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Abstract

An important computational problem in Bayesian networks is to find the most likely set of
states of all unobserved variables in the network given the states of the observed variables, the
evidence. This problem is known as the MPE problem. Especially for applications with real-
time requirements, re-computations of the MPE after changes in the evidence will not always
be manageable. In this thesis, we will investigate how the MPE changes as a result of a change
in the evidence. The research is performed on basis of a junction tree that can be constructed
from a Bayesian network. We present theoretical results about how changes in the evidence
affect the probabilities in the junction tree and introduce a way to visualize this. We further
on carry out several experiments on well-known Bayesian networks. In these experiments, the
consequences of a single change in the evidence are studied. We investigate how the change
is propagated through the junction tree and how the MPE variables are affected. We extend
these experiments by considering the more general problem - the MAP problem. The results of
these experiments indicate that changes caused by a change in evidence decreases quickly as we
propagate it through the junction tree. Furthermore, in general only a small number of MPE
and MAP variables change of state and these variables are close to the variable that changed in
the evidence.
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1 Introduction

A Bayesian network is a model to reason about probabilities of variables in a specific domain. It
consists of a directed graph in which the nodes represent the variables. This graph represents inde-
pendencies between the variables. Take for example a network with the variables grass, rain and cloud
type. The grass is either wet or dry. The probability that the grass is wet may depend on the type of
clouds. It will be more likely to rain when it is cloudy than partial cloudy. And if there are no clouds,
the probability of rain is zero. If it rains however, we know that the grass is wet and therefore, it
does not matter whether we know it is cloudy or not. This can be represented in a Bayesian network
by having an arc from cloud type to rain and from rain to grass. cloud type is called the parent of
rain and likewise rain the parent of grass. While this is one kind of independency, other kinds can be
represented in the Bayesian network.
Besides the graphical structure, a Bayesian network consists of a conditional probability table for
each variable. The table contains the probability distribution of the states the variable can be in.
When the variable has parents, a probability distribution is stated for each possible combination of
the states of the parents.

A Bayesian network may include variables of which the state is known, observed variables. There
will however be variables of which the state is unobserved. In order to reason about the states of
these variables, we have to take other variables in the Bayesian network into account. Suppose we
want to know whether the grass is wet and we do not know anything about rain and cloud type.
In order to compute the probability, we can determine the probability in each situation: partially
cloudy and raining, no clouds and dry etc. Adding these probabilities up gives us the probability
over all possible combinations. Suppose there are three states for cloud type and two states for rain,
then the number of combinations is 2 ˆ 3 “ 6. Suppose now that we extend the Bayesian network
by adding a new variable season. This variable becomes the parent of cloud type and has four states.
If we again want to know the probability of whether the grass is wet, we have to include the new
variable as well. Because there are four seasons, this results in 6ˆ 4 “ 24 combinations. As we can
see, the number of combinations growths exponentially with the number of unobserved variables. We
can however also exploit the structure of the Bayesian network and look first at the probabilities of
each state of cloud type given its parent, then look at the probabilities of rain or dry based on cloud
type and finally look at the probability of wet grass given the probabilities of rain. This gives us:
3 ˆ 4 ` 2 ˆ 3 ` 1 ˆ 2 “ 22 combinations. The number of combinations is a bit smaller but grows
linearly instead of exponentially with the number of variables and will therefore be much smaller with
a larger number of variables.

Computing a probability is called inference. We could infer the probability of each state the variable
can be in. This gives us information about what the most likely state of the variable is. While
computing the most likely state of one variable may be interesting, it can also be the case that we
are interested in the most likely states of a combination of variables. This problem is called the
Maximum a posteriori estimation (MAP). The problem is defined as: Given a set of variables, which
set of states for these variables will give us the highest probability. We cannot simply look at the
most likely state of each variable separately and combine them together. It is even the case that this
problem is NP-hard [2]. A more specific instance of this problem is the Most Probable Explanation
(MPE) problem. Here, we look at the set of all variables that are unobserved. Although this problem
is NP-hard in general as well [2], it is easier to compute under specific conditions. We will see that
there exist algorithms to compute the MPE quite fast under these conditions - polynomial time.

While these algorithms are sufficient when our network is small or we do not have any real-time
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requirements, it will become a problem when this is not the case. For example in monitoring applica-
tions, where we have a Bayesian network in which a set of variables is monitored. We get an update
of these variables on a regular basis. When no variable changes, we do not have to do anything. It
could however occur that in two consecutive updates, the state of a monitored variable changes. We
have to recompute the MPE in both updates which gives us a limited amount of time for the first
re-computation. This may not be manageable when, for example, the Bayesian network is big, or the
update interval is too small.

1.1 Research Questions

In this thesis, our goal is to analyze how the Most Probable Explanation of a set variables in a
Bayesian network changes when information in the Bayesian network changes and use this to get in-
sight in how the re-computations of the Most Probable Explanation can be reduced. While the main
focus of the analysis is the case where the set of variables of interest consists of all unknown variables,
the MPE problem, we will also address the more general MAP problem. We define two types of
changes that can occur in a Bayesian network. The first is an evidence change. With evidence, we
mean the states of the observed variables. A change occurs when the state of one of the variables
changes, an unobserved variable becomes observed or an observed variable becomes unobserved. The
second type of change occurs when a probability in a conditional probability table changes. In this
thesis, we only consider the first type of change.

During our analysis we will consider three research questions. The first research question that will
be addressed is:

• How does the MPE change when evidence in the Bayesian network changes?

This question will be addressed by considering how the complete distribution of probabilities of pos-
sible explanations of the Bayesian network are affected. When a change in the Bayesian network
occurs, the MPE along with the other explanations may change. One of these other explanations
may become the new MPE. It is therefore important to consider the complete distribution and not
only the MPE in order to gain more insight in how the MPE changes. Furthermore, we will not
directly use the Bayesian network to investigate the MPE. Instead, a junction tree will be used in the
analysis. We will later on see what a junction tree exactly is. A lot of current algorithms translate
the Bayesian network into a junction tree before performing inference on probabilities [3, 4, 5]. A
junction tree has sets of variables as nodes and contains potentials instead of conditional probability
tables. This structure makes it easier to reason about properties and can also be used to compute the
MPE. We will first investigate how the potentials can be used to look at changes in the distribution.
After this, we can look how changes within potentials can be related to changes in the MPE.

The second research question that will be addressed is:

• How does the MAP change when probabilities in the Bayesian network change?

In the MAP problem, we want to find the configuration of a subset of unobserved variables that has
the highest joint probability. The unobserved variables that are not part of this subset have to be
marginalized out. This makes the MAP problem more difficult than the MPE problem. However,
the approach used for analyzing the MPE may lend itself for the MAP problem as well. Therefore,
we will first investigate whether we can analyze the MAP with the same method and if this is the
case, we can look how the changes in potentials of the junction tree can be related to changes in the
MAP.
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The final research questions is:

• How can we use the relations between the changes in the MPE and the changes in the potentials
in order to reduce computations?

When relations have been found, it is interesting to investigate how they can be used. Important
here is how to deal with consecutive changes as in the monitoring explanation. We should not only
look at the reduction of computations after one change, but also how this can be combined with the
computations of the next change.

1.2 Organization

The thesis is organized as follows: In section 2, the Bayesian network, junction tree and a way to
infer probabilities are introduced. In section 3, we will define the MPE and MAP problem and review
previous research that have been performed around the MPE and MAP problem. Section 4 contains
theoretical results about processing changes in the junction tree and a visualization of processing
the changes is described in section 5. In section 6, theoretical results concerning persistence of MPE
variables is discussed. We will discuss experiments concerning the MPE in section 7 and experiments
about the MAP in section 8. We will end with a conclusion in section 9.
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2 Preliminaries

In this section, we will first review the concept of a Bayesian network and describe some of its proper-
ties. After that, we will address how a Bayesian network can be converted to another representation
called a junction tree. This representation allows more efficient computation of probabilities. We
will also show how the potentials in the tree are updated when evidence changes. Throughout this
section, we will use an example Bayesian network. The graphical structure of this network is shown
in Figure 1.

Figure 1: Graphical structure of the example Bayesian network

2.1 Bayesian network

Bayesian networks are used to reason about probabilities. A Bayesian network is defined to include
a graphical structure composed of a set of nodes representing variables and a set of arcs between
these nodes (See Figure 1). The arcs indicate relations between the variables and are not allowed to
form a directed cycle within the graph. We will use an uppercase letter to indicate a variable set,
and a lowercase letter to indicate a variable. We can use, for example, V “ ta, b, c, d, e, fu as the
variable set of our Bayesian network. Each variable has a state space which represents the states in
which it can be. The state space for variable b will for example be indicated with Ωb. A state of
a variable will be indicated with the same letter as the variable but with a subscript indicating the
state. For example, the state space of variable b consists of the states: Ωb “ tb1, b2u. The state space
of a variable should have a size of at least two. We call a variable v a parent of w if there is an arc
pointing from v to w. The set of parents of a variable v is indicated with Papvq. In our example
network, we have that Papcq “ ta, bu.

In addition to the graphical structure, a Bayesian network contains for each variable a conditional
probability table, or CPT for short. Probabilities, or parameters, are defined in the CPT of a variable
for each of its states. The probabilities form the probability distribution of the variable. When a
variable has parents, a conditional probability distribution is defined given each possible combination
of states of its parent variables. Example CPTs for the variables a, b and c are shown in Figure 2.
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Figure 2: Conditional probability tables of variables a, b and c. Each variable has two states.

Variable c has parents and has therefore a conditional probability distribution for each combination
of states of the parents. Since the variable can only be in one of the states in its state space, all
probabilities for a variable with the same parent configuration together sum up to 1. We will call
a combination of states of variables a configuration and indicate it with c. A configuration of the
parents of c is indicated with cPapcq or cta,bu and a configuration of a variable set V is indicated
with cV . We will use an additional type of notation for subset configurations. Suppose we have the
variable sets V and W where W Ď V and a configuration cV . The configuration of W in which the
same states are chosen as in cV is indicated with cÓVW . We will call the set of all possible configura-
tions of V the configuration space of V and indicate it with ΩV . It can be constructed by taking the
Cartesian product of the state spaces of its variables:

Ś

vPV Ωv. Note that the same symbol is used
for the state space, they can be distinguished by their subscript. If the subscript is a single variable,
it indicates a state space, otherwise a configuration space.
For some variables in a Bayesian network, the state is known. We call these variables observed vari-
ables. The set of observed variables is called the evidence set and will be indicated with E. The
configuration of this set - the evidence - is indicated with cE .

The graphical structure of a Bayesian network represents how variables are independent of each
other and not necessarily how they are dependent. In the graphical structure, a path between two
variables is defined as a set of incident arcs that connect the variables. The direction of the arcs does
not matter. We speak of a blocked path when either a variable in E lies on the path and one of the
two adjacent arcs on the path is an outgoing arc or when there is a variable on the path of which
both adjacent arcs on the path are incoming arcs and this variable along with its descendants are not
in E. A variable v is a descendant of w when there is a directed path from w to v. When all paths
between two variable sets V and W in the graph are blocked by a third variable set E, we say that
E d-separates V and W . This means that the variables of V are independent of W given that all
variables in the variable set E are observed. In our example network, we have that d d-separates a
of e. This is the case because all paths between the two variables go through d and on both paths,
the two arcs adjacent to d are not both incoming arcs. Due to this d-separation, we can say, for
example, that the probabilities of the states of e will not change when there is evidence introduced
for variable a in the network while d is observed. On the other hand, variable c does not d-separate
variable a and b because of the two incoming arcs for c. So, when variable c and its descendants are
not observed, variable a and b are independent of each other. But when evidence for one of these
variables is found, the path will be unblocked.
An important concept in d-separation is the Markov blanket of a variable, which is defined as the
set of variables that d-separate it from the rest of the variables in the Bayesian network.

Now that we can read from a given Bayesian network how variables are independent of each other,
we can use this information for factorizing the joint probability distribution. The joint probability
distribution of a variable set V is indicated with Pr and is a function that, for a given configuration
of the variables in V , returns the probability of this configuration. While the function can be used
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to compute the probability of a configuration of all variables in the Bayesian network, we can also
use it to compute the joint probability of a configuration of a smaller set of variables. In order to do
this, we have to marginalize out the other variables. In case of our example Bayesian network, if we
want to compute the joint probability distribution of b and c, we have to marginalize out a, d, e and
f . This comes down to:

Prpctb,cuq “
ÿ

cta,d,e,fuPΩta,d,e,fu

Prpctb,cu, cta,d,e,fuq

Suppose each variable has a state space of size 2, then the number of configurations over which we
need to sum probabilities is equal to 24 “ 16. While this is doable, imagine you want to know the
joint probability distribution of two variables and need to marginalize out ten other variables with
state spaces of 2. This requires us to sum 210 probabilities. As we can see, this will quickly become
infeasible. Fortunately, the independencies represented by the structure of the Bayesian network
can be used to factorize the joint probability distribution. The joint probability distribution can be
written as the product of the conditional probability tables:

PrpcV q “
ź

vPV

Prpcv|cPapvqq

Due to this property, we can marginalize locally and take the product of the separate tasks to get
our final marginalized probability.

2.2 Computing probabilities

The method for actually computing probabilities from a Bayesian network used in this thesis, is based
on a junction-tree representation of the network. The junction tree was introduced by Lauritzen and
Spiegelhalter [6]. We will first describe what a junction tree is and how it can be constructed from
a Bayesian network. Next, a method called propagation is introduced comes. This method comes
down to sending and processing messages between the nodes in the junction tree. We will explain this
method and see how this can be used again when the Bayesian network changes after, for example,
a change in the evidence.

2.2.1 From a Bayesian network to a junction tree

A junction tree is an undirected tree representation of a Bayesian network in which a node represents
a set of variables in the Bayesian network. A node representing variable set X will be indicated with
ClX . The junction tree does not contain cycles and has the Running Intersection Property (RIP):
For each node ClX , ClY and ClZ where ClY lies between ClX and ClZ , if X and Z contain the
variable v, then Y contains v as well.
In order to convert a Bayesian network to a junction tree, a couple of steps have to be taken. First,
we will make the Bayesian network undirected. Important here is that we want to preserve as much
independency relations as possible while we do not want to introduce new independencies that did not
exist in the original Bayesian network. In undirected graphs, separation comes down to: If each path
between two nodes contains a node with evidence, then all paths are blocked and the two nodes are
independent. Separation thus differs from d-separation. In Bayesian networks, there are nodes with
multiple incoming arcs. For example, if we have a Bayesian network with node a, b and c and a has
two incoming arcs of b and c, then b is independent of c if there is no evidence for a. Preserving this
independency in the undirected representation would mean that we have to remove one of the arcs.
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This however introduces a new independency: b and c will also be independent when there is evidence
for a. Keeping both arcs will result in a new independency as well: a and b are independent when a
is observed. Therefore, an edge needs to be added between b and c. Removing the directions of the
arcs will then give us no new independencies but we will lose information about the independency of
b and c. This process is called moralization. For each two unconnected parents, an edge will be added
between them. Afterwards, all arcs will be made undirected resulting in an undirected graph. All
independency relations that can be read from this graph were also present in the Bayesian network.
Next, we want to get rid of the cycles by using specific node sets in the graph as nodes in the junction
tree. However, in order to make sure that the joint probability distribution factorizes over the junction
tree, we need to deal with cycles having more than three nodes in which two non-consecutive nodes
do not have an edge in between them. By adding edges between such two nodes until these cycles
do not exist anymore, called triangulation, we get a triangulated network. Skipping this step would
result in a junction tree that violates the RIP. Take for example a cycle of four nodes. There are four
cliques with each two nodes. If we enforce a tree structure, there will be two cliques that share a
variable while they are not connected in the junction tree. Their shared node will cause the RIP to be
violated. We would like to keep the cliques as small as possible when triangulating. Unfortunately,
optimal triangulation is proved to be NP-hard [7].
Finally, the cliques in the triangulated graph can be converted to nodes. Connecting these nodes
while making sure that the resulting graph is a tree and has the running intersection property can be
done in polynomial time which gives us the junction tree. In Figure 3, a junction tree of the example
Bayesian network can be seen. Note that a junction tree is not unique. In this example, the node
containing variables d and e could be connected to the node containing d and f instead of the node
containing b, c and d. Throughout the thesis, we will the word clique to refer to a node in the junction
tree.

