
Department of Mathematics

Master's thesis

Realizability with Scott's Graph Model

Author:

Tom de Jong (4019938)
Date:

1st July 2018

Supervisor:

Dr. Jaap van Oosten
Second reader:

Prof. Dr. Ieke Moerdijk



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Jaap van Oosten for his
guidance and for providing with me with interesting and fruitful research questions. It
has been very valuable to get a feeling of what it is like to do mathematical research.

Secondly, I would like to thank Prof. Dr. Ieke Moerdijk for taking the time to be my
second reader.

Thirdly, I would like to thank Jetze Zoethout, whose comments were very helpful.
I have also bene�ted from discussions with him on realizability. Menno de Boer also
deserves a mention; I greatly appreciated his enthusiasm and his willingness to listen to
any problems I experienced. Furthermore, I would like to thank Casper Putz and Daan
Paardekooper for proofreading my thesis.

Finally, it has been an absolute pleasure working in the math library. In particular,
I would like to thank the members of the Logic Lan Party and all the attendants of the
Logic Master Thesis Seminar for their interest, comments and questions.

ii



Contents

Acknowledgements ii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Partial Combinatory Algebras 3

2.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Basic combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Examples of pcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Assemblies 11

3.1 Assemblies and their morphisms . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Properties of the category of assemblies . . . . . . . . . . . . . . . . . . . 12

4 Realizability Toposes 16

4.1 P(A)-valued predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Realizability triposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Objects and morphisms of realizability toposes . . . . . . . . . . . . . . . 20
4.4 Properties of realizability toposes . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Logic in realizability toposes . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Assemblies in realizability toposes . . . . . . . . . . . . . . . . . . . . . . . 29

5 Order-discrete Objects 32

5.1 The Sierpi«ski assembly and order-discrete objects . . . . . . . . . . . . . 32
5.2 Closure properties of order-discrete objects . . . . . . . . . . . . . . . . . . 34
5.3 Order-discrete re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Arithmetic in RT(S) 38

6.1 First order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Axiom of choice and modest sets . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Some logical principles involving �nite types . . . . . . . . . . . . . . . . . 41
6.4 Second order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4.1 In general realizability toposes . . . . . . . . . . . . . . . . . . . . 43

iii



iv CONTENTS

6.4.2 In RT(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 A Dominance in RT(S) 48

7.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Assemblies and their Σ-subobjects . . . . . . . . . . . . . . . . . . . . . . 50
7.3 The lift functor on assemblies . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Lift functor for slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Lambek algebras for the lift functor . . . . . . . . . . . . . . . . . . . . . . 56
7.6 Algebraic compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 A Model Structure on a Subcategory of RT(S) 60

8.1 Basic de�nitions and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.1.1 The model structure on the �brant objects of RT(S) . . . . . . . . 64

8.2 Contractible assemblies and trivial �brations . . . . . . . . . . . . . . . . . 65
8.3 Fibrant assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4 Order-discrete assemblies again . . . . . . . . . . . . . . . . . . . . . . . . 70
8.5 Closure properties of �brant assemblies . . . . . . . . . . . . . . . . . . . . 72

9 Future Research 75

9.1 Axiomatization of second order arithmetic . . . . . . . . . . . . . . . . . . 75
9.2 Computing the homotopy category of �brant assemblies . . . . . . . . . . 75
9.3 Embedding of topological spaces . . . . . . . . . . . . . . . . . . . . . . . 76
9.4 Relative realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77

Index of Symbols 79

Index of Terms 81



Chapter 1

Introduction

In computability theory one studies computable functions. Intuitively, a function on
the natural numbers is computable if it can be calculated using an algorithm. Since
algorithms need not terminate on every input, it is natural (and necessary) to consider
partial functions. Abstractly speaking, an algorithm is simply a �nite set of data, and
as such it can be encoded by a natural number. This allows us to think of applying the
number m to the number n as calculating the output of the algorithm encoded by m on
input n. This then blurs the distinction between the functions and their input. A fun-
damental result in computability theory is that there are encodings that are computable
themselves. This means that there is a universal algorithm, an algorithm u such that u
applied to input 2n3m yields the output of the algorithm with code n on input m. We
call u universal, because it can simulate any other algorithm for us (provided that we
know its encoding).

One can generalize this as follows: consider a structure A consisting of a non-empty
set A of `programs' and a binary partial map (the application map). We impose some
properties on A to ensure that the application map is represented (in some sense) by a
program in A. Such a structure is known as a partial combinatory algebra (pca) and can
be thought of as a model of computation.

A partial combinatory algebra gives rise to an interesting and rich category: the cat-
egory of assemblies. Intuitively, assemblies are sets with some computational content.
Arrows in this category are simply functions that are `computable' in the partial com-
binatory algebra. Although there is much structure on the category of assemblies, it falls
short of being a topos. This, for example, means that we cannot interpret higher-order
logic in it.

Fortunately, this situation can be remedied: it is possible to construct a topos over a
pca A, known as the realizability topos of A and denoted by RT(A), such that it contains
the category of assemblies as a full subcategory. One may view RT(A) as a mathematical
universe with some built-in notion of computation.

The name �realizability topos� warrants some explanation. Realizability was invented
by Kleene [Kle45] to study constructive mathematics. It is a technique used to endow
constructive proofs with computational content. For example, a proof of ∀x∃yϕ(x, y)

1



2 CHAPTER 1. INTRODUCTION

should be some computable function f that, given an x, produces a witness y and a
proof that that witness is correct, viz. f(x) should be some pair (f0(x), f1(x)) such that
f1(x) proves (or realizes) ϕ(x, f0(x)).

The �rst and most well-known example of a realizability topos is Hyland's [Hyl82]
E�ective Topos (denoted here by Eff). One of the remarkable aspects of Eff is that its
internal logic is governed by Kleene-realizability. This means that for a statement ϕ about
the natural numbers, ϕ is true in Eff if and only if ϕ is Kleene-realizable, i.e. there is
some computable function that proves it as described above. Hyland's construction thus
connected topos theory and realizability and was generalized via tripos theory [HJP80].

The E�ective Topos arises as the realizability topos of Kleene's �rst model : the pca
with the natural numbers as its underlying set and partial recursive application. Another
example of a pca is Scott's graph model [Sco76], denoted here by S. The realizability
topos RT(S) of this pca is the object of study in this master's thesis.

1.1 Overview

In this section I give a brief description of each chapter.
Chapter 2 develops the theory of partial combinatory algebras and provides examples

of pcas. We study Scott's graph model in particular.
We continue in Chapter 3 by studying assemblies and in Chapter 4 we develop some

tripos theory and are �nally able to construct and describe realizability toposes.
Chapter 5 identi�es a particular subcategory of the realizability topos RT(S) of Scott's

graph model: the subcategory of order-discrete objects. These objects will reappear in
Chapter 6 where we investigate �rst and second order arithmetic in realizability toposes
and RT(S) in particular.

In Chapter 7 we take our �rst steps in synthetic domain theory and we examine a
particular dominance on RT(S). We also look at Lambek algebras for the lift functor.
The dominance gives rise to a model structure on RT(S), which we describe in Chapter
8, together with the basic theory of model structures.

Finally, Chapter 9 lists some questions for future research.

1.2 Preliminaries

Familiarity with partial combinatory algebras, assemblies or realizability (toposes) is not
required, as I treat all of this in detail in the coming three chapters. This thesis should
be readable by anyone with knowledge of category theory: in particular, adjunctions,
cartesian closed categories, elementary toposes and categorical logic. Familiarity with
basic computability theory is useful, but not strictly necessary (for the bulk of this thesis).
For example, we mention partial recursive functions in Example 2.3.2 and primitive
recursive functions in the chapter on arithmetic. Moreover, one would certainly bene�t
from having studied intuitionistic logic. Lastly, I use the axiom of choice freely and
(often) without mention.



Chapter 2

Partial Combinatory Algebras

This chapter introduces partial combinatory algebras. These structures give rise to in-
teresting categories which we will study later: categories of assemblies and realizability
toposes. Although we will mostly be interested in one particular partial combinatory
algebra, I have decided to treat most of the material in full generality. The reason is two-
fold. Firstly, it allows us to compare our topos to other realizability toposes. Secondly,
many results can be obtained for the general setting without much additional e�ort.

This chapter contains no original results. We follow Chapter 1 of Van Oosten's
comprehensive book Realizability [Oos08]. I have also consulted [Zoe18, Chapter 1] for
comparison.

2.1 Basic de�nitions

De�nition 2.1.1. A partial applicative structure (pas) A is a non-empty set A with a
partial map A × A⇀A called application. It is denoted by juxtaposition: (a, b) 7→ ab.
Our convention is that application associates to the left, i.e. we write abc for (ab)c.

In this section A will always denote a pas with A as its underlying set.

De�nition 2.1.2. Fix a countably in�nite set of variables V . The set of terms over A
is the least set T (A) such that:

(i) every variable is a term over A;

(ii) for each a ∈ A, we have a constant (also denoted by a) that is also a term over A;

(iii) if s and t are terms over A, then so is (st).

A term with no variables is called closed . We adopt the same convention concerning
parentheses as above. Furthermore, when the context is clear, we will simply speak of
terms.

If we read the juxtaposition of terms as application, then we might view a term t
with variables x1, . . . , xn as a partial function An⇀A. Accordingly, closed terms should

3



4 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

be viewed as elements of A. A partial combinatory algebra will be a pas that is a `model
of computation'. Thus, we would like it to able to represent these partial functions
inside our pas itself. Providing substance to this idea is the motivation for the following
de�nitions and results.

De�nition 2.1.3. We de�ne the relation t↓a (read as t denotes a) between closed terms
and elements of A as the least relation satisfying:

(i) a↓a for any a ∈ A;

(ii) (st)↓a if and only if there are b, c ∈ A with s↓b, t↓c, bc is de�ned and bc = a.

We will write t↓ (read as t denotes) if there is an a ∈ A such that t↓a.

One easily shows that if t denotes both a and b, then a must be equal to b. Thus,
notationally, we will not distinguish between a closed term that denotes and the element
that it denotes. For example, ab↓ if and only if (a, b) is in the domain of the application
map. Finally, observe that if a term denotes, then all of its subterms must also denote.

Next, we de�ne substitution and equality on closed terms.

De�nition 2.1.4. For two closed terms s and t, we write

(i) s = t if and only if t and s both denote the same element of A;

(ii) s ' t for the Kleene equality , viz. either s and t do not denote, or s and t both
denote the same element of A.

De�nition 2.1.5. For a term s and a term t with variable x, we will write t[s/x] for
the result of substituting s for x in t. Moreover, if we display all variables of a term
t(x1, . . . , xn) then we will write t(a1, . . . , an) for the result of substituting each ai for xi,
where ai ∈ A.

We are now in position to de�ne partial combinatory algebras.

De�nition 2.1.6. We say that A is combinatorially complete if, for any integer n ∈ N
and term t(x1, . . . , xn+1), there exists an element a ∈ A such that for all a1, . . . , an+1 ∈ A,
we have:

(i) aa1 · · · an ↓;

(ii) aa1 · · · an+1 ' t(a1, . . . , an+1).

A partial combinatory algebra (pca) is a combinatorially complete pas.

Thus, we may view a pca as a pas which for each term has an element that `computes'
this term. An inconvenience of this de�nition is that using it to check that a pas is actually
a pca can be quite di�cult. Fortunately, there is an easier characterization, which is due
to Feferman.



2.1. BASIC DEFINITIONS 5

Theorem 2.1.7 (Feferman). Let A be a pas. Then A is a pca if and only if there exist

elements k, s ∈ A such that for any a, b, c ∈ A:

(i) kab = a;

(ii) sab↓;

(iii) sabc ' ac(bc).

Proof. Suppose �rst that A is a pca. Consider the term t(x, y) = x. Combinatorial
completeness for this term immediately provides an element of A that satis�es (i). For
(ii) and (iii), apply combinatorial completeness to the term t(x, y, z) = xz(yz).

To prove the converse, assume we have elements k, s satisfying (i) � (iii). We �rst
develop some convenient notation. For any variable x and term t, de�ne a term λ∗x.t by
recursion on t:

λ∗x.x is the term skk;

λ∗x.t is the term kt if t is a constant from A or any variable di�erent from x;

λ∗x.(t1t2) is the term s(λ∗x.t1)(λ∗x.t2).

It may be proven by induction on terms that for any term t(x, x1, . . . , xn) and any
a, a1, . . . , an ∈ A, the following hold:

the variables of λ∗x.t are exactly those of t minus x;

(λ∗x.t)(a1, . . . , an)↓;

(λ∗x.t)(a1, . . . , an)a ' t(a, a1, . . . , an).

For example, λ∗x.x denotes, because skk always denotes by (ii) in the de�nition of com-
binatorial completeness. Furthermore, (λ∗x.x)a ' skka ' ka(ka) = a.

We are now ready to prove combinatorial completeness of A. Let t(x1, . . . , xn+1)
be any term and let us write λ∗x1, . . . xn+1.t for λ∗x1.(λ

∗x2.(. . . (λ
∗xn+1.t) . . . )). Then

λ∗x1 · · ·xn+1.t denotes and it functions as the required element in the de�nition of com-
binatorial completeness. For, if a1, . . . , an+1 are elements of A, then

(λ∗x1 · · ·xn+1.t)a1 · · · an ' (λ∗xn+1.t)(a1, . . . , an),

which denotes by above and

(λ∗x1 · · ·xn+1.t)a1 · · · an+1 ' (λ∗xn+1.t(a1, . . . , an))an+1 ' t(a1, . . . , an+1),

as desired. �



6 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

Remark 2.1.8. The elements k and s are called combinators1. It may be the case that
multiple elements of A satisfy the requirements of the k and s combinators. From now
on, we will assume that we have made a choice for k and s for any pca. This allows us
to freely employ the notation λ∗x1 · · ·xn+1.t when working with pcas.

Remark 2.1.9. The notation λ∗ is suggestive, as we have something that resembles λ-
abstraction. However, some care is required. For example, one might expect (λ∗x.t1)t2 '
t1[t2/x] to hold, but in general it does not. If we take t1 to be a constant b ∈ A, then
(λ∗x.t1)t2 ' kbt2, while t1[t2/x] = b and kbt2 ' b does not hold if t2 does not denote.

2.2 Basic combinators

To back up our claim that pcas serve as models of computation, we show in this section
that we can de�ne basic programming constructions in pcas.

We have already seen the combinators k and s. We also saw that skka = a for any
a ∈ A, so have an identity combinator i = skk . Now de�ne k as ki. Observe that for
any a, b ∈ A, we have kab ' kiab ' ib = b, so k works like k, but it outputs the second
element instead of the �rst.

If we interpret k as `true' and k as `false', then the i combinator functions as an
if-else-operator (`if true, then a, else b'):

ikab = kab = a, ikab = kab = b.

One may extend this to closed terms: given closed terms s and t, de�ne the closed term

r = λ∗x.x(λ∗y.s)(λ∗y.t)k

and observe that

rk ' k(λ∗y.s)(λ∗y.t)k ' (λ∗y.s)k ' s and rk ' k(λ∗y.s)(λ∗y.t)k ' (λ∗y.t)k ' t.

Remark 2.2.1. A note on a subtlety of this case distinction operator is in order. It
seems more natural to take the simpler λ∗x.xst. However, this does not work. For
suppose s denotes, but t does not. Then, (λ∗x.xst)k ' kst does not denote while s
does. Consequently, (λ∗x.xst)k 6' s. But a term of the form λ∗y.t always denotes by
construction, explaining the need for its appearance above.

We also have pairing in our pca. De�ne the closed term p = λ∗xyz.zxy and observe
that pab ' λ∗z.zab always denotes. Let p0 = λ∗w.wk and p1 = λ∗w.wk and note that:

p0(pab) ' pabk ' (λ∗z.zab)k ' kab = a and similarly, p1(pab) = b.

Thus, we think of pab as the (coded) pair (a, b) and p0 and p1 as the projections. We
call p the pairing combinator and p0 and p1 the projection combinators.

1The letters �k� and �s� come from Moses Schön�nkel's combinatory logic. They respectively come
from the German words �Konstanzfunktion� (constant function) and �Verschmelzungfunktion� (merge
function). Of course, �Verschmelzungsfunktion� starts with a �v�, but Schön�nkel had to avoid confusion
as there was also a swap-arguments combinator called the �Vertauschungsfunktion� [Sch24].



2.2. BASIC COMBINATORS 7

Remark 2.2.2. Before we go on, we would like to exclude some trivialities. So, from now
on, A will be a non-trivial pca, that is, its underlying set A should have more than one
element. It is not hard to show that this is equivalent to demanding that k and s do not
coincide (see Proposition 1.3.1 in [Oos08]).

We continue by showing that we have a copy of N inside an pca and that we can
perform recursion inside our pca.

De�nition 2.2.3. The Curry numerals are de�ned inductively as follows:

0 = i;

n+ 1 = pkn.

One may show that our assumption that A is non-trivial guarantees that all Curry
numerals are distinct.

The next proposition shows us that the Curry numerals really behave as natural
numbers.

Proposition 2.2.4. There are successor, predecessor and zero-test combinators in A,
denoted by S,P and Z, viz. for all n ∈ N the following hold:

Sn = n+ 1; P0 = 0; Pn+ 1 = n; Z0 = k; Zn+ 1 = k.

Proof. De�ne Z = p0. This works since i was de�ned as skk. The successor is also easily
found: put S = pk. For the predecessor, P = λ∗x.p0x0(p1x) does the job:

P0 = p00 0(p10) = k0(p10) = 0 (recall that p00 = p0(skk) = skkk = ik = k);

Pn+ 1 = p0n+ 1 0(p1n+ 1) = k 0 n = n. �

Proposition 2.2.5. There are �xed point combinators y, z in A such that for all f, a ∈ A
the following hold:

(i) yf ' f(yf);

(ii) zf ↓ and zfa ' f(zf)a.

Proof. Write w = λ∗xy.y(xxy) and put y = ww. Note that ww indeed denotes, because
w denotes by construction, so that ww ' (λ∗y.y(xxy))[w/x], which denotes (see the
proof of Theorem 2.1.7). Observe that:

yf ' wwf ' f(wwf) ' f(yf),

as desired.
For z we can do something similar, but with an extra variable: put u = λ∗xyz.y(xxy)z

and let z = uu. Then,
zf ' uuf ' λ∗z.f(uuf)z,

which denotes and moreover,

zfa ' f(uuf)a ' f(zf)a,

as we wished. �



8 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

The �xed point combinator z allows to perform primitive recursion in our pca.

Proposition 2.2.6. There is a primitive recursion combinator R in A such that for all

f, a ∈ A and n ∈ N, we have:

Raf0 = a;

Rafn+ 1 ' fn(Rafn).

Proof. The existence of R seems plausible, since, in principle, all we need is a zero test, a
predecessor and repeated application. These are provided by Z,P and z. Now, one may
de�ne

R = λ∗rxgm.Zm(kx)(λ∗y.g(Pm)(rxg(Pm)i))

and

R = λ∗xgm.zRxgmi.

Observe:

Raf0 ' zRaf0i

' R(zR)af0i

' Z0(ka)(λ∗y.f(P0)(zRaf(P0)i))i

' k(ka)(λ∗y.f(P0)(zRaf(P0)i))i

' kai = a;

and

Rafn+ 1 ' zRafn+ 1i

' R(zR)afn+ 1i

' Zn+ 1(ka)(λ∗y.f(Pn+ 1)(zRaf(Pn+ 1)i))i

' k(ka)(λ∗y.fn(zRafni))i

' (λ∗y.fn(zRafni))i

' fn(zRafni)

' fn(Rafn);

as desired. �

Given the above, it will come as no surprise that, using the Curry numerals, one can
code �nite sequences of elements of A inside A. Moreover, this can be done such that
all elementary operations on these sequences (e.g. concatenation and computing lengths)
are represented in A. This coding is straightforward, but tedious. Details may be found
in Section 3.5 of [Oos08].



2.3. EXAMPLES OF PCAS 9

2.3 Examples of pcas

In this section we present four examples of pcas. We skip the details in most cases,
except for one. Scott's graph model will be studied further in this thesis, so we work out
all the details there. The other examples are mostly provided for comparison.

Example 2.3.1. Our �rst example is a degenerate pca and is only included for com-
pleteness. It is the trivial pca: the underlying set is a singleton {∗} and the application
is given by (∗, ∗) 7→ ∗.

Example 2.3.2. Our second example is the prime example of a pca, it is known as
Kleene's �rst model K1. Its underlying set is N and the application is given by (n,m) 7→
ϕn(m) where ϕ is a partial recursive enumeration function.

Example 2.3.3. Another example is Kleene's second model K2. Its underlying set is
NN. The application is somewhat involved. First of all, we �x a bijection 〈−〉 from the
set of �nite sequences of N to N. Furthermore, we write αn = 〈α(0), . . . , α(n − 1)〉 and
α0 for the empty sequence 〈〉. Now each α ∈ NN determines a partial map Fα : NN⇀N
as follows:

Fα(β) =

{
α(βn)− 1 if n ∈ N is the least k ∈ N such that α(βk) > 0

unde�ned if no such integer exists.

For n ∈ N and α ∈ NN, write 〈n〉 ∗α for the function β : N→ N de�ned by β(0) = n and
β(k + 1) = α(k). Finally, we can de�ne an application on NN by:

αβ =

{
the function n 7→ Fα(〈n〉 ∗ β) if Fα(〈m〉 ∗ β) is de�ned for each m ∈ N
unde�ned else.

One may endow NN with a natural topology, the Baire topology, which is obtained
by giving N the discrete topology and NN the product topology. Interestingly, there is
a connection between continuous functions for this topology and the application we just
de�ned. If we write Gα for the partial endofunction on NN given by β 7→ αβ, then
one may check that Gα : dom(Gα) → NN is continuous (where dom(Gα) ⊆ NN has the
subspace topology). Conversely, any partial endofunction on NN that is continuous on
its domain may be extended to a function of the form Gα for some α ∈ NN.

Example 2.3.4. Our last example is Scott's graph model S. Its underlying set is the
powerset of N, for which we shall write S. Since we want to model computations, it seems
natural that the elements of our pca act only on a �nite amount of data. Therefore, we
�rst de�ne a bijection from the set of �nite subsets of N to N. Such a bijection is given
by mapping a �nite subset of N to its characteristic string: χ : P�n(N)→ N, p 7→ Σi∈p2

i.
Let us write e(−) for the inverse of χ, so e0 = ∅, e1 = {0}, e2 = {1}, e3 = {0, 1}, etc.
Next, we �x a bijective pairing 〈−,−〉 : N2 → N. Finally, we de�ne the application as
follows:

UV = {m ∈ N | ∃n(en ⊆ V, 〈n,m〉 ∈ U)}.



