
Forecasting Time Series with
Artificial Neural Networks

Master Thesis

P.E. Visscher

Scientific Computing Group
Mathematical Institute
Utrecht University

Supervised by
Prof. dr. R.H. Bisseling

Copyright c© 2018 P.E. Visscher
July 6, 2018

Abstract

Artificial Neural Networks (ANN) are used as universal approximators and
are getting widely adopted in several working fields such as finance. One
of the problems that can be addressed using ANN is the forecasting of time
series. Time series forecasting is known to be a difficult problem, often
requiring expert knowledge, and can be applied to problems including
predicting stock value, sales forecasting, and inventory. We explore
how the sparsity that occurs in trained ANNs can be used to generalize
the network topology to any Directed Acyclic Graph (DAG), instead of
running on a layer based architecture. Allowing the ANN to run on any
DAG allows it to use the full capabilities of the input, and intermediate
values. We show how both the Feed-forward Neural Network (FNN) and
Recurrent Neural Network (RNN) topologies can be generalized to this
variant, in both training and prediction. Finally we train these network
architectures on benchmark problems and use them to forecast time series,
where we demonstrate a powerful algorithm to predict the stock market
values one day ahead.

i

Contents

1 Introduction 1
1.1 Statistical Methods . 2
1.2 Transition to Artificial Intelligence 7

2 Artificial Neural Networks 8

3 ANN as a Computational Graph 13
3.1 Layered Architectures . 13
3.2 Lagrange Multipliers . 15

4 The Feed Forward Algorithm 19
4.1 Building Blocks . 19

4.1.1 Activation Functions 19
4.1.2 Objective Function 21

4.2 Neural Graph Algorithms 22
4.2.1 The Forward-Propagation Algorithm 22
4.2.2 Training the Neural Graph 24
4.2.3 Optimization Algorithms 28
4.2.4 Learning Rate . 32

4.3 Regularization . 35
4.4 Weight Improvements . 36

5 The Recurrent Algorithm 39

6 Experiments 43
6.1 Classification . 43
6.2 Time Series . 48

6.2.1 Sinusoid . 48
6.2.2 IBM Stock . 51
6.2.3 Recurrent IBM Stock 54

7 Conclusion 58

A Ordinary Least Squares (OLS) Estimator Optimality 67

ii

CONTENTS

B Neural Graphs (NG) MNIST Training 69

C Code 72

iii

1 Introduction

Time series forecasting is known to be a difficult problem and can be
applied on problems such as: predicting stock value, forecasting sales, and
managing inventory [Box+16]. In this thesis we will explore the theory
and effectiveness of forecasting the future value of company stock in the
stock market using Artificial Neural Networks (ANNs). Based on the
existing theory of ANNs, we introduce a more generic model, which we
will test on both benchmark problems and forecasting of time series. First
we start with an introduction of what time series are, followed by an
overview of popular time series forecasting methods. By doing so, we give
the historical context of time series prediction. Finally, in Section 1.2, we
describe why it is hard to use those existing methods in practice, and
why ANNs do not suffer from the same problems.

Time series are a data type, indexed and ordered in time. A time
series is either continuous or discrete. In this work we only consider
discrete time series, with a fixed time interval h. We define J = [1, . . . , n]
as the collection of all indices for n discrete time points. The discrete
ordered set of time points T can be concisely defined as T = h0 + hJ ,
where h0 is the time offset of the time series, and h is the fixed time
interval, with τt = h0 + ht ∈ T the time corresponding to index t ∈ J .
We can write the discrete time series as a function z : T → Rm of time
τt, but we simplify this notation to zt = z(τt). When m = 1 we have a
one-dimensional observation at each time step; we call this a univariate
time series. For m > 1 each observation is a vector zt; in this case we
assume a multivariate process. For a univariate time series we use the
vector z and for a multivariate time series we use the matrix Z.

Traditionally, a single time series is decomposed into multiple time
series each describing a certain characteristic. We can decompose a time
series zt at time index t with:

• Tt, a trend component which describes the increasing or decreasing
trend in the time series. Note that this component may be non-
linear.

• St, describes the seasonality component, which is a periodic function.

• Nt, describes the noise component, which is the remainder of the

1

1.1. STATISTICAL METHODS

time series, after the other components have been accounted for.

These components can be modelled both additively and multiplica-
tively: zt = Tt + St +Nt and ζt = Tt · St ·Nt respectively [Box+16]. Note
that the multiplicative model may be described by the additive model
with a logarithmic transformation

ln ζt = ln(Tt · St ·Nt)
= lnTt + lnSt + lnNt

= z̃t.

This means that the additive model is generic enough, since a multiplica-
tive representation can easily be transformed to it.

By using the characteristics of each of the components of the decom-
position, we can model them separately, after which we can recombine
them at a later stage. For example, the trend may be modelled with a
linear regression, while the seasonality can be fit using a Fourier series.
These statistical approximations are deterministic and we assume that
the characteristics hold over time, which makes them less flexible than
methods that do not make these assumptions [Har90].

1.1 Statistical Methods
Historically, time series forecasts were made using statistical methods,
where early on methods like OLS were used. In 1927 Yule [Yul27] and in
1931 Walker [Wal31] defined the Autoregressive (AR) model approach.
An improved version of this model called Autoregressive Moving-Average
(ARMA) was popularised by Box and Jenkins [BJ70]. Originating from
the Box-Jenkins method, the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) method was defined by Bollerslev [Bol86].

Ordinary Least Squares

A simple method to forecast time series is by applying the OLS algorithm.
We assume that our time series can be modelled as

z = Xβ + ε, (1.1)

where X ∈ Rn×m with full column rank m contains the exogenous vari-
ables, β ∈ Rm contains the model parameters, ε ∈ Rn contains uncorre-
lated random errors with E [ε] = 0 and variance σ2, and z ∈ Rn.

To use this model we have to fit it to our data, from which we will
get the unbiased estimates β̂ for the parameters β. In our fit we want to
minimise the sum of squared residuals

S(β) = 〈ε, ε〉
= ‖z−Xβ‖2

2 .

2

1.1. STATISTICAL METHODS

This can be done by letting β̂ be our estimator such that

β̂ = (XTX)−1XTz, (1.2)

see the proof in Appendix A. In practice we fit the β̂ parameters using a
linear system solver. For example let our model, where τt describes the
training data, be given by

zt = β1 + β2τt + εt

or in matrix notation

z =


1 τ1
... ...
1 τn


(
β1
β2

)
+ ε.

After fitting this model to the sample data, with the OLS estimator, we
get parameters β1 and β2. From the estimator β̂ we can predict values
at other time points. These new time points are defined as τ̂ ∈ Rk. By
choosing our own X matrix for the OLS model that incorporates these τ̂
values

X =


1 τ̂1
... ...
1 τ̂k

 ,
we can make predictions by applying the β̂ estimator. While OLS works
very well to describe a linear trend, it fails to define the seasonality of a
time series, since all this information will be hidden in the ε vector.

Polynomial Regression

We can modify the OLS approach to fit polynomial models. Again we
assume that our time series can be modelled as

z = Xβ + ε.

While all parameters function the same as in normal OLS, we only have
to redefine our X matrix. Let m be the dimension of the polynomial we
want to fit to our data. For this m we let X be the Vandermonde matrix

X =



1 τ1 τ 2
1 . . . τm1

1 τ2 τ 2
2 . . . τm2

...

...
1 τmn

 ,

wherein we have Xi,j = τ j−1
i for each element. The fitting method

described in the OLS algorithm can be used here too. We extrapolate
this polynomial by ensuring the matrix is defined as a Vandermonde

3

1.1. STATISTICAL METHODS

matrix. To properly make a regression using this model we need to know
the dimension m of the polynomial beforehand. As demonstrated by
Anscombe [Ans73] both over-fitting, and under-fitting are a real problem
with model dimensionality.

Definition 1 (Strict Stationarity).

Let J = [1, . . . , n] be the index set for n time points. A time series z ∈ Rn

is strictly stationary if for all t, k, k + t ∈ J the probability distribution
for z1, . . . , zt is the same as for z1+k, . . . , zt+k.

Definition 2 (Covariance).

Let J = [1, . . . , n] be the index set for n time points and z ∈ Rn be a
time series. The covariance function is defined as

Cov(zt, zs) = E [(zt − E [zt])(zs − E [zs])] ,

for all t, s ∈ J .

Definition 3 (Weak Stationarity).

Let J = [1, . . . , n] be the index set for n time points. A time series z ∈ Rn

is weakly stationary if a µ and σ exists such that

1. E [zt] = µ for all t ∈ J .

2. E [(zt − µ)2] = σ2 <∞ for all t ∈ J .

3. For all k ∈ J there exists γk such that for all t, t+ k ∈ J it holds
that Cov(zt, zt+k) = γk.

Definition 4 (Discrete White Noise).

Let J = [1, . . . , n] be the index set for n time points. Discrete white noise
{εt, t ∈ J} is identically and independently distributed (i.i.d) and there
exists a σ such that

1. E [εt] = 0.

2. E [ε2
t] = σ2.

3. E [εtεs] = 0, for t 6= s, and t, s ∈ J .

4

1.1. STATISTICAL METHODS

General Linear Processes

Wold showed in 1938 [Wol38] that every weakly stationary process with
E [zt] = 0 can be written as a general linear process

zt = εt +
∞∑
i=1

ψiεt−i, (1.3)

where εt is discrete white noise, and ψ = (ψ1, ψ2, . . .) are weights. Koop-
mans [Koo74, p. 254] showed that under certain conditions (such as
spectral density boundedness of the white noise process) this can be
rewritten as

zt = εt +
∞∑
i=1

πizt−i, (1.4)

where again εt is discrete white noise, and π1, π2, . . . are weights. The
weights πi and ψi for all i are related by an explicit bijection. The number
of weights needed for both these models are infinite, and thus the models
in these forms are not practical. Under the assumption that only a finite
number of weights are non-zero we can derive new models.

Moving-average Model

The Moving-Average (MA) process uses a weighted sum of the previous q
discrete white noise data points, or MA(q) in short. This is a special case
of Equation (1.3) wherein only the first q weights of ψ are non-zero. The
model is defined as

zt = µ+ εt −
q∑
i=1

θiεt−i, (1.5)

where εt is discrete white noise, θ1, . . . , θq are weights, and µ is a translation
constant (and in this case the mean). To fit this model to a time series
we need to find the values for µ, θ1, . . . , θq and the σ2 for the discrete
white noise εt, thus we have q + 2 unknown parameters. A MA process is
strictly stationary, just as the general linear process.

Autoregressive Model

In an AR model each element in the time series is a linear combination of
previous elements, contrary to the weighted sum of discrete white noise
data points MA uses. This is a special case of Equation (1.4), wherein
only the first p weights are non-zero. The AR model of order p, AR(p),
is defined as

zt = µ+ εt +
p∑
j=1

φjzt−j, (1.6)

where φ1, . . . , φp are the model parameters, εi is discrete white noise, and
µ is a translation constant. Again to fit this model we need to find the
parameters µ, φ1, . . . , φp and the σ2 of the discrete white noise εt, which
are p+ 2 unknown parameters. Unlike the MA model, the AR model is
not necessarily weakly stationary. The process is only stationary when the

5

1.1. STATISTICAL METHODS

roots of the characteristic polynomial defined by the model fall outside
the unit circle [AA13].

Autoregressive-moving-average

The AR and MA models can be improved by combining them. This new
process is called ARMA, ARMA(p, q), and is given by

zt = µ+ εt −
q∑
i=1

θiεt−i +
p∑
j=1

φjzt−j, (1.7)

where the parameters are the terms combined from the AR and MA
models. We now have p + q + 2 unknown parameters. Since ARMA
assumes that our model is stationary, an extension called Autoregressive
Integrated Moving-Average (ARIMA) was developed which also works
for non-stationary time series. ARIMA integrates the time series d times
by differencing the values of a non-stationary time series to make it
weakly stationary. ARMA and ARIMA can be extended to perform
better on data with seasonal components, called Seasonal Autoregres-
sive Moving-Average (SARMA) and Seasonal Autoregressive Integrated
Moving-Average (SARIMA) respectively. These models include a dif-
ferencing with a lag s, which is the seasonality period, to account for
the periodic terms. Another generalisation of the ARMA model, named
GARCH can be made. GARCH assumes that the discrete white noise
variance in the model follows an ARMA model, whereas ARIMA assumes
that this error variance is constant [Bol86]. AR, MA, ARMA, ARIMA,
and GARCH are univariate models, but in practice we often want to
forecast multivariate processes. For this purpose Vector Autoregression
(VAR), Vector Autoregressive Moving-Average (VARMA), Vector Au-
toregressive Integrated Moving-Average (VARIMA), and Multivariate
Generalized Autoregressive Conditional Heteroscedasticity (MGARCH)
were developed. For every time series a new number of parameters has to
be determined, and usually each time series has many parameters. This
is the drawback of these type of processes, since parameter estimation
for many time series may get infeasible due to the growing number of
parameters needed [DP02].

6

1.2. TRANSITION TO ARTIFICIAL INTELLIGENCE

1.2 Transition to Artificial Intelligence
The traditional methods presented here often require hand-crafted features,
and expert knowledge of the field [Gam17]. They often require either
strict-, or weak-stationarity in the data, which in practice often does not
hold. This means that before we can apply traditional methods, we need
to transform our data with techniques such as detrending algorithms,
which introduce their own class of problems. It should also be noted that
the ARIMA class of models only performs well on linear processes.

ANNs do not suffer from these problems since they are non-linear
in nature and data driven. ANNs often outperform ARIMA models
[Koh+96; KOW04; CL11] and even hybrids of ANNs and ARIMA models
have been used [Día+08] to produce better results than either model
alone. Although ANNs have been around since the 1950s and 1960s, only
recently the cost of collecting data has become cheaper than analyzing
it due to the advent of cloud computing and cheaper and larger storage
hardware. The massive data collection that followed from it sparked
renewed interest in data driven algorithms, of which ANNs is an example.
ANNs learn to model processes based on example input and output values,
and performance gets better when more data is used in the training of
the models. This shifts the required expert knowledge, that was required
with techniques such as ARIMA, from the working field of the data to
knowledge of the algorithm. This inherently makes it cheaper and easier
to make meaningful predictions from time series data.

7

2 Artificial Neural Networks

In this chapter we introduce the concepts of ANNs, and concisely discuss
how they have evolved. We give the theory on two of the most common
ANN architectures; the Feedforward Neural Network (FNN) and the
Recurrent Neural Network (RNN). An ANN is a method for approximating
an unknown function y = f(x) that maps the input data x to the
output data y. An ANN consists of a directed network of perceptrons
each of which itself maps an input data space to an output space. A
perceptron is defined by a set of parameters and an activation function.
These parameters can be ‘learned’ or ‘trained’ by solving an optimisation
problem for a training set {xi} for which the output {yi} is known. The
details of how the networks are trained are left to later chapters, see
Chapter 4 and Chapter 5, where the learning algorithms are described in
detail.

Single-layer Perceptron

The simplest form of ANN is the Single-layer perceptron. Rosenblatt
developed these kind of perceptrons through the 1950s and the 1960s
[Ros61]. Let x ∈ Rn be the input vector, w ∈ Rn the weights, and b ∈ R
the bias of the perceptron. Now let the output of the perceptron be
defined by thefollowing function

f(x,w, b) =
{

0 if 〈w,x〉+ b ≤ 0,
1 if 〈w,x〉+ b > 0.