Figure 3: A junction tree of the example Bayesian network

2.2.2 Propagation

Propagation in a junction tree is performed by passing messages between cliques. Multiple algorithms
have been developed for propagation. The complexity of the algorithms involving the junction tree
are the same and depend on the maximum clique size in the network. A comparison between them
is described by Lepar and Shenoy [8].
In this thesis, we will use the propagation algorithm introduced by Jensen et al. [3]. In this algorithm,
the junction tree is extended with so-called separators. We will indicate a separator with variable set
K with SeK . For each edge in the junction tree, a separator is added. Given two adjacent cliques
ClV and ClW , the separator SeK on this edge contains the variable set K where K = V XW . The
variable set of a separator will always contain at least one variable. An example is shown in Figure 4.
For each clique and separator, a potential is defined. The potential of a clique ClR or separator SeR
will be indicated with φR. A potential φR is a function that, given a configuration cR P ΩR, returns a
non-negative number. As we will see, a potential is actually the marginal probability distribution of
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Figure 4: A junction tree for the example Bayesian network with separators

the variables in the corresponding clique or separator. These potentials are computed from the CPTs
of the original Bayesian network and will be used to propagate evidence and compute probabilities
correctly within the junction tree.
The joint probability distribution of the Bayesian network can also be expressed in terms of the clique
and separator potentials in the junction tree. Suppose a junction tree with variable set V , then the
joint probability distribution of V is:

PrpcV q “

ś

ClSPCl φSpc
ÓV
S q

ś

SeLPSe
φLpc

ÓV
L q

Here, Cl and Se represent the set of cliques and separators respectively. The potentials actually
represent the marginal probability distribution of the variables in those potentials. If we would
replace the potentials by Pr, the joint probability distribution can be rewritten to the joint probability
distribution as the Bayesian network stated it. More information is stated in the paper of Lauritzen
et al. [6]. Because each potential contains correct probabilities for its variables, we can take for
a variable v an arbitrary clique or separator of which the variable set contains v to compute its
probability. This can be achieved by marginalizing out the other variables in the separator or clique.
In order to compute the correct values in the potentials, we first initialize each potential to give
as output 1 for each given configuration of its variables. Next, we go over each variable x in the
Bayesian network and do the following: Pick a clique ClX such that v P X and Papvq Ď X. Suppose
W presents the variables in the CPT of v and f returns, given a configuration, the probability in the
CPT, then the processing of the CPT into ClX goes as follows:

φXpcXq “ φXpcXqfpc
ÓX
W q @cX P ΩX

An example is shown in Figure 5.

Figure 5: Processing CPT of variable a into the potential with variable set ta, b, cu. The CPT
of variable c has already been processed into the potential

After all CPTs have been processed into the tree, we want to make sure that the values in the
potentials of both cliques and separators are the actual marginal probabilities of the corresponding
configurations. Since variables can be present in multiple cliques, these marginal probabilities ensure
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that computing the probability for a variable in one clique will match the computations for the same
variable in another clique. In order to realize this property, propagation is performed in two phases:
Collection and Distribution phase.

Collection
In the Collection phase, the idea is to choose a clique, say ClR, and send messages from all cliques
toward ClR. A clique can only send messages to the adjacent separators. Separators in turn can
only send messages to their adjacent cliques. The message from a clique to a separator contains a
potential that will function as the new potential for the separator. Suppose clique ClS and adjacent
separator SeL. The message from ClS to SeL is defined as follows:

φLpcLq “
ÿ

cRPΩ1R

φRpcRq where Ω1R “ tcR|cR P ΩR ^ cÓRL “ cLu @cL P ΩL

What we do here is marginalizing out all variables that are present in the clique but not in the
separator and use the resulting sums as values for the new potential in the separator. The separator
then sends a message to the other adjacent clique. This message is the division of the values of its
new potential by the values of the previous potential. The clique updates its potential by multiplying
its current values by the values in the message. Suppose a separator SeL and ClS , we compute the
new potential of ClS as follows:

φSpcSq “ φSpcSq
φ1Lpc

ÓS
L q

φLpc
ÓS
L q

@cS P ΩS

Here, φ1 indicates the new potential. Note that we initialized the potentials to output 1. Therefore,
the message from a separator in the initial Collection phase comes down to the values of the new
potential.
In order to reduce the computations as much as possible, we start at the cliques that are leafs in the
junction tree. Subsequently, we let a clique compute its message for the separator that lies between
the clique and ClR only if it has received and processed the messages of its other adjacent separators.
In this way, we send exactly one message over each edge in the junction tree.

Distribution
In the Distribution phase, a second round of message passing starts. ClR starts by sending messages
to its separators. The separators send messages to their other adjacent clique. These cliques will
send in turn messages to all their separators except for the separator from which the message came.
This process continues until we have reached the leaves of the junction tree. The generating and
processing of messages is the same as in the Collection phase. When this phase ends, messages have
been sent across each edge in the junction tree in both ways.

Finally, we have to normalize the values in each potential to let them sum up to 1. After this
normalization, the potentials show the correct marginal probabilities for the configurations. If we
would send again messages across the junction tree, there will be no changes because the values in
the new and old potentials of each separator will be the same resulting in a division by the value 1 and
thus no change in the next clique. When there is new or changed evidence, we can select the clique
that contains the variables for which new or adjusted evidence is found and change the probabilities.
After normalizing the cliques, we can execute the two phases again to obtain the new probabilities
for the potentials.

Because the values in a potential of a clique or separator represent probabilities of the configura-
tions, we will use the word probability to refer to a value in a potential. The values sent in a
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message from a separator is a division of old and new probabilities. Since these values are only used
to be multiplied with the probabilities in a clique to adjust them correctly, we will indicate a value
in this message with factor in the remaining part of the thesis.
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3 MPE

In this section, we review the MPE problem. The problem will first be formally defined after which we
look into the complexity of the problem, and compare it with the MAP problem and its complexity.
Subsequently, an algorithm for computing the MPE problem is described. A related problem called
the k-MPE will be discussed next. Finally, we will review some research as to how the computation
of the MPE can be reduced.

3.1 Definition

From a Bayesian network, a Maximum a posteriori (MAP) configuration can be extracted. The
term posterior indicates that evidence is taken into account when computing the probabilities of
configurations of the variables. Given a Bayesian network with the variable set V , an evidence set E
Ď V with configuration cE and a variable set U Ď V zE, the MAP of U given cE is:

arg max
cUPΩU

PrpcU |cEq “ arg max
cUPΩU

ÿ

cV PΩV zpUYEq

PrpcU , cV |cEq

For computing a Maximum a posteriori configuration, it will not suffice to just look at each variable
separately, pick the state that has the highest posterior probability and combine them into a config-
uration cU in order to get the MAP. This would only work when the variables are independent of
each other which is most of the time not the case.
In this thesis, the focus will mainly be on the case that U = V zE. This is called the Most Probable
Explanation (MPE).

3.2 Complexity

In this section, the difficulty of both problems will be described. The input size that is considered for
both problems depends on the number of variables and the size of the conditional probability tables
of these variables.
In order to solve the problems, we could for the MPE just go over every configuration and keep the
configuration with the highest probability, while for the MAP problem, we could first marginalize
out every variable that is not part of U and then go over the remaining configurations and keep
the configuration with the highest probability. Unfortunately, the number of configurations growths
exponentially with the number of variables present in the Bayesian network. This makes the compu-
tations quickly infeasible as the number of variables increases. For the general case, no polynomial
algorithms have been found for the problems. However, while both the MAP and MPE problem are
hard to solve, the MAP problem is more difficult than the MPE problem.
In order to explain this difference, we need to introduce some complexity classes. First of all the NP
complexity class. This class contains the set of decision problems of which the solution can be verified
in polynomial time. A decision problem is a problem of which the outcome is a yes or a no. The
complexity class contains both problems for which we know a polynomial time algorithm as well as
problems for which only exponential time algorithms are known. The class of NP-complete problems
is a subclass of NP and contains the problems whose solutions suffice for solving any other problem
in NP in polynomial time. PP is another complexity class and contains the decision variants of
the problems in yet another class called the #P class. While NP is concerned about whether there
is a solution to the given problem, the #P class contains counting problems. These problems are
concerned about the number of solutions.
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Bayesian networks are concerned with probabilities and in order to get some intuition in how prob-
abilities are related with counting, let us consider the following decision problem: Can we find more
than p solutions that satisfy a specific problem? Suppose we have a total of n solutions and each
solution is equally likely to pick, then we can reformulate the problem as follows: Is the probability
that a solution suffices higher than p

n?
We will not go into further detail but in the end, Littman et al. proved that the problem of determin-
ing whether the joint probability of a configuration of a set variables is greater than a given threshold
probability belongs to the PP class [9].

Now, in order to use these classes to explain the difference in difficulty between MAP and MPE,
we will look at the decision variants of these problems: Given the evidence and a set of unobserved
variables - for the MPE case all variables except the evidence variables - is there an assignment to
these variables that has a probability greater than p for a given p that lies between 0 and 1? For
the MPE, this problem is NP-complete [2]. For MAP, Park and Darwiche proved that it is NPPP-
complete [10]. It can be intuitively seen that the MAP is in this complexity class by dividing it into
two problems: Find the best assignment to the variables in the MAP set like the MPE, but find it
on marginalizing over the variables that are neither in the evidence set nor in the MAP set like the
problem described by Littman et al. The complexity classes for the MPE and MAP problem are for
the general case. Research in complexity for Bayesian networks with a bounded induced width has
been performed as well. If we look at junction trees, then the clique containing the most variables
can be seen as an indicator of the induced width of the Bayesian network. The complexity of the
MPE problem is then polynomially solvable when the induced width is bounded [11]. While the
complexity of the MAP problem reduces as well, the problem is still NP-complete [10]; this bound
also applies to Bayesian networks of which the graph is a singly connected graph since they have a
bounded induced width by definition.

3.3 Computation of the MPE

In order to compute the MPE, the junction-tree representation explained in section 2.2 can be
used. Dawid describes an algorithm, called max-propagation, that uses the junction tree [4]. The
propagation algorithm is adjusted by replacing marginalization with maximization. When a clique
ClV passes a message to the separator SeL, we consider for each configuration cL P ΩL the set:
tcV |cV P ΩV ^ cÓVL “ cLu. Instead of performing a summation of the probabilities of these config-
urations, we only take the maximum. From the separator’s perspective, we get from each partition
the probability of the best configuration. The other adjacent clique gets the best option for each
partition and multiplies it with the values in its own potential. After the Collection and Distribution
phase, the highest probability in each potential has the same value and represents the probability of
the MPE. We can easily look up the configuration by joining the configurations for which the po-
tential outputs the highest value. If multiple configurations have the highest value, we have multiple
MPEs. Updating the tree, for example after new evidence, follows the same procedure as standard
propagation but again with maximization instead of marginalization.

3.4 k-MPE

A related problem to the MPE problem is the k-MPE problem. In this problem, we try to find the k
most probable configurations where k is a positive integer. Having multiple probable configurations
could be interesting. You have alternative configurations that you can take into account as well. It also
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shows how probable the best configuration is relative to other configurations. If more configurations
have a probability that is almost equal to the probability of the MPE, the MPE is not that probable
compared to the other configurations.
Solving the k-MPE problem is obviously harder than the MPE problem. However, Nilsson came up
with an algorithm that is quite efficient [12]. The idea is as follows: Suppose we have a Bayesian
network with the variable set V with |V | “ n. We start by computing the MPE according to the
max-propagation algorithm introduced in the previous section. Suppose that the MPE is cV . The
second-best configuration should then be different in at least one place. In order to enforce this, we
can partition the configuration space of the complete variable set into n parts. The configurations in
the first part are not allowed to have the same state as in cV for the first variable. The state of the
other variables can be the same or different. The second set contains the configurations in which the
first variable is the same as in cV while the second should be different and the rest does not matter.
We proceed in the same way for the other sets and end with the set in which the configurations
should only be different from cV in the last variable while the other variables stay the same. These
sets partition the configuration space V ztcV u. The restrictions for each of the sets can be filled in
as evidence. By introducing the n evidences separately in the junction tree and performing max-
propagation after each one, we get an MPE of each partition. The MPE configuration with the
maximum value is the second MPE. For our third MPE, we have to partition the set that contained
the second MPE. The idea is here the same as for the second MPE. This will give us n new sets
on which we have to perform max-propagation. This will be repeated k times. Summing up all
max-propagations that have been performed, we come to the order of Opknq max-propagations. So,
the complexity of finding the best k MPEs is a factor n larger than the complexity of the MPE
problem.

3.5 Pre-processing

One way to tackle the difficulty of the MAP and MPE problems is by trying to pre-process the input
in order to reduce the computations later on. Bolt and Van der Gaag describe for MAP a way to
exclude specific states of a variable or even determine the exact state of the variable in the MAP by
looking at local properties [13]. Two propositions are introduced. The first proposition involves a
variable and its Markov blanket. Suppose a variable v and its Markov blanket containing the variable
set M . A proof is given that the state of v will be in the MAP solution if the probability of the state
given any configuration cM P ΩM is always higher than the probability of the other states of the
variable based on the same configuration. So, given a state cv:

Prpcv|cM q ě maxclPΩvztcvuPrpcl|cM q @cM P ΩM

The other way around is true as well: if the probability of the state is lower given any configuration,
then the state can be excluded as candidate for the MAP solution.

For the second proposition, they use the so-called MAP blanket. Given the set of MAP variables
V and a variable v, the MAP blanket is a set W Ă V such that v is independent of V zW given W .
A similar property is proven for v as in proposition 1 but now given the MAP blanket and possible
evidence.

While determining whether the state of a variable can be fixed or excluded is exponential in the
size of the Markov blanket and MAP blanket, the blanket is local. The size of the MAP blanket and
the computations involved are negligibly small if the network is big enough. Moreover, the outcome
that a state of a variable should be included or excluded may hold for multiple changes of the network
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when the changes in evidence affect only variables outside the Markov blanket or MAP blanket. This
is a useful property in monitoring applications.

3.6 Robustness of the MPE

Other studies were conducted in which the MPE was investigated under conditions where the Bayesian
network changed. We will first review a research in which the robustness of the MPE is examined
when parameters of conditional probability tables change. The next research considers the solution
space of the MPE after a change in evidence. The last research proves a couple of properties regarding
persistence of the MPE in the junction tree when evidence changes.

Chan and Darwiche investigated how much a single parameter θ can be changed while the most
probable explanation stays the same [14]. Given a Bayesian network with the variable set V , a vari-
able x P V and a parameter θ “ Prpx1|cP q in the conditional probability table of x in which x1 is
the state of x and cP the configuration of Papxq. Now, let Ω´ be defined as follows:

Ω´ “ tcV |cV P ΩV ^ cÓVP “ cP ^ x1 P cV u

The authors now observe that the probabilities of the configurations in Ω´ are linear functions of θ.
The MPE of Ω´ therefore as well. In essence, the probabilities of the other configurations not in Ω´
remain constant when θ changes and therefore, the MPE of these configurations remains constant as
well. However, changing θ means that the parameter for at least one configuration cQ that does not

contain x1 but is compatible with cP (cP “ cÓQP ) should change, as the configurations compatible
with cP should after all sum up to 1. Therefore, the configurations that are not compatible with cP
or do not contain x1 are divided into groups. The first group is not compatible with cP . The other
groups are compatible with cP but are divided according to the states in Ωxztx1u. The probabili-
ties of the configurations in the first group that is not compatible with cP remain constant when θ
changes, while the others are a linear function of the other parameters.
The authors then describe on how to compute the constant representing the slope of the linear
function for each parameter that is compatible with cP and the constant of the group that is not
compatible with cP . With this data, it can be computed how much θ can be adjusted before the
MPE in one of the groups will be bigger. This can be used to look at the parameters and see which
ones are important for the MPE and which ones have small influence.

Van Rooij looked at the set of configurations that could be candidate for the new MPE after a
change in the evidence [15]. He proved that given the set of variables of a Bayesian network N , an

evidence set E and the Markov blanket ME of E, 2|V |´|E|

2|ME |
configurations cannot become the new MPE

under the assumption that the state space of each variable has size two and ME does not contain any
variable in E.

Pastink and Van der Gaag researched the persistence of the MPE under evidence change [16] in
a junction tree, in the context of max-propagation. Persistence can occur in cliques and separators
and means that the configuration in the clique or separator that is part of the MPE remains part of
the MPE after a change in evidence occurs.
Suppose a junction tree that contains a clique ClV with two separators SeK and SeL which both
contain one binary variable. We could then divide the configuration space ΩV such that for each
configuration cKL P ΩKYL we have: tcV |cV P ΩV ^ cKL “ cÓVKLu. This gives us four groups. When
we determine of each group the MPE, then one of these MPE’s is in accordance with the MPE of the
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complete network. And the MPE’s of these four groups will persist when changes occur outside ClV ,
since all configurations within a group will be altered with the same factor. Using these concepts,
two terms are defined: Strong and weak persistence. When a change in a clique ClV occurs, we have
strong persistence if:

• The configurations of the separators adjacent to ClV in the previous MPE of the network stay
the same in the new MPE.

