) = {a(1), . . . , a(k)} for the elements of the p-kernel. Take for S the set

S = {
∑
n≥0

a(i)n t
n | 1 ≤ i ≤ k} .

We clearly have A ∈ S. For A′ =
∑

n≥0 a
(i)
n tn we have

Λr(A
′) =

∑
n≥0

a
(i)
pn+rt

n

and since Kp(a) is finite there exists some 1 ≤ j ≤ k such that (a
(i)
pn+r)n≥0 = (a

(j)
n )n≥0. It

follows that Λr(B) ∈ S and so both conditions do indeed hold.

Conversely, suppose that both conditions are met for some finite set S. Let m ≥ 0 and
0 ≤ r < pm. By definition of the Cartier operator we have

Λ(r)p0
m−|(r)p|(A) =

∑
n≥0

apmn+rt
n .

Using the second condition we get
∑

n≥0 apmn+rt
n ∈ S. This shows that the corresponding

power series of any element from Kp(a) is in S. Since S is finite so is Kp(a).

The next theorem (see also [7]) is by far the most important result of this chapter.
It gives a surprising and beautiful criterion for a sequence to be p-automatic. It relates
p-automatic sequences to algebraic power series.

Theorem 3.1.18 (Christol, 1979). The power series A =
∑

n≥0 ant
n ∈ FpJtK is algebraic

over Fp(t) if and only if the sequence a = (an)n≥0 is p-automatic.

Proof. Assume that the sequence a is p-automatic. By Theorem 3.1.12 the p-kernel Kp(a)
is finite. Write Kp(a) = {a(1), . . . , a(m)} and set a(1) = a. Using linear algebra we will show
that A satisfies an algebraic equation over Fp(t).

Define for each 1 ≤ i ≤ m the power series Ai(t) =
∑

n≥0 a
(i)
n tn and for each k ≥ 0 let

Vk be the vector space over Fp(t) spanned by A1(t
pk), . . . , Am(tp

k
), so

Vk = SpanFp(t)(A1(t
pk), . . . , Am(tp

k

)) .
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In particular we have dimVk ≤ m for every k ≥ 0. By substituting tp
k

for t in the first
property of Lemma 1.1.9 we find that

Ai(t
pk) =

∑
0≤r<p

tr
∑
n≥0

a
(i)
pn+r

(
tp

k+1
)n

(3.1)

for every 1 ≤ i ≤ m. By definition of the p-kernel we have (a
(i)
pn+r)n≥0 ∈ Kp(a) and

therefore the power series
∑

n≥0 a
(i)
pn+r(t

pk+1
)n equals Aj(t

pk+1
) for some 1 ≤ j ≤ m. We

have Ai(t
pk) ∈ Vk+1 for every 1 ≤ i ≤ m, combining this with the definition of Vk we get

an increasing sequence of vector spaces V0 ⊆ V1 ⊆ V2 ⊆ . . .. For the vector space Vm this
implies that the power series

A(t), A(t)p, . . . , A(t)p
m

are all contained in Vm (note that A(t)p = A(tp)). The vector space Vm has dimension at
most m, so there must be a linear dependence among these m+1 power series. This shows
the existence of B0, . . . , Bm ∈ Fp(t) such that

B0A(t) + . . .+BmA(t)p
m

= 0 .

Which is an algebraic relation for A.

Conversely, assume that the power series A is algebraic over Fp(t). The idea for prov-
ing that a is p-automatic is to construct an explicit finite set of Laurent series which is
mapped into itself under the Cartier operators. By Theorem 1.1.11 there exists polynomials
B0, . . . , Bm ∈ Fp[t] with B0 6= 0 such that

B0A+B1A
p + . . .+BmA

pm = 0 .

The polynomial B0 is invertible in Fp((t)) because B0 6= 0. Define the element T ∈ Fp((t))

by T = AB−10 and for each 1 ≤ i ≤ m let Ci be the polynomial Ci = −BiB
pi−2
0 ∈ Fp[t].

We compute

m∑
k=1

CkT
pk = −

m∑
k=1

BkB
pk−2
0 Ap

k

B−p
k

0 = −
m∑
k=1

BkB
−2
0 Ap

k

= B−20

(
B0A−

m∑
k=0

BkA
pk

)
= AB−10 = T .

So far we have only rewritten our algebraic equation to another equation in the variable T
for which the coefficient of T equals 1. Write

N = max{degB0, max
1≤i≤m

{degCi}}

and define the set S by

S = {
m∑
k=0

DkT
pk ∈ Fp((t)) | Dk ∈ Fp[t] and degDk ≤ N for all 0 ≤ k ≤ m} .
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From the definition of S it is clear that S is a finite set. We will show that S is mapped
into itself under the Cartier operators. Let

∑m
k=0DkT

pk ∈ S be a Laurent series and let
0 ≤ r < p be some integer. Applying Λr to this Laurent series gives

Λr

(
m∑
k=0

DkT
pk

)
= Λr

(
D0T +

m∑
k=1

DkT
pk

)

= Λr(D0T ) +
m∑
k=1

Λr

(
DkT

pk
)

=
m∑
k=1

Λr

(
D0CkT

pk
)

+
m∑
k=1

T p
k−1

Λr(Dk)

=
m∑
k=1

T p
k−1

Λr(Dk +D0Ck) .

