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Abstract

With the current availability of open source projects, the reuse of
existing test cases might be a cost-effective way to reduce time spent on
creating new test cases. In order to reuse existing test cases, suitable
candidates first need to be located. The approach in this study pro-
poses to first find code components that have the same functionality
and then locate test cases covering these code components.

In order to find semantically similar code components ontology
matching techniques are used. An ontology can be defined as a vocab-
ulary which is used to describe a specific domain and relationships that
exist among the concept of that domain. It tries to focus on concepts
and semantics rather than the syntax of a message or a system. To
capture the semantic information of a code component in an ontology,
a method is presented to extract ontologies from a source and target
software project. These ontologies are used as input for the ontology
matching framework AgreementMakerLight (AML) which produces a
set of mappings between the classes of the source and target ontolo-
gy. These mappings can be processed to determine which components
units are similar to each other.

Two case studies were conducted to demonstrate the effectiveness of
this technique. It can be concluded that ontology matching techniques
can effectively be used to find semantically similar software at a class
level.
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1 Introduction

The motivation for this study is to advance the field of software testing.
Software testing is widely recognized as a critical process to determine the
quality of a software item [1–3].

An important part of software testing is writing and maintaining unit
tests for the smallest testable pieces of software. These unit tests can either
be created manually by a software developer or automatically by a tool.
Writing unit tests manually is a very time-consuming process and is there-
fore often neglected or skipped entirely. Even when unit tests are written,
maintaining the unit tests in a meaningful way can be a challenging task.
A survey conducted under software developers indicates that most develop-
ers are convinced that testing improves software quality but that they do
not enjoy writing unit tests and rather spend time coding new features [4].
Therefore one of the ultimate goals in software testing is the 100% automatic
generation of unit tests [2].

A major challenge for automatic test generation is selecting the best in-
puts from an almost infinite domain of inputs (where the definition for ‘best’
can vary depending on the goal of the test) while only limited computation-
al power is available [5]. Techniques like random testing [6, 7], model-based
testing [8,9] and search based testing [10] are promising, but fully automat-
ic test generation is not yet possible with the current level of research and
computational power available.

What if we could reuse existing test cases instead of generating new test
cases? With the popularity of open source software and the numerous public
repositories accessible via the internet it might be possible to reuse existing
test cases written for similar pieces of software in other projects. The con-
cept of reusing software has been studied at length and has been applied by
the industry with great success. It reduces development time and improves
overall quality of the software. However the practice of reusing test cases,
unit tests or other artifacts from the testing process is not widespread. This
leads to the main research question:

RQ 1: Is it feasible to automatically reuse test cases?

In order to automatically reuse test cases, first test cases that are suitable
for reuse need to be identified. When an existing test case is found, it is very
likely that it will require some changes before it can be used. Depending
on the method used to find the test cases, they might need to be translated
into a different programming language or transformed in some way to make
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them work.

RQ 1.1: How can we automatically find existing test cases that can be
reused?

RQ 1.2: How can we automatically transform existing test cases so they
can be reused?

An approach to finding these existing test cases it to search for units of
code in software that are ‘similar’ to each other. Similar in the way that
both units of code that have the same functionality and thus are semanti-
cally similar. For example reading and writing of a file or the validation of a
password. It can be assumed that there is a high probability that test cas-
es for semantically similar units of code also share a high degree of similarity.

RQ 1.1.1: How do we automatically identify semantically similar units
of code?

RQ 1.1.2: How do we find tests that cover these units of code and se-
lect test cases that can be reused?

The research questions mentioned above are too much of a challenge for
a single master thesis. This thesis will therefore focus on answering RQ
1.1.1.

Finding similar software has been investigated by many researchers for
different practical purposes like duplicate code detection [11–15], plagiarism
detection [16], virus detection [17] and image recognition [18] However, al-
most all approaches focus on finding code with a similar syntax instead of a
similar semantic meaning. And most approaches that do focus on semantic
meaning required a high degree of human interaction [19–21].

The focus of this research is to see if it is feasible to automatically find
semantically similar software. To do this, the semantic meaning of a soft-
ware component will be captured in an ontology and compared with other
ontologies using ontology matching techniques.

This thesis is organized as follows. First, in section 2, ontologies and
ontology matching are explained in greater detail. In section 3, related
literature is discussed and in section 4 the research method is stated. Section
5 will go into detail about the ontology matching process and section 6 and
7 contain the results of two case studies. Finally, section 8 will list the
conclusion and future work.
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2 Ontology matching

An ontology can be defined as a vocabulary which is used to describe a
specific domain and relationships that exist among the concepts of that
domain. It tries to focus on concepts and semantics rather than the syntax
of a message or a system. It is a technique that is one of the cornerstones of
the semantic web, as it allows the semantics of the current world wide web
to be expressed in a format that can easily be processed automatically [22].

2.1 The Web Ontology Language

The Web Ontology Language (OWL) is the international standard recom-
mended by the World Wide Web Consortium (W3C) for communicating
ontologies. OWL extends the older Resource Description Framework (RD-
F) and RDF schema and is expressed in the extensible markup language
(XML).

In OWL the most basic concept is that of an individual. An individual is
a member of one or multiple classes. Classes can be used to group individ-
uals with similar characteristics. It is possible to create taxonomies using
subClassOf to relate a specific class to a more general class. All individuals
in OWL are a member of class Thing.

The example below defines the class Person as a subclass of Thing and
specifies the individual John to be a member of class Person. The rdf:about
attribute contains the unique identifier for the class. The example also
shows the use of rdfs:label annotation. In this example a label is added
to provide a human-readable descriptive name for each class.

<owl:Class rdf:about="http://class.example.org#Person">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:label xml:lang="EN">Person</rdfs:label>

</owl:Class>

<owl:NamedIndividual rdf:about="http://class.example.org#John">

<rdf:type rdf:resource="http://class.example.org#Person"/>

<rdfs:label xml:lang="EN">John</rdfs:label>

</owl:NamedIndividual>

Properties can be used to assert facts about the members of classes
and about individuals. OWL has two main property types: properties that
specify a relation between two individuals are called object properties and
properties that specify a relation between an individual and a value are
called datatype properties. Properties can also be expressed in taxonomies.
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The example below defines the object property isFatherOf and the
datatype property hasBirthDate. It also specifies that the range of values
for the hasBirthDate property must be of type dateTime.

<owl:ObjectProperty rdf:about="http://class.example.org#isFatherOf">

<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="http://class.example.org#hasBirthDate">

<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>

</owl:DatatypeProperty>

The following example declares that the individual John has a relation
of type isFatherOf with individual Sarah and that John has a birthDate
of type dateTime with the value of 30 May 1950.

<owl:NamedIndividual rdf:about="http://class.example.org#John">

<rdf:type rdf:resource="http://class.example.org#Person"/>

<isFatherOf rdf:resource="http://class.example.org#Sarah"/>

<hasBirthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

1950-05-30T09:00:00

</hasBirthDate>

</owl:NamedIndividual>

For a complete introduction into OWL see the paper from Jeff Heflin [23]
and the OWL W3C reference1.

2.2 Ontology matching

Because of the distributed nature of the world wide web more and more
ontologies are being developed and many of them describe similar domains.
To allow querying or communication over multiple ontologies it is required
to create a mapping between these ontologies. Such a mapping is called an
alignment and specifies how to map a concept in the source domain to one
or multiple concepts in the target domain. To create an alignment, ontology
matching is performed. Ontology matching is the process of finding all
matching concepts in two ontologies and selecting the best candidate to use.
The figure below is a simple example of a match between two ontologies.
Nodes with the same colors are matching nodes.

This simple match already contains some interesting features. The match
between the SSN nodes looks trivial but to establish this match a matcher
needs to identify that the relation between person and SSN is similar to
that of Human to SSN, to validate that the SSN nodes do mean the same

1https://www.w3.org/TR/owl-ref/
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Figure 1: Example of an ontology match. Nodes with the same colors are
matching nodes.

thing. The match between FirstName + LastName and Name requires not
only investigating the nodes themselves but also investigating sibling nodes.
Finally, the match between Person and Human + Woman requires studying
related nodes and an interpretation of the labels of the nodes. The fact that
a Person is similar to a Human + Woman is not a trivial match to make.
This requires the matcher to know that these entities are semantically similar
although they are structurally different.

Ontology matching is a form of schema matching and much research has
been devoted to these areas [24–27]. As a result, many matching techniques
have been researched and tested. Below is a classification of the different
matching techniques in use today. Otero-Cerdeira et al. provide a very
extensive overview based on the work of Euzenat et al. [28] and this overview
is largely based on their work [29].

First of all, ontology matching techniques can be classified by the inter-
pretation of the input information.

