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Abstract

The recent proof of the Casselman-Wallach globalization theorem by J. Bernstein
and B. Krötz is studied. Some parts are emphasized, while others are not treated in
full detail. For certain parts where the original article [4] was not completely clear to
us, more details are provided. In particular, more attention is given to proving that
minimal principal series representations are good, and emphasis is placed on our new
definition of these Harish-Chandra modules being of D-type.
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1 Introduction

Representation theory is a field of study that has applications in various fields, such as
particle physics, chemistry, and of course several fields in mathematics. If we have a
reductive Lie group G with maximal compact subgroup K, then the representation theory
of G can be studied more algebraically by looking at so-called Harish-Chandra modules.
These Harish-Chandra modules are (g, K)-modules that have finite K-multiplicities, and
that are finitely generated. If one has a smooth representation E of G, taking the K-finite
vectors yields a (g, K)-module, and if this yields a Harish-Chandra module isomorphic to
V , we say that E is a globalization of V .

The Casselman-Wallach globalization theorem ([5]) states that if G is a linear real re-
ductive Lie group, then every Harish-Chandra module V has a globalization in the category
of smooth admissible moderate growth Fréchet representations of G, which is unique up to
isomorphism. This theorem has been stated and proven by W. Casselman and N. Wallach
in 1989, in [5]. While the result is rather straightforward and useful (as will be shown in
an example below), the proof itself was very technical in nature. Because of this ([3]), in
2014 J. Bernstein and B. Krötz have published a different proof of the theorem in [4]. The
objective of this thesis is to study this new proof, give an overview of the techniques used,
and try to fill in some of the parts that were not fully worked out in the original article. As
such, the research question for the thesis is “How is the Casselman-Wallach globalization
theorem proved?”.

To answer this question, the structure of this work will be as follows: below, we will
motivate the importance of the theorem by looking at Helgason’s conjecture. In Section
2, we will explain all the terminology used, and the necessary results to understand the
rest of the work. We will then give an overview of the structure of the proof in Section 3,
going into full detail on some steps, but referring to the original article, [4], for the proofs
of other steps. Sections 4 and 5 are dedicated to proving the core result that is needed in
the article, Theorem 46. The first of these two sections reduces the general case to a more
manageable special case, while the second section proves the theorem for this case. In the
Discussion, Section 6, we will discuss one particular step in the proof, Lemma 64, that we
have not been able to solve yet, and detail some of the work that has been done in trying
to prove this lemma. Finally, in Section 7, the Conclusion, we will give a summary of the
proof and the used strategies.

Throughout this work, for every definition, lemma or theorem that is taken directly
or slightly modified from some other work, we will indicate the source directly after the
number of the respective definition, lemma or theorem. If only a name or page number
is given, the source will always be the article by Krötz and Bernstein, [4]. Any definition
or result that does not have a source listed is either original, or a standard result that we
have re-proved for the sake of understanding the argument better. Since most of the work
will be based on the article [4], at the end of each of the main sections we will include a
brief reflection on which parts are simply explaining or outlining the work of Bernstein and
Krötz, and which parts are original work needed to complete our understanding.

3



1.1 The Helgason conjecture

We will treat here briefly an example of representation theory to which the Casselman-
Wallach globalization theorem can be applied, namely the Helgason conjecture.

Let G be a connected semisimple real Lie group, with maximal compact subgroup K
and Iwasawa decomposition G = KAN . Let λ ∈ a∗C and let Lλ denote the line bundle
G×P Cλ, where Cλ is a one-dimensional complex linear space, equipped with the P -module
structure (man)z = aλ−ρz. The space of smooth sections of this line bundle is given by

C∞(G/P,Lλ) = {f ∈ C∞(G) | f(xman) = aλ−ρf(x)}.
Let Pλ : C∞(G/P,Lλ)→ C∞(G/K) be the map sending a function f to the function

Pλf(x) :=

∫
K

f(xk)dk ∈ C∞(G/K).

This map is known as the Poisson transform, and it is known ([7]) that this maps C∞(G/P,Lλ)
to the space of joint eigenfunctions for D(G/K), which denotes the space of left G-invariant
differential operators. In particular, S. Helgason has proved in 1977 ([7]) that if Re λ is
dominant, then taking the K-finite vectors on both sides yields an isomorphism of (g, K)-
modules

Pλ : C∞(G/P ;Lλ)K → Eλ(G/K)K .

Here Eλ(G/K) denotes the aforementioned space of joint eigenfunctions. Helgason also
conjectured that in order to reach all the eigenfunctions on the right-hand side, and not
just the K-finite functions, the map would have to be extended to the space of hyper-
functions B(G/P,Lλ). This was indeed correct, and M. Kashiwara et al. have proved
Helgason’s conjecture in [8]. On the other hand, one could wonder what the image of
the space C∞(G/P ;Lλ) is exactly under this isomorphism. This has already been investi-
gated by Wallach and Casselman ([11]), and by Van den Ban and Schlichtkrull ([2]), but
we will recover the result here by applying the Casselman-Wallach globalization theorem.
We have that Pλ is a G-equivariant map, that is an isomorphism when restricted to the
Harish-Chandra module C∞(G/P ;Lλ)K . So, according to the Casselman-Wallach global-
ization theorem, we can take a smooth admissible moderate growth Fréchet globalization
on both sides, and the results will be isomorphic as G-modules, so by the G-equivariance
this isomorphism is given by Pλ. The space C∞(G/P ;Lλ) is a smooth admissible mod-
erate growth Fréchet globalization of the left-hand side, and on the right-hand side such
a globalization is E∗λ(G/K), the space joint eigenfunctions of strong moderate growth, i.e.
those joint eigenfunctions satisfying inequalities of the form

‖Luφ(g)‖ ≤ Cu‖g‖r

for some fixed r > 0 and for all u ∈ U(g). Here ‖g‖ is the norm of g, see Definition 14. So,
it follows that

Pλ : C∞(G/P,Lλ)→ E∗λ(G/K)

is a topological linear isomorphism, which is the same result that had been found before,
found here by the Casselman-Wallach globalization theorem.
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2 Representation theory and Harish-Chandra mod-

ules

In this section, we will treat the necessary subjects to understand the rest of this work.
Readers that are already familiar with the subject can safely skip this section.

2.1 The Iwasawa decomposition

In this subsection we treat standard theories on the structure of Lie groups, such as Cartan
involutions and the Iwasawa decomposition. For this subsection, we will initially work
with a semisimple Lie group G, which is more restrictive than requiring it to be reductive.
However, as part of the definition of a real reductive group, we will require the existence
of very similar objects to the ones we will treat here, which we will recall at the end of this
subsection.

We recall that an involution of a space is an automorphism σ, such that σ2 = I. In
particular, we will be looking at involutions of the Lie algebra g, and we can split this
space into the plus and minus one eigenspaces, g±.

Definition 1 ([1], Definition 15.1). A Cartan involution on g is a Lie algebra involution
σ : g→ g, such that the Killing form B is positive definite on g+ and negative definite on
g−. By tradition, a Cartan involution is denoted by θ, and the eigenspaces are denoted by
k := g+ and p := g−.

Given a semisimple Lie algebra, such a Cartan involution will always exist, see for
instance [10], Cor. 6.18. We will denote by K the connected Lie subgroup of G with Lie
algebra k. If G is connected and has a finite center, it turns out ([1], Corollary 15.15) that
K is a maximal compact subgroup of G. Furthermore, any maximal compact subgroup
can be constructed in such a way. We also have the following result, referred to as the
Cartan decomposition of G:

Theorem 2 ([1], Theorem 15.12). In the above notation, the map

φ : K × p→ G, (k,X) 7→ k exp(X)

is a diffeomorphism.

Given a Cartan involution θ, with corresponding Cartan decomposition g = k + p, for
any H ∈ p we have that ad(H) : g→ g is symmetric with respect to the inner product

〈X, Y 〉 = −B(X, θY ).

This implies that the map has real eigenvalues, so it can be diagonalized with respect to
some basis. For any abelian subspace a of p, we can simultaneously diagonalize all elements
of a. We fix a maximal abelian subspace a ⊂ p, and write

gλ := {X ∈ g | [H,X] = λ(H)X, ∀H ∈ a},

for any λ ∈ a∗.
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Definition 3 ([1],Definition 16.3). Any non-zero α ∈ a∗ such that gα 6= 0 is called a root
of a. The set of these roots is denoted by Σ = Σ(g, a).

Using these roots, we get the following standard root space decomposition:

Theorem 4 ([1], Lemma 16.4). The set of roots Σ is finite, and

g = g0 ⊕
⊕
α∈Σ

gα,

as a direct sum of real linear spaces.

We set m to be the centralizer of a in k, i.e.

m := k ∩ g0.

Then it follows that g0 = m ⊕ a, since g0 is θ-stable. Now, we fix a positive system Σ+

for Σ, and denote the sum of positive root spaces and the sum of negative root spaces
respectively by

n :=
⊕
α∈Σ+

gα, n :=
⊕

α∈−Σ+

gα.

Both of these spaces are subalgebras, and it follows that we can decompose

g = n⊕m⊕ a⊕ n.

We can also change this decomposition to yield the infinitesimal Iwasawa decomposition:

Lemma 5 ([1], Lemma 17.3). The Lie algebra g allows the following decomposition as a
direct sum of real linear spaces:

g = k⊕ a⊕ n.

If we then denote by A the connected subgroup of G with Lie algebra a, and by N
the connected subgroup of G with Lie algebra n, we get the following global Iwasawa
decomposition:

Theorem 6 ([1],Theorem 17.6). The map

ϕ : (k, a, n) 7→ kan,K × A×N → G

is a diffeomorphism.

Now, all the above theory holds for semisimple groups, but we are interested in the
case of reductive groups. We take the definition of a reductive Lie group from [10]:

Definition 7 ([10], p. 384). A reductive Lie group is a 4-tuple (g,K, θ, B) consisting of a
Lie group G, a compact subgroup K of G, a Lie algebra involution θ of the Lie algebra g
of G, and a non-degenerate, Ad(G)-invariant, θ-invariant, bilinear form B on g, such that
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• g is a reductive Lie algebra,

• the decomposition of g into +1 and −1 eigenspaces is g = k ⊕ p, where k is the Lie
algebra of K,

• k and p are orthogonal under B, and B is positive definite on p and negative definite
on k,

• multiplication, as a map from K × exp p into G is a diffeomorphism onto, and

• every automorphism Ad(g) of gC is inner for g ∈ G, i.e. is given by some φ in Int gC.

Under this definition, one can show that K is a maximal compact subgroup of G ([10],
Prop. 7.19a), the fourth property immediately gives us the Cartan decomposition, and by
defining roots similar to before, we also get the Iwasawa decomposition again ([10], Prop.
7.31). So we see that all the results from this section extend from the semisimple Lie
groups to the reductive Lie groups. From here on out we will assume that our Lie group
G is a linear reductive real Lie group.

2.2 Harish-Chandra modules

To understand the main theorem, we first look at what Harish-Chandra modules are, and
what constitutes a globalization of such a module.

Definition 8 (p.65). A locally finite K-module V is a complex continuousK-representation
π on V , such that for every vector v ∈ V the space span{π(k)v|k ∈ K} is finite-dimensional.

For any smooth representation (π,E) of K, or of G, we denote by EK−fin the K-module
consisting of K-finite vectors. Here, v being K-finite means exactly that span{π(k)v|k ∈
K} is finite-dimensional.

Definition 9 (p.65). By a (g, K)-module V we mean a space V with a locally finite action
of K and an action of the Lie algebra g, such that:

• The derived action of K coincides with the action of g, when restricted to k = Lie K.

• The actions are compatible, i.e. for all k ∈ K,X ∈ g, v ∈ V we have

k · (X · v) = Ad(k)X · (k · v).

Given a smooth G-representation E, it now follows that the K-finite vectors EK−fin

form a (g, K)-module. Here the action of g is the derived action that follows from the
G-representation. A Harish-Chandra module will be a special case of a (g, K)-module, so
we introduce the following terminology:

Definition 10 (p.65). A K-module E will be called admissible, if for all finite-dimensional
representations (τ,W ) of K the multiplicity space HomK(W,E) is finite-dimensional. In
other words, E is admissible if every isotypical component E[τ ] is finite-dimensional.
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Definition 11 (p.66). A Harish-Chandra module is an admissible (g, K)-module, that
is finitely generated as a g-module. We will call a smooth Fréchet representation (π,E)
(i.e. a smooth representation, where E is a Fréchet space) admissible if the underlying
(g, K)-module EK−fin is admissible.

By definition, taking the K-finite vectors of an admissible G-representation yields a
Harish-Chandra module. The process of going in the opposite direction is called globaliza-
tion:

Definition 12 (p.68). Given a Harish-Chandra module V , a globalization of V is a G-
representation (π,E), such that the space of K-finite vectors EK−fin is isomorphic to V as
a (g, K)-module.

Now, in the Casselman-Wallach globalization theorem, we are concerned with a specific
type of globalizations, namely the smooth admissible Fréchet globalizations of moderate
growth. In the next subsection, we look into this moderate growth.

2.3 Representations of moderate growth

To understand a notion of growth, we first need to introduce a scale structure on a Lie
group:

Definition 13 (p.49). We define a scale on a Lie group G to be a function s : G → R+,
such that:

• s and s−1 are locally bounded.

• s is sub-multiplicative, i.e. s(gh) ≤ s(g)s(h) for all g, h ∈ G.

We order scales by setting

s 4 s′ ⇐⇒ (∃C > 0, N ∈ N),∀g ∈ G : s(g) ≤ Cs′(g)N .