For each 1 ≤ k ≤ m we can bound the degree of the polynomial Dk + D0Ck from above
by using Remark 1.1.10

deg Λr(Dk +D0Ck) ≤
deg(Dk +D0Ck)

p
. (3.2)

Since degDk, degCk ≤ N we have deg(Dk +D0Ck) ≤ 2N and therefore we find

deg Λr(Dk +D0Ck) ≤
2N

p
≤ N .

This shows that Λr

(∑m
k=0DkT

pk
)
∈ S and so S is indeed mapped into itself by the Cartier

operators. Finally, note that A = B0T ∈ S and so it follows from Lemma 3.1.17 that the
sequence a = (an)n≥0 is p-automatic.

Remark 3.1.19. If we only know that a sequence is p-automatic then the above theorem
does not give us any way to compute the algebraic equation for the corresponding power
series. However, if the p-automaton is given then we can follow the steps of the proof to
find an algebraic equation. This comprises expressing each of the elements A(t), . . . , A(tp

m
)

as linear combinations of the power series A1(t
pm), . . . , Am(tp

m
) and then finding a linear

dependence between these linear combinations. It turns out that in practice this can be
quite a challenging task because the computations involve complicated rational functions
in Fp(t). Moreover the degree of the minimal polynomial of A is often much smaller than
the degree of the algebraic equation obtained by doing this linear algebra. So it is often
necessary to factor the obtained polynomial into irreducible factors.
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3.2 The p-automata of the power series (1 + at)−1/n

As an illustration of p-automata we give an algorithm for constructing a leading zeros
invariant p-automaton that generates the coefficients of the power series (1+at)−1/n, where
a ∈ F×p and n is a positive integer with gcd(p, n) = 1. Later we will show that with a
slight modification we even have found the minimal p-automaton. We start with a lemma
which relates the power series starting at a vertex v in a p-automaton to the power series
generated by the terminal vertices of the outgoing edges of v.

Lemma 3.2.1. Let (V,E, s) be a leading zeros invariant p-automaton. Consider a vertex
v ∈ V and let vi ∈ V be the vertices such that (v, vi, i) ∈ E. Write A =

∑
n≥0 ant

n for the
power series generated by (V,E, v) and Ai for the power series generated by (V,E, vi). We
then have the relation

A =
∑

0≤r<p

trAr(t)
p .

Proof. Using the first property of Theorem 1.1.9 we can write

A =
∑

0≤r<p

tr
∑
n≥0

apn+r(t
p)n .

Since (V,E, s) is leading zeros invariant we have
∑

n≥0 apn+rt
n = Ar(t) for each 0 ≤ r < p.

The result follows.

The next theorem gives an algorithm for constructing a p-automaton of a class of power
series.

Theorem 3.2.2. Suppose n ∈ Z>0 with gcd(p, n) = 1 and an element a ∈ F∗p are given.
Write m = ordn(p) (so m is the least positive integer such that pm ≡ 1 mod n) and let
0 ≤ xi < p for 0 ≤ i ≤ m− 1 be integers such that

pm − 1

n
=

m−1∑
i=0

xip
i .

Define the set T by

T = {ar
(
s
r

)
mod p | s ∈ {x0, . . . , xm−1}, 0 ≤ r < p}

and write 〈T 〉 for the set of all finite products of elements of T . Let V be the set

{(vi,j, i) | i ∈ 〈T 〉, j ∈ Z/mZ}
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Figure 3.4: A 3-automaton generating the power series (1 + t)−1/7 ∈ F3JtK, the vertex with
label zero and all edges towards it are left out.

and write E for the set

E = {((vi,j, i), (v`,j+1, `), r) | ` = ar
(
xj
r

)
i} .

Then G := (V,E, (v1,0, 1)) is a leading zeros invariant p-automaton which generates the
power series (1 + at)−1/n.

Remark 3.2.3. The general structure of the p-automaton defined in Theorem 3.2.2 is as
follows. We have #〈T 〉 directed cycles of length m, the vertices in each such cycle all have
the same label and these cycles are linked together in a certain way. For two examples see
Figure 3.4 and Figure 3.5.

The graph defined in Theorem 3.2.2 has some very useful symmetry which is made
precise in the next lemma. We will make use of this symmetry in the proof of Theorem 3.2.2.

Lemma 3.2.4. For 0 6= s ∈ 〈T 〉 define the map

ϕs : G→ G (3.3)

by sending the vertex (vi,j, i) to (vsi,j, si). Then ϕs is a graph automorphism (of the un-
derlying directed graph) of Gp,n,a which preserves the labeling of the edges, that is for every
edge e ∈ E the edges e and ϕs(e) have the same label.
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Figure 3.5: A 7-automaton generating the coefficients of the power series (1+t)−1/4 ∈ F7JtK,
the vertex with label zero and all edges towards it are left out.