• Element level matchers match elements in an ontology in isolation

• Structure level matchers match elements based on their positions and
relations to other nodes in an ontology

The techniques can further be classified in:
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Figure 2: Ontology matching techniques classification. Extracted from [28]

• Syntactic matchers limit the input interpretation to the instructions
in their corresponding algorithms

• Semantic matchers use formal semantics to interpret their input and
justify their results

Matching techniques can also be classified by the type of input that they
use:

• Content based matchers focus on the information provided by the on-
tologies being matched

• Context based matchers use not only the ontology but also external
resources

These matching techniques can be subdivided in:

• Terminological matchers consider their input as strings

• Structural matchers use the structure of the ontologies
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• Extensional matchers consider the instances of the classes

• Semantic matchers use semantic interpretation of the input

Many matchers use hybrid or combined approaches or use multiple pass
strategies to improve their results based on what was learned from the pre-
vious pass. These multiple pass approaches often use reasoning based tech-
niques to infer extra information that can be used in the next pass.

2.3 Alignment Quality

To evaluate the quality of an alignment it is required to compare it with a
golden standard. This golden standard is the perfect alignment and is often
created manually. Alignment are compared on precision and their recall.
The precision or positive predication value is the fraction of the relevant
matches among the retrieved matches. Precision can be expressed by the
formula:

precision =
true positive

true positive + false positive

A true positive is a match found by the matching process that is actually
a correct match. A false positive is a match found by the matching process
that is not a correct match. The result of the formulas is a number between
0 and 1, where 1 means that all results found are correct matches and 0
means that all results found are not correct.

Recall or sensitivity is the fraction of relevant matches found over the total
number of relevant matches available.

recall =
true positive

true positive + false negative

A false negative is a match that was available but was not found by the
matching process. The result of this formula is a number between 0 and 1
where 1 means that all available matches have been found by the matches
and 0 means that the matches failed to find any match.

Both precision and recall can be combined in the F-measure. This is the
harmonic mean of both values and can be expressed by:

F1 = 2 · precision · recall

precision + recall
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For example: there are two ontologies for which ten matches can be
made between elements in those ontologies. A matching process is able to
find 6 matches: 4 are actually good matches and 2 matches are incorrect
matches. The precision for this matcher is: 0.67, the recall for this matcher
is: 0.4 and the F1 score is: 0.5.
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3 Related work

3.1 Reusing test cases

The concept of reusing software has been studied at length and has been
applied in the industry with great success. It reduces development time
and improves the overall quality of the software. However, the practice of
reusing test cases, unit tests or other artifacts from the testing process is not
widespread. This is despite the fact that the oldest paper on this subject
already dates from 1994. Von Mayrhauser et al. uses a model-based testing
(or domain based testing) approach that allows testers to create parameter-
ized test templates and generate test instances from these templates. The
templates could be reused to create different tests throughout the lifespan
of a projects. They created the tool ”sleuth” that was successfully used on
an industry project. Besides increased test capabilities they reported an
increased productivity for testers [30]. However, the creation of generic test
templates requires more work and attention than the creation of regular test
cases. A study that examined the effectiveness of a repository with generic
text-based test cases shared by human testers, determined that around 26%
of test cases could be reused although small changes were required to reuse
a test case in a new project. They concluded however that the benefit of
reusing test cases did not outweigh the extra amount of work required for
writing more generic tests cases and using the repository [31].

The concept of using ontologies to reuse test components has also been
explored in literature. Most techniques express test artifacts in an ontology
and use ontology matching techniques to find similar artifacts [19–21]. Li
and Ma wrote a paper that provides a formulation of test cases in an ontolo-
gy and a semantic similarity method based on wordnet to retrieve such test
cases from a repository. By incorporating wordnet into their method they
were able to find concepts that were semantically similar instead of find-
ing concepts that were only structurally similar. It also includes a method
to transform test cases so can they can be run in different environments.
A small-scale experiment showed the feasibility of the proposed method
and yielded promising result [32]. Unfortunately, all approaches mentioned
above depend heavily on human interaction in either creating the ontolo-
gies, or searching the repositories for ontologies. As such these approaches
can be considered impractical and too slow for day to day use by software
developers.
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3.2 Finding semantically similar software

The original goal of this research is to automate the reuse of existing test
cases. However, as we can only do so much in a single thesis, the main focus
of this study is finding semantically similar software.

Finding similar software has been investigated by many researchers for
different practical purposes like duplicate code detection [11, 13], plagiaris-
m detection [16], virus detection [17] and image recognition [18]. However,
most of the techniques used in this area focus purely on syntax. Smeureanu
and Lancu propose a method focused on finding plagiarism in source code
using ontologies. It extracts ontologies from the source code structure and
uses SPARQL queries to generate a set of metrics over the ontologies. These
metrics can be compared to detect similarity [33]. However, the ontologies
used by Smeureanu and Lancu only contained information about the pro-
gram structure (e.g. the amount of while loops and if statements) and did
not store any semantic information.

The concept of using semantic information was initially mainly used for
document comparison. Si et al. present a method for detecting semantic
similarities in Latex documents [34]. First, they capture the semantics of a
document by extracting keywords. After this, they create a tree structure
of the document using the sections and subsection and assign keywords that
correspond to each section node in the tree. This data is stored in a reposi-
tory and used to match new Latex documents against existing documents.
As their goal is to uncover plagiarism, their method of comparison is rather
strict and does not leave room for subtle changes. Shenoy et al. proposed
to extract ontologies from documents using an ontology extractor and com-
pare these ontologies using an ontology mapper that focusses on semantics
rather than structure. They were able to detect texts that have a different
structure, but the same semantic meaning [35]. Unfortunately, the paper
did not include any information on the mapper implementation or the accu-
racy of the proposed method. A recent study conducted by Aydemir et al.
uses natural language processing techniques to extract semantic information
from models representing different views on a single domain. They created
a framework that was capable of identifying similar concepts among these
models and also identify missing concepts in a model [36]. Although this
research did not explicitly use ontologies, it shows a clear benefit of using
semantics over syntax. Because they focused on semantics rather than syn-
tax, they were able to ignore the different modeling languages used to create
the models.

Currently, the value of semantic information in source code is becoming
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more evident. Multiple studies have used this semantic information to help
human developers understand large software projects. Kuhn et al created a
technique that uses semantic information to characterize classes and projects
[37] and Ieva et al. uses both semantic and structural information to identify
the most important components in a software project [38].
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4 Method

To answer the question whether it is feasible to automatically find seman-
tically similar software we will first need to extract ontologies containing
semantic information from software projects. When this is done, existing
ontology matching techniques can be used to create an alignment between
these two ontologies. If such an alignment can be established we can con-
clude that these ontologies are similar to some extent and thus that the
software projects used to extract the ontologies are also similar to some
extent. This approach will be tested with two case studies.

The first case study will try to match classes in consecutive versions of
a project. The Apache Commons Collections 2 source code will be used for
this experiment. This open source software initiative has a large codebase,
16 releases and 5 major version updates. It also has an excellent issue
tracking system that can provide background information on the changes
in different versions. By using the matcher on consecutive releases and
validating the results manually it is possible to gain insights in the strengths
and weaknesses of the matching system and possibly tweak the system to
produce better results.

The second case study will try to identify similar student projects. For
this experiment a large set of submissions for several student assignments
will be used. It is assumed that the submissions for an assignment are similar
in some way. The goal of this experiment is to use ontology matching to
group the submissions for each assignment.

4.1 Selecting an ontology matcher

There is a large collection of ontology matching techniques and tools avail-
able. So how to know which one to use? The Ontology Alignment Evaluation
Initiative (OAEI)3 is an international initiative that compares matching sys-
tems to determine the best matching strategies. They run a contest each
year in which different systems compete against each other. Of the 21 sys-
tems that participated in the 2016 contest, AgreementMakerLight (AML)
performed the best overall [39]. AML is a matching framework that has mul-
tiple matching techniques and can easily be extended with custom matching
algorithms [40] [41]. After some investigation, AML seems like a good choice.
It has a public codebase on GitHub and is actively maintained.

2https://commons.apache.org/proper/commons-collections/
3http://oaei.ontologymatching.org/
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4.2 Defining the ontology

It is not feasible to capture all semantic information just from the source
code of a project. However, well-written code will reveal a lot of semantic
information just by the names of classes, methods and parameters alone [37].
Consider for example a class called ShoppingCart containing the methods
addItem and removeItem. The names of the class and the methods give a
lot of information about the intended use of this class.

To capture this information, the ontology used in this study is based on
the ontology created by Ganapathy and Sagayaraj [42]. The ontology types
Project, Package, Class, Method and Parameter are defined as subclasses
of Thing and are declared as being disjoint with each other. These classes
represent their Java source code counterparts. The disjoint axiom between
the classes states that they cannot share an instance. To prevent confu-
sion between ontology classes and software classes, ontology classes will be
referred to as types in the remainder of this document.