This ordering induces a notion of equivalence on scales. We define a scale structure on G
as the equivalence class [s] of a scale function s.

Note that every equivalence class [s] allows a continuous representative, so we will only
consider continuous scale functions. One specific case that will be important to us is that
of the maximal scale structure: we look at the case of a connected group G, and we fix a
left-invariant Riemannian metric g on G. Then we can define a distance function d(g, h),
the infimum of lengths of piecewise smooth curves between g and h in G. This distance
function is then also left G-invariant, so it can be recovered from d(g) := d(g, e), where e
is the unit of G. We then have that d(g) is sub-additive, i.e. d(gh) ≤ d(g) + d(h) for all
g, h ∈ G. But then smax(g) := ed(g) defines a scale function on G. It turns out that this
scale is maximal in the sense that any other scale s satisifies s 4 smax ([6], Lemma 2). In
particular, it follows that the the equivalence class [smax] is independent of the choice of
metric.
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Definition 14 (p.49). The above scale structure [smax] is called the maximal scale struc-
ture. We will also denote smax(g) = ‖g‖.

Throughout this section we will work with an arbitrary scale structure to motivate
the definitions, but in the rest of this work we will assume that G is equipped with the
maximal scale structure. We denote by (G, [s]) a Lie group G, equipped with a particular
scale structure [s]. We record the following property:

Lemma 15. Let G be a linear real reductive Lie group. Then for any g ∈ G we have
‖g‖ = ‖g−1‖.

Proof. Since the distance function is left invariant, we have

‖g‖ = ed(g) = ed(g,e) = ed(e,g−1) = ed(g−1,e) = ‖g−1‖.

Now, we can define representations of moderate growth:

Definition 16 (p.53). A representation of moderate growth, with respect to a scale struc-
ture [s], is a Fréchet representation E of a Lie group G such that for every semi-norm p on
E there exists a semi-norm q on E and an integer N > 0 such that

p(π(g)v) ≤ s(g)Nq(v),

for all g ∈ G.

To more easily work with these kinds of representations, we will introduce a slightly
different notion of representations. To do so, we first introduce the following terminology:

Definition 17 (p.51). Let (π,E) be a representation of G. We call a semi-norm p on E a
G-continuous semi-norm if the action of G on E is continuous with respect to the topology
induced by p.

Definition 18 (p.51). Let (π,E) be a continuous representation of G on a semi-normed
space (E, p) (with the topology induced by p). Then the function sπ : g 7→ ‖π(g)‖ is a
scale. Here ‖ · ‖ denotes the operator norm. We say that (π,E) is [s]-bounded if sπ 4 s.
Similarly, given a Fréchet representation (π,E), we will call a G-continuous seminorm p
[s]-bounded if the representation is [s]-bounded with respect to the seminorm.

Definition 19 (Definition 2.6). A Fréchet representation (π,E) of G, equipped with scale
structure [s], will be called an F -representation if the topology of E is induced by a
countable family of G-continuous [s]-bounded semi-norms (pn)n∈N.

Note that when we equip G with the maximal scale structure, then any representation is
[smax]-bounded, so any G-continuous seminorm will also be [smax]-bounded. Furthermore,
we have the following:
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Lemma 20 (Lemma 2.9). Let (π,E) be an F -representation and H ⊂ E a closed G-
invariant subspace. Then the sub- and quotient representations on H and E/H are F -
representations as well.

Proof. The spaces are again Fréchet, and the semi-norms that induced the topology on E
will induce semi-norms on H and E/H that also induce the relevant subspace- or quotient
topology. The result follows.

The following lemma will relate our two notions of representations:

Lemma 21 (Lemma 2.10). Let (π,E) be a Fréchet representation of the Lie group (G, [s]).
Then the following are equivalent:

• (π,E) is of moderate growth.

• (π,E) is an F -representation.

Proof. By definition, an F -representation is of moderate growth via the [s]-boundedness
of the semi-norms.

Conversely, assume that (π,E) is of moderate growth, and take p, q and N > 0 as in
the definition above. Then,

p̃(v) := sup
g∈G

p(π(g)v)

s(g)N

defines a semi-norm on E such that p ≤ p̃ ≤ q, and p̃(π(g)v) ≤ s(g)N p̃(v) for all g ∈ G.
The first part means that the p̃ define the topology on E, and the second part means that
p̃ is G-continuous and [s]-bounded. Since the topology of a Fréchet space can be induced
by a countable family of semi-norms, it suffices to use countably many p̃ to define the
topology, and it follows that (π,E) is an F -representation.

Definition 22 (p.55). We call an F -representation (π,E) that is smooth (i.e. for every
vector v ∈ E the map g 7→ π(g)v is smooth) an SF -representation.

By Lemma 21, we see that an SF -representation is a smooth moderate growth Fréchet
representation, so by the definition of admissible, we see that the SF -globalizations of
a Harish-Chandra module are precisely the smooth admissible moderate growth Fréchet
globalizations. Throughout the rest of this work we will therefore be talking mainly about
SF -globalizations.

2.4 Schwartz space

In this subsection, we introduce the Schwartz space which we will need in proving the
Casselman-Wallach globalization theorem.

We denote byM(G) the Banach space of complex and bounded Borel measures on the
Lie group G. We use here the norm of total variation. Let Mc(G) ⊂ M(G) denote the
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compactly supported complex measures. The left action of G on itself induces an action
of G on M(G). However, this action is not continuous everywhere. We call a measure µ
continuous if the orbit map

G→M(G), g 7→ (λg)∗µ

is continuous, where λg denotes left multiplication. We denote by M̃(G) the space of
continuous complex measures. By fixing a left Haar measure dg, we get an isomorphism

L1(G)→ M̃(G), f 7→ f · dg.

If we have a representation (π,E) of G on a complete locally convex vector space, such
as when we have a Fréchet representation, we denote by Π the corresponding action of
Mc(G) on E:

Π(µ)v =

∫
G

π(g)vdµ(g).

For a function f ∈ C∞c (G), we will similarly denote

Π(f)v =

∫
G

f(g)π(g)vdg.

These integrals converge since E is complete and locally convex. Depending on the specific
type of representation, other measures might also define an action on E, and in the case
of F -representations, we will look specifically at rapidly decreasing measures:

Definition 23 (p.56). The space of rapidly decreasing continuous complex measures on
G, equipped with a scale structure [s], is defined as

R(G) := {µ ∈ M̃(G) | ∀n ∈ N : s(·)n ∈ L1(G, |µ|)}.

We denote by L×R the regular representation of G×G on functions on G, i.e.

(L×R)(g1, g2)f(g) := f(g−1
1 gg2),

for any continuous function f . This representation extends to measures, and it yields an
F -representation of G × G, namely (L × R,R(G)). Now, for any u ∈ g we abbreviate
Lu := dL(u) and similarly Ru for the derived representations, and extend this notation to
u ∈ U(g). With that notation, we define:

Definition 24 (p.56). The smooth vectors of (L×R,R(G)) constitute the Schwartz space

S(G) := {f · dg | f ∈ C∞(G);∀u, v ∈ U(g), ∀n ∈ N : s(·)nLuRvf ∈ L1(G)}.

We will use this Schwartz space later to construct minimal globalizations, and to prove
properties of these globalizations, but to motivate their definition at this point, we mention
the following result, without proving it:
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Theorem 25 (Proposition 2.20). Let G be a Lie group. Then the following categories are
isomorphic:

• The category of SF -representations of G.

• The category of non-degenerate continuous algebra representations of S(G) on Fréchet
spaces.

Here a non-degenerate algebra representation is a representation of an algebra A with-
out 1, on a space M , such that AM = M .

2.5 G-continuous norms and the Sobolev ordering

We have already talked about G-continuous semi-norms on G-representations, but we will
also need the concept of G-continuous norms on Harish-Chandra modules.

Definition 26 (p.70). Let V be a Harish-Chandra module, and p a norm on V . We say
that p is a G-continuous norm on V if the completion of V with respect to p gives rise to
a continuous Banach representation of G.

We will put a pre-order on the set of G-continuous norms on a given module V . To do
so, we need the following:

Definition 27 (p.54). Given a (semi-)norm p on a G-representation or Harish-Chandra
module, we fix a basis X1, . . . , Xn of g, and denote the action of g by dπ. We define the
k-th Sobolev (semi-)norm pk as follows:

pk(v) :=

( ∑
m1+...+mn≤k

p(dπ(Xm1
1 · · ·Xmn

n )v)2

) 1
2

.

Of course the specific norm depends on the choice of basis, but a different choice of
basis will yield an equivalent semi-norm. Now, using the Sobolev norms, we can introduce
a pre-order on the set of G-continuous norms:

Definition 28 (p.70). The Sobolev ordering, denoted by 4, is a pre-order defined by

p 4 q ⇐⇒ (∃k ∈ N0, C > 0) : p(v) ≤ Cqk(v), ∀v ∈ V.
We say that p and q are Sobolev-equivalent, notated p � q, provided p 4 q and q 4 p.

We will mainly be interested in G-continuous norms up to Sobolev-equivalence. It turns
out that in this case, we can assume stricter properties on our norms:

Theorem 29 (Theorem 5.5(i)). Let V be a Harish-Chandra module, and p a G-continuous
norm. Then there exists a G-continuous Hilbert norm q such that p is Sobolev equivalent
to q.

Proof. See [4], p.70-71. Here an explicit G-continuous norm is constructed, using theories
from convex analysis, that is euivalent to p.

Therefore, we can assume that any G-continuous norm is a Hilbert norm. In addition,
we will assume that all norms are K-invariant.
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2.6 Representation theory

In this section, we treat some standard constructions involving representations.
Given a Banach representation (π,E), we can look at the toplogical dual E∗. If we fix

a norm p for E, then E∗ is again a Banach space, with respect to the dual norm

p∗(λ) := sup
p(v)≤1

|λ(v)| (λ ∈ E∗).

We would like to define a dual representation π∗ on E∗ by setting

π∗(g)(λ) := λ ◦ π(g−1).

However, this will not necessarily be continuous as a function of g for every λ. For example,
if G is a compact Lie group, and we take E = L1(G), the dual is E∗ = L∞(G), but the

action is only continuous on C(G) ⊂ L∞(G). To solve this, we define the subspace Ẽ ⊂ E∗

consisting of those λ ∈ E∗ for which the orbit map g 7→ π∗(g)(λ) is continuous as a function
from G to E∗. This will be a closed, G-invariant subspace of E∗. If we restrict the action
of G to this subspace, we therefore obtain a Banach representation (π∗, Ẽ).

Definition 30 (p.58). The above representation (π∗, Ẽ), also denoted by (π̃, Ẽ) is called
the contragredient representation of (π,E).

Similarly to this, we would like to have a dual module for Harish-Chandra modules. If
V is a Harish-Chandra module, we denote by V ∗ its algebraic dual. We define actions of
g and K on the dual again, similar to above, and again we run into the problem that this
will not necessarily yield a Harish-Chandra module. This time, to solve this, we denote by
Ṽ ⊂ V ∗ the K-finite vectors in V ∗. We note that Ṽ is a g-submodule of V ∗. It turns out
that Ṽ will again be a Harish-Chandra module.

Definition 31 (p.67). The above Harish-Chandra module Ṽ will be called the Harish-
Chandra module dual to V .

Given a representation of G, we can restrict the action to a closed subgroup H of G to
obtain an H-representation. The reverse process of obtaining a G-representation from an
H-representation is as follows:

Definition 32 ([1],p.93-94). Let (V, ξ) be a finite-dimensional representation of a closed
subgroup H ⊂ G. We define the induced representation of G, denoted by indGH(ξ) as the
space of smooth functions φ : G→ V , transforming according to

φ(gh) = ξ(h)−1φ(g), (g ∈ G, h ∈ H).

The action of G on this space is the restriction of the left regular representation, i.e.

[π(g)φ](g′) = φ(g−1g′), (g, g′ ∈ G).

13



We will mostly be interested in a specific case of this. Recall the subgroups A and N
of G, used in the Iwasawa decomposition, and define M as the centralizer of a in K. We
then define the minimal parabolic subgroup Pmin of G as

Pmin = MAN.

By the Iwasawa decomposition, this is a closed subgroup of G, and the map (m, a, n) 7→
man is a diffeomorphism of M × A × N onto P . If we now have a finite-dimensional
representation (W, ξ) of P , we can look at the representation induced by this. Following
the notation of [4], we will denote this induced representation by

I∞(W ) = indGP (ξ).

From this representation, we create the following Harish-Chandra module:

Definition 33 (p.67). Let W be a finite-dimensional Pmin-representation. The K-finite
vectors

I(W ) := I∞(W )K−fin

of the induced representation form a Harish-Chandra module, which will be referred to as
the minimal principal series representation belonging to W .

Now, using these definitions, we can state the Casselman embedding theorem:

Theorem 34 (Theorem 4.4, proven in [12], Cor.4.2.4). For every Harish-Chandra module
V , there exists a finite-dimensional Pmin-representation W , and a (g, K)-embedding V →
I(W ).

This means that if we look at submodules of minimal principal series representations, we
already have all Harish-Chandra modules. From this observation, and a study of the mini-
mal principal series representations, we can give a polynomial bound on theK-multiplicities
of a Harish-Chandra module. We will often abuse our notation, and identify an equivalence
class [τ ] ∈ K̂ with a representative τ , which means we will regularly talk about τ ∈ K̂, τ
being an irreducible representation. If we denote by t the Lie algebra of a maximal torus in
K, we will often identify τ with its highest weight in it∗. In particular, ‖τ‖ will refer to the
Cartan-Killing norm of this highest weight τ . From studying the dimensions of isotypical
components in I(W ), we can now obtain the following, which is actually used in the proof
of Theorem 29:

Theorem 35 (Theorem 4.5). Let V be a Harish-Chandra module. Then there exists a
C > 0 such that

dimV [τ ] ≤ C(1 + ‖τ‖)dimK−dimM (τ ∈ K̂).