Proof. Since s 6= 0 the map ϕs is bijective on the vertices V , we have ` = ar
(
xj
r

)
i if and

only if s` = ar
(
xj
r

)
si and so by definition of the set of edges E we have

((vi,j, i), (v`,j+1, `), r) ∈ E ⇔ ((vsi,j, i), (vs`,j+1, `), r) ∈ E (3.4)

It follows that ϕs is indeed a graph automorphism of G.

We now give the proof of Theorem 3.2.2.

Proof. From the definition of G it follows that G has finitely many vertices, that each
vertex has precisely p outgoing edges with each a different label form Fp and that

((vi,j, i), (v`,j+1, `), 0) ∈ E

if and only if ` = i. This shows that G is a leading zeros invariant p-automaton.

Write Ai,j for the power series generated by the p-automaton (V,E, (vi,j, i)). Note that
A0,j = 0 for all j ∈ Z/mZ. We will use the symmetry described in Theorem 3.2.4 to show
that for any non-zero s ∈ 〈T 〉 we have sAi,j = Asi,j for every pair of indices i, j.
Let s ∈ 〈T 〉 be non-zero and consider some integer ` ≥ 0. If (`)p defines the vertex (vα,β, α)
in (V,E, (vi,j, i)) then by Theorem 3.2.4 the sequence (`)p defines the vertex (vsα,β, sα) in
(V,E, (vsi,j, si)). It follows immediately that sAi,j = Asi,j.
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Because (vi,j, i) has outgoing edges to the vertices (v
ar
(
xj
r

)
i,j+1

, ar
(
xj
r

)
i) we get from

Theorem 3.2.1 the relation
Ai,j =

∑
0≤r<p

trAp
ar
(
xj
r

)
i,j+1

. (3.5)

Since ar
(
xj
r

)
∈ T we may apply the above remark to Equation (3.5), this gives

Ai,j =
∑

0≤r<p

trAp
ar
(
xj
r

)
i,j+1

=
∑

0≤r<p

(
xj
r

)
(at)rApi,j+1

= (1 + at)xjApi,j+1

for all i, j (since
(
xj
r

)
= 0 for r > xj). Iterating the above equality for i = 1 gives

A1,0 = (1 + at)x0Ap1,1

= (1 + at)x0+px1Ap
2

1,2

...

= Ap
m−1

1,m−1(1 + at)x0+px1+...+p
m−2xm−2

= Ap
m

1,0(1 + at)
pm−1

n .

Since A = A1,0 6= 0 we see that A satisfies the algebraic equation

1 = (1 + at)
pm−1

n Ap
m−1 .

Because A ≡ 1 mod t we find by Corollary 1.1.2 that A equals the power series (1+at)−1/n.
This is exactly what we wanted to show.

Remark 3.2.5. In the above description of the p-automaton Gp,n,a we see that the label
of a terminal vertex of an outgoing edge from a vertex with label zero also has label zero.
Therefore we can replace all vertices with label 0 in (V,E) with one vertex with label 0,
so this vertex has p loops attached to it. This reduces the number of vertices but the new
p-automaton still generates the same power series. In Theorem 3.2.6) we proof that this is
also a minimal p-automaton for (1 + at)−1/n.

Lemma 3.2.6. Consider the p-automaton constructed in Theorem 3.2.2. This is a minimal
p-automaton for the power series (1 + at)−1/n if we merge all vertices with label zero.

Proof. The end points of the outgoing edges of each vertex with label zero has label zero.
This shows that we can merge all the vertices with label zero into one vertex with label
zero and this new p-automaton still generates (1 + at)−1/n. We will use the same notation
as in Theorem 3.2.2 but the vertices with label zero all coincide.
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If we disregard the vertex with label zero, then we get a union of some m-cycles, each
m-cycle having only vertices with identical labels, which are connected in some way. If
we can show that each vertex of an arbitrary m-cycle generates a different sequence, then
we are done. By the graph automorphism ϕs defined in Definition 3.2.4 it suffices to do
this for one such cycle. Let v, w be two different vertices with label 1 in G and suppose
that (V,E, v) and (V,E,w) generate the same sequence. Let k > 0 be an integer such
that (v1,0, 1) is defined by 0k in (V,E, v) and let (v1,i, 1) be the vertex defined by 0k in
(V,E,w). Since (V,E, v) and (V,E,w) generate the same sequence so do (V,E, (v1,0, 1))
and (V,E, (v1,i, 1)), the same holds for (V,E, (v1,i, 1)) and (V,E, (v1,2i, 1)), etc.. It follows
that the p-automata (V,E, v1,j) for j ∈ 〈i〉 ⊆ Z/mZ all generate the same power series.1

Let ` ∈ 〈i〉 be the smallest element then 〈i〉 = 〈`〉 and ` | m.
The p-automata (V,E, v1,0) and (V,E, v1,`) generate the same power series and therefore
so do (V,E, v1,s) and (V,E, v1,`+s) for every s ∈ Z/mZ. The labels of the terminal vertices
of the edges labeled 1 with begin vertices v1,s and v1,` + s respectively are axs and ax`+s.
Since a 6= 0 we find that xs = x`+s holds for all s ∈ Z/mZ. This means that if we define
c = x0 + x1p+ . . .+ x`−1p

`−1 then we can write

pm − 1

n
= x0 + x1p+ . . .+ xm−1p

m−1

= c+ cp` + . . .+ cpm−`

= c(1 + p` + p2` + . . .+ pm−`)

= c
pm − 1

p` − 1
.