• The ratio with which the probability of the configuration is changed is bigger than or equal to
the ratios with which the probabilities of the other configurations are changed.

Weak persistence occurs when the second condition does not hold. If strong persistence occurs, it is
not necessary to continue max-propagation because the other values after the separator will persist
into the new MPE as well. When weak persistence occurs, we do not have to propagate further
as well, but when after another evidence change again a weak persistence occurs somewhere in the
network, we cannot guarantee persistence anymore and should therefore do a full propagation.
Another interesting property of a changed MPE stated in the paper is as follows: Suppose we have
a clique ClV in which a change occurs and two separators SeK , and SeL, such that SeL is adjacent
to ClV and lies between ClV and SeK . If the new MPE contains a different configuration for
SeK as the previous one, SeL will have a different configuration as its previous one as well. This
property limits the number of configurations that can become the new MPE after a change in evidence.
Configurations that have, for example, the same state for the variables in K but different states for the
variables in L compared to the MPE, cannot become the new MPE after a change in evidence.
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4 Monotone decrease

In this section, it will be proved that given three cliques - ClV , ClW and ClX - where ClW lies
between ClV and ClX in the junction tree, if a change occurs in the potential of ClV , then the effects
on the potential of ClX will be the same as or smaller than the effect on the potential of ClW . We
will call this monotone decrease.

When propagation is performed, new probabilities for the potential of a clique are computed by
multiplying the old probabilities with the incoming messages from the adjacent separators. Since
a factor in such a message represents a division of the probabilities in the new potential by the
probabilities of the old potential in the separator, we can look at the ratio between the probabilities
of the new and old potential of a separator in order to gain insight into how the potential of the
clique changes. Suppose we have a clique ClV and adjacent separator SeL. The separator sends a
message to the clique so that the clique can process the changes correctly. This message contains for
each configuration in the separator a factor. Each factor corresponding to a configuration cL will be
multiplied with the probabilities of the following configurations in the clique:

tcV |cV P ΩV ^ cÓVL “ cLu

The configurations in the separator will partition the configurations in the clique. Suppose now that
one factor is equal to 2 and an other factor equal to 0.5. Then, the probabilities in the corresponding
partitions in the clique will be multiplied with respectively 2 and 0.5. This causes the ratios between
the probabilities of any configuration from one partition and any configuration of the other partition
is to be increased by 4. This ratio in the clique is what the proof is about: in subsequent cliques, we
will know that the ratio will never be more than 4. In order to prove this, we will first take a look at
the two phases in propagation.
We further on make the following assumptions:

• Only changes of probabilities in the potential of a single clique may occur at the same time.

• Before the change will be propagated through the junction tree, we assume that there is no
potential that has a probability of zero for a configuration. Later on, we will discuss how zero
probabilities can be interpreted.

4.1 Only the distribution phase

When there are changes introduced in a single clique, we can skip the collection phase and only
perform the distribution phase in order to process the evidence correctly in the junction tree. This
was already mentioned by Dawid [4]. The requirement is that we start the distribution phase at the
clique in which changes are introduced. We will state this property in a lemma and provide a proof.

Lemma 1. When the probabilities in the potential of a single clique change, the distribution phase
starting from that clique is the only phase needed in order to update the potentials of the other
cliques correctly.

Proof. Before the introduction of evidence in the junction tree, the potential of each clique and
separator represents the marginal distribution over the variables that are present in the clique or
separator. Suppose we have a separator SeL and clique ClR where L Ă R, then we know that
computing the marginal probabilities of the variables in L by marginalizing out the variables RzL in
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φR will give us the same probabilities as φL.
Suppose now that evidence is introduced in clique ClO. By choosing ClO as the source clique, all
separators will receive a message in the collection phase from a clique of which the potential is the
same as before the introduction of evidence. Clique ClO will only receive messages in this phase.
Recall that the message sent by a clique ClR to an adjacent separator SeL is defined as follows:

φLpcLq “
ÿ

cRPΩ1R

φRpcRq where Ω1R “ tcR|cR P ΩR ^ cÓRL “ cLu @cL P ΩL

We already stated that this marginalized distribution computed by ClR is the same as the current
potential of separator SeL because potential φR has not changed. Replacing the potential with the
new potential in SeL will therefore not cause any changes. The processing of a message sent by a
separator SeL to a clique ClS is defined as follows:

φSpcSq “ φSpcSq
φ1Lpc

ÓS
L q

φLpc
ÓS
L q

@cS P ΩS

Because the old and new potential of the separator is the same, the probabilities in the clique will
be multiplied with a factor equal to one. Therefore, the new potential of each clique including the
source clique ClO remain the same after the collection phase. The potentials of the separators did
not change as well which makes the collection phase redundant.

4.2 Proof of monotone decrease

Now that we have proven that the distribution phase suffices to propagate a change throughout the
junction tree, we can prove the following theorem.

Theorem 2. Given a clique ClV in which the probabilities in the potential changed. Then, for any
two separators SeK and SeL where SeK lies on the path between ClV and SeL in the junction tree,
it holds that:

max
cKPΩK

φ1KpcKq

φKpcKq
ě
φ1LpcLq

φLpcLq
and min

cKPΩK

φ1KpcKq

φKpcKq
ď
φ1LpcLq

φLpcLq
@ cL P ΩL

where c φ indicates a potential with probabilities before the update from ClV and φ1 a potential that
contains updated probabilities as a result of the changes in ClV .

Proof. Suppose SeK and SeL are connected to the same clique ClV and SeK is closer to the source
clique ClS in which the potential changed. And suppose that potential φ1KpcKq is updated to the
new potential φ1KpcKq. New probabilities for the potential of ClV can be computed by:

φ1V pcV q “ φV pcV q ¨
φ1Kpc

ÓV
K q

φKpc
ÓV
K q

@ cV P ΩV

By lemma 1, these will be the final probabilities for the potential of ClV , as we do not need to collect
the results from the other separators connected to ClV since the factors will be equal to 1.
New probabilities for the potential of SeL can be computed by:

φ1LpcLq “
ÿ

cV PΩV zL

φ1V pcV , cLq @cL P ΩL
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Let us take a specific configuration cL of SeL. The new probability for the potential of SeL can be
rewritten as:

φ1LpcLq “
ÿ

cV PΩV zL

φ1V pcV , cLq “
ÿ

cV PΩV zL

φV pcV , cLq ¨
φ1Kpc

ÓV
K q

φKpc
ÓV
K q

The new factor of SeL for configuration cL is equal to:
φ1LpcLq

φLpcLq
. Now, it can be easily shown that the

largest factor of SeK is always larger than or equal to the factors in SeL:

φ1LpcLq

φLpcLq
“

ř

cV PΩV zL
φV pcV , cLq ¨

φ1Kpc
ÓV
K q

φKpc
ÓV
K q

ř

cV PΩV zL
φV pcV , cLq

ď

ř

cV PΩV zL
φV pcV , cLq ¨maxcmPΩK

φ1Kpcmq

φKpcmq
ř

cV PΩV zL
φV pcV , cLq

ď max
cmPΩK

φ1Kpcmq

φKpcmq
¨

ř

cV PΩV zL
φV pcV , cLq

ř

cV PΩV zL
φV pcV , cLq

ď max
cmPΩK

φ1Kpcmq

φKpcmq
¨

The same procedure can be used to show that the smallest factor of SeK is always smaller than or
equal to the factors in SeL:

φ1LpcLq

φLpcLq
“

ř

cV PΩV zL
φV pcV , cLq ¨

φ1Kpc
ÓV
K q

φKpc
ÓV
K q

ř

cV PΩV zL
φV pcV , cLq

ě

ř

cV PΩV zL
φV pcV , cLq ¨mincmPΩK

φ1Kpcmq

φKpcmq
ř

cV PΩV zL
φV pcV , cLq

ě min
cmPΩK

φ1Kpcmq

φKpcmq
¨

ř

cV PΩV zL
φV pcV , cLq

ř

cV PΩV zL
φV pcV , cLq

ě min
cmPΩK

φ1Kpcmq

φKpcmq
¨

Note that we made an assumption about SeK and SeL being two separators adjacent to the same
clique. But because of the transitivity property of ď and ě, SeK can just be any separator between
the source clique ClS and separator SeL.

4.3 Assumptions

Let us now consider the two assumptions we have made. First of all, we allowed only changes in
a single clique. Multiple changes can be handled by propagating them one-by-one. So, introduce
the first changes, perform a full propagation, and continue with the next change after that until all
changes have been processed.
The second assumption said that the separators may not contain zero probabilities before propagation.
Zero probabilities are however likely to be present in a junction tree. Either a CPT contains zero
probabilities resulting in zero probabilities in a potential or evidence that a variable has a specific
state is introduced and propagated. Due to this, potentials may contain probabilities of zero.
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When we apply the theorem while zero probabilities exist in the junction tree, we will come across
division by zero. This is not possible and gives us ratios of infinity. One way to deal with these zero
probabilities is by simply ignoring these configurations. Theorem 2 will still hold for the remaining
configurations.

4.4 Concluding observations

We have now proven that given:

• two separators SeK and SeL and a clique ClV ;

• such that SeK lies on the path between ClV and SeL;

• a change of the probabilities in the potential of ClV ,

the largest factor of SeL will be smaller than or equal to the largest factor of SeK and likewise, the
smallest factor of SeL is larger than or equal to the smallest factor of SeK .

This theorem helps us in getting insight in the changes of the MPE after a change in evidence.
The factors in a message sent by a separator tell us by how much the probabilities in the adjacent
clique will increase or decrease and therefore give information about how the joint probability distri-
bution in a clique changes. We know that the distribution in a clique, that receives a message from
the separator SeL during the propagation, will be subject to changes that are at most the same as
the changes in the clique that received a message from the separator SeK . Let us consider the joint
probability distribution written as the product of potentials of cliques divided by the product of po-
tentials of separators. Filling in the MPE will gives us the highest possible probability. Probably not
all potentials will return the configuration of the highest probability since some have to compromise
with their neighbouring cliques. However, we will see maximum probabilities or small groups of po-
tentials that combined will give the highest probability. If these single cliques or groups of cliques are
far away from the source of change in evidence, the influence of this change on their joint probability
distributions will likely be small, causing the best configuration of this set of cliques to retain its
highest probability and is therefore likely to be part of the MPE again. While for single cliques or
group of cliques closer to the source of change in evidence, the probabilities in the joint probability
distribution will be changed more rigorously due to which other configurations may become the best
configuration and therefore cause changes in the MPE.
However, although we know that the changes do not increase, we do not know how strongly the
changes reduce in size and therefore do not know to what extent the change in evidence influences
the cliques. Theorem 2 is however useful as basis on how to investigate the changes in the MPE. We
will later on perform experiments in which we use the theorem as a basis and see how the changes
reduces in size.
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5 Visualizing propagation of evidence

While the monotone decrease of changes in cliques during propagation of evidence through the junc-
tion tree has been proven, the strength of the monotone decrease is not known. In this section, we
will introduce a visualization to gain insight in this monotone decrease. The visualization should
meet various requirements. First of all, the effects of propagation after each clique should be visi-
ble. Secondly, the components in the visualization should show the monotone decrease through an
appropriate ordering of cliques. With respect to the second requirement, we note that propagation is
performed in a tree of cliques. When we continue propagation from a clique via multiple paths, the
monotone decrease in one path will have no relation with the monotone decrease in another path.
Therefore, decreases along different paths should be visualized separately. Before we introduce our
visualization, we review another visualization proposed for the MPE problem.

5.1 Visualization of Joint Probability Distribution

Haipeng Guo used a visualization of the joint probability distribution [17] for his research on the MPE
problem. He used the visualization to demonstrate, what he called, the multifractal-property of joint
probability distributions. The multifractal-property was subsequently used by him as a heuristic for
an approximation algorithm for the MPE problem. We will first address the visualization after which
we will briefly state the multifractal-property. Further information about the visualization and the
multifractal-property can be found in Haipeng Guo’s dissertation [17].

The visualization for a joint probability distribution of a Bayesian network consists of a barchart
in which each configuration of the variables in the Bayesian network is represented by a bar. The
height of the bar indicates the probability of the configuration. The MPE is the configuration with
the highest bar. An example of such a visualization is depicted in Figure 6. The order in which the
bars are arranged is a systematic order of all configurations. Take for example variable a and b with
Ωa “ ta1, a2u and Ωb “ tb1, b2u. A resulting order could then be: ta1, b1u, ta2, b1u, ta1, b2u, ta2, b2u.

With this visualization, the multifractal-property comes to the fore. In order to understand the
meaning of this property, let us look at Figure 6. The distribution is characterized by three clusters
of configurations with high probabilities compared to their neighbourhood. The structure of these
clusters is very similar. When we analyze each cluster from left to right, we can make the following
observations: It starts with configurations that have the highest probabilities in the cluster. There-
after, the probability decreases as we shift to the configurations in the middle. Continuing to the
right side of the cluster, the probabilities increase again. The three clusters themselves can be found
in other parts of the distribution as well. For example, on the left side of the middle cluster, we
see three small clusters. These three clusters are relatively very similar. The multifractal-property is
about these re-occurrences of distributions in the joint probability distribution.
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Figure 6: The probability distribution of all joint configurations of the Sachs-network [1]

5.2 The visualization

In contrast with Haipeng Guo’s work, we are not so much interested in the probabilities of all joint
configurations, but rather in the ratios between the new and old probability of a configuration after a
change of evidence. Therefore, this ratio will be used as the height of the bar instead of the probability.
In our visualization, we distinguish between five types of ratio for a given joint configuration:

• The ratio is greater than 1, which means that the probability of this configuration increases
after the change in evidence. The bar representing the ratio is colored red.

• The ratio is between 1 and 0, which means that the probability of the configuration decreases.
The bar representing the ratio is colored blue. The bar will be displayed on the negative y-axis
in order to indicate the decrease of probability. The size of the decrease is visualized by the
reciprocal of the ratio. This ensures that the meaning of the size of a bar is equal for both
increase and decrease.

• The ratio is equal to 1, which means that the probability of the configuration does not change.
This will be indicated with a gray bar across the whole y-axis.

• The ratio is equal to 0, which indicates that the probability after the change in evidence is equal
to zero. These bars will be displayed on the negative y-axis as well but with the color yellow.
In order to display the bar, the height is equal to the height of a bar with the most increase
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instead of infinity.

• The ratio is undefined, which happens when the probability before the change in evidence is
zero. This can happen when the value of one of the variables in the evidence changes. These
configurations will be indicated with a yellow bar as well but then on the positive y-axis. The
height of the bar is equal to the height of a bar with the most decrease instead of an infinite
height.

The different types of bar are displayed in Figure 7.

Figure 7: The types of bar used in the visualization

Now, we want to visualize the monotone decrease after propagation through the junction tree. In
order to show the progress of the decrease through the tree, we visualize parts of configurations
instead of complete configurations. Suppose we have currently propagated the evidence from ClV to
SeL and have to update the adjacent clique ClS next. As we have seen, the formula for updating the
clique is as follows:

φSpcSq “ φSpcSq
φ1Lpc

ÓS
L q

φLpc
ÓS
L q

@cS P ΩS

Since the ratios between the new and old potential values for the various configurations of the sep-
arator SeL fully characterizes the ratios by which the potential of clique ClS changes, it suffices
to visualize the ratios for just the separators. There is however one clique that is not preceded by
a separator, the source clique in which the evidence changed. In order to handle this situation, a
dummy clique is used. This dummy clique consists of the variable that caused the change in evidence
and is connected to the source clique by a separator. The variables in the separator and the dummy
clique are the same. Instead of introducing the evidence in the source clique, it will be introduced in
the dummy clique. The separator can then be used in the visualization to show how the probabilities
of the configurations in the source clique change.

We visualize configurations per separator in the junction tree instead of using configurations in-
volving all variables. A major advantage of this visualization is that the number of bars does not
grow exponentially in the number of variables, as in the visualization of Haipeng Guo. For the po-
tential of each separator in the junction tree, a barchart is visualized in which each configuration is
represented by a bar that tells us how the joint probability of this configuration is changed. The order
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on configurations of a set variables is the same as in the visualization of Haipend Guo. We further
arrange the barcharts per separator such that the paths in the junction tree are clearly visible. To
this end, the charts on a path that is not split into multiple subpaths are visualized consecutively.
When there is a split, we will continue the charts for one subtree on the same row, while for every
other subpath, a new row of charts is constructed, connected by a line to indicate the charts that are
prior to the subpath. This procedure is repeated when new splits occur.
We will now make the above description of the visualization more clear with an example.

