
Automating
Resilience Tuning

Computing Science Thesis

Author:
Lars Hartmann (3344835)

l.b.l.hartmann@students.uu.nl

Supervisors Utrecht University:
Marjan van den Akker

Jan Martijn van der Werf

Supervisor Bol.com:
Carst Tankink

Abstract

Resilience frameworks are often used in microservice software ecosys-
tems to ensure that failure in a service does not propagate throughout the
rest of the ecosystem. These frameworks need to be tuned for each connec-
tion they are applied to, which is a time-consuming task. In this work, the
possibilities of using discrete event simulation to help automate the tun-
ing process of resilience frameworks in microservice software ecosystems
is studied. A simulation model is designed, based on the microservice
ecosystem at bol.com, a large online retailer in the Netherlands. The
model simulates a connection between two services in the bol.com ecosys-
tem. The model is improved upon iteratively during the project as a result
of new insights gained from interviews with domain experts at bol.com and
results of experiments. Using system logs available at bol.com, an input
analysis is performed. In collaboration with domain experts at bol.com,
performance measures are designed. Finally, this simulation model is then
used by an optimization heuristic which tests different configurations. The
results of the experiments show some interesting traits of the configuration
parameters and relations they may or may not have with the effectiveness
of the resilience framework.

1

Contents

1 Introduction 4
1.1 Hystrix . 5
1.2 Problem statement . 6
1.3 Discrete event simulation . 7

2 Literature study 9
2.1 Simulation tools . 10
2.2 Simulation design . 11

3 Research Question 13

4 Analysis of the system 14

5 The simulation model 16
5.1 Assumptions . 16
5.2 Performance metrics . 16
5.3 State . 19
5.4 Input parameters . 21
5.5 Events and event handlers . 22

5.5.1 Request received A . 23
5.5.2 Request received B . 25
5.5.3 Request processing start B 26
5.5.4 Request processed B . 26
5.5.5 Hystrix timeout . 29
5.5.6 HTTP error received . 29
5.5.7 Request processed A . 29
5.5.8 Service B breakdown . 30
5.5.9 Service B recovery . 31

5.6 Optimization . 31

6 Input analysis 35
6.1 Request interarrival time . 35
6.2 Probability of service B processing error 36
6.3 Service B request processing time 36

7 Experiments 39
7.1 First iteration: Setup . 39

7.1.1 Experiment description 39
7.1.2 Experiment results . 41

7.2 Second iteration . 42
7.2.1 Experiment description 42
7.2.2 Experiment results . 42

7.3 Third iteration . 43
7.3.1 Experiment description 43
7.3.2 Experiment results . 44

2

7.4 Fourth iteration . 45
7.4.1 Experiment description 45
7.4.2 Experiment results . 45

7.5 Fifth iteration: Optimization . 47
7.5.1 Experiment description 47
7.5.2 Experiment results . 48

8 Conclusion 53
8.1 Iterations . 53

8.1.1 First iteration: Setup . 53
8.1.2 Second iteration . 53
8.1.3 Third iteration . 53
8.1.4 Fourth iteration . 54
8.1.5 Fifth iteration: Optimization 54

8.2 Research question . 55
8.3 Advice to bol.com . 57

9 Discussion 58
9.1 Future work . 58

3

1 Introduction

Websites are often backed up by services. These services are pieces of software
that run on dedicated machines, and supply the website with the data necessary
to function. When a service needs data from another service in order to operate
correctly, it is called dependent on another service. In order to retrieve this
data, a service can send a request for it to another service. The service that
receives the request then responds with the requested data.

In large software projects, often developed by multiple teams, it is often
beneficial to move from monolithic systems, where one service does all of the
work, to an ecosystem of microservices, where the work is divided into smaller
parts and distributed among these microservices. These microservices are easier
to build and manage independently of each other. This allows multiple teams
of developers to build and maintain different parts of the ecosystem more easily.

Another benefit of microservices is that failures are better contained. A
failing service is a service that experiences reduced functionality. When a large
monolithic service fails, it will take the entire system down with it. When a
microservice fails, only a small part of the ecosystem fails, while the rest is
free to continue operation as normal. Other services that depend on the failing
service might experience some reduced functionality themselves, but the overall
ecosystem will continue to operate. However, failure is “infectious” and can
spread from a single microservice to the entire system.

When a service starts failing or timing out it will naturally affect other
services that depend on it. However, it can also affect unrelated services by
claiming all available resources (like CPU time), leaving none for other services.
This in turn means the failures or delays can spread to unrelated parts of the
ecosystem. All these unrelated parts can then propagate failures even further
throughout the system until the entire ecosystem fails.

This is why services should be made resilient. In this context, resilience is
defined as the ability of a network to continue operating on an acceptable level
even when challenged by disruptions, and the ability of the network to restore
itself to its original state of operation without help from outside of the network.
Resilience is a property of services that can help prevent infectious failures. By
recognizing failing services and isolating them, the rest of the ecosystem remains
(relatively) unaffected. An added benefit is that the failing service gets some
“breathing room”, due to it being isolated. This might help the failing service
recover on its own.

At bol.com, a large online retailer in the Netherlands, the webshop is an
application that consists of a front-end backed up by a large number (40+) of
back-end microservices. In an ideal world, these services are available at all
times. In practice, services sometimes run into problems. In order to keep
the webshop open, the entire webshop has been made resilient. This means
that whenever a service fails, or has reduced functionality, use of the service is
automatically disabled. The most important tool that is being used for this is
Hystrix [17].

4

1.1 Hystrix

Hystrix is a framework, developed by Netflix, which adds resilience against dis-
ruptions that increase the time it takes for a service to respond to a request
(latency), and disruptions that cause services to run into errors when respond-
ing to a request (faults). Hystrix improves the resilience of a software ecosys-
tem in a number of ways. This section explains how Hystrix adds resilience
to microservice ecosystems, starting with how Hystrix is integrated with the
ecosystem.

Hystrix is integrated into the software via the code that creates the requests
for data to other services. Each of these requests gets wrapped in a Hystrix
object. This object means that the request is made via Hystrix, and allows
Hystrix to provide resilience strategies for this request. A connection wrapped
in Hystrix like this is called a circuit. Hystrix has a number of mechanisms in
place to make the services it is embedded in more resilient.

When Hystrix determines that the response for a request takes too long, it
can decide to timeout the request. A timeout is an error that states that a
response was not received in a timely manner. This way services do not end up
waiting too long for a response that may never come (long response times are
frequently a sign of failing systems).

Another way that Hystrix provides resilience is by bulkheading. This means
that Hystrix limits the amount of concurrent requests a service can send to each
service that it depends on. By limiting this number, Hystrix ensures that in
the case of a service failure, the number of requests sent to the failing service
are limited. If the bulk-head is full, any new requests to that service will be
immediately rejected. This way, resources to send requests to other non-failing
services do not get claimed by requests to a failing service.

Hystrix also measures the health of a service. This is done by measuring the
amount of requests that:

Succeed Successful requests that get a response in a timely manner.

Fail Requests that fail due to an error in the responding service.

Timeout Request that do not receive a response in a timely manner, and are
therefore interrupted by Hystrix.

Rejected Requests that get rejected because the bulk-head is full.

Based on this health measure, Hystrix can decide to open a circuit breaker.
A circuit breaker is a piece of code that, when opened, stops all requests to a
particular service for a period of time. After this period of time, the service
health is re-evaluated and Hystrix can decide to close the circuit breaker, allow-
ing requests to reach the service, or to keep the circuit breaker open for a longer
period of time.

When a request that is handled by Hystrix does not receive a desired response
for any of the reasons stated above, Hystrix will attempt to respond with a
fallback response. The fallback response is an emergency response that lets the

5

service making the request know that something went wrong, but also allows
the service to operate, possibly with reduced functionality. When a request
that is handled by Hystrix does receive a response in a timely manner without
anything going wrong, the response is handed to the requesting service.

Finally, Hystrix also gathers and reports metrics on the traffic that passes
through it and the health of the services it connects to. These metrics are
gathered and reported in near real-time. Hystrix also monitors configuration
changes in near real-time. This allows engineers to reconfigure Hystrix and see
how their changes affect the system in near real-time.

1.2 Problem statement

When using Hystrix (or any other resilience frameworks, such as Istio [8]), it is
important to make sure it is configured correctly. Hystrix has many different
properties that need to be configured correctly for each different service. A
badly configured Hystrix command can lead to false positives or false negatives.

False positives happen when a resilience framework determines that a healthy
service is failing, and starts to throttle incoming traffic to that service. This
leads to an unnecessary reduction in service. False positives can happen when
the configuration of a resilience framework is tuned too strictly, and takes action
despite the service being healthy.

False negatives happen when a resilience framework does not notice that a
service is failing, and lets all traffic through unimpeded. This means the failing
service does not receive any breathing room, and the resilience framework is not
doing what it is meant to do. This can also lead to a failing service slowing
down all other services that depend on it, for example because requests take
much longer to fulfill. False negatives can happen when the configuration of a
resilience framework is tuned too liberally, and does not take any action despite
the service failing.

Tuning the configurations of these resilience frameworks is a job that is not
trivial to do. This is because the tuning depends on a lot of outside parameters.
According to Netflix [17] and interviews with domain experts at bol.com [10]
important parameters for tuning are peak traffic, mean response time, and ac-
cepted error rates. These parameters and their values can differ for each con-
nection between two services.

In the Hystrix documentation [17], Netflix suggests starting with a quite
liberal configuration, letting the system run in a production environment for
a day or so, and to then tune the configuration more strictly based on the
latency percentiles and traffic volume gathered by Hystrix’s logging of the past
day. Netflix does not give a concrete strategy on how to tune the configuration
more strictly, but they do offer some guidelines. In practice, developers of
different teams at bol.com note [10] that the initial configuration rarely gets

6

updated after some time to be more strict. This in turn results in disruptions
not being detected as efficiently, which means that a failing service consumes
more resources than they would with a stricter configuration. The reason for
this is that, at the moment at bol.com, tuning the Hystrix commands is done
manually, and as such is a difficult and time-consuming task.

In order to evaluate different resilience configurations, their effects on a pro-
duction environment need to be monitored. This makes testing different re-
silience configurations difficult, because that means they need to be tested in a
production environment, where they could possibly disrupt real traffic. Other
environments simply do not have traffic like a production environment, which
means they can not give an accurate display of how the configuration inter-
acts with the real traffic. An alternative would be to create a simulation of a
production environment, including production traffic profiles. This way, test-
ing and evaluating different configurations can be done without disrupting the
production environment.

There are no clear strategies available to tune Hystrix configurations, and the
teams at bol.com have no way of testing new configurations under production-
like circumstances without actually testing on real production servers. They do
have an acceptance environment which is set up to be a copy of the production
environment, including similar data, but that does not have the same traffic
profile as the real production environment. Unfortunately, traffic is one of the
most important factors when configuring Hystrix.

With this in mind, the aim of this project is to obtain knowledge and insight
concerning the evaluation of resilience configurations by creating a simulation
of (a part of) the microservice ecosystem at bol.com (which is connected via a
resilience framework), and testing and evaluating different configurations within
this simulation model. Interviews with domain experts and data from produc-
tion system logs will be used to help the development of the simulation model.

1.3 Discrete event simulation

Simulations are used to model the real world operation of a system on a com-
puter, they allow many “what if?” scenarios to be tested without affecting real
world systems. A simulation generally consists of a simulation model, the simu-
lation clock, and the simulation state. The simulation model is a representation
of the real world system that is being simulated. It describes how different parts
of the system interact with each other. The simulation clock keeps time for the
simulation. Simulations can process time faster than real time, which is why
a simulation clock is necessary to keep track of the simulated timespan. The
state of a simulation is a set of variables that describes the current state of the
simulation.

Discrete event simulation is a type of simulation that assumes that the simu-
lated system does not undergo any changes in between distinct events, therefore
it can skip from event to event. Each event happens at a certain point in time,
and these events are the only things that are capable of changing the state of the
simulation. This also means that every change to the system (such as incoming

7

requests, or service goes down/comes back up) needs to have a corresponding
event. Jumping in time from one event to the next significantly reduces the
runtime needed to simulate a timespan. In order to keep track of all upcom-
ing events an event list is needed in which all upcoming events are ordered by
the time the event occurs. This is typically implemented with a priority queue
sorted by event time. It allows the simulation to obtain events in a chronological
order, even if they were not inserted into the queue in a chronological order.

The advantages of using a simulation to experiment with real world systems
are numerous, a few advantages are listed below:

Cost The cost of creating a simulation of a real world system are often quite
low compared to the cost of the actual real world system;

Safety Experiments run in a simulation can not harm or influence the operation
of a real world system.

Variable Simulations allow experiments to be run under different circumstances
or different variants of a real world system.

Repeatability Simulations are able to repeat the exact same experiment, with
the exact same environment, multiple times.

Using a simulation can also bring with it some disadvantages. Some of the
disadvantages are listed below:

Cost Building and running a simulation can be very expensive (in terms of
time and resources) compared to other research methods.

Information required Building a simulation requires a lot of in-depth knowl-
edge and information about the system.

