
Automated Testing in Virtual Worlds

Dimitrios Loubos, 5691982

A thesis presented for the degree of
Game and Media Technology Msc.

Game and Media Technology
Utrecht University

Netherlands
March 2018

Acknowledgements
I would first like to thank my thesis supervisor, Mr. I.S.W.B. Prasetya for his guidance and support during the research. His door was

always open when I needed any help and his insight steered me the right way on completing my research.

Many thanks to my second supervisor Mr. Frank Dignum for his valuable feedback and evaluation of my thesis.

I would also like to thank my family for supporting me throughout my years of study.

Automated Testing in Virtual Worlds
Master Thesis

Dimitrios Loubos
Utrecht University

d.loubos@students.uu.nl

ABSTRACT
In this study we train an agent in the video game Minecraft, to
gather items in the world space and combine them to automatically
test the functionality of the crafting system of the game. We are
inspired by the ideas of reinforcement learning to teach the agent
a certain behavior based solely on previous experience, while we
test his ability to correctly predict the exact recipe for crafting
specific items. We perform experiments with different test cases
to explore the success of such process and the time needed to test
the crafting feature. Keeping in mind that our main purpose is to
explore functional testing in virtual worlds, we conclude that such
an automation process can certainly ease the workload of testing.

KEYWORDS
Functional Testing, Automated Testing, Reinforcement Learning
ACM Reference Format:
Dimitrios Loubos. 2018. Automated Testing in VirtualWorlds: Master Thesis.
In Proceedings of Master Thesis.ACM, New York, NY, USA, Article 4, 18 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Recently, the rise of low-cost, high performance home computing
and subsequent growth of the computer games industry has led
to the emergence of interactive video games with the creation
of entirely new forms of game-play and corresponding genres of
games.

Video games make use of increasingly complex and detailed
virtual environments, often incorporating human controlled pro-
tagonists and many computer controlled opponents (referred to
as game agents and opponent agents, respectively). These agents
require an ever more realistic and believable set of behaviours for
a game engine’s AI to generate.

With a wide range of potential objectives and features associ-
ated with game-play, as indicated by the plethora of genres arising
from video games, such as ”First-Person Shooter Games”, ”Action-
Adventure Games”, ”Role-Playing Games”, ”Strategy Games”, ”Sim-
ulation Games” and ”Sports Games”, the specifications and require-
ments for a game AI typically include both genre-specific goals
and general low-level behaviours. By utilizing a percentage of the
overall computational resources used within a game, the game AI
facilitates the autonomous selection of behaviours for game agents

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Master Thesis, March 2018, Utrecht, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

through game specific perception, navigation and decision making
sub-systems[11].

Old 2D platform games had fewer rules, significantly smaller
action space and simpler gameplay thus making the AI problems
more trivial for researchers to provide a ”smart” AI agent. However,
for more complex games it is harder to provide a good AI agent,
and writing a new game playing agent for each new game would
make the process more time consuming. Furthermore, a single hand-
crafted agent may be blind to novel aspects of evolved gameplay
elements that the designer of the AI agent had not considered [18].

So far the there doesn’t exist the perfect generalized method of
AI that solves the problems above. Each game, requires its own AI
approach according to its features, gameplay, path planning and
so on. Thus researchers try to combine game design patterns with
current state of the art AI techniques to create new AI based games
[30].

Extensive testing has to be done in order to assure the qual-
ity of a game. From bigger gaming companies [5] to smaller ones,
from platform games to computer and mobile games [13], testing
plays an important role in the software development process. How-
ever testing is an expensive, time-consuming and intensive process
which has to be repeated for every single modification. Automation
in testing could give a vital boost in development.

Test automation increases the overall software efficiency and
ensures robust software quality. In addition it accelerates the test-
ing procedure allowing for the testing to be carried out repeatedly,
delivering faster results each time with lesser effort and time. As a
consequence it accelerates the development life cycle of the prod-
uct. Furthermore, due to the repetitive nature of test automation,
test cases are reusable and can hence be utilized through different
approaches. Finally it may reduce the costs of a company as they
don’t require to hire human testers to perform the testing phase of
the software.

Nowadays, almost all of the modern gaming companies use game
engines, which are state-of-the-art resources that integrate both AI
techniques and testing/performance tools for the developers to use.
However, these game engines are usually commercial software that
only game engineers use. There exist a few free game engines like
Unity and Unreal Engine, but those require extensive knowledge
in order to be fully useful for game development.

However, there has recently been developed a few novel AI
software like Malmo Project, Deep Mind and Open Universe AI
that allows for anyone to build an agent and test the AI in more
complex environments in real time. Our main focus will cover this
aspect by describing the aforementioned subjects and apply them
into Malmo Project framework, specifically designed for the virtual
game Minecraft. We will attempt to use aspects of reinforcement
learning to teach an agent specific behavior in order to test the
functionality of one of the game’s feature.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

The paper proceeds as follows. In Section 2 we present our re-
search goal. In section 3 we perform a case study, where we analyze
the related work trying to answer RQ1 and RQ3. In section 4 we
present our research approach explaining details about our algo-
rithm. Experiments and their results are analyzed in Section 5. In
section 6 we briefly discuss about the limitations and future work
and we conclude the study in section 7.

2 RESEARCH OBJECTIVE
2.1 Problem
Current game testing practices are labor intensive and become
tedious and monotonous with the passage of time, since the testers
are required to play a game (or even the same scenarios) several
times to test the various versions. Manual test case generation is a
monotonous and error prone task, is not systematic and hence is
not scalable. This becomes a major challenge when changes appear
frequently. In addition recently AI techniques are mostly focusing
on building smarter agents in video games. Although, they succeed
in older and simpler games like 2D platformers, AI has only recently
began to advance in more complex, open world games. Currently
there are not many game industries that use the combination of AI
and automated testing techniques to test their games.

2.2 Research questions
Our main research question are as follows:
RQ1. Is automated testing being used in 3D virtual worlds and how?
RQ2. Can reinforcement learning contribute in building an AI agent

that autonomously play and test its features?
The first question aims to investigate whether automation testing

techniques are being currently used in vast open world virtual
games. Is automated testing being used in the game industry? How
efficiently is it being used and what does it offer to the testing
procedure? Going deeper into the literature in section 2, we will
discuss several testing techniques that facilitate the automation
process and the possible advantages and limitations.

The second question is concerned with finding a suitable AI
technique that can be used to train an agent to learn to play a
video game by itself. Given a set of rules, the agent should grow a
behavior and learn to perform specific tasks related to functional
testing. Is reinforcement learning the optimal technique? Will the
agent be able to sufficiently perform testing through this process?

Another minor research question that occurs from RQ1. is the
following:
RQ3. How is testing coverage applicable in vast open world environ-

ments?
Since the complexity of an open world game environment is

enormous, especially in AAA games, is coverage of automated
functional testing applicable? What techniques can be used? How
easy is it to test every feature of a game and how can we achieve
high coverage in such environments with a low time cost?

In the next sections we will try to answer the above questions.

3 RELATEDWORK
Software testing is an important technique for analyzing a soft-
ware product to detect differences between existing and required

conditions (bugs) and evaluate the quality of the software product.
Software testing is critical task in the software development pro-
cess and considerably imposes cost and time restrictions on the
development process. Therefore, automating the testing process
can significantly increase testing process performance. But before
we dig into that, we should first discuss about the two basic classes
of software testing: black box testing and white box testing [31] .
These two approaches are used to describe the point of view that a
test engineer takes when designing test cases.

3.1 Black vs White box testing
Black box testing[35], also referred to as functional testing, is a
software testing method in which the internal structure of the item
being tested is not known to the tester. Themethod focuses solely on
the outputs generated in response to selected inputs and execution
conditions. This method is named so because the software, in the
eyes of the tester, is like a black box , inside which one cannot see.
With black box testing, the software tester does not have access
to the source code itself. He only knows the information to input
into the black box and what to expect as an outcome based on the
requirements knowledge. For example, a tester, without knowledge
of the internal structures of a website, tests the web pages by using
a browser, providing inputs (clicks, keystrokes) and verifying the
outputs against the expected outcome. In black box testing, test
cases can be designed as soon as the specifications of the software
product are complete, although without clear specifications, test
cases might be difficult to design.

White box testing[35], also referred to as structural testing, is
a software testing method focusing on the internal mechanism of
a software product. The tester chooses inputs to exercise paths
through the code and determines the appropriate outputs. Unlike
black box testing, the tester, possibly the developer of the code,
has access to the software code and writes test cases by executing
methods with certain parameters. This testing method is more
thorough, with the possibility of covering most paths but it can
also proven to be more complex.

In overall, neither structural testing nor functional testing is
by itself good enough to detect most of the faults. Therefore, it is
imperative to combine both of the techniques to achieve a better
testing result.

3.2 Levels of testing
Different levels of testing are used in the testing process and each
level of testing aims to test different units of the system. A software
system goes through four stages of testing before it is actually de-
ployed. These four stages are known as unit, integration, system,
and acceptance level testing.

In unit testing, white box testing techniques are commonly used
to test individual software units such as procedures, functions,
classes etc.within the software itself. This is the first level of testing
and greatly improves the reliability of the code [22].

The fact that units might work well individually doesn’t neces-
sarily mean that they work when combined and that’s where the

3

Figure 1: Levels of testing.

second testing level, integration testing, comes into play. Integra-
tion testing, is used to verify that units work together when they
are integrated into a larger code base.