Next, four object properties are defined: isPartOfProject with domain
Package and Range Project, isPartOfPackage with domain Class and range
Package, isPartOfClass with domain Method and range Class and finally
isPartOfMethod with domain Parameter and range Method. The XML for
this ontology can be found in appendix A. These relations are used to create
relations between individuals from the corresponding domain and range.

Preferably, all packages, classes, methods, and parameters that are ex-
tracted from the source code should be added as an individual to the on-
tology. However, initial testing showed that AML cannot create matches
between individuals. Therefore all packages, classes, methods, and parame-
ters are created as separate types in the ontology and instead of being made
a member of a type, they are declared as being a subtype of a type. As an
ontology type name needs to be unique, identifiers are used as the name and
the actual name is stored in the label annotation.

4.3 Extracting ontologies from source code

Extracting ontologies from source code has been done before. Ganapathy
and Sagayaraj used a method to automatically extract ontologies in OWL
format from JAVA classes [42]. Their method depends on QDox 4 to extract
meta data from the source code and uses Apache Jena 5 to create and
store the OWL definition. However QDox does not seem to be maintained

4https://github.com/paul-hammant/qdox
5https://jena.apache.org/
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anymore so after some experiments with different source code extraction
tools, Spoon6 was chosen. Spoon creates an abstract syntax tree (AST)
from a Java application that can be used to query or transform the source
code. The AST can be processed and Apache Jena can be used to generate
an ontology. Apache Jena is a Java library that provides an API to create
ontologies. To inspect and verify the generated ontologies Protg7 is used.
Protg is a tool for creating and editing ontologies created by the University
of Stanford.

Below is the ontology definition for the class
org.apache.commons.collectionsFastTreeMap as created by the extrac-
tor tool. In this example http://www.semanticweb.org/

apache-collections-v1.0/#C14 is the unique identifier for this type and it
is declared to be a subclass of type class. The label contains the class name
FastTreeMap that will be used by AML and comment contains the qualified
class name. The comment is not used by AML, but is added by the extractor
as this can be used to compare the final alignment with the golden standard.
Finally, another subclass is added which indicates that at least one of the
types that has a isPartOfPackage relation with this type should be of type
http://www.semanticweb.org/apache-collections-v1.0/#P1, which is
the package the class is in.

<owl:Class rdf:about="http://www.semanticweb.org/apache-collections-v1.0/#C14">

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ontologies/#Class"/>

<rdfs:label xml:lang="EN">FastTreeMap</rdfs:label>

<rdfs:comment xml:lang="EN">org.apache.commons.collections.FastTreeMap</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="http://www.semanticweb.org/apache-collections-v1.0/#P1"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/ontologies/#isPartOfPackage"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The extraction process only extracts public methods from a class. The
assumption is that these are well named and clearly state what the purpose
of that particular method is as these are meant to be used outside of the
class context. Private and protected methods are hidden from the rest of
the application and the naming of these methods only need to make sense
in the context of their containing class.

6http://spoon.gforge.inria.fr/
7http://protege.stanford.edu/
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5 AgreementMakerLight

The AML agreement creation process can be divided into 4 stages: ontology
loading and data structure initialization, translation, matching, and selec-
tion. A schematic overview is given in figure 3.

1. In the first stage AML loads the source and target ontologies and
generates the lexicon and relationship map data structures for each
of the ontologies. The lexicon stores all lexical information for an
ontology. It can be used to look up the names, label annotations, and
synonyms for a class in an ontology. The relationship map stores the
structural information for an ontology. It can be used to look up all
related classes for a class in the ontology. These data structures can
later be used during the matching stage.

2. In the translation stage, AML will look if there are multiple languages
used in either two ontologies. If this is the case, AML will lookup
translations for all words using the Microsoft Translation API 8. In
this study most texts are in English so the translation stage is ignored.

3. Then the actual matching is done by a set of matching algorithms, so-
called matchers. Every matcher takes the source and target ontologies
as input and produces an alignment as a set of mappings. A mapping
contains a type from the source ontology, a type from the target on-
tology and a similarity score. This score is a number between 0 and
1 where 1 indicates that the two types are completely similar to each
other and 0 indicates that the two types are completely different.

4. In the final stage selection algorithms remove undesired matches from
the alignment.

5.1 Matchers

AML contains a framework that can run multiple matchers during the
matching process. The order of these matchers is important as AML employs
the matchers sequentially and under the assumption that every consecu-
tive matcher has lesser precision than the previous one. Therefore, existing
mappings can never be removed by matchers. Matchers are only allowed
to improve similarity scores for mappings created by previously executed

8https://www.microsoft.com/en-us/translator/default.aspx
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Figure 3: The AML alignment creation process

matchers. To make sure only valid mappings are added to the alignment,
AML uses a similarity score threshold. Mappings that have a score below
this threshold will not be added to the alignment.

Matchers can be divided into two groups: primary matchers and sec-
ondary matchers. Primary matchers are matchers that calculate similari-
ties between all the types in the source ontology and all the types in the
target ontologies. As this can be a very time-consuming operation, a prima-
ry matcher in AML should use the internal data structures to minimize its
execution time. Secondary matchers only improve existing matches created
by primary matchers. These secondary matching algorithms are often slow
and do not scale well with large ontologies.

As the matchers are essential for this study, a good understanding of
the underlying algorithms employed by these matchers is required. Unfortu-
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nately, most information found in papers was either outdated or incomplete.
Therefore, one of the contributions of this study is the reverse engineering
and documentation of these matching algorithms.

The general matching algorithm is stated below. For the remainder of
this document source and target are the input ontologies and A is the final
alignment returned by the matching framework. An alignment is a set of
mappings where a mapping is a 3-tuple containing a type from the source
ontology, a type from the target ontology and a similarity score.

function match(source, target)
A = ∅
for matcher ∈ matchers

if isPrimary(matcher)
aux = matcher.match(source, target)

else
aux = matcher.rematch(A)

for m in sortBySimilarity(aux)
if ¬(m.sType ∈ (sType | (sType, tType, sim) ∈ A))
∨ m.tType ∈ (tType | (sType, tType, sim) ∈ getMappingsBySourceType(m.sType))

if m.similarity > thresh
A = A ∪ {mapping}

return A

AML has the following built-in matchers. They are listed in the order
of execution as can be seen in figure 3.

• Lexical matcher : a primary matcher that tests for literal name matches
between two types.

• Background knowledge matcher : a primary matcher that uses external
ontologies to find matches between the types in the source and target
ontologies (see section 5.1.2 for more information about the use ex-
ternal ontologies). It also incorporates the lexical matcher internally
so running the background knowledge matcher makes the use of the
lexical matcher redundant. In this study, only the WordNet ontology
is used as an external source.

• Word matcher : a primary matcher that measures word similarity of
the words in the names or labels of types.

• String matcher : matches elements by using string similarity algorithm-
s on the names of those elements. It supports the ISub, Levenstein,
Jaro-Winkler, and Q-gram string similarity algorithms. This matcher
can be configured as either a primary matcher or a secondary matcher.

• Neighbor similarity matcher : a structural matcher that uses existing
matches between all the children or parents of a type to calculate a
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similarity score. This matcher is unique as it uses the information of
previous matchers to calculate a similarity score. This is a very slow
algorithm and is only available as a secondary matcher.

• Property matcher : a matcher that attempts to match properties be-
tween two ontologies. As property matches are not important in this
study, this matcher will be ignored.

5.1.1 Lexical matcher

The lexical matcher is the most basic matcher in AML and matches the
exact name of a type with the name of another type. The algorithm of the
lexical matcher is described in [41] and is given below.

function lexicalMatcher(source, target)
aux = ∅
for name ∈ Lexicon

for (sType,tType) ∈ getTypes(source, name) × getTypes(target, name)
similarity = weight(name, sType) ∗ weight(name, tType)
aux = aux ∪ {(sType, tType, similarity)}

return aux

The lexical matcher uses the lexicon to retrieve all the names in the source
and target ontologies and create a mapping between all types with the same
name. AML allows types to have multiple names and assigns a different
weight to these names. For example the type’s identifier (when it is not
a number or a number with one character prefix) has a weight of 1 and a
type’s label has a weight of 0.95 .

5.1.2 Background knowledge matcher

This matcher uses one or multiple external ontologies to create an alignment
between the source and target ontologies. To do so, it uses the mediating
matcher as well as the lexical matcher.

