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A B S T R A C T

Ask-Elle is a tutor for learning the Haskell programming language.
It supports development of Haskell programs by providing stepwise
hints and verifying the correctness of the resulting programs. Ask-
Elle can do this based only on a model solution, which minimizes
the work to set up exercises. The main contribution of our work
is improving Ask-Elle’s normalization mechanism, used to compare
two programs for equivalence. Normalization is at the core of Ask-
Elle’s ability to provide hints and verify the correctness of programs.
Based on a dataset of student programs, we (1) identify cases in
which Ask-Elle’s normalization does not work as expected, (2) imple-
ment semantics-preserving transformations that alleviate the prob-
lems and (3) measure the improvements. The results are very pos-
itive, as we achieve substantial improvements without resorting to
advanced analysis techniques.
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1
I N T R O D U C T I O N

Ask-Elle [5] is a programming tutor designed to help students learn
the Haskell programming language. With Ask-Elle, teachers can spec-
ify exercises along with model solutions and students can solve them
interactively. During the process, the system is able to check whether
a student is on the right track and, in case they get stuck, it can pro-
vide relevant hints. Afterwards, it can check whether the provided
solution is correct.

The exercises supported by Ask-Elle ask to implement functions.
For instance, an exercise to teach basic concepts around lists and re-
cursion could be to implement the length function.

One of the strengths of Ask-Elle is its ability to provide feedback
and hints based only on a model solution. The teacher writes one or
more solutions for the exercise and Ask-Elle does the rest. This is very
convenient, because it minimizes the work to set up the exercises.

1.1 ask-elle in action

To understand how Ask-Elle works, consider a hypothetical situation
where a student follows Ask-Elle’s hints until reaching a solution to
the assignment. In our example, the task is to implement the func-
tion double :: [Int] -> [Int], which multiplies each number in a
list by two. We assume the exercise to have a single model solution,
defined as double = map (* 2).

Figure 1.1 shows a student’s path to a solution. It starts with an
empty program, which is refined step by step. Refinement here refers
to filling a hole in such a way that the resulting program is closer to
a model solution. Ask-Elle hints are nothing more than refinement
steps that have been generated from the model solution.

1.2 deviations from the model solution

A fundamental limitation of Ask-Elle is its inability to produce hints
for programs that deviate from the model solution. In such cases, Ask-
Elle returns an error message: You have drifted from the strategy in such
a way that we can not help you any more. With such a message, the
only way forward is to start over from the very beginning (an empty
program, represented as ?) or to restore a previous version of the
program known to be accepted by Ask-Elle.

While the session from Figure 1.1 starts with the empty program, a
student has the freedom to choose a different starting point. Consider,
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2 introduction

-- Starting point (? represents a hole)

?

-- Apply hint: Introduce the function double

double = ?

-- Apply hint: Use the higher-order map function

double = map ?

-- Apply hint: Use the times operator (*)

double = map (* ?)

-- Apply hint: Introduce the integer 2

double = map (* 2)

Figure 1.1: Interactive Ask-Elle session

double [] = []

double (x:xs) = x * 2 : double xs

Figure 1.2: Recursive implementation of double

for instance, the case of a student who wants to implement a recur-
sive version of double. Figure 1.2 shows a recursive implementation,
which returns the same result as the model solution for all possible
inputs (we call this semantic equivalence, see Section 2.2 for more de-
tails). Let us imagine that the student does not start with an empty
program, but with a partial implementation of the function. What
would an Ask-Elle session look like in this case? Figure 1.3 shows an
expected yet unfortunate outcome: there are no hints available.

The main way to deal with this limitation is by defining multi-
ple model solutions. For instance, adding a recursive model solution
would fix the problem in this concrete example. Still, this is not a scal-
able approach, since it requires a teacher to foresee all paths a student
might follow. Furthermore, there are just too many ways to drift from
the model solution in terms of syntax.

-- Starting point

double [] = ?

double (x:xs) = ?

-- Ask-Elle's reply: You have drifted from the strategy in

-- such a way that we can not help you any more

Figure 1.3: Unsuccessful Ask-Elle session
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1.3 research questions

A typical use case for Ask-Elle is to aid teaching in an introductory
course on functional programming. In that context, we have observed
that Ask-Elle is often unable to handle student programs, regardless
of whether the program is semantically equivalent to the model solu-
tion (see Chapter 5). In practice, this means that Ask-Elle is in many
cases failing to provide hints or to assess the correctness of a finished
program.

Previous research by Gerdes et al [6, 5] shows that part of the
problem lies in limitations of Ask-Elle’s normalization procedure (see
Chapter 2 for details on the inner workings of Ask-Elle). The au-
thors suggest implementing additional semantics-preserving transfor-
mations as a possible solution to the problem. This gives rise to the
following questions:

1. In which cases does normalization not work as expected?

2. How can we improve Ask-Elle’s normalization procedure?

This thesis is structured as follows. Chapter 2 presents the neces-
sary background knowledge about Ask-Elle’s architecture. Chapter
3 refers to related work relevant to our research. Chapter 4 explains
our research methodology. Chapter 5 identifies the main normaliza-
tion issues and contributes solutions in most cases. Chapter 6 shows
the measured results achieved through normalization improvements.
Finally, Chapter 7 summarizes our research and offers future work
perspectives.



4



2
B A C K G R O U N D K N O W L E D G E

Before attempting to answer our research questions, it is necessary
to explain the relevant parts of Ask-Elle’s architecture. This chapter
presents the concepts of programming strategy, program equivalence and
program unification.

2.1 programming strategies

As mentioned in Chapter 1, an exercise in Ask-Elle is a request to
implement a function that matches one of the model solutions. Under
the hood, Ask-Elle generates a programming strategy that specifies how
an exercise can be solved, as a series of steps that go from an empty
program to one of the model solutions.

Alternatively, we can think of a strategy as a finite-state machine.
The initial state is the empty program, the transitions are the refine-
ment steps and the accepting states are the model solutions.

Consider, for example, the model solution to the problem presented
in Section 1.1 (defined as double = map (* 2)). Figure 2.1 shows the
generated strategy.

According to the finite-state machine perspective on strategies, the
algorithm used by Ask-Elle to provide hints works in two steps:

1. Translate the student’s program to a state in the machine;

2. Retrieve a list of all transitions available from that state and
present them in a user-friendly fashion.

From these two steps, the second is a common operation on finite-
state machines. The first one, however, is much more involved, as it
requires unifying programs.

2.2 program equivalence

Before diving into the concept of program unification we need to refer
to program equivalence, which comes in three flavors.

A basic form of program equivalence is syntactic equivalence, accord-
ing to which two programs are considered equivalent if their abstract
syntax trees are equal. In its simplicity, this kind of equivalence has
clear limitations. For instance, it does not account for differences in
variable names or in the structure of the code.

More advanced is semantic equivalence, according to which two pro-
grams are considered equivalent if their output is similar for all possi-
ble inputs. In the context of Ask-Elle, programs are functions, inputs
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6 background knowledge

Figure 2.1: Example of an Ask-Elle strategy



2.3 program unification 7

are function parameters and the input domain consists of all possi-
ble values of the parameter types. In this case, differences in variable
names are ignored, as well as differences in the structure of the code,
as long as they have no influence in the output of the program. For
Haskell, this also means that it does not take laziness into account,
unless it has an impact on the output.

Finally, semantic equivalence up to preconditions relaxes previous
definition. Instead of requiring that two programs produce the same
output for all possible inputs, this kind of equivalence considers only
inputs that satisfy the preconditions of the program. Note that we
assume the same preconditions to hold for both programs.

2.3 program unification

The process of comparing two programs for semantic equivalence
up to holes is called program unification. This is what Ask-Elle does
when comparing a student program to a model solution.

Since the problem of program unification is undecidable in the case
of a complex language such as Haskell (see Section 3.2), Ask-Elle’s
unification procedure has the following possible outcomes:

1. The programs are semantically equivalent;

2. One program is an incomplete version of the other;

3. Equivalence cannot be concluded.

At the core of Ask-Elle’s unification mechanism is the idea of nor-
malization. Before comparing the programs, they go through a series
of semantics-preserving transformations that result in a normal form.
This way, comparing the programs becomes as simple as syntactically
unifying the resulting normal forms.

Consider, for instance, the double function we mentioned before.
Figure 2.2 shows a model solution, a possible student answer and the
normalized version of both programs. This is an example of how a
small syntactical difference, an unnecessary anonymous function, is
ignored thanks to semantics-preserving transformations.

-- Model solution

double = map (* 2)

-- Student answer

double = map (\x -> 2 * x)

-- Normalized version (similar for both)

double = map ((*) 2)

Figure 2.2: Example of unification by normalization
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3
R E L AT E D W O R K

As mentioned in Chapter 2, the key characteristic of Ask-Elle is its
ability to give stepwise hints and to check whether two programs are
semantically equivalent. Here we provide an overview of the research
related to these topics.

3.1 related work in programming tutors

We are interested in proving whether two programs are semantically
equivalent. This involves obtaining information from the programs
to check whether the conditions for equality hold. Gathering infor-
mation about a program is the subject of program analysis, which is
used pervasively in automated assessment tools [10].