System testing, is used on a fully integrated software system to
evaluate the design and ensure the functionality of the system ac-
cording to the specified requirements. System-level testing includes
a wide spectrum of testing, such as functionality, stress, perfor-
mance, usability, security testing etc. System testing comprises a
number of distinct activities: creating a test plan, designing a test
suite, preparing test environments, executing the tests by following
a clear strategy, and monitoring the process of test execution.

Acceptance testing, uses black box techniques to determine
whether the software system meets the acceptance criteria. The
objective of acceptance testing is to measure the quality of the
product, rather than searching for the defects, which is objective of
system testing.

3.3 Regression testing
Regression testing is a ’sub-level’ of testing, which is performed
whenever a component of the system is modified to verify that the
modification has not introduced any new unintended faults and that
the system still complies to the specified requirements. Regression
testing can be considered as a testing technique, rather than level,
as long as it is performed at any of the previously discussed levels.
In regression testing, new tests are not designed. Instead, tests are
selected, prioritized, and executed from the existing pool of test
cases to ensure that nothing is broken in the new version of the
software.

3.4 Combinatorial testing
Another noteworthy testing method is the combinatorial testing
(CT) method [32] which designs tests for a system under test (SUT)
by combining input parameters. For each parameter of the system,
a value is chosen. This collection of parameter values is called
test case. The set of all test cases constitutes the test suite for
the SUT. Instead of testing all possible combinations of values, a
subset of combinations is generated to satisfy some well-defined
combination strategies. Another advantage of CT is that it can

detect failures triggered by the interactions among parameters in
SUT [24]. Combinatorial design can dramatically reduce the number
of combinations to be covered but remains very effective in terms
of fault detection.

3.5 Coverage
In traditional software testing, test coverage is a measure of the
proportion of a program exercised during testing. It provides uswith
an objective score (percentage) of the amount of testing performed
by a set of test. However, coverage doesn’t help in finding errors and
bugs in the system under test. Developers and testers try to achieve
100% testing coverage, but that doesn’t mean that all possible bugs
in a program have been found. Especially, in video game industry
this is not a trivial task. How can we apply testing coverage into
modern virtual worlds? Before we dig into that we first present a
useful software testing technique.

Equivalence partitioning (EP) is a very widely used black-box
technique that can be applied at any level of testing and is used to
decrease the number of possible test cases that are required to test
a system . The idea behind this technique is to divide (partition) a
set of test conditions into groups or sets that can be considered the
same.

Equivalence partitioning is based on the premise that the inputs
and outputs of a component can be partitioned into classes that,
according to the component’s specification and will be treated
similarly by the component. Thus the result of testing a single value
from an equivalence partition is considered representative of the
complete partition. In simpler words, in equivalence-partitioning
technique we need to test only one condition from each partition.
This is because we are assuming that all the conditions in one
partition will be treated in the same way by the software. If one
condition in a partition works, we assume all of the conditions in
that partition will work, and so there is little point in testing any
of these others. Similarly, if one of the conditions in a partition
does not work, then we assume that none of the conditions in that
partition will work so again there is little point in testing any more
in that partition. EP is a great technique for reducing the number
of test cases required to test a system, while allowing for a greater
testing coverage of the system.

Now let’s try to consider what happens in video games. Games
are usually simulations and rely on massive amounts of shared state
which can’t be tested in isolation. When a game is typically very
complex and has many states, it is just not feasible to cover all the
different states the game can be in. The variables that affect the
game state are theoretically infinite thus it is not possible to test
every combination to achieve 100% test coverage.

Whenwe narrow it down to our case, let’s imagine that an agents
has a set of items in the inventory and wants to combine them to
create new items. The input space (items in inventory) might be
big but we can only have 2 output options, either we combined
successfully or not. Now this example might seem trivial, but what
happens if the output is not that trivial? If the output space is also
enormous we simply don’t have the time and resources to test every
combination. The complexity of such process is pretty high as we
can’t combine every possible input and output to achieve maximum
coverage. A good solution would be to use EP to narrow down the

4

number of test cases required for the system under test. In any case,
we should also use state of the art AI techniques to reduce the time
cost of the test suite.

To conclude we can only assume that test coverage of interac-
tions of an agent within the game universe will be higher if human
testers are being used. To automate this process we need high level
calibration and accuracy on modeling test suites that will provide
us with high coverage.

3.6 Game Testing Examples
Game testing is a subset of game development, a software test-
ing process for quality control of video games. Its primary goal
is to detect and document any possible software defects (bugs).
Game testing will test for issues such as functionality, performance,
compatibility, consistency, completeness, and will reveal potential
programming bugs.

However game testing is not a trivial task. One of the most
complex aspects of game testing can be the testing of the actual
world or level, especially if it is a vast, sprawling, 3D world, such as
for modern MMOs and RPGs. Some parts of this can be automated,
such as having bots move randomly through the game world to
see if they get stuck or find other problems with the world. As the
complexity of the task grows, it becomes more and more important
to find ways to reduce the complexity with the help of tools[].

There have been several research projects in this area which
influenced our work. W.K. Chen et al. [36] propose a method that
automates the testing process of a game. They designed a HTML5
game framework (H5GF) with a testing layer that can execute test
scripts to perform user events and assert the correctness of the
game features. With this framework, a tester can create a testing
script by either write it directly in JavaScript or by playing the game
and capture the gameplay actions and translate them into a testing
script. Their main contribution to the automation testing problem
is that their framework is game-independent and functional testing
can be achieved as long as the game is developed using this frame-
work. Writing a test script directly might be a hefty job, thus the
authors provide the ability to capture a test script during gameplay.
When an event is triggered, the information of the event is stored
and translated into a corresponding test script. However the tester
should manually add assertions into the script to ensure the cor-
rectness of the game states. In case of any change in the code of the
game, all test cases have to be re-recorded and evaluated manually,
which is neither efficient nor scalable, although the authors argue
that this method is considered to be much faster than writing the
test script directly. In addition, due to the dynamic nature of games,
timing plays an important role in the success of the framework.
If timing is not exact as in the recorded test scripts mainly due to
performance issues, the framework might not reproduce the same
results, thus adaptation in real time is required. The maintenance
effort of such recordings is high and prone to playback errors. Nev-
ertheless, their insight on capturing looks really promising and
should definitely be investigated more in the future.

Nantes et al. [23] use a semi automatic testing process with pat-
tern recognition.They propose a general framework for addressing
the automation of the game testing problem by using Artificial Intel-
ligence (AI) and Computer Vision (CV). They present an approach

for dealing with the automatic detection of environment anom-
alies making the video game testing process semi automatic. Their
approach covers not only the functional aspect alone, but other as-
pects such as gameplaymechanics and functionality (Entertainment
Inspection) or visual anomalies (Integrity Inspection). They aim to
give the agent vision-debugger features and combine techniques
fromAI and Computer Vision along with low level data disclosed by
the video game. They call this approach the Sub-Representational
approach. They analyze the same images perceived by a human
player from the game, in order to extract characteristic informa-
tion, detect certain events and evaluate the integrity of the virtual
environment. They manage to achieve that by using noiseless data
directly from the GPU pipeline and the drivers instead of using real
sensors. Specifically, they access the graphic pipeline by modifying
the graphic drivers in such way to be able to store the traffic data
that pass through. Moreover, in order for the agent to be able to use
this information effectively, they use a characterization for each
bug so it can be recognized in an unambiguous manner. Sometimes,
for bugs particularly complex to characterize, they pre-process the
image in order to highlight or isolate characteristic objects or fea-
tures in such a way as to facilitate the detection process, hence
making it more robust. This is achieved by utilising the Shadow
Map technique, used for casting shadows on arbitrary meshes in
order to detect visual anomalies during the pre-processing stage.
In general their approach looks intuitive enough but it differs a lot
from our work as we are not dealing with computer vision aspects.

Another interesting work is the one of S. Iftikar et al. [14]. In
their work they propose a model based testing approach for auto-
mated black box, system-level, functional testing on platform games.
The proposed model allows for automated test case generation, au-
tomated test execution, and automated test oracle (test verdict)
generation. The authors use domain modeling for representing the
game structure and UML state machines for behavioral modeling.
More specifically, they construct a profile in UML that includes
both conceptual and behavior details of a game, such as actions,
collectibles, user/system generated events etc. Then, they use the
above model to automate their testing strategy. Their approach is
divided into three basic steps. In the first step, they use the state ma-
chine of an AI agent in Super Mario Brothers game and the game’s
state machine to generate test cases. With the use of record and
replay tool to record the initial set of steps for the agent and the N+
testing strategy, an approach used for generating test cases based
on state machines[4], they manage to produce a transition tree that
contains end-to-end paths from the state machine. From the state
machine, they generate test paths using round trip and sneak path
strategies to navigate the agent through the environment. The sec-
ond step consist of creating test oracles that are triggered as a result
of the user-generated events. In this step a testing interface is being
used to provide the details of the internal game states during test-
ing. The last step is the test execution. During test execution, if the
system fails to generate a system-generated event corresponding to
a user-generated event or the testing interface fails to verify a state
change corresponding to a transition or the application crashes, the
application will be considered to have failed the testing. The tester
is able to define a time period for individual test case execution, dur-
ing which the tester may select various random test sequences and
execute them. The above framework was tested in the very famous

5

Super Mario Brothers game and managed to identify bugs during
game testing. Overall, their profiling and modeling methodology
combined with the test case generation and execution looks very
promising and applicable to many platform games. Unfortunately
in our case, it will not be sufficient enough as our game is an open
world complex environment that require a different approach.