The mediating matcher is used to calculate an alignment between the
source ontology and an external ontology and the target ontology and an
external ontology. It first computes intermediate alignments between the
source and target ontologies and the external ontologies. Then it cross
searches these intermediate alignments. The mediating matcher algorithm
is as follows where med represents a mediating ontology.
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function mediatingMatcher(source, target, med)
aux = ∅
for (sMapping,tMapping) ∈ lexicalMatcher(source, med) × lexicalMatcher(target, med)

if sMapping.targetType == tMapping.targetType
similarity = min(sMapping.similarity, tMapping.similarity)
aux = aux ∪ {(sMapping.sourceType, tMapping.sourceType,similarity)}

return aux

The background knowledge matcher uses the mediating matcher to calculate
an alignment for each external ontology and combines these results. The gain
function calculates the fraction of new mappings in an alignment compared
to the total number of mappings in a base alignment.

function backgroundKnowledgeMatcher(source, target)
aux = lexicalMatcher(source, target)
medAlignments = ∅
for med ∈ mediatingOntologies

auxMed = mediatingMatcher(source, target, med)
if gain(auxMed, aux) > threshold

medAlignments = medAlignments ∪ auxMed

for medA ∈ orderByGain(medAlignments)
if gain(medA, aux) > threshold

aux = aux ∪ medA
return aux

5.1.3 Word matcher

This matcher is a word-based string similarity matcher that calculates the
similarity between two types by using the words in their names. It uses the
lexicon data structure which contains a list of all words used in each ontology
and also the frequency and evidence content (EC) for each word [43]. The
frequency of a word is the number of type names that contain the word.
The EC is calculated with the formula below. Where maxFrequency is the
maximum frequency of all the words in the ontology.

EC(w) = log

(
freq(w)

maxFrequency

)
The word matcher can use different strategies to calculate a similarity. These
strategies are:

• CLASS

• NAME

• AVERAGE (average of CLASS and NAME)
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• MAXIMUM (maximum of CLASS and NAME)

• MINIMUM (minimum of CLASS and NAME)

The CLASS strategy calculates similarities based on the EC of the types
while the NAME strategy calculates similarities based on the EC of the
words used in the type’s name(s). Regardless of which strategy is chosen,
the class similarity scores are calculated first for all the words and their
corresponding types. If the word matcher is set to use the CLASS strategy,
the word matcher is done and the produced alignment is appended to the
main alignment. If another strategy is chosen, the name similarity for each
mapping in the produced alignment is calculated. The getNames function
returns the name, the label and the synonyms for a type and the classEC
function calculates the EC value using all the words in a type’s name.

function wordMatcher(source, target)
aux = ∅
for w ∈ getwords(source)

for (sType, tType) ∈ getTypesContainingWord(source, w) × getTypesContainingWord(target, w)
weightS = wordEC(source, w) · wordWeight(w sType)
weightT = wordEC(target, w) · wordWeight(w, tType)
similarity = SQRT(weightS · weightT)

if containsMapping(aux, sType, tType)
m = getMapping(aux, sType, tType)
m.similarity = m.similarity + similarity

else
aux = aux ∪ {(sType, tType, similarity)}

for m ∈ aux
s = classEC(m.sourceType) + classEC(m.targetType) − m.similarity
m.similarity = m.similarity / s

if ¬(strategy == CLASS)
for m ∈ aux

nameSim = calculateNameSim(m, source, target)
if strategy == NAME

m.similarity = nameSim
else if strategy == AVERAGE

m.similarity = avg(m.similarity, nameSim)
else if strategy == MAXIMUM

m.similarity = max(m.similarity, nameSim)
else if strategy == MINIMUM

m.similarity = min(m.similarity, nameSim)
return aux
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function calculateNameSim(m, source, target)
nameSim = 0
for (sName,tName) ∈ getNames(m.sourceType) × getNames(targetType)

sWeight = getNameWeight(sName, m.sourceType)
tWeight = getNameWeight(tName, m.targetType)
sim = sWeight · tWeight · nameSimilarity(sName, tName)
if sim > nameSim

nameSim = sim
return nameSim

function nameSimilarity(sName, tName)
sharedNamesScore = 0
maxNameScore = getNameEC(source, sName) + getNameEC(target, tName)
for word ∈ getWords(sName)

sharedNamesScore += SQRT(getWordEC(source, word) · getWordEC(target, word))
return sharedNamesScore / (maxNameScore − sharedNamesScore)

5.1.4 String matcher

The string matcher uses string distance algorithms to calculate a similarity
between two types. AML can use the following string distance functions by
default:

• ISub

• Levenstein

• Jaro-Winkler

• Q-Gram

The algorithm for this matcher is listed below. The function stringSimilarity
executes any of the string distance functions listed above.

function stringMatcher(source, target)
aux = ∅
for (sType, tType) ∈ source × target

s = ∅
for (sName,tName) ∈ getNames(sType) × getNames(tType)

sim = stringSimilarity(sName, tName)
s = s ∪ {sim · getWeight(sName, sType) · getWeight(tName, tType)) }

if(MAX(s) > threshold)
aux = aux ∪ {(sType, tType, MAX(s))}

return aux

AML has a build in correction factor for the string matcher to make it score
lower than the word matcher. This correction factor is optimized for the
ISub algorithm and is hard-coded set to 0.8.
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5.1.5 Neighbor similarity matcher

This is a unique matcher as it uses the output of the previous matchers to
calculate the similarity between two types. It uses the relationship map to
look up the parent and child types (depending on the strategy) of a type
and compares these with the parent and child nodes of another type. This
matcher is only implemented as a secondary matcher and uses a previously
calculated alignment as input. Like the word matcher, this matcher has
multiple strategies:

• ANCESTORS

• DESCENDANTS

• AVERAGE (average of ancestors and descendants)

• MAXIMUM (maximum of ancestors and descendants)

• MINIMUM (minimum of ancestors and descendants)

The main algorithm is listed below. Let inputAlignment represent the
alignment that is calculated by one or more of the previous matchers.

function neighborSimilarityMatcher(inputAlignment)
aux = ∅
for m ∈ inputAlignment

for sourceDescendant ∈ getDirectDescendants(m.sourceType)
for targetDescendant ∈ getDirectDescendants(m.targetType)

sim = calculateSim(sourceDescendant, targetDescendant)
aux = aux ∪ {(sourceDescendant, targetDescendant, sim)}

for each sourcAncestor in getDirectAncestors(m.sourceType)
for each targetAncestor in getDirectAncestors(m.targetType)

sim = calculateSim(sourceAncestor, targetAncestor)
aux = aux ∪ {(sourceAncestor, targetAncestor, sim)}

return aux

The calculateSim function uses the calculateAncestorsSim when the DE-
SCENDANTS strategy is selected, the calculateDescendantsSim function
when the ANCESTORS strategy is selected and both function for the other
strategies. The algorithm for the calculateAncestorsSim function is listed be-
low. The calculateDescendantsSim function is similar to the calculateAnces-
torsSim function, with the only exception that getAncestors is replaced by
getDescendants.
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function calculateAncestorsSim(sType, tType)
sim = 0
maxSim = 0

for sParent ∈ getAncestors(sType)
sd = getDistance(sParent, sType)
maxSim += 0.5 / sd
for tParent ∈ getAncestors(tType)

td = getDistance(tParent, tType)
sim += inputAlignment.getSim(sParent, tParent) / SQRT(sd · td)

for tParent ∈ getDirectAncestors(tType)
maxSim += 0.5 / getDistance(tParent, tType)

return sim / maxSim

5.2 Selection algorithms

Selection algorithms remove undesired matches from the alignment. AML
has three selection algorithms:

• Obsolete filter : this filter can remove mappings that are marked as
obsolete by either the user or a reference ontology. In this study neither
of those are available, so this filter will be ignored.

• Selector : a filtering algorithm based on cardinality. It can be config-
ured to run in different modes. In strict mode only the mapping with
the highest similarity score is selected for a type from the source on-
tology. In permissive mode multiple mappings are allowed if they have
an equal similarity score. And in hybrid mode it allows a type to be
mapped to a maximum of two other classes as long as these individual
mappings have a similarity score of more than 0.75.

• Repairer : this algorithm removes mappings between types that are
marked as disjoint in an ontology. In our ontology that could be
mappings between classes and methods for example.

5.3 Profiler

As the output of AML is only the calculated alignment it is impossible to
see the contributions of each matcher to the final result. To gain some more
insight into the contribution of each matcher to the final score we created a
profiler and integrated it into AML. The profiler records every match that is
added to the alignment, even if that match is lower than an existing match
and would otherwise be discarded by AML. It records the matcher that is
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responsible for the match and the similarity score of the match. Besides
the matches, it also records the total number of classes and relationships
in the ontologies, the run time of each individual matcher, the number of
mappings removed by each of the selection algorithms and total run time of
the alignment creation process. Recording the contribution of each matcher
per mapping is very time consuming and memory insensitive. Therefore this
feature will only be disabled by default and only enabled when required.