(2.1)

This perceptron instantly flips its value from 0 to 1 when x ≈ 0. By
making this function continuous we can apply algorithms that use the
derivative to train the weights w and bias b. Initially this continuous
perceptron was made by using the sigmoid function

σ(x) = 1
1 + e−x

. (2.2)

The sigmoid here is called the activation function. The sigmoid perceptron,
also called a sigmoid neuron, is now defined as

f(x,w, b) = σ(〈x,w〉+ b) = 1
1 + e−〈w,x〉−b

. (2.3)

8

Feedforward Neural Network

The Single-layer perceptron can be extended to the multi-layer case, often
called Multi Layer Perceptron (MLP), or Feedforward Neural Network
(FNN), wherein we have multiple layers each consisting of multiple neurons.
Information only flows in one direction in a FNN, and thus FNNs are
acyclic. In this type of ANN we have the input layer, vector x, middle
layers, and finally an output layer. The layers in the middle are called
hidden layers, as they are neither part of the input or output. Each
hidden layer is fully connected with the previous layer, and the output
layer is fully connected with the last hidden layer. Each hidden layer
and output layer has a fixed number of neurons, which is a configurable
parameter of the model. The goal of this network is to approximate a
function f ∗.

In an FNN, each neuron is connected to all the neurons in the next
layer, which can be seen as a complete bipartite graph, or biclique. Each
connection in this graph has its own weight, and thus we have a weighted
biclique. Let dl be the dimension of layer l, and Wl ∈ Rdl+1×dl be the
weight matrix where each element (Wl)i,j is the weight between neuron
i on layer l and neuron j on layer l + 1. Now let bl ∈ Rdl+1 be the bias
vector of layer l with each element (bl)i the bias of neuron i. Now the
output y of the FNN, with hidden layers l ∈ [1, . . . , n− 1] is defined as

xl+1 = gl(Wlxl + bl), (2.4)
y = ω(xn−1) (2.5)

where x0 is the input vector, y is the output vector, gl : Rdl → Rdl is the
activation function of layer l, and ω : Rdn → Rdn the output function. An
example of a FNN can be seen in Figure 2.1

x
(0)
1

x
(0)
2

Input layer
x(0)

Hidden layer
x(1)

Hidden layer
x(2)

y1

y2

Output layer
y

Figure 2.1: An example FNN with two 4-dimensional hidden layers, an
input vector and output vector both of dimension 2.

9

Activation Functions

ANNs initially used the sigmoid function as activation function, see
Equation (2.2), but practice shifted fast to the use of the hyperbolic
tangent activation function g(x) = tanh(x) = 2σ(2x)−1 due to its stronger
gradients around x = 0, bias avoidance and faster convergence in training
[Hay04; LKS91]. The Rectified Linear Unit (ReLU) activation function
g(x) = max(0, x) was popularised by Krizhevsky in [KSH12], where
a convergence improvement of approximately 6 times over hyperbolic
tangent activation functions was shown. ReLU has a large domain for
which the neuron output has value 0, which means that gradient based
learning methods cannot get information from these neurons. Using
ReLU, neurons can irreversibly die by failing to get to a value wherein the
neuron gets activated again. The ReLU activation function is generalized
by redefining it as g(x, αi) = max(0, x) + αi min(0, αi), where i refers
to node i. The Leaky ReLU sets αi ≈ 0.01 which reintroduces a small
gradient [MHN13]. Another form makes αi a trainable parameter, which
results in the Parametric ReLu (PReLU) [He+15].

Theorem 1 (Kolmogorov’s Theorem [Kol63]).

Any multivariate continuous function f : Rn → R can be represented as
a superposition of one-dimensional functions such that

f(x) =
2n∑
j=0

φj

(
n∑
i=1

ψj,i(xi)
)
, (2.6)

where both φj : R → R and ψj,i : R → R are continuous. While
Kolmogorov’s proof was inconstructive, Braun and Griebel finally proved
this theorem in 2009 [BG09].

Theorem 2 (Universal Approximation Theorem [Csá01; Cyb89]).

Let φ be an arbitrary activation function. We let X be a compact set,
defined as X ⊆ Rn. The space of continuous functions on X is denoted
by C(X). Then given any ε > 0 for all f ∈ C(X), there exists a m ∈ N,
and ui, bi ∈ R, and wi ∈ Rm where i ∈ [1, . . . ,m] such that

F (x) =
m∑
i=1

uiφ(〈wi,x〉+ bi),

and ‖F (x)− f(x)‖ < ε, for all x ∈ X.

Universal Approximator

Kolmogorov showed in 1957 [Kol63] by proving Theorem 1 that any
multivariate continuous function f : Rn → R can be represented by
O(n2) continuous one-dimensional functions. By building on this theo-
rem, Theorem 2 proved that a single-layer FNN can approximate any

10

continuous function on a compact set. This theorem was extended to
the multi-layer case [HSW89] by Hornik, Stinchcombe and White, and
it showed the existence of a FNN for every compact continuous function
in Rm. A remarkable corollary of this theorem is that the working of
the FNN is not dependent on the activation function φ, and that the
number of neurons needed is finite. Unfortunately neither Theorem 1 nor
Theorem 2 give direction on the learnability of the needed parameters.
Both shallow and deep (a network with more than one layer) FNNs are
universal approximators by Theorem 2, but deep ANNs are conjectured
to have a significantly greater representational power than a shallow ANN.
This conjecture is supported by recent research [MLP16; CSS16], that
shows that deep networks require fewer parameters to represent the same
function than shallow networks.

Recurrent Neural Network

In theory, a FNN due to Theorem 2 is capable of approximating every
compact continuous function. In practice we need different architectures
of the networks to effectively learn the needed capabilities. One of such
architectures that is of particular interest for predicting time series is
the RNN [WH86]. While the FNN architecture has to represent time
explicitly with a fixed-length window, the RNN does this by representing
time recursively [Mik+14]. This makes the RNN architecture particularly
suitable to sequential data, since it is able to learn long-term dependencies
in the data better. In fact it can be shown that for any computable function
there exists a finite RNN that is able to compute it. Furthermore, there
also exist finite sets of RNNs that are Turing complete and thus they can
be used to implement all algorithms [SS95].

The idea in a RNN architecture is to let each time step share the same
progressing internal state, and let the neural network have the data of not
only the current time step, but also the previous. This can be, but is not
limited to, a shared connection between hidden units, the output from a
previous time step to the hidden units of the current time step. Or more
generally, given the forward-propagation function f , parameters θ, the
state h(i), and input x(i) at time step i, a RNN often uses a representation
in the form

h(t) = f(h(t−1), x(t), θ). (2.7)

RNNs are notoriously harder to train than FNNs with gradient based
learning methods, which is explained by Theorem 3 [PMB13]. Improved
versions of the RNN such as the Long Short-Term Memory (LSTM)
networks [HS97] and Gated Recurrent Units (GRU) networks, were de-
veloped specifically to prevent the gradients from exploding or vanishing
[Chu+14].

11

Theorem 3 (Exploding and vanishing gradients [PMB13]).

Let σ : Rd 7→ Rd be an activation function with a bounded derivative,
and

γ = sup{‖σ′(xk)‖2 ,xk ∈ Rd}.

Let t − k be the difference in time steps from time t. Now when the
largest eigenvalue λ1 of the recurrent weight matrix R satisfies λ1 < γ,
the gradient of the long term contributions converges to 0 exponentially
fast with O(exp(t − k)). When λ1 > γ, the gradient of the long term
contributions keeps increasing exponentially fast with O(exp(t− k)).

Sparsity

Now that we have introduced the most common ANN architectures, we
will try to create a generic architecture from these. A basis for this lies
in the work of Bourely [BBC17] where the implementation of ANNs as
sparse multipartite graphs was shown. We can take this form further by
representing ANNs as Directed Acyclic Graphs (DAGs) without layers. A
foundation of this idea was laid out by van der Lugt [Lug17], wherein the
ANN was reprented as a graph and the computations were done using
GraphBLAS. Another development in ANNs was made by applying a
technique called skip connections [Lin+96]. This method adds direct
connections between layers that are not consecutive, and are implemented
using layers with identity activation functions. Skip connections were used
by a Microsoft Research team that won the ImageNet 2015 competition
[He+16].

In the next few chapters, we combine the idea of sparseness and skip
connections to train the model and predict stock market time series. An
ANN in this form will be able to learn its own topology, whereas the
traditional layered ANN still requires expert knowledge of the machine
learning field to define an effective architecture.

12

3 ANN as a Computational
Graph

Traditionally, all ANNs are built with neurons separated by layers. This
limits the topology of the ANN to only make connections directly between
preceding and succeeding layers. Instead, we will allow the ANNs to
operate any DAG, which removes this limitation. In this chapter we
explain how the traditional architectures predict the output given an
input, and how we can extend this to run on a DAG. Finally, we explain
how we can obtain the gradient of an objective function with respect
to the ANN parameters. This method is the basis for many learning
algorithms, and will be used in Chapter 4 and Chapter 5 for the training
of our more generic models.

3.1 Layered Architectures
Before we explain how we generalize the structures of both the FNN
and RNN, we first have to understand how they calculate their output
given an input vector. The FNN algorithm can be reduced to a simple
recurrence relation. Let x0 be the input vector. In an FNN we have
multiple layers. For every layer l we have a weight matrix Wl and a bias
vector bl. By applying the element wise activation function gl we define
the output of the FNN as following recurrence relation

xl+1 = gl(Wlxl + bl), (3.1)

where xl the output of the previous layer. The more general topology
of ANNs introduced by the RNN type of networks has connections that
feed their input to the next calculation in the form of loop connections,
as seen in Equation (3.2) which defines a RNN with a single layer. The
RNN works on sequences with clearly defined time steps in the input.

ht = g(Lxt + Rht−1 + b), (3.2)

where ht is the state, xt is the input on time step t, b the bias vector, R
the recurrent weight matrix, L the input weight matrix, and g the element-
wise activation function [PMB13]. This allows the network to model the

13

3.1. LAYERED ARCHITECTURES

relation between time steps, whereas the FNN does not explicitly learn
this relation. This difference allows the RNN to use any sequence length,
while the FNN has to be trained for a specific length.

Back-propagation

Most ANNs are trained using the back-propagation algorithm, that calcu-
lates the gradient of an objective function with respect to its parameters.
The forward-propagation algorithm is the process of iteratively apply-
ing Equation (2.4) and Equation (2.5). From this we get the output
ŷ, which approximates the true output y. The back-propagation al-
gorithm was popularised by Rumelhart, Hinton and Williams in 1986
[RHW+88]. Back-propagation computes the gradient of an objective
function J(θ, ŷ,y) where θ are the learnable parameters. It works by
propagating the errors in each layer back to the previous layer starting
with the output. Given pairs of input and output (x,y) as data sample,
and with Equation (2.4) and Equation (2.5), we can apply the chain rule
iteratively for i ∈ [1, . . . , l − 1]

δ0 = ∇ŷJ(θ, ŷ,y), (3.3)
δi = (Wl−i)T

(
δi−1 � g′l−i (Wl−ixl−i + bl−i)

)
, (3.4)

δl = ∇θJ(θ, ŷ,y), (3.5)

where � is the element-wise (Hadamard) product. By using gradient
optimization methods such as Stochastic Gradient Descent (SGD), we can
modify the parameters to find an optimal value of the objective function
J . The naive back-propagation algorithm with n nodes runs in O(n2)
operations. However, this formulation only works on networks without
loop connections, and cannot be used directly on RNNs.

A common approach to obtain the gradients of RNNs is by using
Back-propagation Through Time (BPTT), which is a modification of the
back-propagation algorithm. BPTT allows the RNN to be defined as a
DAG by using a process that is called unrolling. The unrolling process
replicates the connections of the input, output and hidden units for an
arbitrary number of time steps t, and forms a new graph by using these
replicas as layers. This is done by substituting the recurrence relation

ht = g(Lxt + Rht−1 + b), (3.6)

directly with the previous computations, which gives us the following

ht = g(Lxt + Rg(Lxt−1 + R (. . .) + b) + b). (3.7)

After unrolling the graph we are left with a DAG, which is trainable like a
deep FNN [LBH15]. BPTT unrolls the network in the back-propagation
algorithm, and uses the network as a normal FNN during the back-
propagation. This algorithm allows us to simply calculate the gradients,
and lets us use those gradients as if they were from a FNN. A visual
example of the unrolling process can be seen in Figure 3.1.

14

3.2. LAGRANGE MULTIPLIERS

xt

w1

w2

w3 yt+1

xt+1

xt

xt−1

w1

w2
w3

w1

w2
w3

yt+1

yt

yt−1

Figure 3.1: The input xt at time step t propagates with weight w2 directly
to output yt+1. However the first node is also connected to the previous
output of that node by weight w1, and previous output of the second
node by weight w3. (Left) An example of a RNN graph wherein the black
squares indicate a delay of a single time step. (Right) The same RNN
unrolled to include time steps t− 1, t, t+ 1. The resulting graph is a DAG
and can be trained by back-propagation, since all loops are now removed
from the graph.

Definition 5 (Weighted Adjacency Matrix).

Let G = {V,E,w} be a weighted and directed graph, possibly with self-
loops, with n vertices in the vertex set V , where v1, . . . , vn ∈ V , the edge
set is E, and the weight function w : E 7→ R\{0} gives every edge e ∈ E
a weight. We use the notation ei,j for the edge (vi, vj) ∈ E, where the
edge links node vj to node vi. We define the weighted adjacency matrix
of the graph G as A ∈ Rn×n with

Ai,j =

w(ei,j) if ei,j ∈ E,
0 otherwise .

3.2 Lagrange Multipliers
Since we do not use the standard layer based topology, we need to define
the back-propagation algorithm specifically for the topologies that run on
general DAGs. We let the network have an input size s and an output
size d and n hidden nodes. The first s nodes in the network are input
nodes that have the identity function as activation function. We first

15

3.2. LAGRANGE MULTIPLIERS

define the block that connects the s input nodes to the n hidden nodes as

I =


i1,1 · · · i1,s
...
in,1 · · · in,s

 .
The connections of hidden nodes are represented in a DAG, and input
nodes are ordered according to partial DAG ordering, thus only allowing
connections to previous nodes in this ordering. This results in a strictly
lower triangular weighted adjacency matrix defined as

W =



0 0 · · · 0 0
w2,1 0 · · · 0 0
...

wn−1,1 wn−1,2 · · · 0 0
wn,1 wn,2 · · · wn,n−1 0

 .

Finally the connections between the hidden and output nodes are defined
by the output matrix

O =


o1,1 · · · o1,n
...
od,1 · · · od,n.


Now let L ∈ R(n+s+d)×(n+s+d) be the strictly lower triangular weighted
adjacency matrix of a directed network graph, see Definition 5, describing
n nodes. We define L as the following block matrix

L =

0 0 0
I W 0
0 O 0

 .
In practice we do not need to store the top s rows, since these will always
be zero. With this adjacency graph we propagate the values of the network
with a new formulation

zi = 〈Li,∗, ξ〉+ bi,

ξi = gi(zi),

where i is now indicating a node instead of a layer.
Similarly, we define the recurrent weights S ∈ Rn×(n+s) as the weighted

adjacency matrix that connects the previous state to the current state.
Now let R ∈ R(n+s+d)×(n+s+d) be the weighted adjacency block matrix

R =
[
0 0
S 0

]
.