Our major inspiration was Udagawa et al. [31] project, in which
the authors use Malmo Project framework to kill as many enemy
zombies and survive their attacks for as long as possible using
reinforcement learning. Their objective is to teach the agent what
policies to execute based solely on the pixels of the gameplay screen.
Rather than giving the agent information about the environment
or any guidance on killing zombies, it has to learn optimal actions
based on its past experience. They achieve this by combining Q-
Learning and neural networks to teach evaluate the input image
that they receive from the observations of the agent, and optimize
the Q-values, so that the agent will learn which action is most
effective in killing enemy mobs. Using Q-learning and experience
replay methods, the agent showed a significant improvement in
killing enemy zombies and surviving for a long time.

We tried to create our agent in a similar approach utilizing some
of their ideas into our algorithm. Later on, we discuss the imple-
mentation and how this process works for us.

In additionMnih et al. [21] present a deep reinforcement learning
model that successfully learn control policies directly from high-
dimensional sensory input using reinforcement learning. Themodel
is a convolutional neural network that overcomes the challenges
of RL, to learn successful control policies from raw video data in
complex RL environments. The network is trained with a variant
of the Q-learning algorithm [34], with stochastic gradient descent
to update the weights. They use an experience replay mechanism
which stores the agent’s experiences at each timestep into a replay
memory pool. Then they randomly sample the pool and apply the Q-
learning updates, this manages to smooth the training distribution
over past behaviors. The model is put to test in six Atari 2600 games
and compare the results with those of human play managing to
achieve better results that the human in half of them.

4 RESEARCH APPROACH
4.1 The Framework
For the purposes of our study we chose to implement our research
ideas intoMinecraft, a widely popular sandbox video game, released
in 2011. The main aspect of the game is the ability of the player
to create and build construction out of textured cubes in a 3D
procedurally generated world. Other activities in the game include
exploration, resource gathering, crafting, and combat. The game
has no specific goals for the player to accomplish, allowing players a
great amount of freedom in choosing how to play the game. Because
Minecraft offers so much creative freedom to players along with it
hugely diverse challenges and creation opportunities, it appears to
be a great proving ground for an AI-controlled character to roam,
learn, and evolve. Minecraft can be viewed as an approximation of
the natural world, thus our goal is to implement our agent as if it
is learning from and interacting with the world in a human-like
behavior.

For this purpose we used the framework called Project Malmo,
which is an open source experimentation platform, designed by
Microsoft Research, specifically to leverage Minecraft as means to
improve the AI problem solving. It is built on top of Minecraft and
provides an interface for researchers to experiment with different
approaches in artificial intelligence.

Through the Malmo Project framework, a researcher can experi-
ment with AI bots, using deep reinforcement learning and other
agent-based AI techniques, create environments and combine dif-
ferent states, actions, and rewards to simulate tasks for which the
agent trains with reinforcement learning to teach the AI agent to
learn to play the game by itself. More specifically, AI agents are al-
lowed to complete extensive scenarios and error explorations with
a given task and will receive a reward for completing it successfully.

Malmo treats the agent as a separate entity from the virtual
world meaning that it can only get information about the world
through observations of different states and rewards in real time.
Furthermore, the fact that it is build upon a vast open virtual world
where the agent is trained on its first person visual input contrasts
with other related work like Atari games tested by DeepMind [21]
or 2D flash games tested in OpenAI, where the games provide a
bird’s-eye view. These factorsmakeMalmo a difficult but interesting
platform to build upon and experiment with.

We chose this framework for two reasons. Firstly, as we see in the
literature review section (Appendix), RL is believed to be the most
promising approach to reach our goal. Secondly, the framework
itself pushes us towards that direction by providing us the necessary
tools to apply RL techniques with ease.

Inmore technical details, the framework uses a high level concept
called MissionSpec to specify the mission for an agent to solve.
This may include information about the map, consumables and
items, rewards etc. All the above information can be specified in
XML by the user to ensure the compatibility across the agents. The
AgentHost instantiates missions using the MissionSpec to bind
it with the agent. During the mission the agents interact with
the AgentHost to observe the WorldState (time stamp for mission,
observations, rewards) and execute actions. Such actions might
differ from collecting an item, to placing blocks or even attacking
enemy monsters. All log information is stored into MissionRecord.

Figure 2: Malmo project class hierarchy.

6

The framework supports many programming languages such
as Java, C++, CSharp and Python. We chose to implement our
approach using the Python language as it is heavily used by fellow
researchers and provides more capabilities to the framework.

4.2 The Algorithm
In this section we provide a rough representation of the algorithmic
steps of our approach and we further analyze our implementation
process.

while repetition < max repetitions do
setup agent and start mission;
while current reward < reward goal do

roam and perform actions;
perform obstacle avoidance;
get new observations;
if receive new observation then

get world state;
calculate current reward;
if current reward > reward goal then

perform elimination;
invoke functionality under test;
update Reward Matrix;

end
end

end
check ending condition;
check success of functionality under test;
reset world information;

end
Algorithm1:Rough pseudo-code representation of our algorithm

The algorithm represents a generic approach on automating the
testing process of a test case according to the tools and capabilities
of the framework we used. This means with slight changes to the
algorithm we can invoke different functionalities to test.

The roaming is not a trivial job in this framework. There exist a
lot of different ways to make the agent move inside the world. In
our case the agent moves freely in the environment being able to
jump over obstacles and climb big structures of blocks. That way,
the agent is tested in a realistic 3D world environment. According
to the setup of the world environment, we should change the path
planning of the agent to avoid possible deadlocks in it’s path such
as being trapped into corners or inside structures where the en-
trance/exit is not easily accessible. To make the agent even smarter
we didn’t just make it move randomly but we tried to dictate its
movement according to certain rules/conditions. In the next section
we explain exactly how the movement of the agent is implemented.

There is a finite number of actions that an agent can do in the
framework and this is just a subset of all the possible actions that
Minecraft supports. Those actions namely are: move, strafe, pitch,
turn, jump, attack, use, discard.

When the mission starts the agent will receive observations
through the framework every game tick. Those observations con-
tain useful information about the the world state and will be used

by the agent to dictate its behavior. Whenever it finds that there is a
new observation, the framework provides the functionality to check
the current state of the agent and calculate the cumulative reward.
Observations may vary from receiving feedback about entities that
are close to the agent to collecting items or getting rewards from
completing specific set of actions.

An elimination process is used to rule out possible actions or
attributes that might not be necessary for the functionality under
test. In regards of the use of delta debugging, we try to test specific
sets of attributes and rule out those that don’t affect our result. This
way we systematically check the functionality of the feature in
different states of gameplay. This process if very generic and can
be modified and applied according to our needs. In the next section
we discuss this process in our specific scenario.

We should note that our algorithm does not use any traditional
reinforcement learning algorithm such as Q-learning. In reinforce-
ment learning, an agent interacts with its environment by perceiv-
ing its state and selecting an appropriate action, either using a
policy or by randomly selecting an action from a set of possible
actions. The agent receives feedback in terms of rewards, which
rate the performance of its previous action.

In our case we tried to differentiate slightly. Although the con-
cepts of observations, actions and rewards still exist, we manipulate
them to meet our demands. Our algorithm doesn’t translate the
information of a reward as an indication that an action was "good"
or "bad". Here a reward represents the desire of the agent to do
a certain action. Typically, the Reward Matrix should be adjusted
according to the rewards of completing specific actions. In our case
the Reward Matrix serves as a knowledge base for the agent pro-
viding useful information about what consists of a "good behavior"
for our functionality under test.

In section 6 we discuss why did we take this decision and what
were the limitation of such an approach.

4.3 Our Scenario
In our work, we will use the algorithm to test the functionality of
the ”craft” command. The agent will pick up some of the ingredients
that are scattered around the world and try to combine them to
craft a specific item. Through an elimination process, our algorithm
should give an output of the recipe. The recipe consists of a set of
items that are required in order to craft an item. It’s an indication
of what items should be in the inventory for the crafting to be
successful. The agent has to collect them and try to combine them.
For the ease of our work, we do not experiment with complex
recipes that require more than one instances of an item. We assume
that we need only one instance of an item in our inventory.

The basic information about the mission is given in an XML
format at the beginning of the test case. Those information con-
cern the creation of the world, the agent basic information such as
his spawn position and the observations that the framework will
provide us with. Figure 3 presents an example of a mission.

The user/tester is able to manipulate certain parameters on our
script, referred as independent variables, to control the test case.
The agent considers the world as a black box, he has no knowledge
of those variables as well as any other information about the world

7

Figure 3: An example of the XML mission

and should be able to find out which exact ingredients are needed
for the recipe due to our AI algorithm. Those parameters are:

(1) The area A of the world where all the items will be generated
(2) The number of the items Ni that can be generated
(3) The number of the types of items Nt that will be spawned
(4) The desire threshold Dth
(5) The reward goal RwG
(6) The Policies Pi needed for updating the Reward Matrix

We chose to implement our scenario into a 50x50 open world en-
vironment with various obstacles and structures of certain height
such as hills or ladders. However,since navigation wasn’t as an
important aspect as the functional testing and AI techniques in
our experiment, the AI algorithm of the path planning is pretty
simplistic, providing the agent to jump over obstacles and block
structures. A far more complex world would require heavy naviga-
tion calibration which falls out of the scope of our research.