This bound can be proved using the Casselman embedding theorem and Harish-Chandra’s
subquotient theorem, but using Frobenius reciprocity and the Weyl dimension formula a
slightly weaker version can be proved already, which also suffices for our purposes.
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2.7 Comparing with the article

Some parts of this section were based on Sections 2 through 5 of the article, [4], while
others treated subject matter that the article already presumed known. We have re-ordered
and restructured the needed definitions and results, and skipped many of the proofs. All
definitions and results in this sections can be found in other works already, the only original
work has been putting them together and structuring them in a way that fits this thesis.
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3 The main proof

In this section, we go over the structure of the proof in the article. We will not treat
all proofs in detail, for instance those proofs relying on techniques that we will not need
elsewhere will only be outlined.

3.1 Globalizations

We adopt the terminology from the article, and call a Harish-Chandra module V good if
it admits a unique SF -globalization. To show that the globalizations are unique, we look
at two extreme cases: minimal and maximal SF -globalizations.

Definition 36 (p.75). An SF -globalization V ∞ of a Harish-Chandra module V will be
called minimal if it satisfies the following universal property: for any SF -globalization
(π,E) of V , there exists a (necessarily unique) continuous G-equivariant map V ∞ → E
which extends the identity morphism V → V .

Throughout this thesis we adopt the notation from the article to write minimal global-
izations as V ∞. From the definition it is clear that minimal globalizations are unique (up
to isomorphism), if they exist. It turns out they do always exist, and can be constructed
explicitly:

Lemma 37 (p.75). Let V be a Harish-Chandra module. Take any Banach globalization
(π,E) of V , and let v = {v1, . . . , vk} be a set of generators of V . If we view S(G)k as a
G-module under the left regular representation, the linear map

S(G)k → E, (f1, . . . , fk) 7→
k∑
j=1

Π(fj)vj

is linear, continuous, G-equivariant, and its kernel S(G)v is independent of the choice of
(π,E). The quotient S(G)k/S(G)v then is the minimal globalization V ∞.

Proof. It is clear that the map is linear and continuous. Since we are using the left regular
representation, it also readily follows that it is G-equivariant. That the kernel is indepen-
dent of the choice of (π,E) follows from [5], Theorem 3.2. Now, if we denote by S(G)K×K

the K ×K-finite functions of S(G), we have that

Π(S(G)K×K)V = V,

so it follows that S(G)k/S(G)v is an SF -globalization of V . By construction, this global-
ization embeds into any Banach globalization of V . If we have an SF-globalization E, we
have that the topology on E is induced by a countable family of G-continuous semi-norms
{pi}i∈N. We denote by Ei the Banach completion of E with respect to pi, and we see
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that S(G)k/S(G)v embeds into each of those. Since the topology of E is induced by the
semi-norms, we have that

E =
⋂
i

Ei,

so it follows that we can embed S(G)k/S(G)v into E as we claimed.

Note that from this lemma it also follows that within any globalization of V , one can
find V ∞ by applying Π(S(G)). Using this, we can prove the following lemma:

Lemma 38 (Lemma 6.2). Let V be a Harish-Chandra module, and let V ∞ be its unique
minimal SF -globalization. Let W ⊂ V be a submodule, and U := V/W . If we denote by
W the closure of W in V ∞, then U∞ = V ∞/W .

Proof. We write (πU , V
∞/W ) for the quotient representation obtained from (π, V ∞). Then,

since Π(S(G))V = V ∞, we get that ΠU(S(G))U = V ∞/W , and the result follows.

We also note that if V admits a maximal G-continuous norm p with respect to the
Sobolev ordering, then V ∞ coincides with the smooth vectors of the Banach completion of
(V, p). However, the existence of a minimal globalization does not yet imply the existence
of such a maximal norm.

The second important case of globalizations is that of a maximal globalization:

Definition 39 (p.76). An SF -globalization V ∞max of a Harish-Chandra module V is called
maximal if for any SF -globalization (π,E) of V there exists a (necessarily unique) contin-
uous linear G-equivariant map E → V ∞max sitting above the identity morphism V → V .

It is again clear from the definition that if a maximal globalization exists, it is unique up
to isomorphism. However, it is not as easy to show the existence of maximal globalizations
compared to minimal ones. As it turns out, a maximal globalization of V exists if and only
if there exists a G-continuous Hilbert norm q that is minimal with respect to the Sobolev
ordering. But then we have:

Lemma 40. A Harish-Chandra module V is good if and only if all G-continuous norms
on V are Sobolev-equivalent.

Proof. Suppose that V is good. Then all SF-globalizations are isomorphic, so the minimal
and maximal globalization coincide. The maximal globalization is induced by a minimal
norm q with respect to the Sobolev ordering. But then, since q induces the minimal
globalization, it must be a maximal norm too. Since the norm is both minimal and max-
imal, all G-continuous norms must be equivalent to q, hence all G-continuous norms are
Sobolev-equivalent.

On the other hand, if all G-continuous norms are Sobolev-equivalent, we can take
any such norm and look at the globalization it induces. Since the norm is minimal, this
globalization is maximal, and since it is maximal, the globalization is minimal. Therefore,
it is the unique SF-globalization, and V is good.
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Now that we have related being good to Sobolev-equivalence of norms, we have:

Lemma 41 (Lemma 6.5). A Harish-Chandra module V is good if and only if its dual Ṽ
is good.

Proof. We have that p � q if and only if p∗ � q∗. Therefore allG-continuous norms on V are
Sobolev-equivalent if and only if all G-continuous norms on Ṽ are Sobolev-equivalent.

As mentioned before, it is difficult to explicitly construct maximal globalizations. How-
ever, if we have a submodule of a good Harish-Chandra module, it is easier:

Lemma 42 (Lemma 6.6). Let U be a good Harish-Chandra module, and U∞ its unique
SF -globalization. Let V ⊂ U be a submodule and let V be the closure of V in U∞. Then
V ∞max = V .

Proof. We want to show that the induced norm on V from U∞ is minimal with respect
to the Sobolev ordering. So, take q̃ any G-continuous Hilbert norm on U (they are all
equivalent), and define q = q̃|V . If we let p be any G-continuous Hilbert norm on V , we

now want to show that q 4 p. To do this, let π : Ũ → Ṽ be the map dual to the inclusion
of V in U . Since U was good, so is Ũ , so for the dual norms we have that p∗ ◦ π 4 q̃∗. By
taking the dual again and restricting to V , we get that q 4 p, as we wanted.

To close off this subsection, we record a lemma that is used in a proof later on:

Lemma 43 (Lemma 6.7). Let V1 ⊂ V2 ⊂ V3 be an inclusion chain of Harish-Chandra
modules. Suppose that V2 and V3/V1 are good. Then V2/V1 is good.

Proof. Let V3 be any SF -globalization of V3. Let V1, V2 be the closures of V1 and V2 in
V3. Since V2 is good, all SF-globalizations are isomorphic, so we have that V2 = V ∞2 . By
Lemma 38 we then have that V2/V1 = (V2/V1)∞. Since V3/V1 is good, we also have that
(V3/V1)∞ = V3/V1, so by Lemma 42 we get that V2/V1 = (V2/V1)∞max, which means the
minimal and maximal globalizations coincide, i.e. V2/V1 is good.

3.2 Matrix coefficients

We have seen in the previous part that a Harish-Chandra module V is good if and only if
all G-continuous norms on V are Sobolev-equivalent. In this subsection, we will formulate
related theorems in terms of bounds on matrix coefficients.

Given a Harish-Chandra module V , we fix a finite-dimensional Z(g)-invariant space of

generators Ξ ⊂ Ṽ of the dual of V . Let ξ1, . . . , ξk be a basis of Ξ. We define balls in G by
setting

Br := {g ∈ G| ‖g‖ < r},

for any r > 0, with ‖g‖ the maximal scale structure, see Definition 14. We set

r0 := min{‖g‖ |g ∈ G} ≥ 1. (1)

Now, we can formulate the following theorem:
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Theorem 44 (Theorem 7.1). Let V be a Harish-Chandra module, and fix a choice of

Ξ ⊂ Ṽ . Then V is good if and only if for all G-continuous norms q on V ∞ there exist
constants c1, c2, c3, C > 0 such that(

k∑
j=1

∫
Br

|ξj(π(g)v)|2dg

) 1
2

≥ c2

(1 + ‖τ‖)c3
· q(v) (2)

for all τ ∈ K̂, v ∈ V [τ ] and r > max{r0, C(1 + ‖τ‖)c1} with r0 given by (1).

In view of the local Sobolev Lemma this is equivalent to a pointwise version:

Theorem 45 (Theorem 7.2). Let V be a Harish-Chandra module, and fix a choice of

Ξ ⊂ Ṽ . Then V is good if and only if for all G-continuous norms q on V ∞ there exist
constants c1, c2, c3, C > 0 such that for all τ ∈ K̂ and v ∈ V [τ ] there exists a gτ ∈ G such
that ‖gτ‖ ≤ C(1 + ‖τ‖)c1 and

max
1≤j≤k

|ξj(π(gτ )v)| ≥ c2

(1 + ‖τ‖)c3
· q(v). (3)

We will not prove this in full detail, but we will outline the method of proof. We first
assume that the lower bound in (2) holds for some G-continuous norm q, and define a
Hermitian norm by

p(v)2 :=
k∑
j=1

∫
G

|ξj(π(g)v)|2 dg

‖g‖N
,

for N > 0 large enough so that the integral converges. Then by the lower bound in (2),
it follows that q 4 p. On the other hand, we can take N large enough so that p 4 q, and
it follows that every G-continuous norm is equivalent to p, which means that V is good.
This proves one implication.

To prove the other implication, we assume that V is good. We have estimates

|ξj(π(g)v)| ≤ C · ‖g‖nq(v),

for some n ∈ N and C > 0. Using these estimates, we can define norms

pN(v) := max
1≤j≤k

sup
g∈G

|ξj(π(g)v)|
‖g‖N

(v ∈ V )

for any N ≥ n. Using these norms, we can look at the Banach completions of V ∞ with
respect to two N,N ′ ≥ n. Since V is good, these two globalizations are isomorphic for any
N,N ′ ≥ n. We take some N ′ > N ≥ n and fix τ ∈ K̂, v ∈ V [τ ], and define gτ ∈ G such
that

g 7→ max
1≤j≤k

|ξj(π(g)v)|
‖g‖N ′
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becomes maximal at gτ . Applying theory on K-Sobolev norms (see Proposition 3.9 in [4]),
we then find estimates

‖gτ‖ ≤ C(1 + ‖τ‖)c1 ,

max
1≤j≤k

|ξj(π(gτ )v)| ≥ c2‖gτ‖N
′

(1 + ‖τ‖)c3
q(v).

Since ‖gτ‖ ≥ 1, the lower bound in 3 follows. For full details, see [4], p.78-79.

3.3 Minimal principal series representations

Now that we have established that a module being good can be determined by looking at its
matrix coefficients, we look at a specific case: the minimal principal series representation.
The following theorem gives us a description of the structure of the representation:

Theorem 46 (Theorem 8.1(i)). Let V = I(W ) be a minimal principal series representation
of G. Let ξ1, . . . , ξk be a set of generators of V . We take the Hilbert globalization H =
L2(W ×M K). Then there exist constants c1, c2, C1, C2 > 0 such that for all τ ∈ K̂ and
vτ ∈ V [τ ] there exist functions fτ,1, . . . , fτ,k ∈ C∞c (G) with the following properties:

(a)
∑k

j=1 Π(fτ,j)ξj = vτ .

(b) supp(fτ,j) ⊂ {g ∈ G| ‖g‖ < C1(1 + ‖τ‖)c1} for all 1 ≤ j ≤ k.

(c)
∑k

j=1 ‖fτ,j‖1 ≤ C2‖vτ‖(1 + ‖τ‖)c2, where ‖ · ‖1 refers to the L1(G)-norm.

The proof of this theorem will be given in the next two sections. Using this theorem,
we can now prove an important result, on which the proof of the main theorem will be
based:

Theorem 47 (Theorem 8.1(iii)). Let V = I(W ) be a minimal principal series representa-
tion of G. Then V is good.

Proof. We will establish the estimate in (3), so we fix a space of generators Ξ and a basis

ξ1, . . . , ξk in Ṽ , we fix a G-continuous norm q and take v ∈ V [τ ] for some τ . Instead of
working with the norm q explicitly, we will work with a linear functional ξ. Recall from
Theorem 29 that q can be taken to be a Hilbert norm. In particular, this means that for
any w ∈ V [τ ′] for some τ ′ 6= τ , and for all λ ∈ C, we have

q(λv + w) ≥ q(λv) + q(w). (4)

Now, we define

ξ′ :
⊕
τ ′∈K̂
τ ′ 6=τ

V [τ ′]⊕ Cv → C, w + λv 7→ λq(v).
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By the estimate in (4), we have that

|ξ′(w + λv)| = |λ|q(v) = q(λv) ≤ q(λv) + q(w) ≤ q(λv + w).