Abstraction Building a simulation requires abstraction of the system. It is
possible that this abstraction oversimplifies the system, which could make
the results of the simulation unreliable.

8

2 Literature study

The subject of this project is very specific. It is about using a specific tool
(discrete event simulation) to attempt to solve some problem (evaluating re-
silience framework configurations) in a certain environment (microservice soft-
ware ecosystem). Because of this, previous work in this very specific field was
not found. However, previous work in related fields has been found.

In this chapter all the identified research is listed and described, as well
as the takeaways that are relevant to this project. This chapter will start with
identifying why simulation could be used, followed by research on how simulation
can be used. Next, a number of studies showcasing different simulation tools
will be reviewed. Following this, research on how to setup a simulation model
and the challenges in the field of simulation are reviewed. Finally, work that
will be helpful in defeating these challenges is identified.

The big question is: Why use simulation for this? In the paper “Software
process simulation modeling: Why? What? How?” [15] the purpose of simulat-
ing a software development process is clustered into 6 categories:

• Strategic management;

• Planning;

• Control and operational management;

• Process improvement and technology adoption;

• Understanding;

• Training and learning.

The most interesting purpose, with regards to this project, is understanding.
The goal of this project is to understand more about the impact of different
resilience configurations. The authors talk about simulating software develop-
ment, but this can be extended to simulating actual software. The category
control and operational management seems interesting for this project as well,
however this category encompasses the project management side of a simulated
process, such as development time. In this sense, simulations can help managers
determine if corrective action is needed for a development that seems to struggle
with certain issues.

The most closely-related work is a study by Schaeffer-Filho, Smith & Mauthe
on policy-driven network simulation [18]. In their paper, the authors propose
a combination of a network simulator and a policy management framework to
develop a network resilience simulator. The policy management framework acts
as a resilience framework, in that it can be used to enact certain predefined re-
silience policies. They demonstrate a basic functionality of their model, namely
that policies can be altered and administered during runtime. This is demon-
strated by limiting the bandwidth of a connection between two servers during
operation. Their work focuses on network infrastructures and how they can

9

be combined with policy management frameworks to manage different amounts
of traffic. Furthermore, the authors have combined two pre-existing tools and
mainly focus on how they managed to do that. Related to this study, no valu-
able insights, such advantages and disadvantages of their work are given. The
takeaway from their work for this project is that there are network simulation
tools available and that they can be combined with policy management frame-
work in order to simulate resilience frameworks. However, the tools showcased
in this work focus mainly on the network infrastructure part (routers), whereas
this project focuses more on the software side (services). Also, the development
for the chosen network simulator (SSFNet) has been discontinued in 2004. It
would be interesting to see if up-to-date network simulation tools exist that also
allow simulation of higher-level software systems without worrying about the
underlying network architecture and/or topology.

2.1 Simulation tools

The following literature on different network simulation tools has been identified:

An article on Advances in Network Simulation [3] talks about the Virtual
InterNetwork Testbed (VINT) project, which is a simulation tool for net-
work researchers. This tool focuses on network infrastructure and topol-
ogy, whereas this project focuses more on the software of a microservice
ecosystem.

A study on SimFlex [9] details how this tool can be used to simulate a full
system, up to and including the complete instruction set architecture and
all connected peripherals. This tool is built to simulate hardware systems,
but this project aims to simulate software systems.

In Gremlin: Systematic Resilience Testing of Microservices [13], a
different approach from simulation is offered for resilience testing. The
authors have developed a tool that functions as a sort of man-in-the-
middle. All services interact with each other via this Gremlin tool, which
then allows researchers to fake disruptions in the network. This allows
the researchers to observe the behaviour of the affected systems. Gremlin
is also able to gather metrics from all traffic it handles. Using a tool like
this means that you are disrupting your business to research the effect
on disruptions on your system, which is the exact issue that simulating
the environment tried to avoid. Furthermore, engineers at bol.com have
experience with these kind of tools, and note that these kinds of tools
seem to scale very poorly, making them less useful for larger systems [10].

The authors of Network-Oriented Full-System Simulation using M5 [1]
showcase M5, a simulation tool that can deal with the challenges of ever
increasing I/O data rates. It provides a detailed performance model of all
I/O activity during a simulation. This tool focuses on I/O, which is out
of scope for this project.

10

Model-driven Generation of Microservice Architectures for Bench-
marking Performance and Resilience Engineering Approaches [6]
is a study in which another alternative to simulation is suggested. The au-
thors have created a tool that can mirror an existing software ecosystem,
and allow researchers to perform tests and experiments on that mirror
copy. The copy on which to experiment will run in real time, whereas
simulations can run faster than real time. This means that this tool will
take significantly more time to simulate a timespan.

2.2 Simulation design

With none of the tools identified above being suited for the aims of this project,
the alternative is to develop a dedicated simulation. The next step, with or
without simulation tooling, is designing the simulation model. The authors of
the paper Software process simulation modeling: Why? What? How? [15] also
talk quite extensively about what to model in a simulation. The key aspects are
model scope, result variables (output metrics), process abstraction, and input
parameters. Figure 1 demonstrates the relationship between these aspects and
the purpose of the model. This model will be especially useful when designing
the simulation model.

Figure 1: Relationship between aspects and purpose of a simulation model

Of course there are challenges when trying to simulate microservice ecosys-
tems. The authors of Performance Engineering for Microservices: Research
Challenges and Directions [12] talk about some of these challenges. The three

11

main areas in which they describe these challenges are performance testing,
monitoring, and performance modeling. One of these challenges is finding an
appropriate modeling abstractions. This study will be helpful in identifying the
relevance of this project.

In the paper Formalizing software ecosystem modeling [2], the authors talk
about the need for a formal modeling standard for software ecosystems and
the environments in which they live. They propose a set of rules that help
identify relationships between different parts of the ecosystem, which in turn
can be developed into a model of the software ecosystem. The model that the
authors describe in this paper is a model that can be used to explain the software
ecosystem in boardroom meetings with (primarily non-technical) stakeholders.
The proposed method is an interesting take on modeling software ecosystems,
but it is not suited for creating simulation models of a software ecosystem.

Finally, authors of a paper on network resilience evaluation [19] talk exten-
sively about what resilience is, what different types of resilience there are, and
how resilience can be quantified. Methods of quantifying resilience in terms of
operational state and service level of the system, and on the temporal aspects
of resilience are identified. Although the majority of the paper focuses on the
physical infrastructure of networks and how they can be made more resilient,
the quantification of resilience will be useful to help design the performance
metrics for this project.

12

3 Research Question

The goal of this project is to obtain insight and knowledge concerning the eval-
uation of different configurations for resilience systems by creating a simulation
of (a part of) the microservice ecosystem at bol.com. To reach this goal, the
following main research question has been defined:

“How can discrete event simulation be used to support the decision-making
process of tuning resilience framework configurations in a microservice

software ecosystem?”

To help answer this question, the following sub-questions have been defined:

1. How can a microservice software ecosystem that uses a resilience frame-
work be modelled as a discrete event simulation model?

2. How can different resilience configurations be evaluated and compared?

3. What different resilience configurations are interesting to compare?

4. Do the results of the experiments offer valuable insights into tuning re-
silience framework configurations?

The designed simulation model will be implemented, and different resilience
configurations will be evaluated. These experiments and their results are also an
important goal of this project. After the implementation of the simulation model
and the experiments, the sub-questions can be answered, and subsequently the
main research question can be answered. The design of the simulation model
will be based on the microservice ecosystem back-end of the bol.com webshop,
which uses the Hystrix framework for resilience.

13

4 Analysis of the system

The system being simulated is a part of the microservice ecosystem at bol.com.
It consists of two services and the connection between them. This connection is
wrapped in a Hystrix command. The simulated services are the Inspire-to-Sell
(I2S) service and the Sellingoffer-Integration-Service (SLI). The Inspire-to-Sell
service shows advantages of ordering a product at bol.com, such as delivery
options and times. To display this for these products, it requires pricing and
delivery data from the Sellingoffer-Integration-Service. These services and the
connection between them are used as data providers for the simulation. The
data supplied by these services are used to transform the abstract simulation
implementation into a concrete representation of a connection in the bol.com
microservice ecosystem.

These services are called service A (I2S) and service B (SLI) in the simula-
tion. The I2S service (service A) receives a request that requires it to talk to
the SLI service (service B). Service B can handle requests from service A, but
needs some time to do so. In order to protect itself, service A has wrapped its
calls to service B in a Hystrix wrapper.

In Figure 2 the flow of a request through this system is shown. Upon receiv-
ing a request, service A asks Hystrix to send a request to service B. If Hystrix
allows this, the request is sent and a timer is set. If the timer reaches zero before
Hystrix has received a response from service B, Hystrix will cut the processing
of the request short and tell service A it was unable to get a response from
service B. If something goes wrong during transmission of the request to service
B, the HTTP driver will notify service A. If the request does reach service B,
it is offered to the request queue of service B. If the queue is full, it will reject
the request, and service B sends an error response to service A immediately.
This process is similar to the bulkheading process in Hystrix, the difference is
that the Hystrix bulkhead protects the client (service A), and this request queue
provides a limit to service B. Hystrix has no insight in the state of the request
queue of service B.

If the queue accepts the request, it will wait in the queue until service B is
idle and takes a new request from the queue. When the request is taken from
the queue, service B will start processing it. When service B finishes processing
the request (successfully or unsuccessfully), it will send a response to service A
with the result. Finally, this allows service A to finish processing the request.

For bol.com it is interesting to see how Hystrix behaves when a part of the
system malfunctions, in particular when service B malfunctions. Service B can
malfunction in two different ways:

1. It breaks completely. Service B drops all requests in the queue and no
longer accepts new requests. The service becomes completely unrespon-
sive.

2. It becomes very slow. Service B keeps operating as it normally would,
except that it takes much more time than normal to process a request.

14

Figure 2: Flow of a request through the analyzed part of the system

Hystrix acts in accordance to its configuration. According to domain ex-
perts at bol.com [10], most of the services at bol.com use the default Hystrix
configuration. A Hystrix configuration consists of the 5 following parameters:

Sleep period When Hystrix determines a circuit is unhealthy, it blocks all
traffic over this circuit for a period of time before checking to see if it has
recovered. The default value is 5 seconds.

Volume threshold Hystrix considers the circuit health a valid metric only if
a minimum number of requests has been made in the last 10 seconds. The
default value for this threshold is 20.

Error rate threshold A Hystrix circuit is deemed unhealthy when the error
rate exceeds this threshold. By default, the error rate has to exceed 50%.

Bulkhead size The size of the bulkhead for this circuit is determined by this
parameter. The default configuration for this parameter is 10.

Timeout delay This parameter specifies how long Hystrix allows a request to
go on before it interrupts the request for taking too long. This is set to 1
second by default.

15

5 The simulation model

This chapter aims to give an overview of the simulation model, which is based
on part of the bol.com microservice ecosystem back-end and its implementation
of the Hystrix resilience framework. More specifically, the model is based on
the Inspire-to-Sell (I2S) service, the Sellingoffer-Integration-Service (SLI), and
the connection between these services. Section 5.1 describes the assumptions
underlying the simulation model. In section 5.2 the performance measures are
described. Furthermore, the state of the simulation model is detailed in section
5.3, and in section 5.5 a specification of the events of the simulation model and
an overview of their corresponding event handlers is given.

5.1 Assumptions

All simulations are modelled with certain assumptions in mind. These assump-
tions help define the scope of the simulation. The following assumptions were
made during the development of the simulation model:

• Any failure in processing a request is not the fault of service A. Only
service B can fail during processing a request.

• A request is fully processed once service A returns a response of any kind.
This means that requests are also fully processed if the response contains
a non-successful result.

• Service A receives only valid requests.

• Service A needs no additional time to process a request beyond the time
it takes to get a response from service B.

• The network between services works flawlessly and instantly. This means
that the probability of service B not receiving the request is 0. In this
case, the HTTP driver only notifies service A of an error if a request is
sent to service B while it is broken down completely.

• The Hystrix fallback response is instantaneous, satisfying, and identical
for all requests that require it.

Most of these assumptions are made to scope the simulation to those parts
that Hystrix can influence.

5.2 Performance metrics

The performance of the system is based on the following performance metrics:

Number of requests Split into categories for each possible result of a pro-
cessed request. This means that, alongside numbers for successful re-
quests, separate metrics for each different error type are tracked (circuit-
breaker, bulkhead, Hystrix timeout, HTTP error, and service B error).

16

Average processing time This metric gives insight into how long requests
take on average to fulfill. An average over all requests is available, as well
as averages for only successful and for only failed requests. The processing
time for a request is the time that service A needs to send a response to
the request. It is measured by the time difference between the moments
service A receives a request, and the moment service A send a response
to a request (the moment the request is fully processed). These values
are tracked by a variable that holds the sum of the processing times of all
(successful, failed, and all) requests. Finally, this sum can be divided by
the number of (successful, failed, or all) requests to get an average value.

Error rate The fraction of all requests that result in an error. This metric
shows the health of the system.

False negative time Time during which the Hystrix circuit is closed (letting
requests through), but the service has broken down (or become latent).
This measures how quickly Hystrix reacts to a failing service.