This implies that n | p` − 1 and so ordn(p) | ` | m = ordn(p) hence ` = m. The
equality ` = m implies that i = 0 and this in turn implies that v = w. Which gives a
contradiction.

It turns out that changing the start vertex in G from Theorem 3.2.2 gives a p-automaton
that generates a power series which is similar to (1 + at)−1/n.

Lemma 3.2.7. Using the notation of Theorem 3.2.2 we have that the power series As,j gen-
erated by (V,E, (vs,j, s)) equals the power series A1,j generated by (V,E, (v1,j, 1)) multiplied
with s.

Proof. This is clear if s = 0, if 0 6= s ∈ 〈T 〉 then this follows by the first part of the proof
of Theorem 3.2.2.

Lemma 3.2.8. Using the notation of Theorem 3.2.2 we have that

A1,j = (1 + at)−(p
m−j mod n)/n

if n ≥ 2 and A1,j = (1 + at)−1 if n = 1 for j ∈ Z/mZ.
1We write 〈j〉 for the subgroup of Z/mZ generated by j.
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Proof. If n = 1 then m = 1 and if m = 1 we can use Theorem 3.2.7 with j = 0 to prove
the statement easily. Suppose that m,n ≥ 2 and consider some 1 ≤ j ≤ m − 1. We can
write

pm − 1

n
=

m−1∑
k=0

xkp
k

= (x0 + . . .+ xj−1p
j−1) + pj(xj + . . .+ xm−1p

m−j−1)

= Sj + pjTj

where Sj = x0 + . . .+ xj−1p
j−1 and Tj = xj + . . .+ xm−1p

m−j−1. By successively using the
identity A1,k = (1 + at)xkAp1,k+1 we get

A1,j = (1 + at)xj+xj+1p+...+xm−1pm−j−1

Ap
m−j

1,0 = (1 + at)−(p
m−j−nTj)/n .

We have p - pm−1
n

so x0 6= 0 and hence for 1 ≤ j ≤ m − 1 we have 1 ≤ Sj ≤ pj − 1 since
x0 6= 0. This gives

1 ≤ pm − 1

n
− pjTj ≤ pj − 1

implying
n

pj
≤ pm−j − 1

pj
− nTj ≤ n

(
1− 1

pj

)
which is equivalent to

n+ 1

pj
≤ pm−j − nTj ≤ n− n− 1

pj
.

If n ≥ 2 then 1 ≤ pm−j − nTj < n so the result follows.

By looking at the construction of the p-automaton in Theorem 3.2.2 we can say some-
thing about the size of the vertex set.

Lemma 3.2.9. The minimal p-automaton generating the power series (1 + at)−1/n has at
most m(#〈T 〉 − 1) < mp vertices.

Proof. That the number of vertices is at most m(#〈T 〉 − 1) + 1 reflects the merging of all
vertices with label zero (if there are any vertices with label zero). The inequality follows
from the fact that 〈T 〉 ⊆ Fp.
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Chapter 4

New order 4 elements in N (F2)

In this chapter we give a method, outlined in [4], for obtaining algebraic equations of finite
order elements in N (Fp). This uses the theory of automata developed in Chapter 3. We
use this in the special case p = 2, which results in five new explicit power series in N (F2)
of order 4.

4.1 Algebraic equations of order pn elements in N (Fp)

Using the theory we have introduced in the previous chapters we give a method for con-
structing algebraic equations of finite order pn elements in N (Fp).

Consider the rational function field Fp(z)/Fp and a truncated Witt vector β ∈ Wn(Fp(z))

with β0 /∈ ℘(Fp(z)). Let α ∈ Wn(Fp(z)) be an element satisfying ℘(α) = β. By Theo-
rem 1.2.3 we have a Galois extension F/Fp(z) = Fp(z, α)/Fp(z) of function fields with
Galois group cyclic of degree pn. Assume that P ∈ PFp(z) is a place which is totally rami-
fied in the function field extension F/Fp(z). Write Q ∈ PF for the unique place above P ;

then e(Q|P ) = pn and f(Q|P ) = 1. In particular Q is a place of degree 1. Let F̂Q be the
completion of F with respect to the valuation vQ. By Theorem 1.3.20 we have

F̂Q ∼= Fp((t))

where t ∈ F is a uniformizer of Q (so vQ(t) = 1). Let u ∈ Fp(z) be a uniformizer of P .
The completion Fp((u)) of Fp(z) at P sits inside the field Fp((t)). In this way we get the
commuting diagram:

53



F Fp((t))

Fp(z) Fp((u))

By Theorem 1.3.3 we have an isomorphism

Gal(Fp((t))/Fp((u))) ∼= GalvQ(F/Fp(z)) (4.1)

relating the Galois group of Fp((t))/Fp((u)) to a subgroup of Gal(F/Fp(z)). Let σ be some
element of Gal(F/Fp(z)). Because P is totally ramified we have σ(Q) = Q, so by (1.10)
we see that vQ ◦σ = vQ holds and hence it follows from (4.1) that we have an isomorphism
of Galois groups