Therefore, by Hahn-Banach, we can extend ξ′ to a linear functional ξ on all of V , such
that |ξ(v′)| ≤ q(v′) for all v′ ∈ V , such that ξ(v) = q(v) and such that ξ(w) = 0 for
w ∈ V [τ ′] with τ ′ 6= τ . Now, if we denote by ξτ ′ the τ ′-isotypical part of ξ, we have that
ξτ ′ = dim(τ ′)Π∗(χτ ′)ξ, where χτ ′ denotes the character of the K-representation τ ′, and π∗

is the contragredient representation. Applying this to some w ∈ V yields

ξτ ′(w) =

∫
K

dim(τ ′)χτ ′(k)ξ(π(k−1)w)dk

=

∫
K

dim((τ ′)∗)χ(τ ′)∗(k′)ξ(π(k′)w)dk′

= ξ

(∫
K

dim((τ ′)∗)χ(τ ′)∗(k′)π(k′)wdk′
)

= ξ(w(τ ′)∗),

where w(τ ′)∗ denotes the (τ ′)∗-isotypical component of w. Here in the second line we
switched to k′ = k−1, and we use that χτ ′(k) = χ(τ ′)∗(k

−1). So, by definition of our ξ,
which is only non-zero on the τ -isotypical component, we have that ξ = ξτ∗ . But then,

using Theorem 46 and the fact that Ĩ(W ) = I(W ∗), we can decompose ξ in terms of
our generators ξ1, . . . , ξk with functions f1, . . . , fk satisfying the required estimates from
Theorem 46. Note that the norms of τ and τ ∗ are the same, so that we get appropriate
bounds. Writing this out, we get that

q(v) = ξ(v) ≤ |
k∑
j=1

Π∗(fj)ξj(v)|

≤
k∑
j=1

|
∫
G

fj(g)ξj(π(g−1)v)dg|.

If we now pick out the index j for which the summand is maximal, we get some j such
that

q(v)

k
≤ |
∫
G

fj(g)ξj(π(g−1)v)dg|.

Now, we can estimate the integral from above by ‖fj‖1‖ξ(π(·−1)v)‖∞, where the supremum-
norm of the second function is taken over the support of fj. Writing this out yields

q(v)

k
≤ ‖fj‖1‖ξj(π(·−1)v)‖∞

≤ C2‖ξ‖(1 + ‖τ‖)c2‖ξj(π(·−1)v)‖∞,
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for some constants C2, c2 independent of τ . Here we used part (c) of Theorem 46, and ‖ξ‖
is the operator norm of ξ. If we move all factors but the supremum norm to the left-hand
side, and combine the constants together, we get that

C

(1 + ‖τ‖)c2
q(v) ≤ ‖ξj(π(·−1)v)‖∞.

Here we used that |ξ(v′)| ≤ q(v′) for all v′ ∈ V , and ξ(v) = q(v), so that ‖ξ‖ = 1. Now,
the support of fj was bounded by C1(1 +‖τ ∗‖)c1 = C1(1 +‖τ‖)c1 for some constants C1, c1

independent of τ , and we have that ‖g‖ = ‖g−1‖ by Lemma 15, so there is some gτ with
‖gτ‖ ≤ C1(1 + ‖τ‖)c1 such that

C

(1 + ‖τ‖)c2
q(v) ≤ |ξj(π(gτ )v)|.

Up to relabeling of the constants, this is exactly what we wanted to show, and it follows
from Theorem 45 that V is good.

3.4 Reduction steps

Now that we have proven that the main theorem holds for a specific case of Harish-Chandra
modules, we will show that we can transfer this result to other modules. In doing so, we
will eventually prove the theorem for the most general case.

We begin with extensions:

Lemma 48 (Lemma 9.1). Let

0→ U → L→ V → 0

be an exact sequence of Harish-Chandra modules. If U and V are good, then L is good.

Proof. Let (π, L) be any smooth Fréchet globalization of L. We can then take the closure
of U in L to get a smooth Fréchet globalization (πU , U) of U , and we can take the quotient
V := L/U to get a smooth Fréchet globalization (πV , V ) of V = L/U . Now, since U
and V are good, these globalizations coincide with the minimal ones, which means that
U = ΠU(S(G))U and V = ΠV (S(G))V . Since 0 → U → L → V → 0 is exact as well,
this implies that Π(S(G))L = L. Indeed, we can look at the following commuting diagram:

0 S(G)⊗ U S(G)⊗ L S(G)⊗ V 0

0 U L V 0

Here, both the upper and lower sequence are exact, and the vertical maps are given by
applying the functions from S(G) to the space it is tensored with. The outer two verti-
cal maps are surjective, so by standard diagram chasing we see that the middle vertical
map is surjective as well. Therefore, any globalization of L coincides with the minimal
globalization, i.e. L is good.

22



Harish-Chandra modules admit finite composition series, which yields:

Theorem 49 (Corollary 9.2). To show that all Harish-Chandra modules are good, it is
sufficient to show that all irreducible Harish-Chandra modules are good.

Now, we look at tensor products with finite-dimensional representations. The tech-
niques here will be used later as well. Let V be a Harish-Chandra module, with minimal
globalization V ∞. Let (σ,W ) denote a finite-dimensional representation of G, and set
V = V ⊗W . We will show that if V is good, then V is good, and that in general the
minimal globalization of V is V ∞⊗W . We will not actually need the results for the main
proof, but the techniques here will be used later.

We fix a θ-covariant inner product 〈·, ·〉 on W , and let w1, . . . , wk be a corresponding
orthonormal basis of W . We define the C∞(G)-valued k × k matrix of the representation:

S := (〈σ(g)wi, wj〉)1≤i,j≤k.

Then the matrix is invertible, and all coefficients of S and S−1 are of moderate growth,
which yields:

Lemma 50 (Lemma 9.3). Applying the matrix S yields a linear isomorphism in the fol-
lowing two cases:

(i) S(G)k → S(G)k,

(ii) [C∞c (G)]k → [C∞c (G)]k.

Now, using the first of these two, we can prove the following:

Lemma 51 (Lemma 9.4). Let V be a Harish-Chandra module and (σ,W ) be a finite-
dimensional representation of G. If we denote V = V ⊗W , then

V∞ = V ∞ ⊗W.
Proof. We denote by π1 the representation π⊗σ on V ∞⊗W . We want to show that v⊗wj
lies in Π1(S(G))V for all v ∈ V ∞ and 1 ≤ j ≤ k. By linearity, the claim then follows. We
fix a v ∈ V ∞, and without loss of generality we set j = 1. Since v ∈ V ∞, we find some
ξ ∈ V and f ∈ S(G) such that Π(f)ξ = v. By the above lemma, we can now find some
f = (f1, . . . , fk) ∈ S(G)k such that St(f) = (f, 0, . . . , 0). Now, we claim that

k∑
j=1

Π1(fj)(ξ ⊗ wj) = v ⊗ w1.

Indeed, taking the inner product with wi on the left-hand side yields

(id⊗ w∗i )

(
k∑
j=1

Π1(fj)(ξ ⊗ wj)

)
=

k∑
j=1

∫
G

fj(g)〈σ(g)wj, wi〉π(g)ξdg

= δ1i

∫
G

f(g)π(g)ξdg

= δ1iv.

This proves the claim, and the result follows.
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The second mentioned result is straightforward to prove:

Theorem 52 (Proposition 9.5). Let V be a good Harish-Chandra module, and (σ,W ) be
a finite-dimensional representation of G. Then V = V ⊗W is good.

Proof. We take any norm q on W . We claim now that any G-continuous norm on V is
equivalent to some p⊗ q with p a G-continuous norm. Then, since all G-continuous norms
on V are Sobolev-equivalent, the result follows.

To prove the claim, we note that V ⊗W ∼= Hom(W ∗, V ). Any norm p on V then gives
a norm on V ⊗W , which under this isomorphism becomes

(p⊗ q)(T ) = sup
w∗∈W ∗
q∗(w∗)≤1

p(T (w∗)).

Conversely, any norm p′ on V ⊗W gives a norm p′V on V by setting

p′V (v) = sup
w∈W
q(w)≤1

p′(v ⊗ w).

Now, combining these operations, we see that

(p′V ⊗ q)(T ) = sup
w∗∈W ∗
q∗(w∗)≤1

p′V (T (w∗))

= sup
w∗∈W ∗
q∗(w∗)≤1

sup
w∈W
q(w)≤1

p′(T (w∗)⊗ w).

This is equivalent to p′, so the result follows.

Note that this theorem also implies Lemma 51, but the method of proof we used for
the lemma will be used again later, so we introduced it here.

As a next step, we look at induction. We will state the following theorem without
proof, as the proof relies on techniques and theories that are not needed elsewhere in this
work.

Theorem 53 (Proposition 9.6). Let P ⊇ Pmin be a parabolic subgroup of G with Langlands
decomposition P = NPAPMP . Let Vσ be an irreducible good Harish-Chandra module for
MP . Then for all λ ∈ (aP )∗C the induced Harish-Chandra module Vσ,λ is good. In particular,
V ∞σ,λ = Eσ,λ.

Proof. See [4], p.84-85.

In this proof, we need that minimal principal series representations are good, so this
could not have been used to replace Theorem 47.

Another result, which we will not prove in detail, is the following:
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Theorem 54 (Proposition 10.4). Suppose that I : U → W is an intertwiner of good
Harish-Chandra modules which allows holomorphic deformations I : U → W. Then im I
is good.

Here U = O(D,U) denotes the space of maps f from the open unit disk D to U such

that for all ξ ∈ Ũ the contraction ξ ◦ f is holomorphic. We take a holomorphic family
of Harish-Chandra modules, i.e. a family of Harish-Chandra modules (Us)s∈D such that

they are all isomorphic to U as K-modules, and such that for all X ∈ g, v ∈ U, ξ ∈ Ũ the
map s 7→ ξ(Xs · v) is holomorphic. Here Xs · v denotes the action of X in Us. Then we
can put a (g, K)-structure on U by setting (X · f)(s) = Xs · f(s). We denote by Uk the
Harish-Chandra module U/skU .

A morphism I : U → W is then defined as a family of (g, K)-maps Is : Us → Ws such

that for all U ∈ U and ξ ∈ W̃ the assignments s 7→ ξ(Is(u)) are holomorphic. We denote
by H = ker(I0). We now define the following:

Definition 55. We say that I : U → W is holomorphically deformable or allows holomor-
phic deformations I : U → W , if we have a morphism I : U → W of holomorphic families
of Harish-Chandra modules, satisfying the following two properties:

• Is is invertible for all s 6= 0.

• There exists a k ∈ N0 such that J(s) := skI−1
s is holomorphic on D.

Under these additional requirements, one can show ([4], p.86-88) that there is an inclu-
sion chain

V1 ⊂ V2 ⊂ V3

with V1 = skHk, V2 = skU/s2kU and V3 = Hk + skU/s2kU . So then we have

V2/V1 ' Uk/Hk, V2 ' Uk and V3/V1 'Wk.

Since U and W are good, it can be shown that Uk and Wk are as well, so by Lemma 43
it follows that Uk/Hk is good. Now, using a short exact sequence

0→ U/H ' sk−1U/sk−1H → Uk/Hk → U/Hk,1 → 0,

with Hk,1 the projection of Hk to U1 ' U , we can show that U/H is good. This was what
we wanted to show, as H was the kernel of I0 = I, so the image im I is isomorphic to
U/H.

As the final piece of the proof, we now look at Harish-Chandra modules belonging
to the discrete series. We denote by Z < G the center of G, and we assume that V is
a unitarizable irreducible Harish-Chandra module, i.e. there exists a unitary irreducible
globalization (π,H) of V .
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Definition 56 (p.88-89). We say that V is square integrable or that V belongs to the

discrete series if for all v ∈ V and ξ ∈ Ṽ , one has∫
G/Z

|mξ,v(g)|2d(gZ) <∞.

Here mξ,v denotes a matrix coefficient in the globalization H, i.e.

mξ,v(g) = ξ(π(g)v).

Then we have:

Theorem 57 (Proposition 10.5). Let V be a Harish-Chandra module of the discrete series.
Then V is good.

We will not prove this in full detail. The idea of the proof is to embed V into a
minimal principal series representation, and use this embedding to put an inner product
on V . Using this inner product, we can show that any unitary norm is both maximal and
minimal, from which it follows that V is good. The full details are in [4], p.89. Note that
for this proof we need that minimal principal series representations are good.

Now, we can prove the final result:

Theorem 58 (Theorem 10.6). All Harish-Chandra modules are good.

Proof. We saw in Theorem 49 that we can assume that our module V is irreducible. Using
the Langlands classification ([9], Ch. VIII, Theorem 8.54) and our previous theorems on
deformation and induction, Theorem 54 and Theorem 53, we can reduce to the case that
V is tempered. Now, using Proposition 5.2.5 from [12], this means we can assume that V
is of the discrete series. This case has already been proved in Theorem 57, which concludes
the proof.

3.5 Comparing with the article

In this section we treated most of Sections 6 through 10 of the article by Krötz and
Bernstein. There are several side results that we have skipped, such as part (ii) of Theorem
8.1 and the discussion in Section 10.4, and of course some proofs were not treated in full
detail.

We have also added several explanations, and rephrased certain results as lemmas that
got glossed over in the article. Most importantly of all, the proof of our Theorem 47,
their 8.1(iii), has been added, which in the original article was treated in a single line (the

remark that Ĩ(W ) = I(W ∗)).
We have made some changes to the results claimed in Theorems 7.1 and 7.2 in the

article, particularly the addition of the constants C in the statements of our Theorems
44 and 45. Without these constants, the proofs in the article no longer line up with the
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statements, and the way the theorems are used would also be incorrect. We assume this
was merely a typographical error, and have changed the result accordingly.