False positive time Time during which the Hystrix circuit is open (stopped
requests), but the service is healthy. This measures how quickly Hystrix
reacts to a recovered service.

Service B downtime The amount of time service B is broken down.

The false positive and false negative time metrics are based on the work by
Sterbenz et al. on network resilience evaluation [19]. In their paper, a model for
measuring resilience is proposed, based on the level of service provided and the
operational state of the system. This model is used as the inspiration for the
metrics in this simulation. The level of service for a single request provided in
this simulation is a binary variable, either the request returns successfully, or it
returns a fallback response (which is assumed to be equal between all requests).
Note that an identical service level for all errors (a fallback response) does not
mean all errors are identical. It only means that the response sent back when
an error occurs is the same for all errors. Internally, the different errors are still
tracked separately.

The operational state is also modelled as a binary variable, the service is
either healthy, or it is not (either it is broken completely, or it has become slow).
Because no further progression is simulated between the unhealthy operational
states (for example, a service cannot progress from being slow to breaking down
entirely), both these states can be seen as simply unhealthy.

In their work, the operational state is said to decrease over time when a
service starts to break down. However, in this simulation the decrease in oper-
ational state is immediate and binary. Service B is either healthy or unhealthy,
and this transition happens in a single moment. Similarly, the service level of the
response is binary as well, either a successful or a fallback response is returned.
With the proposed model and these differences in mind, the false positive time
and false negative time metrics have been designed. The idea is to measure how

17

fast Hystrix is able to react to a failing service, with the aim of minimizing the
time Hystrix takes to react. In Figure 3 this model is visualized.

Figure 3: Visualization of the proposed performance metrics: false negative time and false
positive time.

These three metrics (false negative time, false positive time, and service B
downtime) can be calculated by keeping track of the most recent times that
service B breaks down and recovers, and the most recent times that the Hystrix
circuitbreaker opens and closes (this signifies that Hystrix has determined that
service B is unhealthy). When any of these four things happens, the timestamp
is saved. In the case of a service B recovery happening, the service B downtime
metric is updated with the difference between the timestamp that service B
broke down and the time at which service B recovered. Next, the State is checked
to see if a period of false positive time or false negative time has occurred. If
it has, the length of this period is calculated by determining the difference
between the current time and the start of the period. The start of the period
is determined by the largest of two parameters, which are different based on
whether false negative time or false positive time is being calculated. In the
case of false negative time, the last time that service B broke down or the last
time that the Hystrix circuitbreaker closed signify the start of the period. In
the case of false positive time, the last time that service B recovered or the
last time that the Hystrix circuitbreaker opened signify the start of the period.
Algorithms 1 through 4 show the pseudo-code the metrics use to determine
calculate these periods.

Algorithm 1 Update false negative time metric when Hystrix circuitbreaker
opens.

Set lastHystrixOpenTime = time
if Service B is not healthy then

Update falseNegativeTime += (time - max(lastServiceBBreakdownTime, lastHystrix-
CloseTime))
end if

18

Algorithm 2 Update false positive time metric when Hystrix circuitbreaker
closes.

Set lastHystrixCloseTime = time
if Service B is healthy then

Update falsePositiveTime += (time - max(lastServiceBRecoveryTime, lastHystrixOpen-
Time))
end if

Algorithm 3 Update false positive time metric when service B breaks down.

Set lastServiceBBreakdownTime = time
if Hystrix circuitbreaker status is OPEN then

Update falsePositiveTime += (time - max(lastServiceBRecoveryTime, lastHystrixOpen-
Time))
end if

Algorithm 4 Update false negative time and service downtime metrics when
service B recovers.

Set lastServiceBRecoveryTime = time
Update serviceBDowntime += (time - lastServiceBBreakdownTime)
if Hystrix circuitbreaker status is not OPEN then

Update falseNegativeTime += (time - max(lastServiceBBreakdownTime, lastHystrix-
CloseTime))
end if

5.3 State

The state represents the reality of the simulation at a certain point in time. This
reality consists of different relevant variables that are manipulated by the events
of the simulation. In this section an overview of the different state variables is
given. The state consists of the following elements:

Hystrix Tracks the variables Hystrix needs to monitor the circuit during the
simulation. These variables are:

• Current number of concurrent requests
To determine if the bulk-head is full or not, the current number
of concurrent requests is needed. This number indicates how many
requests have been sent to service B and have not yet received a
response of any kind.

• Circuit health
Keeps track of the health of a circuit. Hystrix opens and closes the
circuit breaker based on the health of a circuit. The circuit health
consists of 10 buckets. Each bucket keeps track of the number of
failed and successful requests that have happened in a second. It
keeps track of separate counters for the different kind of failed re-
quests (due to error in service B, Hystrix timeout, bulkhead rejection,
circuitbreaker rejection, or bad arguments). If the health of a circuit
drops below a set threshold, Hystrix opens the circuit breaker. Note

19

that this is a measure that Hystrix uses to determine the health of a
service. It is not the same as the service level of a service.

• Circuit breaker status
The circuit breaker has three different possible states. The CLOSED
state indicates that the circuit works as normal, letting requests
through. The OPEN state breaks the circuit, meaning that Hys-
trix rejects all requests. Finally, the HALF OPEN state allows one
request through, to test if a circuit has recovered.

• Circuit opened timestamp
Keeps track of when the circuit breaker was opened, if it is currently
open. If it is not, the timestamp is set to −1.

List of requests The progress of all requests that are currently being pro-
cessed needs to be registered. In order to reduce the required memory to
run a simulation, requests that have no future events scheduled anymore
are removed from the State. Variables to be saved are:

• Request ID
An ID to identify the request.

• Request status
This variable indicates where in the process this request is. Possible
values are: RECEIVED A, HYSTRIX TIMEOUT, HTTP ERROR,
RECEIVED B, SUCCESS B, ERROR B, HYSTRIX CIRCUITBREAKER,
HYSTRIX BULKHEAD, PROCESSING B, PROCESSED A. These
values correspond to the different stages a request can go through
during processing. It is used to determine the type of response sent
back by service A.

• Request received timestamp
A timestamp that indicates when the request was initially received.

• Request path status
Request paths are paths through the request flow that the request
can walk. This means that while the request is walking any of these
paths, the request needs to be kept in the State. The three paths
are HttpErrorPath, HystrixPath, and ServicePath. Each path vari-
able takes one of three possible values: UNUSED, UNFINISHED,
or FINISHED. When none of the path status variables are UNFIN-
ISHED, the request can be deleted safely from the State. The purpose
of these statuses is to determine if a request can be deleted from the
State safely. The HttpErrorPath is the path through the HTTP error
received event. The HystrixPath is the path with the Hystrix timeout
event. The ServicePath is the path that goes through the different
service B events.

Service B Contains the state of Service B. This in turn keeps track of the
following variables:

20

• Request queue
The request queue is a first-in-first-out queue where incoming re-
quests are stored until they can be processed. When the service is
free to process a request, it polls the queue for the next request and
starts processing it. The queue also has a maximum size. When the
number of incoming requests is equal to its maximum size, the queue
is filled and any other incoming requests get rejected instantly.

• Idle status
Tracks if the service is currently processing a request, or if it is free
to start processing a new request. Possible values are: True indicates
the service is idle, False indicates the service is processing a request.

• Service status
Tracks the current status of the service. The service can be either
HEALTHY, BROKEN, or LATENT.

5.4 Input parameters

The simulation model requires a number of input parameters to realistically
simulate the real world system. This section lists the input parameters required
by the simulation. In chapter 6 an analysis for some of these parameters is
performed.

Request interarrival time The time between two sequential requests reach-
ing service A.

Probability of network failure The probability that requests are lost in the
network during transfer between service A and service B. Since the network
is assumed to work perfectly, this probability is 0.

Network latency The time it takes to send a request over the network between
service A and service B. Again, since the network is assumed to work
perfectly, this latency is also 0.

HTTP driver time to error Time it takes for the HTTP driver to determine
that a request is lost in the network. At bol.com, the default value for
this parameter is 1 second [10].

Probability of service B processing error The probability of encountering
an error when service B is processing a request from service A.

Service B request processing time The time service B needs to process a
request from service A.

Hystrix configuration A Hystrix configuration as defined in chapter 4.

Breakdown scenario Introduced in iteration 4, the breakdown scenario lists
a number of breakdowns that happen during simulation. Each simulation
specifies when the breakdown occurs, how long until service B recovers,

21

and what the delay caused by the breakdown is. A delay of 0 indicates
that service B breaks down completely instead of just becoming slow.

In chapter 6 an analysis is performed for the request interarrival time, the
probability of service B processing error, and the service B request processing
time.

5.5 Events and event handlers

Events are what actually drives the simulation forward. They are the only way
to change the state of the simulation. Each event happens at a certain time, and
all events are handled in order of time (events that happen first, get processed
first). The events will be explained in detail in the following subsections. But
first, a brief overview of all events:

Request received A The handler for this event is by far the most complicated
of the entire simulation. This event signifies the arrival of a request from
outside the system to service A. The handler performs a number of checks
that determine how the request will be serviced.

Request received B This event is used to get the request from service A into
the request queue of service B.

Request processing start B Checks if service B is currently idle and if there
is a request waiting to be processing. If so, it will take the request from
the request queue and start processing it.

Request processed B Models service B finishing processing a request and
forming a response for service A.

Hystrix timeout Signifies Hystrix determining that a request is taking too
long and interrupting the processing of the request.

HTTP error received When something goes wrong sending a request to ser-
vice B, the HTTP driver will give an error. This event also occurs when
service B is broken down and unable to respond to incoming requests at
all.

Request processed A Service A is finished processing the request and is
ready to send back a response.

Service B breakdown Service B breaks down because of some outside force.
The input parameters specify if service B breaks down completely or if it
becomes latent. A service B breakdown has a start time, duration, and
type of breakdown. Breakdowns should not overlap.

Service B recovery Service B recovers thanks to some outside force and re-
sumes normal operation.

22

Figure 4 shows the event graph for the proposed model. The Request received
A event is the entry point. An initial Request received A event is scheduled upon
initialization of the simulation, and from that initial event all future events
(except Service B breakdown and Service B recovery events) are scheduled. The
Service B breakdown events for each breakdown specified in the input parameters
is also scheduled upon initialization of the simulation. These events schedule
their Service B recovery events when they occur.

The Request received B, Request processed B, Hystrix timeout, HTTP error
received, and Request processed A events all contain the ID of the request they
correspond to. The Request processing start B event determines which request
it is going to affect itself, so it does not contain a request ID. The Service B
breakdown and Service B recovery events do not correspond to requests, and as
such do not contain a request ID either.

Shown in the event graph are the different paths each request can take. The
Request received A event is able to schedule all other events, except for Request
processed B, Service B breakdown, and Service B recovery. It is possible that
the Request received A event schedules multiple new events, thereby creating
different paths through the graph for a particular request. These multiple paths
eventually all converge back to the Request processed A event, but not at the
same time. For this reason, the simulation keeps track of which paths a request
is walking and if they have completed any path. A request is only safe to remove
from the State when the simulation knows for certain that there are no more
events that affect that particular request, which is when all of the paths it walks
are finished. The Service B breakdown and Service B recovery events model the
breakdown and recovery of service B by an outside force.

Note that latency is modelled in the event graph, however, due to the as-
sumptions and specified input parameters, the latency between events is set
to 0, effectively eliminating it from the simulation. It is, however, possible to
introduce latency via the input parameters, which is why it is modelled in the
graph.

Final note is that event handlers are only allowed to change the Request
Status variable if this status is not PROCESSED A. This means that service A
has not yet sent back a response for this request, which in turn means the type
of response sent is also not yet determined.

5.5.1 Request received A

This event is the entry point for the process. Ultimately this request has to be
responded to in a timely fashion and with an acceptable service level. In addition
to handling the event, the handler also schedules another Request received A
event with regards to the interarrival time.

The handler for this event models the Hystrix process that happens when
making a request from service A to service B wrapped in Hystrix. New requests
are registered to the State. Then the event handler will ask the Hystrix module
if it allows the request to go through. The Hystrix module answers with the
states of the circuit breaker, which is affected by the circuit’s health, and the

23

Figure 4: Event graph of the proposed simulation model.

bulkhead, which limits the number of concurrent requests to a service.
Based on the the answers the Hystrix module gives, the event handler sched-

ules a Request received B, Hystrix timeout, HTTP error received, and/or Request
Processed A event(s). The Request received B event is scheduled based on the
latency between service A and service B. The Hystrix timeout and HTTP er-
ror received events are scheduled based on input parameters of the simulation,
namely the configured Hystrix timeout value and the HTTP driver time to er-
ror value. The request path statuses are then updated according to the paths
that the request will take. Algorithm 5 shows the pseudo-code for this event’s
handler.

Note that determining if service B will receive the request may seem like
looking into the future. The reason that this is determined here is that the time
of the next event scheduled is based on the result of this check. Furthermore, the
State changes performed after this check are purely administrative, and serve

24

only to help reduce the memory needed to run the simulation.