Each item is randomly generated into the world and scattered
around across the area A, a parameter controlled by the user prior
to the experiment. Each type of item eg. melons, apples, eggs etc.,
is given a randomly generated float number between 0 and 1 as a
reward. This number also reflects to the Reward Matrix and can be
translated as a desire of the agent to pick up the specific item. The
higher the reward value is, the higher the probability of being the
item being picked up by our agent. The Reward Matrix is basically
a python dictionary that registers the name of every type of item
available in our test case and its reward value.

The desire threshold is a float number, given by the human tester,
that represents the threshold above which the AI agent will try to
find a type of item to collect.

The reward goal is a constant float number, given by the tester
which will serve as an ending condition for every iteration. When
the current reward sum exceeds the reward goal, the agent will
stop moving and collecting items and will attempt to craft.

We used two different policies to update our Reward Matrix.
In the first policy P1, after every repetition of the mission (see
algorithm), we set the new reward value of every type of item to a
random float number between its previous value and 1. That way,
as repetitions go by, the reward value of the item increases and will
be forced to exceed the desire threshold and ensure that the item
will eventually be picked up. On the contrast, the second policy
that we used P2, after every repetition, randomly generates a new
reward value for the item.

The agent can perform six actions: move forward, backwards,
turn left, right and pickup or discard items and craft. We chose to
make the agent move and turn with a constant speed at each game
tick while roaming around the virtual world.

While the mission is running, our agent receives information
about the blocks that exist in the world in a 3x3x2 grid away from
his current position. For example, he gets information about the
blocks that are directly in front of him on his current height and the
one above him. That way the agent knows whether he can actually
move forwards or jump over an obstacle. This information comes in
a form of a 2D array that contains the names of the adjacent blocks
in the specified height next to the agent. We translate this array
in a way to understand whether the agent is able to jump over a
block and the direction it needs to follow. In the extreme conditions
that an agent cannot get past or over certain obstacles (possibly
a row of blocks with height more than 2), after a few game ticks
our algorithm can determine that the agent is stuck in a deadlock
position. We then make the agent either turn left or right so he has
the opportunity to find a way to avoid the obstacle by recalculating
his new route.

In every repetition, the agent starts from the center of our work
space and moves around the world to collect items. Its movement
is predetermined offline at the beginning of the running test script.
Specifically, before each repetition our algorithm saves in a list of
positions, the coordinates of every item that has a desire above the
given threshold Dth. The agent will visit those positions and will
collect every item that it finds on its path. That way we ensure that
that the agent will have the opportunity to collect every type of
item, even the ones with low desire, which might prove to be an
ingredient of the recipe.

Our algorithm calculates the reward value of each item when it
receives a new observation and adds it to the sum of the current
reward. The following formula represents the calculation of the
current reward value:

CR = Pcr +i ∈Inv Ri ∗ Ni (1)

’CR’ represents the current cumulative reward, ’Pcr’ the previous
current reward ,’R’ is the reward of an item and ’Ni’ the number of
instances of an item that have been collected since last observation.

Once the total reward exceeds the reward goal the agent will
stop moving around and will attempt to craft the desired item.

The agent so far has no knowledge of the recipe and the items
that are needed to craft the item. In order for the agent to find out
which one of the ingredients that it gathered are part of the recipe,
we implemented a solution based on the idea of delta debugging.
Considering the current state of the agent’s inventory as our unit
under test, we will try to narrow down the set of items that are

8

needed until a minimal set remains that will still validate the craft-
ing command. To achieve this,the agent will toss the first item on
its inventory that hasn’t been tested before and try to craft.

If the desired item is crafted, that means that the item that it
discarded is not needed for the recipe thus it is irrelevant in our
world. We then update the reward matrix, changing the value of
that item to 0. This way the item will never be picked up again as
it is not needed.

On the other hand, if the desired item is not crafted, that means
that at the current moment, the agent does not have all the recipe
ingredients on its inventory. In this case the agent either didn’t
pick up all the items or the item that it tossed is required in the
recipe. We again update the reward matrix, changing the value of
the discarded item to 1. This means that in every other repetition
this item is of high desire as it it possibly of the ingredients of the
recipe.

We call this the elimination process as in every repetition the
agent will learn a new information about the ingredients of the
recipe by eliminating the possible candidates one by one.

This process repeats for several iterations until we reach a point
where the Reward Matrix contains only values of 0 and 1. That
means that we eliminated all the possible candidates for the recipe.
Then we perform a check to investigate if the agent came up with
the correct recipe for the crafting.The results are shown in the next
section.

In table 1 we show an example of the reward matrix in different
states of the testing phase. This table is just a representative example
we use for ease of understanding.

Item starting Reward ending Reward
pumpkin 0.758 1
beef 0.803 0.989
sugar 0.148 1
egg 0.657 1
carrot 0.235 0.870

Table 1: Example of Reward Matrix in different phases. The
rewards value of every item at the beginning of the test and
the resulting Reward Matrix. From the ingredients with re-
ward value 1 we can derive the recipe.

5 EXPERIMENTS
To answer the research questions and evaluate our research ap-
proach we conducted several experiments, which we will refer to as
test cases. Because the total amount of test cases is enormous due
to the number of variables that affect the algorithm, we decided to
cover a few important test cases that we believe will help us answer
our research questions.

The goal of the experiments is to test the functionality of the
”craft” command. The first set of experiments serve as a training
session where the agent will pick up some of the ingredients that
are scattered around the world and try to combine them to craft a
specific item. Through an elimination process, our algorithm should
give an output of a set of items that represent the recipe. In the
end the ingredients of the recipe are stored in a json file. In the

Figure 4: Different states of gameplay. The picture on the
left shows a state during the mission. The picture on the
right shows a state where our agent successfully crafted

the desired item (in this case a pumpkin pie).

second set of experiments we will use a more simplistic version of
our algorithm. In these experiments the agent knows the recipe
provided by the training session and will try to determine if it is
actually correct in various scenarios. We will attempt to measure
the accuracy of our algorithm to determine the success or failure
of crafting in extreme situations.

As a baseline configuration for all experiments, we chose to keep
some of the independent variables constant in all test cases. For
instance, in every test case we generate all the items in the same
50x50 blocks distribution area. We also keep the desire threshold
to a fixed value of 0.75. Finally the number of instances of an item
for every type stays the same in all test cases. For example, in a
configuration of 100 items with 10 types of unique items, we will
spawn 10 instances of every type of item.

We chose three metrics to measure the agent performance over
the experiment:

(1) The average time needed to come up with the recipe
(2) The amount of times that the agent successfully found the

exact recipe

For the first set of experiments we tested our algorithm in a
configuration of 10 types of available items in the world space
seeking for crafting of an item that needs 3 different types of items.
We only changed the total amount of items that are spawned in the
world starting from 100 and increasing the number by 50 until we
reach 300 as shown in 2. Each configuration run 4 times in which
we measured the time needed for every iteration until the agent
comes up with a recipe. We then measured the average time needed
for the run for each total number of items in the world.

Independent variable Value
Types of items 10
Number of items 100,150,...,300

Policy P1,P2
Number of items in Recipe 3
Table 2: Experiment 1 configuration.

We found that the algorithm performed better when a large
amount of items are spawned in the world. With 300 possible items

9

Figure 5: Comparison of policies. The blue line represents
P1 and the orange P2. We see that P1 performs much better
in average time than P2. The timings are in seconds.

the algorithm needed an average of 3 minutes and 35 sec. While
we decrease the number of possible items the algorithm takes more
time to come up with a recipe. For example with 200 available items
the average time needed was 5 minutes and 35 sec, while the
time dramatically increased with 100 items with an average of 13
minutes and 51 sec. Another interesting result was the time the
agent needed to reach the reward goal and start the elimination
process. We found out that in 300 items the time span ranged from
14 to 33 seconds while on 100 items it took 50 to 122 seconds
for every iteration.

With the above configuration the agent was able to identify the
exact recipe 80% of the runs. In the other 20% the agent only added
one more item in the recipe.

The previous test case used the policy P1. We then decided to
compare P1 with P2 in the above configuration. The results are
shown in Figure 5.

We can clearly see that P1 performs better in time than P2. That
is because in policy P1 the reward value of every type of item is
increased over time meaning that the probability that the reward
will exceed the reward threshold will be higher, therefore the item
will be on the list of items that the agent will definitely try to pick
up during the run. On the contrast with policy P2, we noticed that
it might take more time for the reward to be adjusted above the
threshold, thus it is more likely that the agent will not try to find
it and collect it. In fact the less the available items in the world
the less efficient is our policy with it poorly scoring an average of
roughly 14 minutes for only 100 items.

We can acknowledge that this is a very time consuming process
to test only the crafting feature. In the next section we discuss a few
ideas for future work, to find a more suitable policy for updating
the reward matrix that might lead in improving the total running
time.

In our next experiment we investigated how the number of types
of available items in the world, affect the average running time.
In this configuration we used 100 and 300 items with 5,7 and 10
available types of items. The results can be shown in Figure 6

We can clearly see that with less available types and given a
large amount of items spawned in the area, a recipe that requires 3

Independent variable Value
Types of items 5,7,10
Number of items 100,300

Policy P1
Number of items in Recipe 3

Table 3: Experiment 2 configuration.