5.4 Configuration

AML can be run in two modes: automatic and manual mode. In automatic
mode, all settings are configured automatically using a build in configurator
that behaves differently depending on the size of the ontology. In manual
mode, a configuration file can be used to configure AML. The table below
lists all AML configuration settings that are relevant for this study.

Some preliminary tests revealed that the WordNet ontology is removed
by the automatic configurator for ontologies with more than 500 types due
to performance reasons. The automatic configurator also disables the struc-
tural matcher for ontologies larger than 500 classes.

5.5 Simple demonstration

To demonstrate the performance of each matcher a small test is created.
Two projects are created: demo1 and demo2. Below is the JAVA code for
both projects and the golden standard is given in table 2.

package demo1;

public class CanvasDrawingContainer {}
public class Circle{}
public class Rectangle {}
public class Star {}

package demo2;

public class BetterCanvasDrawingContainer {}
public class Circle {}
public class Rectangl {}
public class Asterisk {}

As class demo1.CanvasDrawingContainer and
demo2.BetterCanvasDrawingContainer contain 3 and 4 words respectively
and only have one word difference it is a good candidate to get matched by
the word matcher. The mapping from demo1.Circle to demo2.Circle is
trivial and should be made by the lexical matcher. The string matcher
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setting possible values description

bk_sources All, none or a comma-
separated list of file
names”

Enables or disables the background knowledge
matcher and contains a list of background
sources that can be used by the matcher. For
this study only the options none and WordNet

are relevant.

word_matcher by_class, by_name,
average, maxmimum,
minimum, maximum,
auto, none

Enables or disables the word matcher and se-
lects the word matching strategy to use. The
auto option is the same as the average option.

string_matcher none, global, local,
auto

Enables or disables the string matcher and se-
lects if it should run in primary mode (global)
or secondary mode (local). The auto option
uses the string matcher in primary mode for
classes with less than 500 classes, else it will
use the matcher in secondary mode.

string_measure ISub, Levenstein,
Jaro-Winkler, Q-gram

The string similarity algorithm that is used by
the string matcher.

struct_matcher ancestors,
descendants, average,
maximum, minimum,
none, auto

Enables or disables the structural matcher and
selects the matching strategy. The auto option
is the same as the descendants option.

selection_type strict, permissive,
hybrid, auto, none

Sets the strategy for the selector. The auto

option uses the strict option for ontologies
with less than 500 classes, the permissive op-
tion for ontologies with more than or exactly
500 classes and less than 5000 and the hybrid

option for all other cases.

Table 1: Configuration options for AML in manual mode

Demo 1 Demo 2

demo1.CanvasDrawingContainer demo2.BetterCanvasDrawingContainer

demo1.Circle demo2.Circle

demo1.Rectangle demo2.Rectangl

demo1.Star demo2.Asterisk

Table 2: Class mappings for demo projects
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Setting Value

bk_sources WordNet

word_matcher auto

string_matcher auto

string_measure ISub

struct_matcher auto

selection_type auto

repair_alignment true

Table 3: Manual configuration for demo project alignment creation

Source Target Lexical Bckgrnd Word String Struct

demo1.Canvas-
DrawingContainer

demo2.Better-
CanvasDrawing-
Container

0.7 0.62 0

demo1.Circle demo2.Circle 0.88 0.94 0.71 0

demo1.Rectangle demo2.Rectangl 0.68 0

demo1.Star demo2.Asterisk 0.78 0

Table 4: Similarity score per mapping per matcher for demo project

should be able to match demo1.Rectangle and demo2.Rectangl as they
only differ one letter (in real life, this could for example be a corrected
typo). And finally, the background knowledge matcher with the WordNet
ontology should be able to match demo1.Star and demo2.Asterisk as they
are listed as synonyms in WordNet.

The extractor tool is used to create the ontologies for the two projects
and AML is used in manual mode with the configuration values listed in
table 3. The produced alignment contained only correct mappings. Ta-
ble 4 contains all the class mappings in the alignment and the similarity
score calculated for that mapping by every individual matcher. The lexical
matcher is not separately visible in the profiler output as it is integrated
into the background knowledge matcher. The string similarity score for the
Circle mapping is lower than initially would have been expected, but this
is caused by the corrections for the labels (0.95) and the correction for the
string matcher itself (0.8).
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5.6 Neighbor similarity matcher in primary mode

The neighbor similarity matcher has a lot of potential when searching for
similar software. As the ontology used in this experiment is hierarchical,
classes could be found based on the similarity of their methods. However,
the neighbor similarity matcher can only be used in secondary mode e.g. it
can only strengthen matches that are already found by other matchers. To
use the neighbor similarity matcher in primary mode, we will change the
main algorithm given in 5.1.5.

function neighborSimilarityMatcherPrimary(source, target)
aux = ∅
for (sType, tType) ∈ source × target

aux = aux ∪ {(sType, tType, calculateSim(sType, tType))}
return aux

In the calculateDescendantsSim and calculateAnsectorsSim func-
tion some changes were required because the original implementations of the
getAncestors and getDescendants functions did not recognize the condi-
tional isSubTypeOf relation in the ontology used in this study. Another
small change is made so this matcher will be disabled if a type only has one
child or parent as one sample is not enough to establish that two types are
equal. To use this matcher in primary mode, a new configuration setting
is created. This setting is struct_matcher_mode and its values are either
primary or secondary where secondary is the default value.

To test the matcher in primary mode, two more classes are added to the
demo projects. These classes have totally different names but have largely
the same methods. The configuration is the same as table 1 where the
struct_matcher_mode is set to primary. The result listed in table 5 show
that AML is now able to match classes that have completely different names,
but similar methods.

package demo1;

public class Triangle {
public int getSides() { return 3; }
public String getName() { return ”demo.Triangle”; }
}

package demo2;

public class ShapeWith3Sides {
public int getSides() { return 3; }
public String getName() { return ”demo.ShapeWith3Sides”; }
public boolean isTriangle() { return false; }
}
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Source Target Lexical Bckgrnd Word String Struct

demo1.Canvas-
DrawingContainer

demo2.Better-
CanvasDrawing-
Container

0.7 0.62 0

demo1.Circle demo2.Circle 0.88 0.94 0.71 0

demo1.Rectangle demo2.Rectangl 0.68 0

demo1.Star demo2.Asterisk 0.78 0

demo1.Triangle demo2.ShapeWith3Sides 0.75

Table 5: Similarity score per class per matcher for demo project with neigh-
bor similarity matcher user in primary mode

5.7 Threshold

AML uses a threshold to prevent mappings with low scores from being added
to the output alignment. The threshold filter is applied to the output of each
individual matcher and removes all mappings that have a similarity score
below that threshold from the output. As this threshold value is of significant
importance, AML was changed to make the threshold configurable. A new
configuration threshold is created which can range from 0 (no threshold
applied) to 1 (only exact matches are allowed) and has a default value of
0.6.

31



6 Case study - Apache commons collection

In the first case study we will try to match classes in consecutive versions
of the Apache Commons Collections 9. The goal of the Apache Common-
s Collection project is to build upon the Java Collections Framework by
providing new interfaces, implementations, and utilities. This open source
software initiative has a large codebase, 16 releases and 4 major version up-
dates with commits dating back to July 2007. It also has an excellent issue
tracking system that can provide background information on the changes in
different versions. By using the matcher on consecutive releases and vali-
dating the results manually it is possible to gain insights into the strengths
and weaknesses of the matching system and possibly tweak the system to
produce better results.

Only the latest stable versions of each release are used in this phase.
These versions are 1.0, 2.1.1, 3.3 and 4.1. Any unit tests in the packages
will be excluded in this experiment as these classes are not designed to be
used outside of the project itself, and do not have sensible names. Table 6
contains information about the ontologies used in this study.

All experiments were run on a virtual private server (VPS) with 6 In-
tel Xeon CPU E5-2630L v2 CPUs running at 2.40GHz and 16GB RAM.
Unfortunately, during the tests it was found that the VPS did not give a
constant performance. A test running multiple times with the same config-
uration could end up with different run times. So the run times listed in this
study should not be taken literally and are purely listed here to get a basic
indication of the performance differences between the various algorithms.

version packages classes methods parameters extraction duration (sec)

1 1 23 374 338 6

2.1.1 2 62 839 606 12

3.3 12 250 3909 2846 152

4.1 18 267 4279 3260 203

Table 6: Apache Commons Collections versions ontology information

6.1 Golden standard

A golden standard is the perfect mapping from the classes in one version
of the Apache Commons Collections project to another. When comparing

9https://commons.apache.org/proper/commons-collections/
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From version To version Number of mappings

1.0 2.1.1 29

2.1.1 3.3 69

3.3 4.1 216

Table 7: Number of mappings in the golden standards for the Apache Com-
mons Collection versions

a generated alignment with a golden standard, the precision, recall and
F-measure score can be calculated. For the experiment with the Apache
Commons Collections, three golden standards are required: a mapping of
version 1 to version 2.1.1, a mapping of version 2.1.1 to 3.3 and a mapping
from version 3.3 to 4.1.