Example 1. In Figure 8, a visualization can be seen that is the result of a propagation through
our example network after evidence of variable f is introduced. Let us say that Ωf “ tf1, f2u. The

Figure 8: Propagation of evidence for f in the example Bayesian network

probability of cf “ f2 has become zero. The probability that cf “ f1 is increased because we have
to normalize the probabilities. Since there are no other possible values for f then f1, the probability
will be normalized to one. This is depicted in the first chart. The two bars shows us how the clique -
that contains f - will be altered. The probabilities of all configurations of the variables in the clique
containing f2 will be put to zero, while the probabilities of the other configuration will be multiplied
by a factor roughly equal to 4.5. The clique has one other separator containing the variable d.
The second chart shows us how the probability for the first configuration increases by a factor two,
while the probability of the other configuration decreases by more than two. The probabilities of
the configurations in the adjacent clique will be updated with these factors. Next, the path splits
because the clique has two more separators. One separator with variables tb, cu and the other with
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d again. The chart of the last named separator will be put on a new row and since it contains the
same variable as the previous separator, the chart will be the same. For the other separator, we see
four configurations. The probability of one configuration increases and the probabilities of the other
three decrease.

5.3 Interpretation of visualization

The visualization shows how the potentials of the cliques are changed by presenting the change in
potentials of the separators. The advantage of using the potentials of the separators is that we just
proved that the change decreases monotonically as we propagate down the junction tree. This means
that given a chart G, all charts that come after G on the right will have rates of increase and decrease
that are smaller than the maximum rates of increase and decrease in G.
Furthermore, the change of probabilities in the potentials has an additional interpretation. Given a
separator SeL and clique ClA. The changes in SeL do not only show how the marginal probability
distribution of the variables in ClA changes, but it shows us also how the probability distribution
of the variables in ClA plus the variables in the cliques behind ClA is changed. Suppose we have
a smaller junction tree JT with variable set N , cliqueset Cl “ tClA, ClB , ClCu and separator set
Se “ tSeK , SeLu where K “ AXB and L “ BXC. The joint probability distribution can be written
as:

PrpcN q “
φApc

ÓN
A qφBpc

ÓN
B qφCpc

ÓN
C q

φKpc
ÓN
K qφLpc

ÓN
L q

Suppose there is new evidence in clique ClA. After propagation of the evidence, we get a junction
tree with new potentials, say JT 1 with the joint probability distribution:

PrpcN q “
φ1Apc

ÓN
A qφ1Bpc

ÓN
B qφ1Cpc

ÓN
C q

φ1Kpc
ÓN
K qφ1Lpc

ÓN
L q

If we now take a close look at φ1Cpc
ÓN
C q, then according to the rules in propagation, it is equal to:

φ1Lpc
ÓN
L q

φLpc
ÓN
L q

φCpc
ÓN
C q

Substituting this into the joint probability distribution of JT 1 and factoring out φ1LpcLq gives us:

PrpcN q “
φ1Apc

ÓN
A qφ1Bpc

ÓN
B qφCpc

ÓN
C q

φ1Kpc
ÓN
K qφLpc

ÓN
L q

After doing the same for ClB , we see that the difference between the distributions of JT and JT 1

comes down to the ratio between φApc
ÓN
A q and φ1Apc

ÓN
A q. These changes result from the change in

probability of the configurations of the variables in the evidence which are presented in the first chart
of our visualization. Therefore, the first chart does not only tell us how the joint probability distri-
bution of the variables in the first cliques change, but it tells us exactly how the joint probability
distribution containing all variables change.

Now let us remove clique φA and separator φK from JT and JT 1. The remaining potentials form
the joint probability distribution over the variables in M “ NzpAzKq. This is true because of
the following: In order to have a joint probability distribution over the variables in M , we have
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to marginalize out the variables in AzK. Since ClA contains the marginal distribution over the
variables in A, we only have to perform marginalization in ClA over the variables AzK to get the
joint probability distribution over the variables in M . However, marginalizing out the variables AzK
results in a potential that is equal to the potential of SeK and therefore cancel each other out.
Let us look at the ratio between these partial joint probability distribution of JT and JT 1. For the
new potentials, we can again rewrite φ1Lpc

ÓN
L q and φ1Kpc

ÓN
K q which gives us:

φ1Kpc
ÓN
K q

φKpc
ÓN
K q

φBpc
ÓN
B qφCpc

ÓN
C q

φLpc
ÓN
L q

As we can see, the ratio between the partial joint probability distribution of JT and JT 1 comes
down to the ratio between the old and new potential of separator SeK . Hence, each chart in the
visualizations also shows how the joint probability distribution changes of all variables of the cliques
in the subtree.
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6 The effect of changes on persistence of the MPE

In section 4, we have seen that standard propagation of evidence has a property of monotone de-
crease in the junction tree. Previous research showed that persistence properties could be derived
when performing max-propagation. These two findings lead us to investigate whether persistence
properties could be defined for the MPE when performing standard propagation after a change in
evidence.

6.1 Persistence

As we have seen in chapter 3.6, Pastink and Van der Gaag came up with two types of persistence:
Weak and strong persistence [16]. While these two types of persistence were defined in the context
of the max-propagation algorithm for computing the MPE, we can ask ourselves whether we can
derive similar types of persistence for standard propagation. For weak persistence the results are
negative. An example is shown in Figures 9 and 10, where Figure 10 results from Figure 9 after
updating the prior distribution of the variable k in clique ClR with the multipliers: 1.25 for k1, 0.901
for k2 and 0.905 for k3 and subsequently propagating changes through SeL to ClS . The MPE of the
original distribution from Figure 9 is the configuration tk2, b2, c2u; the MPE from Figure 10 is the
configuration tk1, b1, c1u. Weak persistence is defined for separators and occurs when the probability
of the configuration in the separator that is part of the MPE remains the highest probability after
propagation of the changed evidence. As we can see, the configuration tb2u in separator SeL remains
to have the highest probability, thus satisfying the criterion for weak persistence. However, the state
for the variable b in the MPE changes. Therefore, there is no actual persistence upon standard prop-
agation. So, we can conclude that weak persistence is only valid in the context of max-propagation.

Figure 9: A junction tree with its potentials for ClR, ClS and SeL. The MPE is the configuration
tk2, b2, c2u

Figure 10: Potentials for ClR, ClS and SeL after adjusting the prior distribution of the variable
k and updating the junction tree. The MPE changes to the configuration tk1, b1, c1u

The example also shows that strong persistence does not hold for standard propagation. Recall that
strong persistence occurs in a separator when the following conditions hold for the configuration
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that is part of the MPE: Its probability remains the highest in the separator and the increase of
its probability is at least as high as that of any other probability in the separator. We can use the
visualization from section 5 to look at the changes in the junction tree of our example. These changes
are shown in Figure 11. The second graph shows that the configuration with the highest increase is
b2. However, we have just seen that b1 is the configuration for variable b in the new MPE and does
therefore not persist. This means that strong persistence does not hold either in standard propagation.

Figure 11: Propagation of changes in prior distribution of variable k

We take a look at why these two properties hold for max-propagation and not for standard prop-
agation. In order to do this, we should consider the knowledge we have available about the MPE
in max-propagation and in standard propagation, respectively. The knowledge can be divided in
global and local knowledge. Global knowledge is the knowledge that is available at each clique and
separator, while local knowledge is only available at a specific clique or separator. Let V be the set
of all variables in a junction tree. When max-propagation has taken place, we have the following
knowledge:

• Global knowledge: The configuration of the MPE cMPE and its probability PrpcMPEq

• Local knowledge: For a clique or separator and its potential φX , we know for each of its config-
urations cX that φXpcXq “ maxcV PΩV

PrpcV q under the condition that cX “ cÓVX .

Suppose that max-propagation is performed in our example instead of standard propagation and
we want to process the changes to the prior distribution of the variable k into clique ClR. In this
case, the process of updating the local knowledge in max-propagation is the same as for standard
propagation. Figure 12 displays the probabilities in clique ClR before and after the update.
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Figure 12: The potential of ClR on the left contains probabilities resulting from max-
propagation. The potential on the right shows the probabilities in ClR after an update of
the local knowledge.

From this local knowledge, we know that the highest probability is the probability of the MPE. In
order to find the configuration cMPE , we have to continue max-propagation through the junction
tree. When the highest probability in SeL remains the highest after max-propagation has taken place
in the separator, we know that for the other cliques and separators after SeL the highest probability
will remain the highest as well. We therefore have persistence since the configurations that are part
of the MPE in all cliques and separators after SeL (and SeL itself) will not change.

In standard propagation however, we are missing some crucial information. Before the change in
evidence, we have the same global knowledge as in max-propagation. However, the local knowledge
is different. We only have the joint probabilities of the variables in the specific clique or separa-
tor at our disposal. Suppose we are at clique ClR and collapse clique ClS and separator SeL into
a single clique ClX with potential φX . The joint probability distribution can then be written as:
PrpcV q “ φRpc

ÓV
R qφXpc

ÓV
X q. Since we have the probability of the MPE and the probabilities φR

available, we can find the probability φXpc
ÓMPE
X q. From this, we can also compute the probability

for any other configuration cV for which it holds that cÓVX “ cÓMPE
X . For any other configuration

however, we will not be able to compute the probability. The only thing we can say for each of
these configurations, say c1V , is that φRpc

1ÓV
R qφXpc

1ÓV
X q ă φRpc

ÓMPE
R qφXpc

ÓMPE
X q. When evidence is

introduced in clique ClR, we update our local knowledge. This gives us the new joint probabilities of
the variables in R. From section 5.3, we know that updating ClR is enough to have the correct joint
probability distribution again. This means that we know the new probabilities for PrpcMPEq and the

other configurations that are consistent with cÓMPE
X . We will however not know whether the MPE

remains the MPE, since we have too little information about φXpc
ÓV 1

X q. The only thing we know is
how the probabilities of the configurations will change, but we don’t know how much the probability
of one of these configurations has to change in order to become the MPE.

6.2 Persistence in standard propagation

Interestingly, another insight can be used to say something about persistence. While strong persis-
tence concerns the increase and decrease in probabilities of the configurations in the separator, we
will look at the increase and decrease in probabilities of the configurations in the clique after the
separator. We will see that in some cases, it can be proven that the configuration of the variables,
present in the clique but absent in the separator, will persist. We will first describe the situation in
which such persistence can occur. This situation will then be used in a lemma and theorem to prove
the persistence.

We consider a separator SeL and its adjacent clique ClR. SeL has the single variable k with
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Ωk “ tk1, k2u; later on, the theorem will be extended to separators with multiple variables and
larger state spaces. The separator SeL splits the junction tree into two parts in the sense that these
parts are independent given SeL. The part that does not contain ClR will be indicated with X and
the other part with Y 1; Y indicates the part of the junction tree of Y 1 without ClR. X, Y and Y 1

will also be used to indicate the sets of variables that are present in the cliques and separators in that
part. The cliques and separators in a part can be collapsed into a single big clique. Doing this for
Xand Y gives us two cliques with the potentials φX and φY . In our theorem, the joint probability
distribution will be used. Since we will not perform any changes to individual cliques in X or Y , we
can use φX and φY in the joint probability distribution to represent the potentials of the cliques and
separators in X and Y . The situation is depicted in Figure 13. In this figure, clique ClR contains two
other variables in addition to the variable k, both with a state space of size two. For our theorem,
it will not matter what the number of variables and the size of their state spaces are in ClR as long
as they are not present in X. For ease of exposition, we assume that any other separator adjacent
to ClR does not contain the variable k. Let tk1, b1, c1u be part of the MPE before any change in
evidence.

Figure 13: Example junction tree

Now suppose that a change in evidence occurs in one of the variables in X. Propagating the changed
evidence gives a new potential φ1L for SeL. The probabilities of the configurations in φR containing

k1 are subsequently multiplied with x “
φ1Lpk1q
φLpk1q

and the ones containing k2 with y “
φ1Lpk2q
φLpk2q

, giving

the new potential φ1R for ClR. We now take the potential φRzL as the potential that is obtained from
φR by summing up the probabilities of all configurations in ΩR that are similar except for the state
of the variable k. So, we actually marginalize out variable k. We will now show that if the following
is true:

• y ą x, and

• φ1RzLpb1,c1q

φRzLpb1,c1q
ą

φ1RzLpc
1
q

φRzLpc1 q
@c1 P Ωtb,cuztb1c1u,

then the configuration of Y will persist after the evidence change. In order to proof this property, a
lemma is introduced first.

Lemma 3. Let the situation be as described above. Then,
φRptk1u,cR1

q

φRptk2u,cR1
q
ă

φRptk1u,cR2
q

φRptk2u,cR2
q
, @cR1

, cR2
P

ΩRzL, if the following conditions hold:

• φ1RzLpcR1
q

φRzLpcR1
q
ą

φ1RzLpcR2
q

φRzLpcR2
q

• y ą x

Proof. Suppose that the two conditions mentioned above hold. Since
φ1RzLpcR1

q

φRzLpcR1
q
ą

φ1RzLpcR2
q

φRzLpcR2
q
, there

exists a z P R such that
φ1RzLpcR1

q

φRzLpcR1
q
ą z and

φ1RzLpcR2
q

φRzLpcR2
q
ă z. We first consider

φ1RzLpcR1
q

φRzLpcR1
q
ą z, which can
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be rewritten as follows:

φ1RzLpcR1q

φRzLpcR1
q
ą z

ô
φ1Rptk1u, cR1

q ` φ1Rptk2u, cR1
q

φRptk1u, cR1q ` φRptk2u, cR1q
ą z

ô
x ¨ φRptk1u, cR1

q ` y ¨ φRptk2u, cR1
q

φRptk1u, cR1
q ` φRptk2u, cR1

q
ą z

ô x ¨ φRptk1u, cR1
q ` y ¨ φRptk2u, cR1

q ą z ¨ φRptk1u, cR1
q ` z ¨ φRptk2u, cR1

q

ô py ´ zq ¨ φRptk2u, cR1
q ą pz ´ xq ¨ φRptk1u, cR1

q

φ1RzLpcRq

φRzLpcRq
ă z can be rewritten in the same way:

φ1RzLpcR2
q

φRzLpcR2
q
ă z

ô
φ1Rptk1u, cR2

q ` φ1Rptk2u, cR2
q

φRptk1u, cR2q ` φRptk2u, cR2q
ă z

ô
x ¨ φRptk1u, cR2q ` y ¨ φRptk2u, cR2q

φRptk1u, cR2
q ` φRptk2u, cR2

q
ă z

ô x ¨ φRptk1u, cR2q ` y ¨ φRptk2u, cR2q ă z ¨ φRptk1u, cR2q ` z ¨ φRptk2u, cR2q

ô py ´ zq ¨ φRptk2u, cR2q ă pz ´ xq ¨ φRptk1u, cR2q

We know that the probabilities in the potentials are positive. Therefore,
φ1RzLpcR1

q

φRzLpcR1
q
ą z and

φ1RzLpcR2
q

φRzLpcR2
q
ă

z can only be both true if y´ z and z ´ x are both positive or both negative. The second condition
requires y to be larger than x. This makes it impossible for y´ z and z´x to be negative. The only
possibility therefore is that both terms are positive. We can thus continue our rewriting as follows:

py ´ zq ¨ φRptk2u, cR1q ą pz ´ xq ¨ φRptk1u, cR1q

ô
y ´ z

z ´ x
ą
φRptk1u, cR1

q

φRptk2u, cR1
q

and

py ´ zq ¨ φRptk2u, cR2q ă pz ´ xq ¨ φRptk1u, cR2q

ô
y ´ z

z ´ x
ă
φRptk1u, cR2

q

φRptk2u, cR2
q

Combining the two results gives us:

φRptk1u, cR1
q

φRptk2u, cR1q
ă
φRptk1u, cR2

q

φRptk2u, cR2q

Since given the two conditions, the configurations cR1
and cR2

were chosen arbitrarily, the results
hold for all cR1

, cR2
P ΩRzL
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We illustrate the lemma with an example.

Example 2. Take the junction tree in Figure 14 and suppose there is a change in evidence in X
and we propagate this change through separator SeL to clique ClR, resulting in the junction tree
presented in Figure 15.

Figure 14: Potentials of cliques and separators in the junction tree before a change in evidence
in X

Figure 15: Potentials of cliques and separators in the junction tree after a change in evidence
in X. The values in φR are rounded

As we can see, y “
φL1 pck2

q

φLpck2
q
“

0,43
0,40 “ 1, 075 and x “

φL1 pck1
q

φLpck1
q
“

0,57
0,60 “ 0, 95. So, the increase in the

probability for k “ k2 is higher than the increase in the probability for k “ k1. The increase of the
probability for the configuration b1c1 is equal to 0,143`0,172

0,150`0,160 « 1, 016. This factor is larger than the
increase in the probability for the configurations b1c2, b2c1 and b2c2 which are respectively 1, 008,
1, 004 and 0, 958. We can therefore conclude that before the change in evidence, the ratio between the
probabilities of k1b1c1 and k2b1c1 is smaller than the ratios of the probabilities the other three pairs of

configurations. And indeed, φRpk1b1c1q
φRpk2b1c1q

“
0,150
0,160 « 0, 938 while φRpk1b1c2q

φRpk2b1c2q
« 1, 167, φRpk1b2c1q

φRpk2b2c1q
« 1, 182

and φRpk1b2c2q
φRpk2b2c2q

“ 18.