Gal(Fp((t))/Fp((u))) ∼= Gal(F/Fp(z)) . (4.2)

Through this isomorphism any σ ∈ Gal(F/Fp(z)) lifts uniquely to a continuous automor-
phism of Fp((t)) fixing Fp((u)) (the topology on Fp((t)) is induced by the valuation vQ). We
denote this lift also by σ. Note that vQ(σ(t)) = vQ(t) = 1, so σ(t) takes the form

σ(t) = a1t+ a2t
2 + a3t

3 + . . .

for some ai ∈ Fp. Since σ is a continuous map on Fp((t)), σ acts on an element f(t) ∈ Fp((t))
by replacing every occurrence of t in Laurent series expansion of f(t) with σ(t). For instance
we have

σ◦2(t) = a1σ(t) + a2σ(t)2 + a3σ(t)3 + . . . .

By (4.2) the Galois group Gal(Fp((t))/Fp((u))) has order pn, so σ has order pk for some

k ≥ 0. This gives σ◦p
k
(t) = t and comparing the coefficients of t on both sides shows

ap
k

1 = 1 and hence a1 = 1 since we work over a field of characteristic p. This shows that
σ(t) is an element of order pk in the Nottingham group N (Fp).
We have the system of equations ℘(α) = β available as well as equations for t and σ(t).
We can try to use these equations to find an algebraic equation for σ(t) over Fp(t). If we
have such an equation then by passing to Fp((t)) the element σ(t) ∈ Fp((t)) satisfies the
same equation. In this setting we can apply the theorem of Christol from Chapter 3 to find
a p-automaton generating σ(t). We used the Mathematica package [17] to compute the
p-automata, among other things it contains an algorithmic implementation of the theorem
of Christol.

There are a couple of remarks we need to place concerning the above method for
constructing algebraic equations.

Remark 4.1.1. • Varying some of the parameters like the truncated Witt vector β,
the place P , the uniformizer t and the Galois automorphism σ can gives a lot of
different algebraic equations. In the examples we considered, there was always only
one choice for the place P , so we cannot say something about varying the place.
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• For a fixed Witt vector β and a place P , we can consider the order pn elements in
the Galois group since we are interested in those. Varying the uniformizer t gives
in practice many different algebraic equations, but there can be also a large overlap
(different uniformizer give the same algebraic equation).

• For a fixed β ∈ Wn(Fp(z)) and a place P it turns out that for any choice of uniformizer
t and an automorphism σ of order pn the depth sequence of σ is the same. As the
depth sequence is an invariant of finite order elements of N (Fp) this is an easy
way to get non-conjugated elements of N (Fp). From Observation 5 from [14] and
Theorem 6 in [11] one can deduce what the possible depth sequences are. In [10]
Jean generalizes the work of Kanesaka and Sekiguchi [11], this includes giving a
construction of certain Witt vectors which allows you to specify in advance the depth
sequences of all elements which can be studied using the above method.

• The method has the disadvantage that it contains two black boxes: a variant of
the Groebner basis and the algorithm deduced from the proof of Theorem 3.1.18.
With a variant of the Groebner basis algorithm we mean an algorithm that is able to
eliminate some variables. It has the disadvantage that we don’t how long we need to
wait for obtaining an output, of what this output consists of and how complicated it
is. The algorithm of Christol also has the problem that one does not know when it will
finish and also not how many vertices the output has. We were able to use the above
method to find algebraic equations for order 9 elements in N (F3), however every
computation of a corresponding 3-automaton took more memory then our computer
had available.

• To make everything run as smoothly as possible it is important to factor the out-
put of the Groebner basis over Fp[t, σ(t)] in order to find the minimal equation of
σ(t). As a consequence the degree of the algebraic relation for σ(t) is as small as
possible. Another reason why this is useful is because can output different automata
for different algebraic equations even if one of the equations is just a multiple of the
other.

4.2 New order 4 elements in N (F2)

We apply the method from the previous section to construct five new explicit power series
of order 4 of N (F2).

Let β be the truncated Witt vector β = (z−1, 0) ∈ W2(F2(z)) and (z) = P a place of
F2(z) (note that z−1 /∈ ℘(F2(z)), since vQ(℘(F2(z))) ⊆ Z\{−1,−3, . . .}) and suppose that

α = (x, y) ∈ W2(F2(z)) is a solution to ℘(α) = β. This gives us the system of equations
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(see (1.6)) {
x2 − x = z−1

y2 − y = xz−1

and F/F2(z) = F2(z, x, y)/F2(z) is a cyclic Galois extension of degree 4. Using Equa-
tion (1.9) a generator σ of Gal(F/F2(z)) is defined by