10 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

We think of U as the graph of some function acting on �nite subsets of V .
As with Kleene's second model, there is an interesting connection with continuous

functions. First, identify S with {0, 1}N and equip {0, 1} with the Sierpi«ski topology

(the open sets are ∅, {0, 1} and {1}). We then topologize S by giving it the product
topology (with N as index set). This topology is known as the Scott topology . Since {1}
is the only non-trivial open of the Sierpi«ski topology, the basic open sets of S are of the
form ↑p = {U ∈ S | U ⊇ p} for some �nite subset p of N. Therefore, it is not surprising
that a function F : S→ S is continuous if and only if F is completely determined by its
values on P�n(N), viz. F (U) =

⋃
{F (p) | p ⊆ U �nite} for any U ∈ S. Indeed, if F is

continuous, then F−1(↑{m}) is a union of basic opens for any m ∈ N. Hence, m ∈ F (U)
if and only if there is some �nite q ⊆ U with m ∈ F (q). Conversely, given such an F , we
have:

F−1(↑p) = {V ∈ S | F (V ) ⊇ p}

= {V ∈ S |
⋃
{F (q) | q ⊆ V �nite} ⊇ p}

=
⋃
{↑q | F (q) ⊇ p},

so F−1(↑p) is open and F is continuous.
From the de�nition of the application it easy to see it is continuous. Hence, for any

positive integer k, the map Sk → S given by (U1, . . . , Uk) 7→ U1 · · ·Uk is also continuous.
Conversely, given any continuous function F : Sk → S, we can de�ne a set U ∈ S such
that F (U1, . . . , Uk) = UU1 · · ·Uk for any (U1, . . . , Uk) ∈ Sk. Indeed, if we de�ne the
graph of F as

graph(F ) = {〈n1, 〈n2, . . . , 〈nk,m〉 . . .〉〉 | n1, . . . , nk ∈ N,m ∈ F (en1 , . . . , enk
)},

then graph(F ) has the desired property. For if m ∈ F (U1, . . . , Uk), then, by continuity,
we �nd n1, . . . , nk ∈ N such thatm ∈ F (en1 , . . . , enk

) and en1 ⊆ U1, . . . , enk
⊆ Uk. Hence,

〈n1, 〈n2, . . . , 〈nk,m〉 . . .〉〉 ∈ graph(F ) and thus, m ∈ graph(F )U1 · · ·Uk. Similarly, one
proves that graph(F )U1 · · ·Uk ⊆ F (U1, . . . , Uk).

It is now easy to prove that S is in fact a pca. A k combinator exists, because the
function from S2 to S de�ned as (U, V ) 7→ U is continuous. Further, an s combinator
exists, because the assignment (U, V,W ) 7→ UW (UV ) is continuous.

Thus, S is a pca and we may think of its elements as (graphs of) continuous functions
(w.r.t. the Scott topology).

Remark 2.3.5. When working with S, it will be convenient to �x a particular pairing and
some notation for it. The pair of two subsets U and V of N is given by the set

[U, V ] = {2n | n ∈ U} ∪ {2m+ 1 | m ∈ V }.

It is easily veri�ed that the map (U, V ) 7→ [U, V ] is a continuous bijection and that there
are continuous projections [U, V ] 7→ U and [U, V ] 7→ V .



Chapter 3

Assemblies

Partial combinatory algebras give rise to an interesting category called the category of
assemblies. It has many enjoyable properties, e.g. it is regular, cartesian closed, �nitely
cocomplete and it has a natural numbers object.

Again, we follow [Oos08, Section 1.5] and [Zoe18, Section 2.5], and A will denote an
arbitrary pca with A as its underlying set throughout.

3.1 Assemblies and their morphisms

De�nition 3.1.1. An assembly X (over A) is a pair (|X|, EX) with |X| a set and
EX : |X| → P∗(A) a function from |X| to the set of non-empty subsets of A.

We sometimes say that a ∈ EX(x) realizes x or that it is a realizer of x. We also
refer to EX(x) as the realizing set of x.

We think of EX(x) as computational data accompanying x. Later, we will see it
as a set of computational witnesses of the existence of x. Accordingly, a morphism of
assemblies should take the computational data into account.

De�nition 3.1.2. Let X and Y be assemblies. A morphism of assemblies X → Y is
a function f : |X| → |Y | such that there exists a ∈ A satisfying: for any x ∈ X and
b ∈ EX(x), we have ab↓ and ab ∈ EY (f(x)).

We say that f is tracked by a and call a a tracker of f . In other words, given a realizer
of x, the tracker computes a realizer of f(x).

It is important to note that trackers are not necessarily unique and are not part of
the morphism.

Proposition 3.1.3. The assemblies and their morphisms form a category, called the

category of assemblies (over A) and denoted by Asm(A).

Proof. It su�ces to show that the identity function is tracked and that if f : X → Y and
g : Y → Z are morphisms of assemblies, then their function composition gf is tracked.
Observe that the identity function is tracked by the i combinator. Further, if a tracks f

11



12 CHAPTER 3. ASSEMBLIES

and b tracks g, then λ∗u.b(au) tracks gf . Indeed, if x ∈ X and c ∈ EX(x), then ac↓ and
ac ∈ EY (f(x)), so b(ac)↓ and b(ac) ∈ EZ(gf(x)). �

3.2 Properties of the category of assemblies

Proposition 3.2.1. The category Asm(A) has �nite (co)limits.

Proof. First of all, observe that ({∗}, ∗ 7→ A) is a terminal object, as for any assembly
X, the unique function |X| → {∗} is tracked by i.

The product X × Y of two assemblies X and Y is the assembly (|X| × |Y |, EX×Y )
where

EX×Y (x, y) = {pab | a ∈ EX(x), b ∈ EY (y)}.

Let us verify the desired universal property. It su�ces to show that the usual maps in Set
are tracked. The projections π0 : X×Y → X and π1 : X×Y → Y are clearly tracked by
p0 and p1, respectively. Suppose we have arrows f : Z → X and g : Z → Y , tracked by
af and ag, respectively. Then the map 〈f, g〉 : Z → X×Y is tracked by λ∗x.p(afx)(agx).

To establish that Asm(A) has �nite limits, we show Asm(A) also has equalizers.
Suppose we have parallel morphisms f, g : X → Y of assemblies. Let X ′ be the assembly
({x ∈ X | f(x) = g(x)}, EX′), where EX′ is the restriction of EX to |X ′|. The inclusion
i : |X ′| → |X| is obviously tracked by i and we have fi = gi. We must show that
any morphism of assemblies h : Z → X satisfying fh = gh, factors through i. From
considerations in Set, it follows that there is a unique function k : |Z| → |X ′| with
ik = h. It is de�ned as z 7→ h(z). It remains to show that k is tracked, but it is, since
any tracker of h also tracks k. Thus, X ′ is an equalizer and Asm(A) has �nite limits.

For �nite cocompleteness, observe that (∅, ∅) is an initial object and that the copro-
duct X + Y of two assemblies X and Y is given by (|X|+ |Y |, EX+Y ) where

EX+Y (0, x) = {pka | a ∈ EX(x)} and EX+Y (1, y) = {pkb | b ∈ EY (y)}.

To verify the universal property, it again su�ces to show that the appropriate maps in
Set are tracked. Observe that the inclusions X → X+Y and Y → X+Y are respectively
tracked by pk and pk. Suppose f : X → Z and g : Y → Z are morphisms of assemblies,
tracked by af and ag, respectively. The map [f, g] : X +Y → Z is tracked by a variation
of the case distinction operator (c.f. Remark 2.2.1):

[af , ag] = λ∗u.p0u(λ∗v.af (p1u))(λ∗w.ag(p1u))k.

Indeed, for b ∈ EX(x), we have:

[af , ag]pkb = k(λ∗v.af (p1u))[pkb/u](λ∗w.ag(p1u))[pkb/u]k

= (λ∗v.af (p1u))[pkb/u]k

= af (p1u)[pkb/u]

= afb ∈ EZ(f(x)),



3.2. PROPERTIES OF THE CATEGORY OF ASSEMBLIES 13

as desired. (Note our careful handling of the substitution in light of Remark 2.1.9.)
Similarly, [af , ag]pkb ∈ EZ(g(y)) for b ∈ EY (y).

Next, we construct coequalizers. Suppose we have parallel morphisms f, g : X → Y .
Let q : |Y | → |Y |/∼ be their coequalizer in Set. De�ne the assembly Y ′ = (|Y |/∼, EY ′)
with EY ′([y]) =

⋃
y′∈[y]EY (y′). Observe that q is a morphism from Y to Y ′ as it is

tracked by i. Now suppose r : Y →W is a morphism with rf = rg. We must show that
it factors uniquely through q. Since |Y ′| is the coequalizer of f and g in Set, there is a
unique k : |Y ′| → |W | such that kq = r. Moreover, it is tracked, because any tracker of
r also tracks k (since q is tracked by i). We conclude that Asm(A) has �nite colimits, as
desired. �

It will be convenient to have a characterization of regular epimorphisms in Asm(A).

Lemma 3.2.2. A morphism e : X → Y is a regular epimorphism if and only if e is

surjective and the surjectivity is witnessed in A, that is: there is some a ∈ A such that

for any y ∈ |Y | and b ∈ EY (y), ab↓ and ab ∈ EX(x) for some x ∈ |X| with e(x) = y.

Proof. First of all, observe that the requirement that the surjectivity is witnessed is
equivalent to requiring that id|Y | is tracked as a morphism from Y to Y ′ = (|Y |, EY ′)
with EY ′(y) =

⋃
e(x)=y EX(x).

Suppose �rst that e : X → Y is a regular epimorphism. From our description of
coequalizers above, we see that e must be surjective. Furthermore, the function e is
tracked (by i) as a morphism X → Y ′ and therefore, it factors through e : X → Y , so we
see that id|Y | is tracked as a morphism from Y to Y ′.

Conversely, suppose e : X → Y is a morphism satisfying both properties. Since id|Y |
is always tracked as a morphism Y ′ → Y , we see that Y is isomorphic to Y ′. By our
description of coequalizers, it is clear that

({(x, x′) | e(x) = e(x′)}, E) X Y ′,
π0

π1

e

where E is the appropriate restriction of EX×X , is a coequalizer diagram in Asm(A).
Hence, e is regular epic. �

Proposition 3.2.3. The category Asm(A) is regular.

Proof. It remains to show that regular epis are stable under pullback. We apply the
previous lemma. Suppose e : X � Y is a regular epi. Let

X ×Y Z X

Z Y

y
e

f

be a pullback. By our description of �nite limits, we have

X ×Y Z = ({(x, z) ∈ |X| × |Z| | e(x) = f(z)}, EX×Y Z),



14 CHAPTER 3. ASSEMBLIES

where EX×Y Z is the appropriate restriction of EX×Z .
The map X ×Y Z → Z is obviously surjective. We must �nd an element a ∈ A

witnessing it. Since e is assumed to regular epic, take b ∈ A witnessing its surjectivity
and let c track f . We claim that a = λ∗u.p(b(cu))u does the job. Indeed, if z ∈ |Z| and
d ∈ EZ(z), then cd↓ and cd ∈ EY (f(z)), so b(cd)↓ and b(cd) ∈ EX(x) for some x ∈ |X|
with e(x) = f(z). Hence, p(b(cd))d ∈ EX×Y Z(x, z), as desired. �

Proposition 3.2.4. The category Asm(A) is cartesian closed.

Proof. Let X and Y be two assemblies. De�ne the assembly Y X as

Y X = ({f : |X| → |Y | | f is tracked}, EY X )

with EY X (f) = {a ∈ A | a tracks f}. We have an evaluation morphism ev : Y X×X → Y
given by (f, x) 7→ f(x) and tracked by λ∗u.p0u(p1u). Suppose we have an assembly Z

and a map Z × X
g−→ Y . We must show that there is a unique Z

g̃−→ Y X such that
ev(g̃ × idX) = g. Since Set is cartesian closed, it su�ces to prove that g̃ de�ned as
g̃(z) = (x 7→ g(z, x)) is well-de�ned and tracked as a morphism from Z to Y X . If a
tracks g, then λ∗uv.a(puv) tracks g̃. Moreover, EZ(z) is non-empty for any z ∈ |Z|, so
g̃(z) has a tracker for any z ∈ |Z|. Thus, g̃ is a well-de�ned morphism from Z to Y X , as
we wished to show. �

Proposition 3.2.5. The category Asm(A) has a natural numbers object.

Proof. Let N be the assembly (N, EN ) with EN (n) = {n} (where n is the Curry numeral
from De�nition 2.2.3). Note that we have maps 1

z−→ N
s−→ N given by z(∗) = 0 and

s(n) = n+ 1 and tracked by Z and S (recall Proposition 2.2.4), respectively.

Suppose we have 1
f−→ X

g−→ N . We must show that it factors through 1
z−→ N

s−→ N ,
i.e. there must be a unique k : N → X such that

N N

1 X X

k

s

kz

f g

commutes. By inspection, we have no choice but to de�ne k recursively as:

k(0) = f(∗) and k(n+ 1) = g(k(n)).

We must show that this is tracked. For this, let a be any element of EX(f(∗)), let t track
g and put t′ = λ∗uv.t(kuv). We show by induction that k is tracked by Rat′. Since we
de�ned k recursively, it comes as no surprise that we need the primitive recursion com-
binator R from Proposition 2.2.6. Remember that Rat′0 = a ∈ EX(f(∗)) = EX(k(0)).
Further, if we assume that Rat′n ∈ EX(k(n)), then Rat′n+ 1 ' t′n(Rat′n) ' t(Rat′n).
Now, the latter is an element of EX(g(k(n))) = EX(k(n + 1)), because t tracks g and
Rat′n ∈ EX(k(n)) by assumption. This concludes our proof. �



3.2. PROPERTIES OF THE CATEGORY OF ASSEMBLIES 15

De�nition 3.2.6. An assembly X is called discrete if the realizing sets are disjoint, viz.
EX(x) ∩ EX(y) = ∅ for all distinct x, y ∈ |X|.

We will also refer to a discrete assembly as a modest set . The full subcategory of
Asm(A) on modest sets will be denoted by Mod(A).

Example 3.2.7. The natural numbers object N is an example of a modest set (provided
that the pca A is non-trivial).

Lemma 3.2.8. Let X be an assembly and Y a modest set. If there is an injective

morphism from X to Y , then X is a modest set as well. In particular, the notion of

modest set is stable under isomorphism.

Proof. Let f : X → Y be an injective morphism tracked by a ∈ A. Assume that we have
an element b ∈ EX(x) ∩ EX(x′) for certain x, x′ ∈ |X|. We prove that x = x′. Observe
that ab ↓ and ab ∈ EY (f(x)) ∩ EY (f(x′)), so that f(x) = f(x′) (as Y is modest). By
injectivity of f , we get that x and x′ are equal, as desired. �

Proposition 3.2.9. The category Mod(A) is an exponential ideal in Asm(A).

Proof. Suppose Y is a modest and X is an assembly. Consider the exponential Y X .
Suppose f and g are two di�erent elements of |Y X |, i.e. di�erent morphisms from X to
Y . Assume for a contradiction that we have some element a ∈ A that tracks both f and
g. Since f and g are distinct, we may �nd x ∈ |X| with f(x) 6= g(x). Let b ∈ EX(x).
Then ab↓ and ab ∈ EY (f(x))∩EY (g(x)). But this is impossible, because Y is a modest
set and f(x) 6= g(x). We conclude that Y X is a modest set. �

Proposition 3.2.10. The category Mod(A) is regular. Moreover, the inclusion functor

Mod(A)→ Asm(A) is regular.

Proof. It is straightforward to verify this using the description of �nite limits and regular
epimorphisms given above. �



Chapter 4

Realizability Toposes

In the previous chapter we introduced the category of assemblies, which had quite a bit
of structure. It falls short of being a topos, however. In this chapter we construct a topos
over a pca, known as the realizability topos of the pca. We also investigate its structure
and logic and give characterizations of some categorical properties. Finally, we show that
the realizability topos may be seen as a generalization of the category of assemblies.

We follow the expositions in [Oos08, Chapter 2] and [Zoe18, Chapter 3]. Again, let
A denote an arbitrary, but �xed pca with A as its underlying set. We start by studying
P(A)-valued predicates and tripos theory. Both are paramount in describing the internal
logic of realizability toposes.

4.1 P(A)-valued predicates

De�nition 4.1.1. Given any set X, a P(A)-valued predicate on X is a function ϕ from
X to the powerset P(A) of A. For x ∈ X and a ∈ ϕ(x), we will say that a realizes ϕ(x)
or that a is a realizer for ϕ(x).

Given a P(A)-valued predicate ϕ and x ∈ X, we think of a ∈ ϕ(x) as a proof or
witness that the �predicate� ϕ holds for x. The partial combinatory structure of A
allows us to turn the set of P(A)-valued predicates into a Heyting prealgebra, which we
de�ne now.

De�nition 4.1.2. Let (P,≤) be a preorder.

(i) The poset re�ection of the preorder (P,≤) is the poset obtained by identifying
p, q ∈ P for which p ≤ q and q ≤ p.

(ii) A Heyting prealgebra is a preorder whose poset re�ection is a Heyting algebra.

De�nition 4.1.3. For a �xed set X, we de�ne a relation ≤ on the set of P(A)-valued
predicates P(A)X by putting ϕ ≤ ψ if we can uniformly obtain ψ from ϕ, viz. there is
an element a ∈ A such that for any x ∈ X and b ∈ ϕ(x), we have ab ↓ and ab ∈ ψ(x).
We also say that the element a realizes ϕ ≤ ψ.

16



4.1. P(A)-VALUED PREDICATES 17

Proposition 4.1.4. For any set X, the pair
(
P(A)X ,≤

)
is a Heyting prealgebra.

Proof. We commence by showing that ≤ is indeed a preorder. Re�exivity holds by
existence of the i combinator. For transitivity, suppose that ϕ ≤ ψ and ψ ≤ χ are
realized by a and b, respectively. We claim that ϕ ≤ χ is then realized by λ∗u.b(au).
Indeed, if x ∈ X and c ∈ ϕ(x), then ac ∈ ψ(x), so b(ac) ∈ χ(x), as desired.

We have top > and bottom ⊥ elements given by >(x) = A and ⊥(x) = ∅ for any
x ∈ X. Indeed, i realizes the inequalities ⊥ ≤ ϕ ≤ > for any ϕ : X → P(A).

We proceed by de�ning meet (∧) and join (∨) operations. For x ∈ X, put:

(ϕ ∧ ψ)(x) = {pab | a ∈ ϕ(x), b ∈ ψ(x)};
(ϕ ∨ ψ)(x) = {pka | a ∈ ϕ(x)} ∪ {pkb | b ∈ ψ(x)}.

Proving that these operations satisfy the desired universal properties is similar to proving
that the category of assemblies has (co)products, as we have seen in the previous section.
Therefore, we omit the details here.

Finally, we de�ne the Heyting implication by:

(ϕ→ ψ)(x) = {a ∈ A | ∀b ∈ ϕ(x), ab↓ and ab ∈ ψ(x)} for any x ∈ X.

For suppose χ ∧ ϕ ≤ ψ is realized by a. Then χ ≤ ϕ → ψ is realized by λ∗uv.a(puv).
Conversely, if b realizes χ ≤ ϕ→ ψ, then χ ∧ ϕ ≤ ψ is realized by λ∗u.b(p0u)(p1u). �

At the beginning of this section, we mentioned the importance of P(A)-valued pre-
dicates in categorical logic. The proposition above yields quite a bit of logical structure,
but we should also consider quanti�ers. This is what we do next.

Lemma 4.1.5. Suppose (P,≤) and (Q,≤) are preorders. Let f : Q→ P and g : P → Q
be functions such that f(q) ≤ p if and only if q ≤ g(p). Then f is left adjoint to g when

seen as functors between preorder categories.

Proof. It su�ces to show that f and g are functors, i.e. order preserving. Suppose
p ≤ p′ ∈ P . Since g(p) ≤ g(p) holds, we have f(g(p)) ≤ p ≤ p′ and therefore, g(p) ≤ g(p′).
Thus, g is order preserving. Similarly, f is. �

De�nition 4.1.6. For f : X → Y , let us write f∗ for the function f∗ : P(A)Y → P(A)X

de�ned by f∗(ϕ)(x) = ϕ(f(x)) for any ϕ : Y → P(A) and x ∈ X.

Proposition 4.1.7. For any f : X →, the function f∗ is a morphism of Heyting preal-

gebras. Moreover, f∗ has left and right adjoints, for which we will write ∃f and ∀f ,
respectively.

Proof. The proof of the �rst claim is straightforward, we omit it here.
For the second claim, we apply Lemma 4.1.5. De�ne

∃f (ϕ)(y) =
⋃

f(x)=y

ϕ(x);

∀f (ϕ)(y) = {a ∈ A | ∀b ∈ A ∀x ∈ X (if f(x) = y, then ab↓ and ab ∈ ϕ(x))},



18 CHAPTER 4. REALIZABILITY TOPOSES

for any ϕ : X → P(A) and y ∈ Y .
It is immediate from the de�nitions that a realizes ∃f (ϕ) ≤ ψ if and only if a realizes

ϕ ≤ f∗(ψ).
Suppose a realizes ψ ≤ ∀f (ϕ). If b ∈ ψ(f(x)), then ab ↓ and ab ∈ ∀f (ϕ)(f(x)), so

that abk ∈ ψ(x). Hence, λ∗u.auk is a realizer of f∗(ψ) ≤ ϕ.
Conversely, assume b realizes f∗(ψ) ≤ ϕ. We claim that λ∗uv.bu realizes ψ ≤ ∀f (ϕ).

Indeed, for c ∈ ψ(y), we have (λ∗uv.bu)c ' (λ∗v.bu)[u/c], so if f(x) = y and d ∈ A, then
(λ∗v.bu)[u/c]d = bc ∈ ϕ(x). �

One notices a certain asymmetry in the de�nitions of the adjoints: ∀f is a bit more
complicated than ∃f . This situation is prettier if f is surjective (which it always will be
in later use).

Lemma 4.1.8. If f : X → Y is surjective, then a right adjoint of f∗ is given by

∀f (ϕ)(y) =
⋂

f(x)=y

ϕ(x),

where ϕ : X → P(A) and x ∈ X.