Algorithm 5 The Request received A event handler

Register new request to State
Generate interarrivalTime = time until the next request is received
Schedule new Request received A event at (current time + interarrivalTime)
Determine circuitbreakerRejects = True if the Hystrix circuitbreaker does not allow the
request through, False otherwise
Determine bulkheadRejects = True if the bulkhead is full, False otherwise
if circuitbreakerRejects OR bulkheadRejects then

if circuitbreakerRejects == True then
Set request status to HYSTRIX CIRCUITBREAKER

else
Set request status to HYSTRIX BULKHEAD

end if
Set status for all request paths of this request to UNUSED.
Schedule new Request processed A event at current time

else
Increment Hystrix current number of concurrent requests by 1
Schedule new Hystrix timeout event at (current time + hystrix timeout value)
if The network delivers the request to service B successfully then

Set status of request path HttpErrorPath to UNUSED for this request
Set status of request path HystrixPath to UNFINISHED for this request
Set status of request path ServicePath to UNFINISHED for this request
Generate latency = time needed to transfer request over the network
Schedule new Request received B event at (current time + latency)

else
Set status of request path HttpErrorPath to UNFINISHED for this request
Set status of request path HystrixPath to UNFINISHED for this request
Set status of request path ServicePath to UNUSED for this request
Generate timeToError = time it takes HTTP driver to throw error
Schedule new HTTP Error received event at (current time + timeToError)

end if
end if

5.5.2 Request received B

The Request received B event signifies that service B has received the request
and offers it to the request queue. As shown in Algorithm 6 the handler for this
event checks if service B is operational, if so it offers the request to the queue,
and based on whether the queue accepts the request or not, it schedules one
of two possible events. If the queue accepts the request, a secondary check is
performed to see if the service is currently idle. If it is, a Request processing start
B event is scheduled. If the queue rejects the request, that indicates the queue
is full, and the request will get rejected immediately. In this case, a Request
processed B event is scheduled. A rejection from the request queue results in
the same error as when processing the request in service B fails. If service B is
not operational, then this is as far as this request will walk the ServicePath. As
such, the handler will only schedule a HTTP Error received event, update the
status of the ServicePath request path, and delete the request from the State if
it is safe to do so.

25

Algorithm 6 The Request received B event handler

Retrieve request from State by request ID
if Service B is not broken then

if Request status is not PROCESSED A then
Set request status to RECEIVED B

end if
Offer the request to the request queue
if Request queue size < request queue maximum size then

Request is accepted into request queue
if Service B idle status == True then

Schedule new Request processing start B event at current time
end if

else
Schedule new Request processed B event at current time with successFlag = False

end if
else

Schedule new HTTP Error received event at current time
Set status of request path ServicePath to FINISHED for this request
if Request is safe to delete from State then

Delete this request from State
end if

end if

5.5.3 Request processing start B

This event is named this way because it is used to attempt to have service B
start working on processing a request in its request queue. Algorithm 7 shows
that the event handler checks if service B is operational, idle, and if there is
a request waiting in the queue (note that it only reads from the State at this
point). If it passes these checks, it updates the state of the service and the
request (if necessary), and after that it determines if service B will be successful
in processing the request. Based on this, a new Request processed B event is
scheduled with a flag signifying the success or failure of processing the request.
An additional delay is taken into account when scheduling the new events if
service B is latent. If service B is not operational, this event handler does
nothing.

The checks at the start are there to prevent the simulation from edge cases
where a Request processing start B event is scheduled at the same time a Service
B breakdown event or another Request processing start B event is scheduled.

Again it may seem that the event handler is looking into the future when de-
termining if service B will process the request successfully. As with the Request
received A event, the reason for this is that the time of the next event depends
on whether or not service B is successful in processing the request.

5.5.4 Request processed B

The Request processed B event signifies that service B has processed the request
(successfully or unsuccessfully, as indicated by a flag), and is ready to send back
a response to service A.

26

Algorithm 7 The Request processing start B event handler

if Service B status is not broken then
if Service B is idle then

if There is a request waiting in the request queue then
Retrieve the first request waiting in the queue
Update service B idle status = False
if Request status is not PROCESSED A then

Set request status to PROCESSING B
end if
Set delay = 0
if Service B is latent then

Generate delay = additional delay in execution due to service latency
end if
if Service B will process the request successfully then

Generate executionTime = time service B needs to fulfill request
Schedule new Request processed B event at (current time + executionTime +

delay) with successFlag = True
else

Generate timeToError = time service B runs until it throws an error
Schedule new Request processed B event at (current time + timeToError + delay)

with successFlag = False
end if

end if
end if

end if

In Algorithm 8 the pseudo-code for this event’s handler shows that this event
determines if service A receives the response sent from service B. If it does, a
Request processed A event is scheduled. If it does not, no new event is scheduled
and the State is updated. If allowed, the Request is removed from the State.

Additionally, if the previous event was a Request processing start B event,
that indicates that the service has been working on processing the request. In
this case, the state of the service needs to be set to idle, and if the request queue
is not empty, a new Request processing start B event is scheduled.

If the previous event was not a Request processing start B event, that means
it was a Request received B event (as seen in the event graph in Figure 4, the
Request processed B can only be created by these two events). This in turn
indicates that the request was rejected from the request queue, and as such,
service B was never working on processing it.

All of this only happens if service B is operational (in other words, not broken
down completely) at this time. If it is broken down completely, the ServicePath
status of the request is updated and no further events are scheduled for this
request, signifying that the processing of this request was lost when the service
broke down.

If no further events are scheduled for this request (because service A does
not receive the response, or because service B is broken), the ServicePath status
of the request is set to FINISHED and a check is performed to see if the request
can be deleted safely from the State. Normally, this is done in the Request
processed A event, but this path will never reach that event in this case.

27

Algorithm 8 The Request processed B event handler

Retrieve request from State by request ID
if Service B is not broken then

if Request status is not PROCESSED A then
if successFlag == True then

Set request status to SUCCESS B
else

Set request status to ERROR B
end if

end if
if Service A will receive the response then

Generate latency = time needed to transfer response over the network
Schedule new Request processed A event at (current time + latency)

else
Set status of request path Request path to FINISHED for this request
if Request is safe to delete from State then

Delete request from State
end if

end if
if The previous event was a Request processing start B event then

Update service B idle status = True
if If the request queue is not empty then

Schedule new Request processing start B event at current time
end if

end if
else

Update service B idle status = True
Set status of request path Request path to FINISHED for this request
if Request is safe to delete from State then

Delete request from State
end if

end if

28

5.5.5 Hystrix timeout

The Hystrix timeout event happens when Hystrix determines something has
gone wrong with the request to service B, and decides to cut the processing of
the request short. Algorithm 9 shows the pseudo-code for the event handler for
this event. This event sets the status of the request (if allowed) and schedules
a Request processed A event.

Algorithm 9 The Hystrix timeout event handler

Retrieve request from State by request ID
if Request status is not PROCESSED A then

Set request status to HYSTRIX TIMEOUT
end if
Schedule new Request processed A event at current time

5.5.6 HTTP error received

A HTTP error received event is created to model the scenario that something
goes wrong during transmission of the request from service A to service B. The
HTTP error gets returned to the Hystrix module, which can then further handle
the request.

Algorithm 10 shows that the event handler for this event is nearly identical to
the event handler for Hystrix timeout event. The difference is that the request
status is set to HTTP ERROR. Afterwards, a Request processed A event is
scheduled.

Algorithm 10 The HTTP error received event handler

Retrieve request from State by request ID
if Request status is not PROCESSED A then

Set request status to HTTP ERROR
end if
Schedule new Request processed A event at current time

5.5.7 Request processed A

The Request processed A event models the handling Hystrix does with the re-
sponse it has received upon sending the request to service B. This event is the
final event in the request processing procedure.

The event handler for this event updates the state and performance metrics
for this request. It also removes the request from the State if allowed, otherwise
it marks the request as fully processed. Algorithm 11 shows the pseudo-code
for the event handler for Request processed A events.

As can be seen, the number of concurrent requests that Hystrix tracks is only
decreased when the request status is neither HYSTRIX CIRCUITBREAKER
nor HYSTRIX BULKHEAD. This is because those statuses also signify that

29

the request was never added to the current number of concurrent requests (since
Hystrix does not allow the request through).

Furthermore, Hystrix also gets notified of the result of the request, so that it
can update the corresponding counter in the correct circuit health bucket, and
update the circuit health. The performance metrics are also notified of the result
of the request, as well as the processing time of the request. This processing
time is determined by subtracting the time that service A originally received the
request (via the Request received A event) from the current time. Note that this
only happens if the status of the request is not PROCESSED A, signifying that
this is the first time that this request reaches the Request processed A event.
With these values, the metrics can increment the correct counter (based on the
result) and update the corresponding processing time values.

As a result of Hystrix updating the circuit health, it might decide the open
or close the circuitbreaker. If this happens, Hystrix will notify the metrics that
this has happened so that the performance metrics can be updated accordingly
(see section 5.2).

Finally, the path that the request has walked to reach this instance of the
Request processed A event is marked as FINISHED, and the request is deleted
from the State if all paths have been walked. If it has not yet walked all
paths, the status of this request gets updated to PROCESSED A to mark that
a response has been sent for this request.

Algorithm 11 The Request processed A event handler

Retrieve request from State by request ID
if Request status is not PROCESSED A then

Determine result of the request based on the request status
if Request status is not HYSTRIX CIRCUITBREAKER and not HYS-

TRIX BULKHEAD then
Decrease Hystrix current number of concurrent requests by 1

end if
Update counter in current Hystrix circuit health bucket based on request status
Determine processingTime = time - time request was originally received by service A
Update metrics with request result and processingTime

end if
Determine which path the request has walked
Set the corresponding path status to FINISHED
if Request is safe to delete from State then

Delete request from State
else

Set request status to PROCESSED A
end if

5.5.8 Service B breakdown

The handler for this event needs to determine if service B is breaking down com-
pletely or just becoming latent. The status of the service is updated accordingly.
If the service breaks down completely, the request queue is also emptied. Fi-
nally, the breakdown is registered to the performance metrics (see section 5.2).

30

Algorithm 12 shows the pseudo-code for this event handler.

Algorithm 12 The Service B breakdown event handler

Retrieve data about the breakdown at this time from input parameters
if Service B becomes latent then

Update service B status to latent
else

Update service B status to broken
Empty service B request queue

end if
Register service B breakdown to metrics
Schedule new Service B recovery event (current time + time to recover)

5.5.9 Service B recovery

The handler for this event is very simple, as can be seen in Algorithm 13. The
event handler only updates the service B status and register the recovery to
the performance metrics (see section 5.2). The flow of traffic never stopped,
but now service B is able to operate normally again (accepting requests and
processing them in a timely manner). All requests that were dropped and/or
rejected during the breakdown are lost however.

Algorithm 13 The Service B recovery event handler

Update service B status to healthy
Register service B recovery to metrics

5.6 Optimization

In order to find an optimal configuration for the circuit simulated in this project,
the Simulated Annealing heuristic [16] is used. This section describes Simulated
Annealing and the implementation used.

Simulated Annealing is an optimization heuristic based on the annealing
process in metallurgy. The gist of it is that the algorithm evaluates two con-
figurations, an original and its neighbour. Based on the results of these evalu-
ations, a probability is calculated to determine if the neighbour configuration
is accepted or rejected. If the neighbour performs better than the original the
probability that the algorithm accepts the neighbour is 1 . If the neighbour
does not perform better than the original, the probability is less than 1, but
more than 0. In this case, the probability of accepting the worse configuration

is determined by the function f(co, cn, T) = e
co−cn

T , where co is the cost of the
original configuration, cn is the cost of the neighbour, and T is the temperature.
This probability is affected by the difference in cost between the neighbour and
the original, as well as the temperature of the algorithm. Lower temperatures
result in lower probabilities. Larger differences in costs between an original and
a neighbour also result in lower probabilities, if the neighbour has a higher cost

31

than the original. During operation this temperature gradually decreases, until
a stop condition is met (either the temperature goes below 1, or no significant
improvements have been found in the last 80 evaluations).

Because of the runtime of evaluating a single configuration, a simple opti-
mization algorithm that tries all different configurations is infeasible as it would
take too long to find an optimal configuration. Simulated Annealing works in
this scenario because it is a heuristic, and thus does not attempt to evaluate
every possible configuration. Furthermore, it has the ability to escape local
optima.

In order to implement the simulated annealing heuristic, the neighbour func-
tion has to be defined. The neighbour function takes a Hystrix configuration
(the original) and transforms it into a new configuration that resembles the
original, but slightly different. The neighbour function for this heuristic works
as shown in Algorithm 14. It requires a parameter to determine which configu-
ration parameter to change.

Algorithm 14 The neighbour function used by the simulated annealing heuris-
tic.

Determine which configuration parameter to alter
Determine delta = sampled value from normal distribution with mean = 0, sd = 1
Scale delta with a scaling value specific to the chosen parameter
Calculate newValue for parameter by adding delta to original value of the parameter
Create new configuration using original values and newValue for chosen parameter
Return new configuration

The Simulated Annealing algorithm uses the neighbour function to change
the same parameter eight times in a row, then switches on to the next one. When
it is done with the last parameter, the next time it will start over with the first
parameter. The scaling values for each parameter are chosen in such a way that
each neighbour only has a small difference to the original. The scaling values
are shown in Table 1. These values were found after some experimentation
with different values. The idea is that they allow the neighbour function to
take small steps away from the original configuration, while still resembling the
original configuration.