Since program analysis can be classified as static or dynamic, the
same holds for the feedback tools that rely on it. While in the past
there used to be a clear distinction between static and dynamic tools
[1], it is nowadays less clear, as many tools are combining both ap-
proaches [10]. For instance, Codewebs [14] and the tool presented
by Huang et al. [9] are based on a combination of testing and static
analysis. Another example is OverCode [7], which collects data from
the execution of Python programs (dynamic) and combines it with
data derived from the source code (static). Ask-Elle also uses a mixed
approach, since it first attempts comparison by normalization (static)
and resorts to property-based testing (dynamic) whenever the former
is insufficient [6, 5].

Ask-Elle’s static analysis is geared towards normalization of pro-
grams. Its purpose is to identify patterns in the code that can be
rewritten in a canonical form. Currently, transformations are simple
enough that little analysis is needed. For most transformations, Ask-
Elle makes use of term-rewriting by equational reasoning [2], instead
of true static analysis. While advanced static analysis has the poten-
tial of achieving better results, equational reasoning works well in
most cases and keeps the implementation simple.

Relevant research on automatic assessment tools that rely on pro-
gram normalization include Xu and Chee’s work [19], who apply this
method to compare Smalltalk programs. Also interesting is the work
of Wang et al. [18], who implement a normalization-based tool to
assess C programs. A more modern approach is given by the ITAP
tutoring system [16], targeting Python programs.

From the tools mentioned, the most interesting for our purposes
is ITAP, because it also supports style-based transformations tailored

9



10 related work

to beginners. This is exactly one of the features we want Ask-Elle to
support. Besides this, ITAP supports reconstructing the original AST
from its normalized form to produce localized feedback, including
suggestions to refactor the code.

Still, none of the tutors presented above offer stepwise feedback,
except for Ask-Elle. In fact, a recent survey of 69 tools for learning
programming by Keuning et al. [10] identifies only 10 that give this
kind of feedback. From these, only Ask-Elle, the Prolog Tutor [8] and
ADAPT [4] (also targeting Prolog) use program normalization. It is
unclear whether the approach taken by the Prolog Tutor and ADAPT
can be a source of inspiration for Ask-Elle, given the big differences
between Haskell and Prolog.

3.2 related work in program unification

Program unification consists of comparing two programs to deter-
mine whether they are equivalent under a particular definition of
equivalence. In the context of Ask-Elle, we are interested in semantic
equivalence of Haskell programs, which is undecidable.

3.2.1 Unification in the simply-typed lambda calculus

The problem of unifying simply-typed lambda terms, of which Haskell
is an extension, is known in the literature as higher-order unification.
While undecidable in general [3], higher-order unification becomes
decidable by imposing certain restrictions on the shape of the lambda
terms. A well-known example is Miller’s pattern unification [13], which
achieves decidability by restricting beta-reduction.

3.2.2 Unification in Haskell

The Haskell language can be seen as a user-friendly version of the
lambda calculus, with a series of extensions and syntactic sugar to fa-
cilitate programming. Since unification of simply-typed lambda terms
is undecidable [3], the problem of unifying Haskell terms is undecid-
able as well.

To visualize how Haskell is an extension of the simply-typed lambda
calculus we can look at its underlying hierarchy of languages. The
simply-typed lambda calculus is at the base, followed by System F
[15], System Fω [15], System FC [17] and Haskell itself. Each language
in this hierarchy is conceptually an extension of the previous one.
Transitively, this means that Haskell is an extension of the simply-
typed lambda calculus.
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3.2.3 Decidable alternatives

Given undecidability of unification, programming tutors reach to de-
cidable alternatives. Most of them give up on true semantic equiv-
alence and go for relaxed definitions of equivalence instead [10]. A
clear example is Wang’s grading tool for C programs [18]. After do-
ing normalization, it compares a program to the model solution based
on metrics like program size and control flow statements used.

The main drawback of relaxed notions of equivalence is that they
do not guarantee semantic equivalence. In the case of Ask-Elle, this
approach would introduce the risk of giving incorrect hints to the
users. Recall that program unification is at the core of Ask-Elle’s abil-
ity to identify the next step in filling the holes of an incomplete pro-
gram (see Chapter 2 for details). Clearly, resorting to a relaxed notion
of equivalence is not a satisfying solution for a programming tutor
with its main focus on stepwise feedback.

The alternatives that restrict the language, such as Miller’s [13],
are too impractical to consider, as they would require rejecting valid
Haskell programs. Futhermore, most research on enabling higher-
order unification by restricting the language is done at the level of
the lambda calculus, while Haskell provides much higher-level con-
structs. The interaction between those restrictions and Haskell’s fea-
tures is uncharted territory, out of the scope of this research.

Another alternative is to attempt normalization-based unification.
This approach turns the unification problem into a normalization
problem so it becomes decidable. Under this unification scheme, two
programs are considered equivalent if they both normalize to the
same normal form. This notion of equivalence guarantees semantic
equivalence as well, though it is incomplete, meaning that for some
programs it is impossible to know whether they are equivalent. This
is the approach followed by Ask-Elle [6].
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4
M E T H O D O L O G Y

In Section 1.3, we set out to find the cases in which Ask-Elle’s nor-
malization does not work as expected. Based on this knowledge, we
aim to improve the normalization procedure so it can handle a wider
range of programs. We tackle the problem by iterating through the
following steps:

1. Measure the effectiveness of Ask-Elle’s normalization, relative
to a set of student programs;

2. Analyze the set of student programs to reveal normalization
shortcomings;

3. Enhance Ask-Elle’s normalization to resolve the discovered short-
comings.

The analysis phase attempts to answer our first research question,
while the enhancement phase tackles the second one. The measure-
ment step provides a point of reference.

4.1 measure

To quantify the initial state of Ask-Elle’s normalization and our im-
provements, we define a series of measurements to be taken on a
particular dataset.

4.1.1 Dataset

Our method requires analyzing sets of programs known to be seman-
tically equivalent. To this purpose, we analyze the correct solutions
to Assignment I of the functional programming course at Universiteit
Utrecht in the year 2017/2018.

From the students that participated in the course, there are 111 who
submitted a correct solution to the assignment and gave consent for
it to be used for research purposes. Students were allowed to submit
multiple solutions, but we considered only the final submissions in
our research, as each of them is supposed to be the best solution the
student was able to write.

In the assignment, the students are asked to implement 8 functions
of growing complexity [11]. This translates to 8 Ask-Elle exercises,
each one with 111 student solutions. Coincidentally, the functions in
the assignment document are labeled as Exercise 1, Exercise 2, etc, up
to Exercise 8.

13



14 methodology

Correctness of the answers was verified through a test suite, which
turned out to allow some incorrect programs and thus required min-
imal clean-up of the data. Table 4.1 shows the amount of correct pro-
grams for each exercise, after filtering out those that were wrongly
classified as correct.

Exercise number Correct submissions

1 110

2 111

3 103

4 108

5 109

6 101

7 99

8 100

Table 4.1: Correct submissions per exercise

4.1.2 Measurements

Measurements are done on a per-exercise basis. As a first step, we
classify the student submissions into clusters. A cluster is a set of pro-
grams that share the same normal form, under a given normalization proce-
dure. This means that the programs in a cluster are seen as semantically-
equivalent by Ask-Elle.

Based on the concept of clusters, we can define the effectiveness of
normalization as the amount of clusters and their size, after normalizing
the student submissions. As an example, Figure 4.1 compares the ef-
fectiveness for Exercise 3 before and after our research. Without our
improvements, there are 51 clusters, where the biggest one contains
29 programs. After our improvements, there are 16 clusters, where
the biggest contains 81 programs.

We say that a given normalization procedure is better or more effec-
tive than a second one when it results in a lower amount of clusters for the
same exercise. In the case of Exercise 3, we can say that our improved
normalization scheme is more effective than Ask-Elle’s original one.

Informally, we can also visualize normalization effectiveness by
looking at the percentage of student programs that are recognized
by a given amount of model solutions. Again in Exercise 3, Ask-Elle
used to recognize 54% of the submissions based on 4 model solutions.
Now, Ask-Elle recognizes 85% of them based on 3 model solutions.
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Before After

Figure 4.1: Effectiveness for Exercise 3 before and after improvements

4.2 analyze

Identifying shortcomings in the normalization procedure becomes
straightforward after classifying the programs into clusters. Infor-
mally, our approach consists of repeatedly following the steps below:

1. Pick one of the biggest clusters;

2. Pick a cluster that is smaller than the current one;

3. Compare the normal forms of both clusters;

4. Identify patterns that should have the same normal form, but
do not;

As an example of a limitation we discovered, consider Exercise 1,
which consists of implementing the function parseTable. Below we
compare the normal forms of two clusters:

Cluster A (73 programs) Cluster B (13 programs)

parseTable = map words

parseTable =

(\x1 -> case x1 of

x2 -> map words x2

)

Figure 4.2: Comparing two clusters of Exercise 1

We can see that both normal forms have the same semantics but are
still syntactically different. In this case, it seems reasonable to think of
a semantics-preserving tranformation that turns the right-hand side
of Cluster B into map words. Figuring out which exact transformation
we need is the role of the enhance step, explained in the next section.
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While the normalization problem identified in the previous exam-
ple is fairly low-level, we identify higher-level problems too. For in-
stance, Section 5.1 explains the interaction between function precon-
ditions and normalization.