The matrix R is allowed to connect the input, and hidden nodes of the
previous time step of the recurrence relation to the current hidden nodes.

16

3.2. LAGRANGE MULTIPLIERS

This allows us to extend the previous notation with a recurrence relation
at time t (denoted with superscript (t)) for node i as

z
(t)
i = 〈Li,∗, ξ

(t)〉+ 〈Ri,∗, ξ
(t−1)〉+ bi,

ξ
(t)
i = gi(z(t)

i).

We formalize the computational graph as a DAG, where each node rep-
resents a variable (scalar, vector or matrix), which are connected through
edges that represent operations (functions) [GBC16]. When we work with
FNNs, we define S = {(x1, y1), . . . , (xm, ym)} to be the sample set of m
tuples with input xi ∈ Rs and output yi ∈ Rd. And when we work with
RNNs the sample set S is defined as S = {(t1, x1, y1), . . . , (tm, xm, ym)},
with m tuples of input xi ∈ Rs×ti and output yi ∈ Rd×ti . When R is
defined as a zero matrix, the network is not connected to the previous
state, and is equal to the non-recurrent version. In 1988, LeCun defined a
theoretical framework [LeC+88] in which he derived the back-propagation
algorithm as a constrained minimization problem. Let J be a function
that has a global minimum when the network correctly predicts the output
from S, with only the input given. This allows us to write the training of
the network architecture as the following optimization problem

min
L,R,b

J(L,R,b, S)

s.t. zi = fi(z),

where fi is a smooth multivariate function of a subset of z that defines the
relation between nodes in the computational graph, and z is the vector of
intermediate values in the computational graph. The relations between zi
values are defined by a computational graph, and thus there are no cyclic
constraints. Let a+ 1 be the length of the vector z. We define za+1 to be
the output of the computational graph:

za+1 = J(L,R,b, S).

We can convert the previously given constrained optimization problem
into an unconstrained problem by using a Lagrangian framework similar
to the one specified by LeCun [LeC+88]. Now let I = [1, . . . , a] be the
indices of the intermediate values. The Lagrange function is now defined
as

L(L,R,b, z, λ) = za+1 −
a+1∑
i=1

λi (zi − fi(z)) . (3.8)

When the function L is in an optimum, the condition

∇L(L,R,b, z, λ) = 0 (3.9)

17

3.2. LAGRANGE MULTIPLIERS

holds while meeting the necessary constraints. (Unfortunately, this is also
true for saddle points and local minima.) Due to this condition we need
that for all i

∂L(L,R,b, z, λ)
∂λi

= 0, (3.10)

which directly follows from Equation (3.8) when for all i ∈ I

zi = fi(z). (3.11)
This constraint defines the forward-propagation of the network [GB10b].
We need the gradient with respect to the objective function to be 0 too:

0 = ∂L(L,R,b, z, λ)
∂za+1

= ∂

∂za+1

za+1 −
a+1∑
j=1

λj(zj − fj(z))


= 1− λa+1.

Thus we need λa+1 = 1 to satisfy our condition. The back-propagation
is obtained from the constraints of the training data input and node
calculations. For all i ∈ I it must hold that

∇zL(L,R,b, z, λ) = ∂L(L,R,b, z, λ)
∂zi

= 0. (3.12)

Let u(i) = Oi ⊆ I be a map that maps the node index i to the indices of
its output nodes, after which we can rewrite Equation (3.12) as

0 = ∂L(L,R,b, z, λ)
∂zi

= ∂

∂zi

za+1 −
∑
j∈I

λj(zj − fj(z))


= ∂

∂zi

−∑
j∈I

λj(zj − fj(z))


= −λi +
∑
j∈I

λj
∂fj(z)
∂zi

= −λi +
∑
j∈u(j)

λj
∂fj(z)
∂zi

.

From which follows that

λi =
∑
j∈u(i)

λj
∂fj(z)
∂zi

, (3.13)

which gives the derivative of the objective function J with respect to
every node i. Since we defined both L and R as weighted adjacency
matrices, we can easily obtain the ingoing connections of node i by taking
the non-zero elements of the row, and the outgoing connections by taking
the non-zero elements of the column of L, and similarly for R.

18

4 The Feed Forward Algorithm

In the previous chapter we gave a general definition of ANNs on DAGs.
This chapter implements our equivalent of the FNN, which we will call
Neural Graphs (NG), and omit the recurrent version for now. In Equa-
tion (3.13) we obtained the formula that defines the back-propagation
algorithm for the required structure. To get an idea whether the more
general graph structure works, we will test it against benchmark problems
in Chapter 6. In this chapter we will define the building blocks we need
to form the NG; the activation functions, and the objective function.
With these building blocks we can define the NG algorithms; the forward-
propagation, the backward-propagation, the optimization functions, and
finally strategies to improve the NG. The workings of ANNs are highly
dependent on the type of problem they have to solve. The benchmark
problems we will solve in Chapter 6 are classification problems. This type
of problem requires some extra theory that is also given in this chapter.

4.1 Building Blocks
Although we have discussed the architecture of the NG algorithm, we
still have to fill in some of the variables. One such variable is which
activation functions we use. In our algorithm we will use two separate
activation functions; the LeakyRelu for hidden, and Softmax for output
nodes, which both will be defined in the following section. We also have
to define the objective function that has a global minimum when the
network correctly predicts the output from the sample input.

4.1.1 Activation Functions
To make use of any sparsity in the weighted edges in the NGs we need
to make sure that for every activation function f : R 7→ R, and a small
value ε we have f(ε) ≈ f(−ε) ≈ 0. Using these properties we will show
that any weight that is smaller than ε will have no effect on the output
of the activation function. For each node i the value is calculated by
multiplying the output of previous nodes with a weight vector wi, and
using the bias bi and the activation function fi. Now let Zi be the set
of indices for which the elements of vector wi are 0, and Ei where the

19

4.1. BUILDING BLOCKS

elements are not equal to 0.

xi = fi(〈(x1, . . . , xi−1),wi〉+ bi)

= fi

(
i∑

k=1
xk · (wi)k + bi

)

= fi

∑
k∈Ei

xk · (wi)k +
∑
k∈Zi

xk · (wi)k + bi


= fi

∑
k∈Ei

xk · (wi)k + bi

 .
Due to this property we can both calculate the propagation through the
edge in a dense calculation, or omit it completely in a sparse calculation.

LeakyRelu

For our hidden nodes we choose a LeakyRelu activation function, which
is defined as

f(x, αi) = max(0, x) + αi min(0, αi),

where αi could be turned into a trainable parameter for each node i.
However, we choose a fixed αi = 0.01.

Softmax

Finally, we define the activation function for the categorical output nodes.
Let o be the length of the output, and y ∈ [1, . . . , o] be the index of
the label we want to predict. First we encode our output labels into a
so-called one-hot vector, see Table 4.1, where the label i has element i
of the vector equal to 1 and the rest of the vector 0. Now we want to
calculate the conditional probability of the category ŷi = P (y = i | x)
which is the multinomial distribution.

category integer one-hot
red 1 100

yellow 2 010
green 3 001

Table 4.1: An example of integer encoding and one-hot encoding of
categorical data.

Given a weight matrix W, state h and bias b, we assume that z =
Wh + b is a vector of unnormalized log-space probabilities such that
zi = ln P̂ (y = i|x), where P̂ is an unnormalized probability distribution
[GBC16]. By exponentiating and normalizing we get the softmax function,
see Equation (4.1). Given the output vector z, the softmax function
σ : Ro 7→ [0, 1]o calculates a probability distribution over a discrete

20

4.1. BUILDING BLOCKS

variable with n possible values [GBC16]. This makes it a good activation
function for the output, since we want to classify from o different categories.
The softmax function is defined as

pj = σ(z)j = exp(zj)
o∑

k=1
exp(zk)

. (4.1)

One important property of the softmax function is its invariance to offsets:

σ(z + c)j = exp(zj + c)
o∑

k=1
exp(zk + c)

= exp(c) exp(zj)
exp(c)

o∑
k=1

exp(zk)

= exp(zj)
o∑

k=1
exp(zk)

= σ(z).

In implementations we choose c = −maxi zi to make the computations
more stable. The derivative of the softmax function with respect to the z
vector has two cases:

∂pj
∂zi

=

pi(1− pi), for i = j,

−pipj, for i 6= j.
(4.2)

4.1.2 Objective Function
Since the benchmark problem is defined as a classification task, we can
use a cross entropy objective function. Let ŷ be the calculated output
which approximates the true output y. Now the cross entropy function
J : Ro 7→ R is defined as

J(y, ŷ) = −
o∑
j=1

yj ln ŷj,

and it calculates the expected number of bits required to identify random
samples from the distribution of y when using an optimal coding scheme
for ŷ.

When the cross entropy function is used in combination with the output
of the softmax function we obtain the following derivative given that y is
a one-hot vector (note that the output of the softmax is substituted as

21

4.2. NEURAL GRAPH ALGORITHMS

the predicted value pj):

∂J

∂zi
= −

o∑
j

yj
∂ ln pj
∂zi

= −yi(1− pi)−
∑
j 6=i

yj
1
pj

(−pjpi)

= −yi(1− pi) +
∑
j 6=i

yjpi

= −yi + yipi +
∑
j 6=i

yjpi

= −yi +
o∑
i=1

yjpi.

We defined y to be a one-hot vector (only one element with value one,
and the rest zero), thus this formula simplifies to

∂J

∂zi
= pi − yi. (4.3)

We use this composite function of the softmax function together with the
cross entropy function as the objective function for training.

4.2 Neural Graph Algorithms
Now that all building blocks are defined for the NG, we can define both
the algorithms for forward-propagation and back-propagation through the
network. These algorithms then can be used for the gradient optimiza-
tion algorithms. Unfortunately, the optimization algorithms also have
parameters, for which we will also need to specify methods of finding
correct values.

4.2.1 The Forward-Propagation Algorithm
The first algorithm we have to specify is the forward-propagation al-
gorithm, since the intermediate values are also needed for the back-
propagation algorithm. The forward-propagation algorithm, see Algo-
rithm 4.1, calculates the output and intermediate values of the NG. The
function gives as output two vectors, ξ and z, where the former is the
output state for the corresponding node, and the latter holds the input
state. The vectors ξ and z are calculated with the formulas we described
earlier

zi = 〈Li,∗, ξ〉+ bi,

ξi = gi(zi).

22

4.2. NEURAL GRAPH ALGORITHMS

Algorithm 4.1. The forward-propagation algorithm.

input : n : input size,
m : number of hidden nodes,
o : output size,
ω : output function,
x : input vector of length n,
b : bias vector of length n+m+ o,

L : lower triangular weighted adjacency matrix,
output : y : output vector of length o,

ξ : output state vector for all nodes with length n+m+ o,

z : input state vector for all nodes with length n+m+ o.

function ForwardPropagate
let ξ = 0 of size n+m+ o
let ξ[: n] = x
let z = 0 of size n+m+ o.
let z[: n] = x

for i = n to n+m do
compute x = 〈Li,∗, ξ〉+ bi.
let ξi = fi (x)
let zi = x

for i = n+m+ 1 to n+m+ o do
compute zi = 〈Li,∗, ξ〉+ bi

compute ξ[n+m+ 1 : n+m+ o] = ω(z[n+m+ 1 : n+m+ o])
compute y = ξ[n+m+ 1 : n+m+ o]

end function

The first n nodes are regarded as input nodes that have the same
input and output. This means that we have to set the first n elements to
the value of the input for both ξ and z. The next m nodes are the hidden
nodes. For every hidden node we calculate the affine transformation, which
is the dot product of the incoming weights in that node and the output of
previous nodes, transformed by the bias for that node. We store this affine
transformation in the vector z and calculate the output of the function by
substituting this affine transformation to the activation function, which
in its turn gets stored in z. Finally, we are left with the calculation
of the output nodes. Again we calculate the affine transformation as
input of these nodes, after which we use the entirety of these nodes to
calculate the output function. These values are also stored in z and ξ
in the corresponding elements. In our implementation we can use this

23

4.2. NEURAL GRAPH ALGORITHMS

property to only store the section of the adjacency matrix that contributes
to this part. This property also holds for the bias vector. As a result we
can reduce the size of the adjacency matrix to (m+ o)× (n+m+ o) and
the bias vector to m+ o. If we only want to calculate the output of the
NG we do not need to compute and store the z as it is only needed in
the back-propagation algorithm.

4.2.2 Training the Neural Graph
Although we can calculate the output of the NG, we still have to find
correct values for L and b before the output is meaningful. The NG is
trained by giving it examples, for which we optimize the objective function.
This means that we need to divide our data set into a training set and a
validation set. The training data set is used to train the algorithm, and
the validation data set is used to measure how well the trained model
generalizes to examples it has not seen before.

Mini-batch methods

Instead of training the model on the complete training data set, we
use a stochastic method. The training data set is divided into a given
number of mini-batches of equal size. A larger batch gives a more accurate
gradient of the objective function. This means that a smaller batch size
introduces a noise to the objective function, which can offer a regularizing
effect [WM03]. Algorithm 4.2 shows the general learning algorithm. The
CalculateGradient method calculates the gradient of the NG given
the parameters. Note that for the computation of the average of the
gradient that is calculated for every mini-batch, each individual sample
can be parallelized. After the average gradient is calculated, we calculate
the new parameters by performing the UpdateParameters function.
This function can be implemented using an optimization algorithm such
as SGD. A single epoch is when the entire training data set is used for
training once. Thus for every epoch the training algorithm retrains the
network on the complete data set. Since we use iterative methods to
update the parameters, we need more than one epoch to get respectable
results from our training. The maximum number of epochs, which defines
the end-condition of the training algorithm, is also passed to the learning
algorithm.

24

4.2. NEURAL GRAPH ALGORITHMS

Algorithm 4.2. The learning algorithm.

input : hmax : the total number of epochs it will run,
s : the batch size,
S : list of input samples,
O : list of corresponding outputs,
θ : initial parameters,

output : θ : the learnt parameters.

let i = 0.
let h = 0.
let stotal = bsize(S)/sc
let ∇θ = 0

while h < hmax do
calculate ĥ = bi/stotalc
calculate j = i mod stotal
if i 6= j and i > 0 then

CalculateAccuracy().
end if
calculate kstart = s · j
calculate kend = min(s · (j + 1), size(S))
for k = kstart to kend do

calculate ∇θ̂ = CalculateGradient(S[k], O[k], θ)
calculate ∇θ = ∇θ + 1

kend−kstart
∇θ̂

end for
calculate θ = UpdateParameters(θ,∇θ)
let h = ĥ
let i = i+ 1

end while

Back-propagation

The hard part of the training of a NG is calculating the gradient of the
objective function. In Equation (3.13) we obtained the basic definition of
the back-propagation algorithm using Lagrange multipliers:

λi =
∑
j∈u(i)

λj
∂fj(z)
∂zi

.