Sleep period Volume threshold Error rate threshold Bulkhead size Timeout delay
300 ms 2 3% 2 100 ms

Table 1: Scaling value for each Hystrix configuration parameter as used by the neighbour
function of the simulated annealing algorithm.

With the Simulated Annealing heuristic, the number of simulations that are
run per configuration is reduced. This reduction came with a caveat, the so-
called ”lucky ticket” problem. If a certain configuration happens to be very
lucky in its evaluation, it might get a score that is impossible to beat for any
other configuration, despite it not being the best configuration. A solution to
the lucky ticket problem is to evaluate both configurations when comparing
them. This way, the impact of a lucky score is reduced significantly. Depending

32

on the number of simulations run per evaluation, a configuration should be
re-evaluated with every comparison, or only after it has been undefeated for
a number of times. Algorithm 15 shows the pseudo-code for the Simulated
Annealing algorithm implementation. Each configuration is simulated 10 times,
and is simulated again for re-evaluation if it has survived 10 comparisons with
other configurations since its last (re-)evaluation. These numbers were discussed
with an expert on simulation at the Utrecht University [11].

Algorithm 15 The Simulated Annealing algorithm implementation.

Initialize temperature = 240 and coolingRate = 0.95
Generate a random Hystrix configuration currentConfig
Evaluate currentConfig to get currentResult
Set bestConfig = currentConfig, and bestResult = currentResult
Set iterationsSinceImprovement = 0, iterationsSinceEvaluation = 0, and iterationsAtTemp
= 0
while temperature > 1 AND iterationsSinceImprovement < 80 do

Determine parameterToChange = iterationsAtTemp/8
Generate newConfig from neighbour function with parameterToChange
Set iterationsAtTemp = (iterationsAtTemp + 1)%40
if iterationsSinceEvaluation > 10 then

Re-evaluate currentConfig
Set iterationsSinceEvaluation = 0

end if
Evaluate newConfig to get newResult
if currentResult−newResult

currentResult
> 0.01 then

Set iterationsSinceImprovement = 0
else

Increment iterationsSinceImprovement by 1
end if
Determine acceptanceProbability as a function of newResult, currentResult, and temper-

ature
if acceptanceProbability > random value then

Accept newConfig as new currentConfig, and newResult as currentResult
Set iterationsSinceEvaluation = 0

else
Increment iterationsSinceEvaluation by 1

end if
if newResult < bestResult then

Accept newConfig as bestConfig, and newResult as bestResult
end if
if iterationsAtTemp == 0 then

Cool down the system by setting temperature = temperature ∗ coolingRate
end if

end while
Write results to file
Output bestConfig

The Simulated Annealing heuristic determines the cost of each configuration
via weights assigned to the different performance metrics. After discussing this
with a domain expert at bol.com [10], the chosen cost function is showed in
Algorithm 16. It shows that the cost consists of a combination of three per-
formance metrics: the average processing time for requests that fail to process
successfully, the false negative time, and the false positive time (see section 5.2

33

for definitions). The average processing time for errors is only relevant when it
is higher than the average processing time for successfully processed requests.
In which case, the difference between these two measures weighs 3000 times as
heavy as the false negative time and false positive time. This number is based
on the decision that an average error processing time of 3 milliseconds is the
maximum value allowed. So at this point, this metric should weigh so heavily
that optimizing other metrics at the cost of it are no longer worth it.

Algorithm 16 The cost function used by the simulated annealing heuristic.

Set avgErrorCost = 0.
if Avg. processing time for errors > avg. processing time for success then

Set avgErrorCost = (avg. processing time for errors - avg. processing time for success)
* 3000.
end if
Return cost = avgErrorCost + falseNegativeTime + falsePositiveTime.

The simulated annealing algorithm has some parameters of its own, namely
the initial temperature and the cooling rate. These parameters are usually cho-
sen by some trial and error, but there are some general guidelines that should be
followed. The cooling rate is a value with which the temperature gets multiplied
each time the system cools down. As such, it should generally lie somewhere
between 0.95 and 0.99. For this project a cooling rate of 0.95 was chosen.

The temperature affects the probability that a worse configuration is ac-
cepted. It should be high enough that at the start of the simulated annealing
algorithm worse configurations have about a 50% chance of being accepted. This
depends largely on the order of magnitude of the calculated costs for each con-
figuration, as well as the order of magnitude of the difference between the costs
of two configurations. These values can all also vary depending on the luck
a configuration has during its evaluation. After experimenting with different
settings for the experiments, an initial temperature of 240 is chosen. The tem-
perature only decreases when the neighbour function has chosen different values
for all parameters 8 times. With 5 parameters, this means that the temperature
decreases after every 40 evaluations.

Finally, the algorithm starts with a random configuration. This configura-
tion is generated by choosing a random value for each parameter in a range that
is specified for that parameter. The specified ranges are: 0 to 10,000 millisec-
onds for the sleep period, 0 to 40 for volume threshold, 0% to 100% for error
rate threshold, 1 to 20 for bulkhead size, and 0 to 3,000 milliseconds for timeout
delay.

34

6 Input analysis

Probability distributions are used in order to incorporate some realistic random-
ness into the simulation. In this chapter an explanation is given why certain
distributions are chosen for the different variables. An input analysis has been
performed for the following variables:

• Request interarrival time

• Probability of service B processing error

• Service B request processing time

This chapter will describe the analyses performed, their results, and the
distributions chosen.

6.1 Request interarrival time

A Poisson process can be used to model the time between two events, if there
is a large population that each have a small chance to decide on their own to
take an action. In textbooks, a commonly used example for this is a grocery
store. In this example a large population of people in the neighbourhood all
decide independently when they want to go to the grocery store. This example
translates very easily to the situation at bol.com: a large population decides
independently to visit the bol.com website. With this in mind, a Poisson process
is chosen to model the interarrival times of requests to service A.

In reality, the traffic is affected by the time of day. To reflect this in the
simulation, a pattern for the traffic scaling depending on the time of day has
been researched. Figure 5 shows such a pattern for the period from 19-3-2018
to 23-3-2018.

Figure 5: Traffic scaling pattern during the day for the period from 19-3-2018 to 23-3-2018.
X-axis: time of day. Y-axis: scaling factor based on average traffic over 7 days.

This pattern is created from the average requests-per-second data in the
system logs, specifically the average requests-per-seconds for the product details
section of the webshop. The I2S service (modelled by service A in the simulation)
is a service that is used in this part of the webshop. The system logs at bol.com

35

keep track of average requests-per-second values for every couple of minutes.
The following steps were used to create a time of day pattern from this data:

1. Define a method to determine scaling values.
To create a scaling pattern, scaling values are needed. These values show
the ratio of a certain datapoint to a base value. This base value is the
average of all datapoints over the last 7 days. The scaling values are then
created by expressing each datapoint as a percentage of this base value.

2. Determine scaling values for datapoints.
By using this scaling calculation, a separate graph is created for each
weekday in a specific week (Monday through Friday).

3. Aggregate scaling values to 15 minute intervals.

4. Average aggregated scaling values between weekdays.
For each 15 minute interval of the day, an average scaling value is com-
puted from the aggregated scaling values of each separate weekday for
that interval.

The result of these steps is a time of day traffic scaling pattern for a specific
week’s weekdays (Monday through Friday), which can be used in the simulation
to make the traffic more realistic.

6.2 Probability of service B processing error

The probability that service B fails to correctly process a request is modelled by
a binary variable, since processing the request either fails or succeeds. To model
this chance, a number is drawn from a uniform distribution and compared to a
threshold value.

Fortunately, there are logs at bol.com that keep track of the amount of
processing errors that happen when the SLI service is processing requests. This
threshold can easily be determined by comparing the number of errors of a
service to the total number of incoming requests.

Unfortunately, the logs at bol.com report errors on a lower granularity than
desired, namely on a service level instead of endpoint level (A service can per-
form multiple tasks, an endpoint indicates which task the service is asked to
perform). Instead of determining the error probability for the specific endpoint
that the simulation models, the average error probability for all endpoints of
this service is used. The average error percentage has been determined to be
8% for the SLI service.

6.3 Service B request processing time

This variable models the time it takes service B (the SLI service) to process a
request. Originally, this variable was modelled as a gamma distribution with
α = 2, because this distribution is often used to model a time to complete task
stochastic variable. However, after doing some research as to what is usually

36

used in other studies to model the time to complete a computational task, a
different distribution was chosen.

Figure 6: SLI service average request processing time per host, over the period from 14-3-
2018 to 21-3-2018. Each colored line represents a separate host. X-axis: time. Y-axis: average
request execution time in milliseconds.

Figure 6 shows the average request processing time for each host of the SLI
service at a specific point in time (a host is an instance of the service running
independently from eachother). The graph shows the data from a period of
seven days (from 14-3-2018 to 21-3-2018), the values in the graph range from
0.6 milliseconds to 1.3 milliseconds average processing time per request. These
values are reported directly by the SLI service itself and represent the time
the SLI service needs on average to process a request from the moment it starts
processing a request to the moment it finishes. Time spent waiting in the request
queue is not incorporated in this metric.

The graph also shows small fluctuations in the measured values depending
on the time of day. During the night, the request processing time is slightly
lower than during the day. An explanation for this could be that during the
night there is less traffic, which means more resources are available to process
requests.

It is important to note that the values in the logs at bol.com are aggregate
values. At bol.com the logs are created by StatsD [7], which works by aggre-
gating data over a short period of time (10 seconds by default). This means
that instead of all the raw data points, the logs are filled with averages over a
short period. This in turn means that fitting a distribution becomes infeasible
for this project.

Instead of attempting to fit a distribution with the average values in the logs,
research to determine what type of distribution is most often used to model the
processing time of computational tasks in other studies was done. Decker and
Lesser [5] have done a study that involves software performing computational
tasks. They mention that they have used an Exponential distribution to model
the duration of the tasks that need to be performed.

Another study, performed by Cabrera et al. [4], finds that processing time
data often has a long upper tail. This means that a very small part of all

37

processing times are very high compared to the rest. These values are so high
that they increase the average over all the data, despite the fact that there are
so few of them. The authors of this study find that the LogNormal distribution
fits best with data that has an upper tail. However, for data where the upper
tail takes extreme values, an Exponential distribution fits better.

Finally, Kavulya et al.[14] have studied the completion times of computer
jobs in a network and conclude that the LogNormal distribution fits best. They
mention testing the Weibull and Exponential distributions as well, but unfortu-
nately no results of these tests are shown.

From this research, it seems that the Exponential distribution and the Log-
Normal distribution are both contenders to model the service B request pro-
cessing time. After discussing these findings with an expert at the Utrecht
University [11], the Exponential distribution is chosen to model the service B
execution time.

In order to sample from the Exponential distribution, an average needs to
be calculated. As is visible in Figure 6, there is a division between two groups
of hosts, where one group of hosts consistently needs more time to process a
request than the other group. There are numerous possible explanations for this
divide. The hosts could be running on a weaker machine, or on a machine that
also runs other services that are very busy.

As a result of this division, two averages have been calculated: one for
the group of slower hosts (consisting of hosts pro-sli-app-002, pro-sli-app-006,
pro-sli-app-007, and pro-sli-app-009), and one for the faster group of hosts
(consisting of hosts pro-sli-app-001, pro-sli-app-003, pro-sli-app-004, pro-sli-app-
005, pro-sli-app-008, pro-sli-app-010, and pro-sli-app-011). Experimenting with
these different averages can show what difference they make. The averages are
calculated over all data points of a group of hosts over 7 days. For the period
of 13-5-2018 to 19-5-2018, the calculated average request processing times are
0.6303 milliseconds for the faster group of host, and 0.8252 milliseconds for the
slower group of hosts.

Note that in this analysis no difference is made between processing time of
requests that fail or succeed. This is because, in the system logs at bol.com,
the distinction between processing time of successful and failed requests is not
made. The data for failed and successful request processing times are collected
into the same metric, without any means of distinguishing them.

38

7 Experiments

This chapter gives an overview of the experiment setup and the results gathered.
It is divided into sections for each iteration of the project. Each section about an
iteration will go into detail about what has changed since the previous iteration,
the current experiment setup, and the experiment results.

The input parameters (specified in the upcoming subsections) are based
on the Inspire-to-Sell service (I2S, modelled by service A) at bol.com and its
connection to the Sellingoffer-Integration-Service (SLI, modelled by service B).
The I2S service is a relatively small service, with a number of connections to
other services wrapped in Hystrix, one of which is a connection to the SLI
service.

7.1 First iteration: Setup

This section describes the experiment setup and results for the first iteration of
the project. This iteration focused on getting the simulation up and running.

The simulation is designed to automatically test different Hystrix configura-
tions against the specified input parameters a variable number of times. This
variable, specifying the amount of times each test case needs to be performed,
is given as a command line argument to the simulation.

In addition to this, the simulation takes a number of additional command
line arguments, specifying where to find the different Hystrix configurations, the
input parameters, and where to write the output of each test case. The following
subsections will describe what input parameters and Hystrix configurations were
used for the experiments.