4.3 enhance

The enhance step bridges the gap between discovering shortcomings
and improving Ask-Elle’s normalization. Besides adding new trans-
formations to the normalization pipeline, it needs to ensure they are
semantics-preserving.

4.3.1 Adding a new transformation

Let us consider the normal forms from Figure 4.2. We could say that
Cluster B is stuck somewhere in the normalization process, instead
of arriving at map words as we would expect.

Ask-Elle has an eta-reduction transformation, which could simplify
\x1 -> map words x1 to map words. However, it fails to work in the
case of Cluster B because there is a case expression.

Ask-Elle also has an inlining transformation, which replaces a vari-
able usage by its definition. In the case of Cluster B, it seems sensi-
ble that x2 could be replaced by x1, thereby getting rid of the case.
However, given that case is a very expressive Haskell construct, the
inlining transformation does not support it. Instead, it only supports
let bindings.

One possible solution is to add a normalization step that, for any
case expression consisting of a single alternative with only a var pat-
tern, rewrites it in terms of let. In the case of Cluster B, this transfor-
mation would allow the inliner to simplify the code further in a later
pass, which opens the door to eta reduction.

Before After

case e of

x -> e'

let x = e

in e'

Figure 4.3: Transforming a case into a let

4.3.2 Soundness

We say that a transformation is sound when it is semantics-preserving.
That is, for any program, the transformed program is semantically
equivalent to the original one.



4.3 enhance 17

To increase our confidence in the soundness of the new transforma-
tions, we resort to formal proofs and property-based testing.

formal proofs Throughout our research, we added around 60
transformations to Ask-Elle. Formalizing and proving that all of them
are semantics-preserving would be a research project of its own. Still,
we formalized and proved the soundness property for 31 of them in
Coq.

When choosing which transformations to prove we discarded triv-
ial ones (e.g. rewrite rules that are true by definition) and others that
were too complex (e.g. anything involving scoped variables, like in-
lining or dead code removal). Instead, we focused on transformations
that can be expressed as rewrite rules in Coq’s type system.

As an example, consider a hypothetical cluster of programs in Ex-
ercise 1 that has the following normal form:

parseTable =

(\xs -> case xs of

[] -> []

ys -> map words ys

)

Figure 4.4: Useless case matching before calling map.

We can prove that removing the case expression preserves the se-
mantics of the program, as shown in the empty_base_case theorem on
Figure 4.5. The proof says that calling map inside a case, as in Figure
4.4, has the same semantics as calling it directly. The proof is surpris-
ingly simple using Coq’s built-in tactics, as is the case for most of the
proofs we constructed. We distinguish two possible cases: xs is empty
or it is not. In both cases, beta-reduction results in an equality that is
true by reflexivity.

property-based testing The original assignment had a basic
test suite that we discovered to be insufficient, since some incorrect
student solutions were not flagged as such. Therefore we developed
our own test suite, specifying properties that each exercise should
satisfy.

By feeding the normalized programs to our test suite, we were
able to verify that they still satisfy the properties required by the
assignment. This proved to be an effective approach, as it caught a
few bugs in the implementation of some transformations.
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Definition bad_style_map

{T U} (f : T -> U) (xs : list T)

: list U :=

match xs with

| [] => []

| ys => map f ys

end.

Theorem empty_base_case : forall {T U} (f : T -> U) xs,

bad_style_map f xs = map f xs.

Proof.

intros. (* Introduce variables f and xs *)

destruct xs. (* Case split on xs *)

auto. (* Trivially true when xs = [] *)

auto. (* Trivially true when xs = y :: ys *)

Qed.

Figure 4.5: Proving the soundness of a transformation.
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A N A LY S I S A N D N E W T R A N S F O R M AT I O N S

We observe multiple issues that cause problems to normalization.
First of all, many students struggle with the concept of precondi-
tions. Additionally, we identify several domain-specific issues involv-
ing lists, booleans, the Maybe type and patterns. When possible, we
add new transformations to alleviate those issues.

5.1 preconditions

Throughout the assignment, some functions come with preconditions
to simplify their implementation. For instance, knowing that a list
will never be empty means that a student no longer has to write
additional code to handle that case. Contrary to the expectations, pre-
conditions caused confusion among students, instead of leading to
simpler code.

5.1.1 Explicit and implicit preconditions

In the assignment document, Exercise 3 specifies that the function
printField :: Int -> String -> String should satisfy the prop-
erty ∀n s. n > length s⇒ length (printField n s) ≡ n. Here, the left
side of the implication is the precondition of the function. Therefore,
a good solution is expected to assume that n > length s, without
checking whether it holds, as illustrated by Figure 5.1.

printField n s

| all isDigit s = padding ++ s

| otherwise = s ++ padding

where padding = replicate (n - length s) ' '

Figure 5.1: Exercise 3 - Model solution

Besides Exercise 3, no other exercise in the assignment mentions
properties or preconditions explicitly, be it in a formal or informal
way. However, it is possible to deduce many preconditions from the
context, as summarized by Table 5.1. Note that, at this point, we are
not interested in the exercises themselves, only in the kinds of pre-
conditions they have. Table 5.1 shows that the preconditions are well-
defined, which means that Ask-Elle could potentially take them into
account when normalizing programs.

19



20 analysis and new transformations

Exercise Precondition

1 The first argument is a non-empty list

2 The first argument is a non-empty list

4 The first argument is a non-empty list

5 The first argument is a well-formed table

6 The first argument is a well-formed table

7 The third argument is a well-formed table

8 The second argument is a well-formed table

Table 5.1: Implicit preconditions

5.1.2 Preconditions and semantics

Preconditions allow functions with different semantics to be consid-
ered correct. In case the precondition does not hold, the program is
allowed to do anything. Therefore, it is possible to have two programs
that behave in the same way when the precondition holds, but do dif-
ferent things when it does not hold.

Notice that writing a submission to an exercise always involves
specifying what to do when the precondition does not hold, even
when there is no explicit checking for the precondition. Consider the
solution to Exercise 3 that we present in Figure 5.1. If n < length s,
then n - length s < 0, then replicate (n - length s) ' ' = [].
Therefore, this particular implementation of printField will return s

whenever the precondition does not hold.

5.1.3 Precondition checking

Many students add explicit checks to handle the case in which the
precondition does not hold. Since the assignment does not specify
what the function should return in such a case, students are allowed
to write anything that seems sensible to them.

differing semantics Figure 5.2 shows a submission to Exercise
3 where the student adds a guard checking for n < length s. On the
right-hand side of the guard, we observe that the student truncates
the string.

Comparing this implementation to the model solution in Figure
5.1, we can see that the semantics have changed. The model solution
returns s when the precondition does not hold, while this implemen-
tation returns take n s.

This is a case in which checking for the precondition leads to a
program with different semantics when compared to the model so-
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printField n s

| n < length s = take n s

| all isDigit s = padding ++ s

| otherwise = s ++ padding

where padding = replicate (n - length s) ' '

Figure 5.2: Exercise 3 - Explicit precondition checking; differing semantics

printField n s

| n < length s = s

| all isDigit s = padding ++ s

| otherwise = s ++ padding

where padding = replicate (n - length s) ' '

Figure 5.3: Exercise 3 - Explicit precondition checking; similar semantics

lution. In the context of Ask-Elle, this means that normalizing both
programs results in different normal forms.

similar semantics In some cases, checking for the precondition
did not result in different semantics relative to the model solution.
Figure 5.3 shows a function that explicitly checks for the precondition
and returns s when the precondition does not hold.

In this case, the semantics of the program are similar to those of
the model solution, but normalizing both still yields different normal
forms.

additional complications Since a precondition is nothing
more than a logical expression, it can be written in multiple ways.
This offers even more challenges, because a precondition that is checked
in the code could appear in any form as long as its meaning does
not change. In fact, submissions to Exercise 3 sometimes check the
precondition using its negation (n < length s), sometimes split the
check in three guards (n > length s, n == length s or otherwise)
and sometimes do the check in a completely different way.

Additionally, it is possible to implicitly check the precondition with-
out resorting to if expressions or guards. For instance, in Figure 5.4 a
student calls the max function to ensure that replicate never receives a
negative argument. This is unnecessary, since it is guaranteed by the
precondition of the function.

5.1.4 Normalization up to preconditions

The ideal solution to the problems outlined above is to integrate the
preconditions in our reasoning of semantic equivalence. If we assume
that the precondition always holds, then we can ignore the code that
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printField n s

| all isDigit s = r ++ s

| otherwise = s ++ r

where

r = replicate a ' '

a = max 0 (n - length s)

Figure 5.4: Exercise 3 - Implicit precondition checking

Before

parseTable [] = error "empty list in parseTable"

parseTable xs = map words xs

After

parseTable xs = map words xs

Figure 5.5: Exercise 1 - Normalization up to preconditions

is meant to handle the case when the precondition does not hold.
More specifically, we can treat such code as dead, because we know
it will never be executed.