The creation of these mapping is a manual process. For each class in one
version of the project, the equivalent class in the next version is selected. The
Apache Commons Collections project has detailed release documentation
for every version and all source code changes are publicly visible in the
Git repository. With this information, every class can be tracked from one
version to another. This process was done manually by the author and was
reviewed by an experienced software engineer. Table 7 lists the amount of
mappings per golden standard.

6.2 Configuring AML

AML comes with a lot of configuration options that need to be tuned to op-
timize its performance for the experiments. To find out what the optimum
configuration is, several configurations will be tested to create alignments
between the ontologies of different versions of the Apache Commons Collec-
tions package.

6.2.1 Setting a baseline with AML in automatic mode

To create a baseline, AML is run in automatic mode. To make sure that
the profiler only impacts the run time and not the results, AML is run in
automatic mode twice: once with the profiler disabled and once with the
profiler enabled. The results are stated in table 8 and the profiler results
are listed in tables 9 and 10.

The scores are already very good: the alignment from version 1 to 2.1.1
is perfect, the alignment from 2.1.1 to 3.3 missed one out of 70 mappings and
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Source Target Precision Recall F1 Runtime Runtime
with profiler

1.0 2.1.1 1.0 1.0 1.0 33 36

2.1.1 3.3 1.0 0.99 0.99 375 458

3.3 4.1 1.0 0.95 0.97 18815 21507

Table 8: results of Apache Commons Collections matching on auto mode

v1.0 - v2.1.1 v2.1.1 - v3.3 v3.3 - v4.1

added improved runtime added improved runtime added improved runtime

Lexical 18752
(29)

0 0.6 126405
(68)

0 14 1004864
(207)

0 1187

Bckgrnd 0 0 14 0 0 15 0 0 13

Word 0 80 (17) 0.5 0 104
(29)

16 0 167
(79)

1.240

String 1 (0) 80 (17) 7 3 (0) 104
(29)

198 10 (0) 160
(79)

2652

Struct 0 0 0.7 - - - - - -

Table 9: Contribution of each matcher for Apache Commons Collections
matching on auto mode with profiler. Matches between classes are listed
between parenthesis.

v1.0 - v2.1.1 v2.1.1 - v3.3 v3.3 - v4.1

removed runtime removed runtime removed Runtime

Selector 340 (0) 0.6 3979 (0) 10 20978 (2) 651

Repairer 240 (0) 2 4007 (0) 149 13172 (0) 29303

Table 10: Contribution of each selector for Apache Commons Collections
matching on auto mode with profiler. Matches between classes are listed
between parenthesis.
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the alignment from 3.3 to 4.1 missed 11 out of 217 mappings. No incorrect
mappings were made.

The profiler data reveals that the structural matcher is only used when
creating the alignment between versions 1 and 2.1.1. Studying the code
learns that the automatic configurator disables the structural matcher for
ontologies that contain more than 500 types. Another thing to note is that
the repairer does not scale well for larger ontologies. For the creation of the
alignment between version 3.3 to 4.1 it consumed about 71% of the total
runtime while only removing mappings that have no impact on the final
result.

6.2.2 Configuring AML in manual mode

Now that a baseline is set AML is switched to manual mode. To get the
optimal usage out of AML in manual mode, all different variants of the
settings should be explored. This would however, result in thousands of
possible combinations and is not feasible. Therefore one setting at a time
will be changed to observe what the impact is for that setting on the overall
score. In the end, the best value for each individual setting will be selected
and combined into a final configuration.

For the first manual run, the same configuration values as the auto config-
urator generates are used. The only difference is the setting for bk_sources
as the automatic matcher runs both the lexical matcher and the background
knowledge matcher and the manual mode can only run one of them. As the
background knowledge matcher in automatic mode removes the WordNet
ontology it does basically nothing. So the background knowledge matcher is
disabled in favor of the lexical matcher. The configuration values are listed
in table 11, the results in table 12 and the profiler results in tables 13 and
14.

It is interesting to note that the structural matcher suddenly improves
existing matches while this was not the case when using AML in automatic
mode. This can be explained by the fact that the automatic configuration
changes the threshold for the matchers based on the ontology size, while in
manual mode a fixed threshold is selected.

Again the repair selector did not contribute anything to the final result.
This selector removes matches between ontology types that are disjoint. For
example a match between a method and a parameter. We already created a
filter for the output to show only class mappings, so this selector will have
no impact on our final result. Therefore, this selector will be disabled by
setting the repair_alignment setting to false and will be ignored in the
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Setting Value

bk_sources none

word_matcher auto

string_matcher auto

string_measure ISub

struct_matcher auto

selection_type auto

repair_alignment true

struct_matcher_mode secondary

threshold 0.6

Table 11: Manual configuration for demo project alignment creation

Source Target Precision Recall F1 Runtime (sec)

1.0 2.1.1 1.0 1.0 1.0 17

2.1.1 3.3 1.0 0.99 0.99 466

3.3 4.1 1.0 0.95 0.97 21925

Table 12: Results of Apache Commons Collections matching on manual
mode with auto mode config values

v1.0 - v2.1.1 v2.1.1 - v3.3 v3.3 - v4.1

added improved runtime added improved runtime added improved runtime

Lexical 18752
(29)

0 0.9 126405
(68)

0 15 1004864
(207)

0 1275

Bckgrnd - - - - - - - - -

Word 0 80 (17) 0.4 0 104
(29)

8 10 (0) 160
(79)

657

String 1 (0) 80 (17) 8 3 (0) 104
(29)

205 3 (0) 167
(79)

3369

Struct 0 83 (17) 0.5 0 109
(29)

22 0 177
(79)

2140

Table 13: Contribution of each matcher for Apache Commons Collections
matching on manual mode with auto mode config values. Matches between
classes are listed between parenthesis.
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v1.0 - v2.1.1 v2.1.1 - v3.3 v3.3 - v4.1

removed runtime removed runtime removed Runtime

Selector 340 (0) 0.7 3979 (0 9 20978 (2) 705

Repairer 240 (0) 4 4007 (0) 224 13172 (0) 15.913

Table 14: Contribution of each selector for Apache Commons Collections
matching on manual mode with auto mode config values. Matches between
classes are listed between parenthesis.

rest of the study.
In consecutive tests different values for the bk_source and struct_matcher

(while running the structure matcher in secondary mode) had no effect on
the score. Setting the string_measure to Jaro-Winkler decreased the s-
core slightly and other values for the setting made no difference with regard
to the baseline. All values for the selection_type setting gave the same
result. Disabling the selection however, produced a slightly worse result as
some false positives were no longer removed from the final alignment. For
the word_matcher the by_class setting (and thus the maximum setting) in-
creased the score slightly by finding one extra match in the alignment from
version 3.1 to 4.4. The threshold setting was tested with the values 0.4
and 0.8. With the 0.8 value there was no difference when compared to the
baseline. The 0.4 value result in more incorrect mappings.

Next, the neighbor similarity matcher was run in primary mode by
changing struct_matcher_mode to primary. To test if this new match-
er behaves correctly, the matcher was tasked to compare the 1.0 version of
the project with a modified 1.0 version where all classes names were convert-
ed to a number. The matcher found some incorrect mappings, but overall
performed very well.

As can be seen in the results in table 15, the descendants strategy, and
consequently the maximum strategy had a negative impact on the F1 score
for the 3.3 to 4.1 mapping. The matcher was able to find one extra match,
but also added 9 incorrect matches. Studying the incorrect matches revealed
that these classes contained mostly the same methods. It also reveals that
this type of matcher is not very good in a library where most classes have
almost the same public interface. As is the case for the Apache Commons
Collections library where almost all classes contain methods like add, remove
and contains.
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Strategy Source Target Precision Recall F1

ancestors 1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 1.0 0.99 0.99

3.3 4.1 1.0 0.95 0.97

descendants 1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 0.99 0.99 0.99

3.3 4.1 0.96 0.96 0.96

average 1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 1.0 0.99 0.99

3.3 4.1 1.0 0.95 0.97

maximum 1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 0.99 0.99 0.99

3.3 4.1 0.96 0.96 0.96

minimum 1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 1.0 0.99 0.99

3.3 4.1 1.0 0.95 0.97

Table 15: Results of Apache Commons Collections matching on manual
mode with structure matcher in primary mode
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Setting Value

bk_sources WordNet

word_matcher by_class

string_matcher global

string_measure ISub

struct_matcher descendants

selection_type auto

repair_alignment false

struct_matcher_mode secondary

threshold 0.6

Table 16: Final AML configuration for the Apache Commons Collection
experiment

6.2.3 Final configuration

Although the background matcher did not improve the score, the example
projects show there that it can lead to better results, as such it will be
enabled. The by_class strategy scored best for the word matcher. The
string matcher will be run in primary mode as this has no drawbacks except
consuming more processor power. The best string matcher algorithm could
not be determined with the current dataset, however, a study by Yufei Sun,
Liangli Maa and Shuang Wang [44] concluded that ISub is the best string
measure metric for ontology alignment. And although the demo study in
section 5.6 looked promising, the structural matcher in primary mode did
not contribute much to the Apache Commons Collection case study. In fact,
it lowered the precision when using the descendants strategy by introducing
a lot of false positives. Therefore this matcher will be run in secondary mode
and will use the descendants strategy. The final configuration that will be
used for this experiment is listed in table 16.