Proof. It is not hard to verify that a realizes ψ ≤ ∀f (ϕ) if and only if a realizes f∗(ψ) ≤ ϕ.
Surjectivity of f is used in the if-direction, as follows. Suppose a realizes f∗(ψ) ≤ ϕ.
If b ∈ ψ(y), then for any x ∈ X with f(x) = y, we have ab ↓ and ab ∈ ϕ(x). Since f
is surjective, there is at least one such x. Hence, ab always denotes. Thus, a realizes
ψ ≤ ∀f (ϕ), as desired. �

Example 4.1.9. Let ϕ and ψ be two P(A)-valued predicates on a set X. Consider the
unique function X → {∗}, which is obviously surjective (or empty if X = ∅). Then we
see that ϕ ≤ ψ if and only if

⋂
x∈X(ϕ(x)→ ψ(x)) is non-empty.

4.2 Realizability triposes

In this section we show that the P(A)-predicates and the maps f∗, ∀f , ∃f allow us to
interpret many-sorted predicate logic without equality.

De�nition 4.2.1. We will write Heytpre for the category of Heyting prealgebras: its
objects are Heyting prealgebras and morphisms are Heyting prealgebra morphisms.

The realizability tripos of A is the functor P : Setop → Heytpre de�ned on objects by
P(X) = (P(A)X ,≤) and on morphisms by P(f : X → Y ) = f∗ : P(Y )→ P(X).

De�nition 4.2.2. A Set-typed language L is a set of relation symbols assigning to each
relation symbol a �nite sequence sequence of sets, called its type.

Next, we de�ne L-terms recursively:

(i) for each set X, we assume to have variables xX1 , x
X
2 , . . . of type X and these are all

L-terms;



4.2. REALIZABILITY TRIPOSES 19

(ii) if t1, . . . , tn are L-terms of types X1, . . . , Xn respectively and f is a function from
X1 × · · · × Xn → Y , then we have a function symbol (also denoted by f) and
f(t1, . . . , tn) is a term of type Y .

Finally, we recursively de�ne L-formulas:

(i) ⊥ and > are L-formulas;

(ii) if R is a relation symbol of type (X1, . . . , Xn) and t1, . . . , tn are L-terms of types
X1, . . . , Xn respectively, then R(t1, . . . , tn) is an L-formula;

(iii) if ϕ and ψ are L-formulas, then so are ϕ ∨ ψ,ϕ ∧ ψ,ϕ→ ψ and ¬ϕ;

(iv) if ϕ is a L-formula and x is a variable, then ∀xϕ and ∃xϕ are L-formulas.

In the remainder we will often simply speak of terms and formulas, suppressing ref-
erence to the language when it is clear from the context.

Remark 4.2.3. We will assume that→ has the lowest precedence (w.r.t. ¬,∨ and ∧), e.g.
we write ϕ ∧ ψ → χ for (ϕ ∧ ψ)→ χ.

Next, we turn to interpreting L in a realizability tripos P.

De�nition 4.2.4. Let P be a realizability tripos and let L be a Set-typed language. An
interpretation of L in P assigns to every relation symbol R in L of type (X1, . . . , Xn) an
element [R] of P(X1 × · · · ×Xn).

It will be convenient to introduce the following notation: if a term t has free variables
xX1

1 , . . . , xXn
n , then we write [fv(t)] for X1 × · · · × Xn. If a term has no free variables,

then [fv(t)] = 1, the terminal object in Set. We adopt a similar notation for formulas.
Further, for every term t of type X we de�ne a function [t] : [fv(t)]→ X by recursion:

(i) [xX ] is the identity map on X;

(ii) [f(t1, . . . , tn)] is de�ned as the composition

[fv(f(t1, . . . , tn))]→ [fv(t1)]× · · · × [fv(tn)]
[t1]×···×[tn]−−−−−−−→ X1 × · · · ×Xn

f−→ X.

Now we are ready to de�ne an interpretation [ϕ] of an L-formula ϕ in P. A formula
ϕ will be interpreted as an element [ϕ] ∈ P([fv(ϕ)]). We do so recursively of course:

(i) [⊥] and [>] are the bottom and top elements of P(1) (where 1 is a terminal object
of Set);

(ii) if R is a relation symbol of type (X1, . . . , Xn) and t1, . . . , tn are terms of types
X1, . . . , Xn respectively, then we de�ne [R(t1, . . . , tn)] as 〈[t1]π1, . . . , [tn]πn〉∗[R],
where πi is the projection [fv(R(t1, . . . , tn))]→ [fv(ti)];

(iii) [ϕ ∧ ψ] is de�ned as the meet π∗0[ϕ] ∧ π∗1[ψ] in P([fv(ϕ ∧ ψ)]) where π0 and π1 are
the projections from [fv(ϕ ∧ ψ)] to [fv(ϕ)] and [fv(ψ)] respectively; similarly, one
de�nes [ϕ ∨ ψ], [ϕ→ ψ] using the appropriate Heyting prealgebra operations;



20 CHAPTER 4. REALIZABILITY TOPOSES

(iv) [¬ϕ] is de�ned as [ϕ→ ⊥];

(v) [∀xϕ] and [∃xϕ] are de�ned as ∀π[ϕ] and ∃π[ϕ], respectively, where π is the projec-
tion from [fv(ϕ)] to [fv(∀xϕ)] = [fv(∃xϕ)].

Finally, we say that a sentence ϕ is true in P (written as P |= ϕ) if [ϕ] is the top
element of P(1). That is, [ϕ](∗) has a realizer, viz. [ϕ] ⊆ A is non-empty.

Remark 4.2.5. For convenience, we employ a lower-case, upper-case correspondence
between variables and types, viz. we write x, x′, x′′, . . . for variables of type X. Fur-
thermore, given a predicate ϕ ∈ P(X1, . . . , Xn), we will also write ϕ for the relation
symbol of type (X1, . . . , Xn) that is interpreted by this predicate.

Example 4.2.6. It may be instructive to write out the quanti�er cases above. Let ϕ
be a formula with one free variable x and assume X 6= ∅. Let π : [fv(ϕ)] → 1 be the
unique map. By de�nition of ∃π, we �nd P |= ∃xϕ(x) if and only if

⋃
a∈X [ϕ](a) 6= ∅. In

light of Lemma 4.1.8 and the fact that projections are surjective, we see that similarly:
P |= ∀xϕ(x) if and only if

⋂
a∈X [ϕ](a) 6= ∅.

Moreover, by Example 4.1.9, [ϕ(x)] ≤ [ψ(x)] if and only if P |= ∀x(ϕ(x)→ ψ(x)).

Example 4.2.7. Let ϕ be a formula. Since [⊥] maps any element to the empty set, we
see that [¬ϕ] = [ϕ→ ⊥] has a realizer if and only if [ϕ] = [⊥]. In fact, since any realizer
will work if [ϕ] = [⊥], we have:

[¬ϕ](x) =

{
A if [ϕ](x) = ∅;
∅ else;

for any x ∈ [fv(ϕ)].

Remark 4.2.8. We employ the following (potentially confusing) notation. If ϕ is a formula
with free variables xX1

1 , . . . , xXn
n and a1 ∈ Xi, . . . , an ∈ Xn, then we write [ϕ(a1, . . . , an)]

for [ϕ](a1, . . . , an).

Theorem 4.2.9 (Soundness Theorem). Let ϕ be a sentence in a Set-typed relational

language L. If ϕ is provable in intuitionistic predicate logic without equality, then P |= ϕ
for every interpretation of L in P.

Proof. This can be done by induction on ϕ and the proof tree for ϕ. Further, it relies
on a substitution lemma and on the Beck-Chevalley condition. We do not go into these
matters here, but one may consult [Oos08, Theorem 2.1.6]. �

4.3 Objects and morphisms of realizability toposes

Throughout this section, let P be the realizability tripos of the pca A.



4.3. OBJECTS AND MORPHISMS OF REALIZABILITY TOPOSES 21

De�nition 4.3.1. For a set X, a partial equivalence relation (over P) on X is an element
∼ of P(X ×X) such that:

P |= ∀xx′(x ∼ x′ → x′ ∼ x) (∼ is symmetric);

P |= ∀xx′x′′(x ∼ x′ ∧ x′ ∼ x′′ → x ∼ x′′) (∼ is transitive).

(Recall our convention from Remark 4.2.5.)

Explicitly, this means that there are elements s, t ∈ A witnessing the symmetry and
transitivity, respectively, viz. for any x, x′, x′′ ∈ X, if a ∈ [x ∼ x′], then sa ↓ and
sa ∈ [x′ ∼ x] and if a ∈ [x ∼ x′], b ∈ [x′ ∼ x′′], then t(pab)↓ and t(pab) ∈ [x ∼ x′′].

Observe that ∼ is really partial, since we do not require P |= ∀x(x ∼ x). We think
of elements of [x ∼ x] as realizers witnessing the existence of x.

The reason for stating the de�nition using the tripos, without explicit mention of the
realizers is twofold. For one, the language of the tripos is convenient. Moreover, the
Soundness Theorem makes it easy to derive further properties. For example, it yields
P |= ∀xx′(x ∼ x′ → x ∼ x ∧ x′ ∼ x′), so if elements are related, then they both exist.

The objects of a realizability topos will be pairs of sets with partial equivalence
relations. Next, we turn to de�ning morphisms.

De�nition 4.3.2. Let (X,∼X) and (Y,∼Y ) be two sets with partial equivalence re-
lations. A functional relation (over P) from (X,∼X) to (Y,∼Y ) is an element F of
P(X × Y ) such that:

P |= ∀xy(F (x, y)→ x ∼X x ∧ y ∼Y y) (F is strict);

P |= ∀xx′yy′(F (x, y) ∧ x ∼X x′ ∧ y ∼Y y′ → F (x′, y′) (F is relational);

P |= ∀xyy′(F (x, y) ∧ F (x, y′)→ y ∼Y y′) (F is single-valued);

P |= ∀x(x ∼X x→ ∃yF (x, y)) (F is total).

We are now in position to formulate the de�nition of a realizability topos.

De�nition 4.3.3. The realizability topos RT(A) of A is the category de�ned as follows.
An object X is a pair (|X|,∼X) with |X| a set and ∼X a partial equivalence relation
on |X|. A morphism in RT(A) from X to Y is an isomorphism class in P (|X| × |Y |) of
functional relations from X to Y . If f : X → Y is such a morphism and F is an element
of the isomorphism class f , then we say that the functional relation F represents f .

Remark 4.3.4. We extend our convention from Remark 4.2.5 to variables x, x′, x′′, . . .
and objects X = (|X|,∼X).

We should of course verify that this is a valid de�nition, i.e. that this really de�nes a
category. We will do so shortly. First, we introduce a useful lemma.

Lemma 4.3.5. Let X and Y be two objects of RT(A) and let F and G be two functional

relations from X to Y . If F ≤ G, then F and G are isomorphic. Hence, they de�ne the

same morphism in RT(A).



22 CHAPTER 4. REALIZABILITY TOPOSES

Proof. This is most easily proved using the Soundness Theorem. Thus, we argue inform-
ally in intuitionistic predicate logic. Suppose F ≤ G, viz. P |= ∀xy(F (x, y) → G(x, y)).
We wish to show that G ≤ F holds. To this end, suppose G(x, y) is the case. By strict-
ness, we �nd x ∼X x. By totality of F , we �nd F (x, y′) for some y′. Hence, G(x, y′),
because F ≤ G. As G is single-valued, we get y ∼Y y′. Finally, F is relational, so
F (x, y), as desired. �

Proposition 4.3.6. RT(A) is a category.

Proof. For every object X, de�ne idX : X → X as the isomorphism class of ∼X . Sym-
metry and transitivity of ∼X ensure that ∼X is indeed a functional relation from X to
X. Given morphisms X → Y and Y → Z represented by F and G, respectively, de�ne
their composition as the isomorphism class of [∃y(F (x, y)∧G(y, z))] ∈ P(|X|× |Z|). It is
now not hard to use the Soundness Theorem to verify that composition is well-de�ned,
associative and that composition with idX does nothing. �

Example 4.3.7. The realizability topos RT(K1) over Kleene's �rst model is the �rst and
most well known example of a realizability topos. It is commonly known as the E�ective
Topos and denoted here by Eff.

Example 4.3.8. In the upcoming chapters we will mainly be interested in RT(S): the
realizability topos over Scott's graph model.

4.4 Properties of realizability toposes

It will be convenient to characterize the isomorphisms in RT(A). It is also a nice exercise
in dealing with functional relations.

Lemma 4.4.1. Let f : X → Y be a morphism of RT(A) represented by F . Then f is an

isomorphism if and only if

P |= ∀x′x′y(F (x, y) ∧ F (x′, y)→ x ∼X x′); (4.4.1)

P |= ∀y(y ∼Y y → ∃xF (x, y)). (4.4.2)

Proof. Assume �rst that f is an isomorphism with inverse g represented by G. Then,

P |= ∀xx′(∃y(F (x, y) ∧G(y, x′))↔ x ∼X x′); (∗)
P |= ∀yy′(∃x(G(y, x) ∧ F (x, y′))↔ y ∼Y y′). (∗∗)

We use the Soundness Theorem. Equation (4.4.2) is immediately obtained from (∗∗).
Now reason informally in intuitionistic logic. Suppose we have F (x, y) ∧ F (x′, y). By
strictness of F , we get y ∼Y y, so by (∗∗) we obtain G(y, x′′) for some x′′. Thus, we have
G(y, x′′) ∧ F (x, y) ∧ F (x′, y), so that (∗) yields x ∼X x′′ ∧ x′ ∼X x′′. So by transitivity
and symmetry, x ∼X x′, as desired.

Conversely, assume F satis�es (4.4.1) and (4.4.2). One easily checks that G(y, x) =
F (x, y) is a functional relation from Y to X. Using (4.4.1) and (4.4.2) and the fact that



4.4. PROPERTIES OF REALIZABILITY TOPOSES 23

F is a functional relation, it is straightforward to verify that (∗) and (∗∗) hold for this
G. Hence, F represents an isomorphism. �

Remark 4.4.2. Later (c.f. Lemma 4.4.7 and Example 4.5.1), we shall see that f is a
monomorphism/epimorphism if and only if 4.4.1/4.4.2 holds. Of course, once we know
that RT(A) is a topos, the lemma above follows from this. We prove it here already as
it is convenient for showing that RT(A) is indeed a topos.

Given the fact that the objects of RT(A) are sets with a partial equivalence relation,
it seems natural to ask ourselves how we may relate a morphism X → Y of RT(A) to
functions from |X| to |Y |. The following lemmas shed some light on these matters.

Lemma 4.4.3. Let X and Y be objects of RT(A) and let f : |X| → |Y | be any function.

If f satis�es

P |= ∀xx′(x ∼X x′ → f(x) ∼Y f(x′)), (4.4.3)

then f induces a morphism from X to Y represented by

Ff = [x ∼X x ∧ f(x) ∼Y y] ∈ P(|X| × |Y |).

Proof. Observe that [x ∼X x ∧ f(x) ∼Y y] is always strict and single-valued. By the
additional requirement, it is also easily seen to be total and relational. �

Moreover, in some cases, any morphism is induced by a function on sets.

Lemma 4.4.4. Let X and Y be objects of RT(A) and write S(|X|, |Y |) for the set of

functions from |X| to |Y | that satisfy Equation (4.4.3). Suppose y ∼Y y′ = ∅ for any

distinct y, y′ ∈ |Y |. Moreover, assume that x ∼X x 6= ∅ for any x ∈ |X|. Then, there

is a bijective correspondence between S(|X|, |Y |) and RT(A)(X,Y ) given by f 7→ [Ff ],
where [Ff ] denotes the isomorphism class of Ff .

Proof. The previous lemma showed us that the above map is well-de�ned. It remains to
show that it is bijective.

For surjectivity, suppose F represents any morphism X → Y . We wish to de�ne a
function f : |X| → |Y | such that Ff and F are isomorphic in P(|X| × |Y |). To this end,
let x ∈ |X| be arbitrary. Since x ∼X x is assumed to be non-empty, there is, by totality,
a y ∈ |Y | such that F (x, y) 6= ∅. Now if F (x, y) and F (x, y′) are both non-empty, then
by single-valuedness of Y , we must have that y ∼Y y′ 6= ∅, which implies that y are y′

are equal. Thus, we may de�ne a function f : |X| → |Y | by sending x to the unique
y ∈ Y with F (x, y) 6= ∅. To show that F and Ff represent the same morphism, we apply
Lemma 4.3.5 and prove that F ≤ Ff . But this is immediate by strictness of F and the
our choice of f .

For injectivity, assume Ff and Fg represent the same morphism. That is, P |=
∀x(x ∼X x→ f(x) ∼Y g(x)). Since x ∼X x is non-empty for any x ∈ |X|, we �nd that
f(x) ∼Y g(x) is non-empty for any x ∈ |X|. Hence, by our assumption on Y , we have
f(x) = g(x) for any x ∈ |X|. We conclude that f = g, as desired. �



24 CHAPTER 4. REALIZABILITY TOPOSES

In the lemma above we had to assume that x ∼X x 6= ∅ for any x ∈ |X|. The next
lemma shows that we may generally do so.

Lemma 4.4.5. Any object X of RT(A) is isomorphic to an object Y of RT(A) such that

y ∼Y y 6= ∅ for any y ∈ |Y |.

Proof. LetX be an any object of RT(A). De�ne the setX ′ = {x ∈ |X| | x ∼X x 6= ∅}, let
∼ be the restriction of ∼X to X ′×X ′ and write Y = (X ′,∼). Observe that the inclusion
X ′ → |X| satis�es Equation (4.4.3), so we have a morphism i : Y → X represented by
[x ∼ x ∧ x ∼X y] ∼= [x ∼X y]. We use Lemma 4.4.1 to show that i is an isomorphism.
By symmetry and transitivity we have (4.4.1). Moreover, (4.4.2) requires us to �nd an
element of

⋂
x∈|X|(x ∼X x→

⋃
y∈X′ x ∼ y). But one may take i; for x ∼X x is non-empty

if and only if x ∈ X ′. We conclude that X and Y are isomorphic. �

Proposition 4.4.6. The category RT(A) has �nite limits.

Proof. For the terminal object, de�ne 1 = ({∗},∼) with ∗ ∼ ∗ = A. Let X be an
arbitrary object of RT(A). We must show that there is a unique morphism from X to
1. By Lemma 4.4.5, we may assume that x ∼X x 6= ∅ for any x ∈ |X|. So we can apply
Lemma 4.4.4, and since there is exactly one function from {∗} to |X|, there is a unique
morphism from X to 1.

IfX and Y are two objects, then we de�ne their product asX×Y = (|X|×|Y |,∼X×Y )
where (x, y) ∼X×Y (x′, y′) is de�ned as [(x ∼X x′) ∧ (y ∼Y y′)]. One easily shows that
∼X×Y is symmetric and transitive. The projections π0 : X×Y → X and π1 : X×Y → Y
are represented by [x ∼X x′ ∧ y ∼Y y] ∈ P(|X| × |Y | × |X|) and [y ∼Y y′ ∧ x ∼X x] ∈
P(|X|× |Y |× |Y |), respectively. Given morphisms f : Z → X and g : Z → Y represented
by F and G, we have an arrow 〈f, g〉 : Z → X×Y represented by [F (z, x)∧G(z, y)]. Now,
π0〈f, g〉 is represented by [∃x′y(F (z, x′)∧G(z, y)∧ x′ ∼X x∧ y ∼Y y] and this is smaller
than [F (z, x)] because F is relational. So by Lemma 4.3.5, we see that π0〈f, g〉 = f .
Similarly, π1〈f, g〉 = g. It is not much harder to check that 〈f, g〉 is unique with this
property.

Next, we show that RT(A) has equalizers. Let f, g : X → Y be two arrows respectively
represented by F and G. Construct the object E = (|X|,∼E) with partial equivalence
relation [x ∼E x′] = [x ∼X x′ ∧ ∃y(F (x, y) ∧ G(x, y))]. The identity on |X| induces a
morphism i : E → X represented by ∼E . The composite fi is represented by

[∃x′(x ∼E x′ ∧ F (x′, y))] ∼= [∃x′(x ∼X x′ ∧ F (x, y) ∧ ∃y′(F (x, y′) ∧G(x, y′)))]
∼= [∃x′y′(x ∼X x′ ∧ F (x, y) ∧ F (x, y′) ∧G(x, y′))]
∼= [∃x′y′(x ∼X x′ ∧G(x, y) ∧ F (x, y′) ∧G(x, y′))]
∼= [∃x′(x ∼E x′ ∧G(x′, y))],

where the penultimate equivalence holds because F and G are relational and single-
valued. So we see see that fi = gi. Now suppose h : Z → X is an arrow such that
fh = gh. We must show that it factors uniquely through i. If H represents h, then we
have

P |= ∀yz(∃x(H(z, x) ∧ F (x, y))↔ ∃x(H(z, x) ∧G(x, y))).



4.4. PROPERTIES OF REALIZABILITY TOPOSES 25

Using this, one veri�es that H is also a functional relation from Z to E and that it yields
the required unique factorisation of h through i. We conclude that RT(A) has �nite
limits. �

Lemma 4.4.7. A functional relation F from X to Y represents a monomorphism if and

only if F satis�es Equation (4.4.1).

Proof. Suppose F represents an arrow f and consider the kernel pair of f . By our
description of �nite limits above, the pullback is given by the object E = (|X| × |X|,≈)
where (x0, x1) ≈ (x′0, x

′
1) is de�ned as [x0 ∼X x′0 ∧ x1 ∼X x′1 ∧ ∃y(F (x0, y) ∧ F (x1, y))]

for x0, x1, x
′
0, x
′
1 ∈ |X|.

Now, f is monic if and only if the mapX → E represented by [x ∼X x0∧x ∼X x1] (for
x, x0, x1 ∈ |X|) is an isomorphism. Using Lemma 4.4.1, it is then not hard to show (using
the Soundness Theorem) that the latter is equivalent to F satisfying Equation (4.4.1). �

Now that we have characterized monomorphisms, let us turn to subobjects.

De�nition 4.4.8. A strict relation ϕ on an object X is an element ϕ ∈ P(|X|) such that
ϕ is strict and relational, i.e.

P |= ∀x(ϕ(x)→ x ∼X x);

P |= ∀xx′(ϕ(x) ∧ x ∼X x′ → ϕ(x′)).

For a strict relation ϕ on X, let us write Xϕ for the object (|X|,∼ϕ) where x ∼ϕ x′ =
[x ∼X x′ ∧ ϕ(x)].

Lemma 4.4.9. Let ϕ be a strict relation on X. The map Xϕ → X represented by ∼ϕ is

a mono. Moreover, if f : Y → X is a mono, represented by F , then Y is isomorphic as

a subobject of X to Xψ where ψ = [∃y(F (y, x))].

Further, given two strict relations ϕ and ψ on X, we have Xϕ ≤ Xψ as subobjects if

and only if ϕ ≤ ψ as P(A)-valued predicates on |X|.