σ(x) = x+ 1 and σ(y) = y + x ,

the inverse τ of σ is define by

τ(x) = x+ 1 and τ(y) = y + x+ 1 ,

Consider the place P = (z) of F2(z), we will show that it totally ramifies in the extension
F/F2(z). We have vP (z−1) = −1 so by Theorem 1.3.19 the place P totally ramifies in the
extension F2(z, x)/F2(z). If P ′ denotes the unique place in PF2(z,x) above P then we have
e(P ′|P ) = 2 and f(P ′|P ) = 1, the same proposition also shows that vP ′(x) = −1. Since
vP ′(z) = e(P ′|P )vP (z) = 2 we get vP ′(xz

−1) = −3 using Theorem 1.3.19 again shows that
P ′ totally ramifies in the extension F/F2(z, x). Write Q for the unique place in PF above
P ′ then e(Q|P ′) = 2 and f(Q|P ′) = 1, the same proposition also shows that vQ(y) = −3.
Because

e(Q|P ) = e(Q|P ′)e(P ′|P ) = 4 and f(Q|P ) = f(Q|P ′)f(P ′|P ) = 1 (4.3)

the place P ramifies completely in F/F2(z) and Q is the unique place above P . The Q-
valuations of the elements z, x and y are vQ(z) = 4, vQ(x) = −2 and vQ(y) = −3. This will
enable us to compute the valuations of many elements of F .

For four specific choices of uniformizers t we will derive an algebraic equation for σ(t)
and τ(t). The results are show in Table 4.1. We illustrate this for a specific choice of
uniformizer. Consider the uniformizer t = x

y
(note that vQ(t) = −2 − (−3) = 1), we have

the following system of equations
x2 − x = z−1

y2 − y = xz−1

yt = x
(y + x)σ(t) = x+ 1

.

We want to use this system to eliminate the variables x, y and z. We can do this by hand
but in practice using a variant of the Groebner basis algorithm is much more efficient.
Doing the calculations gives us the following minimal equation for σ(t) over F2(t):

(1 + t)σ(t)2 + (1 + t2)σ(t) + t = 0 . (4.4)

We have already seen this equation in Lemma 2.3.1. The Viète formulas show that the
sum of the two solutions of (4.4) equals 1 + t. We know that one of the solutions equals t
modulo t2, so this also determines it. Plugging in

σ(t) = t+ a2t
2 + a3t

3 + . . .
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x2t = y

(1) t2σ2 + σ + t+ t2 = 0

(2) (1 + t2)τ 2 + τ + t = 0

yt = x

(3) (1 + t)σ2 + (1 + t2)σ + t = 0

(4) tτ 2 + (1 + t2)τ + t2 + t = 0

t(x2 + xy) = 1 + x2 + y

(5) t2σ4 + (1 + t+ t2 + t4)σ2 + (t+ t2 + t3)σ + t3 = 0

(6) t2τ 4 + (1 + t)τ 3 + (t+ t2 + t4)τ 2 + (t+ t2)τ + t2 = 0

t(x3 + y) = xy

(7) t4σ4 + (1 + t2)σ3 + (t+ t3)σ2 + t3 = 0

(8) Same as for (7).

Table 4.1: Table of the minimal polynomials of σ and τ over F2(t) for 4 different uniformiz-
ers t.

and solving some equations gives us the first few coefficients of σ(t) which we need for the
algorithm of Christol, implemented by Rowland in [17], to work.

We have drawn the 2-automaton corresponding to (4.4) in Table 4.2. It is the automaton
labeled (3). It has the useful property that the only directed cycles are the loops. For every
vertex v with label 1 this enables us to write down all the sequences in S2 ending in a 1
(so for example (0, 0, 1) ends in a 1 but (1, 0, 0) doesn’t) which define the vertex v. In our
case these are

(1), (0, 1), (1, 0, )0k(1), (1, 0)0k(1, 0)(`)2, (0, 1, 0)(`)2, (1, 1, 1)(m)2 and (0, 0)0k(1, 1)(m)2

where k,m ≥ 0 and ` > 0 (we regard the expression (0)2 as non-existing, so (1, 1, 1)(0)2
just means (1, 1, 1)). These elements correspond respectively to the following parts of the
power series expansion of σ(t):

t, t2, t1+4·2k , t1+4·2k(1+4`), t2+8`, t7+8n and t4·2
k(3+4n) .

Adding all these monomials gives the following power series expansion of σ(t) (which is
already somewhat simplified):

σ(t) = t+ t2 +
∑
k≥0

(
t2+8k + t7+8k

)
+
∑
k,`≥0

(
t4·2

k(4`+3) + t1+4·2k(4`+1)
)
.
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Remark 4.2.1. We used the Mathematica package [17] written by Rowland for computing
the 2-automaton for each of the 8 algebraic equations in Table 4.1. The results are shown
in Table 4.2 and Table 4.3. For this algorithm to work we need the first few coefficients of
the power series expansion of σ(t) (if we haven’t provided enough the algorithm wil say to
which order the coefficients are need). The method we use to find these coefficients needs
some computation, but in practice it is always fast.