Figure 6: Evaluation of the algorithmwith different number
of types of available items in the world. The blue bar repre-
sents the average time with 100 items and the orange with
300 items

type of items performs much faster. This also reflect to the number
of iterations that were needed. The more types of items available
in the world the more iterations are needed due to our elimination
process. The algorithm predicts the correct recipe in 90% of the
times with 300 items and 75% with 100 items.

In our final experiment we experimented with a different recipe
scheme. This time we explore the complexity of the algorithmwhen
the number of ingredients of the recipe changes. We tried 3 different
recipes: one that needed 2 items, one with 3 (which is also the case
in our previous experiments) and one with 4.

Independent variable Value
Types of items 7
Number of items 200

Policy P1
Number of items in Recipe 2,3,4

Table 4: Experiment 3 configuration.

The results indicate that the complexity of the recipe doesn’t
affect directly the average running time and iterations are needed to
complete our task, due to the nature of the elimination process that
we use. For the same reason the algorithm finds the exact recipe in
an average of 75% of the times. Our only notice is that, the lower
the number of items needed in a recipe the more likely the agent
will add more unnecessary items in the resulting recipe and result
in a lower success score. That finding means that the complexity of
the recipe isn’t a factor that will affect greatly the performance of
the algorithm, which is clearly an advantage of our method.

10

In the second set of experiments, we will attempt to measure
the performance of our algorithm while injecting an artificial error
to our cases. This error is represented by the situation where the
agent is not able to pick up a specific type of item.

We consider a binary classifier that classifies each input pattern
in a data set into two classes, either positive (P’) or negative (N’),
while the ground truth is either positive (P) or negative (N). The
performance of the classifier can be represented in terms of these
four possible classification results:

(1) True positive (TP): the result is positive (P’) while the ground
truth is also positive (P)

(2) False positive (FP): the result is positive (P’) but the ground
truth is negative (N)

(3) True negative (TN): the result is negative (N’) while the
ground truth is also negative (N)

(4) False negative (FN): the result is negative (N’) but the ground
truth is positive (P)

In our scenarios the ground truth represent our world environ-
ment and its accessibility. More specifically, a positive ground truth
represent a world where the agent can climb every obstacle and
is able to reach every available item from at least one path, while
a negative ground truth represent a world where an inaccessible
area exist, so the agent will never have the chance to collect an
item inside this area. Accordingly a positive result indicates the
success of the crafting command and the negative result the failure
of crafting.

Now the agent knows the recipe provided by the previous train-
ing session. In these experiments our algorithm is much simpler.
The agent will have to pick up some of the items that are scattered
in the world in the same fashion as in the training session. For the
simplicity of our testing, we will only spawn the type of items that
belong to the recipe and the agent will have to try to collect all
of them. Once our algorithm reaches an ending condition that we
set, the agent will stop moving and simply try to craft the desired
items. Our algorithm is able to determine the success of the crafting
command and make an assessment of what is wrong if the crafting
fails. Those ending conditions are heuristics that will determine the
search of our agent. We used two different conditions/heuristics
and those are a reward goal and distance travelled. We should note
that, because the game will never fail to craft an item as long as the
agent has all the necessary items, we had to inject some kind of ar-
tificial error to our test oracles to simulating error prone situations.
The world environment that we used is similar to the one of the
previous session in terms of size and the structures/obstacles in it
but with small variations for every different test oracle.

In our based our experiments in crafting an item that requires 3
types of items and run 20 single simulations for each test oracle to
measure the performance of the algorithm.

In our first test oracle we will test the performance of our al-
gorithm using the heuristic of the reward goal. In this situation,
every type of item spawned in the world receives a random reward
number between 0 and 1. When the agent collects an items we
calculate the accumulative reward. Once the accumulative reward
exceeds the reward goal that we have set, the agent will stop mov-
ing and try to craft. We experimented with the variables that affect
our experiment namely the number of instance of items in our

world and the reward goal. We found out that the lower the reward
goal the less chances the agent has to collect the necessary items.
For example with the reward goal set to 1 the algorithm performs
poorly in positive ground truth, with only 30% of achieving a true
positive (TP) while if we increase the the reward goal to 2 the TP
rate increases to 80% with only 10 instances of items in the world.
In a similar fashion, the more items spawned in the world the better
the TP rate is as long as the reward goal is set above 2.

The second test oracle we test the performance of our algorithm
using the heuristic of the distance travelled. We measure the in-
game distance our agent has travelled and set up a threshold where
the agent should stop searching for items. When the agents exceeds
this value, it will stop moving and attempt to craft. In this situation,
there is no reward value to any of the items as we don’t calculate
any rewards.

We found out that the greater the distance threshold is the greater
the TP rate is with a rate of 95% on a threshold of 5000 meters (in-
game metric) and 80% with 3000 meters. In all experiments we
only spawned 10 instances of items in the world. While decreasing
this threshold, we give less chance to the agent to actually pick
up all the necessary items so the false negative (FN) rate increases
dramatically.

In our final set of experiment, we created a world with a secluded
area where the agent could not enter from any direction. WE then
spawned some items in this area and run several simulations. As
expected the rate of false positive (FP) is pretty low achieving only
a 10%. On 90% of the simulations the algorithm gave a true negative
(TN) meaning that the agent did not find all the types of items
needed for the recipe and failed to craft.

In all the above experiments, we can classify the reason of fail-
ing to craft because of the nature of the existing world. However
if we set a default world where we don’t know if the agent can
actually reach any possible place, we need a more sophisticated AI
to determine the reason of failure.

6 LIMITATIONS AND FUTUREWORK
To begin with, we must keep in mind the randomness of several
variables and factors in our experiments. For example we cannot
dictate the exact distribution of items in a certain area. If all the
items are equally distributed in an area, the agent might need more
time to pick them up compared to the scenario where all the items
an gathered in one corner of the area, because visiting this area
will make the agent interact and collect all the items that it finds.
This will negatively affect the overall testing time.

Additionally, an important factor that affects our experiment is
the path planning. We previously mentioned that the agent will
visit every coordinate that contains an item with a reward value
above the desired threshold. This coordinates are saved into a list
prior to the start of every iteration. The problem that occurs is
that the instances of that list are randomly generated because the
coordinates of those items are generated as such. This would mean
that the agent might move around the area in an non logical or
human-like behavior. For example it might need to go from corner
A to corner B and then again to corner A to get a desired item, when
it could spend more time in corner A to get all the desired items and
not having to go back and forth. The framework provides a solution

11

with observations from nearby entities, which gives information
to the agent to steer accordingly and visit the nearby item entity.
The limitation that occurred when we tried this much clever path
planning approach was that there were times when the agent found
more than one instance of a desired item nearby so in real time
it couldn’t decide which way to steer, leading to unwanted path
planning behavior such as turning around its own axis or strafing
constantly left to right without making a decision where to go.
In future work, we want to experiment with this approach and
apply a reinforcement learning algorithm such as Q-learning or
an e-greedy policy to prioritize the decision making process of the
path planning.

The most important limitation of the framework was that when-
ever the agent restarted a mission, the entities and objects of the
world were not deleted. Instead we noticed that we spawned new
random objects while the previous ones still existed in our world.
That had a negative impact on our experiments, so we decided to
reset the world whenever we restart a mission in every iteration.
However, this means that we now have a new random world, differ-
ent from the previous iteration. This means that if the agent made
the exact same actions as the previous iteration the result would
be different. If we applied traditional RL in this case then we can’t
guarantee that there is an optimal value to maximize the cumula-
tive reward. In fact, theoretically, there exist an infinite number of
values and set of actions to achieve that and finding only one of
them does not guarantee success of the functionality under test.
That is why we didn’t use any traditional reinforcement learning
technique.

Future work could also focus on implementing a better policy for
updating the Reward Matrix. We considered using neural networks
to batch the algorithm with information from a replay memory
scheme and improve the way the rewards are being updated. This
way we can gather more information about the reward of every
iteration and use that information to drive the agent to specific
actions and behavior.

In addition, we would like to further extend the part of the AI
path planning to a certain point where the agent performs the best
available action to reach a specific position. For example, we would
like to dictate a clever behavior to the agent in cases it gets stuck
in a corner or performs the same set of actions continuously.

In the current study we do not implement coverage measure-
ment. It is possible to use Malmo to log the agent’s actions and
the observation that it samples. There are techniques such as in
[26, 27] that can analyze execution traces to calculate coverage,
but additionally to inspect correctness properties on these traces.
Such an approach has the benefit that it does not require white box
instrumentation of the System Under Test, and it works off line. We
would like to extend our work with this in the future.

In a project called FITTEST [33] researchers have tried to com-
bine a number of automated testing techniques, e.g. model inference,
evolutionary-based testing, and combinatorial testing to test Inter-
net application with complex UI. It would be interesting to see how
such a combination can be extended with agent based testing.

When a test reveals a bug, we still need to analyze the execution
that the test induced to determine the source of this error, and then
fix it. This process is called debugging. When an agent is used to
automate a test, the generated execution can be very long, which

makes debugging hard. There are algorithms that we can use to
minimize the execution. For example the work in [9] discusses the
combination of the classical delta debugging algorithm and the
use of algebraic rules. It would be interesting to see how such an
algorithm could be translated to a virtual world setup.

Keeping all that in mind, our algorithm could really expand the
scalability and solve higher-dimensional tasks. For example we
can experiment with scenarios where the agent has to fight enemy
mobs, find shortest path inside a maze or even try to build a complex
construction successfully. This will provide a better insight to our
research ideas and possibly convert into a fully functional testing
framework for solving non trivial tasks in complex virtual worlds.