7.1.1 Experiment description

This subsection mentions the chosen input parameters and Hystrix configura-
tion, and explain why these values were chosen.

Input parameters In order to sample from the chosen distributions, their
means need to be determined. Note that some of these chosen parameters are
not ideal, but have been chosen with an iterative improvement process in mind
(as in, they can and will be improved upon in a later iteration of the project).
Note that the values listed here are the values used in the first iteration of the
project. Later on, some of these values have changed as a result of the input
analysis. As a result, the values listed here may seem inconsistent with earlier
chapters.

• Request interarrival time:
The amount of traffic is based on the performance tests used internally at
bol.com. The I2S service at bol.com has performance load tests that send
165 requests per second for the duration of the test.

39

• Probability of service B processing error:
From the logs at bol.com, the error probability of the SLI service is deter-
mined to lie at 8%.

• Service B request processing time:
The logs at bol.com do report execution time on an endpoint level, but
unfortunately do not make a difference between executions that are suc-
cessful and those that fail. For now, the execution time of an endpoint
is used for the process time of successful and failed requests alike. The
average for this parameter is 10 milliseconds.

• Probability of network failure:
The assumption that the network works flawlessly (see section 5.1) means
that the probability of network failure is 0.

• Network latency:
It is also assumed that the network works instantly (see section 5.1).
Therefore, the network latency is also set to 0.

• HTTP driver time to error:
The time it takes the HTTP driver to determine something went wrong
and send back an error is set to the default value for the ecosystem at
bol.com, which is 1000 milliseconds according to a domain expert at
bol.com [10].

Hystrix configuration The I2S service uses the default Hystrix configura-
tion, which has the following values (as specified in chapter 4):

• Sleep period:
When Hystrix determines a circuit is unhealthy, it blocks all traffic for
5000 milliseconds before checking to see if it has recovered.

• Volume threshold:
Hystrix considers the service health as a valid metric only when a minimum
of 20 requests have been made in the last 10 seconds.

• Error rate threshold:
A circuit is deemed unhealthy when the error rate exceeds 50%.

• Bulkhead size:
Hystrix allows 10 concurrent requests to service B.

• Timeout delay:
Hystrix interrupts the request after 1000 milliseconds have passed.

For now, this is the only Hystrix configuration that is used to run the experi-
ments. In future iterations, different configurations can be used and their results
can be compared.

40

Iteration 1 2 3 (Fast) 3 (Slow) 4
Success 13,115,550 8,367,271 15,431,571 15,431,042 15,275,281
Circuitbreaker 0 192 0 0 167,866
Bulkhead 0 5,160,852 0 0 0
Hystrix Timeout 0 0 0 0 0
HTTP Error 0 0 0 0 1,004
Service B Error 1,140,548 727,586 1,341,789 1,341,734 1,328,258
Avg. processing time 9.50 ms 55.90 ms 0.64 ms 0.85 ms 0.84 ms
Error rate 8.00% 41.31% 8.00% 8.00% 8.93%
False Negative Time - - - - 4,395 ms
False Positive Time - - - - 2,562 ms
Service B Downtime - - - - 900,000 ms

Table 2: Results of the experiments run during iterations 1 through 4.

7.1.2 Experiment results

Because in this first iteration of the project only a single Hystrix configuration
was used, a comparison cannot be made. However, the resulting measures can be
used to determine if the simulation behaves as expected. In Table 2 the averages
of all performance metrics over 30 simulations are shown for each iteration. The
first six rows (not counting the header) show the amount of processed requests,
divided into categories corresponding to their results. The number of requests
that were processed successfully can be found in the Success row. The amount
of requests that were rejected by the Hystrix circuitbreaker or bulkhead is found
in the Circuitbreaker and Bulkhead rows respectively. The number of requests
that took so long that Hystrix decided to interrupt them is shown in the Hystrix
Timeout row. The HTTP Error row shows how many requests were unable to
reach service B. In the Service B error row, the number of requests that resulted
in an error during processing by service B is shown. The next two rows (Avg.
processing time and Error %) show the average processing time of all requests
and percentage of requests that resulted in an error respectively. The last three
rows are only used in the fourth iteration, as they denote the new performance
metrics implemented in that iteration.

What the results of the first iteration show is that the simulation does indeed
behave as expected. A total number of 14,256,098 requests passed through the
system, which is very close to the expected amount for these input parameters
(165 requests per second * (24 hours * 3600 seconds per hour) = 14,256,000
requests).
The fact that the only error that occurs is the Service B error can also be
explained by the input parameters:

• The bulkhead starts rejecting requests when service A wants to send more
than 10 concurrent requests to service B. However, due to the short pro-
cessing time of service B (10ms), the bulkhead will likely never even have
more than 2 concurrent requests in it (165 requests per second * 0.01
second per request = 1.65 concurrent requests).

41

• The HTTP error never occurs, because the input configuration has spec-
ified a flawless network, where no requests ever get lost and there is no
latency.

• This in turn indicates why the timeout error also never occurs. All possible
paths a request can take return their result (success or failure) in around
10 milliseconds. The timeout error only occurs when a request takes 1000
milliseconds to return a response.

• The service errors that do occur make up about 8% of all requests, which
corresponds to how the input parameters are configured.

• Finally, the circuitbreaker only opens when the error rate of the last 10
seconds exceeds 50%. The chance of this happening is very low, because
the only error that actually occurs every now and then is the service error.
The 8% chance of a service error gets nowhere near the 50% errors needed
to open the circuitbreaker.

This indicates that the model behaves as expected for these input parameters.

7.2 Second iteration

In this iteration the request queue logic for service B was implemented and
underlying Hystrix logic was improved. The following subsections detail the
experiments run in this iteration and their results.

7.2.1 Experiment description

No changes to the input parameters were made. The same parameters as those
in the first iteration were used, and can be found in subsection 7.1.1. As such,
only the experiment results will be described in this section.

7.2.2 Experiment results

The Hystrix circuitbreaker logic was a smaller change than the improvement
on the request queue logic, as the queue logic actually changed the simulation
model and the flow of requests through the system. Table 2 shows the averages
of 30 simulations run with the aforementioned input parameters and Hystrix
configuration on the updated simulation model in the column of iteration 2.

The major changes in these results are the large amount of bulkhead re-
jections that occur and the increased average processing time. Both of these
changes can be explained by the new request queue logic. Before these changes,
service B handled all incoming requests concurrently. However, with the new
queueing logic, service B handles only one request at a time and the rest are
inserted into a queue and wait there until they are processed. Naturally, this
results in an increased processing time, which in turn causes the bulkhead to
fill up and start rejecting requests.

42

Some of the smaller differences between the results of these first two itera-
tions are:

Slightly reduced service B error count This can be explained by the fact
that less requests are reaching service B in the second iteration. Of all the
requests reaching service B, about 8% fail, which is in line with the input
parameters.

Small amount of circuitbreaker errors This is an average over all 30 sim-
ulations. In the results of a single simulation there are either 0 or between
800 and 840 circuitbreaker errors. This number of around 800 errors can
be explained. When the circuitbreaker opens, it will stay open for 5 sec-
onds. During these 5 seconds about 825 requests will arrive (165 requests
per second), which immediately get rejected. This means that in some
of the simulation loops, the circuitbreaker opens once. The average error
percentage of all simulations lies around 41%, which is close enough to the
threshold of 50% that a small stroke of bad luck can push it over, opening
the circuitbreaker as a result.

7.3 Third iteration

The focus of the third iteration was to improve the input parameters. An
input analysis has been performed for the request interarrival time and the
service B processing time. Chapter 6 describes the analyses performed and
their outcomes. New values for the request interarrival time and the service B
process time were determined as part of the improvement process.

7.3.1 Experiment description

In this subsection, the changes made to the input parameters are explained. Pa-
rameters that are not mentioned in this subsection are unchanged from previous
iterations.

Request interarrival time In section 6.1 it is mentioned that the traffic
scaling pattern is based on a base value from which the pattern can scale. In
the same section, it also mentioned that the chosen base value is an average
over 7 days. So for these experiments, the average requests per second over the
7 days was used, which is 200 requests per second.

Service B request processing time In this iteration a different distribu-
tion was chosen for this parameter (see section 6.3), namely an exponential
distribution. In section 6.3 two averages are determined. An average of 0.6303
milliseconds is used for the faster group of hosts. The slower group of hosts uses
an average of 0.8252 milliseconds. Both scenarios have been experimented with.

Other than these parameters, no other changes were made to the input
parameters.

43

7.3.2 Experiment results

Table 2 shows the results of the experiments with these new input parameters
in the columns 3 (Fast) and 3 (Slow).

The differences between the two scenarios are visible in the Success, Service
B Error, and Avg. processing time columns. The biggest difference can be found
in the Avg. processing time column, while the differences in the other columns
are very small. Because the differences are so small, a two-sample t-Test assum-
ing unequal variances is performed to confirm which difference are significant.
The numbers in the Success and Service B Error columns are not statistically
significantly different (t Stat 1.234 and 0.191 respectively). The numbers in the
Avg. processing time column do have a significant difference (t Stat 3808.872).
This shows that the difference between the fast and slow scenario only affects
the average processing time. As such, in future experiments there is no need
to test both scenarios. Instead, the slow scenario will be used in future experi-
ments, since it is the worst-case scenario.

Comparing the results to those of the previous iteration shows a number of
differences:

No more bulkhead errors In the second iteration, the results showed that
the Hystrix bulkhead was frequently rejecting requests due to being full.
Because the service B request processing time was changed (from 10 mil-
liseconds per request to 0.7928 milliseconds per request on average, as per
the input analysis in section 6.3) the bulkhead no longer fills up, which in
turn means that no requests get rejected by it. During the input analysis
it became apparent that the values used previously were inaccurate.

No more circuitbreaker errors Because the bulkhead no longer fills up and
rejects incoming requests, the error percentage during simulation no longer
reaches the threshold required to trip the circuitbreaker.

Lower error rate Fewer errors occur, which means the average error rate is
lower.

Lower average processing time The changed input parameters for the ser-
vice B request processing time means that requests are handled so quickly
that the request queue for service B never gets a chance to fill up. This in
turn means that requests are queued for a much smaller amount of time
(if at all). Not having to wait in the request queue combined with the
lower service B request processing times results in a much lower average
processing time.

More requests passed through the system As a result of the traffic input
analysis a time of day pattern and new request interarrival time parame-
ters have been used in this experiment. This is reflected in the amount of
requests that have passed through the system.

44

What these results show is that with the current input parameters, the
services have no problems handling the traffic. Hystrix is only performing some
graceful error handling in the form of fallback responses when service B returns
an error.

7.4 Fourth iteration

The main focus of the fourth iteration was to expand the performance metrics
and the simulation model.

The false positive time, false negative time, and service B downtime metrics
were introduced as new performance metrics to evaluate the configuration used.
These metrics are designed with the goal to minimize the time Hystrix needs to
react to failing services in mind.

In order to better model a service failing, the Service B breakdown and
Service B recovery events were introduced to the model. These events model
an outside force breaking and restoring service B.

Finally, in this iteration the project was also restructured a bit so that
simulations can be run in parallel.

7.4.1 Experiment description

With the introduction of the service B breakdown and recovery events, a scenario
for this breakdown and recovery event needs to be defined. The scenario mimics
a developer accidentally deploying bugged code, thereby breaking the service.
This happens 2 hours into the day, and takes the developer 15 minutes to fix.

Other input parameters are unchanged from previous iterations.

7.4.2 Experiment results

Table 2 shows the results of the experiments run in this iteration for the various
performance metrics in the column for iteration 4. This table also shows the
performance metrics that have been used since the first iteration of the simu-
lation. The results of the new performance metrics added in this iteration are
shown in the last 3 rows of this table.

The values in Table 2 show that the simulation works as expected from the
simulation model. Compared to previous iterations there are a few differences:

Circuitbreaker errors The Hystrix circuitbreaker actually gets some work
once service B breaks down. This results in a number of circuitbreaker
errors.

HTTP errors When service B breaks down, it will return a HTTP error on
all incoming requests. Hystrix is quick to notice this and stops service A
from sending requests to service B. This explains why there are so few
HTTP errors.

Slightly higher error percentage A broken down service B results in errors,
which is reflected in the slightly higher error percentage.

45

One thing that stands out from these results is that there are still no Hystrix
timeout errors. According to the simulation model, when service B breaks down
it should drop all requests that it is currently processing and that are in the
request queue for service B. However, it turns out that due to the low processing
time required per request, service B never has any requests waiting in the request
queue, and is idle for most of the time. In short, there are no requests that can be
dropped when service B breaks down, which explains why there are no Hystrix
timeout errors.

The results for the new performance metrics in Table 2 show that Hystrix
needs, on average, about 4.4 seconds to detect a service is failing. And that
Hystrix notices, again on average, after about 2.6 seconds that a service has
recovered. The service B downtime is a constant 900,000 milliseconds, which
corresponds to the scenario detailed in subsection 7.4.1.