Now we can expand this formula specifically for the problem we have
defined. Since the gradient of a node is dependent on the value of
the outgoing connections, we first need to do a forward-propagation
to calculate the states of the nodes. The Lagrange multiplier for the
objective function is defined as 1. Due to this, the Lagrange multipliers

25

4.2. NEURAL GRAPH ALGORITHMS

of the output nodes can be calculated by calculating the derivative of the
objective function with respect to output nodes such as was calculated in
Equation (4.3):

λi = 1 · ∂J
∂zi

= pi − yi,

where i is the i-th output node. The weight gradient for all nodes i can
be calculated from these Lagrange multipliers by using the chain rule:

∂J

∂L∗,i
= ∂J

∂zi

∂zi
∂L∗,i

= λi

(
∂fi
∂L∗,i

(L∗,iξ + bi)
)

= λiξf
′
i(L∗,iξ + bi),

and for the bias gradient we get

∂J

∂bi
= ∂J

∂zi

∂zi
∂bi

= λi

(
∂fi
∂bi

(L∗,iξ + bi)
)

= λif
′
i(L∗,iξ + bi).

The hidden nodes require a bit more work since we first need to calculate
the Lagrange multiplier, before we can use it to calculate the gradients. We
have a composite function of the affine transformation and the activation
function, from which we get the Lagrange multipliers

λi = ∂J

∂zi

=
m+n+o∑
j=0

λj
∂fi
∂zi

(L∗,iξ + bi)

=
m+n+o∑
j=0

λjLj,i.

Algorithm 4.3 puts these formulas together and calculates the complete
gradient for the weights and the biases.

26

4.2. NEURAL GRAPH ALGORITHMS

Algorithm 4.3. The back-propagation algorithm.

input : n : input size,
m : number of hidden nodes,
o : output size,
J : objective function,
ω : output function,
x : input vector of length n,
ŷ : true output vector of length o,
b : bias vector of length n+m+ o,

L : lower triangular weighted adjacency matrix,
output : ∇b : the gradient of the bias vector,

∇L : the gradient of the weight matrix.

compute [y, ξ, z] = ForwardPropagate(n,m, o, ω,x,b,L).

let λ = 0
let ∇b = 0
let ∇L = 0

compute h = J ′(ξ[n+m : n+m+ o], ŷ).
let λ[n+m : n+m+ o] = h
let ∇b[n+m : n+m+ o] = h

for j = n+m+ o to n+m do
for {i ∈ [1, n+m+ o]|Lj,i 6= 0}} do

compute ∇Lj,i = λjξi

for j = n+m to n do
let σ = 0.
for {i ∈ [1, n+m+ o]|Li,j 6= 0}} do

compute σ = σ + λiLi,j

compute λj = σf ′i (zj)

for {i ∈ [1, n+m+ o]|Lj,i 6= 0}} do
compute ∇Lj,i = λjξi.

let ∇bj = λj

27

4.2. NEURAL GRAPH ALGORITHMS

4.2.3 Optimization Algorithms
The back-propagation algorithm calculates the gradients of the parameters
of our model with respect to our chosen objective function. With these
gradients we can update our initially chosen parameters in a direction
that minimizes the objective function. For every sample we get a separate
gradient, from which we calculate the average gradient in our mini-batch,
see Algorithm 4.2. With this averaged gradient we update our parameters
with an optimization algorithm. Let θ be the parameter we want to
update, and ∇θ the average gradient for this parameter. We define a
parameter η as the learning rate, which controls how fast the algorithm
learns. For these variables we now define several widely used optimization
algorithms.

SGD

Intuitively, in this algorithm, we let the objective function be a surface
defined by the parameters of the model. In SGD we drop a weight-less ball
on this surface and let it roll to a minimum. The learning rate allows us
to increase or decrease the accuracy of simulation, where a small learning
rate will be more sensitive to local minima in the objective surface. The
SGD algorithm is given in Algorithm 4.4

Algorithm 4.4. The SGD algorithm.

input : η : the learning rate,
θ : the parameters of the objective function,
J : the objective function,

output : θ : the updated parameters.

Estimate gradient ∇θ = E [∇θJ]
Calculate θ = θ − η∇θ

Definition 6 (Convex Functions).

A function f : Rn 7→ R is called convex if for every x, y ∈ Rn, and for all
λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

28

4.2. NEURAL GRAPH ALGORITHMS

Definition 7 (Lipschitz Continuous Functions).

A function f : Rn 7→ R is called Lipschitz continuous when there exists a
L > 0 for all x,y ∈ Rn such that

|f(x)− f(y)| ≤ L ‖x− y‖2 .

Let the function f : Rn 7→ R be convex and Lipschitz continuous, see
Definition 6 and Definition 7. By expanding the function f around the
point x ∈ Rn we get for every y ∈ Rn the following quadratic Taylor
series approximation

f(y) ≤ f(x) +∇f(x)T (y− x) + 1
2∇

2f(x) ‖y− x‖2
2

≤ f(x) +∇f(x)T (y− x) + 1
2L ‖y− x‖2

2 .

Now we define x̂ = x− η∇f(x), which is the SGD updated x vector. By
combining these we get the following

f(x̂) ≤ f(x) +∇f(x)T (x̂− x) + 1
2L ‖x̂− x‖2

2

≤ f(x) +∇f(x)T (x− η∇f(x)− x) + 1
2L ‖x− η∇f(x)− x‖2

2

≤ f(x)−∇f(x)Tη∇f(x) + 1
2L ‖η∇f(x)‖2

2

≤ f(x)− η ‖∇f(x)‖2
2 + 1

2η
2L ‖∇f(x)‖2

2

≤ f(x)− (1− 1
2ηL)η ‖∇f(x)‖2

2 .

When η ≤ 1
L
, the inequality simplifies to

f(x̂) ≤ f(x)− 1
2η ‖∇f(x)‖2

2 .

This means that when ∇f(x) > 0, SGD decreases the value of the
objective function. This results in SGD iterating to local minima in
non-convex optimization problems. In practice we can alter the learning
rate to make SGD more robust to these local minima by stepping over
them.

Momentum

The most common method of increasing the algorithm’s robustness, is by
adding momentum to the movement of parameters. If we again see our
optimization problem as a ball drop on an objective surface, momentum
adds velocity to this ball. Instead of being captured by local minima, it

29

4.2. NEURAL GRAPH ALGORITHMS

will retain its speed and move out of such minima again. This behaviour is
introduced by adding the momentum parameter µ into the SGD formula.
We first calculate the new velocity of the parameters, which is done by
retaining a previous part of the velocity, controlled by µ, and adding the
new part by using the gradient and learning rate. With this velocity we
can calculate the new parameters as seen in Algorithm 4.5.

Algorithm 4.5. The SGD algorithm with momentum.

input : η : the learning rate,
θ : the parameters of the objective function,
v : the initial velocity,
µ : the momentum,
J : the objective function,

output : θ : the updated parameters.

Estimate gradient ∇θ = E [∇θJ]
Update the velocity v = µv− η∇θ
Calculate θ = θ + v

A more popular method of calculating the velocity, called the Nestrov-
Momentum, evaluates the gradient after we adjusted the parameters for
the velocity, as seen in Algorithm 4.6. Since the gradient is evaluated
after the velocity is applied, the Nestrov-Momentum can be seen as a
correction factor [GBC16]. The Nestrov-Momentum has stronger conver-
gence guarantees on convex optimization problems, and performs more
consistently in practice [Sut+13].

Algorithm 4.6. The SGD algorithm with Nestrov-Momentum.

input : η : the learning rate,
θ : the parameters of the objective function,
µ : the momentum,
J : the objective function,

output : θ : the updated parameters.

Estimate gradient ∇θ = E [∇θJ]
Update the velocity vi = µvi−1 − η∇θ
Calculate θ = θ − µvi−1 + (1 + µ)vi

Adam

Another widely used extension to the SGD algorithm is the Adam opti-
mization algorithm [KB14]. Adam makes use of previously seen parameter
values and gradients to adaptively alter the momentum. It incorporates

30

4.2. NEURAL GRAPH ALGORITHMS

the main advantages of two other algorithms: RMSProp [TH12] and
AdaGrad [Zei12]. This results in an algorithm that alters the learning
rate per-parameter, which improves problems with sparse gradients, and
it takes the magnitude of the gradient into account which improves the
stochastic properties of the algorithm. The algorithm calculates the
exponential moving average of the gradient and the squared gradient of
the parameters, for which the parameters ρ1 and ρ2 control the decay
rates of the effective learning rate. The iterative algorithm is given in
Algorithm 4.7.

Algorithm 4.7. The Adam algorithm.

input : η : the learning rate,
θ : the parameters of the objective function,
µ : the momentum,
t : the time-step,
J : the objective function,

output : θ : the updated parameters.

Estimate gradient ∇θ = E [∇θJ]
Calculate si = ρ1si−1 + (1− ρ1)∇θ
Calculate ri = ρ2ri−1 + (1− ρ2)〈∇θ,∇θ〉
Calculate ŝi = si

1− ρt1
Calculate r̂i = ri

1− ρt2
Calculate θ = θ − ηŝi√

r̂i + ε

AMSGrad

Although Adam is still very popular, it can be proved that for any decay
parameters ρ1, ρ2 ∈ [0, 1[such that ρ1 <

√
ρ2 there is a stochastic convex

optimization problem where Adam does not converge to an optimal
solution [RKK18]. Reddi, Kale and Kumar show how the problems in
the exponential smoothing can be fixed and introduce a new variant of
the algorithm called AMSGrad. AMSGrad is presented in Algorithm 4.8.

31

4.2. NEURAL GRAPH ALGORITHMS

Algorithm 4.8. The AMSGrad algorithm.

input : η : the learning rate,
θ : the parameters of the objective function,
µ : the momentum,
J : the objective function,

output : θ : the updated parameters.

Estimate gradient ∇θ = E [∇θJ]
Calculate si = ρ1si−1 + (1− ρ1)∇θ
Calculate ri = ρ2ri−1 + (1− ρ2)〈∇θ,∇θ〉
Calculate r̂i = max(r̂i−1, ri)
Calculate θ = θ − ηsi√

r̂i + ε

4.2.4 Learning Rate
We until now, have regarded the learning rate η to be fixed. The learning
rate parameter determines the accuracy of the optimization algorithms.
This means that in practice a fixed learning rate will have trouble to
converge to an optimal solution. A common approach to solve this
problem is by using an annealing schedule for the learning rate, where
the learning rate decreases every epoch. One of such annealing schedules
is the step decay annealing algorithm, where the learning rate is reduced
by a multiplying factor every few epochs. An annealing schedule uses
an exponential back-off to model the learning rate. Let η0 be the initial
learning rate, t be the iteration or epoch count, and λ controls the decay
rate. The schedule is then defined as

η = η0e
−λt.

A recent improvement in learning rate schedules is called cyclic learning.
The learning rate is often seen as the most import parameter of the
learning algorithm, and thus finding a good learning rate schedule is
important. Cyclic learning eliminates the need for empirically finding
the best learning rate for a problem [Smi17]. Instead of monotonically
decreasing the learning rate, we allow learning rate schedules to also
increase the learning rate with a periodicity. The basic schedule for Cyclic
Learning is the Triangular learning rate schedule, which is presented in
Algorithm 4.9. This schedule specifies the learning rate that follows a
repeating triangle, with the given lower and upper bound of the learning
rate. First we introduce the periodicity of the function, using

c = t mod 2s,

where t is the current epoch, and s is the half cycle value. We want to
normalize this value between −1 and 1, so we first have to divide it by s.

32

4.2. NEURAL GRAPH ALGORITHMS

Now we have 0 ≤ c
s
< 2. We translate this to −1 ≤ c

s
− 1 < 1. By taking

the absolute value of this value, we get a periodic triangular function
between 0 and 1, calculated as

x = | t
s
− 2c− 1|.

We want to start the the triangular function with the lower bound of the
learning rate. This means that we flip the value by calculating 1−x. Now
we use an affine transformation to specify the minimum and maximum
values as the lower and upper bound of the learning rate

η = ηmin + (ηmax − ηmin) · (1− x).

To make sure we converge, we extend this algorithm by adding a decay
factor, see Algorithm 4.10. Now we have a learning rate schedule that is
specified by a repeating triangle where the minimum and maximum use
an exponential decay.

Algorithm 4.9. The Triangular Cyclic Learning algorithm.

input : ηmin : the lower bound of the learning rate,
ηmax : the upper bound of the learning rate,

t : the current epoch count,
s : the half cycle size,

output : η : the effective learning rate.

function Triangular(ηmin, ηmax, t, s)
Calculate c = t mod 2s
Calculate x = | t

s
− 2c− 1|

Calculate η = ηmin + (ηmax − ηmin) · (1− x)
end function

Algorithm 4.10. The Exponential Range Cyclic Learning algorithm.

input : ηmin : the lower bound of the learning rate,
ηmax : the upper bound of the learning rate,

γ : the exponential decay factor,
t : the epoch count,
i : the iteration count,
s : the half cycle size,

output : η : the effective learning rate.

Calculate γ̂ = γi

Calculate η = Triangular(γ̂ · ηmin, γ̂ · ηmax, t, s)

33

4.2. NEURAL GRAPH ALGORITHMS

Now that we have an algorithm that is robust to the chosen initial
learning rate, we still need to find a proper initial minimum and maximum
learning rate. Although Smith presented a method in [Smi17] to find
the boundaries, we will specify a similar but different method to finding
these values. In Algorithm 4.11 we give a learning rate schedule that
exponentially increases the learning rate between two bounds. We run
the normal learning algorithm, see Algorithm 4.2, but we record both
the loss value and the effective learning rate. From these two values we
can make a visualisation of how the learning rate has an impact on the
objective function. First we difference all consecutive values, which gives
the rate of change in the objective function over the used learning rates.
When we smooth these values, using a smooth moving average, we get a
plot similar to Figure 4.1. In this plot we can find the minimum objective
rate of change, and take it as the upper-bound of the learning rate. A
simple method to define the lower-bound is to multiply the upper-bound
by a fraction such as 1/3.

10−6 10−5 10−4 10−3 10−2

Learning Rate (η)

−0.003

−0.002

−0.001

0.000

0.001

L
os
s
va
lu
e
R
at
e
of

C
h
an
ge

(
∂
J

∂
η

)

Figure 4.1: A learning rate versus rate of change of the objective function
value plot for the MNIST data set.

34

4.3. REGULARIZATION

Algorithm 4.11. The Rate Learning algorithm.

input : ηmin : the lower bound of the learning rate,
ηmax : the upper bound of the learning rate,

γ : the exponential decay factor,
b : the mini-batch size,
i : the iteration count,

output : η : the effective learning rate.

Calculate α = 1
ηmin

η1/b
max

Calculate η = ηmin · αi

4.3 Regularization
Although we now have the means to learn and predict values with NGs,
our main objective is to build a model that generalizes to unseen data. Due
to the No Free Lunch theorem, see Theorem 4, generalization of machine
learning models does not come naturally, and the model only infers rules
that are likely to be true in the training data set. This means that we
need to help the model generalize better, and prevent overfitting. An easy
way to prevent overfitting is by regularizing the weight parameters, which
ensures that we prefer smaller values for the weights. An added advantage
is that this technique automatically improves the sparsity of the model,
and thus reduces noise in the weights, and reduces the complexity of the
model. To add the weight regularization, we simple modify the objective
function J as

Ĵ(θ) = J(θ) + λ〈θ, θ〉,

with parameters θ, and regularization factor λ, that controls the penalty
on the size of the parameters. This specific form of regularization is called
L2 regularization, since we use the L2 norm. It is also possible to choose
any Lp norm for regularization, but L2 has proven to perform well in
practice.