7 CONCLUSION
Our studymanages to utilize the notion of reinforcement learning to
teach an AI agent to complete non trivial tasks in settings with high
degrees of difficulty andwith limited knowledge of the environment
or game rules.

Our ultimate goal and the purpose of our study was to test the
functionality of a game feature. In this specific example we wanted
to test the functionality of the crafting command in Minecraft. We
reported that in 100% of the cases the crafting command worked
perfectly as long as the agent had all the required ingredients in his
inventory. The only challenge that occurs, is to build an AI algo-
rithm that will steer the agent accordingly and dictate its behavior
in order to pick up the correct required ingredients.

We conducted a small literature study for answering RQ1 and
RQ3. We present related work in the field of automated testing
in game industry showing some noteworthy methods that have
already been used. We conclude that automated testing is indeed
being implemented in gaming industry but a generalized approach
still doesn’t exist. Most gaming companies still prefer to use human
testers to test their games. We believe that in the future, with the
right tools, automated testing will be a very efficient and cost-less
solution for game testing. In addition, our experiments prove that
our method can be used in a 3D virtual world environment where
path planning is not trivial.

The experiments we conducted tried to answer RQ2. We intro-
duced a method to teach an agent to autonomously play the game
using principles from reinforcement learning. In a reinforcement
learning problem, we take the view of an agent that tries to maxi-
mize the reward that it receives from making decisions. Thus an
agent that receives the maximum possible reward can be viewed
as performing the best action for a given state. In our case, the
best action would represent crafting the item. However, due to
technical limitations of the framework, we couldn’t get any useful
information from that and we decided to approach the solution
using agent based knowledge and our version of the elimination
process as described above.

Since the complexity of the world is pretty high we were unable
to perform regression testing for all our test cases. We tried to
cover the most important test suites, that provide us with important
information about using automated testing in open virtual worlds
in terms of time.

12

The results indicate that the average running time of completing
the test case increases as the the distribution of items in the world
space is more sparse. In case of a larger environment, the agent
would probably require a lot of time to traverse from one place to
another and pickup the required items. Furthermore, the complexity
of a given recipe doesn’t really affect the time to complete the
automated test case. In addition, we don’t need to test every feature
of the game. If we manage to sample enough test cases that validate
the functionality of a feature, we have enough coverage to assume
that it will always work. Nevertheless the experiments show a
promising results in terms of time and we believe that with a few
changes in the core implementation of the algorithm, our work
could be greatly improved

Our approach is not implemented ideally to test more complex
tasks and environments but we believe that, with a little effort in
the future, it can be greatly improved and has the potential to be
used as a generic testing framework for vast open virtual worlds.

A APPENDIX
The layout of the appendix proceeds as follows: In section A1 we
provide additional information about testing in games. In section
A2 we discuss a few common AI approaches in video games. Both
of those sections are related to our research and are considered
an extension of our case study. Section A3 briefly describes path
planning of agents in virtual worlds. In the last section we provide
some complementary information of our algorithm.

A.1 Testing
A.1.1 Testing steps. Testing plays an important role in the devel-

opment process of a video game. A game testing is done at different
levels of development process to detect various defects and bugs.
This process is not always done by the game programmers. Usually
they only test a small part of their code. Game testers posses the
role of testing every aspect of a game. The testers first plan the
tests, execute them on the code and report the found bugs to the
developers. The developers inspect the reported bugs, debug to find
the bugs in the code, fix the bugs in question and compile a new
build of the game. The cycle continues as the testers plan the tests
and execute them for this new build of the game [15].

Schultz et al. [28] show that a basic game testing process consists
of the following steps:

(1) Plan and design the test: In each build the design speci-
fication could have changed, the game could support new
configurations, old features might have been cut and bugs
could have been addressed. Because of this, the planning and
design of tests should be revisited in each build. The aim of
testing is to make sure no news bugs were introduced when
the aforementioned changes were made.

(2) Prepare the test:The code, tests, test related documents and
the test environment should be updated and be aligned with
one another. When the development team has marked the
bugs as fixed for the build, the QA team can start running
the tests.

(3) Perform the test:Testers run the test suites again in the
new build. When a bug is found, it is examined, so sufficient
information can be provided to the bug report.

(4) Report the results:The completed test suites are logged
and all defects found are reported.

(5) Repair the bug:The development team debugs the code to
find the bug and repairs it.

(6) Return to step 1 and re-test:When the bugs are repaired,
and any other additional features wanted for the build are
done, the new build can be released to the team. This starts
the cycle again, with new possible bugs to examine and new
test results.

A.1.2 Types of errors in video games. To better understand the
types of errors that might occur in video games, we should mention
the work of Lewis et al. [17] where the authors present a taxonomy
of possible failures in a video game. Their taxonomy aims to cate-
gorize bugs during gameplay and support that it could lead to new
solutions in solving video game bugs. Some noteworthy elements
of this taxonomy are as follows:

Object out of bounds: Object out of bounds is a classification
of an object being outside of the world boundaries.This category
encompasses many common types of failures, such as escaping a
map or falling through the floor.

Invalid value change: Invalid value change is a broad term that
describes any game event that changes some form of counter in
an unexpected way, such as a bullet that should remove health not
doing so or collecting a coin that changes the score by 100 instead
of 1.

Artificial stupidity: Artificial stupidity represents bugs that
are directly related to an NPC performing certain actions that break
the illusion of intelligence. Common examples include characters
not responding to being shot at, blocking doorways or walking into
walls.

Information: The Invalid information access category encom-
passes failures that allow the player to gain more information than
is expected by the game design. For example,this category includes
seeing through walls or gaining complete or false information on a
game map that should have a fog of war.

Action: Action represents actions being taken while the game
is paused as well as scripts executing when they are not allowed to
yet. This might lead to invalid states of gameplay.

All the above type of errors, among others, can potentially lead
to gameplay errors. However, those errors are not easily detectable
by AI agents during gameplay. Those errors, by their nature, are
non trivial challenges that an agent might ignore or miss during
automated testing if it is not trained to behave like a human manual
tester. Thus new technologies and solutions are required to address
these issues.

A.2 AI
This section will focus on three of the most popular and commonly
used AI techniques used in video games: Neural Networks, Rein-
forcement Learning and Evolutionary Machine Learning.

A.2.1 Neural Networks. Neural Networks [6] are statistical mod-
els that are capable of modeling and processing nonlinear relation-
ships between inputs and outputs in parallel. Neural Networks are
characterized by containing adaptive weights along paths between

13

neurons that can be tuned by a learning algorithm that learns from
observed data in order to improve the model.

Although neural networks have been predominantly used for
game agent representation, they provide efficient operation when
trained on sufficient data. Training neural networks with traditional
learning algorithms has proven to be inefficient and requires the
generation of datasets containing examples to cover all possible
situations that may be encountered by the game agent in order
to obtain fully robust game agent behaviours. The use of neural
networks appears to be well suited when applied to player mod-
elling, though such an approach requires a comprehensive dataset
for training and validation. Traditional neural network training
algorithms have been shown to be unsuitable for real-time use and
are restricted to use as an offline learning mechanism.

To get a better understanding of the applications of Neural Net-
works in video games, we discuss the work of Geisler [12] ”Inte-
grated machine learning for behavior modeling in video games”.
In this paper, the author show that a subset of AI behaviors can
be learned effectively by player modeling using the machine learn-
ing technique of neural network classifiers trained with boosting
and bagging. The model is able to teach the AI agent of combat
behaviors of an expert player in a modified version the First Person
Shooter game Soldier of Fortune 2.

In order to define the optimal behavior for the agent, the model
extracts data by observing an expert player playing the game. A
feature set of common actions is extracted from the data collected
according to their importance. In this particular game, some actions
would be move front/back, accelerate, jump, player’s health status
etc. Through this data extraction, the author is able to translate
the data into feature vectors which will be used to train the Neural
Network algorithm.

The major drawback of this method relies on the fact that the
learning and behavior of the agent is directly based on the experi-
ence of the machine learner. An in inexperienced one will lead to
an inexperienced AI agent. In addition, the model requires a huge
amount of samples to map all possible behaviors and for the Neural
Network to produce minimal errors.

A.2.2 Reinforcement Learning. Reinforcement Learning (RL)[2]
is a type of machine learning, that allows machines and software
agents to automatically determine the ideal behaviour within a spe-
cific context, in order to maximize its performance. Simple reward
feedback is required for the agent to learn its behaviour, known
as the reinforcement signal. In machine learning, the environment
is typically formulated as a Markov decision process (MDP). The
agent receives a reward, which depends on the action and the state.
The goal is to find a function, called a policy, which specifies which
action to take in each state, so as to maximize some function of
the sequence of rewards. The main difference between the classical
techniques and reinforcement learning algorithms is that the latter
do not need knowledge about the MDP and they target large MDPs
where exact methods become infeasible.

RL allows the machine or software agent to learn its behaviour
based on feedback from the environment. This behaviour can be
learned once and for all, or keep on adapting as time goes by. If the
problem is modelled with care, some RL algorithms can converge

to the global optimum, to module ideal behaviour that maximizes
the reward.