The fact that Hystrix needs 4.4 seconds to detect a failing service is to be
expected when looking at the input parameters. Hystrix tracks the health of
a circuit over the last 10 seconds, so by the time enough errors have passed
through the system to exceed the threshold, about 5 seconds will have passed.
Because service B already returns some errors before breaking down (the error
probability is set at 8%), this means that it takes a little less than 5 seconds for
the error rate to exceed the threshold.

The false positive time is an average over the results of 30 simulation loops.
Table 3 shows the raw data. As can be seen, the actual values lie quite close to
multiples of 5, 000, which is the number of milliseconds Hystrix is configured to
sleep before trying a service again. This is because the service breakdown and
service recovery events happen at the same time for every simulation. The small
fluctuations are explained by the stochastic way the request interarrival time is
determined. The larger fluctuations can be explained by the configured Hystrix
sleep time of 5, 000 milliseconds. When Hystrix checks if a service has recovered
and the check fails, Hystrix will automatically sleep 5, 000 milliseconds.

False
Positive Time

74.18 72.03 4,904.95
208.52 4,995.90 48.93
77.20 280.55 4,889.54

4,883.57 14.18 349.40
5,113.38 10.72 4,998.09
4,973.28 9,979.61 93.14

294.76 4,877.92 8.22
4,982.83 29.12 4,901.06
9,902.16 140.15 232.10
5,280.41 119.03 148.12

Table 3: Raw data of the False Positive time metric.

Finally, the new structure that allows the simulations to be executed in par-

46

allel decreases the time needed to run the 30 simulations. Before the simulation
were running concurrently, each simulation took about 7 to 8 minutes, which
resulted in a runtime of almost 4 hours for 30 simulations. With the current
parallel specifications, the simulations take about 10 minutes each, but they run
3 at a time. This results in a total runtime of about 1 hour and 40 minutes for
30 simulations.

7.5 Fifth iteration: Optimization

The fifth iteration is the final iteration of this project. With the simulation
model finished, the input analysis performed, and the performance metrics ex-
panded, the simulation is ready to be used to evaluate and compare different
Hystrix configurations. The goal is to find an optimal configuration for the spec-
ified input parameters. To this end, the Simulated Annealing heuristic described
in section 5.6 was implemented.

When the simulated annealing heuristic was implemented, it became appar-
ent that the evaluation of a configuration was taking far too long. In earlier
experiments, a configuration was simulated 30 times. However, the Simulated
Annealing heuristic simulates more than just one configuration. Each change
to the configuration made by the neighbour function requires the new config-
uration to be simulated. Despite simulating the configurations only 10 times
instead of 30, the Simulated Annealing heuristic was still taking far too long.

In addition to this, simulating a long period of time in which the system is
healthy with only a few, relatively short, breakdowns has the effect of skewing
the performance metrics towards the healthy status of the system. This makes
it harder to determine what effect different configurations have on the handling
of these breakdown moments.

In order to tackle both these issues, the length of each simulation was short-
ened. Naturally, shorter simulations result in a shorter runtime. But this also
has the added benefit that the effects that different configurations have on how
well Hystrix handles different breakdown scenarios are more visible in the per-
formance metrics.

7.5.1 Experiment description

The experiments in this iteration consist of running the simulated annealing
heuristic, which uses the simulation as a sub-routine to evaluate different con-
figurations.

In order to reduce the runtime of the algorithm, the simulation length and
amount of simulations per configuration were reduced. These experiments were
run with 10 simulations per configuration evaluation, and each simulation sim-
ulating 5 minutes. Since this means that the entire day is no longer being
simulated, the simulation start time is also moved from 00:00 to 22:00. This
means that the simulation now simulates a time period from 22:00-22:05, which
is an interesting time period for bol.com, since it coincides with the evening
traffic peak.

47

During this period two breakdowns are scheduled. The first breakdown hap-
pens at 22:00:15, lasts for 45 seconds, and slows down all request processing by
500 milliseconds. The second breakdown happens at 22:01:30, lasts for 90 sec-
onds, and slows down all request processing by 2500 milliseconds. This leaves
the simulation 15 seconds to warm up before the first breakdown, 30 seconds be-
tween the two breakdowns to recover normal operation, and 2 minutes after the
last breakdown to recover normal operation until the simulation is terminated.

In total, the entire Simulated Annealing was run 5 times, each time starting
with a different (random) start configuration. All other parameters are equal
between runs.

7.5.2 Experiment results

The results of the experiment are shown in the following figures. Each Hystrix
configuration parameter (sleep period, volume threshold, error rate threshold,
bulkhead size, and timeout delay) has its own graph. In these graphs, each
marker represents an evaluation of a certain Hystrix configuration. The Y-axis
represents the cost of a configuration, calculated by the cost function defined in
Algorithm 16. The X-axis shows the different values that the parameter takes
in the evaluations.

Note that markers in a vertical line indicate different evaluations with the
same variable for the specified parameter. Differing costs for the same parameter
value can be explained by either the randomness of the simulation, or the fact
that other parameters of the configuration may have changed. As such, looking
at averages or trends is not as useful with results like this.

Instead, the minimal cost values for specific parameter values are more in-
teresting to look at. The minimal cost values attainable for different values
of the configuration parameters can give an indication in how these parame-
ters limit how well the configuration can possibly perform. Since the algorithm
will automatically accept configurations that perform better, values resulting in
these better configurations will get evaluated more often. This explains why the
density around the found optimal values is higher than elsewhere in the graph.

Figures 7 through 11 show the results of the first run of the Simulated An-
nealing algorithm. Due to the randomness in choosing the start configuration,
as well as the randomness in the simulation process, results from other runs
might look different from these results. As such, the best configuration found
might differ as well between runs.

These figures can show how the Simulated Annealing algorithm reached the
best found solution. From this we can determine that the Simulated Annealing
algorithm works as expected, since the figures show that a range of values for
each parameter is tested, and that values that result in lower costs are evaluated
more often.

Figure 7 shows the evaluation results of different values for the sleep period
parameter. Looking at the minimal cost values for each sleep period value, the
value resulting the lowest cost is found in a valley at a sleep period parameter
value of 3,306 milliseconds, surrounded by numerous other local optima.

48

Figure 7: Cost plotted against Hystrix sleep period values. X-axis: sleep period in ms. Y-axis:
cost.

In Figure 8 the costs are plotted against different volume threshold values.
The minimal costs evaluated for the different values seems quite steady, up to a
threshold value of 8. Values higher than 8 seem to perform (slightly) worse. It
is unclear if this threshold value of 8, above which costs rise, is specific to this
run of the experiments.

The next figure (Figure 9) shows the costs plotted against different error
rate thresholds. A more noticeable increase in minimal costs with increasing
threshold values is visible here. Exceedingly low values result in higher costs as
well, indicating that lowering this value beyond a certain point is not beneficial.
In this run, the lowest cost is found at an error rate threshold of 40.19%.

Figure 10 shows the costs plotted against different bulkhead size values. For
values lower than 10, the minimal costs are all more or less similar. After this
the minimal costs appear to rise and higher values are evaluated less often. At
a bulkhead size of 3, the lowest cost is found in this run.

Finally, in Figure 11 the costs are plotted against the different timeout delay
values. Again a number of different local optima are found. The best cost is
found at a timeout delay of 609 milliseconds.

These graphs do indeed show that the Simulated Annealing algorithm is
escaping local optima and evaluating promising configuration parameter values
more often. The algorithm works as expected.

Table 4 shows the best configurations found during the different runs of the
Simulated Annealing algorithm. Since each run starts with a different start con-
figuration, the range of values evaluated for each parameter can differ between
runs as well. This can explain why the best configurations found during the
different runs differ from each other. In the fourth run, the configuration that
scores the lowest cost overall has been found. Conclusions drawn from these

49

Figure 8: Cost plotted against Hystrix volume threshold values. X-axis: volume threshold
value. Y-axis: cost.

results will be discussed in chapter 8.

Run
Sleep

Period
Volume

Threshold
Error rate
Threshold

Bulkhead
Size

Timeout
Delay

Cost

1 3,306 ms 6 40.19% 3 609 ms 76.62
2 4,027 ms 11 21.38% 2 2,948 ms 45.88
3 2,876 ms 26 25.65% 1 1,335 ms 48.23
4 3,170 ms 24 18.73% 8 441 ms 32.54
5 257 ms 0 18.44% 1 4,371 ms 57.75

Table 4: Configuration parameter values and costs of the best configurations found during
each run of the Simulated Annealing algorithm.

50

Figure 9: Cost plotted against Hystrix error rate threshold values. X-axis: error rate threshold.
Y-axis: cost.

Figure 10: Cost plotted against Hystrix bulkhead size values. X-axis: bulkhead size. Y-axis:
cost.

51

Figure 11: Cost plotted against Hystrix timeout delay values. X-axis: timeout delay in ms.
Y-axis: cost.

52

8 Conclusion

In this chapter, the conclusions drawn from the experiments performed in each
iteration are described. Similarly to chapter 7, this chapter is split into sections
for each iteration of the project. From the conclusions reached in these sections,
answers to the research questions are drawn. Finally, an advice for bol.com is
given.

8.1 Iterations

Conclusions from the results of each iteration will be discussed here.

8.1.1 First iteration: Setup

The results of the first iteration (see section 7.1) allow us to conclude that the
simulation works as expected from the simulation model and input parameters,
as far as the successful and service error paths go. For these configurations, the
other paths (of other errors) also function as expected. However, to ensure that
all paths do indeed function as expected (under different input configurations as
well), some other configurations, specifically designed to test this functionality
should be run and their outputs analyzed.

Analyzing the results of this first iteration has shown that there is still work
to be done on improving the simulation.

8.1.2 Second iteration

The findings of the second iteration reveal that the improvements made in this
iteration perform as expected. However, it does highlight an issue with the
service B processing time input parameters. The input parameter is based on the
execution time of the entire Hystrix command in the real system, instead of the
actual processing time the SLI service (service B) needs for a single request. This
includes time spent waiting in the request queue. Because this total value is used
to determine the processing time (excluding time spent waiting in the queue)
in the simulation, the total processing time of each request in the simulation is
higher than in the real system.

8.1.3 Third iteration

The outcomes of the experiments in the third iteration display that the imple-
mentation of the chosen input parameters operates as expected. The difference
between the fast group of hosts and the slow group of hosts only affects the
average processing time of requests. In future iterations the slow group of hosts
should be used to model the service B execution time, as it is the worst-case
scenario.

It also shows that with these input parameters, the services have no problem
handling the traffic directed to them. Hystrix seems to not be doing much
either, only handling some errors from service B now and then. It would be

53

interesting to see what happens when service B breaks down. In order to perform
such experiments, improvements to the simulation model and the performance
measures should be made.

8.1.4 Fourth iteration

The fourth iteration’s results show that the implementation of the simulation
model expansion and the new performance metrics work as expected. It is inter-
esting to see how fast Hystrix reacts to service failure and recovery. The model
improvements allow the testing of scenarios that are the most common use-case
for Hystrix at bol.com (service breakdowns). And with the new performance
metrics an actual comparison between different Hystrix configurations can be
made.

8.1.5 Fifth iteration: Optimization

Looking at the results of the fifth iteration, they indicate that the simulated
annealing algorithm works as expected. The graphs in subsection 7.5.2 show
that a range of configurations has been evaluated. Parameter values with lower
costs have been evaluated more often, which shows the algorithm attempting to
find an optimal configuration near parameter values that perform better. The
results also show outliers being tested, but usually being discarded quite quickly
due to high costs.

From the results, conclusions about how the configuration parameters affect
the effectiveness of Hystrix can be drawn. Looking at the minimal cost for each
value of the different parameters, we conclude that:

Sleep period The sleep period has numerous local optima. Over all 5 runs,
the run with a sleep period of 3,170 milliseconds scored the lowest cost.
This suggests that the optimal sleep period value for this Hystrix circuit
can be found around this value.

Volume threshold Looking at Figure 8, the minimum cost stays mostly the
same over different values of this parameter. In Table 4 the volume thresh-
old value of the best found configuration varies wildly. This suggests that
the value of this parameter is largely inconsequential to the effectiveness
of Hystrix.

Error rate threshold The results in Figure 9 and Table 4 show an increase
in cost with increasing threshold values, indicating that smaller threshold
values result in a more effective Hystrix circuit. There also seems to a
limit to how small this value can become before the costs start to rise
again. From the results in Table 4, the best value for this parameter is
18.73%.

Bulkhead size Figure 10 shows that this parameter has very little effect the
minimum cost of a configuration. Results in Table 4 seem to favor smaller
values, however the best result is achieved with a bulkhead size of 8.

54

Timeout delay Again, a number of local optima are found during the experi-
ments. This is reflected in the results shown in Table 4, where the Timeout
delay values for the best configurations found also vary quite a bit.

From this, we can conclude that the Volume threshold and Bulkhead size pa-
rameters are of little interest, and could be largely ignored when tuning the
Hystrix circuit. The other configuration parameters (Sleep period, Error rate
threshold, and Timeout delay) all do seem to affect the cost of a configuration.
The results show that lower values for the Error rate threshold are beneficial, up
to a point. The Sleep period and Timeout delay parameters both have numerous
local optima, and thus are most difficult to tune optimally. Further experimen-
tation could help provide additional insight into how these parameters affect
the effectiveness of resilience framework configurations.