Let m ≥ 2 be some integer. We know that the power series we are looking for has the
form

f(t) = t+ a2t
2 + a3t

3 + . . .+ amt
m mod tm+1 . (4.5)

So we replace σ(t) in the algebraic equation by (4.5) and then start by successively solving
for the coefficients ai. It happens that there are sometimes multiple possibilities for some
ai and so we can get in the end a few different candidates (often there is just one). In the
situation of multiple candidates we can compute f ◦4. If this yields something different than
t then we know f is not the one we are looking for. When we know the depth sequence
corresponding to σ, there is another thing we can do. Namely, from this depth sequence
we can compute the the depths of σ and σ◦2 which we can compare with the depths of f
and f ◦2. If they do not coincide then f is not the right one.

As an example consider the equations labeled (7) and (8) in Table 4.1: they are the
same. In this case we have an algebraic equation of which two zeroes are the different
elements σ and τ from N (F2). It turns out that σ◦2 = τ ◦2 is another zero of the same
equation (by looking at the coefficient of σ3 the fourth zero is not an element of F2JtK).
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1 0

1 1

0

0

Start

0
1

1

0

0,1

1

01

0
1

0

0,1

Automaton (1)

0

1

0

01

1 0

1

0,1

1
0

1

0
1

0

00

1

Start

0

1

Automaton (2)

01 0

1 0

1 0

1 0

Start

1 00

1 11 1

0 0

0 0

0, 1 0, 111

0

Automaton (3)

1 01 0

1 1

1 0

0 10

0 01

1

0, 1

0, 1

0 0

1

10

1 1

0

0 1
10

Start

0

1

Automaton (4)

Table 4.2: 2-Automata of order 4 corresponding to the algebraic equations in Table 4.1.
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0
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0

1

1

0

0
10

1
1

0

1

01

0

0,1
0

1

Start

Automaton (5)

00 1

01 1

0

0

1

0

1 0

0

1

110

Start

0
1

1
1

0

1

0

1

1

1 10

0

0

0

0

0 0

0

1
1

1

1

0

0

100,1 1

1

0

1

0

Automaton (6)

00

0

0

0

1

1 0

0

1 0

0

0

1

1

0

0

0

Start
0

11

1

11

0

0

0

0 0

1 1

0

0

0 0

1
1

1

1

0

1

1

0

1 0

1

0

1

0, 10

Automaton (7)

00

0

1

0

1

1 0

1

1 0

1

1

0

1

0

0

0

Start
0

11

1

11

0

0

0

0 0

1 1

0

0

0 0

1
1

1

1

0

1

1

0

1 0

1

0

1

0, 10

Automaton (8)

Table 4.3: 2-Automata of order 4 corresponding to the algebraic equations in Table 4.1.

The 2-automata labeled (1), (2) and (3) in Table 4.2 correspond to known order 4
series. Specifically (1) and (2) corresponds respectively to the power series τ and σ in
Lemma 2.3.2 and (3) corresponds to Lemma 2.3.1. Therefore we focus our attention on
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the 2-automata in Table 4.2 and Table 4.3 labeled (4), (5), (6), (7) and (8). Each of these
directed graphs has also the same properties that the automaton labeled (3) has: the only
directed cycles are loops. We can therefore use the same method to find the explicit power
series of the remaining five 2-automata. The calculations are long and tedious but doable
by hand. Doing so gives us the next theorem.

Theorem 4.2.2. The power series generated by the 2-automata numbered (4), (5), (6),
(7) and (8) in Table 4.2 and Table 4.3 are new examples of order 4 elements in N (F2)
with depth sequence (1, 3). Their explicit power series are given in the table below.

Label Power series of order 4

(4) t+
∑

k≥0
(
t5+8k + t11+16k

)
+
∑

k,`≥0

(
t2·2

k(2`+1) + t1+8·2k(4`+3) + t−1+8·2k+32·2k`
)

(5) t+
∑

k≥0

(
t4·2

k−2 + t4·2
k+1 + t16·2

k−5 + t8·2
k−1
)

+
∑

k,`≥0 t
1−12·2k+32·2k+`

(6) t2 +
∑

k≥0

(
t8·2

k−1 + t8·2
k−4 + t64·2

k−24 + t64·2
k−21 + t16·2

k−6 + t32·2
k−5 + t4·2

k−3
)

+
∑

k,`≥0

(
t2−48·2

k+64·2k+`
+ t3−16·2

k+32·2k+`
)

+(1 + t)
∑

k,`,m≥0 t
−2+8·2k−48·2k+`+64·2k+`+m

(7) t+ t8 + t44 +
∑

k≥0

(
t4·2

k−2 + t32·2
k−4 + t12·2

k−2 + t96·2
k−4 + t32·2

k+4

+t32·2
k+20 + t64·2

k+44
)

+
∑

k,`≥0

(
t12+64·2k+128·2k+`

+ t−2+12·2k+16·2k+`
+ t−4+96·2k+128·2k+`

)
+
∑

k,`,m≥0

(
t−2+4·2k+16·2k+`+32·2k+`+m

+ t−4+32·2k+128·2k+`+256·2k+`+m
)

(8) t+ t4 + t8 + t20 +
∑

k≥0

(
t4·2

k−2 + t32·2
k−4 + t64·2

k+44 + t64·2
k+12 + t32·2

k+20
)

+
∑

k,`≥0

(
t−2+24·2k+32·2k+`

+ t−4+96·2k+128·2k+`
+ t4+32·2k+64·2k+`

+ t−2+4·2k+16·2k+`

+t−4+32·2k+128·2k+`
+ t12+64·2k+128·2k+`

)
+
∑

k,`,m≥0

(
t−4+32·2k+128·2k+`+256·2k+`+m

+ t−2+4·2k+16·2k+`+32·2k+`+m
)

Note that since the automaton labeled (4) satisfies a degree 2 equation we can also solve
it using the method proposed in Section 2.3. This then gives the more compact formula
for τ(t):

τ(t) =
∑
n≥0

t2
n+1−1

(1 + t)3·2n−2
.