The main challenge with this approach is that it requires identify-
ing which parts of the code are dead according to the precondition. In
the general case, this amounts to solving the halting problem1. There-
fore, we limit ourselves to a heuristic that removes pattern matching
on the empty list when we know it should be non-empty. This is
illustrated by Figure 5.5.

5.2 lists

The assignment expects students to manipulate lists by combining
list-specific functions. Therefore it is not surprising that many nor-
malization problems come from the domain of lists.

5.2.1 Function abstraction heuristic

Many students fail to use higher-order functions and resort to re-
cursion instead, occasionally reimplementing a higher-order function

1 Detecting dead code, even without taking preconditions into account, amounts to
solving the halting problem. We can prove this by contradiction. Consider a program
P that can detect dead code in the general case and a program A that we would like
to check for termination. To this purpose, we add a line of code at the end of A. If P
says the code is dead, we know that A does not terminate. If P says the code is live,
we know that A does terminate.
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parseTable = map words

Figure 5.6: Exercise 1 - Model solution

Student submission

parseTable [] = []

parseTable (x:xs) = words x : parseTable xs

Normalized version (before our improvements)

parseTable = fix (\rec xs -> case xs of

[] -> []

y : ys -> words y : rec ys

)

Figure 5.7: Exercise 1 - Reimplementation of map

without realizing. We identified reimplementations of map, filter

and zip.
As an example of a function where the student has reimplemented

map, let us consider Figure 5.7. It is clear that the normal form does
not match the model solution in Figure 5.6.

To tackle this problem, we add a heuristic that is able to replace re-
cursive functions by their standard library counterparts. The heuristic
detects reimplementations of map, filter and zip.

With this heuristic in place, the function from Figure 5.7 is normal-
ized to the same normal form as the model solution.

5.2.2 Grouping recursive submissions in a single cluster

The function abstraction heuristic works well for simple functions
such as map, filter and zip. However, it is not clear whether more
complex cases like foldr can be abstracted by a general-purpose
heuristic. In such cases, we give up on trying to remove recursion
and hope that regular normalization succeeds in grouping recursive
submissions in a single cluster.

An example of this is provided by Exercise 2. Figure 5.8 shows two
model solutions, representing the cluster of submissions using foldr

and the cluster using recursion.
This approach works great when the recursive submissions are

somewhat similar to each other. In fact, the biggest cluster in Exer-
cise 2 after our improvements consists of recursive submissions and
accounts for 35% of the total submissions.

Still, there are always creative submissions that cannot be normal-
ized to the same cluster. Two common problems here are caused by
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Model solution using foldr

printLine = foldr (\x xs -> '+' : replicate x '-' ++ xs) "+"

Recursive model solution

printLine [] = "+"

printLine (x:xs) = "+" ++ replicate x '-' ++ printLine xs

Figure 5.8: Exercise 2 - Model solutions

preconditions and by using guards instead of pattern matching. The
submission to Exercise 2 in Figure 5.9 features both:

preconditions As discussed in Section 5.1.2, preconditions in
exercises allow functions with different semantics to be considered
correct. Semantic differences are introduced because of variations in
the way the exceptional case is handled.

In Exercise 2, the precondition of printLine is that the list cannot
be empty. Because of the this, we see a variation between the solu-
tion in Figure 5.8 and Figure 5.9. The former returns "+" when the
list is empty, while the latter crashes. This means that no amount of
semantics-preserving transformations can bring both programs to the
same normal form.

guards and pattern matching Using guards instead of pat-
tern matching does not alter the semantics of the program. This means
that it is possible to implement a semantics-preserving transforma-
tion to replace the guards by pattern matching.

In the example, the student checks whether the list is empty using
the length function. This check could clearly be replaced by a case

expression that matches on the list, where the empty case jumps to
the right-hand side of the first guard and the other case jumps to the
second.

We do not implement such a transformation, however, because it
seems too ad-hoc. It works only for lists and only when the condition
is length xs == 0. Ideally, we would like to have a generalized ver-
sion, working on other data types as well (such as Maybe) and able
to handle a wider range of conditions. Because of time constraints
and the low number of submissions that would benefit from such a
transformation, we leave it as a candidate for future work.

5.2.3 Desugaring

Some of the exercises involve using list and string literals. Since the
empty string can be expressed as "" or [], this results in different
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printLine (w:ws)

| (length ws == 0) = "+" ++ line ++ "+"

| otherwise = "+" ++ line ++ printLine ws

where line = concat (replicate w "-")

Figure 5.9: Exercise 2 - Recursive submission with multiple issues

normal forms in otherwise equivalent programs. We also observe
variations in the way singleton lists and strings are represented by
students, which lead again to different normal forms.

To resolve this issue, we specify a single normal form for list and
string literals. We achieve this through the following transformations:

From To

String literal List of characters

List literal Sequence of cons

Besides the issue of list and string literals, we observe that some
students use list comprehensions instead of higher-order functions.
This again results in different normal forms in otherwise equivalent
programs. To tackle this problem, we add a normalization step that
desugars list comprehensions into list literals and higher-order func-
tions. To this purpose, we use the algorithm described in Section 3.11
of the Haskell Report [12].

5.2.4 List laws

In many cases, the differences between two semantically-equivalent
normal forms can be resolved by a simple rewrite rule. Based on the
student submissions, we identify a series of laws and implement them
as rewrite rules in Ask-Elle’s normalization procedure.

Table 5.2 shows the new transformations. Most of them are aimed
to simplify the expressions on the left, but some of them are needed
to impose an order when multiple representations are possible.

Besides these laws, we also identify slightly more complex ones
that require reasoning at the scope level. We describe them below.

Simplify concatMap and mapMaybe

A pattern we observe in some student submissions is using concatMap

when map would be sufficient. The same happens with the mapMaybe

function. We add the transformations from Table 5.3 to normalize
both into map. Notice that e can be any Haskell expression and that it
may contain references to x.



26 analysis and new transformations

From To

xs ++ [] xs

map f . map g map (f . g)

concatMap f . map g concatMap (f . g)

concat (replicate x [e]) replicate x e

take n (cycle [e]) replicate x e

intercalate [] concat

foldr (++) [] concat

foldr (:) flip (++)

concat . map concatMap

map id id

concatMap (flip (:) []) id

(!! 0) head

(xs ++ ys) ++ zs xs ++ (ys ++ zs)

transpose . map (map f) map (map f) . transpose

Table 5.2: List laws added to the normalization procedure

From To

concatMap (\x -> [e]) map (\x -> e)

mapMaybe (\x -> Just e) map (\x -> e)

Table 5.3: Simplifying concatMap and mapMaybe
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From To

concatMap (\x ->

if cond x

then [e]

else []

)

filter cond

Figure 5.10: Turn concatMap into filter

printLine xs = "+" ++ intercalate "+" lines ++ "+"

where

columns = length xs

lines = [replicate (xs !! index) '-'

| index <- [0..(columns-1)]]

Figure 5.11: Exercise 2 - List indexing

Turn concatMap into filter

Another pattern that caused problems with normalization is reimple-
menting filter in terms of concatMap. The transformation in Figure
5.10 solves the problem. Again, e can be any Haskell expression and
it may contain references to x.

5.2.5 List indexing

A particularly problematic pattern we observe in a few student sub-
missions is list indexing. While inoffensive on its own, list indexing
becomes a normalization nightmare when used to write imperative-
like code. Consider, for instance, the submission to Exercise 2 in Fig-
ure 5.11. Even though the semantics are the same as a properly func-
tional implementation (as in Figure 5.8), the enormous syntactic dif-
ferences make it very difficult for both to reach the same normal form.

In the particular example we are considering, we can see that the
list comprehension is reimplementing map. While it would be possible
to write a transformation that applies to this particular case, it seems
too ad-hoc. Also, a generalized version of this transformation would
benefit only a few submissions. Therefore we leave this problem as
future work.

5.3 booleans

Given the crucial role of booleans in the control flow of a program,
normalization problems on this domain have a far reaching effect.
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Before

printField n s

| all isDigit s = padding ++ s

| otherwise = s ++ padding

where padding = replicate (n - length s) ' '

After

printField n s = if all isDigit s then padding ++ s

else s ++ padding

where padding = replicate (n - length s) ' '

Figure 5.12: Total guards are rewritten as a top-level if

printField n s

| all isDigit s = padding ++ s

| not (all isDigit s) = s ++ padding

where padding = replicate (n - length s) ' '

Figure 5.13: Total guards using not

While there are less issues compared to lists, we still identify and
address many of them.

5.3.1 Guard rewriting

One of Ask-Elle’s normalization steps rewrites guards as if expres-
sions. This is only possible if the guards are total, as illustrated by
Figure 5.12.

Ask-Elle knows that guards are total if the last one is True or
otherwise. While this heuristic works well in many cases, it fails
when a program uses total guards expressed in terms of a condition
and its negation (see Figure 5.13). For this reason, we enhance Ask-
Elle’s guard rewriting to support this new way of expressing total
guards.