There are some fundamental problems that RLmust tackle. Firstly,
it is often too memory expensive to store value of each state, since
the problem can be pretty complex. Solving this involves looking
into value approximation techniques, such as Decision Trees or
Neural Networks. There aremany consequence of introducing these
imperfect value estimations, and research tries to minimize their
impact on the quality of the solution. Secondly, problems are also
generally very modular, as similar behaviours reappear often, and
modularity can be introduced to avoid learning everything all over
again. Another problem that usually occurs in large scale games,
is the problem of delayed reward. For example an agent makes
actions and receives rewards only at the end of the game. Then
the problem that arises is that we don’t know which of the actions
was responsible for winning/losing the game. It is fundamentally
impossible to learn the value of a state before a reward signal has
been received. In large state spaces, random exploration might take
a long time to reach a rewarding state. The only solution is to define
higher-level actions, which can reach the goal more quickly. Finally,
due to limited perception, it is often impossible to fully determine
the current state.

An issue that arises as a consequence of learning is the prob-
lem of overfitting, which may occur if a game agent has learned
to adapt its performance according to a very specific set of states
from the game environment and remains unable to perform gener-
alization, resulting in poor performance when new game states are
encountered [11].

We will now review some noteworthy RL techniques used in
recent videogames.

Deep Reinforcement Learning. Deep learning, is really just a term
to describe certain types of neural networks and related algorithms
that consume often very raw input data. They process this data
through many layers of nonlinear transformations of the input data
in order to calculate a target output.

Firoiu et al. [10] present a very similar approach to Mnih et
al. [21] work but extend it to a more complex environment. More
specifically they focus on Super Mario Bros Melee (SSBM), a more
complex multi-player game. Its large and partially observable state,
the transition dynamics and the delayed rewards pose a crucial
challenge to their method. The multiplayer aspect of the game adds
an entirely new dimension of complexity since success is no longer
a single, absolute measure given by the environment, but instead
must be defined relative to a variable, unpredictable adversary. In
their method they use Q-networks similar to Minh’s [21] work and
exploit a set of policy gradient methods to map states to actions.
The agent with the appropriate parameter tuning was able to defeat
the opposing AI at its highest level and achieve similar rewards
with those of human experts.

Motivated Reinforcement Learning. Another noteworthy approach
is Merrick et al. [19] Motivated RL approach. In this approach the
agent is able to explore the environment and learn new behavior
in response to interesting experiences, allowing to display progres-
sively evolving behavioural patterns. In more dynamic worlds the

14

agent is able to learn and adapt its behavior according to surround-
ing changes. Motivated reinforcement learning agents are meta-
learners which use a motivation function to provide a standard
reinforcement learning algorithm with an intrinsic reward signal
that directs learning. Unlike existing non player character(NPC)
technologies, the motivation function uses domain independent
rules based on the concept of interest in order to calculate an in-
trinsic motivation signal. Skill development is dependent on the
agent’s environment and its experiences rather than on character
or domain specific rules or state machines. This means that a single
agent model applied to different NPCs will develop different skills
depending on the NPC’s environment. These skills are developed
progressively over time and can adapt to changes in the agent’s
environment. The authors apply the MRL model to a number on
NPC agents in a simple role playing game scenario in Second Life
game. Given a set of rules and actions according to the role of the
NPC (supporting or partner) they manage to teach the agent to
adapt to existing behavioral patterns in dynamic worlds.

In a very similar approach Singh et al. [29] discuss about an evo-
lutionary perspective of defining new optimal reward framework
using Intrinsically Motivated RL. Their focus relies on generating
the optimal fitness-based reward function for an agent to use. Both
of those papers provide very interesting insights about the behavior
of the agent in regards with the reward function used by the RL
algorithm.

Inverse Reinforcement Learning. Inverse Reinforcement Learning
(IRL) is the problem of recovering the underlying reward function
from the behavior of an expert [8]. IRL problems work in the op-
posite way to reinforcement learning - when there is no explicitly
given reward function, we can use an IRL algorithm to derive a
reward function by observing an expert’s behaviour throughout
the MDP environment. Rewards are mapped to features within
the states to reflect the importance of those features to the expert.
This analysis of expert behaviour yields a policy that attempts to
perform in a manner close to the expert [3].

Lee et al. [16] present a method that tries to imitate human like
behavior from Super Mario, by observing the actions of a human
expert player. During play sessions they calculate the player’s be-
havior policies and reward functions by applying IRL to the player’s
actions in game. Through IRL they manage to define an optimal
policy which results into performance similar to the human expert
under specific conditions. This method is not considered in our
work since we are not using human experts to teach our AI agent,
but it could prove valuable work for future research.

A.2.3 Evolutionary Machine Learning. Xiao et al. [37], present
an active learning framework for black box software testing that
samples input and output pairs from a blackbox and learns a model
of the system’s behavior. The model is also used to select new inputs
for sampling. Their approach is based on semi automated gameplay
analysis by machine learning (SAGA-ML) applied to the popular
Electronic Arts’ FIFA 99 game. More specifically, the framework
treats the game engine as a black box while SAGA-ML interacts
with it through an abstraction layer that translates specific data
and function calls to an abstract state format. The sampler uses the
abstraction layer to to evaluate situations by running a sequence of
actions and observing their results. The learner component utilizes

the data from the sampler to construct a concrete model of the
game’s behavior. The sampler and earner components combined
describe the learning part of the framework. In the end the learned
model is given to the game-specific visualizer for the designer to
evaluate. To evaluate the framework, the authors used rule based
learning. They constructed various rules for the agents and build a
game specific visualizer called SoccerViz to display the rules in an
intuitive fashion. Furthermore, they developed a new active learn-
ing technique specifically for rule-based learning systems ,called
decision boundary refinement sampling (DBRS) which aims to visu-
alize the rules in forms of region and rectangles to evaluate whether
they overlap.

Chan [7] proposes an evolutionary learning approach of agent
behavior to improve testing in commercial games, based on evolving
user action sequences producing unwanted or to be tested behavior.
The approach allows for measuring how near a sequence of game
states comes to unwanted behavior and use the measures within
fitness function in genetic algorithm. The author test the proposed
method in the famous commercial game FIFA 99.

To begin with, the method takes the inputs of the player and
translates them as action commands given to the game out of a set
of possible actions, called action sequence. Then an action sequence
is executed n times to result into k state sequences. From the set
of sequences produced the method is able to evaluate the behavior
of the agent. The genetic algorithm is then used to create action
sequences that produce an unwanted behavior specified by the
fitness function in more than a certain percentage of runs of the
game using the action sequence as user interaction input. The GA
algorithm works on the set F of sequences of indexes for actions.
The evaluation of the fitness of an individual is based on k runs of
this individual as input to the game from a given start game state
s0. Associating a low fitness-value with a good individual leads to
unwanted game behavior. The above method is tested in FIFA 99,
where the author is trying to determine the behavior of the agent
in near goal situations. Action sequences/rules are being integrated
into the state sequence like the distance of the agent position from
the goal, whether the agent has the ball and so on. The sequence
run 100 times and 80 of them it resulted to goal.

A.3 Path Planning
Path planning is a crucial ingredient in videogames since entities
like players and NPC’s must find their routes to several locations
[25]. Path planning is a challenging problem to solve for a number of
reasons. Paths must avoid obstacles and be relatively short, leading
to a difficult combinatorial problem in an environment that consists
of a huge number of obstacles. Especially in recent vast open-world
video games when entities have multiple degrees of freedom, the
dimension of the space of motion becomes larger, adding to the
difficulty.

In this section we will discuss one of the most popular path
planning approaches in video games. In addition we will review
a novel approach of path planning with the use of reinforcement
learning methods discussed above.

At each iteration of its main loop, A* needs to determine which
of its partial paths to expand into one or more longer paths. It does
so based on an estimate of the cost (total weight) still to go to the

15

goal node[1]. Specifically, A* selects the path that minimizes

f (n) = д(n) + h(n) (2)

where n is the last node on the path, g(n) is the cost of the path from
the start node to n, and h(n) is a heuristicthat estimates the cost
of the cheapest path from n to the goal. The heuristic is problem-
specific. For the algorithm to find the actual shortest path, the
heuristic function must be admissable, meaning that it never over-
estimates the actual cost to get to the nearest goal node. A* al-
gorithm is the most commonly used path planning algorithm in
games due to its simplicity and effectiveness. In recent years several
other techniques have emerged like navigation meshes, probabilis-
tic roadmaps and real time path planning. However we will not
dig more into path planning literature as it is not the main subject
of our research. We will only discuss how path planning can be
intergated into a game with help from AI learning algorithms.

Mirowski et al. [20] discuss about agent navigation in complex
environments with the use of reinforcement learning techniques.
They show that data efficiency and task performance can be dramat-
ically improved by relying on additional auxiliary tasks leveraging
multimodal sensory inputs. They implement a combination of learn-
ing the goal-driven RL problem with auxiliary depth prediction and
loop closure classification tasks. This approach can learn to navi-
gate from raw sensory input in complicated 3D mazes, approaching
human-level performance even under conditions where the goal
location changes frequently. Of course learning to navigate through
RL methods in partially observable environments is not a trivial
task. Rewards have to be sparsely distributed in the environment
where there might be only one target location. In addition, in cases
of dynamic elements in the environment the agent should use mem-
ory to redefine the goal location, visual observation etc. The authors
use depth prediction to extract data of the visual observation of the
agent and the 3D geometry of the environment. Then they directly
invoke a loop closure technique that trains the agent to predict
if the current location has been previously visited within a local
trajectory. Finally their results and analysis highlight the utility
of self-supervised auxiliary objectives, namely depth prediction
and loop closure, in providing richer training signals that bootstrap
learning and enhance data efficiency. This is a very novel approach
that might be proven very useful in planning the trajectory of the
agent.