Overall, we found the article generally very clear in these sections, apart from the proof
of Theorem 8.1(iii), and the additions made here were predominantly to emphasize certain
parts that will return later.
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4 Reduction steps for minimal principal series repre-

sentations

In this section, we reduce the proof of Theorem 46 to the case where W = Cχ for some
character χ on A. We repeat here the theorem we want to prove:

Theorem 46 (Theorem 8.1(i)). Let V = I(W ) be a minimal principal series representation
of G. Let ξ1, . . . , ξk be a set of generators of V . We take the Hilbert globalization H =
L2(W ×M K). Then there exist constants c1, c2, C1, C2 > 0 such that for all τ ∈ K̂ and
vτ ∈ V [τ ] there exist functions fτ,1, . . . , fτ,k ∈ C∞c (G) with the following properties:

(a)
∑k

j=1 Π(fτ,j)ξj = vτ .

(b) supp(fτ,j) ⊂ {g ∈ G| ‖g‖ < C1(1 + ‖τ‖)c1} for all 1 ≤ j ≤ k.

(c)
∑k

j=1 ‖fτ,j‖1 ≤ C2‖vτ‖(1 + ‖τ‖)c2, where ‖ · ‖1 refers to the L1(G)-norm.

We first note that if the theorem holds for any set of generators, it holds for all sets
of generators. Indeed, if we take the decomposition of a vector vτ in terms of some set
of generators ξj, then for another set ξ′j, we can write the ξj in terms of the ξ′j and plug
that into the decomposition to obtain another decomposition. By changing the values of
the constants, we then see that the theorem still holds. Because of this, we introduce the
following definition:

Definition 59. Let V be a Harish-Chandra module, with some Hilbert globalization H.
We say that V is of D-type if for any set of generators ξ1, . . . , ξk of V , there exist constants
c1, c2, C1, C2 > 0 such that for all τ ∈ K̂ and vτ ∈ V [τ ] there exist functions fτ,1, . . . , fτ,k ∈
C∞c (G) with the following properties:

(a)
∑k

j=1 Π(fτ,j)ξj = vτ .

(b) supp(fτ,j) ⊂ {g ∈ G| ‖g‖ < C1(1 + ‖τ‖)c1} for all 1 ≤ j ≤ k.

(c)
∑k

j=1 ‖fτ,j‖1 ≤ C2‖vτ‖(1 + ‖τ‖)c2 , where ‖ · ‖1 refers to the L1(G)-norm.

Here the D in the notation “of D-type” refers to the notation C∞c (G) = D(G), com-
monly used in the study of distributions. To prove that a certain representation is of
D-type, we only have to check one specific set of generators of our choosing, by the discus-
sion above.

Now, in this notation we can rephrase Theorem 46 as follows:

Theorem 60. Let V = I(W ) be a minimal principal series representation of G. Then V
is of D-type.

Recall that we need this theorem to prove that minimal principal series representations
are good. This is then used both in proving that being good is preserved under induction,
and that Harish-Chandra modules of the discrete series are good, which then results in the
general statement of the Casselman-Wallach globalization theorem.
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4.1 Reduction steps

To begin the reduction, we first construct a Jordan-Hölder series of W , i.e. a sequence
0 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wn = W of submodules, such that for each inclusion the quotient
Wi+1/Wi is irreducible. But then, the exact sequence 0 → Wi → Wi+1 → Wi+1/Wi → 0
induces an exact sequence 0 → I(Wi) → I(Wi+1) → I(Wi+1/Wi) → 0. Suppose now that
we have for irreducible W ′ that I(W ′) is of D-type. With the following lemma, it then
follows by induction that I(W ) is of D-type.

Lemma 61. Let 0 → U
g−→ V

h−→ W → 0 be a short exact sequence of Harish-Chandra
modules, and let U and W be of D-type. Then V is of D-type.

Proof. First, we pick a set of generators for the module V . We take any set of generators
ξ′1, . . . , ξ

′
k for U , and map it under g to ξi = g(ξ′i). Then, we extend this to a set of

generators by picking ξk+1, . . . , ξl such that applying h to these yields a set of generators
of W . (We can do this, since h is surjective.) The result is indeed a set of generators of
V , since for any v ∈ V we can first write h(v) in terms of the h(ξj), which gives us a way
to write v in terms of the ξj, modulo the image of U , but any element in this image can
be written in terms of the g(ξ′i) = ξi, so they form a set of generators.

Now, we take an isotypical component τ ∈ K̂, and a vector vτ ∈ V [τ ]. Then h(vτ ) is
a (possibly zero) vector in W [τ ], so since W is of D-type, we can decompose it in any set
of generators. Using the h(ξj), we find fτ,j that satisfy the estimates from Definition 59,

and such that
∑l

j=k+1 Π(fτ,j)h(ξj) = h(vτ ). Now, we can take the h outside, and get that

h(
∑l

j=k+1 Π(fτ,j)ξj) = h(vτ ), which shows that
∑l

j=k+1 Π(fτ,j)ξj − vτ is in the kernel of h.
We then project this difference onto the τ -isotypical component, by applying dim(τ)Π(χ̄τ ).
Note that χτ is a function on K, so here we only look at the K-action. Then, vτ remains
unchanged, and in the sum we get terms dim(τ)Π(χ̄τ∗fτ,j)ξj, where we take the convolution
of a function on K and a function on G to obtain a function on G. The resulting function
will still be bounded in the L1-norm, and the support will still be polynomially bounded,
since K is bounded and the support of fτ,j was bounded. After this projection, the result∑l

j=k+1 dim(τ)Π(χ̄τ ∗ fτ,j)ξj − vτ is still in the kernel of h, which is the image of g, and it

is in V [τ ]. But then there is a v ∈ U [τ ] such that g(v) =
∑l

j=k+1 dim(τ)Π(χ̄τ ∗ fτ,j)ξj − vτ .
This v can now be decomposed, since U is of D-type, so we can write v =

∑k
j=1 Π(fτ,j)ξ

′
j.

But then, applying g, we get that g(v) =
∑k

j=1 Π(fτ,j)ξj, which we can rewrite as vτ =∑k
j=1 Π(fτ,j)ξj +

∑l
j=k+1 dim(τ)Π(χ̄τ ∗ fτ,j)ξj. Since all the resulting functions satisfy the

needed bounds, the result now follows.

It follows that we only have to prove Theorem 60 in the case that W is irreducible.
But then we can simplify things even further: since W is irreducible, N has to act trivially
on W . Indeed, if we look at the infinitesimal action of n, a nilpotent Lie algebra, by
Engel’s Theorem we can pick a basis for W so that all elements of n have a strictly upper
triangular form. But this implies that there is a vector w that gets mapped to 0 by all
of n, or equivalently, that N fixes that vector. But, since M × A normalizes N , and M
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and A commute, this means that P fixes the subspace MAw, because (MAN)MAw =
(MA)MANw = MAw. So, MAw is a non-trivial subrepresentation, which means that it
has to be all of W . But then, any element of W can be written as MAw. If we apply an
element n ∈ N to maw, we get n(maw) = (ma)n′w = maw for some n′ ∈ N , using again
that MA normalizes N . So, N acts trivially on W .

This means that we can factor the Pmin-representation W into a Pmin/N ' M × A-
representation. Since M and A commute, this means that we can write the representation
as σ × χ for representations σ and χ of M and A respectively. As A is abelian, we apply
Schur’s Lemma, and the representation χ of A is scalar. Since W is irreducible as a P -
representation, the action of N is trivial, and the action of A is scalar, the representation
σ of M has to be irreducible. Now, we use two results:

Lemma 62. If W is a P -module, and F a finite-dimensional representation of G, then
I(W ⊗ F |P ) ' I(W )⊗ F in a natural way.

Here W ⊗ F |P is a P -module, and I(W )⊗ F is a G-module.

Proof. We define the map Q : I(W )⊗ F → I(W ⊗ F |P ) by setting

Q(f ⊗ v) : g 7→ f(g)⊗ π(g−1)v,

and extending linearly to all of I(W )⊗ F . Here π denotes the representation on F . This
lands in the right space: for any h ∈ P , we have that Q(f⊗v)(gh) = f(gh)⊗π(h−1g−1)v =
ξ(h−1)f(g)⊗ π(h−1)π(g−1)v = h−1 · (f(g)⊗ π(g−1)v) = h−1 ·Q(f ⊗ v)(g), where ξ denotes
the representation on W . It is easily checked that the map is G-equivariant, and it is
injective: suppose that some

∑
i fi ⊗ vi gets mapped to 0. If we pick a basis e1, . . . , en of

F , we can expand all of the vi in terms of this basis, and then group the resulting terms,
to write

∑
i fi ⊗ vi =

∑
j gj ⊗ ej. Note that any element of I(W )⊗G F can be written in

one unique such way. Then, applying Q, we get 0 =
∑

j Q(gj⊗ ej), so applying this to any

element x of the group, we get 0 = gj(x)⊗ π(x−1)ej. Now, since the π(x−1)ej still form a
basis of F , we conclude that gj(x) = 0 for all x, so all the gj were zero. This means that∑

i fi ⊗ vi = 0, which is what we wanted to prove.
Now, to prove surjectivity, we take any element ψ of I(W ⊗P F |P ). At every point g,

we can decompose the outcome of ψ as ψ(g) =
∑

i ψi(g) ⊗ ei, similar to above. However,
it turns out to be more convenient to use the basis consisting of π(g−1)ei, and we write

ψ(g) =
∑
i

φi(g)⊗ π(g−1)ei.

Since ψ was an element of I(W ⊗ F |P ), we know for any g0 ∈ P that ψ(gg0) = g−1
0 · ψ(g),

which means that∑
i

φi(gg0)⊗ π(g−1
0 )π(g−1)ei = ξ(g−1

0 )φi(g)⊗ π(g−1
0 )π(g−1)ei.

Since the π(g−1
0 )π(g−1)ei form a linear basis, we conclude that φi(gg0) = ξ(g−1

0 )φi(g), which
means that the φi are elements of I(W ). But then, we can look at the element

∑
i φi ⊗ ei
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in I(W ) ⊗ F , and apply Q to it, to yield the function g 7→
∑

i φi(g) ⊗ π(g−1)ei = ψ(g).
This shows surjectivity, so the two spaces are indeed isomorphic. Since the map Q was
natural, they are isomorphic in a natural way.

Theorem 63. If W is an irreducible M×A-module as above, there exists a finite-dimensional
representation F of G, with space of N-invariants FN such that W embeds in FN ⊗ Cψ

for some character ψ of A.

We postpone the proof of this embedding theorem to the next subsection.
Using these two, we can embed W into F ⊗Cψ, which means we can embed I(W ) into

I(F ⊗Cψ) ' I(Cψ)⊗ F . Now, using two more lemmas, we conclude that we only have to
show that I(Cψ) is of D-type for any character ψ to conclude that any I(W ) is of D-type:

Lemma 64. If V is of D-type, and U ⊂ V is a submodule, then U is of D-type.

Proof. Unfortunately, we have not been able to prove this yet. We will nevertheless proceed
as if this or a similar result holds, and refer the reader to the Discussion in Section 6 for
further details.

Lemma 65. If V is of D-type, and F is a finite-dimensional G-representation, then V ⊗F
is of D-type.

Proof. We denote the representation on V by π, the representation on G by σ, and the
representation on V ⊗ F by π1.

We take a θ-covariant inner product on F , and fix an orthonormal basis f1, . . . , fk of F
with respect to this inner product. We now define the matrix S := (〈σ(g)fi, fj〉)1≤i,j≤k as
before, and recall from Lemma 50 that the matrix is invertible, so that it defines a linear
isomorphism from C∞c (G)k → C∞c (G)k.

Now, to prove that V ⊗ F is of D-type, we will use the following set of generators:
take {ξi} a set of generators of V , then the set of ξi ⊗ fj are a set of generators of V ⊗ F .
Suppose now that we have some v =

∑
i vi ⊗ fi ∈ (V ⊗ F )[τ ]. We can then decompose

every vi into isotypical components, to get

v =
∑
i

(
∑
j

(vi,j)⊗ fi),

where each of the vi,j is in an isotypical component. Since weights add up under tensor
products, and since F only has finitely many weights, we see that if vi,j ∈ V [τ ′], then
‖τ ′‖ ≤ ‖τ‖+C for some constant C. In particular, we can find constants C ′1, C

′
2 such that

C1(1 + ‖τ ′‖)c1 < C ′1(1 + ‖τ‖)c1 and C2(1 + ‖τ ′‖)c2 < C ′2(1 + ‖τ‖)c2 , where the unprimed
constants come from the definition of V being of D-type. Finally we note that since the
weights lie on a lattice, we can find a polynomial bound on the number of weights with
‖τ ′‖ ≤ ‖τ‖+ C in terms of ‖τ‖.
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Now, since V was of D-type, we can decompose every vi,j as
∑

l(Π(fi,j,l)ξl), for functions
fi,j,l that satisfy

supp(fi,j,l) ⊂ {g ∈ G | ‖g‖ < C1(1 + ‖τ ′‖)c1 < C ′1(1 + ‖τ‖)c1}
n∑
l=1

‖fi,j,l‖1 ≤ C2‖vi,j‖(1 + ‖τ ′‖)c2 < C ′2‖v‖(1 + ‖τ‖)c2 ,

for the appropriate τ ′. Now, analogous to the proof of Lemma 51, we find functions
fi,j,l,m ∈ C∞c (G) such that St((fi,j,l,m)m) = (0, . . . , fi,j,l, . . . , 0), with the non-zero term

being on the i-th position. It then follows that
∑k

m=1 Π1(fi,j,l,m)(ξl⊗fm) = (Π(fi,j,l)ξl)⊗fi.
The functions fi,j,l,m now also have their supports in {g ∈ G | ‖g‖ < C ′1(1 + ‖τ‖)c1} since
they are linear combinations of the previous fi,j,l, and since the functions we used as
coefficients are bounded on this support, the L1-norm of the result still satisfies ‖fi,j,l,m‖ <
C ′′2‖v‖(1 + ‖τ‖)c2 for some constant C ′′2 . Now, if we define functions fl,m by

∑
i,j fi,j,l,m, we

sum up some number of terms that is polynomially bounded in ‖τ‖, and we have∑
l,m

Π1(fl,m)(ξl ⊗ fm) =
∑
i,j,l,m

Π1(fi,j,l,m)(ξl ⊗ fm)

=
∑
i,j,l

(Π(fi,j,l)ξl)⊗ fi

=
∑
i

(
∑
j

vi,j ⊗ fi)

= v.