5.3.2 Boolean laws

Similar to lists, there are many cases in which the differences be-
tween two semantically-equivalent normal forms can be resolved by
a simple rewrite rule. Table 5.4 summarizes the laws we implement
as rewrite rules in Ask-Elle’s normalization procedure.
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From To

(==) True id

(&&) True id

(==) False not

foldr (&&) True and

all id and

and . map f all f

if cond then True else False cond

if not cond then y else x if cond then x else y

Table 5.4: Boolean laws added to the normalization procedure

From To

notElem not . elem

isNothing not . isJust

Table 5.5: Function negation

5.3.3 Function negation

Some Haskell functions are equivalent to the negation of other func-
tions. For instance, isNothing is equivalent to not . isJust. This
is important knowledge, as some of the transformations described
above operate on expressions that involve the not function. From
this perspective, expressing a function in terms of not increases the
chances that a program can be normalized further. Table 5.5 shows
new rewriting transformations directed towards this goal.

As an example of how this helps drive normalization further, con-
sider Figure 5.14. The original program, based on isNothing, ends up
in the same normal form as a similar program based on isJust.

if isNothing x then y else z rewrite in terms of not

if not (isJust x) then y else z switch if branches

if isJust x then z else y

Figure 5.14: Interaction between function negation and boolean laws



30 analysis and new transformations

From To

(==) Nothing isNothing

(/=) Nothing isJust

maybeToList x == [] isNothing x

maybeToList x /= [] isJust x

maybeToList x !! 0 fromJust x

case m of

Nothing -> d

Just x -> x
fromMaybe d m

Table 5.6: Maybe laws

case m of

Nothing -> Nothing

Just x -> e
fmap f m

Figure 5.15: Abstracting fmap for Maybe

5.4 maybe

Exercises 7 and 8 rely on the Maybe type to handle edge cases. Stu-
dents are expected to use functions from the standard library to ma-
nipulate Maybe values. This results in multiple issues.

5.4.1 Function abstraction through rewrite rules

One of the main problems we observe is caused by function reim-
plementation. Many students write their own version of fromMaybe,
fromJust, isJust, isNothing and fmap.

In most cases, functions can be abstracted through a simple rewrite
rule, as illustrated by Table 5.6. We implement this in a similar way
to list and boolean laws (tables 5.2 and 5.2 respectively).

The case of fmap is a bit more complex, as shown in Figure 5.15. On
the left-hand side, e is an arbitrary expression that may or may not
use the x variable. On the right-hand side, f is a lambda with a single
parameter, where the body is the e expression with all occurrences of
x replaced by its parameter. Figure 5.16 offers an example.
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case m of

Nothing -> Nothing

Just x -> x + 1
fmap (\a -> a + 1) m

Figure 5.16: Example of abstracting fmap for Maybe

maybe d f m = case m of

Nothing -> d

Just x -> f x

Figure 5.17: Definition of maybe

5.4.2 Unfolding the maybe function

Some student submissions use the maybe function instead of case

when manipulating Maybe values. While abstracting maybe from case

expressions is possible, unfolding maybe yields even fewer clusters
when normalizing. Therefore we add an unfolding transformation to
Ask-Elle’s normalization, according to the definition of the function
in 5.17.

The improvement caused by this transformation derives from its
interaction with normalization passes related to patterns and case

expressions. These transformations are described in Section 5.5.

5.4.3 The isJust / fromJust combination

Another normalization problem is caused by the combination of isJust
and fromJust. With this pattern, a student first checks whether a
value is Just or Nothing. In the first case, the program extracts the
value using fromJust and passes the result to an expression. In the
latter case, a different branch of the code is executed. Figure 5.18 il-
lustrates the problem and proposes an idiomatic alternative.

Ideally, the normalization procedure should be able to rewrite the
isJust pattern as a case expression. Such a transformation would
apply to expressions in the form if isJust m then e else e', re-
placing all occurrences of fromJust m in e by the unwrapped value.

isJust / fromJust Idiomatic alternative

if isJust m

then f (fromJust m)

else d

case m of

Nothing -> d

Just x -> f x

Figure 5.18: The isJust / fromJust combination
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let x = fromMaybe (-1) m

in if x /= (-1) then f x else d

Figure 5.19: Disguised isJust / fromJust combination

Because of its interaction with other transformations, adding this nor-
malization step is more complex than it seems. Considering its ex-
pected low impact, we leave it as future work.

5.4.4 Disguised isJust / fromJust combination

We observe also a variation of the isJust / fromJust pattern, where
students use fromMaybe with a magic default value, which is later
checked by an if statement. In case the output of fromMaybe turns
out to be the magic value, then the original Maybe object was Nothing.
Otherwise, it was Just. The resulting code is presented in Figure 5.19.

In this case, a normalization step that transforms the expression
into a case is much more complex, for two reasons:

• The pattern assumes that the value bound to m is never Just (-1);

• Checking whether the magic value was returned can be done in
multiple ways (e.g. students use (==), (/=) and even (>)).

The first point implies that a semantics-preserving transformation
must be able to prove that the value bound to m is never Just (-1).
The second point makes this problem even worse. For instance, if
a student writes x > (-1) as the if condition, the normalizer would
also need to prove that m can never contain any number lower than -1.
Inferring this kind of knowledge requires more advanced program
analysis and is beyond the scope of this research.

5.5 patterns

Pattern matching is at the core of the Haskell language. Since patterns
are very expressive, there are many different ways to write semanti-
cally equivalent programs. Again, this is a source of problems from a
normalization perspective.

5.5.1 Pattern simplification

A straightforward simplification is to remove wildcard patterns bound
to a name. That is, a pattern in the form x@_ is simplified to x. Since
a name matches the same values as a wildcard, this transformation is
sound.

Another useful simplification is to remove nested as patterns. For
instance, a pattern like xs@ys@(z:zs) could be simplified to xs@(z:zs),
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From To

head xs let (x : _) = xs in x

tail xs let (_ : ys) = xs in ys

fst x let (a, _) = x in a

snd x let (_, b) = x in b

fromJust m let (Just x) = m in x

Table 5.7: Unfolding functions that pattern match

Nested Collapsed

case a of

[] -> []

xs -> let (y : _) = xs

in e

case a of

[] -> []

xs@(y : _) -> e

Figure 5.20: Nested pattern matching

thereby removing the binding to ys. Note that, in this case, additional
care must be taken to rename all usages of ys to xs.

5.5.2 Unfold functions that pattern match

Another source of syntactic differences are functions that pattern match
on their parameters, with an undefined case when the pattern does
not match the definition. This allows writing the same program by
calling such functions or by using case or let inline. Table 5.7 shows
the transformations we add to improve normalization in these cases.

5.5.3 Nested patterns and pattern lifting

Nested pattern matching is another source of syntactic differences
that cause normalization problems. Sometimes it originates from stu-
dent submissions and in other cases it is produced by other normal-
ization steps (e.g. the unfolding transformation mentioned in Section
5.5.2).

Ideally, we would like to collapse nested pattern matches into one,
which then becomes the normal form. Figure 5.20 shows an example
of this, where the program to the left uses nested pattern matching
and the one to the right does not. Notice, by the way, how the pattern
matching on the left corresponds to an unfolded version of head.
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Before After

let xs = e

in if xs == []

then let (y:_) = xs in y

else 42

let xs@(y:_) = e

in if xs == []

then y

else 42

Figure 5.21: Unsound pattern lifting

introducing pattern lifting Our proposed solution to the
problem of nested pattern matching is pattern lifting. This mechanism
detects pattern matches on a variable that has been bound in a pre-
vious match. Then, it lifts the nested binding and merges it with the
pattern it comes from.

Consider again Figure 5.20 as an example. We can see that xs is
bound in the second alternative of the case and that y is bound by
matching on xs. This means we can lift the pattern where y is bound,
thereby merging the xs and (y : _) patterns into one. As you can
see on the right of the figure, the resulting pattern is xs@(y : _).

conservative and aggressive variants Pattern lifting as
described above turns out to be unsound, as shown by the counterex-
ample in Figure 5.21. In the original program, the head of the list
is only taken if the list is not empty. However, pattern lifting moves
the match upwards, thereby changing the semantics of the program.
In the resulting code, an attempt to access the head of the list will
be made even when the list is empty. We call this aggressive pattern
lifting.

To prevent this problem, we define a conservative version of pattern
lifting, which only supports irrefutable patterns. Irrefutable patterns
are patterns that always match, like variables and wildcards. Also
tuples containing other irrefutable patterns are themselves irrefutable.
The same is valid for as patterns. With this constraint, pattern lifting
is always semantics-preserving2.

As expected, conservative pattern lifting results in a less effective
normalization in comparison to aggressive pattern lifting. Table 5.8
shows the difference in the amounts of clusters depending on the pat-
tern lifting mode used. In this comparison, all other transformations
we add to Ask-Elle are enabled. Exercises where there is no difference
are ignored.

in defense of aggressive pattern lifting As mentioned
above, aggressive pattern lifting is unsound. This means that it may

2 While laziness may be affected, the output of the program is not influenced.
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Exercise Conservative Aggressive

1 3 2

4 13 12

6 17 16

7 30 28

8 20 18

Table 5.8: Effectiveness of pattern lifting

change the meaning of a program, forcing a pattern match earlier
than specified in the original code.

In the context of normalization, this unsoundness means that an
incorrect program could have the same normal form as a correct one.
Allowing unsound transformations could lead Ask-Elle to say that
two programs are equivalent, when in fact they are not. This is the
case illustrated by Figure 5.21.