With this lemma, we can now proceed and formulate the theorem about persistence.
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Theorem 4. Let the situation be as described above. Suppose cMPE is the MPE before the change
in evidence and c1MPE is the MPE after the change in evidence. Then cÓMPE

Y 1ztku “ c1
ÓMPE
Y 1ztku , if the

following holds:

• φ1RzLpcR1
q

φRzLpcR1
q
ą

φ1RzLpcR2
q

φRzLpcR2
q

• y ą x

@cR2
P ΩRzLztcR1

u where cR1
“ cÓMPE

RzL .

Proof. We will prove this by contradiction. Let us indicate the variable set of the complete junction
tree with V . We will represent the joint probability distribution as follows:

PrpcV q “ φXpc
ÓV
X q

φRpc
ÓV
R q

φLpc
ÓV
L q

φY pc
ÓV
Y q

Next, the configuration space ΩV can be partitioned into two groups:

• Ω1 “ tcV |c
ÓV
L “ tk1uu

• Ω2 “ tcV |c
ÓV
L “ tk2uu

Before the change in evidence, we assume that the cMPE is in Ω1. Let us pick another configuration
c1V from Ω2. We will show that this configuration can not become the new MPE under the conditions
mentioned in the theorem unless c1

ÓV
R ztk2u “ cÓMPE

R ztk1u.

To contradict this, suppose that c1
ÓV
R ztk2u ‰ cÓMPE

R ztk1u. Then, we can define two other con-
figurations ĉV and ĉ1V so that:

• ĉV is the configuration with ĉ1
ÓV
X “ c1

ÓV
X and cÓVY 1 ztk2u “ cÓMPE

Y 1 ztk1u.

• ĉ1V is the configuration with ĉ1
ÓV
X “ cÓMPE

X and ĉ1
ÓV
Y 1 ztk1u “ c1

ÓV
Y 1 ztk2u.

Figure 16 depicts the situation for these four configurations. We have that both cÓMPE
R and ĉÓVR

Figure 16: Situation of the four configurations in clique ClR. k1 is part of cMPE and ĉ1
V . k2 is

part of ĉV and c1
V . cMPE and ĉV have the same configuration for the variables in Y . ĉ1

V and
c1

V have the same configuration for the variables in Y .

as well as ĉ1
ÓV
R and c1

ÓV
R marginalize out variable k. According to the conditions mentioned in the

theorem, we know that:

φ1Rpc
ÓMPE
R q ` φ1Rpĉ

ÓV
R q

φRpc
ÓMPE
R q ` φRpĉ

ÓV
R q

ą
φ1Rpc

1ÓV
R q ` φ

1
Rpĉ

1ÓV
R q

φRpc1
ÓV
R q ` φRpĉ

1ÓV
R q
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Therefore, we can use lemma 3:

φRpc
ÓMPE
R q

φRpĉ
ÓV
R q

ă
φRpĉ

1ÓV
R q

φRpc1
ÓV
R q

ô
φRpc

ÓMPE
R qφRpc

1ÓV
R q

φRpĉ1
ÓV
R q

ă φRpĉ
ÓV
R q

We will now use this information to show that Prpc1V q cannot be larger than PrpĉV q. Because both
configurations have the same states for the variables in X and the change in evidence is in X as well,
the probabilities of both configurations will be adjusted with the same factor. Therefore, the ratio
between PrpĉV q and Prpc1V q after updating the junction tree does not change. This means that c1V
can never become the new MPE. Let us proof this by contradiction:

Prpc1V q ą PrpĉV q

ô φXpc
1ÓV
X q

φRpc
1ÓV
R q

φLpk2q
φY pc

1ÓV
Y q ą φXpĉ

ÓV
X q

φRpĉ
ÓV
R q

φLpk2q
φY pĉ

ÓV
Y q

ô φXpĉ
ÓV
X q

φRpc
1ÓV
R q

φLpk2q
φY pc

1ÓV
Y q ą φXpĉ

ÓV
X q

φRpĉ
ÓV
R q

φLpk2q
φY pĉ

ÓV
Y q

ô φRpc
1ÓV
R qφY pc

1ÓV
Y q ą φRpĉ

ÓV
R qφY pĉ

ÓV
Y q

ñ φRpc
1ÓV
R qφY pc

1ÓV
Y q ą

φRpc
ÓMPE
R qφRpc

1ÓV
R q

φRpĉ1
ÓV
R q

φY pĉ
ÓV
Y q plemma 3q

ô φRpĉ
1ÓV
R qφY pc

1ÓV
Y q ą φRpc

ÓMPE
R qφY pĉ

ÓV
Y q

ô φRpĉ
1ÓV
R qφY pĉ

1ÓV
Y q ą φRpc

ÓMPE
R qφY pc

ÓMPE
Y q

ô
φRpĉ

1ÓV
R q

φLpk1q
φY pĉ

1ÓV
Y q ą

φRpc
ÓMPE
R q

φLpk1q
φY pc

ÓMPE
Y q

ô φXpĉ
1ÓV
X q

φRpĉ
1ÓV
R q

φLpk1q
φY pĉ

1ÓV
Y q ą φXpĉ

1ÓV
X q

φRpc
ÓMPE
R q

φLpk1q
φY pc

ÓMPE
Y q

ô φXpĉ
1ÓV
X q

φRpĉ
1ÓV
R q

φLpk1q
φY pĉ

1ÓV
Y q ą φXpc

ÓMPE
X q

φRpc
ÓMPE
R q

φLpk1q
φY pc

ÓMPE
Y q

ô Prpĉ1V q ą PrpcMPEq

This is a contradiction since we supposed that cMPE is the MPE. The only configuration to which
cMPE can change is ĉV . This means that variable k may be the only variable in Y 1 for which the
configuration changes.

6.3 The assumptions

The situation that is used in our theorem is based on two assumptions. The first assumption is that
the variable k should not occur in any other adjacent separator of ClR. In order to see what happens
if the variable k is present in a separator located in Y , we divide the set of variables Y 1ztku into two
parts: the variables in clique ClR: Rztku and the variables not in ClR :Y 1zR. If the variable k is
present in another separator, we still know that the MPE configuration of the variables in Rztku will
not change. For the variables in Y 1zR however, this may not be the case. Because of the assumption
that the variable k is not present in any of the other separators, we know that the MPE configuration
of the variables in the separator will not change and that the MPE configuration of the variables in
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the junction tree after this separator will not change either. Removing the assumption means that
we have to continue propagation for the separators that contain the variable k.

The second assumption is that the separator contains a single variable with a state space of size
two. If separators contain a variable with a larger state space or more than one variable, the theorem
holds. Since our lemma only works for two elements, we need to compare the MPE configuration in
the separator with every other configuration in the separator separately. Suppose for example that
the separator SeL has more than two configurations. We pick the configuration that is part of the
MPE, cÓMPE

L , and compare it to every other configuration c1L P ΩLztc
ÓMPE
L u. For each such c1L, we

consider only the configurations in Ω1R “ tcR|pc
1
L “ cÓRL _ cÓMPE

L “ cÓRL q ^ cR P ΩRu. We can then

use the theorem on configurations cÓMPE
L , c1L and the configuration space Ω1R. If the theorem holds,

we know that the MPE will not change to any of the configurations in Ω1R that have other states for

the variables RzL. If the theorem holds for every configuration in ΩLztc
ÓMPE
L u, we know that the

variables in Rztku will persist.

The advantage of our theorem is that we do not have to propagate further when we find persis-
tence. The complexity of the procedure to check the persistence in a clique moreover is linear in the
number of configurations in the clique. Another advantage is that the theorem does not require the
MPE-specific max-propagation but only the standard propagation. There are however some disad-
vantages as well. We do not know whether and how the variables change state when persistence is
not proved by this theorem. Furthermore, the theorem currently requires the junction tree to be fully
propagated. Therefore, this theorem cannot be used when consecutive changes in the evidence are
introduced unless full propagation between these changes is performed. Lastly, we haven’t yet been
able to find any situation that has persistence according to this theorem. Therefore, the theorem is
likely not very useful in practice in our experience.
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7 MPE Experiments

In this section, we will analyze the effects of changes in evidence on the MPE by performing multiple
experiments on different junction trees. After a change in evidence is propagated through the junction
tree, the MPE may change. Therefore, the configurations of some cliques that were part of the MPE,
may change, while the MPE configurations of other cliques persist. In the experiments, we will look
at how probability changes in cliques have effect on whether the configuration of the clique persists
into the new MPE or not. We will also study the relation between the monotone decrease property
and the persistence of configurations.

7.1 Set-up

Before we go to the results of the experiments, we will first describe the set-up we have used. We will
discuss the Bayesian networks that were used, the way we performed runs in the experiments and
finally define some concepts that we use in the experiments.

7.1.1 Bayesian networks

The experiments are performed on the junction trees of three well-known Bayesian networks: asia,
alarm and hepar2.

asia
asia [18] is a small artificial network with eight binary variables. Its junction tree contains six cliques.
The paths along which evidence will be propagated are short due to the small number of cliques.
Because of this, the effects of changes in the potentials can be considered in more detail.

alarm
alarm [19] is a medium-sized network with 37 variables. The state spaces of the variables vary be-
tween two and four states. Its junction tree has 27 cliques. The tree includes long parts along which
evidence will be propagated.

hepar2
Hepar2 [20] is a real-world network containing 70 variables with two to four states each. Its junction
tree contains 58 cliques. The large number of cliques allows a large variety of evidence scenarios to
be tested.

7.1.2 Runs

Each experiment consists of multiple runs and each run includes a set of scenarios. A scenario in-
volves, for a given Bayesian network, two instances of the junction tree: T and T 1. T 1 differs from T
in that the evidence entered in T 1 is different from the evidence in T at one point. The difference can
be in a variable that was not observed in T , a variable that is observed in T but changed state, or a
variable that is removed from the evidence in T . We call the evidence entered in T the pre-change
evidence and the evidence in T 1 the post-change evidence. The variables that will be part of the evi-
dence are selected at random as are their states. Duplicate scenarios in a single run are not allowed.
For the alarm and hepar2 networks, a run involves a hundred scenarios. This number ensures that
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multiple types of scenarios are covered (e.g. a change of evidence in a leaf clique, a change in a clique
of more than five variables). For asia, it was not possible in some cases to create a 100 distinct sce-
narios. For these cases, only 10 scenarios are used. We mark these runs with an asterisk in the tables.

Various parameters are set for a run:

• The number of variables involved in the pre-change evidence. More variables means that fewer
variables remain for the MPE and therefore a smaller joint state space for the MPE. More
variables in the evidence also can make specific variables independent due to blocking. But
they can also cause independencies to be removed. 0, 1, 2 and 4 variables in the pre-change
evidence are used for the asia-network, 0, 1, 2, 5 and 9 for the alarm-network, and 0, 1, 2, 5, 9,
15, 25 and 30 for the hepar2-network.

• Whether the change of evidence concerns a variable in the pre-change evidence, a variable that
had no evidence before or a variable that is removed from the pre-change evidence. This is the
difference between the three types of change in the evidence we stated before. The reason to
make this distinction is as follows. When a variable is added to the evidence, we could say that
its states changes from an ’optimal’ state for the MPE to a random state. For the second type
however, we just swap between two random states. And for the third type, the state goes from
random to an optimal state. These three types may have different impacts on how the MPE
changes.

For every setting of the parameters, ten runs are generated. This gives us an indication of the
consistency of the results.

7.1.3 Characterization of the affected clique set

In the experiments, we will consider the part of the junction tree in which a change of the MPE
to MPE1 occurred. The clique in which the change in evidence is introduced is indicated with ClSo
and we take ClAffected to be the set of all cliques in which the configuration of at least one variable
changed in the MPE. Recall from section 3.6 that thea affected cliques form a contiguous part of the
junction tree. We define the border of ClAffected to be the set ClBorder Ď ClAffected such that for
each clique ClB P ClBorder one of the two properties hold:

• L Ă B ^ cÓMPE
L “ cÓMPE1

L DSeL P Se

• #tSeL|SeL P Se^ L Ă Bu “ 1^ cÓMPE
B ‰ cÓMPE1

B

The border of ClAffected thus includes the set of cliques that have either a separator that is not in
ClAffected or have a single separator. A clique in ClBorder will be called a border clique.

Note that multiple configurations can be the most probable configuration in both T and T 1. For
T , an arbitrary configuration will be picked as MPE. For T 1, we have to be more careful. Suppose
there are two MPEs c1 and c2 in T and that some variables have the same state in both MPEs. Next,
a change in one of these variables occurs and only the common part of the two MPEs is affected.
The two MPEs will change in the same way giving us two new MPEs c11 and c12. If we pick c12
for T 1 while c1 was picked for T , then ClAffected may not be contiguous. We will therefore pick an
MPE for T 1 that makes sure ClAffected is contiguous. During the experiments, we encountered only
a small number of scenarios in which there was more than one MPE.
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7.1.4 Distance

We will study the distance between a clique and the source of change in evidence in our analysis.
This distance is measured as follows. Suppose we want the distance between ClR and the source
of change in evidence. We will not simply pick ClSo as the source. If multiple cliques contain the
changed variable, it would not matter in which clique the evidence is introduced and therefore, the
distance should not matter as well. We will therefore pick the clique that is closest to ClR. However,
we cannot just take the length of the path between these two cliques in the junction as the distance.
Take for example a junction tree containing three cliques ClR, ClS and ClT . ClS is connected to
both ClR and ClT with a separator. If both separators have the same variables, we can alter the
junction tree by removing the connection between ClR and ClS and add a connection between ClS
and ClT which will yield a new correct junction tree. While the distance between ClR and ClT is
two in the first junction tree, it is one in the other. We will pick the smallest possible distance for
our distance measure.

7.2 Results: Affected clique set

The analysis of the results in this section will focus on two issues. We examine the situations at the
border of the affected clique set and we will look into the size of the set of affected cliques.

7.2.1 The border

At the border, we distinguish between three cases. The first case concerns cliques in ClBorder that
constitute a leaf at the end of a branch in the junction tree. These border cliques do not have any
separator with a clique outside ClAffected. The other border cliques have one or more separators
that are connected to another clique outside ClAffected. We will consider each separator separately.
Each such separator is either one of which the factors are all equal to one - the second case - or not
- the third case. One clique may contain multiple separators of different cases. It is interesting to
distinguish between the cases two and three. For case two, the probabilities in that clique and in
the subsequent cliques are all algebraically independent of the change in ClSo. Therefore, persistence
of the MPE configuration of these cliques is likely. Changes in the MPE configuration can only be
caused because the combination with configurations in previous cliques is better due to changes in
probabilities of these previous cliques. This is not the case for type three cases in which the proba-
bilities are still affected by the change of evidence.
The results for these three cases for the different networks are shown in Tables 1-9. The occurrences
of each case is stated as a fraction of the total number of case occurences. It is the average over ten
runs and the standard deviation is stated besides the average and gives an indication on how close
the results of the separate runs are to each other.

Let us first analyze the results for the asia-network. The tables show common trends. The re-
sults for type one cases are similar across all three tables. Table 2 and 3 have similar results for
the type two and three cases as well. The type two and three cases follow the same trend as the
pre-change evidence increases, but the fractions in Table 1 seem to lay one step behind. The reason
that Table 1 seems to lay one step behind Table 3 can be explained by the fact that the two types
of evidence change are each others’ opposite. Therefore, we should compare the numbers of the
pre-change evidence from Table 1 with the number of the post-change evidence in Table 3. Table 1
and 2, should be compared by looking at the post-change evidence instead of the pre-change evidence.
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Comparing the results for the same post-change evidence gives similar results. An explanation for
this finding is that the number of variables in the post-change evidence indicate how likely paths
are blocked or how many independencies have been removed by the evidence in the network. These
removed or added independencies are important for the proportion of type two and type three cases.