Theorem 4 (No Free Lunch Theorem).

“Averaged over all possible data-generating distributions, every classi-
fication algorithm has the same error rate when classifying previously
unobserved points.” [GBC16] Proved by Wolpert in 1996 [Wol96].

Another regularization technique, introduced by Srivastava et al
[Sri+14], is Dropout. Dropout tries to make the learning of features

35

4.4. WEIGHT IMPROVEMENTS

in the data set more robust by deactivating nodes with a certain proba-
bility on each sample. When Dropout is applied to an ANN, convergence
in training takes about 2-3 times longer in epochs, which is the result
of the introduced noise, but the generalization of the model is improved.
Dropout implicitly trains an ensemble of multiple graphs and averages
the results. When a node is dropped-out, all incoming and outgoing edges
are set to 0. This can be done by drawing from a Bernoulli distribution,
with the given dropout chance, and multiplying the drawn value with the
input of the node. The Bernoulli probability mass function is specified as

f(k, p) =

q = 1− p for k = 0,
p for k = 1,

where k ∈ {0, 1} and p is the probability. Let D = (X1, . . . , Xn) be
a vector drawn from the Bernoulli distribution. Since we defined our
activation functions to output zero when the input is near zero, this also
fixes the output connections. Srivastava suggests to modify the affine
transformation and activation function in both the training and testing
such that for the training we use

ξi = Xifi(L∗,iξ + bi),

where pi is the probability to drop the node i, fi is the activation function,
and bi the bias of node i, L the weight matrix, and ξ the vector with the
output of the previous nodes. During the test phase we need to rescale
the output as well to

ξi = qifi(L∗,iξ + bi),

where qi = 1− pi is the probability to keep node i. The rescaling is done
to compensate for the signal that is lost due to the dropped nodes. A
simpler version to implement is called Inverted Dropout, which only scales
the output on training, and leaves the test function intact. The training
output is now defined as

ξi = 1
qi
Xifi(L∗,iξ + bi).

4.4 Weight Improvements
There are several ways of improving the performance of the NG, that
target the weight definitions specifically. By using a specific initialization
scheme, we can improve convergence. Another convergence gain lies in
the calculation of the weights themselves, and finally we specify how we
can make use of the sparseness introduced in the model.

36

4.4. WEIGHT IMPROVEMENTS

Initialization

By initializing weights to certain values we can help the convergence
of the optimization. The network should have a source of asymmetry,
since otherwise the gradient of many nodes will be nearly the same,
and thus the remaining values will stay near each other. We introduce
asymmetry by drawing from a Gaussian distribution with mean zero,
and variance one. Since the mean is zero, it is still easy for nodes to
switch from a positive to a negative weight. We still need to make sure
the variance of the output in nodes doesn’t grow because there are an
increasing number of connections with every node. To fix this we use
He initialization [He+15]. He initialization is an initialization scheme,
developed specifically for rectified linear units type of activations such as
ReLu and LeakyRelu, which is based on the Xavier-Godot initialization
scheme [GB10a]. He initialization assumes a Gaussian distribution with
mean zero and variance

Var(wi) = 2
(1 + α2

i)ni
,

where αi is the parameter of the PRelu, ni is the number of ingoing
connections in node i.

Normalization

One of the most effective techniques to improve convergence of the opti-
mization algorithms was introduced by Ioffe and Szegedy [IS15]. Their
technique called Batch Normalization, reparametrizes the input of every
node to mean zero and variance one over the mini-batch. Due to these
operations, no gradient from the back-propagation will increase the mean
or variance [GBC16]. Since the algorithm is dependent on the mini-batch
samples, it is not feasible to use it in a recurrent setting, due to the
variable length of sequences. Other techniques were developed to fix this
problem, and one of such techniques, developed by Salimans and Kingma,
is Weight Normalization [SK16]. Weight Normalization splits the direc-
tion and magnitude of the incoming weights in a node into a normalized
vector and a scalar. For node i the weight vector wi is parametrized as

wi = L∗,i
‖L∗,i‖2

gi,

where gi is the magnitude scalar for node i. Since we only change the
formulation of the weights, we can easily add this to the back-propagation
algorithm, where we obtain the following new gradients

∇gi = ∇wi · L∗,i
‖L∗,i‖2

,

∇L∗,i = gi∇wi

‖L∗,i‖2
− gi∇gi
‖L∗,i‖2

2
L∗,i.

37

4.4. WEIGHT IMPROVEMENTS

In practice Weight Normalization shows a performance near Batch Nor-
malization, while it is computationally lighter. A large difference, however,
is that it does not reparametrize the input of activations to zero mean
and variance one, which makes the network more dependent on good
initialization of the parameters.

Sparsification

Due to the sparseness in the model, we can accelerate the computations
in the NG, by removing weights that have little effect on the output. First
we assume we have a procedure NonZeros that returns an ascending
sorted vector of non-zeros in a matrix, and a procedure DropValues
that removes all absolute values that are smaller than a certain value.
Using these functions, we define Algorithm 4.12, that calculates a bounded
percentile value of the given weight matrix, and drops all values that are
absolutely smaller than this value.

Algorithm 4.12. The Sparsify algorithm.

input : α : the lower bound of the percentile value,
p : the percentile we remove

W : a weighted adjacency matrix,
output : η : the effective learning rate.

Let Ŵ = (|Wi,j|)
Let w = NonZeros(Ŵ)
Let i = bp · Size(w)c
Let v = wi
Let v̂ = min(v, α)
Update W = DropValues(W, v̂)

38

5 The Recurrent Algorithm

The recurrent version of the NG, Recurrent Neural Graphs (RecurrentNG),
follows from the forward version. We see the recurrent graph as an unrolled
DAG, which allows us to use the forward algorithms with only a few
changes. Instead of calculating the input of the current node from only
the forward part, it is extended with the recurrent part

z
(t)
i = 〈Li,∗, ξ

(t)〉+ 〈Ri,∗, ξ
(t−1)〉+ bi,

ξ
(t)
i = gi(z(t)

i),

where z (t)
i is the input of node i at time-step t, L the forward weighted

adjacency matrix and R the recurrent weighted adjacency matrix, ξ(t)

the output vector of nodes at time-step t, and bi the bias of node i.
The algorithm is adjusted such that we input multiple time-steps, for
which it calculates the final time-step output. The recurrent matrix may
only make connections with the previous input and with hidden nodes,
and is restricted from accessing the output of the previous time-step.
In Algorithm 5.1, the RecurrentNG forward-propagation algorithm is
presented; the red markings show the difference with Algorithm 4.1.

39

Algorithm 5.1. The RecurrentNG forward-propagation algorithm.

input : n : input size,
m : number of hidden nodes,
o : output size,

ttotal : the total number of time-steps,
ω : output function,

x (t) : input vector of length n at timestep t,
b : bias vector of length n+m+ o,

L : lower triangular weighted adjacency matrix,
R : weighted adjacency matrix,

output : y (t) : output vector of length o at timestep t,
ξ (t) : output state vector for all nodes with length n+m+ o, at timestep t
z (t) : input state vector for all nodes with length n+m+ o at timestep t.

function ForwardPropagate
let ξ (0) = 0 of size n+m+ o
for t = 1 to ttotal do

let ξ (t) = 0 of size n+m+ o
let ξ (t)[: n] = x

let z (t) = 0 of size n+m+ o.
let z (t)[: n] = x

for i = n to n+m do
compute x = 〈Li,∗, ξ

(t)〉+ 〈Ri,∗, ξ
(t−1)〉+ bi.

Let ξ (t)
i = fi (x)

Let z (t)
i = x

for i = n+m to n+m+ o do
compute z (t)

i = 〈Li,∗, ξ
(t)〉+ 〈Ri,∗, ξ

(t−1)〉+ bi

compute ξ (t)[n+m : n+m+ o] = ω(z (t)[n+m : n+m+ o])
compute y (t) = ξ (t)[n+m : n+m+ o]

end for
end function

Back-propagation

In the back-propagation we can follow the same method as we had for NG,
with two differences: we need to compute a forward pass on all time steps
first, and we need to modify the gradient and Lagrange multiplier formulas.
Since the output of the graph is not connected via the recurrent graph,
the gradient and Lagrange multipliers for these nodes are not modified.

40

The first change we need to accommodate is the gradient calculation for
the L matrix which follows from recalculating the derivatives:

∂J

∂L∗,i
= ∂J

∂z
(t)
i

∂z
(t)
i

∂L∗,i

= λ
(t)
i

(
∂fi
∂L∗,i

(
L∗,iξ (t) + R∗,iξ (t−1) + bi

))
= λ

(t)
i ξ (t)f ′i(L∗,iξ (t) + R∗,iξ (t−1) + bi).

Similarly we can calculate the derivatives of the R, which follow the same
structure

∂J

∂R∗,i
= ∂J

∂z
(t)
i

∂z
(t)
i

∂R∗,i

= λ
(t)
i

(
∂fi
∂R∗,i

(
L∗,iξ (t) + R∗,iξ (t−1) + bi

))
= λ

(t)
i ξ (t−1)f ′i(L∗,iξ (t) + R∗,iξ (t−1) + bi).

The derivative for the bias remains fairly untouched after accounting for
the modified input of the activation function

∂J

∂bi
= ∂J

∂z
(t)
i

∂z
(t)
i

∂bi

= λ
(t)
i

(
∂fi
∂bi

(
L∗,iξ (t) + R∗,iξ (t−1) + bi

))
= λ

(t)
i f ′i(L∗,iξ (t) + R∗,iξ (t−1) + bi).

Finally we need to redefine the calculation of the Lagrange multiplier
using Equation (3.13). Since the recurrent part is added, we need to add
the corresponding terms to the summation of the outgoing connections in
the node. This adds an extra dependency on the Lagrange multipliers
from the next time-step. Substituting in the formula gives us

λ
(t)
i = ∂J

∂z
(t)
i

=
m+n+o∑
j=0

λ
(t)
j

∂fi

∂z (t)
i

(
L∗,iξ (t) + R∗,iξ (t−1) + bi

)
+

λ
(t+1)
j

∂fi

∂z
(t)
i

(
L∗,iξ (t+1) + R∗,iξ (t) + bi

)

=
m+n+o∑
j=0

λ
(t)
j Lj,i + λ

(t+1)
j Rj,i.

When we reassemble the separate parts, we obtain the new back-propagation
algorithm, which is given in Algorithm 5.2. Techniques such as dropout

41

and weight normalization are calculated separately for both L and R in
our implementation.

Algorithm 5.2. The RecurrentNG back-propagation algorithm.

input : n : input size,m : number of hidden nodes,
o : output size, J : objective function, ω : output function,

ttotal : the total number of time-steps,
x : input vector of length n,
ŷ : true output vector of length o,
b : bias vector of length n+m+ o,

L : lower triangular weighted adjacency matrix,
output : ∇b : the gradient of the bias vector,

∇L : the gradient of the weight matrix.

compute time steps [y, ξ, z] = ForwardPropagate().
let ∇b = 0
let ∇L = 0
for t = ttotal to 1 do

let λ (t) = 0
compute h = J ′(ξ (t)[n+m : n+m+ o], ŷ (t)).
let λ (t)[n+m : n+m+ o] = h
let ∇b[n+m : n+m+ o] = h
for j = n+m+ o to n+m do

for {i ∈ [1, n+m+ o]|Lj,i 6= 0}} do
compute ∇Lj,i = ∇Lj,i + λ

(t)
j ξ

(t)
i

for j = n+m to n do
let σ = 0.
for i = 1 to n+m+ o do

compute σ = σ + λ
(t)
i Li,j + λ

(t+1)
i Ri,j

compute λ (t)
j = σf ′i

(
z

(t)
j

)
for {i ∈ [1, n+m+ o]|Lj,i 6= 0}} do

compute ∇Lj,i = ∇Lj,i + λ
(t)
j ξ

(t)
i .

for {i ∈ [1, n+m+ o]|Rj,i 6= 0}} do
compute ∇Rj,i = ∇Rj,i + λ

(t)
j ξ

(t−1)
i .

let ∇bj = ∇bj + λ
(t)
j

42

6 Experiments

In this chapter we give both the experiments on the benchmark data sets,
and the experiments on time series data. For the benchmark data sets
we use two classification problems, and for the time series we first try
sinusoid functions, after which we run the algorithms on stock market
data.

6.1 Classification
We start this section by giving the definitions of two benchmark problems.
The first problem is the classification of the MNIST data set. This data
set contains handwritten digits of 0 to 9 in a binary format [LCB10].
There is a training set of 60000 examples, and a test set of 10000 examples.
The data set is constructed from the larger data sets MNIST Special
Database 1 and Special Database 3, where the former were handwritten
digits collected from high-school students, and the latter from Census
Bureau employees. The data is already preprocessed such that the digits
are centred in a gray-scale image of 28 by 28 pixels. Some implementations
use a technique called data augmentation, this creates variations of the
original training images such that we have newer and harder images to
train with [WP17]. However, we will not use these techniques since we
only want to measure the performance of the NG, but do not aim to have
better performance to more specialized algorithms. Due to the simplicity
of using MNIST in benchmarking models, it has become increasingly
popular. A drop-in replacement, Fashion-MNIST, that uses the exact
same file format contains images from 70000 fashion products from 10
different categories [XRV17], is our second data set. Fashion-MNIST is
more challenging than MNIST and thus holds more real-world value as a
benchmark.

The implementation of the algorithm is done using C++, with the
help of the linear algebra library Armadillo [San16]. Armadillo internally
uses the Intel MKL library for both LAPACK and BLAS operations. The
code for the forward and recurrent ANN can be found in Appendix C.
With this implementation we test the performance on both the MNIST
and Fashion-MNIST data sets.

43

6.1. CLASSIFICATION

MNIST

The MNIST data set represents a classification problem, so we use the
softmax output function we described before with length 10. Before we
give the samples to the network, we first normalize the input by subtracting
the mean of the input values, and dividing by the variance of the data
set. We run the NG algorithms with several configurations of number of
nodes so we can examine the performance. In Figure 6.1 and Figure 6.2
we give the results of a training on the MNIST data set for 200 and 300
nodes respectively. In Appendix B are the results of more configurations.
For each configuration, we empirically determined the hyper-parameters
for optimal train accuracy and a small generalization error. For all
configurations we notice that there is a substantial generalization error, of
at least 1%. However, the training accuracy for both converge to nearly
100%: the highest observed test accuracy was 98.86% for 300 nodes and
98.66% for 200 nodes.