We think, however, that an incorrect program with the necessary
characteristics is very unlikely to pass a basic test suite. Such a pro-
gram would need to pattern match too early on a value, leading to
an easy to detect crash. In light of this, we treat aggressive pattern
lifting as a sound transformation in practice, even though it is techni-
cally unsound.

5.5.4 Tuple deconstruction and reconstruction

We oberve another normalization issue where students deconstruct
and reconstruct a tuple instead of matching on its expression. This
results in code like let (a, b) = e in f (a, b), when f e would
have been sufficient. We add a transformation to remove pattern
matching in such a case.

5.5.5 Tuple unrolling

Ask-Elle’s normalization inlines bindings to names, not to patterns.
A consequence of this is that it will fail to inline names that are intro-
duced inside a tuple pattern. Below we consider the problem from the
perspectives of let and case, and we present a new transformation
to solve it.

let In the case of let, Figure 5.22 shows on the left a group of
variables being introduced inside a tuple pattern. On the right is an
equivalent version, where the tuple has been unrolled into separate
bindings, one for each variable. We enhance Ask-Elle with a normal-
ization step that performs this transformation.
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Original Unrolled

let (a, b, c) = (x, y, z)

in e

let a = x

b = y

c = z

in e

Figure 5.22: Tuple unrolling for let

Original Unrolled

case (a, b, c) of

([], _, _) -> []

(x : xs, y, z) -> e

let y = b

z = c

in case a of

[] -> []

x : xs -> e

Figure 5.23: Tuple unrolling for case

case Tuple unrolling for case is a bit more complicated than for
let, as the patterns may influence the control flow of the program.
Figure 5.23 shows on the left a case that illustrates the problem. It
is clear that we cannot unroll the binding to a, as it is being used to
choose which alternative to execute. Still, it is possible to unroll b and
c, as shown on the right of the figure.

5.5.6 Other case transformations

Additional transformations to simplify case expressions include rewrit-
ing a single-alternative case as a let (Figure 5.24), removing the last
alternative if it leads to undefined (Figure 5.25) and removing un-
reachable alternatives (Figure 5.26).

In the latter case, we use a conservative heuristic. An alternative is
unreachable if the previous alternative matches on a:

• Wildcard;

• Variable;

• Tuple of wildcards or variables.

5.6 miscellaneous

Besides the domain-specific transformations mentioned above, we
also add transformations that are not tied to a particular domain. Sim-
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From To

case xs of

y:ys -> e
let (y:ys) = xs in e

Figure 5.24: Rewriting case as let

From To

case xs of

[] -> e

y:ys -> undefined

case xs of

[] -> e

Figure 5.25: Removing last alternative leading to undefined

ple ones include inlining of non-recursive functions and dead code
removal. The rest is described below.

5.6.1 Beta reduction

Since many of our transformations involve abstracting functions, it is
likely that generalized beta reduction would result in infinite loops
within the normalization procedure. Therefore we only allow beta
reduction of whitelisted functions: id, const, ++, map, concat, foldr
and flip.

5.6.2 Order arguments in commutative functions

By definition, commutative functions like (+) or (*) return the same
result independently of the order of their arguments. From a normal-
ization perspective, this is a source of problems, because it results in
programs which are semantically equivalent but syntactically differ-
ent. For this reason, we add a transformation that sorts the arguments
passed to a commutative function. While advanced algorithms exist
to unify expressions up to associativity and commutativity, our ap-

From To

case xs of

ys -> e

zs -> e'

case xs of

ys -> e

Figure 5.26: Removing unreachable alternative
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From To

\x -> x id

(>>>) flip (.)

Table 5.9: Abstracting and unfolding general purpose functions

From To

flip (\x y -> e) \y x -> e

Figure 5.27: Swith the parameter order in a lambda when applying flip

proach works well-enough in practice. Again, laziness is not taken
into consideration

5.6.3 Abstract and unfold functions

Similar to domain-specific transformations, we abstract and unfold
general purpose functions. The transformations are summarized in
Table 5.9.

Notice that the transformation involving (>>>) is possible because
Ask-Elle restricts the operator to only work on functions. Any attempt
to use it on different types results in a compile error.

5.6.4 Transformations involving flip

Besides beta-reducing flip, we add a transformation to remove it
whenever it is applied to a commutative function. Since commutative
functions do not care about the order of the arguments, removing
flip is semantics-preserving.

Another transformation involving flip is switching the order of
the parameters when it is applied to a lambda. This is illustrated by
figure 5.27.

5.6.5 Eta reduction

We enhance the eta-reduction algorithm by allowing it to insert flip
when necessary. Figure 5.28 shows the result of applying transforma-
tion to one of the student submissions.
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Before

printLine xs =

"+" ++ intercalate "+" (map (\x -> replicate '-' x) xs)

++ "+"

After

printLine xs =

"+" ++ intercalate "+" (map (flip replicate '-') xs)

++ "+"

Figure 5.28: Flip-aware eta-reduction
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6
M E A S U R E D I M P R O V E M E N T S

After implementing the transformations, we measure the effective-
ness of the new normalization strategy. We look at the results from
the perspective of submission coverage and normalization effective-
ness.

6.1 submission coverage

Recall that Ask-Elle considers two programs to be semantically equiv-
alent if their normal forms are syntactically similar. Additionally, a
program is considered correct if it is equivalent to one of the model
solutions.

While it is possible to have two model solutions that share the same
normal form, this does not increase the amount of programs that
are recognized. In such a case, removing one of the model solutions
would have no impact.

If we only consider model solutions with different normal forms,
we can associate each of them to a different cluster of programs. If the
submissions to an exercise are grouped in 10 clusters, then having 10
model solutions (one per cluster) would recognize 100% of programs.

With submission coverage, we measure the percentage of programs
that are recognized using 5 model solutions or less. Figures 6.1 through
6.8 show graphs for each exercise. The circle shows the percentage of
solutions originally recognized by Ask-Elle and the cross shows the
same measurement after our improvements. Notice how additional
model solutions offers diminishing returns.

6.2 normalization effectiveness

As mentioned in 4.1.2, we say that a given normalization procedure is
more effective than a second one when it results in a lower amount of
clusters for the same exercise. Our results show that, for all exercises,
the new normalization is more effective than Ask-Elle’s original one.

Table 6.1 shows the amount of clusters per exercise. We also pro-
vide figures 6.9 through 6.16 that present the numbers in a more
graphical way. Additionally, the figures show the differences in size
of each cluster. Notice how the amount of clusters diminishes, while
the size of the clusters grows.
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Figure 6.1: Exercise 1 - Improvement in submission coverage

Figure 6.2: Exercise 2 - Improvement in submission coverage
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Figure 6.3: Exercise 3 - Improvement in submission coverage

Figure 6.4: Exercise 4 - Improvement in submission coverage
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Figure 6.5: Exercise 5 - Improvement in submission coverage

Figure 6.6: Exercise 6 - Improvement in submission coverage
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Figure 6.7: Exercise 7 - Improvement in submission coverage

Figure 6.8: Exercise 8 - Improvement in submission coverage
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Exercise Before After

1 15 2

2 64 19

3 43 16

4 38 12

5 43 6

6 97 16

7 84 28

8 76 18

Table 6.1: Improvement in normalization effectiveness

Before After

Figure 6.9: Exercise 1 - Improvement in normalization effectiveness

Before After

Figure 6.10: Exercise 2 - Improvement in normalization effectiveness
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Before After

Figure 6.11: Exercise 3 - Improvement in normalization effectiveness

Before After

Figure 6.12: Exercise 4 - Improvement in normalization effectiveness

Before After

Figure 6.13: Exercise 5 - Improvement in normalization effectiveness
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Before After

Figure 6.14: Exercise 6 - Improvement in normalization effectiveness

Before After

Figure 6.15: Exercise 7 - Improvement in normalization effectiveness

Before After

Figure 6.16: Exercise 8 - Improvement in normalization effectiveness



7
C O N C L U S I O N

In Section 1.3, we set out to find the cases in which Ask-Elle’s nor-
malization does not work as expected. Based on this knowledge, we
aimed to improve the normalization procedure so it could handle a
wider range of programs.

7.1 results

The results from sections 5 and 6 are very positive. We discovered
many cases in which normalization did not work as expected and
achieved substantial improvements without resorting to advanced
analysis techniques.

In the domain of preconditions, we observed that they cause more
problems than they solve, as unification becomes more challenging
and confusion creeps among students. Due to the complexity of this
domain, we only added a simple heuristic to remove unnecessary
pattern matching on the empty list.

Regarding lists, there were multiple issues, as expected by the na-
ture of the assignment. We added a function abstraction heuristic, a
transformation to desugar literals and a transformation to apply list
laws.

The domain of booleans also benefited from new transformations.
We now apply boolean laws, reason about negation and rewrite guards
as if expressions in more cases.

Regarding the Maybe type, we added a function abstraction heuris-
tic, a transformation to apply Maybe laws and a transformation to
unfold the maybe function.

The domain of patterns saw improvements with transformations to
simplify patterns, unfold functions that pattern match, simplify tuple
matching, simplify case expressions and lift nested patterns.