6.3 Results

The final result using the configuration from table 16 can be seen in table 17.
The configuration changes increased the F1 score for the alignment between
version 3.3 and 4.1 slightly when compared to the baseline configuration.
No false positive were found by AML. The mappings that AML was not
able to find are listed in table 18 and 19.
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Source Target Precision Recall F1

1.0 2.1.1 1.0 1.0 1.0

2.1.1 3.3 1.0 0.99 0.99

3.3 4.1 1.0 0.96 0.98

Table 17: Results of Apache Commons Collections matching with the con-
figuration listed in table 16

V2.1.1 class V3.3 class

collections.MultiHashMap collections.map.MultiValueMap

Table 18: Missing mappings from v2.1.1 to v3.3 alignment

V3.3 class V4.1 class

collections.ProxyMap collections4.map.AbstractMapDecorator

collections.DefaultMapBag collections4.bag.AbstractMapBag

collections.buffer.PredicatedBuffer collections4.queue.PredicatedQueue

collections.BufferUtils collections4.QueueUtils

collections.MultiHashMap collections4.map.MultiValueMap

collections.buffer.UnmodifiableBuffer collections4.queue.UnmodifiableQueue

collections.buffer.AbstractBufferDecorator collections4.queue.AbstractQueueDecorator

collections.buffer.TransformedBuffer collections4.queue.TransformedQueue

collections.DoubleOrderedMap collections4.bidimap.TreeBidiMap

Table 19: Missing mappings from v3.3 to v4.1 alignment
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6.4 Conclusion

The overall result is very good. The vast majority of mappings were found
and there were no false positives. The mappings that AML was not able to
find are even for a human hard to identify. And some of these could only
be established by using the bug tracking system of the Apache Commons
Collection project.

Further investigation regarding the missing mapping listed in table 18
revealed that this mapping was not found because of two reasons. The
first reason was that the most likely matcher to find this mapping, namely
the word matcher, calculated a similarity score of 0.57 for this mapping.
This is just below the threshold of 0.6. Another reason why this match
was not found, it the fact that there was already a better mapping for
collections.MultiHashMap. This is one of the rare cases where one class in
the source version was matched to multiple classes in the target version. As
AML only allows one match for a class in the source version, it would never
be able to find this match. Investigation of the missing mappings listed in
table 19 yielded similar findings.

It should be noted that a large number of the mappings are made by
the lexical matcher (see table 7 and 9) and only a small portion of these
mappings are made by other matchers.

6.5 Discussion

There are some threats to the validity of this experiment. First and most
important is the golden standard as this is created by humans. Most map-
pings in the standard were unanimously agreed upon by the author and the
reviewer. However, some of these mappings were changed or removed after
some discussions between the author and the reviewer. It is entirely possible
that when other persons are asked to create a golden standard the results
would be different. Unfortunately, this is something that cannot be avoided
as the creation of these mappings requires human interpretation.

The second threat is caused by the configuration used in this experiment.
As can be seen in section 6.2, the configuration has an impact on the final
result. Due to time constraints, not all configurations are tested so it is
possible that there is a better configuration that would be able to make
AML score even better.

Finally, the amount of details in the ontology used for this experiment
influences the outcome of the result. One could, for example, add type
information to the ontology and create a matcher that takes the output type
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and parameter types into account when comparing a method. It might first
try to map the types between the two ontologies and use that information
together with the name of the method to determine if there is a match.
This might improve the final result. Code comments might also be added
to the ontology although it should be noted that there is no guarantee that
comments are up to date or actually describe the piece of code they are
attached to.
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7 Case study - student assignments

The second case study will try to group similar student projects. For this
experiment, a large set of submissions to several student assignments were
made available by Utrecht University. Table 20 gives an overview of the
assignments and the number of submissions available.

total selection

submissions classes submissions classes

animatedquicksort 219 1347 50 374

mandelbrot 1261 1477 50 69

petersonshortcut 103 654 50 324

reversi 1127 1986 50 79

spanningtree 118 639 50 272

threadedmergesort 87 671 50 378

treeroamer 46 437 46 437

Table 20: Student assignments information

As all submissions for an assignment implement the same specifications
we can say that all submissions for an assignment are semantically similar.
The goal of this experiment is to use ontology matching to group the sub-
missions for each assignment. To do so, every submission will be compared
to all other submissions. Because of time constraints, it is not feasible to
use all submissions for this experiment. Therefore 50 submissions are ran-
domly picked from each assignment. For the treeroamer assignment only 46
submissions will be used.

The configuration listed in table 21 will be used for this experiment. This
is in large part the same configuration used in the first case study with the
only exception being that the structural matcher will now run in primary
mode. The structural matcher in primary mode did not perform well in
the previous case study due to the high amount of shared method names in
the classes of the Apache Commons Collection project. Considering the by
average low number of classes for a submission, it is very unlikely that the
classes belonging to a single submission will have a large number of shared
method names. Therefore there is a low probability that the structural
matcher in primary mode will report a large number false positives for this
case study.
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Setting Value

bk_sources WordNet

word_matcher by_class

string_matcher global

string_measure ISub

struct_matcher descendants

selection_type auto

repair_alignment false

struct_matcher_mode primary

threshold 0.6

Table 21: Final AML configuration

7.1 Grouping the results

After AML is used to compare all the submissions the result needs to be
grouped. To do so, a clustering algorithm will be used. This algorithm
should meet the following criteria:

1. The algorithm is able to handle precalculated distances.

2. The algorithm is able to handle asymmetric data. As the distance
from source to target can be different from the distance from target
to source.

3. The algorithm is able to handle non-euclidean distances

The DCSCAN clustering algorithm meets these criteria and is well suited
for this experiment. This algorithm tries to find core samples of high density
and expands the clusters from them. Points that cannot be connected to
a cluster are identified as noise. There are two parameters to influence
the behavior: eps and minSamples. The eps parameter is the maximum
distance between two samples for them to be considered to be in the same
neighborhood. minSamples is the number of samples in a neighborhood
for a point to be considered as a core point. The clustering package from
scikit-learn 10 is used. The input for the clustering algorithm will be a list
of three-tuples containing the source submission, the target submission and
the distance between these submissions. The distance is a value between
0 and 1. A distance of 0 indicates the submissions are completely similar

10http://scikit-learn.org/stable/modules/clustering.htm
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assignment noise 0 1 2

animatedquicksort 34 16

mandelbrot 17 33

petersonshortcut 50

reversi 9 41

spanningtree 50

threadedmergesort 50

treeroamer 46

Table 22: Clustering results for the student assignments case study. eps =
0.05 and minSamples = 5

and a distance of 1 indicates these submissions are completely different. The
formula to calculate the distance between two ontologies is listed below. Here
alignment is the produced alignment between a source and target ontology
which are extracted from two submissions.

distance = 1 − (
∑

m∈alignment

m.simmilarity)/classcount(source)

7.2 Results

Again, the experiment was run on a virtual private server (VPS) with 6 Intel
Xeon CPU E5-2630L v2 CPUs running at 2.40GHz and 16GB RAM. It took
79 hours and 26 minutes to create the 119716 alignments. From this set, 50
alignments were randomly selected and verified by comparing the respective
source and target ontologies manually to confirm the validity of the creation
process.

Tables 22, 23 and 24 show the final results with three different cluster
configurations. The numbers in the top line of the table represent the differ-
ent clusters. Table 22 uses the most strict configuration requiring 5 samples
for a cluster core and a maximum distance of only 0.05 between two points.
In table 23 the results are grouped in a way that a cluster core requires only
4 samples and the maximum distances between two points can be 0.2 and
finally table 24 shows a configuration that requires only 3 samples to form
a cluster core and the maximum distance is set to 0.4.