Proof. The �rst claim is routine to check. For the second one, suppose F represents
a monomorphism from Y to X. Note that ϕ = [∃yF (y, x)] is a strict relation on X.
One readily veri�es that F is a functional relation from Y to Xϕ. Of course, it satis�es
Equation (4.4.1) and by our choice of ϕ Equation (4.4.2) also holds. Therefore, the map
Y → Xϕ is an iso. Lastly, the triangle

Y X

Xϕ

∼=

clearly commutes. Hence, the subobject Y is isomorphic to Xϕ.



26 CHAPTER 4. REALIZABILITY TOPOSES

Finally, observe that we have a commutative triangle

Xϕ X

Xψ

if and only if P |= ∀x(ϕ(x)→ ψ(x)) which is equivalent to ϕ ≤ ψ (c.f. Example 4.1.9). �

It will be convenient to describe pullbacks of subobjects.

Lemma 4.4.10. Let ϕ be a strict relation on X and let f : Y → X be any morphism.

The pullback of Xϕ ↪→ X along f is given by the strict relation [∃x(F (y, x) ∧ ϕ(x))] on
Y , where F is a representative of f .

Proof. By our description of �nite limits, the pullback Xϕ ×X Y is given by the object
(|X| × |Y |,≈) with

(x, y) ≈ (x′, y′) = [x ∼X x′ ∧ y ∼Y y′ ∧ ∃x′′(x′′ ∼X x ∧ ϕ(x′′) ∧ F (y, x′′))].

The map Xϕ ×X Y ↪→ Y is represented by

(x, y, y′) 7→ [(x, y) ≈ (x, y) ∧ y ∼Y y′].

A routine calculation shows that

P |= ∀xy((x, y) ≈ (x, y)↔ F (y, x) ∧ ϕ(x)),

so that Xϕ ×X Y ↪→ Y is also represented by

(x, y, y′) 7→ [F (y, x) ∧ ϕ(x) ∧ y ∼Y y′].

By Lemma 4.4.9, the subobject Xϕ ×X Y of Y is isomorphic to Yψ with

ψ(y′) = [∃xy(F (y, x) ∧ ϕ(x) ∧ y ∼Y y′] ∼= [∃x(F (y′, x) ∧ ϕ(x))],

as desired. �

Having a good understanding of subobjects and their pullbacks allows us to prove
the following.

Proposition 4.4.11. The category RT(A) has power objects.

Proof. Intuitively, a power object of X should be all the subobjects of X. Hence, for an
object X we de�ne its power object PX as the object

(
P(A)|X|,∼PX

)
with

ϕ ∼PX ϕ′ = [∀x(ϕ(x)→ x ∼X x) ∧ ∀xx′(x ∼X x′ ∧ ϕ(x)→ ϕ(x′)) ∧ ∀x(ϕ(x)↔ ϕ′(x))],

where ϕ,ϕ′ are variable of type P(A)|X|. Observe that for P(A)-valued predicates ϕ
and ψ on |X|, the relation ϕ ∼PX ψ expresses that ϕ is a strict relation on X and that



4.4. PROPERTIES OF REALIZABILITY TOPOSES 27

ϕ ∼= ψ′. It is easy to show that ∼PX is symmetric and transitive (check that ϕ′ is also a
strict relation in the internal logic of P).

Next, we must de�ne a subobject ∈X of X × PX. We may do so by giving a strict
relation on |X| × P(A)|X|: de�ne ∈X as x ∈X ϕ = [ϕ ∼PX ϕ∧ϕ(x)] and observe that it
is indeed a strict relation.

Finally, suppose we are given a subobject (X × Y )ψ ↪→ X × Y . We are tasked with
showing that there is a unique arrow f : Y → PX such that

(X × Y )ψ ∈X

X × Y X × PX

y

idX ×f

is a pullback.
Suppose �rst that F represents such an arrow. By the previous lemma and the second

part of Lemma 4.4.9, this means precisely that

P |= ∀xy(ψ(x, y)↔ ∃ϕ(F (y, ϕ) ∧ x ∈X ϕ)).

Combining this with the fact that F is a functional relation allows us to deduce:

P |= ∀yϕ(F (y, ϕ)→ y ∼Y y ∧ ϕ ∼PX ϕ ∧ ∀x(x ∈X ϕ↔ ψ(x, y))). (∗)

Now one may show that [y ∼Y y∧ϕ ∼PX ϕ∧∀x(x ∈X ϕ↔ ψ(x, y))] is itself a functional
relation from Y to PX (use ψ for verifying totality). Moreover, by Lemma 4.3.5 and (∗)
it is unique up to isomorphism (and so the arrow it represents is unique). We conclude
that RT(A) has power objects. �

Combining the above, we obtain the following result.

Theorem 4.4.12. The category RT(A) is a topos.

For future reference, we describe the subobject classi�er of RT(A).

Lemma 4.4.13. The subobject classi�er Ω of RT(A) is given by (P(A),↔), where ↔ is

the Heyting bi-implication in P(A){∗} ∼= P(A). We will write p, q, r for variables of type

|Ω| = P(A). The true map t : 1 ↪→ Ω is represented by [p↔ >]. Given a subobject Xϕ of

an object X, the unique map χϕ : X → Ω such that

Xϕ 1

X Ω

y
t

χϕ

is a pullback is given by [p↔ ϕ(x) ∧ x ∼X x]

Proof. This follows from our construction of power objects and the fact that P1 is a
subobject classi�er. �



28 CHAPTER 4. REALIZABILITY TOPOSES

4.5 Logic in realizability toposes

In this section we show that the internal logic of realizability toposes is governed by the
internal logic of the tripos and the partial equivalence relations.

Suppose L is a many-sorted �rst-order language with relation symbols, function sym-
bols and equality. An interpretation of L in RT(A) consists of the following:

(i) for every sort σ of L, an object JσK = X of RT(A);

(ii) for every relation symbol R of L of type (σ1, . . . , σn), a subobject JRK of
Jσ1K× · · · × JσnK in RT(A);

(iii) for every function symbol f of L of type (σ1, . . . , σn → τ), a morphism
JfK : Jσ1K× · · · × JσnK→ JτK in RT(A).

Given such an interpretation, terms and formulas of L are interpreted in RT(A) in
the standard way using inductive clauses (c.f. Section 4.2). A term t of L of type
(σ1, . . . , σn → τ) is interpreted as a morphism JtK : Jσ1K× · · · × JσnK→ JτK. A formula ϕ
with free variables of sorts σ1, . . . , σn is interpreted as a subobject JϕK of Jσ1K×· · ·×JσnK.
Recall that subobjects of RT(A) are essentially strict relations.

In particular, if t and s are terms of the same sort τ , then Jt = sK is given by the
equalizer of

dom(JtK)× dom(JsK) JτK,
JtKπt

JsKπs

where πt and πs are the obvious projections. If JtK and JsK are represented by functional
relations F and G, respectively, then by our description of �nite limits in RT(A), we see
that Jt = sK is represented by the strict relation [∃y(F (x, y) ∧G(x, y))].

We can show that the logical structure on the lattice of subobjects is essentially given
by the logical structure of the tripos P. To this end, letX be an arbitrary object of RT(A).
The greatest subobject of X is represented by the strict relation [x ∼X x] ∈ P(|X|) on
X. The least subobject is given by the strict relation ⊥ ∈ P(|X|). Given two strict
relations ϕ and ψ on X, one easily veri�es that the meet and join of these subobjects are
respectively given by strict relations [ϕ(x) ∧ ψ(x)] and [ϕ(x) ∨ ψ(x)]. With implication
one has to be a bit careful, because [ϕ(x)→ ψ(x)] is not generally strict. One can check
that [x ∼X x ∧ (ϕ(x)→ ψ(x))] does the job, however.

Further, suppose Jϕ(x, y)K is a subobject of X ×Y , represented by the strict relation
Rϕ(x, y) ∈ P(|X| × |Y |). Then J∃yϕ(x, y)K is represented by [∃yRϕ(x, y)] ∈ P(|X|).
Moreover, J∀yϕ(x, y)K is the strict relation [x ∼X x ∧ ∀y(y ∼Y y → Rϕ(x, y))] ∈ P(|X|).

Finally, we can interpret higher-order logic in RT(A) as well, because we can interpret
a higher-order language with quanti�ers ∃X,∀X intending to range over subsets of sort
σ, by letting them range over the power object P(JσK) (recall Proposition 4.4.11).

Example 4.5.1. In any topos, a map f : X → Y is a (regular) epimorphism if and only
if J∃x(f(x) = yK is the greatest subobject of Y . From the above paragraphs, we can see
that a morphism f : X → Y of RT(A), represented by F , is a (regular) epimorphism if
and only if Equation (4.4.2) holds.



4.6. ASSEMBLIES IN REALIZABILITY TOPOSES 29

Example 4.5.2. Given a strict relation ϕ on an objectX, we see that its double negation
is interpreted as:

J¬¬ϕ(x)K = J¬ϕ(x)→ ⊥K
= [x ∼X x ∧ (¬ϕ(x)→ ⊥)]

= [x ∼X x ∧ ¬¬ϕ(x)].

4.6 Assemblies in realizability toposes

The category RT(A) can be seen as a generalization of the category of assemblies.

Proposition 4.6.1. The category Asm(A) is equivalent to a full subcategory of RT(A).

Proof. Let us write D for the full subcategory of RT(A) on those objects X such that
[x ∼X x] 6= ∅ for any x ∈ |X| and [x ∼X x′] = ∅ for any distinct x, x′ ∈ |X|.

For an assembly X = (|X|, EX), write X ′ = (|X|,∼X) for the object of RT(A) with

[x ∼X x′] =

{
EX(x) if x = x′;

∅ else.

Note that X ′ is an object of D.
De�ne a functor I : Asm(A)→ D on objects by X 7→ X ′ and on arrows by f 7→ [Ff ],

where Ff is as in Lemma 4.4.3. Note that if f ∈ Asm(A)(X,Y ), then f satis�es Equa-
tion (4.4.3) because f is tracked, so by Lemma 4.4.3 Ff indeed represents a morphism
from X ′ to Y ′.

It is easy to see that I preserves identities. Moreover, recall that if f : X → Y and
g : Y → Z are morphisms of assemblies, then I(g)I(f) is represented by [∃y(Ff (x, y) ∧
Fg(y, z))] ∼= [EX(x)∧EY (f(x))∧EZ(g(f(x))]. But this is isomorphic (since f is tracked)
to [Ex(x) ∧ EZ(g(f(x)))], which in turn represents I(gf). Thus I is a indeed a functor.

Moreover, Lemma 4.4.4 tells us that I is fully faithful. Lastly, given an object X
of D, the pair (|X|, EX) with EX(x) = [x ∼X x] is easily seen to be an assembly that
gets mapped to X by I. Thus, the functor I is also (essentially) surjective and we may
conclude that it is an equivalence. �

We will often identify the full subcategory above with Asm(A) and simply write
X = (|X|, EX) for an object of the full subcategory.

We can also characterize the assemblies in RT(A) logically. Recall that on any topos,
we have the double negation (¬¬) Lawvere-Tierney topology.

Proposition 4.6.2. An object X of RT(A) is ¬¬-separated if and only if X is isomorphic

to an assembly.

Proof. Firstly, recall that X is ¬¬-separated if and only if the diagonal ∆: X → X ×X
is ¬¬-closed [Joh02a, Lemma A4.3.6(a)]. The diagonal, as a subobject, is represented
by the strict relation [x ∼X x′] on X × X. Its ¬¬-closure is, c.f. Example 4.5.2, given



30 CHAPTER 4. REALIZABILITY TOPOSES

by the strict relation [x ∼X x ∧ x′ ∼X x′ ∧ ¬¬(x ∼X x′)]. Hence, by the third part of
Lemma 4.4.9, an object X is ¬¬-separated if and only if

P |= ∀xx′(x ∼X x ∧ x′ ∼X x′ ∧ ¬¬(x ∼X x′)→ x ∼X x′). (∗)

Suppose �rst that X = (|X|, EX) is an assembly. Then (recall Example 4.2.7)

[x ∼X x′] =

{
EX(x) if x = x′;

∅ else;
and [¬¬(x ∼X x′)] =

{
A if x = x′;

∅ else.
(∗∗)

Therefore, it is easy to see that [∀xx′(x ∼X x ∧ x′ ∼X x′ ∧ ¬¬(x ∼X x′) → x ∼X x′)]
has a realizer.

Now suppose X is an object satisfying (∗). We construct an assembly Y such that X
and Y are isomorphic. First of all, assume without loss of generalization that x ∼X x 6= ∅
for any x ∈ |X|. Then the relation ≈ on |X| × |X| de�ned as

x ≈ x′ ⇔ x ∼X x′ 6= ∅

is an equivalence relation. Write q for the quotient map |X| → |X|/≈. De�ne the
assembly Y = (|X|/≈, E) with E(y) =

⋃
x∈y x ∼X x. Then by Lemma 4.4.3 the map q

induces a functional relation Fq from X to Y . It remains to show that Fq represents an
isomorphism. The fact that Fq satis�es Equation (4.4.2) is easily checked by our choice
of E. To show that Fq also validates Equation (4.4.1), consider the following argument.
By construction of Y and (∗∗) we see that

[∀xx′y(x ∼X x ∧ q(x) ∼Y y ∧ x′ ∼X x′ ∧ q(x′) ∼Y y → ¬¬(x ∼X x))]

is realized by the i combinator. As (∗) also holds, we see that Fq indeed satis�es Equa-
tion (4.4.1). This completes the proof. �

In later sections we will often calculate products or exponentials in RT(A) of assem-
blies. Therefore, the following propositions will be quite useful.

Proposition 4.6.3. The category Asm(A) is an exponential ideal in RT(A).

Proof. The ¬¬-separated objects of any topos form an exponential ideal, see Lemma
A4.4.3(ii) in [Joh02a]. �

Proposition 4.6.4. The functor I has a left adjoint. Consequently, I preserves all �nite
limits.

Proof. Let (X,∼) be an arbitrary object of RT(A). Construct the object (X,≈) with
[x ≈ x′] = [x ∼ x ∧ x′ ∼ x′ ∧ ¬¬(x ∼ x′)]. Using (∗) from Proposition 4.6.2, it is easily
seen that (X,≈) is an assembly. Using Lemma 4.4.3, one quickly veri�es that the identity
on X induces a morphism ηX : (X,∼)→ (X,≈).

Now suppose that f : (X,∼)→ Y is a morphism in RT(A) with Y an assembly. We
are to prove that there is a unique morphism f̃ : (X,≈)→ Y such that f̃ηX = f .



4.6. ASSEMBLIES IN REALIZABILITY TOPOSES 31

By Lemma 4.4.5 we may assume that x ∼ x 6= ∅ for any x ∈ X. Moreover, since Y
is an assembly, we can use Lemma 4.4.4. Hence, f is induced by a function f from X to
|Y |. Similarly, any morphism from (X,≈) to Y will also come from a function. Thus, by
Lemma 4.4.3, we see that we are done if

P |= ∀xx′(x ≈ x′ → f(x) ∼Y f(x′)). (∗∗)

Now we know that
P |= ∀xx′(x ∼ x′ → f(x) ∼Y f(x′)).

By de�nition of ≈ and the Soundness Theorem, we thus obtain

P |= ∀xx′(x ≈ x′ → f(x) ∼Y f(x) ∧ f(x′) ∼Y f(x′) ∧ ¬¬(f(x) ∼Y f(x′))).

But Y is ¬¬-separated, so this implies (∗∗), as we wished. �

Proposition 4.6.5. The functor I preserves regular epimorphisms.

Proof. This follows from Example 4.5.1 and Lemma 3.2.2 as writing out Equation (4.4.2)
yields the criterion described in Lemma 3.2.2. �

Proposition 4.6.6. The functor I preserves the natural numbers object.

Proof. By Corollary A2.5.11 in [Joh02a], any natural numbers object in a topos is ¬¬-
separated. Thus, by Proposition 3.2.5, it su�ces to show that RT(A) has a natural
numbers object. By [Fre72, Theorem 5.44] (or [Joh77, Corollary 6.15]), it su�ces to
exhibit an object X of RT(A) such that 1 + X and X are isomorphic. However, in
Asm(A), the natural numbers object is such an object (one may verify this directly or
consult [Fre72, Theorem 5.43] or [Joh02a, Lemma A2.5.5] and [Joh02b, Theorem 5.43]).
Since any functor preserves isomorphisms, we are done. �



Chapter 5

Order-discrete Objects

In this chapter we introduce the order-discrete objects of RT(S). These objects reappear
in subsequent chapters; we meet them again when investigating choice axioms and when
examining homotopy in RT(S).

The notion of order-discreteness is (as far as I am aware) original (although order-
discrete modest sets already make an appearance in [Lie99]). The treatment is similar to
that of the discrete objects in Section 3.2.6 of [Oos08]. In particular, Proposition 5.3.1
is very similar to [Oos08, Proposition 3.2.19(iii)]. Moreover, the exposition has bene�ted
from comments by my supervisor Jaap van Oosten; the (formulation of the) �rst two
de�nitions are due to him, for example.

Throughout this chapter, let us write 0 = {0} and 1 = {1}.

5.1 The Sierpi«ski assembly and order-discrete objects

De�nition 5.1.1. The Sierpi«ski assembly Σ is the assembly (over S) with |Σ| = {0, 1}
and EΣ(0) = {∅} and EΣ(1) = {1}.

In later chapters Σ will play an important role as a dominance. For now, we use it
to de�ne the order-discrete objects.

De�nition 5.1.2. An objectX of RT(S) is called order-discrete if the diagonalX
δ−→ XΣ

is an isomorphism.

Lemma 5.1.3. Let C be any cartesian closed category and let X be any object of C. If

A� B is an epi in C, then XB ↪→ XA is a mono.

This proof was communicated to me by my supervisor Jaap van Oosten.

Proof. Write G for the functor X(−) : C → Cop and G for the functor X(−) : Cop → C.
Observe that we have the following chain of natural isomorphisms:

Cop(GA,B) = C(B,GA) ∼= C(B ×A,X) ∼= C(A,XB) ∼= C(A,GB).

Hence, G ` G. Now, if A → B is epic in C, then it is monic in Cop, so G(A → B) =
XB → XA is a mono in C, as right adjoints preserves �nite limits. �

32



5.1. THE SIERPI�SKI ASSEMBLY AND ORDER-DISCRETE OBJECTS 33

Corollary 5.1.4. An object X is order-discrete if and only if δ is epic.

Proof. It su�ces to show that the diagonal δ is always monic, but this follows by the
lemma as the unique map Σ→ 1 is easily seen to be epic. �

De�nition 5.1.5. An assembly over a pca A is called partitioned if it is isomorphic to
an assembly X such that each realizing set EX(x) is a singleton.

Lemma 5.1.6. Let A be any pca. If P is a partitioned assembly and X is any object of

RT(A), then the exponential XP is isomorphic to the object (|X||P |,≈) where

f ≈ g = [∀p(EP (p)→ f(p) ∼X g(p))].

Proof. See [Oos08, pp. 136�137]. �

We can characterize the order-discrete objects in terms of their realizers.

Proposition 5.1.7. An object X is order-discrete if and only if there is A ∈ S such

that for any x, x′ ∈ |X|: if U ∈ [x ∼X x] and V ∈ [x′ ∼X x′] with U ⊆ V , then

AUV ∈ [x ∼X x′].

Proof. Suppose �rst that X is order-discrete. We construct the desired element A ∈ S.
Assume we have x, x′ ∈ |X| and U ∈ [x ∼X x], V ∈ [x′ ∼X x′] with U ⊆ V . By
Lemma 5.1.6 we have XΣ ∼= (|X|{0,1},≈). De�ne f : {0, 1} → |X| by f(0) = x and
f(1) = x′. The map H : S2 → S de�ned as

(W,W ′) 7→ {〈0, n〉 | n ∈W} ∪ {〈2, n〉 | n ∈W ′}

is easily seen to be continuous. Write G = graph(H). We claim that GUV ∈ [f ≈ f ].
Indeed, GUV = {〈0, n〉 | n ∈ U}∪{〈2, n〉 | n ∈ V }, so that GUV ∅ = U ∈ [f(0) ∼X f(0)].
Moreover, GUV 1 = {n ∈ N | 〈0, n〉 ∈ U or 〈2, n〉 ∈ V } = U ∪ V = V ∈ [f(1) ∼X f(1)],
since e0 = ∅ and e2 = 1 (recall Example 2.3.4) and U ⊆ V . Thus, GUV ∈ [f ≈ f ].
Now let R ∈ S be a realizer of the fact that δ is epic. Then R(GUV ) is an element
of [∀p(EΣ(p) → x0 ∼X f(p))] for some x0 ∈ |X|. Thus, R(GUV )∅ ∈ [x0 ∼X x]
and R(GUV )1 ∈ [x0 ∼X x′]. Finally, let t, s ∈ S respectively realize transitivity and
symmetry of ∼X . Then, we see that

λ∗uv.t(p(s(R(Guv)∅))(R(Guv)1))

is the desired element A.
Conversely, suppose we have an A ∈ S as in the proposition. Let f : {0, 1} → |X|

be arbitrary. By Corollary 5.1.4, it su�ces to show that from an element of [f ≈ f ],
we can continuously �nd an x ∈ |X| and an element of [∀p(EΣ(p) → x ∼X f(p))].
Let F ∈ [f ≈ f ]. Then F∅ ∈ [f(0) ∼X f(0)], F1 ∈ [f(1) ∼X f(1)] and F∅ ⊆ F1,
so A(F∅)(F1) ∈ [f(0) ∼X f(1)] and A(F∅)(F∅) ∈ [f(0) ∼X f(0)]. Hence, if we set
x = f(0), then the graph of the continuous function

∅ 7→ A(F∅)(F∅), W 6= ∅ 7→ A(F∅)(F1)

is the desired element. �



34 CHAPTER 5. ORDER-DISCRETE OBJECTS

Corollary 5.1.8. An assembly X is order-discrete if and only if the existence of realizers

U ∈ EX(x) and V ∈ EX(y) with U ⊆ V implies that x and y are equal.

Proof. Immediate. �

De�nition 5.1.9. Let A be any pca. Write ∇(2) for the assembly ({0, 1}, E) where
E(x) = A for any x ∈ {0, 1}. An object X of a realizability topos RT(A) is called
discrete if the diagonal X → X∇(2) is an isomorphism.

By [Oos08, Proposition 3.2.18], this de�nition is in line with the de�nition of a discrete
assembly from De�nition 3.2.6.

We can use our characterization of order-discrete objects to see that any order-discrete
object is discrete (as one might expect from the terminology).

Proposition 5.1.10. Any order-discrete object is discrete.