Miscellaneous improvements include enabling beta reduction for
whitelisted functions, enhancing eta reduction, specifying an order
for arguments to commutative functions, abstracting and unfolding
general-purpose functions and adding flip laws.

7.2 future work

While our results are very positive, there is still room for improve-
ment. In the first place, we did not address all normalization issues
and left out potentially useful transformations. Secondly, the inter-
action of the new transformations with Ask-Elle’s stepwise feedback
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feature is unclear. Also, it would be worthwhile to measure the im-
provements with a different dataset. Finally, our experience with Coq
proofs suggests that exploring alternative unification approaches may
yield interesting results.

7.2.1 New transformations

As mentioned above, we did not implement some transformations
that would have probably resulted in improvements. The main factors
that influenced this decision were time constraints and the expected
low number of submissions that would benefit. In some cases, time
constraints led us to leave out a transformation even though it would
have had a bigger impact. Below we present some of these cases.

precondition-aware program slicing Preconditions are par-
ticularly problematic in the context of unification, as they allow pro-
grams with different semantics to be considered equivalent. A mech-
anism that performs unification up to preconditions would need to
ignore the case in which the precondition does not hold.

Within Ask-Elle’s normalization approach to unification, precondition-
aware program slicing offers a promising solution. In many cases, pro-
gram slicing should be able to identify the part of the program that is
executed when the precondition does not hold. With this knowledge,
a transformation could remove said part of the program. We call such
a transformation semantics preserving up to preconditions.

from checks to pattern matching Using checks instead of
pattern matching does not necessarily alter the semantics of the pro-
gram. Therefore it is possible to implement a semantics-preserving
transformation to replace checks by pattern matching. Such a transfor-
mation would have been beneficial in the domain of lists and Maybe.

A typical case where this would be useful is accessing the head of a
list after checking that it is not empty. While the idiomatic solution is
to pattern match on the list, it is also possible to use the null function
in combination with head.

Another case is accessing the value inside a Maybe. Again, one of the
idiomatic solutions involves pattern matching, but it is also possible
to use the isJust function in combination with fromJust.

In both cases, replacing checks by pattern matching would result
in a lower number of clusters, thereby improving the effectiveness of
the normalization procedure.

from list indexing to functional style One of the sub-
missions to Exercise 2 reimplements map through list indexing and
list comprehensions (see Figure 5.11 for details). While it would be
straightforward to add an ad-hoc transformation that handles this
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case, it would be interesting to investigate the possibility of a trans-
formation able to abstract multiple list functions from code that uses
indexing.

7.2.2 Stepwise feedback

In Section 2, we explain how programming strategies are closely re-
lated to normalization. Particularly, the mechanism to identify the
step of the strategy where a program is involves normalizing the pro-
gram. Since strategies are used to provide hints to incomplete pro-
grams, they involve normalizing incomplete programs as well.

Our research focuses on programs that do not contain any holes.
Therefore, the improvements we achieve do not necessarily apply to
stepwise feedback. For instance, if the model solution has the form
parseTable = map words, then parseTable xs = ? does not unify
with it, even though parseTable xs = map words xs does.

An interesting approach is to integrate transformations themselves
as parts of the strategy, which has the added benefit that they can be
used to provide hints. For instance, a transformation that suggests re-
placing concat instead of intercalate [] would help students with
their style.

7.2.3 Alternative unification approaches

The proofs we wrote to ensure the soundness of the new transfor-
mations turned out to be surprisingly simple (see Appendix B). This
hints at the possibility of using automated theorem provers to unify
Haskell programs. An interesting approach would be to automati-
cally rewrite student programs as Coq programs and let Coq unify
them, eventually making use of a custom tactic. Afterwards, the re-
sults could be compared against Ask-Elle’s normalization-based ap-
proach.

7.2.4 Additional proofs

When constructing proofs for the new transformations we made a
choice to keep them simple. Particularly, we focused on transforma-
tions that can be expressed as rewrite rules in Coq’s type system. This
leaves out transformations that involve reasoning about variables and
their scope, such as function inlining, dead code removal and pattern
lifting. It would be interesting to develop a model in which these
transformations can be proven correct.
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A
A S S I G N M E N T D O C U M E N T

This appendix contains a copy of the document describing Assignment
I, used in the functional programming course at Universiteit Utrecht
in the year 2017/2018. To keep the original formatting, the document
starts in next page.
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Functional Programming 2017/2018
Assignment 1: Lists

Ruud Koot

In this exercise we will read in a database, perform a simple query on it and present the
results to the user in an aesthetically pleasing form. Most exercises can be completed by
combing functions from the Prelude and the libraries Data.Char, Data.List and Data.Maybe
and contain a hint on which functions you could use from these libraries; often a completely
different solution, not using these functions, is also possible. A starting framework and the
sample database can be found on the Assignments page on the course website.

1 Parsing

A plain text database consists of a number of lines (each line is called a row), with on each line a fixed
number of fieds separated by a single space. The first row a database table is called the header and
contains the names of the columns in the table. An example of such a database would be:

first last gender salary

Alice Allen female 82000

Bob Baker male 70000

Carol Clarke female 50000

Dan Davies male 45000

Eve Evans female 275000

One way of modeling such databases in Haskell would be using the following types:

type Field = String
type Row = [Field ]
type Table = [Row ]

A field is always modeled as a string (even though the database may contain strings that look very
much like numbers), a row is a list of fields and a table a list of rows. The head of this list corresponds
to the header of the table. (A valid table always has a header and always has at least one column.)

There are several “problems” with this model: for example, it does not enforce that each of the rows
in the table must have the same number of fields. However, for the purposes of this first assignment it
will suffice. You may assume that all the databases that are presented to program will be well-formed,
that is to say, they will always have the same number of fields on each line.

The form in which data is stored inside a file, printed or written on paper, or entered from the
keyboard is called its concrete syntax. The form in which data is manipulated inside a program is
called its abstract syntax. The process of transforming some object represented in its concrete syntax
into its representation in abstract syntax is called parsing.

Exercise 1. Write a function parseTable :: [String ] → Table that parses a table represented in its concrete
syntax as a list of strings (each corresponding to a single line in the input) into its abstract syntax. (Hint: use
the function words from the Prelude.)

2 Pretty printing

In the previous exercise we have seen how we can turn concrete syntax into abstract syntax. The reverse
operation—turning abstract syntax into concrete syntax—is often called pretty printing or compilation.

1



In our case we do not want to convert our abstract syntax into the original concrete syntax, but into a
different concrete syntax that is easier to read for humans:

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Bob |Baker |male | 70000|

|Carol|Clarke|female| 50000|

|Dan |Davies|male | 45000|

|Eve |Evans |female|275000|

+-----+------+------+------+

An apt name for this process might be “prettier printing”. Note that we have done several things to
make the result look nice:

1. We have made the width of each column exactly as wide as the widest field in this column
(including the name in the header).

2. We have added a very fancy looking border around the table, the header and columns.

3. We have typeset the names of the columns in the header in uppercase.

4. We have right-aligned fields that look like (whole) numbers.

Exercise 2. Write a function printLine :: [Int ]→ String that, given a list of widths of columns, returns a string
containing a horizontal line. For example, printLine [5, 6, 6, 6 ] should return the line "+-----+------+------+------+".
(Hint: use the function replicate.)

If you can write this function using foldr you will get more points for style.

Exercise 3. Write a function printField :: Int → String → String that, given a desired width for a field and
the contents of a fields, returns a formatted field by adding additional whitespace. If the field only consists of
numerical digits, the field should be right-aligned, otherwise it should be left-aligned. (Hint: use the functions
all, isDigit and replicate.)

The function printField should satisfy the property:

∀n s.n > length s⇒ length (printField n s) ≡ n

Later in the course we shall see how we can use these properties to test the correctness of a program,
or even proved that such properties must always hold for a given program.

Exercise 4. Write a function printRow :: [ (Int, String) ] → String that, given a list of pairs—the left element
giving the desired length of a field and the right element its contents—formats one row in the table. For example,

printRow [ (5, "Alice"), (6, "Allen"), (6, "female"), (6, "82000") ]

should return the formatted row

"|Alice|Allen |female| 82000|"

(Hint: use the functions intercalate, map and uncurry.)

Exercise 5. Write a function columnWidths :: Table→ [Int ] that, given a table, computes the necessary widths
of all the columns. (Hint: use the functions length, map, maximum and transpose.)

Exercise 6. Write a function printTable :: Table → [String ] that pretty prints the whole table. (Hint: use the
functions map, toUpper and zip.)

2



3 Querying

Finally we will write a few simple query operations to extract data from the tables.

Exercise 7. Write a function select :: Field → Field → Table → Table that given a column name and a field
value, selects only those rows from the table that have the given field value in the given column. For example,
applying the query operation

select "gender" "male"

to the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Alice|female|

|Bob |male |

|Carol|female|

|Dan |male |

|Eve |female|

+-----+------+

should result in the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Bob |male |

|Dan |male |

+-----+------+

If the given column is not present in the table then the table should be returned unchanged. (Hint: use the
functions (!!), elemIndex, filter and maybe.)