It should be noted that the results of this project, and by extension the
conclusions reached from these results, are specific to the services simulated
in the experiments, namely the I2s and SLI services. Future work could run
more experiments with different setups to determine how Hystrix configurations
influence the results in different scenarios.

8.2 Research question

In order to provide a meaningful answer to the main research question, the sub-
questions will be answered first. After this, the main research question will be
answered with the answers to the sub-questions in mind.

How can a microservice software ecosystem that uses a resilience
framework be modelled as a discrete event simulation model? The
model proposed in this project uses the state to model the connected services and
the resilience framework used in this connection between the services. Events
are used to model requests and responses being sent to and from these ser-
vices, as well as outside forces influencing the simulated system (such as service
breakdowns). Realistic randomness is introduced to the simulation by using
probability distributions for stochastic variables (such as request interarrival
time). A number of assumptions and abstractions are made to scope the model.

How can different resilience configurations be evaluated and com-
pared? Performance metrics that measure how fast the resilience framework
is able to respond to changes in the system are proposed in this work. This
response time is measured by two metrics: the false negative time and the
false positive time. The false negative time measures the time during which
the framework incorrectly determines that the connection is healthy, and thus
takes no action. The false positive time measures the time during which the
framework incorrectly determines the connection is unhealthy, and thus takes
unnecessary action.

In collaboration with domain experts at bol.com [10], a cost function was
designed to evaluate the results of a simulation to a single number, which can

55

then be compared to other evaluations. This cost function uses the false negative
time and false positive time performance measures in addition to the average
response time for failed and successful responses. Priority can be given to more
important metrics by weighing their values against each other.

What different resilience configurations are interesting to compare?
Instead of attempting to determine a set of interesting configurations (and thus
limiting the project to those configurations), an optimization algorithm was im-
plemented that is able to create new configurations as it sees fit. The Simulated
Annealing algorithm is able to create ”neighbour”-configurations, which differ
slightly from their original. Uninteresting configurations do get created and eval-
uated, but get rejected if they do not perform well enough. Some configuration
parameters are of less importance to the effectiveness of the resilience frame-
work (namely, the volume threshold and bulkhead size parameters). Removing
these parameters from the set of configuration parameters that the optimization
algorithm is allowed to change could reduce the runtime of the algorithm, or
allow the algorithm to look at more values for the other (relevant) parameters.

Do the results of the experiments offer valuable insights into tuning
resilience framework configurations? The results show that there are con-
figuration parameters that seemingly do not affect the effectiveness of resilience
framework much. These parameters (the Volume threshold and Bulkhead size)
can be ignored when tuning resilience framework configurations.

The other parameters (Sleep period, Error rate threshold, and Timeout de-
lay) do appear to have an impact on the effectiveness of the resilience framework.
The Error rate threshold seemingly allows for a lower cost of the configuration
at lower values. When tuning this parameter, attempting to tune it as low as
possible seems beneficial. However, this threshold value has a threshold of its
own, beyond which the costs seem to rise again. Tuning should be done careful
not to cross this threshold value.

The Sleep period and Timeout delay parameters seem to have multiple lo-
cally optimal values. Further experimentation might provide additional insight
into the effect these parameters have on the effectiveness of resilience frame-
works.

With the answers to these sub-questions in mind, the main research question
will be answered. The main research question is as follows:

“How can discrete event simulation be used to support the decision-making
process of tuning resilience framework configurations in a microservice

software ecosystem?”

By modelling the microservice software ecosystem in a discrete event simu-
lation model, it can be used to help identify effects of resilience configuration
parameters on the effectiveness of the resilience framework. It can help identify

56

the kind of relations that exist between parameter values and effectiveness of
the resilience framework.

By combining the simulation with an optimization algorithm and adapting
the input parameters to specific cases, it can be used to help tune specific Hystrix
circuits by finding bounds for parameters within which the resilience framework
operates most effectively. This will return an optimal configuration given a
specific case. However, due to the nature of optimization, this configuration is
highly specific to the case it is optimized for, and thus should be used more as
a guideline when tuning the configurations of the real system.

8.3 Advice to bol.com

The results show that the Volume threshold and Bulkhead size parameters are
largely inconsequential to the effectiveness of a Hystrix circuit. As such, it is
recommended not to spend too much time on tuning these parameters.

Lower values for the Error rate threshold result in a more effective Hystrix
circuit, however there is a limit to this. Values lower than a certain point
result in a less effective Hystrix circuit. During tuning, this parameter should
be tuned to lower values, while taking care not to choose a value that is too
low such that it would reduce the effectiveness of the Hystrix circuit. Further
experimentation could indicate where the optimal value for this parameter lies
for different Hystrix circuits.

The Sleep period and Timeout delay parameters have numerous locally op-
timal values, which makes tuning these parameters a lot harder. Additional
experiments could show where the optimal values for these parameters lie for
different services and scenarios.

In order to use the work done in this project, it would be nice to create an
interface that allows engineers to alter the experiment setup to their specific
situation. In addition to this, attempting to find a way to reduce the runtime
of the Simulated Annealing algorithm could greatly increase the practicality of
this work (for example by running it on a more powerful machine, or in the
cloud).

57

9 Discussion

This study shows that a combination of a simulation model and an optimiza-
tion algorithm can be used to help tune resilience framework configurations in
microservice software ecosystems. Valuable insights such as relations between
configuration parameters and the effectiveness of the resilience framework are
found.

The caveat here is that the optimal configurations found by this combina-
tion of techniques should be used as a guideline, and not an absolute truth.
The reason for this is that the optimization algorithm optimizes against very
specific circumstances. The optimization algorithm optimizes to the specific
input parameters; cost function (which evaluates the simulation results), break-
down scenario (specifies the breakdowns that occur during simulation), traffic
(determines request interarrival times), and simulated services (defining service
properties such as error probability). Changes in any of these settings can affect
the results of the optimization algorithm. Iterating over these settings and run-
ning more experiments with different settings might offer additional valuable
insights. Running additional experiments with different experiment settings
could also provide more insight in the relation of the sleep period and timeout
delay parameters to the cost.

Furthermore, a simulation is always an abstraction of the real world system.
This abstraction needs to walk a fine line between pragmatically abstracting
unimportant details and taking care not to abstract too much details such that
the system becomes unrealistic. On top of this, in some cases desired data was
not available in the system logs at bol.com. In these cases, the desired data was
substituted by data that came close.

Finally, there is an issue discovered in the event handlers. Some of these
handlers (namely the Request received A, Request processing start B, and Request
processed B event handlers) seem to look into the future. The results of these
predictions are used to determine which event should be scheduled next, at
which time it should be scheduled, and to make some changes to the State. The
State changes are purely administrative changes that help reduce the memory
required to run the simulation. Because of this, the effect this has on the
simulation results is estimated to be very small. However, looking into the
future is not a good practice in simulation and should be avoided.

9.1 Future work

A number of possibilities for future work have been identified at the end of this
project. Mentioned earlier, running additional experiments with different exper-
iment settings can provide more insight in how the resilience framework reacts
to different circumstances. Interesting changes that can be made to experiment
settings include: peak season traffic, simulating different services, alternative
breakdown scenarios, and redefining the cost function.

Furthermore, the simulation model could be improved upon by simulating
traffic of other services (not service A) to service B. This would be a less abstract

58

and more realistic simulation of how service B becomes latent due to increased
traffic from other services.

Another way to improve the simulation model is to add additional services
that service A depends on. When one of the connected services breaks down, the
bulkhead should prevent requests to that broken service from blocking requests
to other, healthier services. This improvement to the simulation could give
additional insights in the bulkhead size configuration parameter and the effects
it has on the effectiveness of resilience frameworks.

Next, in an effort to adhere to the best practices of simulation, the event
handlers that look into the future to schedule new events should be changed
to not do so. Looking into the future is not a good practice in simulation and
should be avoided. Despite this, the effects of changing this are expected to be
negligible.

When taking another look at the simulation code, there is a specific issue
that should be investigated further. When the Request start processing B event
handler schedules a new Request processed B event, it retrieves the required
time to process the request from the input parameters. The input parameters
in turn sample this value from a normal distribution. In some very rare cases,
the sample method of this distribution returns a NaN (Not a Number) value.
This is then returned to the event handler, who attempts to schedule an event at
time NaN. The simulation continues to run, but because all events are ordered
on the time they are scheduled, this event is never processed. This disrupts the
simulation in such a way that the results become unreliable and should no longer
be used in the evaluation. Despite this, the results are used in the evaluation,
which causes the optimization algorithm to optimize for the rare occurrence
that this bug occurs. It will create such a configuration that, should the bug
occur, the configuration is able to exploit it to maximum efficiency, resulting in
an unbeatable cost. The end result of this is that the algorithm is optimizing
for a bug instead of a realistic scenario, making the experiment results useless.

The symptoms of this bug have been discovered, and a workaround has been
created to prevent this bug from disrupting the simulation run. This way, the
simulation results are still usable and the optimization algorithm is not able to
exploit the bug to get an unbeatable cost. However, the root cause for this bug
is still unknown and should be investigated further.

For practical reason, the runtime of the Simulated Annealing algorithm could
use another look. The runtime of the experiments vary wildly. Some runs took
3.5 hours, some took 16 hours, one even took 19 hours. It is unclear what causes
these varying runtimes. Perhaps the machine on which the experiments are run
is also performing updates or entering some low power mode during the night.
Whatever the reason, these runtimes are quite impractical. Possible solutions
could be to run the experiments on a more powerful machine, or even running
it in the cloud.

Finally, it would be valuable for bol.com to create a tool that uses the work
done in this project to attempt to find an optimal configuration for different ser-
vices and scenarios. A graphical user interface that allows engineers at bol.com
to setup their own experiments would be a practical continuation of the work

59

done in this project for bol.com.

60

References

[1] Binkert, N. L., Hallnor, E. G., and Reinhardt, S. K. Network-
oriented full-system simulation using m5. In Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW) (2003),
pp. 36–43.

[2] Boucharas, V., Jansen, S., and Brinkkemper, S. Formalizing soft-
ware ecosystem modeling. In Proceedings of the 1st international workshop
on Open component ecosystems (2009), ACM, pp. 41–50.

[3] Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J.,
Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., et al.
Advances in network simulation. Computer 33, 5 (2000), 59–67.

[4] Cabrera, J. B., Gosar, J., Lee, W., and Mehra, R. K. On the
statistical distribution of processing times in network intrusion detection.
In Decision and Control, 2004. CDC. 43rd IEEE Conference on (2004),
vol. 1, IEEE, pp. 75–80.

[5] Decker, K., and Lesser, V. Quantitative modeling of complex compu-
tational task environments. In AAAI (1993), pp. 217–224.

[6] Düllmann, T. F., and van Hoorn, A. Model-driven generation of mi-
croservice architectures for benchmarking performance and resilience engi-
neering approaches. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion (2017), ACM, pp. 171–
172.

[7] Etsy. StatsD. https://github.com/etsy/statsd, 2018. [Online; ac-
cessed 7-May-2018].

[8] Google. Google Istio. https://istio.io/, 2018. [Online; accessed 1-
March-2018].

[9] Hardavellas, N., Somogyi, S., Wenisch, T. F., Wunderlich,
R. E., Chen, S., Kim, J., Falsafi, B., Hoe, J. C., and Nowatzyk,
A. G. Simflex: A fast, accurate, flexible full-system simulation framework
for performance evaluation of server architecture. ACM SIGMETRICS
Performance Evaluation Review 31, 4 (2004), 31–34.

[10] Hartmann, L. Private communication with carst tankink.

[11] Hartmann, L. Private communication with marjan van den akker.

[12] Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare,
L. E., Pahl, C., Schulte, S., and Wettinger, J. Performance
engineering for microservices: research challenges and directions. In
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion (2017), ACM, pp. 223–226.

61

[13] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M. K., and
Sekar, V. Gremlin: systematic resilience testing of microservices. In
Distributed Computing Systems (ICDCS), 2016 IEEE 36th International
Conference on (2016), IEEE, pp. 57–66.

[14] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. An analysis
of traces from a production mapreduce cluster. In Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (2010), IEEE Computer Society, pp. 94–103.

[15] Kellner, M. I., Madachy, R. J., and Raffo, D. M. Software process
simulation modeling: why? what? how? Journal of Systems and Software
46, 2-3 (1999), 91–105.

[16] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by
simulated annealing. science 220, 4598 (1983), 671–680.

[17] Netflix. Netflix Hystrix. https://github.com/Netflix/Hystrix, 2018.
[Online; accessed 1-March-2018].

[18] Schaeffer-Filho, A., Smith, P., and Mauthe, A. Policy-driven net-
work simulation: a resilience case study. In Proceedings of the 2011 ACM
Symposium on Applied Computing (2011), ACM, pp. 492–497.

[19] Sterbenz, J. P., Çetinkaya, E. K., Hameed, M. A., Jabbar, A.,
Qian, S., and Rohrer, J. P. Evaluation of network resilience, surviv-
ability, and disruption tolerance: analysis, topology generation, simulation,
and experimentation. Telecommunication systems 52, 2 (2013), 705–736.

62