Proof. This follows from Proposition 5.1.7 and [Oos08, Corollary 3.2.20]. The statement
in [Oos08] carries over to arbitrary realizability toposes. �

5.2 Closure properties of order-discrete objects

Proposition 5.2.1. The class of order-discrete objects is closed under �nite products

and forms an exponential ideal in RT(S).

Proof. Let X and Y be order-discrete objects of RT(S). Then we have natural isomorph-
isms:

(X × Y )Σ ∼= XΣ × Y Σ ∼= X × Y,

so X × Y is again order-discrete.
Now if Z is any object, then we have natural isomorphisms:(

XZ
)Σ ∼= (XΣ

)Z ∼= XZ ,

so XZ is order-discrete. �

The notion of internally projective objects will play a role in the following proposition.
We de�ne it here.

De�nition 5.2.2. An object P in a topos E is called internally projective if the endo-
functor (−)P : E → E preserves epimorphisms.

Lemma 5.2.3. An object is internally projective if and only if it is isomorphic to a

partitioned assembly.

Proof. This follows from [Oos08, pp. 135�137]. The proofs generalize to an arbitrary
realizability topos. �

Proposition 5.2.4. The order-discrete objects are closed under subobjects and quotients

in RT(S).



5.3. ORDER-DISCRETE REFLECTION 35

Proof. By the lemma, Σ is internally projective. Furthermore, it is easily checked that
the unique map Σ → 1 is epic. The claim now follows from [HRR90, Lemma 2.3 and
Lemma 2.8]. �

The object Σ is strongly indecomposable, in the following sense.

Proposition 5.2.5. For any two objects X and Y of RT(S), we have (X + Y )Σ ∼=
XΣ + Y Σ.

Proof. LetX and Y be arbitrary objects. Construct their coproduct as (|X|+|Y |,∼X+Y )
where

[(i, x) ∼X+Y (j, y)] =


{0} ∧ [x ∼X y] if i = j = 0;

{1} ∧ [x ∼Y y] if i = j = 1;

∅ else.

The coprojections yield maps XΣ → (X + Y )Σ and Y Σ → (X + Y )Σ, so that we get a
morphism i : XΣ + Y Σ → (X + Y )Σ. Since we are working in a topos (in particular, a
distributive category), i is a mono. Therefore, it su�ces to prove that it is epic.

Render (X + Y )Σ as ((|X| + |Y |){0,1},≈) using Lemma 5.1.6. We claim that if
f : {0, 1} → |X| + |Y | is such that [f ≈ f ] is non-empty, then f factors through |X| or
|Y |. To this end, suppose R ∈ [f ≈ f ] and assume without loss of generalization that
f(0) ∈ |X|. Then 0 = p0(R∅) ⊆ p0(R1) ∈ {0, 1}. Hence, p0(R1) = 0, since 0 6⊆ 1, so
f(1) ∈ |X| as well. This proves our claim. From our claim, it is straightforward to prove
that i is also an epi, and thus an isomorphism. �

Corollary 5.2.6. The class of order-discrete objects is closed �nite coproducts in RT(S).

Proof. It is immediate from the previous proposition that the diagonalX+Y → (X+Y )Σ

is an isomorphism if X and Y are order-discrete. �

5.3 Order-discrete re�ection

This section shows that the order-discrete objects give rise to an adjunction.

Proposition 5.3.1. The full subcategory of RT(S) on order-discrete objects is re�ective,

viz. the inclusion functor has a left adjoint.

Proof. We are tasked with the following: for every object X, we must construct an order-
discrete object Xod and an map ηX : X → Xod such that for every map f : X → Y with
Y order-discrete, f factors uniquely through ηX .

Let X be an arbitrary object of RT(S). In the construction of Xod we use the coding
of �nite sequences in S (recall Section 2.2). We will write [U1, . . . , Un] for the code of
the sequence (U1, . . . , Un) of elements of S and write ∗ for concatenation.

We construct Xod as follows: Xod = (|X|,≈X) where x ≈X x′ is the set of codes of
sequences

[I0, U0, V0, A1, I1, U1, V1, . . . , An, In, Un, Vn]

with n ≥ 0 such that for every 0 ≤ i ≤ n:



36 CHAPTER 5. ORDER-DISCRETE OBJECTS

(i) Ii ∈ {0, 1} and Ii = 0⇔ Ui ⊆ Vi and Ii = 1⇔ Vi ( Ui;

(ii) there are x0, . . . , xn, x
′
0, . . . , x

′
n ∈ |X| such that for all i + 1 ≤ n, it holds that

Ui ∈ [xi ∼X xi], Vi ∈ [x′i ∼X x′i] and Ai+1 ∈ [x′i ∼X xi+1].

(iii) x0 = x and x′n = x′;

We will say that the sequence above has length n+ 1.
We think of a realizer of x ≈X x′ as a path through realizers with source x and target

x′. One might picture such a realizer as:

xn x′n = x′

xn x′n−1

...

x1 x′1

x = x0 x′0

The horizontal steps are inclusions or reserve inclusion (as indicated by the Ii), while the
vertical steps are realized by the Ai.

We should check that Xod is indeed an object of RT(S), i.e. that ≈X is a partial
equivalence relation in the tripos P. Transitivity holds because if σ ∈ [x ≈X x′] and τ ∈
[x′ ≈X x′′], then from σ we e�ectively obtain U ∈ [x′ ∼X x′] and σ ∗ [U ] ∗ τ ∈ [x ≈X x′′].
Pictorially, we stack two paths on top of each other. Symmetry holds, because we can
simply reverse the sequence and �ip each Ii.

We proceed by showing that Xod is indeed order-discrete. We use Proposition 5.1.7.
Note that the map S2 → S given by

(U, V ) 7→ [0, U, V ]

is continuous. Further, if we write A for its graph, then AUV ∈ [x ≈X x′] whenever
U ∈ [x ≈ x] and V ∈ [x′ ≈X x′] with U ⊆ V . Thus, Xod is order-discrete, as desired.

Next, we de�ne a map ηX : X → Xod. Observe that

P |= ∀xx′(x ∼X x′ → x ≈X x′), (∗)

because from an element A ∈ [x ∼X x′], we can e�ectively obtain realizers U ∈ [x ∼X x]
and V ∈ [x′ ∼X x′], and from these we get [0, U, U,A, 0, V, V ] as an element of x ≈X x′.



5.3. ORDER-DISCRETE REFLECTION 37

Pictorially,

x′ x′

x x

Thus, by Lemma 4.4.3, the identity on |X| induces a morphism ηX : X → Xod. It is
easily established that ηX satis�es Equation (4.4.2), so ηX is epic.

Finally, let f : X → Y be any with Y order-discrete. We must show that f factors
through ηX . That the factorization is unique follows from the fact that ηX is epic. Let
F be a functional relation representing f . We show that F is also a functional relation
from Xod to Y . Since F is a functional relation from X to Y , it remains to show that
F is strict, total and relational with respect to ≈X . The �rst two are easily checked,
because (∗) (see above) and P |= ∀x(x ≈X x→ x ∼X) hold and because F is strict and
total w.r.t. ∼X .

For the proof that F is relational w.r.t ≈X , we describe how to recursively de�ne the
required algorithm. Since Y is order-discrete, let A be as in Proposition 5.1.7. Assume
F (x, y) holds. Given σ ∈ [x ≈X x′], inspect its length n+ 1.

If n = 0, then we have σ = [I, U, V ] with U ∈ [x ∼X x], V ∈ [x′ ∼X x′] and I ∈ {0, 1}.
Using totality and strictness of F w.r.t ∼X and ∼Y , we obtain y′, y′′ ∈ |Y | such that
F (x, y′) and F (x′, y′′) and realizers U ′ ∈ [y′ ∼Y y′] and V ′ ∈ [y′′ ∼Y y′′]. By single-
valuedness of F , we get y ∼Y y′. Since application is monotone and U ⊆ V or V ⊆ U ,
we have U ′ ⊆ V ′ or V ′ ⊆ U ′, respectively. If 0 ∈ I, then AU ′V ′ ∈ [y′ ∼Y y′′] and if
1 ∈ I, then AV ′U ′ ∈ [y′′ ∼Y y′]. Since F is relational w.r.t ∼Y , we get F (x′, y′). As we
also had y ∼Y y′, we get F (x′, y), as desired.

If n > 0, then σ = τ ∗ [An, In, Un, Vn] with τ ∈ [x ≈X x′n−1], Un ∈ [xn ∼X xn],
Vn ∈ [x′n ∼X x′n] and An ∈ [x′n−1 ∼X xn]. By induction, we get F (x′n−1, y) from τ .
Using An we obtain F (xn, y). Finally, using a similar argument as above, we use In, Un
and Vn to get F (x′n, y) = F (x′, y), as we wished.

Thus, F is a functional relation from Xod to Y , completing our proof. �



Chapter 6

Arithmetic in RT(S)

In this chapter we examine some of the logical properties of the realizability topos RT(S)
over Scott's graph model. We look at �rst and second order arithmetic. It will turn
out that �rst order arithmetic is simply (classically) true arithmetic, but second order
arithmetic will prove to be more interesting.

6.1 First order arithmetic

This section is based on [Oos08, Section 3.1], but suitably adapted from Eff to RT(S).
The �nal theorem in the section is my own.

We start out with an easy but useful lemma.

Lemma 6.1.1. Let f : Nk → N be any function with k ≥ 1. Then we have F ∈ S such

that F{n1} . . . {nk} = {f(n1, . . . , nk)} for every (n1, . . . , nk) ∈ Nk. Similarly, we can

represent any function Nk → S in the pca S.

Proof. Given f : Nk → N, de�ne F ′ : Sk → S by mapping

(U1, . . . , Uk) 7→
⋃

n1∈U1,...,nk∈Uk

{f(n1, . . . , nk)}.

Then F ′ is continuous by design, so we have F ∈ S with FV1 . . . Vk = F ′(V1, . . . , Vk) for
any V1, . . . , Vk ∈ S. Clearly then, F{n1} . . . {nk} = {f(n1, . . . , nk)} for any n ∈ N. The
second claim is proved similarly. �

Proposition 6.1.2. The natural numbers object N in RT(S) is the assembly (N, {{−}}).

Proof. We prove this by showing that (N, {{−}}) is isomorphic to the standard natural
numbers object N = (N, EN ) with EN (n) = {n} (here n is the nth Curry numeral in the
pca S; recall Proposition 3.2.5 and Proposition 4.6.6). Since both objects are assemblies,
we may work in Asm(S).

Observe that the function N→ S given by n 7→ n is tracked by the previous lemma.
Therefore, the function idN is tracked as a morphism from (N, {{−}}) to N . It remains

38



6.1. FIRST ORDER ARITHMETIC 39

to show that it is tracked as a morphism N → (N, {{−}}). To this end, let R be a
primitive recursive combinator in our pca S (recall Proposition 2.2.6) and let S ∈ S
be such that S{n} = {n + 1} for any n ∈ N (possible by the lemma above). Then
idN : N → (N, {{−}}) is tracked by R{0}λ∗xy.Sy, as one easily veri�es. �

Remark 6.1.3. In light of the above proposition, we will henceforth write n for the
singleton {n}, with n ∈ N, when working with the pca S.

The language of arithmetic is the �rst-order language with function symbols for each
primitive recursive function. In every cartesian closed category with a natural num-
bers object N , there is a standard interpretation of the primitive recursive functions: a
primitive recursive function Nk → N is interpreted as a morphism Nk → N .

Using Lemma 6.1.1, one can show that Nk is isomorphic to the assembly (Nk, E)
where E((n1, . . . , nk)) = 〈n1, . . . , nk〉, with 〈−〉 a bijection from Nk to N.

In Asm(S), morphisms from Nk to N are determined by functions Nk → N. Thus,
in Asm(S) the primitive recursive functions from Nk to N are simply the primitive
recursive functions from Nk to N. In RT(S), a primitive recursive function f : Nk → N
is represented by the functional relation (~n,m) 7→ {p〈~n〉m | F (~n) = m} from Nk to N
(remember Lemma 4.4.3).

By the results of Section 4.5, we can inductively interpret a formula ϕ(x1, . . . , xk) of
arithmetic as a strict relation on Nk. For ~n ∈ Nk, we have:

J⊥K(~n) = ∅;
Jt = sK(~n) = {〈~n〉 | (t = s)(~n) is true};
Jϕ ∧ ψK(~n) = {pUV | U ∈ JϕK(~n), V ∈ JψK(~n)};
Jϕ ∨ ψK(~n) = {pkU | U ∈ JϕK(~n)} ∪ {pkV | V ∈ JψK(~n)};
Jϕ→ ψK(~n) = {p〈~n〉U | for all V ∈ JϕK(~n), UV ∈ JψK(~n)}

J∃yϕK(~n) =
⋃
m∈N

JϕK(~n,m);

J∀yϕK(~n) = {p〈~n〉U | for all m, Um ∈ JϕK(~n,m)}.

Theorem 6.1.4. For any formula ϕ(x1, . . . , xn) and n1, . . . , nk ∈ N, there exists an

element of JϕK(n1, . . . , nk) if and only if ϕ(n1, . . . , nk) is (classically) true. Thus, the

�rst order arithmetic of RT(S) is (classically) true arithmetic.

Proof. We use induction on the logical complexity of ϕ(x1, . . . , xn). We will only treat
implication and universal quanti�cation; the other cases are fairly easy.

Suppose (ϕ→ ψ)(~n) is true. Then, either ϕ(~n) is false or ϕ(~n) and ψ(~n) are both true.
In the �rst case, we have JϕK(~n) = ∅ by induction hypothesis, so any element of S is an
element of Jϕ→ ψK(~n). In the second case, we have an elementW ∈ JψK(~n) by induction
hypothesis, so λ∗x.W is in Jϕ → ψK(~n). Conversely, assume we have U ∈ Jϕ → ψK(~n).
If JϕK(~n) = ∅, then by induction hypothesis, ϕ(~n) is false, so (ϕ → ψ)(~n) is true. If we
have V ∈ JϕK(~n), then UV ∈ JψK(~n), so by induction hypothesis, ψ(~n) is true and thus,
(ϕ→ ψ)(~n) is true.



40 CHAPTER 6. ARITHMETIC IN RT(S)

Suppose (∀yϕ)(~n) is true. Then by induction hypothesis, we have for each m ∈ N
some Vm ∈ JϕK(~n,m). Thus, using the axiom of choice, we can construct a function
v : N → S such that v(m) ∈ JϕK(~n,m). By Lemma 6.1.1, we have V ∈ S such that
V m = v(m) for each m ∈ N. Hence, V ∈ J∀yϕK(~n). For the converse, suppose that
U ∈ J∀yϕK(~n). Then, we have an element Um of Jϕ(~n,m)K for any m ∈ N. By induction
hypothesis, ϕ(~n,m) is true for any m ∈ N. Hence, (∀yϕ)(~n) is true, as desired. �

6.2 Axiom of choice and modest sets

The material in this section is due to [Lie99] (c.f. [Lie04, Proposition 2.3.4]). This section
will be devoted to the following principle:

(ACX,Y ) ∀x:X∃y:Y ϕ(x, y)→ ∃f :Y X∀x:Xϕ(x, f(x))

(Axiom of Choice for X with respect to Y ).

We will only concern ourselves with objects of RT(S) that are modest sets. We will see
that ACX,Y holds for a surprisingly large class of objects. In particular, it holds for all
objects of �nite type (i.e. N , NN , N ×N , NN×N , N (NN ), etc.).

De�nition 6.2.1. We say that a modest set (in RT(S)) has the join-property if it is
isomorphic to a modest set X whose realizing sets are closed under (binary) joins, viz. if
U, V ∈ EX(x), then U ∪ V ∈ EX(x).

Example 6.2.2. The natural numbers object N is an example of a modest set with the
join-property.

Proposition 6.2.3. Let X and Y be modest sets. If X has the join-property and Y is

order-discrete, then ACX,Y holds in RT(S).

Proof. First of all, recall from Corollary 5.1.8 what it means for an assembly to be order-
discrete. We �rst prove the following claim.

Claim: Let U ∈ S be an element mapping realizers of X to realizers of Y , i.e. if
V ∈ EX(x) for some x ∈ |X|, then UV ∈ EY (y) for some y ∈ |Y |. Then U is extensional,
in the sense that: if V,W ∈ EX(x) for some x ∈ |X|, then UV,UW ∈ EY (y) for some
y ∈ |Y |.

Proof of claim: Suppose V,W ∈ EX(x). Since X has the join-property, we �nd
V ∪W ∈ EX(x). Hence, U(V ∪W ) ∈ EY (y) for some y ∈ |Y |. Moreover, there are
y, y′ ∈ |Y | such that UV ∈ EY (y′) and UW ∈ EY (y′′). Note that UV,UW ⊆ U(V ∪W )
by monotonicity of the application. So by order-discreteness of Y , we have y = y′ = y′′,
as desired. �

For ease of notation, we will assume that ϕ has only x and y as free variables. We
may render J∀x:X∃y:Y ϕ(x, y)K as follows:

{U ∈ S | for all x ∈ |X|, V ∈ EX(x), there is some y ∈ |Y | with p0(UV ) ∈ EY (y) and

p1(UV ) ∈ Jϕ(x, y)K}. (∗)



6.3. SOME LOGICAL PRINCIPLES INVOLVING FINITE TYPES 41

Moreover J∃f :Y X∀x:Xϕ(x, f(x))K is given by

{W ∈ S | p0W tracks some f : X → Y and for all x ∈ |X|, V ∈ EX(x) we have

p1WV ∈ Jϕ(x, f(x))K}. (∗∗)

We are to �nd an element R of S such that for every U in (∗), the element RU is
in (∗∗). The idea is that any element of (∗) yields a tracker of some map X → Y . We
claim that R = λ∗u.p(λ∗v.p0(uv))(λ∗v.p1(uv)) is a suitable choice.

To verify our choice of R, suppose U is an element of (∗). By the claim and the fact
that Y is modest, we see that for every x ∈ |X|, there is a unique y ∈ |Y | such that for
every V ∈ EX(x), we have p0(UV ) ∈ EY (y) and p1(UV ) ∈ Jϕ(x, y)K. Thus, this induces
a function f : |X| → |Y |, by sending x ∈ |X| to this unique y ∈ |Y |.

We must show that p0(RU) tracks f and that p1(RU)V ∈ Jϕ(x, f(x))K for any
element V ∈ EX(x). But this follows easily by construction of f and the fact that
p0(RU)V = p0(UV ) and p1(RU)V = p1(UV ). This completes our proof. �

Proposition 6.2.4. If X and Y are modest sets with the join-property, then their product

X × Y and coproduct X + Y have the join-property as well.

Proof. Recall our choice of pairing combinators from Remark 2.3.5. The proof of the
proposition boils down to the fact that [U ∪U ′, V ∪V ′] = [U, V ]∪ [U ′, V ′], which is easily
checked. �

Proposition 6.2.5. The class of modest sets with the join-property is an exponential

ideal in Mod(S).

Proof. Suppose Y is a modest set with the join-property. Suppose f : X → Y and let
U,U ′ track f . We must show that U ∪ U ′ also tracks f . Let V ∈ EX(x). Then one
checks that (U ∪ U ′)V = UV ∪ U ′V . Since UV,U ′V ∈ EX(f(x)), we also have that
UV ∪ U ′V ∈ EX(f(x)). Thus, U ∪ U ′ tracks f , as we wished. �

Corollary 6.2.6. The scheme ACX,Y holds in RT(S) for all �nite types X and Y .

Proof. This follows from the fact N has the join-property and is order-discrete and the
fact that the order-discrete modest sets with the join property are closed under binary
products and form an exponential ideal in RT(S). �

6.3 Some logical principles involving �nite types

The principles we consider here are the same as in [Oos08, Section 3.1]. The �nal pro-
position appears in [Lie99] and [Lie04, Proposition 2.3.4]. In this section we will be



42 CHAPTER 6. ARITHMETIC IN RT(S)

concerned with the following principles:

(CT) ∀f :NN∃e:N∀x:N∃z:N(T (e, x, z) ∧ U(z) = f(x))

(Church's Thesis);

(WCN) ∀f :NN∃x:Nϕ(f, x)→ ∀f :NN∃xy:N∀g:NN (fy = gy → ϕ(g, x)),

where fy = gy is short for ∀z:N(z < y → f(z) = g(z))

(Weak Continuity for Numbers);

(BP) ∀F :N (NN )∀f :NN∃x:N∀g:NN (fx = gx→ F (f) = F (g))

(Brouwer's Principle).

Using Kleene's primitive recursive predicates T and U , Church's Thesis asserts that any
function on the natural numbers is given by a partial recursive function. Brouwer's
Principle says that any function from NN to N is continuous (where NN has the Baire
topology and N the discrete topology). Finally, WCN is both a continuity principle and
a choice principle: it states that any total relation from NN to N is determined by some
initial values of the input function.

In Eff, both CT and BP are true [Oos08, Proposition 3.1.6] (the latter by the Kreisel-
Lacombe-Shoen�eld theorem), while WCN is not. In RT(K2) both WCN and BP are
valid [Oos08, Proposition 4.3.4]. Given the topological nature of the pca S, one might
expect BP to hold in RT(S) as well. Consider the following �proof�:

The object N (NN ) is given by the assembly ({F | F : (NN, E) → N}, E′)
where E′(F ) is the set of U ∈ S tracking F . For such U , we have that
UV = F (f) for any f : N→ N and V ∈ E(f).

Let F be any element of
∣∣∣N (NN )

∣∣∣ and suppose f is any function from N to N.
Let U, V ∈ S track F and f , respectively. By continuity of the application,
�nd a �nite subset p ⊆ V such that F (f) ∈ Up. Now �nd m ∈ N such that
if g ∈ NN and fm = gm, then p ⊆ W for any W ∈ S tracking g. Now let
g ∈ NN be arbitrary such that fm = gm and let W ∈ S track g. Then,
F (f) ∈ Up ⊆ UW = {F (g)}. Hence, F (f) = F (g).

The problem with this argument is that it does not show that such m and p can be found
continuously. In fact, we have the following result.

Proposition 6.3.1. The principles CT, BP and WCN are all invalid in RT(S).

Proof. First of all, observe that NN is given by the assembly ({f | f : N → N}, E) where
E(f) is the set of trackers of f . In light of Lemma 6.1.1 this object is actually (NN, E).
From this description of NN , we see that CT indeed does not hold (take f to be any
non-recursive function).

We proceed by showing that WCN and BP are equivalent in the presence of choice.
Then, we prove that BP does not hold, �nishing the proof.