In all three tables, about 50% of the cases are of type one. Three of the six cliques have only

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
0* 1 .505˘ .054 .029˘ .037 .466˘ .065
1 2 .523˘ .040 .193˘ .036 .284˘ .031
2 3 .526˘ .045 .245˘ .045 .229˘ .034
4 5 .524˘ .040 .388˘ .064 .089˘ .045

Table 1: Results for scenarios in the asia-network in which a new variable is introduced in the
evidence. The fractions show how often each type of case occurs at the border of the set of
affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1* 1 .543˘ .071 .066˘ .020 .391˘ .076
2 2 .530˘ .011 .169˘ .032 .301˘ .033
4 4 .520˘ .024 .322˘ .048 .159˘ .035

Table 2: Results for scenarios in the asia-network in which the state of a variable in the evidence
is changed. The fractions show how often each type of case occurs at the border of the set of
affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1* 0 .555˘ .055 .053˘ .037 .392˘ .067
2 1 .537˘ .035 .151˘ .019 .312˘ .042
4 3 .493˘ .040 .325˘ .057 .182˘ .041

Table 3: Results for scenarios in the asia-network in which a variable is removed from the
evidence. The fractions show how often each type of case occurs at the border of the set of
affected cliques.

one adjacent separator, that is, they are at the end of a branch. The probability that an affected
clique is one of these cliques is therefore high. Furthermore, the relatively high number of cliques
with a single separator also indicates that the paths in the junction tree are short which increases
the probability that changes reach the end of a branch. As the number of variables involved in the
pre-change evidence increases, the fraction of type two cases increases, while the fraction of type three
cases decreases. As a consequence of the small size of the network, entering evidence is likely to block
a path, which increases the number of independencies between variables and therefore increases the
fraction of type two cases while decreasing the fraction of type three cases.

Next, let us look at the results for alarm in Tables 4-6. The fraction of type one cases is smaller than
for asia. In the junction tree of alarm, the branches are longer and only 9 of the 27 cliques have a
single separator. The fraction of type two cases starts being higher in comparison with asia. However,
the fraction does not change significantly when the number of variables in the pre-change evidence
increases and becomes smaller than the fraction for asia. The unchanging fraction may be due to
multiple issues. First of all, there are often multiple paths between two variables in the Bayesian
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network. The variables will only be independent when every path is blocked. Moreover, it can be
that the number of new independencies is counterbalanced by the number of times an independency
is removed. When evidence is introduced in one of the descendants of two independent variables, the
two variables will not be independent anymore. In the alarm-network, there are multiple variables
that are independent of each other and have a high number of common descendants, which makes
introducing evidence quite likely to remove an independency.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
0 1 .385˘ .005 .239˘ .005 .376˘ .004
1 2 .387˘ .025 .248˘ .030 .365˘ .039
2 3 .385˘ .034 .201˘ .027 .415˘ .038
5 6 .343˘ .031 .197˘ .038 .461˘ .040
9 10 .334˘ .032 .212˘ .046 .455˘ .044

Table 4: Results for scenarios in the alarm-network in which a new variable is introduced in
the evidence. The fractions show how often each type of case occurs at the border of the set
of affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1 1 .387˘ .014 .239˘ .021 .374˘ .017
2 2 .393˘ .018 .239˘ .029 .368˘ .028
5 5 .369˘ .020 .195˘ .025 .435˘ .033
9 9 .348˘ .024 .221˘ .028 .431˘ .024

Table 5: Results for scenarios in the alarm-network in which the state of a variable in the
evidence is changed. The fractions show how often each type of case occurs at the border of
the set of affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1 0 .388˘ .006 .236˘ .007 .376˘ .007
2 1 .381˘ .026 .231˘ .031 .388˘ .031
5 4 .369˘ .021 .190˘ .029 .441˘ .035
9 8 .351˘ .029 .195˘ .040 .455˘ .033

Table 6: Results for scenarios in the alarm-network in which a variable is removed from the
evidence. The fractions show how often each type of case occurs at the border of the set of
affected cliques.

A last finding to note are the different results for type one and type three cases. While their fractions
are not significantly different with small numbers of variables in the pre-change evidence, they start
to be different for five and nine variables. This could be due to the fact that more variables in the
evidence means less possibilities for the MPE to change and therefore more persistence.

Lastly, let us look at the results for hepar2 reported in table 7-9. The fraction of type one cases is
smaller than in the other two networks. Since the paths in the junction tree are in general longer,
the probability of cliques persisting before the end of the branch increases. It does not change sig-
nificantly as the number of variables in the pre-change evidence increases. For cases two and three,
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pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
0 1 .251˘ .013 .131˘ .019 .618˘ .028
1 2 .270˘ .019 .111˘ .019 .619˘ .027
2 4 .269˘ .020 .077˘ .023 .654˘ .036
5 6 .279˘ .018 .047˘ .022 .675˘ .023
9 10 .290˘ .027 .058˘ .016 .652˘ .037
15 16 .283˘ .024 .087˘ .016 .630˘ .034
25 25 .290˘ .032 .161˘ .030 .548˘ .035
30 31 .270˘ .032 .179˘ .040 .551˘ .037

Table 7: Results for scenarios in the hepar2-network in which a new variable is introduced in
the evidence. The fractions show how often each type of case occurs at the border of the set
of affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1 1 .258˘ .011 .136˘ .013 .606˘ .019
2 2 .253˘ .013 .098˘ .027 .649˘ .030
5 5 .267˘ .021 .058˘ .015 .675˘ .030
9 9 .272˘ .020 .052˘ .013 .676˘ .025
15 15 .282˘ .010 .082˘ .024 .636˘ .022
25 25 .281˘ .019 .145˘ .028 .574˘ .033
30 30 .289˘ .021 .187˘ .030 .524˘ .041

Table 8: Results for scenarios in the hepar2-network in which the state of a variable in the
evidence is changed. The fractions show how often each type of case occurs at the border of
the set of affected cliques.

pre-change evidence post-change evidence (1) End of branch (2) Independence (3) Change
1 0 .262˘ .012 .134˘ .017 .604˘ .024
2 1 .256˘ .025 .101˘ .030 .643˘ .045
5 4 .281˘ .023 .042˘ .022 .677˘ .023
9 8 .271˘ .027 .051˘ .014 .677˘ .017
15 14 .296˘ .029 .062˘ .018 .642˘ .032
25 24 .288˘ .040 .149˘ .018 .563˘ .031
30 29 .287˘ .027 .175˘ .023 .538˘ .039

Table 9: Results for scenarios in the hepar2-network in which a variable is removed from the
evidence. The fractions show how often each type of case occurs at the border of the set of
affected cliques.

there are two findings that are interesting. First of all, compared to alarm, the fraction of type
two cases is in general smaller while the fraction of type three cases is much bigger. One reason
could be that there are less independency structures in hepar2 compared to alarm. Another possible
reason, that cannot be inferred from these tables, is the number of affected cliques in hepar2. We
will look more into this in the next section. Another striking finding is the way how the fraction of
cases two and three changes as the variables in the pre-change evidence increases. As the number
of variables in the pre-change evidence increases, the fraction of case two decreases first after which
it increases. For case three, it is the other way around. While in the case of alarm, the number
of new independencies appeared to be counterbalanced by the number of removed independencies,
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it seems that the probability of removing an independency in hepar2 is more likely as the number
of variables in the pre-change evidence increases. But at some point, the independencies increases
again. This makes sense since an independency can only be removed once. Therefore, the probability
to remove independencies decreases while more variables in the evidence increases the chance that
paths between variables are blocked and therefore increasing the independencies again.

7.2.2 Number of affected cliques

The findings from the previous section show that a change in evidence does not typically affect the
complete junction tree, but it does not provide much insight in the size of ClAffected. In order to
gain insight into the affected part of the junction tree, we consider the number of cliques and the
number of variables involved for which the MPE configuration changes, including the variable that
changed in the evidence. Besides the number of changed variables, we will also display the maximum
number of variables that could have changed its MPE state. When a variable is able to change is
defined as follows:

• The variable is located in an affected clique.

• The variable is not located in any non-affected clique; otherwise, the MPE configurations of
cliques outside ClAffected could be changed as well.

• The variable may not be part of the pre-change evidence except for the variable that changed
state.

The results are shown in Table 10, 11 and 12. As in the previous section, we compare the results for
different numbers of variables in the evidence. We will however omit the cases in which a variable
is added to or removed from the evidence and thus only look at the scenarios in which the state of
a variable in the evidence changed. This because the mutual differences between these three types
were small.

pre-change evidence Avg. #Cliques Avg. #Variables Avg. Max #Variables
1* 4.01˘ .23p67%q 4.46˘ .35p56%q 4.68˘ .34
2 3.38˘ .15p56%q 2.95˘ .11p37%q 3.43˘ .16
4 2.74˘ .23p46%q 1.82˘ .11p23%q 2.21˘ .15

Table 10: Results about the number of affected cliques and changed variables in the asia-network
for different types of scenarios.

For the asia-network, the percentage of affected cliques and variables after a change in evidence is
relatively high. Because the junction tree of the asia-network is small, all cliques are close to any
change in the pre-change evidence. We know from the monotone decrease property that the effects
of a change in the evidence is strongest at the neighbouring cliques. The finding is consistent with
Table 1-3 in the previous section where the number of cases in which the end of a branch was reached
is more than 50%.

For the alarm-network, the percentage of cliques and variables affected by a change of evidence is
much smaller compared to asia. Interestingly, the number of affected variables is smaller than the
number of cliques. This can be explained by the fact that cliques have overlapping variables. In
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pre-change evidence Avg. #Cliques Avg. #Variables Avg. Max #Variables
1 7.30˘ .30p27%q 5.52˘ .25p15%q 8.09˘ .40
2 6.93˘ .35p26%q 5.33˘ .35p14%q 7.64˘ .43
5 5.84˘ .44p22%q 4.37˘ .29p12%q 6.02˘ .48
9 5.23˘ .27p19%q 3.64˘ .20p10%q 4.90˘ .26

Table 11: Results about the number of affected cliques and changed variables in the alarm-
network for different types of scenarios.

fact, the junction tree of alarm contains a variable that is contained in seven cliques. If this variable
changes its state, a high clique count will result. The number of maximum possible variables puts the
number of affected variables more into perspective. We see that around 50%´ 60% of the variables
that could have changed, did change their state in the new MPE.

In the hepar2-network, the number of cliques and variables that are affected by the change of evi-
dence is surprisingly small. While the size of the network is two times that of alarm, the percentage of
changed cliques is not higher than 30% of the total number of cliques while the percentage of changed
variables is not higher than 20%. We suspect that a reason for the small size of the set of affected
variables are the conditional probability tables of the hepar2-network. This will be investigated fur-
ther in the next section. Another difference between the hepar2-network and the other two networks
is that the numbers of affected cliques and variables do not change significantly when the number
of variables in the pre-change evidence increases. This may be caused by two reasons. The size of
the junction tree makes the distance between a variable in the pre-change evidence and an arbitrary
clique relatively large. The effect of evidence is therefore often probably small. On top of that, the
effect of a change in evidence is already small. Only four to five cliques are affected. Because of this
small effect and the size of the network, future changes will have a small effect as well.

pre-change evidence Avg. #Cliques Avg. #Variables Avg. Max #Variables
1 4.38˘ .42p8%q 1.68˘ .08p2%q 4.10˘ .37
2 4.34˘ .43p7%q 1.66˘ .14p2%q 4.03˘ .36
5 4.34˘ .34p7%q 1.71˘ .09p2%q 3.95˘ .30
9 4.83˘ .38p8%q 1.78˘ .10p3%q 4.17˘ .34

15 5.25˘ .77p9%q 1.85˘ .18p3%q 4.19˘ .56
25 4.75˘ .54p8%q 1.69˘ .11p2%q 3.35˘ .31
30 5.03˘ .79p9%q 1.72˘ .17p2%q 3.25˘ .36

Table 12: Results about the number of affected cliques and changed variables in the hepar2-
network for different types of scenarios.

7.2.3 Different conditional probability tables

To examine why the numbers of affected cliques and variables in the hepar2-network are small, we
generated some new instances of the hepar2-network in which we changed the conditional probability
tables. This was achieved as follows: For each CPT and for each state of the variable associated with
the CPT, we generated probabilities by first sampling values from a normal distribution with a mean
of zero, then use a normal cumulative distribution function with a mean of zero and a standard devi-
ation of 0.5 to get a value between zero and one and finally normalize these values so that they sum
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to one. Different standard deviations for the normal distribution were used to get varying skewnesses
of the probability distribution. The skewness we looked at represents the skewness of the Bayesian
network and is computed according to a method introduced by Jitnah and Nicholson [21].

In Table 13, the results for the hepar2-networks are shown.

skewness 0.579 (original) 0.486 0.343 0.264 0.172
Avg. Cliques 4.38˘ .42p8%q 24.29˘ 1.26p42%q 18.73˘ .77p32%q 23.92˘ .51p41%q 13.01˘ .83p22%q

Avg. Variables 1.68˘ .08p2%q 17.00˘ .93p24%q 11.40˘ .47p16%q 16.14˘ .33p23%q 7.50˘ .43p11%q
Avg. Max Variables 4.10˘ .37 26.25˘ 1.41 19.25˘ .79 25.15˘ .58 12.84˘ .83

Table 13: Results for different initializations of the CPTs of the hepar2-network.

The average numbers of affected cliques and variables are much higher. The number of cliques is for
two cases even more than 40% of the total number of cliques in the network. We can conclude from
these results that the way the probabilities in a CPT are distributed is important for how evidence
changes the MPE. Furthermore, the ratio between the numbers of affected cliques and variables is
about the same as we saw in the alarm-network. At most a quarter of the variables changes on
average. This is still considerably smaller than the maximum number of variables that could change
state. Note further that from this table, there seems not to be any relation between the skewness and
size of ClAffected. One reason that skewness does not have a clear relation with the size is that on
the one hand, if the skewness is low, the probabilities in potentials will be close to each other. When
the change of evidence is propagated through the junction tree, the changes will attenuate fast. On
the other hand, because the probabilities in the potentials are close to each other, the probabilities of
configurations are close to each other and therefore, not a lot of change is required for a configuration
to become the MPE.

For alarm en asia, we generated two different instances as well. The results are shown in Table
14 and 15.

skewness 0.834 (original) 0.342 0.042
Avg. Cliques 7.30˘ .30p27%q 8.59˘ 0.33p32%q 6.96˘ .35p25%q

Avg. Variables 5.52˘ .25p15%q 5.36˘ .21p14%q 5.28˘ .28p14%q
Avg. Max Variables 8.09˘ .40 9.66˘ 0.36 7.84˘ .45

Table 14: Results for different initializations of the CPTs of the alarm-network.

skewness 0.711 (original) 0.351 0.026
Avg. Cliques 4.01˘ .23p67%q 3.04˘ 0.32p51%q 2.80˘ .41p47%q

Avg. Variables 4.46˘ .35p56%q 2.02˘ .18p25%q 2.24˘ .32p28%q
Avg. Max Variables 4.68˘ .34 2.91˘ 0.31 3.05˘ .57

Table 15: Results for different initializations of the CPTs of the asia-network.

While the number of affected cliques and variables increase for hepar2-network, we did not see this
increase for asia and alarm. For alarm the numbers are quite similar. It seems that the conditional
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probabilities in the original network does not have a special influence on how the MPE changes. For
asia, it is even the case that the number of variables and cliques decreases. An explanation for this
could be the conditional probability table for the variable either in the original asia-network. This
CPT consists only of zeroes and ones. This has a great influence on the propagation of changes.

7.3 Results: Monotone decrease

In this section, the focus will be on the monotone decrease of the change in potentials as a result of
the change in evidence. Two things will be addressed: Firstly, we will compare the distance between
a clique in ClAffected and the source of the change in evidence and the change of probabilities in
the potential of that clique. Secondly, we will zoom into the changes of cliques after the border of
ClAffected. The experiment will be performed on the alarm- and hepar2-network.

7.3.1 The monotone decrease in ClAffected

When a change in evidence occurs, we propagate this through the junction tree. This will change the
potentials of the cliques and we know that these changes will not increase. In order to get insight
into the changes of cliques in ClAffected, we first of all split up the increases of probabilities and the
decreases of probabilities in potentials. Further on, we will only consider the maximum increase and
the maximum decrease of a probability in a potential. This because the theorem about monotone
decrease only concerns these two extremes. We will refer to the maximum increase or decrease of
a potential as the change of a potential. From the context, it will be clear whether the maximum
increase or decrease is meant.
We want to visualize multiple scenarios in order to get a more general idea about the monotone
decrease. For this purpose, we will pick a run and consider all changes in the potentials of cliques
that are part of ClAffected. We will group the cliques by path. With path, we mean a set of cliques
that form a path from the source of change in evidence to a border clique. Due to grouping cliques
by path, a change in a potential could be displayed multiple times because some cliques will be part
of multiple paths. Each change in a clique presents a point in the graph. The y-axis displays the size
of the change and is logarithmic in scale. The x-axis displays the distance to the source of change in
evidence. The colour of a point indicates the length of the path to which the point belongs. There
will be areas in the graph with many points. In order to get an indication on how dense the areas
are, a couple of measures have been taken. First of all, points with different colours are displayed
next to each other. Secondly, the points are slightly transparent. This will give denser areas a more
solid colour. Thirdly, a line representing the median of the points on the different lengths is drawn.
For each length, we only consider the border cliques.