For comparison, the highest reported score on the MNIST database
[YCC98]1 for non-convolution ANNs is reported on a deep convex net
[DY11] was a 99.17% accuracy on the test database. The second largest
accuracy, that does not use data augmentation, such as affine or elastic
distortions, or ensemble methods, reports a 98.6% accuracy with 800
hidden nodes. Furthermore, we succeed in reducing the number of con-
nections required to around 9.4% of the original for the 300 nodes and
to around 21% for 200 nodes. This reduction also shows in the time
required for each epoch, shaving a whole 6 seconds per epoch off from the
time for the 200 node configuration and 13 seconds per epoch for the 300
node configuration. By using the sparsity of the problem, we can greatly
decrease the training time. This sparsity is also clearly demonstrated
in the spy plot of non-zero values for both configurations, wherein the
connections with the input are only defined for the middle of the images
where the written information is defined.

Fashion-MNIST

We take the best performing configuration on the MNIST data set and use
that configuration on the Fashion-MNIST data set. The results can be
seen in Figure 6.3. The network is reduced to around 27% of its original
connections. The training accuracy reaches 98.6% while the test accuracy
stays around 90.3%. This is competitive with convolutional architectures
[XRV17]. We notice that the resulting spy plot is much denser than in
the original MNIST data set, which indicates that more information of
the input images is used.

1Note that this database is not complete.

44

6.1. CLASSIFICATION

� �� ��� ��� ��� ��� ���
������

	�

	�

	�

	�

	�

		

���

�
��
�

��

����
��
��

(a) The accuracy of the predictions
for both training and test data.

� �� ��� ��� ��� ��� ���
������

�

��

��

��

	�

���

�

��
��
��

(b) The density of the sparse ma-
trix compared to the initialization
plotted over the number of epochs.

� �� ��� ��� ��� ��� ���
������

�����

�����

	����

������

������

������

������

�	����

��

��

�

��
��
��

(c) The number of connections in
each epoch.

� �� ��� ��� ��� ��� ���

�����

��

��

��

�	

��
�

�
��
�

(d) The time each epoch took in
seconds.

� ��� ��� ��� ���
�
��
���
���
���

(e) The spy plot of the resulting weights.

Figure 6.1: A NG training with 200 nodes on MNIST.

45

6.1. CLASSIFICATION

� �� ��� ��� ��� ���

��
��

��

��

��

��

��

��

���

	

�

��

�

����
�����

(a) The accuracy of the predictions
for both training and test data.

� �� ��� ��� ��� ���

���
�

�

��

��

��

��

���

	
��

��
��
��

(b) The density of the sparse ma-
trix compared to the initialization
plotted over the number of epochs.

� �� ��� ��� ��� ���
��
�
�

�����

������

������

������

������

��
�

�

�	
��
�

��

(c) The number of connections in
each epoch.

� �� ��� ��� ��� ���
���
��

��

��

��

��

��

	

�
��
��
�

(d) The time each epoch took in
seconds.

� ��� ��� ��� ��� ����
�
��
���
���
���
���
���

(e) The spy plot of the resulting weights.

Figure 6.2: A NG training with 300 nodes on MNIST.

46

6.1. CLASSIFICATION

� �� ��� ��� ��� ���
	�����

����

����

����

����

����

����

�����

��
��

��
��

��

����

(a) The accuracy of the predictions
for both training and test data.

� �� ��� ��� ��� ���

���
�

�

��

��

��

��

���

	
��

��
��
��

(b) The density of the sparse ma-
trix compared to the initialization
plotted over the number of epochs.

� �� ��� ��� ��� ���
��
�
�

������

������

������

������

��
�

�

�	
��
�

��

(c) The number of connections in
each epoch.

� �� ��� ��� ��� ���
���
��

��

��

��

��

	

�
��
��
�

(d) The time each epoch took in
seconds.

� ��� ��� ��� ��� ����
�
��
���
���
���
���
���

(e) The spy plot of the resulting weights.

Figure 6.3: A NG training with 300 nodes on Fashion-MNIST

47

6.2. TIME SERIES

6.2 Time Series
Predicting time series is a completely different problem than the MNIST
classification problem. We change the objective function to Sum Squared
Error (SSE), which is defined as

n∑
i=1

(yi − ŷi)2,

where yi is the true output, and ŷi the predicted output. To make sure the
network performs as expected, we first try the NG algorithm on functions
with a clearly defined input and output. For this we choose variations on
a sinusoid function and try to predict its output with varying inputs.

6.2.1 Sinusoid
We first use the simple sine function, which defines the following continuous
time series

y = sin(x).

We use the domain x ∈ [0, 4π[as the training data set, and x ∈ [4π, 8π[as
the validation data set. For the first experiment we input the normalized
values (divided by 4π), and try to predict the validation data set with
only the given x values to obtain a discrete time series. The input domain
is divided in 400 samples, and so is the validation domain, since it has
the same length. We notice that over the training epochs, the algorithm
learns to predict the correct y value for the given x. However, when we
look at the out-of-sample prediction performance, we see that it does not
learn the periodicity of the function. The resulting spy plot is dense in
the first nodes, and gets sparser near the end.

In the next experiment, we double the domain of both the training
and test set to x ∈ [0, 8π[and x ∈ [8π, 16π[respectively. In Figure 6.5
we see that the increase of the domains did not make the network learn
the periodicity of the function. In the last sinusoid experiment we define
the function we want to predict to

y = sin(x)
60 + x

.

This function has a decreasing amplitude over time, which makes it harder
for the network to learn. Instead of giving the values of x to the network,
we now give the preceding 200 y values. This method is called a sliding
window input. In Figure 6.6 we see that it now learns the periodicity
correctly, but fails to properly predict the amplitude of the function. This
can be improved by either increasing the number of samples the network
can learn from, or by increasing the number of epochs.

48

6.2. TIME SERIES

(a) Accuracy at epoch 1. (b) Accuracy at epoch 217.

(c) Accuracy at epoch 577. (d) Accuracy at epoch 1441.
� �� �� �� �� ���

�

��

��

��

��

���

(e) The spy plot of the resulting weights.

Figure 6.4: A NG training with 100 nodes on the sine wave function.

49

6.2. TIME SERIES

(a) Accuracy at epoch 1. (b) Accuracy at epoch 1441.

(c) Accuracy at epoch 2881. (d) Accuracy at epoch 4321.

(e) Accuracy at epoch 8641. (f) Accuracy at epoch 19801.
� �� �� �� �� ���

�

��

��

��

��

���

(g) The spy plot of the resulting weights.

Figure 6.5: A NG training with 100 nodes on the sine wave function with
a larger domain.

50

6.2. TIME SERIES

(a) Accuracy at epoch 1. (b) Accuracy at epoch 217.

(c) Accuracy at epoch 577. (d) Accuracy at epoch 1441.

Figure 6.6: A NG training with 20 nodes on a sinusoid with a sliding
window.

6.2.2 IBM Stock
Now that we have an indication of the performance of our NG on time
series data, we will use the algorithm to predict real stock market values.
We use weekly data, which consist of four separate time series with:
open, high, low, and close value for the whole week. The open value
resembles the value of the stock when the market opens that week, close
holds the value when the market closes in that week, high and low hold
the maximum and minimum value respectively in that week. For our
experiments we choose to use the IBM stock data, from 2000-06-02 to
2017-02-17 as training domain, 2017-02-24 to 2018-01-12 as validation
domain, and 2018-01-19 to 2018-05-21 as test domain. Both the test
and validation domain will remain as unseen data, where the validation
domain is used to verify the generalization error, and the test domain as
the prediction of values that are contemporary. First we train the NG
algorithm with 25 nodes, and allow it to use a window of 19 previous
data points. In Figure 6.7 we see that the algorithm is able to predict
the training data very well, due to its high overlap (SSE of around 1.5).
When we look at the validation data we see that over the epochs the
predictions gets better, and eventually the algorithm is able to predict the
opening value of the stock with a very good accuracy (SSE of around 1.9).

51

6.2. TIME SERIES

In Figure 6.8 we show the prediction of the test and validation data for
close, high, and low. It is clear that the model is able to predict the open
value much better than the other time series, which can be explained
due to the value of the following open and close values having the same
direction. However, they are not necessarily the same. In the other time
series, the algorithm produces a value near the last value with a slight
damping, which creates a lagged time series. While this type of prediction
still holds a relevant value, it is not as useful as the prediction on the
open time series. The next experiment will use the predictions of the
previously predicted values as input in the new calculation. This means
that instead of predicting the next value of the time series, we can also
predict the following values to that. In Figure 6.9, we show the results of
this experiment. It is clear that this is a much harder test case for the
algorithm, and it only produces values that are approximate to the real
values. What is interesting to note, is that the model captures some of
the periodicity of the model, and the values do not differ too much from
the true value.

(a) The prediction of open training
data at epoch 2809.

(b) The prediction of open valida-
tion data at epoch 1.

(c) The prediction of open valida-
tion data at epoch 1081.

(d) The prediction of open valida-
tion data at epoch 2809.

Figure 6.7: A NG training with 25 nodes on IBM stock with a sliding
window of 19 previous data points.

52

6.2. TIME SERIES

(a) The prediction of close test data
at epoch 2809.

(b) The prediction of close valida-
tion data at epoch 2809.

(c) The prediction of high test data
at epoch 2809.

(d) The prediction of high validation
data at epoch 2809.

(e) The prediction of low test data
at epoch 2809.

(f) The prediction of low validation
data at epoch 2809.

Figure 6.8: A NG training with 25 nodes on IBM stock with a sliding
window of 19 previous data points.

53

6.2. TIME SERIES

(a) The prediction of open test data
at epoch 2809.

(b) The prediction of close test data
at epoch 2809.

(c) The prediction of high test data
at epoch 2809.

(d) The prediction of low test data
at epoch 2809.

Figure 6.9: A NG training with 25 nodes on IBM stock with a sliding
window of 19 previous data points, that uses its own output.

6.2.3 Recurrent IBM Stock
Finally, we train the recurrent version of the algorithm on the same
problem. Instead of using the 19 values for all four time series as input,
we use an input of only four data points over 19 time steps. In Figure 6.10
and Figure 6.11 we can see that the recurrent algorithm yields lower
performance (SSE 2.8 on test, and 7.4 on validation data) and training is
more unstable. Finally when we let the algorithm predict based on its
own output we obtain the results as seen in Figure 6.12. We notice that
this model converges to a trend, but does not yield a meaningful forecast.
This problem of training RNNs with gradient methods can be explained
by vanishing and exploding gradients [PMB13; BSF94], see Theorem 3.
Solutions proposed to address these problems are LSTM networks [HS97;
GSC99] and more recently GRU networks [Cho+14], but these topologies
are hard to generalize to run on any DAG.

54

6.2. TIME SERIES

(a) The prediction of open training
data at epoch 1369.

(b) The prediction of open valida-
tion data at epoch 1.

(c) The prediction of open valida-
tion data at epoch 505.

(d) The prediction of open valida-
tion data at epoch 1369.

Figure 6.10: A RecurrentNG training with 5 nodes on IBM stock with 19
time steps.

55

6.2. TIME SERIES

(a) The prediction of close test data
at epoch 1368.

(b) The prediction of close valida-
tion data at epoch 1368.

(c) The prediction of high test data
at epoch 1368.

(d) The prediction of high validation
data at epoch 1368.

(e) The prediction of low test data
at epoch 1368.

(f) The prediction of low validation
data at epoch 1368.

Figure 6.11: A RecurrentNG training with 5 nodes on IBM stock with 19
time steps.

56

6.2. TIME SERIES

(a) The prediction of open test data
at epoch 1368.

(b) The prediction of close test data
at epoch 1368.

(c) The prediction of high test data
at epoch 1368.

(d) The prediction of low test data
at epoch 1368.

Figure 6.12: A RecurrentNG training with 5 nodes on IBM stock with 19
time steps, that uses its own output.

57

7 Conclusion

In this work we proposed a fundamental advancement of time series
prediction through the use of ANNs. Due to this, we overcome the
major problems in traditional methods, where it was needed to have
expert knowledge of the time series you wanted to forecast. With NGs
the model is based on the training data fed to the model, and not the
knowledge of the person that makes the forecasts. This makes forecasting
time series more flexible, easier to produce in large quantities, and more
accurate. We showed how you can successfully use a generic DAG as a
ANN for both prediction and training. Furthermore, the performance for
the MNIST data set was competitive with more specialised networks for
image classification, which was again shown on the Fashion-MNIST data
set.

When we used the NG algorithm for time series data, we showed that
it was able to learn to predict the open value of the IBM stock value
nearly perfectly. While it had more trouble with the close, low and high
values, they were still close to the true values. It is clear that the NG
is able to predict multivariate time series, but the performance can still
be improved in many ways. One of such improvements can be made
by allowing it to see more stock symbols, and let it learn the relations
between companies and general trends in the stock market.

Another improvement can be made by allowing it to forecast not only
the next value of the time series, but by allowing it to predict a window.
This should yield more accurate predictions over more time than just the
next data point. The RecurrentNG algorithm proved to be less useful,
since it was harder to train. Its biggest advantage over the NG algorithm
is its capability to use any sequence length as input, whereas the NG has
to be trained for specific lengths. In the traditional layered topology, the
RNN usually has better performance due to having memory of previous
calculations due to the stored state. This advantage, however, was less
obvious in the RecurrentNG and NG algorithms, since they are allowed
to connect to all previous outputs (in the same calculation) by default.

While the current learning algorithm for NG already make much use
of the sparsity in connections, we have only removed the connections we
were certain to have almost no effect on the results. More sparsity can be

58

introduced by making either the learning sparsification more greedy, or
by developing an additional algorithm that improves the sparsity after
the weights have been learned. This can be pushed even further, by
increasing the number of nodes that the NG has access to when the
objective function has converged. This can be done repeatedly until the
performance of the network stops improving.

59

Acronyms

ANN Artificial Neural Network 1,
7–14, 19, 36, 43, 44, 58

AR Autoregressive 2, 5, 6
ARIMA Autoregressive Inte-

grated Moving-Average 6, 7
ARMA Autoregressive Moving-

Average 2, 6

BPTT Back-propagation
Through Time 14

DAG Directed Acyclic Graph 12–
17, 19, 39, 54, 58

FNN Feedforward Neural Net-
work 8–11, 13, 14, 17, 19

GARCH Generalized Autore-
gressive Conditional Het-
eroscedasticity 2, 6

GRU Gated Recurrent Units 11,
54

LSTM Long Short-Term Memory
11, 54

MA Moving-Average 5, 6
MGARCH Multivariate Gener-

alized Autoregressive Condi-
tional Heteroscedasticity 6

MLP Multi Layer Perceptron 9

NG Neural Graphs iii, 19, 22, 24,
25, 35, 36, 38–40, 43–54, 58,
59, 69–71

OLS Ordinary Least Squares ii, 2,
3, 67

RecurrentNG Recurrent Neural
Graphs 39, 40, 42, 55–58

ReLU Rectified Linear Unit 10
RNN Recurrent Neural Network

8, 11, 13–15, 17, 54, 58

SARIMA Seasonal Autoregres-
sive Integrated Moving-
Average 6

SARMA Seasonal Autoregressive
Moving-Average 6

SGD Stochastic Gradient Descent
14, 24, 28–30

SSE Sum Squared Error 48

VAR Vector Autoregression 6
VARIMA Vector Autoregressive

Integrated Moving-Average 6
VARMA Vector Autoregressive

Moving-Average 6

60

Bibliography

[AA13] Adhikari, Ratnadip and Agrawal, RK. “An introductory
study on time series modeling and forecasting”. In: arXiv
preprint arXiv:1302.6613 (2013).