Remark 4.2.3. In the case of order p elements in N (Fp) we know by the theorem of
Klopsch that knowing the initial coefficient and the depth of an order p element is enough
to determine it conjugacy class. In the order p2 this is not the case any more. There
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is however something to salvage. Lubin remarks in Observation 6 in [14] that there are
up to conjugacy only finitely many elements of a given depth sequence. We saw already
that in the case p = 2 there are only two conjugacy class of order 4 elements of N (F2)
having depth sequence (1, 3). This shows that there are many pairs of power series in
Theorem 4.2.2 that are conjugated.

Example 4.2.4. Consider the same degree 4 extension as before. The uniformizer t defined
by (y + 1)t = x2 + y yields the following algebraic equation for τ = σ◦3:

(1 + t)3τ 3 + (t+ t3)τ 2 + (1 + t+ t3) + τ + t3 + t = 0

Which corresponds to a 2-automaton on 5 vertices, which is shown on the first page of this
thesis.

Remark 4.2.5. We will construct a 2-automaton generating a power series of order 4 with
depth sequence (1, 3). Consider the element (z−1, z−3) ∈ W2(F2(z)), clearly z−1 /∈ ℘(F2(z))
so we get a Galois extension F/F2(z) = F2(z, x, y)/F2(z) of cyclic degree 4. Here x and y
satisfy {

x2 − x = z−1

y2 − y = xz−1 + z−3

and a generator of the Galois group is defined by

σ(x) = x+ 1 and σ(y) = y + x+ 1 .

Consider the place (z) = P of F2(z). In the same way as before we find that P totally
ramifies in the extension F2(z, x)/F2(z), let P ′ be the unique place above P then vP ′(x) =
−1 and vP ′(z) = 2. Consider the element w = y + x3 + x2, it satisfies

w2 − w = x5 + x3

so by Theorem 1.3.19 the place P ′ totally ramifies in the extension F/F2(z, x), if Q denotes
the unique place above it then we know that vQ(w) = −5, vQ(x) = −2 and that Q totally
ramifies in F/F2(z). The element σ is a Galois automorphism of F2(z, x, y) so it is also a
Galois automorphism of F2(z, x, w), it is defined by

σ(x) = x+ 1 and σ(w) = w + x2 + 1 .

Consider the uniformizer t = x2

w
of Q, eliminating z, x and w from the system

x2 − x = z−1

w2 − w = x5 + x3

tw = x2

σ(t)(w + x2 + 1) = x2 + 1

gives us the following minimal polynomial of σ(t) over F2(t):

t2σ(t)3 + (1 + t)3σ(t) + t+ t3 = 0 .

The corresponding 2-automaton is shown in Figure 4.1.
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Figure 4.1: A 2-automaton of an order 4 power series in N (F2) with depth sequence (1, 3).

This gives us the following theorem.

Theorem 4.2.6. The 2-automaton in Figure 4.1 describes an element of order 4 and depth
sequence (1, 5) in N (F2). In particular it is not conjugated to any of the 8 explicit power
series of order 4 of depth sequence (1, 3).

Remark 4.2.7. Although the 2-automaton in Figure 4.1 is quite small we did not succeed
in writing down an explicit power series for it. What makes it difficult is that the graph has
multiple directed cycles. So although we cannot write down an explicit power series we can
write down the corresponding 2-automaton. We therefore think that it is worthwhile to
study the corresponding p-automaton of an order pn element in N (Fp) instead of looking
for its power series expansion.

Remark 4.2.8. Using the method in the beginning we can also construct an cyclic order 8
extension of F2(z). An example of such an extension is given by F2(z, x, y, w)/F2(z) where

x2 − x = z−1

y2 − y = xz−1

w2 − w = x3(x+ 1)y
.

a generator of the Galois group is defined by

σ(x) = x+ 1, σ(y) = y + x and σ(w) = w + y(x+ 1) .

Write Q for the place above P = (z) which totally ramifies in this extension, then vQ(x) =
−4, vQ(y) = −6 and vQ(w) = −11. Define the uniformizer t by (w + y)t = x3 + y. We
then get the following algebraic equation for σ = σ(t) over F2(t):

t6σ6 + (t2 + t6)σ4 + (1 + t2 + t3 + t4 + t5 + t6)σ2 + (1 + t)3σ + t+ t2 + t5 + t6 = 0 .
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Applying the algorithm written by Rowland gives us within a reasonable amount of time
a 2-automaton for σ consisting of 320 vertices.
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