Let us first look at alarm-network with the randomly generated CPT-tables where the skewness
of the Bayesian network is equal to 0.351. The decrease of change is clearly visible as the distance
to the source becomes larger. Especially the blue points give a good indication on how the changes
decrease along their paths. At the start of these paths, most probabilities decrease with a factor
larger than four. Most paths end up at cliques where almost no changes occur.
Interestingly, while the influence of the change in evidence is almost negligible after a distance of six,
there are still cliques at distances of seven, eight or even nine in which variables change of state in
the new MPE. The reason for this could either be that a changed variable is present in all three or
four cliques. Another reason could be that the probability of two different configurations of variables
located in these three or four cliques were close to each other and as a result of the minor changes,
the other configuration is more likely under the new evidence.
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Figure 17: alarm-network with skewness of 0.342. The graph contains 1289 points and shows the
maximum decreases in the affected cliques. The data comes from a run in which the scenarios
have one variable in the pre-change evidence and the state of this variable changes

In Figure 18, results of a run for the hepar2-network are shown. The CPTs are again custom made
and the Bayesian network has a skewness of 0.343. This graph is different compared to the graph of
alarm on some points. The highest changes present in the graph are much smaller than the changes
in alarm. This is however quite variable. There are scenarios in hepar2 that start with changes higher
than 1000 as well. Although the decrease in changes as the distance growths is visible here as well, it
does not decrease as much as in the case of alarm. Another oddity in this graph is that the median
for paths of length five is higher than the median for paths of length four. This phenomenon was
visible in several other runs as well and also for different CPTs. The structure of the network seems
therefore be responsible for this behaviour. In most cases, the median drops as the distance towards
the source of change in evidence increases. The reason for this is that every step further away from
the source is likely to cause a decrease of change and never an increase of change.
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Figure 18: hepar2-network with skewness of 0.343. The graph contains 5829 points and shows the
maximum decreases in the affected cliques. The data comes from a run in which the scenarios
have one variable in the pre-change evidence and the state of this variable changes

However, you might expect that a change in evidence should in general be larger in order to change
the state of a variable further away. Therefore, if you compare two cliques that have the same dis-
tance towards the source, then the clique that is part of the longest path will probably also have the
largest changes to its probabilities. In the case of Figure 18, the distances to the source of change in
evidence are not equal but since hepar2 contains many situations in which the decrease of change is
minimal, due to which the above reasoning can extend to not equal distances as well.

We will now look at alarm and hepar2 with their original CPTs. The increases will be consid-
ered here as well. Figure 19 and 20 present relatively the decreases and increases in scenarios of the
alarm-network. The first thing to note is the distribution of the points. While the changes converges
quickly to one in the case of random CPTs, the changes in these two figures are less reluctant to
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Figure 19: Original alarm-network. The graph contains 883 points and shows the maximum
decreases in the affected cliques. The data comes from a run in which the scenarios have one
variable in the pre-change evidence and the state of this variable changes
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decrease and the cliques at the end of the paths are still often subject to change. It is further on the
case that the probabilities in every affected clique are subject to change. This was not the case for
the networks with random CPTs.
Despite the reluctant decrease, the relation between decrease of change and length of path is still
visible. For the maximum increase, we see a drop from 65 at a distance of one to 5 at a distance of
four. For the maximum decrease, we see a decrease from 23 to 5 over the same distance.

Figure 20: Original alarm-network. The graph contains 883 points and shows the maximum
increases in the affected cliques. The data comes from a run in which the scenarios have one
variable in the pre-change evidence and the state of this variable changes
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In Figure 21 and 22 the results of changes in increase and decrease for the original hepar2-network
are displayed.

Figure 21: Original hepar2-network. The graph contains 760 points and shows the maximum
decreases in the affected cliques. The data comes from a run in which the scenarios have one
variable in the pre-change evidence that changes of state

Compared to alarm, these results contain much more cliques with similar changes. This is due to the
fact that there are many separators which share most of their variables but are not completely the
same. Due to this, we will have small changes as propagation continues along a path.
Further on, it seems that only a small number of points is displayed in the graph while the total
number of points is 760 - which is just under the number of points displayed for alarm. To explain
this, we have to look back at the tables of alarm and hepar2 in section 7.2.1. The number of affected
cliques for alarm is around 7.30 while the number of affected cliques for hepar2 is 4.38. The number of
cliques in ClBorder for alarm is therefore likely to be higher than for hepar2. However, the proportion
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Figure 22: Original hepar2-network. The graph contains 760 points and shows the maximum
increases in the affected cliques. The data comes from a run in which the scenarios have one
variable in the pre-change evidence that changes of state

of cliques in ClBorder that are at the end of a branch in the junction tree is higher - 0.387 against
0.258.
Another thing that can be noted from the figures is that despite the fact that we have often small
decreases along a path, the monotone decrease is visible. Especially between cliques with a distance
of one and two from the source of change in evidence. For a distance of two, the maximum decrease
in half of the separators decrease to less than two while the maximum increase decrease to less than
four.
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7.3.2 Changes Outside ClAffected

In the previous section, we have looked at the changes within ClAffected and although we saw the
monotone decrease, it was also clearly visible that the changes in cliques at the end of the paths
could still be large. However, these paths only concerned cliques in which the MPE configuration
changed. What if we look at the cliques in which persistence occurs for the first time? We would
expect that the changes of probabilities within these set of cliques is small. To gain insight into this
set of cliques, we first of all gather separators that are adjacent to a clique in ClBorder and a clique
outside ClBorder. Each of these separators will be presented as a point in the graph. On the y-axis,
it indicates the maximum increase or decrease that took place in the potential of the separator. The
x-axis represents the distance between the source of change in evidence and the clique in ClBorder
that is adjacent to the concerned separator. In order to get insight in clusters of points, we add ˘0.2
to the distance at random and use transparent points like we did in the previous graphs. In order to
compare the results with the previous section, we used the same runs for alarm and hepar2 to show
the increases and decreases in the separators.
Figure 23 and 24 contain the results for alarm. While we had max increases in cliques up to 13000

Figure 23: Original alarm-network. The graph contains 164 points and shows the maximum
decreases of the cliques just outside the affected area of cliques. The data comes from a run in
which the scenarios have one variable in the pre-change evidence that changes of state

and maximum decreases up to 22000, the probabilities in the potentials of cliques outside ClAffected
are at most increased or decreased by 141. Only few potentials have a change of this magnitude while



7 MPE EXPERIMENTS 59

Figure 24: Original alarm-network. The graph contains 164 points and shows the maximum
increases of the cliques just outside the affected area of cliques. The data comes from a run in
which the scenarios have one variable in the pre-change evidence that changes of state

they persist. The probabilities in most cliques increase or decrease no more than seven times.
An other interesting thing to note concerns the independency. We already saw that many cliques are
independent of the changes and is visible in this graph as well. In Figure 19 and 20 we didn’t see any
clique in ClAffected that was independent of the changes. However, we did see these cliques in the
alarm-network in which randomly generated CPTs were used. So while it is possible, it is rare when
the variables in the MPE change while they are independent of the change in evidence.
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The results for hepar2 are shown in Figure 25 and 26. and look similar to the results of alarm.

Figure 25: Original hepar2-network. The graph contains 72 points and shows the maximum
decreases of the cliques just outside the affected area of cliques. The data comes from a run in
which the scenarios have one variable in the pre-change evidence that changes of state

The changes in the first cliques that persist are significantly smaller than the changes in the cliques
that do not persist. Almost all changes lie between a distance of one and three. A bit odd are the
two cliques in Figure 26 that have a distance towards the change in evidence of two and a maximum
increase in probability around 14 and 45. All cliques with a distance of one have a maximum increase
of no more than three. This is however possible since the monotone decrease property only holds for
cliques that are part of the same path. It could for example be that there is a scenario that has no
endings at a distance of one and the separators with a distance of two are subject to changes that
are coincidentally high.
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Figure 26: Original hepar2-network. The graph contains 72 points and shows the maximum
increases of the cliques just outside the affected area of cliques. The data comes from a run
in which the scenarios have one variable in the pre-change evidence and the state of this variable
changes

7.4 Conclusion and Discussion

Summarizing the results, we have looked at characteristics of the affected clique set and its border.
We first of all looked at the different cases that can occur at the border: The end of a branch, prob-
abilities in the separator are independent of the changes in the evidence and the probabilities are
affected by the change of evidence. We have seen that the fraction of type one cases decreases as we
look at larger networks. For the type two and three cases, we have seen how they are affected by the
number of variables in the pre-change evidence. For alarm, the effect was minimal, but the fractions
did change for hepar2 and asia. Possible causes for these changes are the probabilities of indepen-
dencies being created or removed as the number of variables in the pre-change evidence increases.
Further on, we have seen that the percentage of cases in which a clique is subject to change but does
persist was in all three networks quite large.
Results about the size of the affected part of the junction tree shows us that the affected part is
often only a fraction of the junction tree, especially for hepar2. The number of affected variables
is often smaller than the number of affected cliques. We have also seen that the role of conditional
probability tables can be important for the size of the affected clique set. While the results with
different conditional probability tables for alarm did not give us very different results, the number of
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affected cliques and variables for asia turned out to be lower while higher for hepar2.
Next, we considered the changes of probabilities in potentials. The monotone decrease is clearly
visible in the potentials of cliques that are part of ClAffected, especially for alarm. The difference
between changes in the potentials of cliques inside and directly outside ClAffected was also evident.

In most cases, the number of variables that change of state in the MPE is small. Therefore, methods
to find these persistences will save often many computations. Especially since persistence mostly
occurs between two cliques and not just at the end of a branch. However, this will not always be the
case. As we have seen for hepar2, different CPTs resulted in many more variables that changes of
state in the MPE.
That being said, if the affected clique set is as small as was the case for the original hepar2-network,
future evidence changes may not even influence previously affected cliques at all. This can be inter-
esting in how to deal with partial propagation of consecutive changes in the evidence.
Another interesting thing is the relation between independency and persistence. It seems logical that
variables independent of the change in evidence are not likely to change of state in the MPE, but we
did see these cases when we used randomly generated CPTs. However, for the original networks of
alarm and hepar2, these cases are rare. It would be interesting to find out how rare the cases are and
under what circumstances the variable is likely to change of state.
Furthermore, the results for monotone decrease are quite varying. Although the decrease is often
present, we also see cases in which the changes are not decreasing at all but remain the same. When
separators persists varies widely as well. We have separators that are persistent while some of the
probabilities in their potential become 40 times as high. However, it is clearly visible that the changes
in cliques that are affected is significantly larger than the changes in cliques outside the affected clique
set. Besides that the monotone decrease is varying, the course of it is not very smooth either. If you
look at individual scenarios, one clique may have probabilities that becomes a 1000 times smaller
while the next clique has a maximum decrease of 10. There are also situations in which a path starts
with a maximum decrease of 2.5 in a clique and five cliques later, the maximum decrease dropped to
2.1. These abrupt changes are also clearly visible in the graphs for hepar2. In order to investigate
the length of the path and the monotone decrease further, it would be useful to analyze more specific
scenarios. Using random scenarios, we have evidence all across the junction tree. The evidence may
cause the marginal probability distribution of neighbouring potentials to be more skewed which gives
us the sudden decreases of the change that is propagated. In practise however, it is often the case
that evidence in a network is located at a specific place like the roots or the leaves. The skewed
probability distributions will as a result be more clustered at these places. This may result in more
predictable courses of the monotone decrease.
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8 MAP experiments

In this section, we will analyze how the configuration of a MAP is affected by a change of the
evidence. As with the MPE experiments, we will use a junction tree as basis. We tried to perform
similar experiments for the MAP as we have performed for the MPE experiments. But while we
could adapt some parts, others had to be omitted. More details are stated in the set-up. After the
set-up section, we will discuss the results of the experiments and end with a conclusion.

8.1 Set-up

Asia, alarm and hepar2 will be used again as Bayesian networks in the experiments.
One concept that cannot be used for the MAP is ClAffected. MAP variables may not belong to
cliques that form a contiguous area. And even if the cliques are contiguous, we encountered cases in
which we had two cliques ClR and ClS with both containing a variable from the MAP variables and
while ClR lay between ClS and the source of change, the MAP variable located in ClS changed of
state while the state of a MAP variable in ClR remained the same.

8.1.1 Runs

The run that is used here slightly deviates from the runs we used to analyze the MPE changes. We
will only perform runs in which a variable in the pre-change evidence changes of state. Further on,
while we considered in the previous experiments all variables that were not part of the evidence, we
can now choose which variables should be part of the MAP. For most experiments, this number will
be fixed to 25% of the variables in the Bayesian network. For asia, alarm and hepar2 this means that
respectively 2, 9 and 18 MAP variables will be used. The variables for the MAP will be chosen at
random in each scenario like we do for the variables in the evidence. Because the number of distinct
scenarios for MAP is much bigger than for MPE, the number of scenarios in one run will be set to
500.

8.1.2 Distance

We will make use of the distance measure described in section 7.1.4. However, while that measure
represented the distance between two cliques, we are here more interested to measure the distance
between a MAP variable and the source of change in evidence. Therefore, we first have to find a clique
for the MAP variable in order to use the distance measure. We will pick the clique that contains the
MAP variable and is closest to the source of change in evidence. We will refer to this type of clique
with ClMa. While the distance measure works for a specific junction tree, there is a problem with
this measure. Recall that different sets of cliques can be constructed from a Bayesian network. This
could result in a different distance between the MAP variable and source of change in evidence since
they may be part of different cliques. Since we only consider one junction tree for each Bayesian
network, we will use our distance measure as described. A paper detailing a solution for a distance
measure that does not depend on the junction tree is under construction [22].
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8.2 Results

Now that we have described the set-up, we can look at the results of the experiments. We will address
three issues. First of all, we investigate the number of affected variables in the MAP after a change
of evidence. Secondly, we will look into the distance between a MAP variable and the source of
change in evidence and study how this relates to whether the variable changes state or not. Lastly,
the changes in probabilities of cliques containing MAP variables will be studied.

8.2.1 Variable and clique count

In Tables 16-18, results for the three Bayesian networks are shown. The second column states the
average number of affected cliques and the third column shows the average number of changed MAP
variables. The percentage of scenarios in which no MAP variable changes is shown in the fourth
column. The last two columns show again the average number of affected cliques and changed
variables but they only consider the scenarios in which at least one MAP variable changes.

pre-change
evidence Avg. #Cliques Avg. #Variables No changes (%)

Avg. #Cliques with
at least one change

Avg. #Variables with
at least one change

1 1.52˘ .03 0.86˘ .02 37˘ 1 2.41˘ 0.04 1.37˘ 0.01
2 1.25˘ .07 0.67˘ .03 49˘ 2 2.45˘ 0.10 1.32˘ 0.03
4 0.96˘ .06 0.48˘ .03 63˘ 2 2.58˘ 0.08 1.31˘ 0.05

Table 16: Results about the number of affected cliques and changed variables in the asia-network
for different types of scenarios. The set of MAP variables consists of two variables.

pre-change
evidence Avg. #Cliques Avg. #Variables No changes (%)

Avg. #Cliques with
at least one change

Avg. #Variables with
at least one change

1 2.42˘ .08 1.06˘ .04 44˘ 2 4.30˘ 0.09 1.88˘ 0.03
2 2.37˘ .08 1.03˘ .03 44˘ 2 4.25˘ 0.10 1.84˘ 0.04
5 2.14˘ .11 0.92˘ .04 49˘ 2 4.15˘ 0.16 1.79˘ 0.07
9 1.74˘ .14 0.77˘ .06 55˘ 3 3.84˘ 0.19 1.70˘ 0.04

Table 17: Results about the number of affected cliques and changed variables in the alarm-
network for different types of scenarios. The set of MAP variables consists of nine variables.

pre-change
evidence Avg. #Cliques Avg. #Variables No changes (%)

Avg. #Cliques with
at least one change

Avg. #Variables with
at least one change

1 0.82˘ .18 0.25˘ .02 82˘ 1 4.63˘ 0.73 1.42˘ 0.05
2 0.89˘ .15 0.27˘ .02 81˘ 1 4.77˘ 0.66 1.44˘ 0.05
5 1.09˘ .17 0.30˘ .04 80˘ 2 5.56˘ 0.46 1.52˘ 0.09
9 1.19˘ .21 0.31˘ .03 80˘ 2 6.01˘ 0.72 1.57˘ 0.10

15 1.36˘ .22 0.32˘ .05 80˘ 2 6.87˘ 0.93 1.59˘ 0.10
25 1.54˘ .20 0.33˘ .04 80˘ 2 7.70˘ 0.89 1.62˘ 0.13

Table 18: Results about the number of affected cliques and changed variables in the hepar2-
network for different types of scenarios. The set of MAP variables consists of 18 variables.
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We see that the average number of cliques and variables that are affected by the change of evidence is
small, especially for hepar2. In 80% of the cases, no change in the configuration of the MAP occurs.
While the percentage of cases for the other networks starts low at around 40%, it increases to more
than 50% as the number of variables in the pre-change evidence increases.
The cases in which at least one MAP variable changes does not give a larger number of changed
variables than expected. In all three cases, the number of changed MAP variables stays below two on
average. For asia and alarm, the numbers are quite stable in contrast to the overall average of changed
variables as the number of variables in the pre-change evidence growths. This seems to indicate that
the decrease of changed variables is mostly caused by the increasing number of cases in which no
MAP variables changes. This is not the case for hepar2, the percentage of cases in which there is no
change remains 80% and the number of changed variables increases slightly in both columns two and
six.