So, these functions can be used to decompose v in terms of the chosen generators. Their
supports satisfy the needed bound, since each of the fi,j,l,m did, and their L1-norms satisfy
a polynomial bound, since we summed polynomially many functions that each satisfied it,
so by the triangle inequality the required result follows.

4.2 Proof of Theorem 63

To show the reasoning, we will prove Theorem 63 in the case of G being semisimple. For
a reductive Lie group the result still holds, but the arguments are slightly different.

We first prove a result about extending characters to a torus. Suppose we have a
compact finite-dimensional torus T , i.e. a compact connected abelian finite-dimensional
Lie group. Assume that we have some involution σ on this torus. We denote by T̂ the set
of all characters of T , that is the set of all Lie group homomorphisms ξ : T → C∗. Since
T is abelian, the exponential map is a group homomorphism from the Lie algebra t to T .
The kernel of the exponential map is therefore a lattice Γ, since it is a discrete subgroup,
and it spans t over R. We define the dual lattice Γ∨ as the set of all λ ∈ t∗ such that
λ(X) ∈ Z for all X ∈ Γ. With this notation, the following result is well-known:

Lemma 66. The map T̂ → t∗C, ξ 7→ ξ∗ = Teξ is a bijection from T̂ to 2πiΓ∨.
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The involution σ induces a linear involution on t, which we also denote by σ. Then, we
can decompose t into the two eigenspaces of σ, and write t = t+⊕ t−. If we look at the set
T σ of fixed points of σ in T , we see that it is a closed subgroup of T , with as its Lie algebra
the fixed points tσ = t+. Similarly, we can look at the subgroup S = {t ∈ T |σ(t) = t−1},
which is a subgroup since T is abelian. Its Lie algebra is given by t−, and its identity
component is given by T− = exp(t−). This is a submanifold, hence a closed subgroup of T
again. The intersection

F := T σ ∩ T−
is then also a closed subgroup, but its Lie algebra is trivial, which means that it is discrete,
hence finite. Now, using this notation, we can prove a sequence of results:

Lemma 67. The multiplication map m : T σ × T− → T is a surjective Lie group homo-
morphism, which is a local diffeomorphism everywhere. Its kernel is given by pairs (t, t−1),
with t ∈ F .

Proof. At (e, e), the tangent map is bijective by the decomposition of t we gave before.
By homogeneity, this makes m a local diffeomorphism everywhere. The image of m is
therefore an open subgroup of M , and since T is connected, this makes it surjective. Any
element of the kernel has to be of the form (t, t−1), and t has to be in both T σ and T−,
hence in F .

Lemma 68. F = {t ∈ T−|t2 = e}.

Proof. An element in F clearly has to be in T−, and it has to have t = σ(t) = t−1, so
t2 = e. On the other hand, if t ∈ T−, then t−1 = σ(t), but if t2 = e, then t = t−1, so t ∈ T σ
and t ∈ F .

We denote now by Γ± the kernels of exp restricted to t±, that is Γ± = Γ ∩ t±. Then
our previous lemma becomes F = exp(1

2
Γ−). Now we can formulate our first substantial

result:

Lemma 69. Restriction to T σ induces a surjective map T̂ → T̂ σ.

Proof. Let ξ be a character of T σ. We claim that there exists a character η on T− which
agrees with ξ on the intersection F . From this claim and Lemma 67, the result then follows.

To prove the claim, we fix a Z-basis for 1
2
Γ−, and denote it by γ1, . . . , γr. If we denote

εj = ξ(exp γj), we have ε2j = 1, so εj = ±1. This means we can select kj ∈ {0, 1} such that
ekjπi = εj. We then define a functional µ ∈ it∗− by setting

µ(γj) = kjπi.

Then we have µ(2γj) ∈ 2πiZ for all j, which means that µ ∈ 2πiΓ∨−. So, by Lemma 66, we

have that µ = η∗ for a unique η ∈ T̂−. Now, we have for any j that

η(exp γj) = eη∗(γj) = eµ(γj) = εj = ξ(exp γj).

The elements exp γj generate F , so we have that η = ξ on all of F , which proves the claim
and therefore the lemma.

33



Now, we will recall some results about weights and representations. Let G be a compact
semisimple Lie group, with Lie algebra g. If we take t a maximal torus in g, and T =
exp(t), then T is an open subgroup of ZG(t), so it is closed and hence compact in G. The
exponential map of G, restricted to t, coincides with the exponential map of T , so we can
describe the characters of T via ΓT = ker exp as before. We see that we have a bijection
ξ 7→ ξ∗ from T̂ onto ΛT := 2πiΓ∨T .

We denote by R the root system of t in g, by Λ the lattice of integral weights (which
is a discrete additive subgroup of it∗), and by Q the root lattice of (t, g), i.e. the additive
subgroup of Λ generated by R. We then recall the following result:

Lemma 70. Let G be compact connected semisimple. We have the following inclusion of
lattices:

Q ⊂ ΛT ⊂ Λ.

Furthermore, we have:

• G is adjoint if and only if Q = ΛT

• G is simply connected if and only if ΛT = Λ.

With G still a compact connected semisimple Lie group, it is a well known result that
the inclusion T → G induces an epimorphism of fundamental groups Π1(T ) → Π1(G)
based at e. We also have that exp : t→ T is a universal covering, so we have Π1(T ) ' ΓT .
This yields a natural epimorphism, which has:

Lemma 71. The natural epimorphism ΓT → Π1(G) has kernel 2πiΛ∨.

From this it follows that Π1(G) ' Λ∨T/Λ
∨. It can also be shown that there is a natural

one-to-one correspondence from the lattices between Q and Λ, to the isomorphism classes
of connected Lie groups with Lie algebra g. This works as follows:
The lattice Q gives rise to the class represented by Int(g), and Λ gives rise to the class of

the universal covering G̃ of Int(g). If Λ0 is a lattice in between, then C = exp(2πiΛ∨0 ) is a

finite group in the center of G̃, and G := G̃/C represents the isomorphism class associated
to Λ0.

Now, we apply this to representation theory, to describe which irreducible representa-
tions of g lift to irreducible representations of G. We choose positive roots R+ and let Λ+ be
the associated set of dominant integral weights. For λ ∈ Λ+ we denote by πλ the associated
irreducible representation of g with highest weight λ. Then, λ 7→ πλ induces a bijection
from Λ+ onto the equivalence classes of finite dimensional irreducible representations of g.
We now have the following result, which we state without proof:

Lemma 72. Assume that G is connected compact semisimple, and let λ ∈ Λ. Then πλ
lifts to a representation of G, which is automatically irreducible, if and only if λ ∈ ΛT .

Now finally, we can prove the result we need. As we assume that G is a linear group,
we can embed G into a connected complex semisimple Lie group GC. Therefore, we can
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assume that g is a real semisimple Lie algebra, gC its complexification, GC a connected
semisimple Lie group with Lie algebra gC, and G the analytic subgroup with Lie algebra
g. Then, the center of G is contained in the center of GC, which is finite since the group
is semisimple. That means that G has a finite center, which implies that G has some
maximal compact subgroup K. Let θ be the associated Cartan involution, and g = k ⊕ p
the corresponding Cartan decomposition. Pick a maximal abelian subspace a ⊂ p.

Now, u := k ⊕ ip is a real Lie subalgebra of gC, which is actually a real form of gC.
The analytic subgroup U generated by u is a maximal compact subgroup of GC, and we
have that K = G ∩ U . The complex linear extension of θ to gC lifts to a complex analytic
involution of GC, which we also denote by θ. It leaves U invariant, and we have that
K = U θ.

If we denote by M the centralizer of a in K, then its Lie algebra m is the centralizer
of a in k. The centralizer of a in g is then m⊕ a. We now fix a maximal abelian subspace
t+ of m. Then t = t+ ⊕ ia is a maximal torus in u, that is invariant under θ. If we denote
by σ the restriction of θ to t, then in the same notation as before, we have ia = t−. If T
denotes the maximal torus exp(t) in U , then T is invariant under the Cartan involution,
and σ = θ|T is the lift of the infinitesimal σ to T . Again in the notations from before, we
define T σ and T−, so that we have T = T σT−, and F = T σ ∩ T−. Then, we have:

Lemma 73. We have F = K ∩ exp(ia) and M = MeF .

Proof. Since T σ ⊂ U θ = K, we have F ⊂ K∩exp ia. Conversely, ifX ∈ ia, and expX ∈ K,
by applying the Cartan involution we see (expX)2 = e, so that expX ∈ F by Lemma 68.

To prove the second equality, we recall that the centralizer ZU(S) of any subset S of t is
a connected closed subgroup of U . Applying this to S = ia, we get that ZU(ia) is connected.
The Lie algebra of this centralizer is m⊕ ia, so the multiplication map Me × exp(ia)→ U
is a group homomorphism that is a local diffeomorphism, so its image is an open subset
of ZU(ia). This centralizer is connected, so we see that the multiplication is surjective, so
Me exp(ia) = ZU(ia). In particular, we have M ⊂ Me exp(ia). So, for any m ∈ M , there
exists m0 ∈Me, a ∈ exp(ia) such that m = m0a. Then a ∈M ∩exp(ia) ⊂ F , so m ∈MeF ,
which shows that M ⊂MeF , and the reverse inclusion is obvious, so the result follows.

Lemma 74. T σ = ZM(t+).

Proof. The right-hand side is easily seen to be included in the left-hand side. For the other
inclusion, note that T = ZU(t) so that T σ ⊂ ZUθ(t) = ZK(t) = ZM(t) = ZM(t+).

Now, we can finally prove a result that directly implies our theorem:

Lemma 75. Let (ξ, Vξ) be an irreducible representation of M . Then there exists an ir-
reducible finite-dimensional representation (π, V ) of G such that Vξ can be realized as a
submodule of the M-module V N .

Proof. The representation ξ induces an infinitesimal representation ξ∗ of m, which is ir-
reducible since F is central in M , and M = MeF . By compactness, we have that m is
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reductive, so ξ∗ restricts to an irreducible representation of the semisimple part of m, i.e.
of ms := [m,m]. If we denote by RM the root system of t+ in m, then via extension by zero
we can view them as the roots in R = R(t, u) that vanish on ia. We can now identify the
roots in R with the roots of tC in gC, and under this identification RM becomes the set of
roots in R that vanish on a. Note that roots from R\RM restrict to roots of Σ, the root
system of a in g, and that all roots of Σ can be obtained in this way.

We now fix a choice R+ of positive roots for R, such that all α ∈ R+ restrict to α|a ∈ Σ+.
Then R+

M = RM ∩ R+ is a positive system for RM too. Let now v ∈ Vξ\{0} be a highest
weight vector for ξ∗|ms . Then T σ = ZM(t+) acts by some character ψ on v. So, by Lemma
69 we can extend it to a character ψ′ on T . The derivative of this character is then a
weight λ ∈ ΛT . We denote by (π, V ) the irreducible representation of U of highest weight
λ, which exists by Lemma 72, and we extend it to a finite dimensional complex analytic
representation of GC. This latter representation restricts to a representation of G in V ,
which we also denote by π.

Now, we select a highest weight vector vλ ∈ V . Then, it is a well known result that
V = U(gC)vλ. It is easily seen that vλ is annihilated by n, so that vλ ∈ V N . Since m
normalizes n, it follows that W := U(m)vλ ⊂ V N . We now claim that this W can be seen
as an embedded copy of (ξ, Vξ).

The center of m is contained in t, hence it preserves Cvλ. Therefore, W is a cyclic ms

module, which is finite dimensional, so it is irreducible. Furthermore, there is a unique
ms-intertwining operator A : Vξ → W that maps v to vλ. If we denote by Ms the analytic
subgroup of M generated by ms, we see that A also intertwines the Ms-module structures
on Vξ and W , since both already had these structures. If we look at how T σ acts on Vξ
and on W , we see that it acts by the character ψ on v, and by ψ′|Tσ = ξ on vλ, so A also
intertwines the T σ-actions. Finally, since M = MeF = MsT

σ, we see that A intertwines
the M -module structures of Vξ and W , showing that it embeds Vξ, as W , into V N .

Now, to finish up the proof: we had W an M × A representation σ × χ. This means
that we can also view it as W ⊗ Cχ, where now only M acts on W . We can then embed
this M -module W in some finite-dimensional representation F of G by the above lemma.
However, A also acts on F , by some character χ′, so to correct for this, we look at F⊗Cχ−χ′ .
Then since both the M - and A-actions match, our desired result follows with ψ = χ− χ′.