[Ans73] Anscombe, Francis J. “Graphs in statistical analysis”. In:
The American Statistician vol. 27. no. 1 (1973), pp. 17–21.

[BBC17] Bourely, Alfred, Boueri, John Patrick, and Choromonski,
Krzysztof. “Sparse Neural Networks Topologies”. In: arXiv
preprint arXiv:1706.05683 (2017).

[BG09] Braun, Jürgen and Griebel, Michael. “On a constructive
proof of Kolmogorov’s superposition theorem”. In: Construc-
tive approximation vol. 30. no. 3 (2009), p. 653.

[BJ70] Box, George EP and Jenkins, Gwilym M. Time Series Anal-
ysis: Forecasting and Control. 1st ed. Holden–Day, 1970.

[Bol86] Bollerslev, Tim. “Generalized autoregressive conditional
heteroskedasticity”. In: Journal of econometrics vol. 31. no. 3
(1986), pp. 307–327.

[Box+16] Box, George EP, Jenkins, Gwilym M, Reinsel, Gregory C,
and Ljung, Greta M. Time series analysis: forecasting and
control. 5th ed. John Wiley & Sons, 2016.

[BSF94] Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. “Learn-
ing long-term dependencies with gradient descent is diffi-
cult”. In: IEEE transactions on neural networks vol. 5. no. 2
(1994), pp. 157–166.

[Cho+14] Cho, Kyunghyun et al. “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Trans-
lation”. In: CoRR vol. abs/1406.1078 (2014). arXiv: 1406.
1078. url: http://arxiv.org/abs/1406.1078.

[Chu+14] Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun, and
Bengio, Yoshua. “Empirical evaluation of gated recurrent
neural networks on sequence modeling”. In: arXiv preprint
arXiv:1412.3555 (2014).

61

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

BIBLIOGRAPHY

[CL11] Chen, Ling and Lai, Xu. “Comparison between ARIMA and
ANN models used in short-term wind speed forecasting”.
In: Power and Energy Engineering Conference (APPEEC),
2011 Asia-Pacific. IEEE. 2011, pp. 1–4.

[Csá01] Csáji, Balázs Csanád. “Approximation with artificial neural
networks”. In: Faculty of Sciences, Eötvös Loránd University,
Hungary vol. 24 (2001), p. 48.

[CSS16] Cohen, Nadav, Sharir, Or, and Shashua, Amnon. “On the
expressive power of deep learning: A tensor analysis”. In:
Conference on Learning Theory. 2016, pp. 698–728.

[Cyb89] Cybenko, George. “Approximation by superpositions of a
sigmoidal function”. In: Mathematics of Control, Signals,
and Systems (MCSS) vol. 2. no. 4 (1989), pp. 303–314.

[Día+08] Díaz-Robles, Luis A et al. “A hybrid ARIMA and artificial
neural networks model to forecast particulate matter in
urban areas: The case of Temuco, Chile”. In: Atmospheric
Environment vol. 42. no. 35 (2008), pp. 8331–8340.

[DP02] Dufour, Jean-Marie and Pelletier, Denis. “Linear methods
for estimating VARMA models with a Macroeconomic appli-
cation”. In: 2002 Proceedings of the Business and Economic
Statistics Section of the American Statistical Association,
Washington, DC (2002), pp. 2659–2664.

[DY11] Deng, Li and Yu, Dong. “Deep Convex Network: A Scal-
able Architecture for Speech Pattern Classification”. In:
Interspeech. International Speech Communication Associa-
tion, Aug. 2011. url: https://www.microsoft.com/en-
us/research/publication/deep- convex- network- a-
scalable-architecture-for-speech-pattern-classification/.

[Gam17] Gamboa, John Cristian Borges. “Deep Learning for Time-
Series Analysis”. In: arXiv preprint arXiv:1701.01887 (2017).

[GB10a] Glorot, Xavier and Bengio, Yoshua. “Understanding the
difficulty of training deep feedforward neural networks”. In:
Proceedings of the thirteenth international conference on
artificial intelligence and statistics. 2010, pp. 249–256.

[GB10b] Grubb, Alexander and Bagnell, J Andrew. “Boosted Back-
propagation Learning for Training Deep Modular Networks.”
In: ICML. 2010, pp. 407–414.

[GBC16] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep
learning. MIT press, 2016.

[GSC99] Gers, Felix A, Schmidhuber, Jürgen, and Cummins, Fred.
“Learning to forget: Continual prediction with LSTM”. In:
(1999).

62

https://www.microsoft.com/en-us/research/publication/deep-convex-network-a-scalable-architecture-for-speech-pattern-classification/
https://www.microsoft.com/en-us/research/publication/deep-convex-network-a-scalable-architecture-for-speech-pattern-classification/
https://www.microsoft.com/en-us/research/publication/deep-convex-network-a-scalable-architecture-for-speech-pattern-classification/

BIBLIOGRAPHY

[Har90] Harvey, Andrew C. Forecasting, structural time series models
and the Kalman filter. Cambridge University Press, 1990.

[Hay04] Haykin, Simon. “A comprehensive foundation”. In: Neural
Networks vol. 2. no. 2004 (2004), p. 41.

[He+15] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of
the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[He+16] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[HS97] Hochreiter, Sepp and Schmidhuber, Jürgen. “Long short-
term memory”. In: Neural computation vol. 9. no. 8 (1997),
pp. 1735–1780.

[HSW89] Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert.
“Multilayer feedforward networks are universal approxima-
tors”. In: Neural networks vol. 2. no. 5 (1989), pp. 359–
366.

[IS15] Ioffe, Sergey and Szegedy, Christian. “Batch normalization:
Accelerating deep network training by reducing internal
covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[KB14] Kingma, Diederik and Ba, Jimmy. “Adam: A method for
stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[Koh+96] Kohzadi, Nowrouz, Boyd, Milton S., Kermanshahi, Bahman,
and Kaastra, Iebeling. “A comparison of artificial neural
network and time series models for forecasting commodity
prices”. In: Neurocomputing vol. 10. no. 2 (1996). Financial
Applications, Part I, pp. 169–181. issn: 0925-2312. doi:
https://doi.org/10.1016/0925-2312(95)00020-8. url:
http : / / www . sciencedirect . com / science / article /
pii/0925231295000208.

[Kol63] Kolmogorov, Andrei Nikolaevich. “On the representation
of continuous functions of many variables by superposition
of continuous functions of one variable and addition”. In:
Translations American Mathematical Society vol. 2. no. 28
(1963), pp. 55–59.

[Koo74] Koopmans, Lambert H. The spectral analysis of time series.
Academic press, 1974.

63

https://doi.org/https://doi.org/10.1016/0925-2312(95)00020-8
http://www.sciencedirect.com/science/article/pii/0925231295000208
http://www.sciencedirect.com/science/article/pii/0925231295000208

BIBLIOGRAPHY

[KOW04] Kihoro, J, Otieno, R, and Wafula, C. “Seasonal time se-
ries forecasting: A comparative study of ARIMA and ANN
models”. In: AJST vol. 5. no. 2 (2004).

[KSH12] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey
E. “Imagenet classification with deep convolutional neural
networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[LBH15] LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. “Deep
learning”. In: Nature vol. 521. no. 7553 (2015), p. 436.

[LCB10] LeCun, Yann, Cortes, Corinna, and Burges, CJ. “MNIST
handwritten digit database”. In: AT&T Labs [Online]. Avail-
able: http://yann. lecun. com/exdb/mnist vol. 2 (2010).

[LeC+88] LeCun, Yann, Touresky, D, Hinton, G, and Sejnowski, T.
“A theoretical framework for back-propagation”. In: Pro-
ceedings of the 1988 connectionist models summer school.
CMU, Pittsburgh, Pa: Morgan Kaufmann. 1988, pp. 21–28.

[Lin+96] Lin, Tsungnan, Horne, Bill G, Tino, Peter, and Giles, C Lee.
“Learning long-term dependencies in NARX recurrent neural
networks”. In: IEEE Transactions on Neural Networks vol. 7.
no. 6 (1996), pp. 1329–1338.

[LKS91] LeCun, Yann, Kanter, Ido, and Solla, Sara A. “Second order
properties of error surfaces: Learning time and generaliza-
tion”. In: Advances in neural information processing systems.
1991, pp. 918–924.

[Lug17] Lugt, B.J. van der. “Reductie van Neurale Netwerken met
GraphBLAS”. Bsc Thesis. Utrecht University, 2017.

[MHN13] Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y.
“Rectifier nonlinearities improve neural network acoustic
models”. In: Proc. ICML. Vol. 30. 1. 2013.

[Mik+14] Mikolov, Tomas et al. “Learning longer memory in recur-
rent neural networks”. In: arXiv preprint arXiv:1412.7753
(2014).

[MLP16] Mhaskar, Hrushikesh, Liao, Qianli, and Poggio, Tomaso A.
“Learning Real and Boolean Functions: When Is Deep Better
Than Shallow”. In: CoRR vol. abs/1603.00988 (2016). arXiv:
1603.00988. url: http://arxiv.org/abs/1603.00988.

[PMB13] Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua.
“On the difficulty of training recurrent neural networks”.
In: International Conference on Machine Learning. 2013,
pp. 1310–1318.

[RHW+88] Rumelhart, David E, Hinton, Geoffrey E, Williams, Ronald J,
et al. “Learning representations by back-propagating errors”.
In: Cognitive modeling vol. 5. no. 3 (1988), p. 1.

64

https://arxiv.org/abs/1603.00988
http://arxiv.org/abs/1603.00988

BIBLIOGRAPHY

[RKK18] Reddi, Sashank J, Kale, Satyen, and Kumar, Sanjiv. “On
the convergence of Adam and beyond”. In: International
Conference on Learning Representations. 2018.

[Ros61] Rosenblatt, Frank. Principles of neurodynamics. perceptrons
and the theory of brain mechanisms. Tech. rep. Cornell
Aeronautical Lab inc Buffalo NY, 1961.

[San16] Sanderson, Conrad. Armadillo C++ Linear Algebra Library.
June 2016. doi: 10 . 5281 / zenodo . 55251. url: https :
//doi.org/10.5281/zenodo.55251.

[SK16] Salimans, Tim and Kingma, Diederik P. “Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks”. In: Advances in Neural Information
Processing Systems. 2016, pp. 901–909.

[Smi17] Smith, Leslie N. “Cyclical learning rates for training neural
networks”. In: Applications of Computer Vision (WACV),
2017 IEEE Winter Conference on. IEEE. 2017, pp. 464–472.

[Sri+14] Srivastava, Nitish et al. “Dropout: a simple way to prevent
neural networks from overfitting.” In: Journal of machine
learning research vol. 15. no. 1 (2014), pp. 1929–1958.

[SS95] Siegelmann, Hava T and Sontag, Eduardo D. “On the com-
putational power of neural nets”. In: Journal of computer
and system sciences vol. 50. no. 1 (1995), pp. 132–150.

[Sut+13] Sutskever, Ilya, Martens, James, Dahl, George, and Hin-
ton, Geoffrey. “On the importance of initialization and mo-
mentum in deep learning”. In: International conference on
machine learning. 2013, pp. 1139–1147.

[TH12] Tieleman, Tijmen and Hinton, Geoffrey. “Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude”. In: COURSERA: Neural networks for machine
learning vol. 4. no. 2 (2012), pp. 26–31.

[Wal31] Walker, Gilbert. “On Periodicity in Series of Related Terms”.
In: Proceedings of the Royal Society of London vol. 131
(1931), pp. 518–532.

[WH86] Williams, DRGHR and Hinton, Geoffrey. “Learning repre-
sentations by back-propagating errors”. In: Nature vol. 323.
no. 6088 (1986), pp. 533–538.

[WM03] Wilson, D Randall and Martinez, Tony R. “The general
inefficiency of batch training for gradient descent learning”.
In: Neural Networks vol. 16. no. 10 (2003), pp. 1429–1451.

[Wol38] Wold, Herman. “A study in the analysis of stationary time
series”. PhD thesis. Almqvist & Wiksell, 1938.

65

https://doi.org/10.5281/zenodo.55251
https://doi.org/10.5281/zenodo.55251
https://doi.org/10.5281/zenodo.55251

BIBLIOGRAPHY

[Wol96] Wolpert, David H. “The lack of a priori distinctions between
learning algorithms”. In: Neural computation vol. 8. no. 7
(1996), pp. 1341–1390.

[WP17] Wang, Jason and Perez, Luis. The effectiveness of data
augmentation in image classification using deep learning.
Tech. rep. Technical report, 2017.

[XRV17] Xiao, Han, Rasul, Kashif, and Vollgraf, Roland. “Fashion-
MNIST: a novel image data set for benchmarking machine
learning algorithms”. In: arXiv preprint arXiv:1708.07747
(2017).

[YCC98] Yann, LeCun, Corinna, Cortes, and Christopher, JB. “The
MNIST database of handwritten digits”. In: URL http://yhann.
lecun. com/exdb/mnist (1998).

[Yul27] Yule, G Udny. “On a method of investigating periodici-
ties in disturbed series, with special reference to Wolfer’s
sunspot numbers”. In: Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character vol. 226 (1927), pp. 267–
298.

[Zei12] Zeiler, Matthew D. “ADADELTA: an adaptive learning rate
method”. In: arXiv preprint arXiv:1212.5701 (2012).

66

A OLS Estimator Optimality

We define the OLS model as

z = Xβ + ε, (A.1)

where X ∈ Rn×m with full column rank m containing the exogenous
variables, β ∈ Rm containing the model parameters, ε ∈ Rn contains
uncorrelated random errors with E [ε] = 0 and variance σ2, and z ∈ Rn.
In our fit we want to minimise the sum of squared residuals

S(β) = 〈ε, ε〉
= ‖z−Xβ‖2

2 .

Now let the parameter β̂ be our estimator such that

β̂ = (XTX)−1XTz. (A.2)

X is full column rank, and thus (XTX) is invertible. Then

XT (z−Xβ̂) = XTz− (XTX)(XTX)−1XTz
= XTz−XTz = 0

To find the β̂ that minimizes the sum of squared residuals, we need to
take the partial derivative

∂

∂β
S(β) = 〈−X, z−Xβ〉+ 〈z−Xβ,−X〉

= −XT (z−Xβ)− (z−Xβ)TX
= −XT (z−Xβ)− (XT (z−Xβ))T .

We showed that XT (z −Xβ̂) = 0 for our chosen β̂, thus for β = β̂ we
obtain

∂

∂β
S(β) = 0,

67

thus we have an extremum for β = β̂. Furthermore, since S(β) is quadratic
we have a local minimum. Now let S(β) be the global minimal for some
β 6= β̂. Due to the minimum, the following property holds:

∂

∂β
S(β) = 0,

and thus XT (z−Xβ) = 0. From this follows that XTXβ = XTz. Now
we write S(β) in terms of S(β̂):

S(β) = S(β̂) + β̂TXTXβ̂ + βTXTXβ − zTXβ − βTXTz
= S(β̂) + β̂TXTXβ̂ − βTXTXβ

= S(β̂) + (β̂ − β)TXTX(β̂ − β).