6.4. SECOND ORDER ARITHMETIC 43

Suppose WCN holds. Let F be of sort N (NN ) and de�ne ϕ(f, x) as F (f) = x. Then
∀f :NN∃x:Nϕ(f, x). By WCN we obtain: ∀f :NN∃y:N∀g:NN (fy = gy → F (g) = F (f)).
Hence, WCN implies BP.

For the converse, we need choice. Assume BP and suppose ∀f :NN∃x:Nϕ(f, x). By
ACNN ,N , we �nd F :N (NN ) such that ∀f :NNϕ(f, F (f)). Let f :NN be arbitrary. By BP,
there is y:N such that ∀g:NN (fy = gy → F (f) = F (g)). Hence, we obtain WCN, as
∀g:NN (fy = gy → ϕ(g, x)) with x = F (f) holds.

Now assume for a contradiction that BP holds. Let us write z for the zero map from
N to N. By BP, we have:

∀F :N (NN )∃x:N∀g:NN (gx = zx→ F (z) = F (g)).

Using AC
N(NN ),N

on this, we �nd Φ: N

(
N(NN)

)
such that

∀F :N (NN )∀g:NN (gΦ(F ) = zΦ(F )→ F (z) = F (g)). (∗)

In others words, Φ is a modulus of continuity functional.
Now, any cartesian closed category with a natural numbers object is a model of HAω.

Further, one easily veri�es that Mod(S) (and therefore RT(S)) is a model of extensional
HAω. By [TD88, Corollary 6.11, Chapter 9], (∗) is inconsistent with extensional HAω;
completing our proof. �

6.4 Second order arithmetic

In this section we turn to second order arithmetic in realizability toposes. We �rst start
by working in a general realizability topos over a non-trivial pca. In the second subsection
we specialize to RT(S). The �rst section, up to Proposition 6.4.4, is a generalization of
[Oos08, Section 3.1.1]; Proposition 6.4.4 and further are my own results.

6.4.1 In general realizability toposes

Throughout this section, A will denote a non-trivial pca with underlying set A. For
second order arithmetic, we need to consider the power object PN of N . By Proposi-
tion 4.4.11 and the fact that N is an assembly, we see that PN is given by the object(
P(A)N,∼PN

)
with

ϕ ∼PN ψ = [∀n(ϕ(n)→ {n}) ∧ ∀n(ϕ(n)↔ ψ(n))].

We wish to give a more convenient representation of PN . Therefore, we prove the
following simple lemma.

Lemma 6.4.1. Suppose (X,∼) is any object of RT(A) and let X ′ be any subset of

X. Write ∼′ for the restriction of ∼ to X ′. If the map X × X ′ → P(A) given by

(x, x′) 7→ [x ∼ x′] is a total relation (in the sense of the tripos), then (X,∼) is isomorphic

to (X ′,∼′).



44 CHAPTER 6. ARITHMETIC IN RT(S)

Proof. One quickly veri�es that ∼ represents an arrow (X ′,∼′)→ (X,∼). Also observe
that ∼ is a strict, relational and single-valued function from X × X ′ to P(A). Thus,
if it is also total, then ∼ represents a morphism (X,∼) → (X ′,∼′). Checking that
these arrows are inverses means proving that [x ∼ y] ∼=

⋃
z∈X′ [x ∼ z] ∧ [z ∼ y] and

[x′ ∼′ y′] ∼=
⋃
z∈X [x′ ∼ z] ∧ [z ∼ y′] hold for any x, y ∈ X and x′, y′ ∈ X ′. By

Lemma 4.3.5, it su�ces to show that in both cases ≥ holds. But this is immediate,
because ∼ is transitive. �

Lemma 6.4.2. The object PN is isomorphic to the object (P,≈) where

P = {ϕ : N→ P(A) | for all n ∈ N, if a ∈ ϕ(n), then p1a = n}.

and

ϕ ≈ ψ = [∀n(ϕ(n)↔ ψ(n))].

Proof. We use the previous lemma. Let ϕ be any function N → P(A). De�ne the
function ϕ̃ : N→ P(A) by

n 7→ {pan ∈ A | a ∈ ϕ(n)}

and note that ϕ̃ ∈ P . Observe that ϕ̃(n) → ϕ(n) is realized by p0 for every n ∈ N.
Further, assuming we have a realizer of ϕ ∼PN ϕ, we have an element s ∈ A witnessing
the strictness of ϕ. Hence, from a realizer of ϕ ∼PN ϕ we e�ectively obtain a realizer of
∀n(ϕ(n)→ ϕ̃(n)), namely λ∗x.px(sx).

By the previous lemma, PN is isomorphic to (P,∼PN ). Lastly, by the condition on
the elements of P , we see that PN is in fact isomorphic to (P,≈). �

For the remainder of this section, let us use upper case variables X,Y, Z for second
order variables and x, y, z for �rst order variables ranging over natural numbers. Further,
we will write α, β, γ for elements of P .

In the proof above we already noted that pii ∈
⋂
α∈P [α ≈ α], so when quantifying

over second order variables, we have that [∀X(X ≈ X → ϕ)] and [∃X(X ≈ X ∧ ϕ)] are
isomorphic to [∀Xϕ] and [∃Xϕ], respectively. The object PN is said to be uniform. As
a consequence, we have the following proposition.

Proposition 6.4.3. The following schemes

(UP) ∀X∃xϕ(X,x)→ ∃x∀Xϕ(X,x)

(Uniformity Principle)

(IPX) (¬ϕ→ ∃Xψ)→ ∃X(¬ϕ→ ψ) (with X not free in ϕ)

(Independence of Premiss for X)

(DNS∃X) ¬¬∃Xϕ→ ∃X¬¬ϕ
(Double Negation Shift for ∃X)

hold in RT(A).



6.4. SECOND ORDER ARITHMETIC 45

Proof. For the Uniformity Principle, observe that by our remark,

J∀X∃xϕ(X,x)K =
⋂
α∈P
{pna ∈ A | a ∈ Jϕ(α, n)K, n ∈ N}

and

J∃x∀Xϕ(X,x)K =

{
pna ∈ A | a ∈

⋂
α∈P

Jϕ(α, n)K, n ∈ N

}
,

from which it is clear that UP is realized by the i combinator.
Using Example 4.2.7 and the fact that PN is uniform, we see that IP is realized by

λ∗u.(λ∗v.ui). Finally, DNS∃ is proved similarly. �

We shall revisit the Independence of Premiss schemes in Proposition 6.4.9 and Corol-
lary 6.4.10 and Lemma 7.1.5. The �rst two show that the scheme does not hold in second
order arithmetic when quantifying over �rst order variables. The second is speci�c to
total pcas and the realizer object.

The Uniformity Principle is the most remarkable of these three (it is classically absurd,
for instance). It states that any total relation on PN ×N contains a number related to
any subset. The principle has some interesting rami�cations, that we list here.

Proposition 6.4.4. The schemes

¬ϕ ∨ ¬¬ϕ (Weak Law of Excluded Middle)

¬¬(ϕ ∨ ψ)→ ¬¬ϕ ∨ ¬¬ψ (Double Negation Shift for ∨)
¬¬∃xϕ→ ∃x¬¬ϕ (Double Negation Shift for ∃x)

are all invalid in RT(A).

Proof. We will use that, in �rst order arithmetic, ϕ ∨ ψ is equivalent to the formula
∃x((x = 0→ ϕ) ∧ (¬x = 0→ ψ)).

Suppose for the sake of a contradiction that the Weak Law of Excluded Middle were
true. Then, so would ∀X(¬0 ∈ X ∨ ¬¬0 ∈ X). Hence,

∀X(¬0 ∈ X ∨ ¬¬0 ∈ X)↔ ∀X∃x((x = 0→ ¬0 ∈ X) ∧ (¬x = 0→ ¬¬0 ∈ X))

→ ∃x∀X((x = 0→ ¬0 ∈ X) ∧ (¬x = 0→ ¬¬0 ∈ X)) (by UP)

→ ∃x((x = 0→ ∀X¬0 ∈ X) ∧ (¬x = 0→ ∀X¬¬0 ∈ X))

↔ (∀X¬0 ∈ X) ∨ (∀X¬¬0 ∈ X).

But the �nal formula is obviously absurd.
For the second scheme, take ψ = ¬ϕ and note that ¬¬(ϕ ∨ ¬ϕ) is intuitionistically

true. Hence, Double Negation Shift for ∨ would imply the Weak Law of Excluded Middle.
Finally, we show that the third scheme implies the second, since:

¬¬(ϕ ∨ ψ)↔ ¬¬∃x((x = 0→ ϕ) ∧ (¬x = 0→ ψ))

→ ∃x(¬¬((x = 0→ ϕ) ∧ (¬x = 0→ ψ))) (assuming the third scheme)

→ ∃x((x = 0→ ¬¬ϕ) ∧ (¬x = 0→ ¬¬ψ))

→ ¬¬ϕ ∨ ¬¬ψ. �



46 CHAPTER 6. ARITHMETIC IN RT(S)

We now turn our attention to ¬¬-stable subsets of N , viz. subsets X such that
∀x(¬¬(x ∈ X)→ x ∈ X) is true in RT(A). We will abbreviate this formula by Stab(X).

We have following proposition, which should be compared with Proposition 6.4.8 in
the case of A = S.

Proposition 6.4.5. Not every subset is ¬¬-stable, i.e. the sentence ∀XStab(X) is not

valid in RT(A).

Proof. Recall the set P from Lemma 6.4.2. De�ne the functions α, β ∈ P by:

α(0) = {p0 0}, α(n+ 1) = ∅ and β(0) = {p1 0}, β(n+ 1) = ∅

for any n ∈ N. Suppose for a contradiction that we have an element R ∈ J∀XStab(X)K.
Since [0 ∈ α] = α(0) and [0 ∈ β] = β(0) are both non-empty, R0∅ must be an element of
[0 ∈ α] ∩ [0 ∈ β] = α(0) ∩ β(0). But this impossible, because α and β are disjoint. �

In the following proposition let us write 〈−,−〉 for a primitive recursive coding of N2

to N. The sentence ∀X∃Y (Stab(Y ) ∧ ∀x(x ∈ X ↔ ∃y〈y, x〉 ∈ Y )) is known as Shanin's
Principle (SHP). It holds in the E�ective Topos. Internally, it says that every subset of
N is covered by a stable subset of N .

Proposition 6.4.6. If |A| > |N|, then Shanin's Principle does not hold in RT(A).

Proof. Assume for the sake of contradiction that it does. Then we have a realizer

R ∈
⋂
α∈P

⋃
β∈P

JStab(β) ∧ ∀x(x ∈ α↔ ∃y〈y, x〉 ∈ β)K.

Let us write R0 = p0R and R1 = p1R. For each a ∈ A, de�ne the element αa ∈ P by:

αa(0) = {pa0} and αa(n+ 1) = ∅ for any n ∈ N.

For each a ∈ A, pick some βa ∈ P such that R ∈ JStab(βa)∧∀x(x ∈ αa ↔ ∃y〈y, x〉 ∈ βa)K.
From R1, we e�ectively obtain R′ ∈ A such that for every a ∈ A, we have:

R′(pa0) ∈ [〈m, 0〉 ∈ βa]

for some m ∈ N. As |A| > |N|, there must be two di�erent a, a′ ∈ A such that

R′(pa0) ∈ [〈m, 0〉 ∈ βa] and R′(pa′0) ∈ [〈m, 0〉 ∈ βa′ ] (∗)

for the same m ∈ N.
From R0, we e�ectively obtain s ∈ A witnessing the stability of βa and βa′ . Thus, by

(∗), we can use s to get a common realizer:

s〈m, 0〉i ∈ [〈m, 0〉 ∈ βa] ∩ [〈m, 0〉 ∈ βa′ ].

Finally, using s〈m, 0〉i and R1, we �nd a realizer in the intersection [0 ∈ αa] ∩
[0 ∈ αa′ ] = αa ∩ αa′ . But this is impossible, because a and a′ are di�erent, so that
αa and αa′ are disjoint. �

Corollary 6.4.7. Shanin's Principle does not hold in RT(S) and RT(K2).

Proof. Immediate, as |S|, |NN| > |N|. �



6.4. SECOND ORDER ARITHMETIC 47

6.4.2 In RT(S)

This section focusses on some of the particular features of RT(S) with respect to second
order arithmetic. Although ∀XStab(X) does not hold in RT(S) (as we have seen), we
do have the following result. Again, let P be as in Lemma 6.4.2, but now with A = S.

Proposition 6.4.8. For any α ∈ P , we have a realizer of Stab(α). Hence, the sentence

∀X¬¬Stab(X) is true in RT(S).

Proof. Let α ∈ P . Note that there is a function fα : N→ S such that

fα(n) ∈

{
[n ∈ α] if [n ∈ α] 6= ∅;
{∅} else.

By Lemma 6.1.1 we have Fα ∈ S such that Fαn = fα(n). Now note that λ∗xy.Fαx
realizes Stab(α). �

We �nish the chapter by turning our attention to some Independence of Premiss
schemes, as alluded to after Proposition 6.4.3. The following is a propositional version
of the Independence of Premiss scheme and is known as the Kreisel-Putnam scheme.

Proposition 6.4.9. The scheme (¬ϕ→ ψ ∨ χ)→ (¬ϕ→ ψ) ∨ (¬ϕ→ χ) does not hold

in RT(S).

Proof. Suppose the scheme were true. Then we would have

R ∈ J∀XY Z((¬0 ∈ X → 0 ∈ Y ∨ 0 ∈ Z)→ (¬0 ∈ X → 0 ∈ Y ) ∨ (¬0 ∈ X → 0 ∈ Z))K.

Take α ∈ P such that ¬0 ∈ α is false in RT(S). Then J¬0 ∈ αK = ∅, so W is an element
of J¬0 ∈ α → 0 ∈ β ∨ 0 ∈ γK for any W ∈ S and β, γ ∈ P . Thus, p0(RW ) ∈ {k, k} for
any W ∈ S. In particular, p0(R∅) ∈ {k, k}. Since k 6⊆ k and k 6⊆ k, this implies that
p0(RW ) = k for any W ∈ S or p0(RW ) = k for any W ∈ S.

Assume without loss generalization that that p0(RW ) = k for any W ∈ S. Now
take α, β, γ ∈ P such that ¬0 ∈ α, 0 ∈ γ are true and 0 ∈ β is false in RT(S). Fix
W ′ ∈ J0 ∈ γK. Then V = λ∗x.pkW ′ is an element of J¬0 ∈ α → 0 ∈ β ∨ 0 ∈ γK.
Thus, RV is an element of J(¬0 ∈ α → 0 ∈ β) ∨ (¬0 ∈ α → 0 ∈ γ)K. By assumption,
p0(RV ) = k, so p1(RV ) ∈ J¬0 ∈ α → 0 ∈ βK. But this is impossible, since J0 ∈ βK = ∅,
while J¬0 ∈ αK is not. �

Corollary 6.4.10. The scheme (¬ϕ→ ∃xψ)→ ∃x(¬ϕ→ ψ) is not valid in RT(S).

Proof. Again, we de�ne ψ ∨ χ by ∃x((x = 0 → ψ) ∧ (¬x = 0 → χ)). Let us write ρ for
(x = 0→ ψ) ∧ (¬x = 0→ χ). Then, (¬ϕ→ ∃xρ)↔ (¬ϕ↔ ψ ∨ χ), while

∃x(¬ϕ→ ρ) ≡ ∃x((¬ϕ→ (x = 0→ ψ)) ∧ (¬ϕ→ (¬x = 0→ χ)))

↔ ∃x((x = 0→ (¬ϕ→ ψ)) ∧ (¬x = 0→ (¬ϕ→ χ)))

↔ (¬ϕ→ ψ) ∨ (¬ϕ→ χ).

Thus, the validity of the scheme in the corollary contradicts the proposition above. �



Chapter 7

A Dominance in RT(S)

Domain theory was pioneered by Dana Scott [Sco76]. It came about as solution to
the problem of �nding (denotational) semantics for theories like the untyped lambda
calculus. In synthetic domain theory ([Hyl91], [OS00]), one develops domain theory not
by constructing particular sets with desirable properties, but by imposing these properties
directly using axioms. In search of semantics for synthetic domain theory, one may turn
to toposes. The cornerstone of this idea is the notion of a dominance in a topos. From
there, one considers the associated lift functor and algebras for this functor.

In this section we de�ne and investigate some properties of a particular dominance
in RT(S). We will write S = (S, {−}) for the object of realizers. The material is an
adaptation of [Oos08, Sections 3.6.3 and 3.6.4] and also based on [OS00]. In particular,
Propositions 7.2.1 and 7.2.2 are similar to [Oos08, Propositions 3.2.27 and 3.2.28]. The
calculations in Sections 7.3�7.5 are my own, but were inspired by the examples in [OS00].

7.1 Basic de�nitions

The following de�nition is formulated in the internal language of a topos.

De�nition 7.1.1. In a topos E a dominance is a subobject D of the subobject classi�er
Ω satisfying:

(i) > ∈ D;

(ii) ∀p, q:Ω(p ∈ D ∧ (p→ (q ∈ D))→ (p ∧ q) ∈ D).

We will show that the Sierpi«ski assembly Σ (recall De�nition 5.1.1) is a dominance
in RT(S).

The following lemma is due to my supervisor Jaap van Oosten and originated from
my (incorrect) conjecture that the object of realizers S is isomorphic to the exponential
(1 + 1)N .

Lemma 7.1.2. The object of realizers S = (S, {−}) is isomorphic to the exponential ΣN

with N the natural numbers object.

48



7.1. BASIC DEFINITIONS 49

Proof. We �rst prove that the underlying set of ΣN is {0, 1}N. Since any morphism from
N to Σ is in particular a function from N to {0, 1}, one inclusion is clear. Conversely, if
f : N→ {0, 1}, then f is tracked by graph(F ), where F : S→ S is the continuous function
de�ned by:

n 7→

{
1 if f(n) = 1;

∅ if f(n) = 0.

Thus, ΣN is the assembly ({0, 1}N, E) where E(f) ⊆ S is the (non-empty) set of trackers
of f .

We have a canonical bijection

χ : S→ {0, 1}N, U 7→ χU

(where χU is the characteristic function of U) with inverse

χ−1 : {0, 1}N → S, f 7→ f−1({1}).

It remains to prove that these functions are tracked. For χ, consider the continuous
function F : S → S given by U 7→ {〈2n, 1〉 | n ∈ U}. Then χ is tracked by graph(F ).
Indeed, if U ∈ S and n ∈ N, then graph(F )Un = F (U)n and this is 1 if n ∈ U and ∅
otherwise.

For the inverse of χ, we de�ne G : S → S continuous by U 7→ {n ∈ N | Un = 1}.
(This is continuous, because the application of S is continuous.) We claim that χ−1 is
tracked by graph(G). Indeed, for f ∈ {0, 1}N and U ∈ E(f), we have n ∈ G(U) if and
only if f(n) = 1, since U tracks f . �

De�nition 7.1.3. De�ne a relation ∈ between N and S by taking the following pullback

∈ 1

N × S ∼= N × ΣN Σ Ω

y
t

ev

where Σ→ Ω is the morphism induced by the function 0 7→ ∅ and 1 7→ S.

Remark 7.1.4. Observe that ∈ is given by

[n ∈ U ] =

{
pnU if n is an element of U ;

∅ else.

In particular, ∈ is ¬¬-stable.

Lemma 7.1.5. Let A be a arbitrary total pca and let RT(A) be its realizability topos.

Let A = (A, {−}) be the object of realizers in the topos. The scheme

(IPA) (¬ϕ→ ∃x:Aψ)→ ∃x:A(¬ϕ→ ψ)

with x not free in ϕ is valid in RT(A).



50 CHAPTER 7. A DOMINANCE IN RT(S)

Proof. It is not hard to verify that λ∗u.p(p0(uk))(λ∗v.p1(uk)) realizes the scheme. �

Proposition 7.1.6. The subobject Ω′ of Ω given by

Ω′ = J∃X:S(p↔ 1 ∈ X)K

with p ranging over Ω, is a dominance in RT(S). Moreover, it is ¬¬-separated, i.e.

∀p:Ω′(¬¬p → p). Furthermore, Ω′ is closed under �nite joins in Ω, viz. ⊥ ∈ Ω′ and
∀p, q:Ω(p, q ∈ Ω′ → p ∨ q ∈ Ω′).

Proof. Double negation separation is immediate by Remark 7.1.4. Further, it is clear
that > ∈ Ω′ (take X = 1).

Suppose p ∈ Ω′ and p → (q ∈ Ω′). Take U ∈ S such that p ↔ 1 ∈ U . Then,
1 ∈ U → ∃X:S(q ↔ 1 ∈ X), so by Lemma 7.1.5 and Remark 7.1.4, we get that
∃X:S(1 ∈ U → (q ↔ 1 ∈ X)). Take such V ∈ S. Then, p ∧ q ↔ 1 ∈ U ∩ V . Hence,
p ∧ q ∈ Ω′ and Ω′ is a dominance.

The �nal claim is also easily proven, since ∅ ∈ S and because we can take unions. �

De�nition 7.1.7. Let D be a dominance in a topos E . A subobject m : A ↪→ B is
called a D-subobject if the classifying map χm of m factors through D. Equivalently (by
pullback pasting), if the square

A 1

B D

y
m t

is a pullback. We write A ⊆D B in this case. We also say that m is a D-map.

7.2 Assemblies and their Σ-subobjects

We have already remarked that the object Ω′ from Proposition 7.1.6 is ¬¬-separated.
Indeed, it is isomorphic to an assembly.

Proposition 7.2.1. The object Ω′ is isomorphic to Σ.

Proof. First of all, observe that Ω′ is isomorphic to the object (P(S),∼) where

U ∼ V = U ↔ V ∧ E(U),with

E(U) = {[W,U ] ∈ S | if 1 ∈W , then U ∈ U and if U 6= ∅, then 1 ∈W}.

De�ne a continuous function F : S→ S by

F (∅) = ∅ and F (V ) = 1 for any non-empty V .

Next, de�ne Φ: P(S)× {0, 1} → P(S) by

(U , i) 7→ {[W,U,C] | [W,U ] ∈ E(U), C ∈ EΣ(i) and i = 1⇔ 1 ∈W}.



7.2. ASSEMBLIES AND THEIR Σ-SUBOBJECTS 51

We show that Φ is a functional relation from (P(S),∼) to Σ. Strictness is immediate.
For single-valuedness, suppose we have [W,U,C] ∈ Φ(U , i) and [W ′, U ′, C ′] ∈ Φ(U , j).
We show that i = j. By de�nition, we have

i = 1⇔ 1 ∈W ⇔ U ∈ U ⇒ 1 ∈W ′ ⇔ j = 1

and similarly, i = 0 ⇒ j = 0. Thus, i = j, as desired. Suppose [W,U,C] ∈ Φ(U , i)
and B ∈ [U ↔ V]. We must e�ectively obtain an element of Φ(V, i). But if B0 realizes
U → V, then one easily sees that [W,B0U,C] is an element of Φ(V, i). So, Φ is relational.
For totality, suppose [W,U ] ∈ E(U), then [W,U, F (W )] ∈ Φ(U , i) for some i ∈ {0, 1}, by
construction of E and F . We conclude that Φ is a functional relation.