4.3 Comparing with the article

This section provides details on a part that in the article by Bernstein and Krötz, [4], gets
treated in the introduction to Appendix A (Section 12). There, only a very brief outline
of the argument is given. We expanded this into a full proof, which takes up this entire
section. We introduced the definition of a Harish-Chandra module being of D-type to
simplify the phrasing of partial results, and to emphasize the important role it plays here.
The proof given for Theorem 63 is standard, and written with the help of prof. dr. Van
den Ban, while the rest of the proofs are original.
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5 Proof for spherical principal series representations

Throughout this section, we match the notation of [4], to more easily reference results. As
a consequence of this, induced representations will be using the right regular representation
instead of the left regular representation we have been using so far.

5.1 Spherical principal series representations

We now focus on the remaining case that W = Cχ for some character χ. In this case, the
induced representation will consist of the K-finite vectors of the space of functions

{f ∈ C∞(G) | f(pg) = p · f(g) ∀p ∈ Pmin,∀g ∈ G}.

The action of p on f(g) is given by p · f(g) = χ(a)f(g) where p = nam in the Iwasawa
decomposition. Now, the character is nowhere zero, since if it were anywhere zero, it would
be everywhere zero and the representation would be trivial. So, we can write χ(a) = aµ

for some µ ∈ a∗C, using that A is abelian and connected. If we then define the half sum
ρ ∈ a∗ by ρ(Y ) = 1

2
tr(adnY ), and write µ = λ+ ρ, we have that I(Cχ) is exactly the space

of K-finite vectors of the spherical principal series representation

H∞λ := {f ∈ C∞(G) | f(namg) = aρ+λf(g) ∀nam ∈ Pmin,∀g ∈ G}.

The action of G on this space is given by the right regular representation, so (g1 · f)(g) =
f(gg1). The representation is smooth, and we denote it by πλ. Now, since we know how the
functions transform under multiplication by NA, restriction to K yields an isomorphism

ResK : H∞λ → C∞(M\K).

Here M\K denotes the right cosets of M in K. Using the Iwasawa decomposition G =
NAK with corresponding functions g = ñ(g)ã(g)k̃(g), the action of G on C∞(M\K) which
we also denote by πλ becomes:

[πλ(g)f ](Mk) = ã(kg)λ+ρf(Mk̃(kg)).

Note that the space of functions and the action of K is completely independent of λ,
only the action of G depends on it. The action lifts to a continuous action on the Hilbert
completionHλ = L2(M\K). We note that the dual representation of (πλ,Hλ) is isomorphic
to (π−λ,H−λ), using the pairing

(·, ·) : H−λ ×Hλ → C, (ξ, v) :=

∫
M\K

ξ(Mk)v(Mk)d(Mk).

This pairing is G-equivariant, so it yields the claimed isomorphism between the dual rep-
resentation of πλ and π−λ.
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Now, we look in more detail at the structure of Vλ. For an equivalence class [τ ] ∈ K̂, we
let (τ, Uτ ) denote a representative. We write K̂M for the M -spherical equivalence classes,
i.e. those classes such that Uτ has non-zero elements in

UM
τ := {u ∈ Uτ | τ(m)u = u∀m ∈M}.

If we denote by (U∗τ )M the elements of U∗τ that are M -fixed and we obtain the following
map for every [τ ] ∈ K̂M :

rτ : Uτ ⊗ (U∗τ )M → L2(M\K), u⊗ η 7→ (Mk 7→ η(τ(k)u)).

In particular, the resulting map is smooth. If we then put a K-invariant inner product on
Uτ , it induces a K-invariant inner product on the dual U∗τ . This yields an inner product
on Uτ ⊗ (U∗τ )M , which is independent of the original chosen inner product. With this
inner product, and noting that the resulting function is essentially a matrix coefficient,
Schur-orthogonality tells us that

1

d(τ)
‖u⊗ η‖2 = ‖rτ (u⊗ η)‖2

L2(M\K),

where d(τ) denotes the dimension of Uτ . This tells us, amongst other things, that rτ is
a (linear) isomorphism to its image. Similarly, using Schur-orthogonality, we see that for
non-equivalent τ, τ ′ the outcomes of rτ and r′τ are orthogonal.

We view Uτ ⊗ (U∗τ )M as a K-module, under the representation τ ⊗ 1. Then the map
rτ intertwines the K-actions on Uτ ⊗ (U∗τ )M and L2(M\K). Now, using the Peter-Weyl
theorem, we have the following:

Lemma 76. We define the map

r :
⊕
τ∈K̂M

Uτ ⊗ (U∗τ )M → Vλ

that equals rτ on the summand indexed by τ and is linear. This is an isomorphism of
K-modules.

We note here that the τ -isotypical component Vλ[τ ] is exactly the image of Uτ ⊗ (U∗τ )M

under rτ . We will often identify elements of Vλ with their pre-image under this isomorphism.
Now, we denote by δMe the point-evaluation of C∞(M\K) at the base point Me. If we

restrict it to Vλ, we can decompose it into K-types:

δMe =
∑
τ∈K̂M

δτ .

Here, each δτ is given by δMe|Uτ⊗(U∗τ )M , and zero on the other isotypical components. We
will show that δτ corresponds to a specific function on C∞(M\K), where we view a function
F ∈ C∞(M\K) as a distribution via

F (f) :=

∫
K

F (k−1)f(k)dk, f ∈ C∞(M\K).
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We now claim that δτ is the distribution belonging to the function

Fτ = rτ (d(τ)

l(τ)∑
i=1

ui ⊗ u∗i .

Here we pick a basis u1, . . . , ul(τ) of UM
τ , and denote by u∗1, . . . , u

∗
l(τ) the corresponding dual

basis of (U∗τ )M . We note that Fτ (k
−1) = Fτ (k), so that applying the distribution belonging

to Fτ to some function f is the same as taking the inner product between f and Fτ . So,
if we take some τ ′ 6= τ and apply Fτ to any function in the τ ′-isotypical component, we
get zero by Schur orthogonality. On the other hand, an arbitrary element of Vλ[τ ] can be
written as rτ (vj ⊗ u∗j), with u∗j the dual basis from before and vj ∈ Uτ arbitrary. Applying
the distribution belonging to Fτ to this yields, by Schur orthogonality:

Fτ

(
rτ (
∑
j

vj ⊗ u∗j)

)
= 〈
∑
i

ui ⊗ u∗i ,
∑
j

vj ⊗ u∗j〉

=
∑
j

〈uj, vj〉

=
∑
j

u∗j(vj)

= rτ (
∑
j

vj ⊗ u∗j)(Me)

= δτ

(
rτ (
∑
j

vj ⊗ u∗j)

)
.

So we see that indeed the distribution corresponding to Fτ is exactly δτ . Now, if we write

F i,j
τ := ui ⊗ u∗j ,

we have that Fτ = d(τ)
∑l(τ)

i=1 F
i,i
τ . Furthermore, we have the following properties:

• ‖F i,i
τ ‖∞ = F i,i

τ (Me) = 1,

• Fτ ∗ Fτ = Fτ ,

• Fτ ∗ f = f for all f ∈ im rτ .

The first one follows from the inner product on Uτ being K-invariant, the second one is a
special case of the third, which follows by using the K-invariance of the inner product to
write the convolution as an inner product, and using Schur-orthogonality again.

Now, we shift our attention to a different way of viewingH∞λ . Using the restriction ResK
we could identify H∞λ with C∞(M\K), but we can also restrict it to a different subgroup:
if we denote by N the opposite of N (i.e. the subgroup generated by the negative roots),
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then NAMN is open and dense in G, so the restriction map to N is injective since we
know how our functions transform under left multiplication by Pmin. This gives us the
restriction mapping:

ResN : H∞λ → C∞(N), f 7→ f |N .

Note that this map is not onto, since not every function on N transforms properly. The
model of H∞λ as C∞(M\K) is called the compact model, while its realization embedded
in C∞(N) is called the non-compact model. The transfer from the compact to the non-
compact model is given as follows:

ResN ◦ Res−1
K :C∞(M\K)→ C∞(N),

f 7→ F ; F (n) := ã(n)λ+ρf(k̃(n)).

We can also transfer the Hilbert space structure from L2(M\K) to the non-compact model,
which results in the L2-space L2(N, ã(n)−2Re λdn), with dn an appropriately normalized
Haar measure on N (we will return to the normalization later). We will also denote this
L2-space by Hλ when the context makes it clear which of the two spaces is meant. The
action of G in the non-compact model is not too relevant for what follows, but we will use
the action of A:

[πλ(a)f ](n) = aλ+ρf(a−1na),

for all a ∈ A, and f ∈ L2(N, ã(n)−2Re λdn).

5.2 Construction and properties of fσ

We saw before that ResK is an isomorphism from H∞λ to C∞(M\K, since Pmin\G 'M\K.
Now, we can map N into Pmin\G = M\K as an open dense subset. It turns out that the
complement is algebraic, and we will describe it as the zero set of a K-finite function f on
M\K. In particular, this f can be chosen so that when restricted to N it has polynomial
decay of arbitrary fixed order.

Let (σ,W ) be a finite-dimensional faithful irreducible representation of G, that is K-
spherical, i.e. there is a non-zero K-fixed vector vK . It is a known fact that since σ is
K-spherical, there is a real line L ⊂ W that is fixed under Pmin = MAN . Let v0 be a
nonzero vector on this line, and define µ ∈ a∗ by σ(a)v0 = aµv0 for all a ∈ A. In other
words, v0 is a lowest weight vector of σ and µ is the corresponding lowest weight.

We now take a θ-covariant inner product on W , which is unique up to scalar by Schur’s
Lemma. We fix this scalar by taking v0 normalized, and we fix vK such that 〈v0, vK〉 = 1.
Now, we define the function fσ on G by

fσ(g) := 〈σ(g)v0, v0〉.
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The restriction of fσ to K will also be denoted by fσ. Now, if we take n ∈ N , and write
n = ñ(n)ã(n)k̃(n) according to the Iwasawa decomposition, we have k̃(n) = n′ã(n)−1n for
some n′ ∈ N . Therefore, we have

fσ(k̃(n)) = ã(n)−µ.

One can show that fσ exactly defines the complement M\K −N := M\K − k̃(N):

M\K −N = {Mk ∈M\K | fσ(k) = 0}.

A property that is more interesting to us, is that the map n 7→ fσ(n) is the inverse of a
polynomial mapping. Indeed, the map n 7→ ã(n)µ is polynomial, since it equals

ã(n)µ = 〈σ(n)vK , v0〉,

which is polynomial by our normalizations.
It turns out that this function will play an important role, and to make some estimates

later, we will introduce coordinates on N . We pick a basis X1, . . . , Xn of N in such a
way that every Xi is an a-root vector, of roots of increasing height. We write elements
of n accordingly as X =

∑n
j=1 xjXj for real numbers xi. We then have the following two

properties:

• The map
Φ : n→ N, X 7→ n(X) := exp(x1X1) · · · exp(xnXn)

is a diffeomorphism.

• The Haar measure dn on N can be normalized in such a way that Φ∗(dn) =
dx1 · · · dxn.

We will assume that the measure is normalized in this way. We introduce a norm on n by

‖X‖2 :=
n∑
j=1

|xj|2.

Finally, we will also define fσ on n via

fσ(X) := fσ(k̃(n(X))) = ã(n(X))−µ.

Our results so far can be summarized as follows:

Lemma 77 (Lemma 12.1). Let m > 0. Then there exists C > 0 and a finite-dimensional
K-spherical representation (σ,W ) of G such that:

(i) M\K −N = {Mk ∈M\K | fσ(k) = 0}.

(ii) |fσ(X)| ≤ C · (1 + ‖X‖)−m for all X ∈ n.
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The first one is just the first part of our discussion, while the second part is the trans-
lation of fσ being the inverse of a polynomial.

Instead of applying the function fσ to elements of N directly, we can also use the
transfer between the compact and the non-compact model. We then get a corresponding
function ξ = ξσ on N ' n, given by

ξ(X) := ã(n(X))ρ+λfσ(k̃(n(X))) = ã(n(X))ρ+λ−µ.

Our original function fσ was K-finite, since W is finite-dimensional, so the corresponding
function ξ is K-finite as well, in the non-compact model. It will turn out that this ξ,
for sufficiently well-behaved σ, will be a cyclic vector for Vλ, and that we can prove the
theorem for this generator.

We will again have a similar inequality to before,

|ξ(X)| ≤ C · (1 + ‖X‖)−m,

where we can choose m as large as we wish as long as σ is sufficiently regular and large.
We will take m at least large enough that ξ becomes integrable, and write ‖ξ‖1 for the
corresponding L1-norm.

We looked at the action of A on these functions before, and we will now look at a
specific case of this: we fix an element Y ∈ a such that α(Y ) ≥ 1 for all the positive roots
α, i.e. those generating n. For t > 0 we write

at := exp((log t)Y ).

This means that for any η ∈ a∗C we have

aηt = tη(Y ).