A.4 Additional Information
In this section we provide more information about the technical
parts of the implementation of our algorithm. An overview of the
algorithm that we used is shown in Figure 7.

In every game tick we get an instance of the world state and
check whether we got a new observation since last check. When-
ever we have new observations, we store the necessary information
into a json file and assign it to an object. In this case this is done
by the command in line 296. Now we can extract the data of the
observations and feed the agent with useful information about the
world. For example we can extract the ”yawDelta” which repre-
sents the angle of which the agent should turn in order to look
directly at a specific position. We then use this information to send
a command through the framework to the agent and dictate where
and how it should turn in order to steer himself towards a specific

Figure 7: Example code of the main loop.

Figure 8: Rewards output file.

coordinate. This is shown in lines 298-301. In line 306 we check
if we reached the reward goal that we have set from before, so
this serves as a condition to start checking the functionality of the
crafting command. We command the agent to stop moving and
receiving new observations and we perform the elimination pro-
cess. We toss the first item on the inventory hotbar and we check
whether we can still craft the desired item. This process is shown
in lines 313-323. WE now ask for a new world state and compare it
with the previous one. Whenever the crafting command succeeds
and we get the desired item in our inventory, we have get a reward
for receiving this new item. If in our new state we get this reward,
we understand that the functionality of the command works and
we update the reward matrix accordingly (lines 326-338).

The framework provides us with a functionality to store useful
information of the mission is separate files. Specifically, it records
the game and outputs a video of the mission. Additionally, in stores
all the rewards that from the observations and the timestep in a

16

Figure 9: Example of MissionInit output.

text file called ”rewards.txt” as seen in Figure 8. Finally,it provides
an output of all the necessary information about the mission in an
XML format, such as the position of every item in the world, the
observations and the rewards. An example is shown in Figure 9.

REFERENCES
[1] [n. d.]. A* search algorithm. ([n. d.]). https://en.wikipedia.org/wiki/A*_search_

algorithm.
[2] [n. d.]. Reinforcement Learning. ([n. d.]). http://reinforcementlearning.ai-depot.

com/.
[3] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international conference
on Machine learning. ACM, 1.

[4] Robert V Binder. 2000. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional.

[5] Christian Buhl and Fazeel Gareeboo. [n. d.]. Automated testing: a key factor for
success in video game development. Case study and lessons learned.

[6] Alex Castrounis. 2017. Artificial intelligence, deep learning and neural networks.
(2017). https://estidevelopers.com/2017/07/08/neuralnetworks-deeplearning/.

[7] Ben Chan, Jörg Denzinger, Darryl Gates, Kevin Loose, and John Buchanan. 2004.
Evolutionary behavior testing of commercial computer games. In Evolutionary
Computation, 2004. CEC2004. Congress on, Vol. 1. IEEE, 125–132.

[8] Jaedeug Choi and Kee-Eung Kim. 2011. Inverse reinforcement learning in partially
observable environments. Journal of Machine Learning Research 12, Mar (2011),
691–730.

[9] Alexander Elyasov, I.S.W.B. Prasetya, Jurriaan Hage, and Andreas Nikas. 2014.
Reduce first, debug later. In Proceedings of the 9th International Workshop on
Automation of Software Test. ACM, 57–63.

[10] Vlad Firoiu, William F Whitney, and Joshua B Tenenbaum. 2017. Beating the
World’s Best at Super Smash Bros. with Deep Reinforcement Learning. arXiv
preprint arXiv:1702.06230 (2017).

[11] Leo Galway, Darryl Charles, and Michaela Black. 2008. Machine learning in
digital games: a survey. Artificial Intelligence Review 29, 2 (2008), 123–161.

[12] Ben Geisler. [n. d.]. Integrated machine learning for behavior modeling in video
games.

[13] HU Huixian and LU Lu. 2016. Automatic Functional Testing of Unity 3D Game
on Android Platform. (2016).

[14] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah
Mahmood. 2015. An automated model based testing approach for platform games.
In Model Driven Engineering Languages and Systems (MODELS), 2015 ACM/IEEE
18th International Conference on. IEEE, 426–435.

[15] Mikko Lahti. 2015-02-09. Game Testing in Finnish Game Companies; Pelitestaus
suomalaisissa peliyrityksissÃď. G2 Pro gradu, diplomityÃű. http://urn.fi/URN:
NBN:fi:aalto-201502191908

[16] Geoffrey Lee, Min Luo, Fabio Zambetta, and Xiaodong Li. 2014. Learning a super
mario controller from examples of human play. In Evolutionary Computation
(CEC), 2014 IEEE Congress on. IEEE, 1–8.

[17] Chris Lewis, JimWhitehead, andNoahWardrip-Fruin. 2010. WhatWentWrong: A
Taxonomy of Video Game Bugs. In Proceedings of the Fifth International Conference
on the Foundations of Digital Games (FDG ’10). ACM, New York, NY, USA, 108–115.
https://doi.org/10.1145/1822348.1822363

[18] Jialin Liu, Julian Togelius, Diego Pérez-Liébana, and Simon M Lucas. 2017. Evolv-
ing Game Skill-Depth using General Video Game AI Agents. arXiv preprint
arXiv:1703.06275 (2017).

[19] Kathryn Merrick and Mary Lou Maher. 2006. Motivated reinforcement learning
for non-player characters in persistent computer game worlds. In Proceedings of
the 2006 ACM SIGCHI international conference on Advances in computer entertain-
ment technology. ACM, 3.

[20] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. 2016.
Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673
(2016).

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[22] Kshirasagar Naik and Priyadarshi Tripathy. 2011. Software testing and quality
assurance: theory and practice. John Wiley & Sons. 16–18 pages.

[23] Alfredo Nantes, Ross Brown, and Frederic Maire. 2008. A Framework for the
Semi-Automatic Testing of Video Games.

[24] Changhai Nie and Hareton Leung. 2011. A survey of combinatorial testing. ACM
Computing Surveys (CSUR) 43, 2 (2011), 11.

[25] Mark H Overmars. [n. d.]. Path planning for games.
[26] I.S.W.B. Prasetya. 2015. T3i: a tool for generating and querying test suites for

Java. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 950–953.

[27] I.S.W.B. Prasetya. 2018. Temporal algebraic query of test sequences. Journal of
Systems and Software 136 (2018), 223–236.

[28] C.P. Schultz and R.D. Bryant. 2016. Game Testing: All in One. Mercury Learning
& Information. https://books.google.nl/books?id=jwsyjgEACAAJ

[29] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. 2010.
Intrinsically motivated reinforcement learning: An evolutionary perspective.
IEEE Transactions on Autonomous Mental Development 2, 2 (2010), 70–82.

[30] Mike Treanor, Alexander Zook, Mirjam P Eladhari, Julian Togelius, Gillian Smith,
Michael Cook, Tommy Thompson, Brian Magerko, John Levine, and Adam Smith.
2015. AI-based game design patterns. (2015).

[31] Hiroto Udagawa, Tarun Narasimhan, and Shim-Young Lee. 2016. Fighting Zombies
in Minecraft With Deep Reinforcement Learning. Technical Report. Technical
report, Stanford University.

[32] Tanja EJ Vos, Paolo Tonella, I.S.W.B. Prasetya, Peter M Kruse, Onn Shehory,
Alessandra Bagnato, and Mark Harman. 2013. The FITTEST tool suite for testing
future internet applications. In International Workshop on Future Internet Testing.
Springer, 1–31.

[33] Tanja EJ Vos, Paolo Tonella, Joachim Wegener, Mark Harman, I.S.W.B. Prasetya,
Elisa Puoskari, and Yarden Nir-Buchbinder. 2011. Future internet testing with
fittest. In Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. IEEE, 355–358.

[34] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[35] Laurie Williams. 2006. Testing Overview and Black-Box Testing Techniques.
(2006).

[36] Ping-Hung Chen Chia-Sheng Hsu Woei-Kae Chen, Chien-Hung Liu. 2016. A
Game Framework SupportingAutomatic Functional Testing for Games. Springer.

[37] Gang Xiao, Finnegan Southey, Robert C Holte, and Dana Wilkinson. 2005. Soft-
ware testing by active learning for commercial games.

17

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
http://reinforcementlearning.ai-depot.com/
http://reinforcementlearning.ai-depot.com/
https://estidevelopers.com/2017/07/08/neuralnetworks-deeplearning/
http://urn.fi/URN:NBN:fi:aalto-201502191908
http://urn.fi/URN:NBN:fi:aalto-201502191908
https://doi.org/10.1145/1822348.1822363
https://books.google.nl/books?id=jwsyjgEACAAJ

	Abstract
	1 Introduction
	2 Research objective
	2.1 Problem
	2.2 Research questions

	3 Related Work
	3.1 Black vs White box testing
	3.2 Levels of testing
	3.3 Regression testing
	3.4 Combinatorial testing
	3.5 Coverage
	3.6 Game Testing Examples

	4 Research Approach
	4.1 The Framework
	4.2 The Algorithm
	4.3 Our Scenario

	5 Experiments
	6 Limitations and Future Work
	7 Conclusion
	A APPENDIX
	A.1 Testing
	A.2 AI
	A.3 Path Planning
	A.4 Additional Information

	References