Moreover, (the arrow represented by) Φ is easily seen to be epic. For, if C ∈ EΣ(i),
then [F (C), F (C), C] ∈ Φ(Ui, i) with U1 = {1} and U0 = ∅ by construction of F and
de�nition of EΣ.

Finally, we prove that Φ is monic and hence that Φ represents an isomorphism, as
desired. Suppose we have [W,U,C] ∈ Φ(U , i) and [W ′, U ′, C] ∈ Φ(V, i). It su�ces to
e�ectively provide an element of U ↔ V, since [W,U ] is an element of E(U) already. But
[λ∗x.U ′, λ∗x.U ] is easily seen to do the job. �

Observe that a Σ-subobject of an assembly is again an assembly as Asm(S) is closed
under �nite limits in RT(S). The following proposition characterizes these Σ-subobjects
and justi�es the name Sierpi«ski assembly (as the Sierpi«ski space is the classifying space
for the Scott topology).

Proposition 7.2.2. Let X be an assembly. There is a bijective correspondence between

morphisms X → Σ and subsets X ′ ⊆ |X| for which there is an open U ⊆ S with the

following properties:

x ∈ X ′ ⇒ EX(x) ⊆ U ;

x 6∈ X ′ ⇒ EX(x) ∩ U = ∅.

Moreover, an assembly Y is a Σ-subobject of X if and only if Y is isomorphic to some

assembly (X ′, E) where X ′ ⊆ |X| is as above and E is the restriction of EX to X ′.

Proof. Let f be a morphism from X to Σ that is tracked by U ∈ S. Set

X ′ = {x ∈ X | f(x) = 1} and U = {V ∈ S | UV = 1}.

We show that U is open. Let Q := {p ⊆ S | p is �nite and Up = 1}. Recall the
notation ↑ p = {V ∈ S | p ⊆ V }. By continuity of the application, one can show that
U =

⋃
p∈Q ↑p. Thus, U is an open of S.

From the de�nition of U and the fact that U tracks f , it is immediate that U has the
desired properties.

For the converse, assume we are given an open U ⊆ S and a subset X ′ ⊆ |X| with
the properties stated. De�ne f : X → Σ by f(x) = 1 if x ∈ X ′ and f(x) = 0 if x 6∈ X ′.
We claim that it is tracked by graph(F ) where F (U) = {1 | U ∈ U}. That this F is



52 CHAPTER 7. A DOMINANCE IN RT(S)

continuous follows from the assumption that U is open. Now if x ∈ X and U ∈ EX(x),
then either f(x) = 1, in which case EX(x) ⊆ U , so that F (U) = 1 ∈ EΣ(f(x)); or
f(x) = 0, in which case E(x)∩U = ∅, so that F (U) = ∅ ∈ EΣ(f(x)). So f is tracked, as
desired.

That the operations above are each other's inverse is readily veri�ed. The �nal claim
follows immediately from the construction above and the description of pullbacks in the
category of assemblies. �

7.3 The lift functor on assemblies

De�nition 7.3.1. Let D be a subobject of Ω in an arbitrary topos E . A D-partial

map classi�er for an object Y is an arrow Y
ηY−−→ Ỹ such that for every U ⊆D X and

f : U → Y (we regard this as a partial map from X to Y with domain U) there is a
unique f̃ : X → Ỹ such that

U Y

X Ỹ

y

f

ηY

f̃

is a pullback.

Given a dominance D in a topos E , there is an endofunctor L (called the lift functor)
on E and a natural transformation η : idE ⇒ L such that Y

ηY−−→ L(Y ) is a D-partial
map classi�er for Y (see [Oos08, pp. 221�222] and [OS00, pp. 237�238]). The following
proposition describes this lift functor when restricted to Asm(S), for the dominance Σ.

Proposition 7.3.2. The lift functor L on Asm(S) is given by on objects by:

L(X) =
(
|X| ∪ {⊥X}, EL(X)

)
,

where ⊥X is some element not in |X| and

EL(X)(⊥X) = {∅} and EL(X)(x) = {[U, 1] | U ∈ EX(x)} for x ∈ |X|.

Given an arrow f : X → Y , we de�ne L(f) as the unique extension of f satisfying

⊥X 7→ ⊥Y . The natural transformation η : idAsm(S) → L is de�ned as ηX(x) = x.

Proof. Given a morphism f : X → Y of Asm(S) tracked by Uf ∈ S, note that L(f) is
tracked, as

[V0, V1] 7→

{
[UfV0, 1] if 1 ∈ V1;

∅ else;

is a continuous map S → S. Verifying that L is indeed a functor is routine. Also, note
that ηX is tracked by λ∗u.[u, 1]. That η is natural is easily checked.

Finally, suppose we have a morphism f : U → Y and U ⊆Σ X. By Proposition 7.2.2,
we may assume that we have |U | ⊆ |X| and an open U such that for x ∈ |X|:

if x ∈ |U |, then EX(x) ⊆ U and if x 6∈ |U |, then EX(x) ∩ U = ∅.



7.4. LIFT FUNCTOR FOR SLICES 53

De�ne f̃ : X → L(Y ) by

f̃(x) =

{
f(x) if x ∈ |U |;
⊥Y else.

Note that f̃ is tracked, for if f is tracked by Uf , then

U 7→

{
UfU if U ∈ U ;

∅ else

is a continuous map S→ S, because U is open.
If we have morphisms g : Z → X and h : Z → Y such that f̃g = ηY h, then we must

have that g(z) ∈ |U | for any z ∈ |Z|. Hence, g factors uniquely through (U,EU ). This
proves that f̃ makes the square into a pullback.

It remains to show that it is unique with this property. To this end, suppose we
have f ′ : X → L(Y ), such that the square is a pullback. From the commutativity of the
square, it follows that for x ∈ |U | we must have f ′(x) = f(x) = f̃(x). Now suppose for
a contradiction that we have x0 ∈ |X| \ |U | and f ′(x0) ∈ |Y |. The universal property of
the pullback then yields a map U ∪ {x0} → U such that the inclusion |U | ∪ {x0} → |X|
factors through |U |, but this is impossible, as x0 6∈ |U |. Hence, no such x0 exists and
therefore, f ′ and f̃ coincide. �

Remark 7.3.3. Observe that L(1) ∼= Σ and that η1 = 1
t−→ Σ.

Lemma 7.3.4. For any X, we have X ⊆Σ L(X) via ηX .

Proof. It is straightforward to verify that

X 1

L(X) Σ

ηX t

χX

with χX(x) = 1 and χX(⊥X) = 0 is a pullback. (Note the map F (V ) = 1 if 1 ∈ p1V
and ∅ otherwise is continuous and its graph tracks χX .) �

It is easy to check that the lift functor L is actually a monad on Asm(S). The
multiplication µ : L2(X)→ L(X) is given by the map x 7→ x,⊥X 7→ ⊥X ,⊥L(X) 7→ ⊥X .

De�nition 7.3.5. An object with ⊥ is an algebra for the monad L. A strict map between
objects with ⊥ is an L-algebra homomorphism.

7.4 Lift functor for slices

Since one can de�ne the lift functor using the internal logic of the topos (as done in
[Oos08, pp. 221�222] and [OS00, pp. 237�238]), it follows that one can also generalize
the lift functor to an endofunctor on a slice.



54 CHAPTER 7. A DOMINANCE IN RT(S)

Let us �rst look at the dominance in the slice. Given a topos E and an object Y of
E , the functor E → E/Y given by X 7→ (X × Y π1−→ Y ) is known to be logical. That
is, it preserves the logical structure of E . In particular, if D is a dominance in E , then
D×Y π1−→ Y is a dominance in E/Y . One may also verify this directly. So let us look at

Σ× Y subobjects of X
f−→ Y in RT(S)/Y . These subobjects are given as pullbacks of

Y

X Σ× Y

〈t!Y ,idY 〉
〈χ,f〉

(where !Y is the unique map Y → 1). If f : X → Y is a morphism of assemblies, then
using Proposition 7.2.2 and the description of pullbacks in Asm(S), we see that these
pullbacks all are given by assemblies (X ′, E) as in Proposition 7.2.2. The map from
(X ′, E)→ Y is simply the restriction of f .

In this section we describe, given an assembly Y , how to generalize the lift functor
on Asm(S) to a lift functor LY over Y on the slice Asm(S)/Y . Of course, there is again
a natural transformation ηY : idAsm(S)/Y ⇒ LY and this structure classi�es Σ-partial
maps.

By the above analysis, given

X (X ′, E) Z

Y
h

in Asm(S)/Y with (X ′, E) as in Proposition 7.2.2, there is a unique morphism from X
to dom(LY (a)) of Asm(S)/Y such that

(X ′, E) X

Z dom(LY (h))

y

ηY h

is a pullback in Asm(S)/Y .

Proposition 7.4.1. Let Y be any assembly. The lift functor LY on Asm(S)/Y is given

on objects by

LY (f : X → Y ) = Y tf X → Y,

where Y tf X is the assembly (Y +X,Ef ) with

Ef (0, y) = {[∅, V ] | V ∈ EY (y)}
Ef (1, x) = {[ [U, 1], V ] | U ∈ EX(x), V ∈ EY (f(x))};

and the arrow Y tf X → Y is given by [idY , f ] : (0, y)→ y, (1, x) 7→ f(x).



7.4. LIFT FUNCTOR FOR SLICES 55

On arrows, LY is de�ned as:

LY

 X Z

Y

h

f g

 =

Y tf X Y tg Z

Y

LY (h)

[idY ,f ] [idY ,g]

where LY (h) : (0, y) 7→ (0, y), (1, x) 7→ (1, h(x)).
Finally, the natural transformation ηY : idAsm(S)/Y → LY is given by ηY f (x) = (1, x).

We will henceforth simply write ηf for this map.

Proof. Firstly, observe that [idY , f ] is tracked by p1. Moreover, the map LY (h) is tracked
by the graph of the continuous function

[V0, V1] 7→

{
[Uh(p0V0), V1] if V0 6= ∅;
[∅, V1] else;

where Uh is a tracker of h. Obviously, LY is a functor.
Further, ηf : X → Y tf X is tracked by λ∗v.[ [v, 1], Ufv] where Uf tracks f . This

clearly de�nes a natural transformation η : id⇒ LY .
It remains to verify the desired pullback property. Assume we are given two com-

mutative triangles in Asm(S)

X (X ′, E) Z

Y

f

g

h

where again (X ′, E) is as in Proposition 7.2.2. De�ne g̃ : X → Y th Z by

g̃(x) =

{
ηhg(x) if x ∈ X ′;
(0, f(x)) else.

Let U be an open as in Proposition 7.2.2 and let Ug and Uf be trackers of g and f ,
respectively. Then g̃ is tracked, because the assignment

V 7→

{
[ [UgV, 1], UfV ] if V ∈ U ;

[∅, UfV ] else;

is continuous as U is open.
Note that for x ∈ X ′, we have [idY , h]g̃(x) = hg(x) = f(x) and for x ∈ |X| \X ′, we

see that [idY , h]g̃(x)) = f(x). Hence, g̃ is in fact an arrow of the slice Asm(S)/Y .
It remains to show that g̃ is the unique arrow in Asm(S)/Y making the square in the

proposition into a pullback. But this follows from essentially the same arguments as in
Proposition 7.3.2. �



56 CHAPTER 7. A DOMINANCE IN RT(S)

Observe that the LY really is a generalization of L, because the functor L1 is iso-
morphic to L. We can also generalize Lemma 7.3.4.

Lemma 7.4.2. For any f : X → Y , we have X ⊆Σ Y tf X via ηf .

Proof. Similarly to the proof of Lemma 7.3.4, one can show that

X 1

Y tf X Σ

ηf t

χX

with χX(0, y) = 0 and χX(1, x) = 1 is a pullback square. �

Finally, one may also show that LY is actually a monad, the multiplication µf for
some f : X → Y is given by the map Y t[idY ,f ] (Y tf X)→ Y tf X de�ned as (0, y) 7→
(0, y), (1, (0, y)) 7→ (0, y) and (1, (1, x)) 7→ (1, x).

7.5 Lambek algebras for the lift functor

De�nition 7.5.1. Let C be an arbitrary category and let F be an endofunctor on C. A
Lambek algebra for F is a morphism α : F (X) → X. A morphism between two Lambek

algebras F (X)
α−→ X and F (Y )

β−→ Y is an arrow f : X → Y compatible with the algebra
structure, i.e. such that

F (X) F (Y )

X Y

F (f)

α β

f

commutes.

De�nition 7.5.2. A Lambek coalgebra is the dual of a Lambek algebra, viz. a morphism
β : X → F (X). Similarly, we have a notion of morphisms between Lambek coalgebras.

Initial Lambek algebras are interesting for various reasons. For example, Lambek's

Lemma states that any initial Lambek algebra is an isomorphism. This means that the
functor has a �xed point. Similarly, any terminal Lambek coalgebra is an isomorphism.
The proof of Lambek's Lemma is a nice exercise in working with Lambek algebras.

Lemma 7.5.3 (Lambek's Lemma [Lam68]). Any initial Lambek algebra is an isomorph-

ism.

Proof. Suppose F (I)
σ−→ I is an initial Lambek algebra for an endofunctor F on a category

C. We construct an inverse τ : I → F (I). Consider the Lambek algebra F 2(I)
F (σ)−−−→ F (I).

As σ is initial, this yields a unique τ : I → F (I) such that τσ = F (σ)F (τ) = F (στ).
Since F preserves the identity, it su�ces to prove that στ = idI . As σ is initial, we are
done if we can show that στ is a morphism of Lambek algebras. That is, σF (στ) = στσ
should hold, but it does by our choice of τ . �



7.5. LAMBEK ALGEBRAS FOR THE LIFT FUNCTOR 57

By [OS00, Theorem 1.4 and pp. 238�239] and [Oos08, Theorem 3.6.5], the initial
Lambek algebra and terminal Lambek algebra for the lift functor both exist. We explicitly
construct them below.

Proposition 7.5.4. The initial Lambek algebra for the lift functor given by I = (N, EI)
where EI(n) = {{0, . . . , n}} and σ : L(I)→ I de�ned as σ(⊥I) = 0 and σ(n) = n+ 1.

Proof. First of all, note that I is indeed a Lambek algebra, since σ is tracked by the graph
of the continuous function V 7→ {0} ∪ {x+ 1 | x ∈ p0V }. Now suppose that L(X)

α−→ X
is an arbitrary Lambek algebra for the lift functor. We must �nd f : I → X such that
fσ = αL(f). This equality implies that we have no choice but to put f(n) = αn+1(⊥X).
It remains to show that this function is tracked. Suppose Uα tracks α. Consider the set
U = {〈

∑n
i=0 2i,m〉 | n ∈ N,m ∈ Un+1

α ∅}. By the monotonicity of the application, we
have UαV ⊇ Uα∅ for any V ∈ S. In particular, we obtain a chain · · · ⊇ U3

α∅ ⊇ U2
α∅ ⊇ Uα∅.

Thus U tracks f , because for any n ∈ N we have

U{0, . . . , n} =

n⋃
k=0

U{0, . . . , k} =

n⋃
k=0

Uk+1
α ∅ = Un+1

α ∅ ∈ EX(αn+1(⊥X)). �

Proposition 7.5.5. The terminal (also called �nal) Lambek coalgebra for the lift functor

is given by F = (N ∪ {∞}, EF ) where EF (n) = {{0, . . . , n}} and EF (∞) = {N} and

the coalgebra structure is given by τ : F → L(F ) with τ(0) = ⊥F , τ(n + 1) = n and

τ(∞) =∞.

Proof. First of all, de�ne the set T = {〈
∑n

i=0 2i,m〉 | n ∈ N, 0 ≤ m < n}. One can check
that T{0} = ∅ and T{0, . . . , n + 1} = {0, . . . , n} for any n ∈ N. Moreover, the function
G : S→ S de�ned as

G(V ) =

{
∅ if V = ∅;
[V, 1] else.

is obviously continuous. Hence, τ is tracked by λ∗u.graph(G)(Tu), so it is a morphism
of assemblies.

Let X
β−→ L(X) be any Lambek coalgebra. We must show that there is a unique

f : X → F such that

X F

L(X) L(F )

f

β τ

L(f)

commutes. We �rst prove that the commutativity of this square completely determines
f . We prove by induction that for any m ∈ N and x ∈ |X| if m is the least such that
βm+1(x) = ⊥X , then f(x) = m. For the base case m = 0, consider x ∈ |X| such that
β(x) = ⊥X . Then ⊥F = L(f)(β(x)) = τ(f(x)), so f(x) = 0 = m. Now suppose the
statement is true for m. Suppose we have x ∈ |X| such that m+ 1 is the least such that
βm+2(x) = ⊥X . By induction hypothesis applied to β(x), we �nd that f(β(x)) = m.
Hence, m = f(β(x)) = L(f)(β(x)) = τ(f(x)), so f(x) = m + 1. Thus, if x ∈ |X| is



58 CHAPTER 7. A DOMINANCE IN RT(S)

such that βm+1 = ⊥X for some m ∈ N, then we must de�ne f(x) as the least such
m. We prove that if no such m exists, then we must put f(x) = ∞. For suppose we
had x ∈ |X| such that βk(x) 6= ⊥X for any k ∈ N and f(x) = m for some m ∈ N.
Then, ⊥X = τm+1(f(x)) = τm(L(f)(β(x))) = · · · = L(f)(βm+1(x)), so βm+1(x) = ⊥X ,
contradicting our choice of x. We conclude that the map f : X → F de�ned by

x 7→

{
m if m is the least such that βm+1(x) = ⊥X ;
∞ if no such m exists.

is unique.
Finally, f is tracked, because if Uβ tracks β, then V 7→ {m ∈ N | 1 ∈ p1(U

m+1
β V )} is

a continuous map S→ S and its graph tracks f . Indeed, for any x ∈ |X| and V ∈ EX(x),
it holds that 1 ∈ p1(U

m+1
β V ) if and only if βm+1(x) 6= ⊥X . �

We will write ι for the inclusion I → F . Note that we have an arrow (tracked by i)
from XF to XI by precomposing with ι. We will write Xι for this morphism.

De�nition 7.5.6. An object X is complete if Xι : XF → XI is an isomorphism.

Proposition 7.5.7. The object Σ is complete.

Proof. We de�ne an inverse of Σι. Let f : I → Σ be any morphism. We prove that there
is a unique morphism f ′ : F → Σ extending f . De�ne f ′ : F → Σ by f ′(n) = f(n) and

f(∞) =

{
0 if f(n) = 0 for all n ∈ N;
1 else.

If f is tracked by Uf , then f ′ is also tracked by Uf ′ by our choice of EI and EF .
Furthermore, f ′ is the unique extension of f , because by continuity, UfN =

⋃
V⊆N UfV

and therefore, UfN = 1 if and only if f(n) = 1 for some n ∈ N. Thus, f 7→ f ′ (tracked
by i) is the required inverse of Σι. �

7.6 Algebraic compactness

We conclude this chapter by sketching future developments of the material above. I only
provide a sketch as it is beyond the scope of this thesis to elaborate on it.

In domain theory, we can construct a category such that many functors have �xed
points. In synthetic domain theory, we therefore wish to consider algebraically compact
categories.

De�nition 7.6.1. A category C is called algebraically compact if for every endofunctor
T : C → C there exists an initial Lambek algebra T (I)

σ−→ I and a �nal Lambek coalgebra
F

τ−→ T (F ), and moreover the map ι : I → F such that

T (I) T (F )

I F

σ

T (ι)

τ−1

ι



7.6. ALGEBRAIC COMPACTNESS 59

commutes, is an isomorphism. (Note that ι exists by Lambek's Lemma and the initiality
of σ.)

De�nition 7.6.2. Let E be a topos with a dominance D and associated lift monad L.

(i) A category of predomains is a full internal subcategory C of E which consists of
complete objects and is closed under L.

(ii) The associated category of domains is the category of algebras over the L-monad
on C.

Given such a topos E , one may then want to look for a category of predomains such
that its associated category of domains is complete and algebraically compact.

In [LS97], a possible candidate for such a category of predomains is identi�ed by
considering well-complete objects, which we de�ne now.

De�nition 7.6.3. An object X is well-complete if its lift L(X) is complete.

Finally, observe that in our case, if X is a modest set, then so is L(X). This means
that L can be viewed as an internal monad on the internal category of internal modest
sets (see [Oos08, Section 3.4.1]). The article [LS97] then suggests looking at the internal
category of well-complete modest sets with ⊥.



Chapter 8

A Model Structure on a

Subcategory of RT(S)

Frumin and van den Berg [Fv18] have recently given an axiomatic setup for constructing
a model structure on a full subcategory of an elementary topos. Model structures are
interesting, because they allow us to `do homotopy'. As such, model structures can also
provide semantics for homotopy type theory.

In this section we use the setup of [Fv18] to give a model structure on a subcategory
of RT(S).

The notions and structure of this chapter are due to [Fv18]. The particular model
structure on RT(S) and the characterizations (of contractible objects, for example) are
(as far as I am aware) original.

8.1 Basic de�nitions and setup

We describe the setup of [Fv18]. We assume to be working in a topos E with a dominance
D that is closed under �nite joins in Ω. We wish to have an interval object in E , which
we de�ne now.

De�nition 8.1.1. An interval object I is an object I with a mono [∂0, ∂1] : 1+1→ I and
connections ∧,∨ : I× I→ I such that the following equalities hold:

∧ (idI×∂0) = ∂0π1 : I× 1→ I; ∨ (idI×∂1) = ∂1π1 : I× 1→ I;
∧ (∂0 × idI) = ∂0π0 : 1× I→ I; ∨ (∂1 × idI) = ∂1π0 : 1× I→ I;
∧ (idI×∂1) = π0 : I× 1→ I; ∨ (idI×∂0) = π0 : I× 1→ I;
∧ (∂1 × idI) = π1 : 1× I→ I; ∨ (∂0 × idI) = π1 : 1× I→ I.

The requirements for the connections say that ∧ and ∨ behave somewhat like the
meet and join operators of a lattice.

Finally, we require that the map [∂0, ∂1] : 1 + 1 → I to be a D-map (recall De�ni-
tion 7.1.7). We refer to the D-maps as co�brations.