Now, to explain the ideas of the rest of the proof, we assume for now that λ is real. Then
ξ is a positive function, and we can look at the following functions:

ξt :=
aρ−λt

‖ξ‖1

· πλ(at)ξ. (t > 0)

If we let t go to infinity, it turns out that these functions converge to the Dirac distribution.
Indeed, for every t > 0 the functions integrate to 1, and if we look at the value at some n,
we get

ξt(n) =
a2ρ
t

‖ξ‖1

ξ(a−1
t nat) =

t2ρ(Y )

‖ξ‖1

ξ(a−1
t nat),

which goes to zero outside of n = e because of the arbitrary polynomial decrease of ξ, and
at n = e it goes to infinity.
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If we transfer this back to the compact picture, we get that

lim
t→∞

aρ−λt

‖ξ‖1

· πλ(at)fσ = δMe,

where the convergence is in terms of distributions. We decomposed δMe into K-types before
as δMe =

∑
δτ , which corresponded to the functions Fτ . Now, we take the τ -isotypical

part of the functions, and see how well they approximate the functions Fτ already. It turns
out that we can choose our t polynomially in τ to get a reasonably well approximation,
even if λ is not real, which yields the following result:

Theorem 78 (Theorem 12.2). Let λ ∈ a∗C and N > 0. Then there exists a choice of σ and
hence of ξ = ξσ ∈ Vλ, and constants c > 2, C > 0 such that for all τ ∈ K̂M we have

[πλ(at(τ))ξ]τ = aλ−ρt(τ) · Iξ ·Dτ +Rτ ,

where Dτ is the transfer of the function Fτ that belonged to δτ , to the non-compact model,
t(τ) := (1 + ‖τ‖)c,

Iξ :=

∫
N

ξ(n)dn 6= 0

and the remainder Rτ ∈ Hλ[τ ] satisfies

‖R(τ)‖
|aλ−ρt(τ) |

≤ C

(1 + ‖τ‖)N
.

Proof. The full proof can be found in [4], p.102 and on, we will only treat the main ideas
here. Since the functions we are working with are M -fixed, we can decompose them into
the F i,j

τ from before: if we denote by Di,j
τ their transfer to the non-compact model, we can

write

[πλ(at)ξ]τ =
l∑

i,j=1

bi,j(t) · d(τ) ·Di,j
τ .

The coefficients bi,j(t) can be obtained via the inner product on L2(N, ã(n)−2Re λdn) as
follows:

bi,j(t) = 〈πλ(at)ξ,Di,j
τ 〉 =

∫
n

(πλ(at)ξ)(X) ·Di,j
τ (X)ã(n(X))−2Re λdX,

where dX = dx1 · · · dxn in our coordinates from before. Now, we can split the integral
into a part around 0, and a part away from 0. By estimating and calculating the integrals,
we get that the integral away from 0 decays quickly enough to be put into the remainder
term, and the part around 0 yields the Dτ -term, and another remainder that we can put
into the Rτ .
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It follows from the more detailed proof that we can make the approximation uniformly
over any compact subset Q of a∗C. Now, at(τ) is bounded from above and below by powers
of 1 + ‖τ‖, so if we switch to the compact model again, and start denoting fσ by ξ as well
to match the notation of Theorem 46, we get the following version of the theorem:

Theorem 79 (Theorem 12.3). Let Q ⊂ a∗C be compact, and N > 0. Then there exists
ξ ∈ Vλ (realized as functions on M\K) and constants c1, c2 > 0 such that for all τ ∈
K̂M , λ ∈ Q there exists aτ ∈ A, independent of λ, with ‖aτ‖ ≤ (1 + ‖τ‖)c1, and numbers
b(λ, τ) ∈ C such that

‖[πλ(aτ )ξ]τ − b(λ, τ)Fτ‖ ≤
1

(‖τ‖+ 1)N+c2

and

|b(λ, τ)| ≥ 1

(1 + ‖τ‖)c2
.

Here the ‖ · ‖ refers to the L2-norm.

Now, with this theorem in hand, we can finally prove Theorem 46 for this specific case,
which by the previous section proves it in general.

5.3 Proving the theorem

In the article, Bernstein and Krötz prove something slightly different from what we need,
but if we reduce their proof to the case from Theorem 46, the result will follow. Using our
previous approximations of πλ(aτ ), we can find the following:

Lemma 80 (Lemma 12.6). Let U be an Ad(K)-invariant neighborhood of e in G, and
F(U) the space of Ad(K)-invariant test functions supported in U . Then there exists a
holomorphic map

Q→ F(U), λ 7→ hλ

such that Πλ(hλ)ξ = ξ.

Proof. We will not treat the proof here, as it involves techniques we do not need elsewhere.
The proof can be found on p.106 of [4].

Now, we define hλ,τ by

hλ,τ := δτ ∗ δat(τ) ∗ hλ,

where δat(τ) denotes the Dirac delta-distribution at at(τ). These functions will still be com-
pactly supported, since hλ was compactly supported, convolution with a delta-distribution
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just shifts it, and δτ was compactly supported as well. In particular, since at(τ) was polyno-
mially bounded, the support is polynomially bounded. The article now goes on to use these
functions to construct a function f : Q× C∞(M\K)→ S(G) such that Πλ(f(λ, v))ξ = v,
with the function being holomorphic in the first variable and linear in the second. However,
this is not exactly the result we need, but in the construction of the function, isotypical
components are treated separately, and we can show the following result:

Theorem 81. Let Vλ be the spherical principal series representation of G with parameter
λ. Then there exists an element ξ ∈ Vλ, and constants c1, c2, C1, C2 > 0 such that for all
τ ∈ K̂M and vτ ∈ V [τ ] there exists a function fτ with the following properties:

(a) Πλ(fτ )ξ = vτ .

(b) supp(fτ ) ⊂ {g ∈ G | ‖g‖ < C1(1 + ‖τ‖)c1}.

(c) ‖fτ‖1 ≤ C2 · ‖vτ‖ · (1 + ‖τ‖)c2.

Proof. By our earlier discussion about convolutions with the Fτ that belonged to δτ , it
follows that to create any function f in V [τ ] it suffices to first create Fτ , and by convolving
with the distribution belonging to f we then get the required result. This will only modify
the support by a constant, and the estimate on the L1-norm is handled by the ‖vτ‖-factor.
So, we assume now that vτ = Fτ .

We recall the number b(λ, τ) from Theorem 79 and set

f ′τ :=
hλ,τ
b(λ, τ)

.

We then have that

Πλ(f
′
τ )ξ =

1

b(λ, τ)
Πλ(δτ ∗ δat(τ) ∗ hλ)ξ

=
1

b(λ, τ)
[πλ(a(t(τ))ξ]τ .

By Theorem 79, this is close to Fτ , and we can write it as

Πλ(f
′
τ )ξ = Fτ +Rτ

for some remainder termRτ that has norm smaller than 1
(1+‖τ‖)N . Now, we can get rid of this

remainder term by adding in an extra convolution with the Neumann series of (id +Rτ )
−1.

(Here we use that the convolution of Fτ with Rτ is again Rτ .) Now for the resulting
function fτ the required bounds hold, since the support of hλ was compact, and it only
gets modified by convolving with distributions with supports that satisfy similar bounds
(δτ and the distribution at the end have supports in K, and δat(τ) satisfies a polynomial

bound), and the L1-norm similarly does not grow too much, by the bound on ‖Rτ‖, and
since δτ has a bounded L1-norm.

This is exactly what we wanted for the case of a spherical principal series, and by our
reduction in the previous chapter, it now follows that the main theorem holds for any
Pmin-module W .
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5.4 Comparing with the article

In this section, we treat Appendix A (Section 12) from the article by Krötz and Bernstein,
[4], minus the introduction. For the first part of the appendix, we follow their treatment,
adding more explanations at some points, and leaving out certain details that are less
relevant for us. We deviate rather strongly in our Theorem 81, which is based on the proof
of Lemma 12.7 and Theorem 12.8 in the article. Here they prove a more general result than
is needed for the proof of Theorem 46, which is generalized even more in Section 11, but
on a first reading it is not immediately clear how this result implies the needed Theorem
81. Therefore, we chose to not treat the more general result, and instead focus only on the
specific part we need, and how that follows from similar arguments.
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6 Discussion

Almost everything we need for the proof was either proven in the original article ([4]), or
the details have been worked out in this thesis. Unfortunately, the proof of Lemma 64 is
an exception to this. In the original article, the lemma was not stated in this exact way,
but it or a similar result was implicitly used in the reduction steps in Appendix A. In order
to present the arguments as written in the article, we therefore chose to assume this result
holds, and proceed with the rest of the argument. We recall the importance of the lemma
here briefly: we want to show that minimal principal series representations are of D-type,
in other to prove that they are good. From the fact that they are good, we can then prove
that being good is preserved under induction, and that Harish-Chandra modules of the
discrete series are good. Both of those results are needed in order to prove the general
Casselman-Wallach globalization theorem. In order to prove that minimal principal series
representations are of D-type, we show that they can be embedded into I(Cχ) ⊗ F for
some finite-dimensional G-representation. This larger module is shown to be of D-type,
and we need Lemma 64 to then conclude that minimal principal series representations are
of D-type.

Because of time restrictions, we have not been able to continue work on proving this
lemma, but some first steps have been made, and some ideas have been tried, which we
will explain here.

We can freely choose the generators we work with to prove that U is of D-type, and
we know that the necessary properties hold for V with respect to any set of generators.
So, if we take a set of generators of U , we can always extend it to a set of generators of
V , in terms of which every element of an isotypical component V [τ ] can be decomposed.
Since U [τ ] ⊂ V [τ ], this gives us a decomposition of every vector in U [τ ] in terms of the
generators of U , and some extra in V \U . The problem that is left to solve is to eliminate
the need for these other generators.

By using the finite composition series of Harish-Chandra modules, we can reduce the
general lemma to the specific case of either assuming that U is irreducible, or that the
quotient V/U is irreducible, but not both at the same time. In the first case, U would only
have one generator, while V has an arbitrary number, and in the second case U has an
arbitrary number of generators, but adding any element of V \U yields a set of generators
of V . So in this second case, we can decompose any vector in U [τ ] in terms of the chosen set
of generators of U and exactly one other arbitrary vector, but the bounds on the functions
do depend on this extra generator. If we write {ξ1, . . . , ξk} for the generators of U , and ξ
for the extra generator in V \U , we have the decomposition

uτ =
k∑
j=1

Π(fτ,j)ξj + Π(f)ξ,

and since uτ ∈ U and all the terms in the sum are in the globalization of U (within the
larger globalization of V ), it follows that Π(f)ξ also has to be in this globalization of U .
Based on this, an approach to the problem that could be explored further would be to look
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at particular choices of ξ that reach as little as possible of this globalizaton of U , to limit
the influence this last term can have on the total sum. For instance, if a finite number
of ξs could be chosen so that for each isotypical component at least one of them could
not reach the component, then via projection to the isotypical component, one could find
a decomposition of uτ in only the ξj, and since there would only be a finite amount of
different ξs used, the constants could be adjusted to account for this.

A different approach could be to make the requirements of the lemma more strict. We
only need the lemma for the specific case of a module being embedded into I(Cχ)⊗F , so one
could consider using the properties of it being a tensor product, or even the properties of
I(Cχ). We have not yet explored the implications of assuming these stronger requirements,
but it could lead to a method of proving a weaker version of the lemma that is still sufficient
for the arguments we need. However, in this case one would have to be more careful in
using reduction steps like the above, since then the modules that are worked with will
probably change in these steps.

One final approach that could be taken to at least prove the main theorem, would be
to look at how we use that minimal principal series are of D-type, namely we only use it in
the dual representation. In the proof of Theorem 47, we decompose the constructed ξ in

terms of the generators ξj of Ĩ(W ) = I(W ∗). If we would only be able to use that I(W ∗) is
embedded into some module of D-type, we would be able to decompose ξ into a larger set
of generators. If one studies what this decomposition tells us about q(v) = ξ(v), it might be
possible to still prove the main result without having to use Lemma 64. However, in doing
so some of the side results of the article would no longer necessarily hold, such as Theorem
8.1(ii) which used the fact that minimal principal series representations are of D-type to
find a continuous linear section from V ∞ to S(G)k. Therefore, it would be preferable to
prove the lemma or a similar version of it, instead of trying to bypass it completely.
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7 Conclusion

To answer the main question of how to prove the Casselman-Wallach globalization the-
orem, we summarize the proof. To prove the uniqueness of globalizations, we define the
minimal and maximal globalizations. (Definition 36 and Definiton 39) These are connected
to maximal and minimal G-continuous norms respectively, with respect to the Sobolev-
ordering. Therefore, proving the theorem reduces to proving that all G-continuous norms
on any Harish-Chandra module are equivalent. This can be proved by finding lower bounds
on matrix coefficients of the action of G on the minimal globalization, in terms of any G-
continuous norm (Theorem 44/Theorem 45). We then use the fact that minimal principal
series representations are of D-type, which we try to prove in Sections 4 and 5, and show
these lower bounds, so that all minimal principal series representations are good (Theorem
47). Having proven the globalization theorem for this set of Harish-Chandra modules,
we then look at results to extend the statement to other modules as well, in particular
extension, induction and holomorphic deformation (Lemma 48, Theorem 53 and Theorem
54), and study tensoring with finite-dimensional G-representations as well. Using these
results, the general case of any Harish-Chandra module is reduced to the case of a square-
integrable module. This case is then proven by embedding it into a minimal principal series
representation (Theorem 57), which proves the general theorem.

For most of the thesis, we follow the article, but there are a few specific cases where we
deviate to a more significant degree than just fixing typos. In the statements of Theorem
7.1 and 7.2 from the article, we have added an extra constant that seemed to be missing.
We have elaborated a lot more on the proof of Theorem 8.1(iii), that was handled in one
remark in the article, and in our case is handled in Theorem 47. In proving Theorem 8.1(i),
that minimal principal series representations are of D-type, we have gone into more detail
on the reduction steps. In particular, we have added the definition of being of D-type,
and recorded some results in lemmas and theorems instead of handling it in a few lines,
which was done in the article. Unfortunately, one of these lemmas has not been proven
yet, which leaves a small gap in the proof of the main theorem. Finally, in our treatment
of proving that minimal principal series representations are of D-type, we focus more on
the exact result that is needed, instead of proving a related result that is more tailored
towards a side-result from the article.
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