Since XTX is positive definite, we know that (β̂ − β)TXTX(β̂ − β) ≥ 0
and (β̂ − β) /∈ ker(X) = {0}. In this case we should have for β 6= β̂ that
S(β̂) < S(β), but S(β) was already minimal, which is a contradiction.
From this follows that β = β̂ minimizes the sum of squared residuals.
Now assume there is some other β 6= β̂ hat that also minimizes S(β).
Again, since (β̂ − β) /∈ ker(X), we have (β̂ − β)TXTX(β̂ − β) > 0 and
thus S(β̂) < S(β), which leads to a contradiction. From this follows that
the solution is unique.

68

B NG MNIST Training

69

� �� ��� ��� ��� ��� ���
������

	�

	�

	�

	�

	�

	�

		

���

�
��
�

��

����
��
��

(a) The accuracy of the predictions
for both training and test data.

� �� ��� ��� ��� ��� ���
������

�

��

��

��

	�

���

�

��
��
��

(b) The density compared to the ini-
tialization plotted over the number
of epochs.

� �� ��� ��� ��� ��� ���
���
��

�����

�����

�����

�����

�����

	����

����

��
�
��

��

�
��
��

(c) The number of connections in
each epoch.

� 	� ��� �	� ��� �	� ���

�����

��	

	��

	�	

��

�	

���

��	

���
��

�
��

��
�

(d) The time each epoch took in
seconds.

� ��� ��� ��� ��� ��� ��� ��� ���
������������

(e) The spy plot of the resulting weights.

Figure B.1: A NG training with 100 nodes on MNIST

70

� �� ��� ��� ��� ��� ���
������

	�

	�

	�

	�

	�

		

���

�
��
�

��

����
��
��

(a) The accuracy of the predictions
for both training and test data.

� �� ��� ��� ��� ��� ���
������

�

��

��

��

	�

���

�

��
��
��

(b) The density compared to the ini-
tialization plotted over the number
of epochs.

� �� ��� ��� ��� ��� ���
���	��

������

������

������

������

��
�
�

	�
��

�

(c) The number of connections in
each epoch.

� �� ��� ��� ��� ��� ���
���
��

��

��

��

�	

�

��
�
��
��
�

(d) The time each epoch took in
seconds.

� ��� ��� ��� ��� ����
�
��
���
���
���
���
���
���
���

(e) The spy plot of the resulting weights.

Figure B.2: A NG training with 400 nodes on MNIST

71

C Code

ng.h
#pragma once

template<typename tActivation = PReluActivation, typename tOutput
↪→ = SoftMaxActivation, typename tMat = arma::fmat>

class NeuralGraph
{
public:

struct TrainingState
{

tMat Ldf;
arma::fvec biasdf;
arma::fvec gaindf;
arma::fvec dropout;
bool hasDropout;
float dropChance;
float loss;
size_t samples;

/∗∗
∗ Constructor
∗
∗ @param Ldf The L gradient matrix.
∗ @param biasdf The bias gradient.
∗ @param gaindf The gain gradient.
∗ @param samples The sample count.
∗/

TrainingState(tMat Ldf, arma::fvec biasdf, arma::fvec gaindf, size_t
↪→ samples)
: Ldf(Ldf),
biasdf(biasdf),
gaindf(gaindf),
samples(samples),
hasDropout(true),

72

dropChance(0.15f),
loss(0.0f)

{

}

/∗∗
∗ Copy constructor
∗
∗ @param other The other trainingstate to copy from.
∗/

TrainingState(const TrainingState &other)
: Ldf(other.Ldf),
biasdf(other.biasdf),
gaindf(other.gaindf),
dropout(other.dropout),
samples(other.samples),
hasDropout(other.hasDropout),
dropChance(other.dropChance),
loss(other.loss)

{

}

/∗∗
∗ Resets this object
∗/

void Reset()
{

Ldf.zeros();
biasdf.zeros();
gaindf.zeros();
dropout.zeros();
samples = 0;
loss = 0.0f;

}
};

/∗∗
∗ Constructor
∗
∗ @param inputSize Size of the input.
∗ @param outputSize Size of the output.
∗ @param hiddenNodes The number of hidden nodes.
∗/

73

NeuralGraph(std::size_t inputSize, std::size_t outputSize, std::size_t
↪→ hiddenNodes)
: mInputSize(inputSize),
mOutputSize(outputSize),
mHiddenNodes(hiddenNodes),
mL(outputSize + hiddenNodes, inputSize + outputSize +

↪→ hiddenNodes, arma::fill::zeros),
mBias(outputSize + hiddenNodes, arma::fill::zeros),
mGain(outputSize + hiddenNodes, arma::fill::ones),
mLColNorm(outputSize + hiddenNodes, arma::fill::ones),
mN(outputSize + hiddenNodes),
mDensity(1.0f)

{

mL.tail_cols(mN) = arma::trimatl(arma::randn<arma::fmat>(mN,
↪→ mN), −1);

mL.head_cols(mInputSize) = arma::randn<arma::fmat>(mN,
↪→ mInputSize);

mL.tail_rows(mOutputSize).cols(0, mInputSize).zeros();
mL.tail_cols(mOutputSize).zeros();

mL = mL.t();

// He initialization
for (arma::uword c = 0; c < mL.n_cols; ++c)
{

float connections = 0.0f;

if (c < mHiddenNodes)
{

connections = c + mInputSize;
}
else
{

connections = mHiddenNodes;
}

mL.col(c) ∗= std::sqrt(2.0f / ((1 + std::pow(0.2f, 2)) ∗
↪→ connections));

}

CacheIndices();

mInitialNonZeros = arma::nonzeros(mL).eval().n_elem;
}

/∗∗
∗ Returns a valid default state
∗

74

∗ @return A TrainingState.
∗/

TrainingState DefaultState()
{

return TrainingState(tMat(arma::size(mL), arma::fill::zeros), arma::
↪→ fvec(mN, arma::fill::zeros), arma::fvec(mN,arma::fill::zeros),
↪→ 0);

}

/∗∗
∗ Cache non−zero indices of the weight matrix, such that we can easily
∗ iterate on those.
∗/

void CacheIndices()
{

tMat lmask = tMat(arma::spones(arma::sp_fmat(mL)));
mLOutgoingIndices.resize(mL.n_rows);
mLIngoingIndices.resize(mL.n_cols);

for (size_t i = 0, size = mL.n_rows; i < size; ++i)
{

mLOutgoingIndices[i] = arma::find(lmask.row(i));
}

for (size_t i = 0, size = mL.n_cols; i < size; ++i)
{

mLIngoingIndices[i] = arma::find(lmask.col(i));

mLColNorm(i) = arma::norm(mL.col(i));
}

}

/∗∗
∗ Forward propagates the given input
∗
∗ @param input The input vector.
∗
∗ @return An arma::fvec of size output.
∗/

arma::fvec Forward(arma::fvec input)
{

auto xi = CalculateStates(input);
return xi.tail_rows(mOutputSize);

}

/∗∗

75

∗ Calculates the states from the given input vector by forward−
↪→ propagation

∗
∗ @param [in,out] input The input vector.
∗
∗ @return The calculated state.
∗/

arma::fvec CalculateStates(arma::fvec &input)
{

arma::fvec xi = arma::fvec(mL.n_rows, arma::fill::zeros);
xi.head_rows(input.n_rows) = input;

for (size_t i = 0, ti = mInputSize, end = mHiddenNodes; i < end;
↪→ ++i, ++ti)

{
float x = AffineTransform(i, ti, xi);
xi(ti) = tActivation::f(x);

}

// propagate weight to the output and calculate the activation
↪→ separately

for (size_t i = mHiddenNodes, ti = mInputSize + mHiddenNodes,
↪→ end = mN; i < end; ++i, ++ti)

{
xi(ti) = AffineTransform(i, ti, xi);

}

xi.tail_rows(mOutputSize) = tOutput::f(xi.tail_rows(mOutputSize)
↪→);

return xi;
}

/∗∗
∗ Calculates the states input and returns it completely (used for back−

↪→ propagation) by forward−
∗ propagation
∗
∗ @param [in,out] state The state to capture statistics.
∗ @param [in,out] input The input vector.
∗
∗ @return The calculated intermediate states.
∗/

std::tuple<arma::fvec, arma::fvec> CalculateStatesInput(TrainingState
↪→ &state, arma::fvec &input)

{
arma::fvec z = arma::fvec(mL.n_rows, arma::fill::zeros);
z.head_rows(input.n_rows) = input;

76

arma::fvec xi = arma::fvec(mL.n_rows, arma::fill::zeros);
xi.head_rows(input.n_rows) = input;

if (state.hasDropout)
{

z.head_rows(input.n_rows) %= state.dropout.head_rows(input.
↪→ n_rows);

xi.head_rows(input.n_rows) %= state.dropout.head_rows(
↪→ input.n_rows);

}

for (size_t i = 0, ti = mInputSize, end = mHiddenNodes; i < end;
↪→ ++i, ++ti)

{
float x = AffineTransform(i, ti, xi);

if (state.hasDropout)
{

x ∗= state.dropout(i);
}

z(ti) = x;
xi(ti) = tActivation::f(x);

}

// propagate weight to the output and calculate the activation
↪→ separately

for (size_t i = mHiddenNodes, ti = mInputSize + mHiddenNodes,
↪→ end = mN; i < end; ++i, ++ti)

{
float x = AffineTransform(i, ti, xi);
z(ti) = x;

}

xi.tail_rows(mOutputSize) = tOutput::f(z.tail_rows(mOutputSize));
↪→

return { xi, z.tail_rows(mN)};
}

/∗∗
∗ Performs an affine transform on the vector and calculates the weight

↪→ normalization
∗
∗ @param i Zero−based index of the node.
∗ @param ti The translated node index (deals with non−square matrix).
∗ @param xi The xi vector.
∗
∗ @return The node output value.

77

∗/

FORCEINLINE float AffineTransform(size_t i, size_t ti, const arma::
↪→ fvec &xi)

{
return arma::as_scalar(arma::dot(mL.unsafe_col(i).head(ti) /

↪→ mLColNorm.at(i) ∗ mGain(i), xi.head_rows(ti))) + mBias(i)
↪→ ;

}

template< typename tObjective = CrossEntropy<SoftMaxActivation
↪→ >>

/∗∗
∗ Adds a sample to the current training state
∗
∗ @param [in,out] state The training state.
∗ @param in The input vector.
∗ @param out The true output vector.
∗
∗ @return The value of the objective function.
∗/

float AddSample(TrainingState &state, arma::fvec in, arma::fvec out)
{

if (state.hasDropout)
{

state.dropout = arma::fvec(mInputSize + mHiddenNodes, arma
↪→ ::fill::randu);

float realDropChance = state.dropChance;

for (arma::uword i = 0; i < state.dropout.n_rows; ++i)
{

state.dropout(i) = state.dropout(i) > realDropChance ? 1.0f
↪→ / (1.0f − realDropChance) : 0.0f;

}
}

auto[xi, z] = CalculateStatesInput(state, in);

arma::fvec lagrange(arma::size(z), arma::fill::zeros);

arma::fvec dflogsum = tObjective::df(xi.tail_rows(mOutputSize), z.
↪→ tail_rows(mOutputSize), out);

lagrange.tail_rows(mOutputSize) = dflogsum;
state.biasdf.tail_rows(mOutputSize) += dflogsum;

78

for (size_t j = mN − 1, end = mN − mOutputSize; j >= end; −−j
↪→)

{

const float nv = mLColNorm(j);

for (const auto &i : mLIngoingIndices[j])
{

float nablaW = lagrange.at(j) ∗ xi(i);
float nablag = nablaW ∗ mL.at(i, j) / nv;
state.gaindf(j) += nablag;

state.Ldf(i, j) += mGain.at(j) / nv ∗ (nablaW − mL.at(i, j)
↪→ / nv ∗ nablag);

}
}

for (std::ptrdiff_t j = mHiddenNodes − 1, jt = mHiddenNodes +
↪→ mInputSize − 1; j >= 0; −−j, −−jt)

{
float lagrangej = 0.0f;

for (const auto &i : mLOutgoingIndices[jt])
{

lagrangej += lagrange.at(i) ∗ (mL.at(jt, i) / mLColNorm.at
↪→ (i) ∗ mGain.at(i)) ∗ state.dropout(i);

}

lagrange(j) = tActivation::df(z(j)) ∗ lagrangej;

const float nv = mLColNorm(j);

for (const auto &i : mLIngoingIndices[j])
{

float nablaW = lagrange.at(j) ∗ xi(i);
float nablag = nablaW ∗ mL.at(i, j) / nv;
state.gaindf.at(j) += nablag;

state.Ldf.at(i, j) += mGain.at(j) / nv ∗ (nablaW − mL.at(i,
↪→ j) / nv ∗ nablag);

}

state.biasdf.at(j) += lagrange.at(j);
}

++state.samples;

return tObjective::f(xi.tail_rows(mOutputSize), out);
}

79

/∗∗
∗ Sparsifies the weight matrix based on the element values
∗
∗ @param minimum The minimum value that is considered still for

↪→ truncation.
∗ @param maxPercentile The maximum percentile to delete.
∗
∗ @return The density percentage.
∗/

float Sparsify(float minimum, float maxPercentile)
{

tMat W = GetWeight();

const arma::fvec nonzeros = arma::sort(arma::abs(arma::nonzeros(
↪→ W)));

const float percentile = std::min(nonzeros((size_t)(maxPercentile ∗
↪→ nonzeros.n_elem)), minimum);

mL.elem(arma::find(arma::abs(W) < percentile)).zeros();
CacheIndices();

mDensity = (float)arma::nonzeros(mL).eval().n_elem / (float)(
↪→ mInitialNonZeros);

return mDensity;
}

/∗∗
∗ Gets the weight matrix from the weight normalization
∗
∗ @return The weight matrix.
∗/

tMat GetWeight()
{

tMat W = mL;

for (arma::uword c = 0; c < W.n_cols; ++c)
{

W.unsafe_col(c) ∗= mGain(c) / mLColNorm(c);
}

return W;
}

/∗∗
∗ Gets the density percentage
∗

80

∗ @return A float.
∗/

float Density()
{

return mDensity;
}

/∗∗
∗ Gets the number of connections
∗
∗ @return A float.
∗/

float Connections()
{

return mDensity ∗ mInitialNonZeros;
}

std::size_t mInputSize;
std::size_t mOutputSize;
std::size_t mHiddenNodes;
std::size_t mN;

tMat mL;
std::vector<arma::uvec> mLOutgoingIndices;
std::vector<arma::uvec> mLIngoingIndices;
arma::fvec mLColNorm;
arma::fvec mBias;
arma::fvec mGain;

float mDensity;

std::size_t mInitialNonZeros;
};

81

	Introduction
	Statistical Methods
	Transition to Artificial Intelligence

	Artificial Neural Networks
	ANN as a Computational Graph
	Layered Architectures
	Lagrange Multipliers

	The Feed Forward Algorithm
	Building Blocks
	Activation Functions
	Objective Function

	Neural Graph Algorithms
	The Forward-Propagation Algorithm
	Training the Neural Graph
	Optimization Algorithms
	Learning Rate

	Regularization
	Weight Improvements

	The Recurrent Algorithm
	Experiments
	Classification
	Time Series
	Sinusoid
	IBM Stock
	Recurrent IBM Stock

	Conclusion
	OLS Estimator Optimality
	NG MNIST Training
	Code