Exercise 8. Write a function project :: [Field ]→ Table→ Table that projects several columns from a table. For
example, applying the query operation

project ["last", "first", "salary" ]

to the table

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Carol|Clarke|female| 50000|

|Eve |Evans |female|275000|

+-----+------+------+------+

should result in the table

+------+-----+------+

|LAST |FIRST|SALARY|

+------+-----+------+

|Allen |Alice| 82000|

|Clarke|Carol| 50000|

|Evans |Eve |275000|

+------+-----+------+

If a given column is not present in the original table it should be omitted from the resulting table. (Hint: use the
functions (!!), elemIndex, map, mapMaybe, transpose.)
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4 Wrapping up

We can tie parsing, printing and two query operations together using:

exercise :: [String ]→ [String ]
exercise = parseTable ≫ select "gender" "male"

≫ project ["last", "first", "salary" ] ≫ printTable

and have the program reads and write from and to standard input and standard output using:

main :: IO ()
main = interact (lines ≫ exercise ≫ unlines)

4
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P R O O F S

Add LoadPath ".".

Load CpdtTactics.

Require Import Coq.Bool.Bool.

Require Import Coq.Lists.List.

Require Import Coq.Program.Basics.

Import ListNotations.

(* An equivalent of Haskell's intercalate function *)

Fixpoint intercalate {T : Type} (x : list T) (xs : list (list T)) : list T :=

match xs with

| [] => []

| [y] => y

| y :: ys => y ++ x ++ intercalate x ys

end.

(* An equivalent of Haskell's concatMap function *)

Definition concatMap {T U : Type} (f : T -> list U) (xs : list T) : list U :=

concat (map f xs).

(* An equivalent of Haskell's replicate function *)

Fixpoint replicate {T} n (x : T) : list T :=

match n with

| 0 => []

| S n' => x :: replicate n' x

end.

(* An equivalent of Haskell's mapMaybe function *)

Fixpoint mapMaybe {T U} (f : T -> option U) (xs : list T) : list U :=

match xs with

| [] => []

| y :: ys => match f y with

| Some y' => y' :: mapMaybe f ys

| None => mapMaybe f ys

end

end.

(* An equivalent of Haskell's and function *)

Fixpoint and (xs : list bool) : bool :=

match xs with

| [] => true
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| false :: _ => false

| true :: ys => and ys

end.

(* An equivalent of Haskell's fmap function *)

Definition fmap {T U} (f : T -> U) (x : option T) : option U :=

match x with

| Some y => Some (f y)

| None => None

end.

(* An equivalent of Haskell's isNothing function *)

Definition isNothing {T} (x : option T) : bool :=

match x with

| Some _ => false

| None => true

end.

(* An equivalent of Haskell's isJust function *)

Definition isJust {T} (x : option T) : bool :=

match x with

| Some _ => true

| None => false

end.

(* An equivalent of Haskell's maybeToList function *)

Definition maybeToList {T} (x : option T) : list T :=

match x with

| Some y => [y]

| None => []

end.

Lemma id_works : forall {T} (x : T), id x = x.

Proof. auto. Qed.

Lemma cons_cong : forall {T} (x : T) xs ys,

xs = ys <-> x :: xs = x :: ys.

Proof. intros. split. congruence. congruence. Qed.

Theorem append_identity : forall {T} (xs : list T), xs ++ [] = xs.

Proof. intuition. Qed.

Theorem intercalate_concat : forall {T} (xs : list (list T)),

intercalate [] xs = concat xs.

Proof. intros. induction xs.

auto.
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simpl. rewrite IHxs. induction xs.

unfold concat. rewrite app_nil_r. reflexivity.

reflexivity.

Qed.

Theorem foldr_append : forall {T} (xs : list (list T)),

@fold_right (list T) (list T) (@app T) [] xs = concat xs.

Proof. auto. Qed.

Theorem foldr_cons : forall {T} (xs ys : list T),

fold_right cons xs ys = ys ++ xs.

Proof. intros. induction ys.

auto.

simpl. congruence.

Qed.

Theorem concat_map : forall {T U} (f : T -> list U) xs,

concat (map f xs) = concatMap f xs.

Proof. auto. Qed.

Theorem concat_map_filter :

forall {T} (cond : T -> bool) (xs : list T),

concatMap (fun x => if cond x then [x] else []) xs = filter cond xs.

Proof. intros. induction xs.

auto.

simpl. rewrite <- IHxs. unfold concatMap. simpl. destruct (cond a).

auto.

auto.

Qed.

Theorem zero_index : forall T (xs : list T), nth_error xs 0 = hd_error xs.

Proof. auto. Qed.

Theorem map_id : forall (T : Type) (xs : list T), map id xs = id xs.

Proof.

intros T xs.

induction xs.

auto.

simpl. unfold id. apply (cons_cong a (map id xs) xs). auto.

Qed.

Theorem concat_map_to_map :

forall {T} (xs : list T),

concatMap (fun x => [x]) xs = map (fun x => x) xs.

Proof. intros. induction xs.

auto.
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simpl.

rewrite <- (cons_cong a (concat (map (fun x => [x]) xs)) _).

rewrite <- IHxs.

rewrite (concat_map _ _).

reflexivity.

Qed.

Theorem concat_map_comp :

forall {A B C} (f : B -> list C) (g : A -> B) (xs : list A),

concatMap f (map g xs) = concatMap (compose f g) xs.

Proof. intros. induction xs.

auto.

simpl. unfold compose.

rewrite <- (concat_map f _).

rewrite <- (concat_map _ (a :: xs)).

simpl.

rewrite concat_map.

rewrite concat_map.

rewrite IHxs.

reflexivity.

Qed.

Theorem concat_map_flip : forall T (xs : list T),

concatMap (flip cons []) xs = id xs.

Proof. intros. induction xs.

auto.

unfold id in IHxs. simpl. unfold id. apply cons_cong. auto.

Qed.

Theorem concat_replicate : forall {T} n (x : T),

concat (replicate n [x]) = replicate n x.

Proof. intros. induction n.

auto.

simpl. congruence.

Qed.

Theorem map_map_comp :

forall {A B C} (f : B -> C) (g : A -> B) (xs : list A),

map f (map g xs) = map (compose f g) xs.

Proof. intros. induction xs.

auto.

simpl. rewrite IHxs. unfold compose. reflexivity.

Qed.

Theorem map_maybe_fmap :

forall {A B} (f : nat -> B) (xs : list A),
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mapMaybe (fun x => fmap f (Some 42)) xs

= map f (mapMaybe (fun x => Some 42) xs).

Proof. intros. induction xs.

auto.

simpl. rewrite <- cons_cong. auto.

Qed.

Theorem map_maybe_just :

forall T (xs : list T),

mapMaybe (fun x => Some 42) xs = map (fun x => 42) xs.

Proof. intros. induction xs.

auto.

simpl. congruence.

Qed.

Theorem cons_append : forall T (x : T) (xs ys : list T),

(x :: xs) ++ ys = x :: (xs ++ ys).

Proof. auto. Qed.

Theorem append_assoc : forall T (xs ys zs : list T),

(xs ++ ys) ++ zs = xs ++ (ys ++ zs).

Proof. crush. Qed.

Theorem is_nothing : forall T (x : option T),

x = None <-> isNothing x = true.

Proof. intros. unfold isNothing. destruct x. unfold iff.

split. discriminate. discriminate.

split. auto. auto.

Qed.

Theorem is_just : forall T y (x : option T),

x = Some y -> isJust x = true.

Proof. crush. Qed.

Theorem maybe_to_list_1 : forall T (x : option T),

maybeToList x = [] <-> isNothing x = true.

Proof. intros. destruct x.

simpl. split. discriminate. intros. contradict H. auto.

simpl. split. auto. auto.

Qed.

Theorem maybe_to_list_2 : forall T (x : option T),

maybeToList x <> [] <-> isJust x = true.

Proof. intros. destruct x.

simpl. split. auto. intros. pose proof nil_cons as P. auto.

simpl. split. auto. intros. contradict H. auto.
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Qed.

Theorem maybe_to_list_3 : forall T (x : option T),

nth_error (maybeToList x) 0 = x.

Proof. intros. destruct x. auto. auto. Qed.

Theorem not_is_just : forall T (x : option T),

isNothing x = negb (isJust x).

Proof. intros. destruct x. auto. auto. Qed.

Theorem true_id : forall b, eqb b true = id b.

Proof. destr_bool. Qed.

Theorem false_neg : forall b, eqb b false = negb b.

Proof. destr_bool. Qed.

Theorem and_id : forall b, andb b true = id b.

Proof. destr_bool. Qed.

Theorem foldr_and : forall xs, fold_right andb true xs = and xs.

Proof. auto. Qed.

Theorem and_map : forall T (f : T -> bool) xs,

and (map f xs) = forallb f xs.

Proof. intros. induction xs.

auto.

simpl. unfold andb. rewrite IHxs. reflexivity.

Qed.

Theorem all_id : forall xs, forallb id xs = and xs.

Proof. crush. Qed.

Theorem simplify_if : forall (cond : bool),

(if cond then true else false) = cond.

Proof. destr_bool. Qed.

Theorem switch_if_branches :

forall T cond (x y : T),

(if negb cond then x else y) = (if cond then y else x).

Proof. destr_bool. Qed.
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