45



assignment noise 0 1 2

animatedquicksort 29 18 3

mandelbrot 1 49

petersonshortcut 4 1 45

reversi 9 41

spanningtree 15 1 34

threadedmergesort 42 7 1

treeroamer 35 11

Table 23: Clustering results for the student assignments case study. eps =
0.2 and minSamples = 4

assignment noise 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

animatedquicksort 15 31 4

mandelbrot 50

petersonshortcut 4 1 3 3 7 6 2 1 23

reversi 2 48

spanningtree 12 1 4 1 1 1 28 2

threadedmergesort 25 8 1 10 2 4

treeroamer 27 12 4 3

Table 24: Clustering results for the student assignments case study. eps =
0.4 and minSamples = 3
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7.3 Conclusion

It is clear from table 22 that ontology matching performed well for the man-
delbrot (33 out of 50) and reversi (41 out of 50) assignments and reason-
ably well for the animatedquicksort (16 out of 50) assignment as they were
grouped together in separate clusters. When the cluster algorithm configu-
ration is flexed a bit in table 23 it can be noted that the spanningtree (34
of 50 results) and petersonshortcut (45 out of 50 results) assignments were
reasonably well grouped although they were both grouped in the same clus-
ter. This could either mean that AML has identified a false positive, or that
there actually is some similarity between these two assignments. It is likely
to assume that there is a sweet spot for the eps setting that separates these
assignments into different clusters. The overall grouping for the threaded-
mergesort and treeroamer assignments was very poor. Table 24 shows that
if a more loose configuration is used for the clustering algorithm, some of
the submissions are grouped but they are also put in the same clusters as
submissions from other assignments.

It is interesting to note from table 20 that the reversi and mandelbrot
assignments have the least amount of classes per submission: in average 1.7
and 1.2 classes per submission for the reversi and mandelbrot assignment
respectively. Examining the samples it was found that almost all samples
had a class that extended Applet and implemented the ActionListener

and MouseListener. The small number of classes per submission and the
relatively large amount of methods shared through the base class and inter-
faces explain why similar submissions could be identified by AML. It also
explains why the submissions of both assignments are grouped in the same
cluster in tables 23 and 24.

The fact that the animatedquicksort submissions cluster reasonably well
can partially be explained by the fact that these submissions also use the
Applet base class and one or more of the ActionListener and MouseListener

interfaces. The reason that the animatedquicksort submissions do not clus-
ter with the reversi and mandelbrot assignments is most likely because the
interfaces and base classes make up a much smaller amount of the total
number of classes in these submissions. Also, the fact that the samples use
a lot of sorting terminology can help AML to differentiate these submissions
from the rest.

Investigating the petersonshortcut and spanningtree submissions revealed
that almost all submissions for these assignments had a main class called
GP2 or GPD2. Upon investigation this turned out to be an assignment re-
quirement. All submissions from both assignments involved a client-server
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and multi-threading implementation. The terminology used for these pat-
terns can explain why both assignments were grouped in the same cluster. It
should be noted however that although these are false positives when looked
at the submission level, they can be considered true positives when looked
at the class level.

The explanation for why most submissions end up in the same cluster
is most likely due to the fact that interfaces and base classes make classes
look very similar to AML. This way, submissions with a low class count can
easily lead to false positives. Also the usage of generic class and method
names like main and controller can easily lead to false positives.

Depending on the cluster configuration used it can be said that two
assignments were clustered very well and that three other assignments were
clustered reasonably well. It should be noted however that this experiment
reveals that the matching performed very well at a class level, but that this
effect does not automatically translate to good matches on a project level.

7.4 Discussion

The major threat to the validity for this experiment is that there is no golden
standard. This implies that there is no way to make sure the alignments
created by AML are actually valid. Consequently, the assumption that all
submissions for an assignment are similar to each other cannot be verified
without looking at all the submissions manually. It might be the case that
some students misread the assignment or for some other reason submitted
something different than that what was asked in the assignment. However,
this chance is relatively low.

The clustering algorithm and the configuration for this algorithm used
to present the results can be considered a threat. As can be seen in tables
22, 23 and 24, different cluster configurations can lead to very different
representations and thus interpretations of the results.

Finally, it is possible that the AML configuration and the amount of
information in the ontologies had a significant impact on the result. It is
possible that there is a better AML configuration or that ontologies with
more information will yield better results.
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8 Conclusion and future work

8.1 Conclusion

The objective of this thesis was to decide whether ontology matching tech-
niques could be employed to identify semantically similar software. To do
so tooling was created to extract semantic information from a JAVA project
and store this in an ontology. The actual ontology matching is done by AM-
L. AML performs very well on comparing medical ontologies but was never
used to compare ontologies extracted from software projects. Some modifi-
cations to the AML infrastructure and matchers were required and multiple
test runs were done to determine the best configuration for the case studies.

Two case studies were conducted to validate if AML can be used to find
similar software. For the first case study, ontologies were extracted from four
major release versions of the Apache Commons Collections projects. AML
was used to create three alignments between the classes of those versions.
The available project documentation and bug tracker was used to create
golden standards which were used to validate the alignment. The results
of this case study were very promising. The alignments contained no false
positives and contained almost all available class mappings.

The second case study used a data set of 346 submissions for seven s-
tudent assignments from programming courses given at Utrecht University.
The goal of this case study was to group the submissions per assignment.
Alignments were made between the student submissions and a clustering
algorithm was used to group the results. Five of seven assignments were
grouped very well although there were a lot of false positives between the
mandelbrot and reversi assignments and the petersonshortcut and span-
ningtree assignments. In the case of mandelbrot and reversi the false posi-
tives were introduced by the combination of a low class count per submission
and the usage of interfaces and base classes to render a UI. In the case of
the petersonshortcut and spanningtree the false positives were introduced
by the use of similar design patterns. These false positives are however true
positives when considered at class level.

Considering RQ 1.1.1, we can state that ontology matching showed great
promise as a technique to find semantically similar software on a class lev-
el. Considering that the matching software itself was not tailored towards
software comparison it is expected that even better results might be accom-
plished.
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8.2 Future work

There are several aspects that could be improved by future research. First
and foremost: more research is required to answer RQ 1. As this study
concludes that it is possible to find semantically similar software, future
research should focus on the challenges of automatically locating and con-
verting test cases so they can actually be reused. To locate test cases that
cover a unit of code, it could perhaps be possible to exploit the fact that
many projects in this day and age use continuous integration connected to
a version control system. This often implies that information about the lo-
cation of test cases and execution information is present within a project
repository. Advancements in the field of automated software repair might
be used to convert test cases from one software project to another.

Beside these major challenges, there is also future work that could be
done to improve the identification of semantically similar software. The in-
formation stored in the ontologies used in this research heavily influenced
the results. Experiments with ontologies containing more or different infor-
mation could perhaps reveal better ways to utilize the ontology matching
software.

Another very interesting topic for future research would be to investigate
if it is worthwhile to use semantic matching techniques to find semantically
similar software in other programming languages. This would have the ben-
efit of greatly expanding the search area for similar software and could also
perhaps be used for future programming languages.

This thesis focused on using the AML ontology matcher. And although
AML came out best in the OAEI contests, it is not tailored towards com-
paring ontologies extracted from software projects. As AML is very flexi-
ble there are multiple options to increase the performance when comparing
ontologies from software projects. The fact that software projects in gen-
eral, and object-oriented software in particular, have a distinct hierarchical
structure could easily be exploited by structural matchers to create better
matches. This was already explored a bit with the structural matchers in
primary mode. Also adding domain-specific knowledge to, for example, the
word matcher could probably increase the accuracy of the alignments. And
it could be interesting to investigate if adding matchers employing natural
language processing techniques could improve the matching process.

Another topic that could be investigated in future research is the con-
figuration for AML. As can be seen in 5.4, the configuration can have an
impact on the existing matchers and selectors. It is possible that different
projects could benefit from different configuration sets.
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Appendices

A Ontology

<?xml version="1.0"?>

<rdf:RDF xmlns="#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology/>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#isPartOfClass">

<rdfs:domain rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Method"/>

<rdfs:range rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Class"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#isPartOfMethod">

<rdfs:domain rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Parameter"/>

<rdfs:range rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Method"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#isPartOfPackage">

<rdfs:domain rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Class"/>

<rdfs:range rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Package"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#isPartOfProject">

<rdfs:domain rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Package"/>

<rdfs:range rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Project"/>

</owl:ObjectProperty>

<owl:Class rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#Class">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Method"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Package"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Parameter"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Project"/>

</owl:Class>

<owl:Class rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#Method">

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Package"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Parameter"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Project"/>

</owl:Class>

<owl:Class rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#Package">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Parameter"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Project"/>

</owl:Class>

<owl:Class rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#Parameter">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<owl:disjointWith rdf:resource="http://www.semanticweb.org/tt/ontologies/method2/#Project"/>

</owl:Class>

<owl:Class rdf:about="http://www.semanticweb.org/tt/ontologies/method2/#Project">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

</rdf:RDF>
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