Besides the different sizes of pre-change evidence, we also looked at different number of MAP vari-
ables for the alarm-network. Figure 27 shows how the number of variables and cliques growths as the
number of MAP variables increases. The pre-change evidence consists of a single variable. We see

Figure 27: The average number of variables and cliques that are affected when we change
the evidence for different numbers of MAP variables. It concerns the alarm-network with one
variable in the pre-change evidence. The bars show the standard deviation over ten runs.

a linear increase in the number of changed variables. The number of cliques seems to flatten at the
end. This could be due to the fact that variables are likely to be present in multiple cliques. As the
number of MAP variables increases it becomes less and less likely that newly introduced variables
are present in cliques that do not already contain another MAP variable.
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8.2.2 Distance of MAP variables

In the next part, we divide the MAP variables into two groups: The changed MAP variables and the
persistent MAP variables. We want to compare the distance that changed MAP variables have to the
the source of change in evidence versus the distance that persistent MAP variables have to the source
of change in evidence. Table 19-21 contain the results for the three different Bayesian networks. The
distance for persistent MAP variables is stated in the second column and the distance of changed
MAP variables is shown in the last column. Different settings for the pre-change evidence are used.

pre-change evidence Avg. Distance No Change Avg. Distance Change
1 1.21˘ .02 0.65˘ .01
2 0.89˘ .04 0.80˘ .06
4 0.92˘ .04 0.81˘ .06

Table 19: Results about the distances between the MAP variables and the source of change in
evidence in the asia-network.

pre-change evidence Avg. Distance No Change Avg. Distance Change
1 4.29˘ .06 1.27˘ .08
2 4.29˘ .05 1.25˘ .04
5 4.22˘ .08 1.14˘ .06
9 4.21˘ .04 0.96˘ .08

Table 20: Results about the distances between the MAP variables and the source of change in
evidence in the alarm-network.

pre-change evidence Avg. Distance No Change Avg. Distance Change
1 2.36˘ .04 0.73˘ .13
2 2.36˘ .04 0.79˘ .12
5 2.37˘ .03 0.84˘ .11
9 2.38˘ .05 0.86˘ .10

15 2.38˘ .03 0.82˘ .12
25 2.39˘ .04 0.73˘ .13

Table 21: Results about the distances between the MAP variables and the source of change in
evidence in the hepar2-network.

The distance for changed MAP variables is in all three tables smaller for the MAP variables that did
notchage state. For asia however, the difference is small for the case of two and four variables in the
pre-change evidence. For alarm, the distance for the persistent MAP variables shrinks slowly as the
variables in the pre-change evidence increases. The distance for the changed MAP variables does not
differ significantly for the different settings of the pre-change evidence. The difference between the
distance of the two types of MAP variables is large. MAP variables that change are on average four
times as close to the source of change in evidence than the other MAP variables.
The distances of the MAP variables that do not change in hepar2 are even closer to the source. They
are often in the same clique as the changed variable in the evidence. Note that although the distance
for MAP variables that do not change is about three times as high, it is still quite close to the source
and is about two times as small compared to the numbers for alarm. Despite that there are many
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more cliques in hepar2 than in alarm. The reason for this is that there are a lot of chains in hepar2
that consists of cliques that are connected with separators containing the same variables. Due to this,
the distance from a certain clique is the same to all cliques in the chain. The maximum distance that
we have seen between the source of change in evidence and a variable is eight while eleven was the
maximum distance in the alarm-network.

8.3 Change of probabilities

In this part we will again consider the distance of changing and persistent MAP variables but, in
addition, plot the maximum increases and decreases in the potential of ClMa for each MAP variable
as well. Not all MAP variables will be considered because some are located in the same clique as
the variable that changed in the evidence, resulting in an infinite increase and decrease. These MAP
variables will be discussed later on.
The max decreases in a run for the alarm-network are shown in Figure 28. We notice first of all
that there is much more data for persistent MAP variables than for changed MAP variables. We
already saw that on average, 1.06 of the nine MAP variables change of state. When ignoring the
MAP variables with a maximum decrease of infinite, the average percentage of MAP variables that
change is less than 9%. Like in the MPE experiments, the relation between the distance and the
decrease of change in cliques is clearly visible. The maximum increases in Figure 29 show similar

Figure 28: For each MAP variable, the maximum decrease in the potential of ClMa is shown
except for the MAP variables that have a distance of zero to the source of change in evidence.
The figure on the left concerns MAP variables that changed. On the right are the MAP
variables that persisted. The pre-change evidence for this run consists of one variable. The line
represents the median.
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Figure 29: For each MAP variable, the maximum increase in the potential of ClMa is shown
except for the MAP variables that have a distance of zero to the source of change in evidence.
The figure on the left concerns MAP variables that changed. On the right are the MAP
variables that persisted. The pre-change evidence for this run consists of one variable. The line
represents the median.

results. Interestingly, the affected cliques with the largest changes belong to MAP variables that are
persistent while this is the other way around for the maximum decreases. The median shows that
change in evidence has in most cases a small effect on the cliques of the persistent MAP variables.
However, it seems also more likely that the MAP variables in cliques, that are subject to larger
changes in their probabilities, will persist as well.

To further investigate this, we counted the cliques for different magnitudes of changes. Results
are stated in Table 22. The table contains the numbers of cliques presented in the figures above.
We looked at both the maximum increase and the maximum decrease. The first column in the table
indicates the change that should be present in the potential of the clique in order to be counted.
So, in the third row for example, we have that 133 cliques contain a changed MAP variable and at
least one probability in their potential decreased more than 20 times. In the last row, the number
of cliques with maximum increases and decreases of infinite are listed. A first thing to note is that
in most cases, the MAP variable is more likely to persist than to change. The number of persistent
MAP variables is very close to the number of changed MAP variables in the last row. This in contrast
to the other rows.
For asia and hepar2, we have slightly different results. We picked for both a run as well and the
results are shown in Table 23 and 24. Asia contains many more changed MAP variables and they
form the majority when looking at larger changes to a clique. There are more changed MAP variables
than persistent MAP variables in case of infinite as well.
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Change
more than

Changed MAP
variables (Decrease)

Persistent MAP
variables (Decrease)

Changed MAP
variables (Increase)

Persistent MAP
variables (Increase)

1 297 1908 297 1908
5 215 568 225 541

20 133 307 141 297
100 41 116 37 110
500 7 41 8 30

2000 1 17 2 10
Infinite 212 233 212 233

Table 22: Total numbers of the cliques that contain MAP variables based on how they are
affected by the change in evidence. The numbers are gathered from a single run in the alarm-
network.

For hepar2, we see the contrast between persistent and changed MAP variables even more clear com-
pared to alarm. The same trend is visible however: For the infinite cases, we see that the number of
changed MAP variables is again high, but still not close to the number of persistent MAP variables.

Change
more than

Changed MAP
variables (Decrease)

Persistent MAP
variables (Decrease)

Changed MAP
variables (Increase)

Persistent MAP
variables (Increase)

1 103 297 151 307
5 59 88 113 84

20 29 24 62 23
100 29 24 42 23

Infinite 278 182 278 182

Table 23: Total numbers of the cliques that contain MAP variables based on how they are
affected by the change in evidence. The numbers are gathered from a single run in the asia-
network.

Change
more than

Changed MAP
variables (Decrease)

Persistent MAP
variables (Decrease)

Changed MAP
variables (Increase)

Persistent MAP
variables (Increase)

1 52 6522 52 6522
5 6 497 13 622

20 2 113 9 158
100 1 32 2 34

2000 0 6 0 7
Infinite 73 582 73 582

Table 24: Total numbers of the cliques that contain MAP variables based on how they are
affected by the change in evidence. The numbers are gathered from a single run in the hepar2-
network.
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8.4 Conclusion and Discussion

In this section, we looked at how the MAP configuration changes in a junction tree. We first focused
on the number of variables that changes and in how many cliques these variables were present. Over-
all, a minority of the MAP variables changed. The least changes were found in the hepar2-network
were the average number of changed MAP variables was around 0.3 out of 18. Different sizes for
the set of MAP variables for the alarm-network were tested and we saw that the number of changed
MAP variables growths linearly as the number of MAP variables increases.
We further on considered the distance of the MAP variables towards the source of change in evidence
and saw that there is a significant difference between the distance of MAP variables and the distance
of persistent MAP variables to the source of change in evidence. Lastly, we considered the maximum
increases and decreases for MAP variables in the Bayesian network of alarm. At any rate of change
of probabilities, MAP variables are more likely to persist than change except for the asia-network.
Another interesting result for alarm and hepar2 is that when the changes in a clique increases, it
remains very likely that the MAP variables will persist. However, when MAP variables are in the
same clique as the source change in evidence, we see for hepar2 that the probability for changing
increases again while it becomes for MAP variables in the alarm even more likely that it changes.

These experiments show us that a change in evidence has on average a small impact on the MAP
configuration. When we consider the number of changed MAP variables relative to the total number
of MAP variables and compare this with the relative number of changed MPE variables in our previ-
ous experiments, there is no big difference in how many variables changes of state. It is interesting to
find methods that can detect persistence for the MAP variables, especially since the MAP problem
seems to be more complex than the MPE problem and the MAP problem is more general. From our
experiments, the changes in probabilities in potentials do not tell us much about whether a MAP
variables persists or not. This could be explained by the fact that within cliques, most variables
have to be marginalized out when computing the probability for the MAP. However, we currently
only considered changes to the marginal distribution of all variables in the clique. It may gives us
more insight when we marginalize further within the clique and only consider how these resulting
distributions changes when a change in evidence is introduced.

Lastly, note that the results in section 8.3 are all based on single runs instead of an average over
ten runs. The reason for this is that the highest maximum increases and decreases vary greatly over
different runs. There are few datapoints in a run with a high increase or decrease. And because the
number of scenarios is big, we have runs in which we have maximum increases of more than 40.000
while in other runs, the maximum increase is not more than 10.000. This makes it hard to combine
the results of ten runs. However, we did look at separate runs and were able to make the same
conclusions regarding relations between persistent and changed MAP variables and the distribution
of the maximum increase and decrease over the distance.
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9 Conclusion

9.1 Summary of results

In this thesis, we analyzed the MPE and MAP problems within Bayesian networks. We transformed
a Bayesian network into a junction tree and used the method of standard junction tree propagation as
the basis for our study. We performed our analysis by breaking it down into three research questions.
The first research question concerns how the MPE changes in the Bayesian network after changes
in the evidence. We approached this question by considering the changes to the probabilities of all
configurations. We found a theorem that holds for standard propagation in a junction tree. It states
that as propagation advances through the junction tree, the propagated changes can never become
larger. We developed a way to visualize the course of standard propagation through a junction tree
to show how the monotone decrease progresses. We used the monotone decrease in the design of
the experiments. In these experiments, we considered three Bayesian networks: asia, alarm and
hepar2. We generated many scenarios of a single change in the evidence. And despite the fact that
the changes may stay the same instead of decreasing, we saw in general a clear decrease of changes
as the distance to the source of change in evidence growths. At the border between cliques that are
affected on one side and cliques that contain only persistent variables on the other side, we saw that
the changes were much smaller compared to the changes in the affected cliques. We also looked at
the number of variables that changed state in the MPE and the number of cliques that contain a
changed variable. In general, these numbers were small. Especially for hepar2 in which fewer than
two of the 70 variables changed of state on average.

For our second research question, we focused on the more general form, the MAP configuration,
and tried to find out using similar experiments how the MAP configuration differs when evidence
changes. We used 25% of the variables as MAP variable. In all three Bayesian networks, we saw on
average only small changes in the MAP configuration after a change in evidence. While the number
of MAP variables is much smaller than the number of MPE variables, the relative number of MAP
variables that changed was equal to or less than the relative number of MPE variables that changed.
In addition, the changed MAP variables are on average close to the source of change in evidence.
Most variables that changed were present in cliques in which the change in evidence took place as
well. We could however not find a clear relation between how much a potential of a clique changes
and whether a MAP variable within that clique changes or persists.

Our last research question addresses the way we can use the relations between changes in the MPE
and the changes in the potentials of cliques in the junction tree to reduce computations. We found a
theorem that can detect persistence of the MPE. The conditions can be checked without adding extra
complexity to the standard propagation. When the theorem holds in a clique and the variable set,
say P , in the separator in which propagation is performed is not included in any of the other adjacent
separators, we know that all variables in the current clique and subsequent separators and cliques will
persist, except for the variables in P . Unfortunately, we have not seen any situation yet that fulfills
the conditions for the theorem. Therefore, the impact will probably be small. Furthermore, we do
not know as yet how the variables in the non-persistent part of the junction tree will change. And
the theorem cannot be used in the next iteration of standard propagation if the previous propagation
was not fully completed. All things considered, the theorem does not seem to be useful in practice.
We further have not yet been able to use the monotone decrease property in standard propagation
in a direct way to detect persistence.
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These answers to the research questions indicate that the impact of changes in the evidence are
in general small on both the MPE and the MAP configuration. Finding persistence in order to pre-
maturely stop propagations will therefore save many computations. The monotone decrease property
may function as a basis for such a reduction of computations because the changes of the MPE are
in a contiguous area of cliques; the distance seems to be instrumental for the MAP as well. Since
the monotone decrease property is based on standard propagation, it can be used for both MPE and
MAP.

9.2 Limitations

While we tried to look at the general behaviour of the MPE and MAP within the experiments, only
three Bayesian networks were used. The networks were chosen so that we had networks representing
small networks, medium networks and large networks. However, there are many more properties in
a Bayesian network that may give different characteristics, such as the connectivity of a Bayesian
network and the average size of state space of variables within the network. Due to the general
approach taken, we may have missed information about the MPE or MAP. For example, we randomly
picked variables to be part of the evidence, while in most applications, evidence is more biased towards
the roots or the leaves of a Bayesian network. Generating more specific evidence could give us more
distinctive results. The same observations apply to the MAP variables.
We further considered a single junction tree per Bayesian network. Multiple junction trees may
however exist. These junction trees can for example give different values for the distance measure we
used in the MAP experiments.

9.3 Future work

Besides the fact that variables can change state, we also have the situation in which the parameters
in the CPTs of the variables in a network may change. We did not investigate this type of change.
The changes will probably have even less impact on the changes in the MPE or MAP configurations
than a change of the state of a variable. It is therefore interesting to investigate how we can process
these changes in a junction tree and know when the MPE configurations of variables persist.
Although we have the monotone decrease property when performing standard propagation, we have
not been able to use this property for determining the MPE after a change. It seems that this
assurance of monotone decrease can be used as a bound on how much the probability of the MPE
and other configurations of cliques can change. When propagation is performed, these bounds may
lend themselves for a criterion to stop propagation prematurely.
Another point we have not included in our research are consecutive changes of evidence. Research
should be performed in how much the effect of changes of one variable is on the affected area by
another change and how we can partially update the junction tree over multiple updates.
Furthermore, more extended experiments for the MAP problem should be performed. For example,
we only considered changes of the marginal distribution of all variables in a clique while most variables
in a clique will not be a MAP variable. marginalizing further and investigating how this distribution
changes may result in a relation with whether the MAP variables changes state or not.
Finally, while we only mentioned monitoring applications as our motivation for investigating the
effects of changes in a Bayesian network on the MPE, we can think of other applications that will
also benefit if we can find ways to find persistence in the MPE or MAP configuration in order to
reduce computations. For example, applications in which we want to consider scenarios where we
change the state of an observed variable in order to see what happens with the network and how the
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MPE changes. The change is only temporarily. In finding methods for reducing the computations,
such a application will give us the advantage that we do not have to think about how to deal with
consecutive changes in the evidence.
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