60



8.1. BASIC DEFINITIONS AND SETUP 61

De�nition 8.1.2. Let f, g and be two morphisms. Then we say that f has the left lifting
property (LLP) with respect to g and g has the right lifting property (RLP) with respect

to f and we write f t g if for any commutative square

A B

C D

f g

there is a diagonal �ller , i.e. an arrow l : C → B making the resulting two triangles
commute. IfM is some class of morphisms, then we writeMt for the class of morphisms
having the RLP with respect to every morphism inM, and tM for the class of morphisms
having the LLP with respect to every morphism inM.

The dominance D gives rise to a weak factorization system on the topos E .

De�nition 8.1.3. A weak factorization system on category C is a pair (L,R) of classes
of morphisms of C such that

(i) every morphism f : X → Y of C factors as a morphism in L followed by a morphism
in R;

(ii) L = tR and R = Lt.

The next proposition is [Fv18, Proposition 2.6], but the proof is sparse on details.
We present a detailed proof here, due to my supervisor Jaap van Oosten. For a better
overview, we �rst present a lemma.

Lemma 8.1.4. Let C be any category and supposeM is a class of morphisms of C. Then

(i) Mt is closed under retracts;

(ii) if M is a class of monomorphisms closed under pullbacks in C, then M is also

closed under retracts.

Proof. The �rst item is easily shown, so we focus on the second. Suppose f : A → B is
inM and let f ′ : A′ → B′ be a retract of f . That is, we have a commutative diagram

A′ A A′

B′ B B′

idA′

i0

f ′ f

r0

f ′

idB′

i1 r1

Of course, we prove that f ′ ∈M by showing that f ′ is a pullback of f . First, we establish
that i0 is the equalizer of i0r0 and idA. For, suppose g is such that i0r0g = g. Then, g



62 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

factors through i0 via r0g. The factorization is unique, because i0 is monic. Similarly, i1
is the equalizer of i1r1 and idB. We are now ready to show that

A′ A

B′ B

i0

f ′ f

i1

is a pullback. Suppose we have arrows a : C → A and b : C → B′ satisfying fa = i1b.
Then

fi0r0a = i1f
′r0a = i1r1fa = i1r1i1b = i1b = fa,

so that, since f is monic, i0r0a = a. Because i0 is the equalizer of i0r0 and idA, this
implies that we can factor a uniquely as a = i0c for some c : C → A′. It remains to show
that f ′c = b. We have seen that i1r1fa = fa, so fa factors uniquely through i1. But
observe that b and f ′c are two such factorizations. Hence, they are equal as desired. This
establishes f ′ as the pullback of f . As M is assumed to be closed under pullbacks, we
are done. �

We are now in position to prove that the dominance D yields a weak factorization
system on E .

Proposition 8.1.5. Let us write D for the class of D-maps. The pair (D,Dt) is a weak

factorization system on E.

Proof. By the previous lemma D and Dt are closed under retracts. So, by the retract
argument [Rie09, Lemma 11.2.3], only the factorization needs to be proved. Thus, let
h : B → A be a morphism. We need to factor it as a map in D followed by a map in Dt.

In this proof let us employ set-theoretic notation for subobjects, that is, we write
{x ∈ X | ϕ(x)} for the subobject of the object X de�ned by the formula ϕ.

De�ne B̃ = {α ∈ PB | ∀x, y ∈ B(x ∈ α∧y ∈ α→ x = y}, the object of subsingletons
of B. There is an obvious inclusion B ↪→ B̃, which we denote by ηB. Next, de�ne L(h)
as

{(a, σ, α) ∈ A×D × B̃ | α ⊆ h−1(a), inhab(α) = σ},

where inhab(α) ≡ ∃x(x ∈ α) (i.e. α is inhabited). We prove that h factors through L(h).
Note that 〈h, t!B, ηB〉 : B → A×D× B̃. One easily checks that this map equalizes χ and

A × D × B̃ → 1
t−→ Ω, with χ the characteristic map of the subobject L(h). Thus, we

obtain a map f : B → L(h). We will say that we have de�ned f by f(b) = (h(b),>, {b}).
Similarly, we de�ne g : L(h)→ A by g(a, σ, α) = a. Then clearly, h factorizes as gf .

It remains to prove that f ∈ D and that g ∈ Dt. Using the de�nition of L(h), it is not
hard to verify that B is the pullback of the projection πD : L(h) → D along t : 1 → D.
Thus, f ∈ D, as D-maps are closed under pullbacks (by pullback pasting).



8.1. BASIC DEFINITIONS AND SETUP 63

To show that g ∈ Dt, assume we have a lifting problem

U L(h)

V A

l

i g

k

where i is a D-map. Write l(u) = (k(u), p1(u), p2(u)) with u ∈ U . De�ne the subobject
U ′ = {u ∈ U | p1(u)}, the pullback of p1 along t : 1 → D. Then U ′ ⊆D U , so U ′ ⊆D V
(by pullback pasting). Let m : V → L(h) be given by

m(v) = (k(v), (v ∈ U ′), {x ∈ B | v ∈ U ′ ∧ x ∈ p2(v)}) = (k(v), q1(v), q2(v)).

We should check that m is well-de�ned, i.e. q2(v) ⊆ h−1(k(v)) and inhab(q2(v)) = q1(v).
For the former, suppose y ∈ q2(v). Then v ∈ U ′ and y ∈ p2(v), so h(y) = k(v), as
desired. For the latter, note that:

inhab(q2(v)) = (v ∈ U ′ ∧ inhab(p2(v))) = v ∈ U ′ ∧ p1(v) = v ∈ U ′ = q1(v),

by de�nition of U ′. Thus, m is well-de�ned.
Obviously, gm = k. Finally, if u ∈ U , then

m(u) = (k(u), (u ∈ U ′), {x ∈ B | x ∈ p2(u) ∧ u ∈ U ′})
= (k(u), p1(u), {x ∈ B | x ∈ p2(u) ∧ p1(u)})
= (k(u), p1(u), p2(u)),

so m is a solution to the lifting problem. �

De�nition 8.1.6. Suppose f : A→ B and g : C → D are morphisms of E . The Leibniz
product (or pushout product) of f and g is the unique morphism f⊗̂g making

A× C B × C

A×D •

B ×D

idA×g

f×idC

idB ×g

f×idD

f⊗̂g

commute, with the square being a pushout.

De�nition 8.1.7. A morphism f is a �bration if it has the right lifting property with
respect to all morphisms of the form ∂i⊗̂u with i ∈ {0, 1} and u a co�bration. An object
X is called �brant if the unique map X → 1 is a �bration.

Remark 8.1.8. For a topological viewpoint, observe that this de�nition means that an
object is �brant if and only if it enjoys the homotopy extension property (with respect
to co�brations).



64 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

De�nition 8.1.9. Let f, g : X → Y be two parallel arrows in E . We say that f and g
are homotopic if there is a map H : X × I→ Y , a homotopy, such that H(idX ×∂0) = f
and H(idX ×∂1) = g. We will write f ' g in this case.

De�nition 8.1.10. A morphism f : X → Y in E is a homotopy equivalence if there is a
morphism g : Y → X in E such that fg ' idY and gf ' idX . We call g the homotopy

inverse of f .

De�nition 8.1.11. Amodel structure on a category C is a triple (Cof,Fib,Weq) of classes
of morphisms of C (called co�brations, �brations and weak equivalences, respectively)
satisfying:

(i) Weq contains all isomorphisms and is closed under 2-out-of-3, viz. if f : X → Y
and g : Y → Z are morphisms of C and two out of the tree morphisms f, g, gf are
in Weq, then so is the third.

(ii) (Cof,Fib ∩Weq) and (Cof ∩Weq,Fib) are two weak factorization systems on C.

Theorem 8.1.12. The full subcategory Ef f of E on �brant objects carries a model struc-

ture, where the �brations and co�brations are de�ned as above and the weak equivalences

are the homotopy equivalences.

Proof. See [Fv18, Theorem 4.4]. �

Example 8.1.13. In [Fv18], the authors take E = Eff and D = Ω (so the co�brations
are simply all monomorphisms). The interval object I is ∇(2) (recall De�nition 5.1.9).

8.1.1 The model structure on the �brant objects of RT(S)

In RT(S), the Sierpi«ski assembly Σ is a dominance that is closed under �nite products,
as we have seen. Accordingly, the co�brations are the Σ-maps. For the interval object,
we want an object I such that there is a Σ-map from 1 + 1 to I. Observe that 1 + 1 ∼= 2,
where 2 is the assembly ({0, 1}, E2) with E2(i) = {i}. In light of Lemma 7.3.4, it seems
natural to take I = L(2), so that the required Σ-map is η2 : 2 → L(2). The connections
are given as prescribed above and by putting ⊥2 ∧ ⊥2 = ⊥2 = ⊥2 ∨ ⊥2. The map ∨ is
tracked, because there is a continuous function F : S2 → S such that

F (∅, ∅) = F (∅, 0) = F (0, ∅) = ∅;
F (∅, 1) = F (1, ∅) = F (0, 1) = F (1, 0) = F (1, 1) = 1;

F (0, 0) = 0;

by case inspection of �nite sets and the fact that this assignment is monotone. Similarly,
∧ is tracked. Hence, L(2) is indeed an interval object.

By Theorem 8.1.12, we have a model structure on the full subcategory RT(S)f on
�brant objects of RT(S).

In fact, we can show that there is even a model structure on the category of �brant
assemblies.



8.2. CONTRACTIBLE ASSEMBLIES AND TRIVIAL FIBRATIONS 65

Proposition 8.1.14. If the dominance D is ¬¬-separated, then the model structure of

Theorem 8.1.12 restricts to a model structure on the full subcategory of Ef on �brant

¬¬-separated objects.

In particular, since Σ is an assembly, the model structure on RT(S)f restricts to a

model structure on the category Asm(S)f of �brant assemblies.

Proof. It su�ces to prove that the factorizations also exist in the subcategory on ¬¬-
separated objects.

One of the required factorizations is described in [Fv18, Proposition 4.3] by taking a
pullback. Since the ¬¬-separated objects of E are closed under �nite limits in E [Joh02a,
Lemma A4.4.3(i)], we are done here.

It remains to show that if h : A → B is a morphism between ¬¬-separated objects,
then then the object L(h) from Proposition 8.1.5 is again ¬¬-separated. We argue
informally in the internal logic of the topos E . The proof is a nice exercise in intuitionistic
reasoning. We must show that the diagonal is ¬¬-closed, viz.

¬¬((a, σ, α) = (a′, σ′, α′))→ (a, σ, α) = (a′, σ′, α′)

should hold where a, a′ are variables of sort A, σ, σ′ are variables of sort D and α, α′ are
variables of sort B̃ satisfying σ = inhab(α), σ′ = inhab(α′) and α ⊆ h−1(a), α′ ⊆ h−1(a′).

Assume ¬¬((a, σ, α) = (a′, σ′, α′)). Since A and D are ¬¬-separated, this yields:

a = a′ ∧ σ = σ′ ∧ ¬¬(α = α′).

We are to prove that α = α′. By symmetry, it su�ces to show that α ⊆ α′. To this end,
suppose b ∈ α. Then α is inhabited. Since inhab(α) = σ = σ′ = inhab(α′), we see that
α′ is inhabited as well. Thus, we get some b′ with b′ ∈ α′. We show that b = b′. Since B
is ¬¬-separated, it su�ces to prove that ¬¬(b = b′).

To do so, assume ¬(b = b′). As α′ is a subsingleton, we see that ¬(b ∈ α′). Hence,
¬∀x:B(x ∈ α → x ∈ α′). But, in combination with ¬¬(α = α′), this yields a contradic-
tion, as desired. We conclude that ¬¬(b = b′), so we are done. �

In the next sections we examine this model structure on the assemblies. An interesting
feature of our model structure is that the domain theoretic notions from the previous
chapter reappear in the study of the model structure. For example, the contractible
objects will be the objects with ⊥ from De�nition 7.3.5.

Remark 8.1.15. I am aware that many of the results in the coming sections can be
generalized to any topos E with a dominance D such that the lift of 1 + 1 is an interval
object. For the sake of de�niteness, however, we will only study the assemblies over S.

8.2 Contractible assemblies and trivial �brations

De�nition 8.2.1. A morphism f of a category with a model structure is called a trivial

�bration if it has the RLP with respect to every co�bration.



66 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

De�nition 8.2.2. An object X of a category with a model structure is contractible if
the unique morphism X → 1 is a trivial �bration.

The following proposition characterizes the contractible objects, using the lift functor
from the previous section.

Proposition 8.2.3. An assembly X is contractible if and only if X
ηX−−→ L(X) has a

retraction.

Proof. Suppose f : X → 1 is a trivial �bration. By Lemma 7.3.4, f has the RLP with
respect to ηX , so we have a commutative diagram

X X

L(X) 1

ηX

idX

r

whence the desired retraction.
Conversely, suppose we have a retraction r : L(X) → X of ηX . Let i : U → Y be a

co�bration and suppose we have a lifting problem

U X

Y 1

i

g

By Proposition 7.3.2, there is a morphism g̃ such that

U X

Y L(X)

i

g

ηX

g̃

commutes. We claim that Y
g̃−→ L(X)

r−→ X is the desired �ller. Indeed, rg̃i = rηXg = g.
We conclude that f is a trivial �bration. �

Corollary 8.2.4. The following are equivalent for an assembly X:

(i) X is contractible;

(ii) X is an object with ⊥;

(iii) there is a continuous F : S→ S such that F (∅) ∈
⋃
x∈|X|EX(x) and F (U) ∈ EX(x)

for any U ∈ EX(x).



8.2. CONTRACTIBLE ASSEMBLIES AND TRIVIAL FIBRATIONS 67

Proof. If X is an object with ⊥, then there is a retraction of ηX , so X is contractible. If
X is contractible, then we have a retraction r of ηX . It remains to show that the diagram

L2(X) L(X)

L(X) X

L(r)

µX r

r

commutes. But this is easily veri�ed. Hence, (i) ⇔ (ii).
The equivalence (i) ⇔ (iii) follows by writing out what it means to have a retraction

that is tracked. �

Corollary 8.2.5. Let X be an assembly. If ∅ ∈
⋃
x∈|X|EX(x), then X is contractible.

Proof. Take the identity function in (iii) above. �

Example 8.2.6. The previous propositions allow us to produce some (non-)examples of
contractible objects.

(i) Any assembly of the form L(Y ) is contractible (µY is the desired retraction). In
particular, the interval object I = L(2) and Σ ∼= L(1) are contractible. One should
compare this to [Fv18, Proposition 6.3], since Σ and I are thus contractible, but
not uniform.

(ii) Any non-empty uniform assembly is contractible. For given such an assembly X,
take x0 ∈ X and pick U ∈

⋂
x∈X EX(x). A retraction L(X)→ X is then given by

mapping ⊥ to x0. The map is tracked by kU .

(iii) The assemblies 2 and N are not contractible, because there are no non-constant
morphisms L(2)→ 2, L(N)→ N .

We can generalize the previous proposition by considering the generalized lift functor
for slices.

Proposition 8.2.7. A morphism f : X → Y of assemblies is a trivial �bration if and

only if [idY , f ] : Y tf X → Y is a retract of f in Asm(S)/Y . Explicitly, the latter means

that we have a morphism r : Y tf X → X such that

X Y tf X X

Y

idX

f

ηf r

f

is a commutative diagram.



68 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

Proof. Let f : X → Y be a trivial �bration. By Lemma 7.4.2, we have a commutative
diagram

X X

Y tf X Y

idX

ηf f
r

whence the desired retraction.
Conversely, let r : Y tf X → X be a retraction of ηf in Asm(S)/Y . Suppose we have

a lifting problem

U X

Z Y

i

g

f

h

where i is a co�bration. By Proposition 7.4.1, there is a morphism g̃ in Asm(S)/Y such
that

U X

Z Y tf X

Y

i

g

ηf

h

g̃

[idY ,f ]

commutes. We claim that rg̃ is the desired �ller. Indeed, rg̃i = rηfg = g and frg̃ =
[idY , f ]g̃ = h, as desired. �

Corollary 8.2.8. The following are equivalent for a morphism of assemblies f : X → Y :

(i) f is a trivial �bration;

(ii) f is an algebra for the LY -monad;

(iii) there is a continuous F : S→ S such that for any y ∈ |Y | and V ∈ EY (y), we have

F (p∅V ) ∈ EX(x0) for some x0 ∈ |X| with f(x0) = y and for any x ∈ |X| with
f(x) = y and U ∈ EX(x), it holds that F ([ [U, 1], V ] ∈ EX(x).

Proof. Similar to Corollary 8.2.4. �

8.3 Fibrant assemblies

De�nition 8.3.1. For any assembly X, the morphisms ∂0 and ∂1 induce morphisms
X∂0 : XI → X and X∂1 : XI → X, which we respectively refer to as the source map sX
and target map tX . If the context is clear, then we will drop the subscripts in the source
and target maps.



8.3. FIBRANT ASSEMBLIES 69

Lemma 8.3.2 (Proof of Theorem 6.10 in [Fv18]). An assembly X is �brant if and only

if the source map s : XI → X is a trviial �bration.

Proof. By Proposition 3.5 in [Fv18], X is �brant if and only if s and t are trivial �brations.
Observe that our interval object I = L(2) comes with a twist map tw: 2→ 2, de�ned by
0 7→ 1, 1 7→ 0,⊥ 7→ ⊥, which is a self-inverse and that satis�es Xtws = t and Xtwt = s.
Thus, s is a trivial �bration if and only if t is. So we conclude that X is �brant precisely
when s is a trivial �bration. �

De�nition 8.3.3 (De�nition 6.9 in [Fv18]). Let X be an assembly and pick x ∈ |X|. A
path-connected component of x, denoted as [x] is the set of y ∈ |X| such that there is a
morphism p : I → X (a path in X) with s(p) = x and t(p) = y. We also say that x is

path connected to y. If for any x, y ∈ |X| we have y ∈ [x], then we call X path-connected.

Proposition 8.3.4. Let X be an assembly. If X is contractible, then X is path-connected.

Proof. Let x, y ∈ |X| be �xed, but arbitrary. IfX is contractible, then the lifting problem

1 + 1 X

I 1

[x,y]

[∂0,∂1]

has a solution. Hence, y ∈ [x], as desired. �

Proposition 8.3.5. Let X be an assembly and x, y ∈ |X|. Then, x ∈ [y] if and only

if there exist z ∈ |X| and U ∈ EX(z), V ∈ EX(x) and W ∈ EX(y) with U ⊆ V and

U ⊆W .

Proof. Suppose �rst that we have a path p : I → X with s(p) = y and t(p) = x. If P
tracks p, then P∅ ∈ EX(p(⊥)), while P∅ ⊆ P0 ∈ EX(y) and P∅ ⊆ P1 ∈ EX(x), by
monotonicity of the application.

Conversely, given such z ∈ |X| and U, V,W in EX(z), EX(x) and EX(y), we may
de�ne p : I→ X by p(0) = y, p(⊥) = z, p(1) = x. Observe that p is tracked by the graph
of the continuous function

A 7→


V ∪W if 0, 1 ∈ A;

V if 1 ∈ A, 0 6∈ A;

W if 0 ∈ A, 1 6∈ A;

U else.

Thus, x ∈ [y], as we wished to prove. �

The following lemma gives a necessary condition for �brancy of an assembly.

Lemma 8.3.6. If X is a �brant assembly, then for each x ∈ |X|, there are w ∈ |X|
and U ∈ EX(w) such that for each y, z ∈ [x] there are V ∈ EX(y) and W ∈ EX(z) with

U ⊆ V,W .



70 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

Proof. Let X be a �brant object. By Lemma 8.3.2 and Proposition 8.2.7, there exists
a retraction r : X ts XI → XI. Suppose it is tracked by R. Let x ∈ |X| be �xed, but
arbitrary and let A be any element of EX(x). Set w = tr(0, x) and U = R[∅, A]1. Now
suppose y, z ∈ [x]. Find α, β ∈ XI with s(α) = s(β) = x and t(α) = y and t(β) = z.
Further, let Uα and Uβ track α and β, respectively. Set V = R([ [Uα, 1], A])1 and put
W = R([ [Uβ, 1])A])1. From the fact that R tracks r, we �nd U ∈ EX(w), V ∈ EX(y) and
W ∈ EX(z). By monotonicity of the application, we furthermore see that U ⊆ V,W . �

The previous lemma allows to give an example of an assembly that is not �brant.

Example 8.3.7. The assembly X = ({a, b, c}, E) with E(a) = {{0, 1}}, E(b) = {{0}}
and E(c) = {{1}} is not �brant. Indeed, by Proposition 8.3.5, we have b, c ∈ [a], but for
every w ∈ |X| and U ∈ E(w) we �nd U 6⊆ {0} or U 6⊆ {1}.

Another interesting example is the following assembly.

Example 8.3.8. Consider the assembly X = (N, E) with E(0) = {N} and E(n + 1) =
{N\{0, . . . , n}}. By the previous lemma, it is not �brant. Interestingly, X is an example
of a path-connected assembly that is not contractible. The former is easily veri�ed
using Proposition 8.3.5. To see that it is not contractible, suppose r : L(X) → X is a
retraction of ηX : X → L(X). Write m = r(⊥X) and let Ur ∈ S track the retraction r.
By continuity, Ur∅ ⊆ Ur[N\{0, . . . ,m}, 1], while Ur∅ ∈ E(m) and Ur[N\{0, . . . ,m}, 1] ∈
E(m+ 1), since r is a retraction of ηX . But there are no V ∈ E(m) and V ′ ∈ E(m+ 1)
with V ⊆ V ′, so X is indeed not contractible.

8.4 Order-discrete assemblies again

In [Fv18, Lemma 7.2], an assembly X is discrete if and only if every map p : I→ X factors
through the terminal object. Observe that in our case, I is discrete, but the twist map
does not factor through 1. However, we have something analogous: we can characterize
the assemblies with trivial homotopy as the order-discrete assemblies.

Proposition 8.4.1. An assembly X is order-discrete if and only if every map p : I→ X
factors through the terminal object.

Proof. If X is order-discrete, then it is immediate from Proposition 8.3.5 that any path
in X factors through the terminal object.

Conversely, assume we have x, y ∈ |X| and U ∈ EX(x), V ∈ EX(y) with U ⊆ V .
De�ne p : I→ X by p(⊥) = x, p(0) = p(1) = y. Note that is tracked by the graph of the
continuous function

W 7→

{
V if W 6= ∅;
U else.

Now p factors through the terminal object, so x = y, as desired. �

Corollary 8.4.2. Every order-discrete assembly is �brant.



8.4. ORDER-DISCRETE ASSEMBLIES AGAIN 71

Proof. It is easy to see that if X is order-discrete, then the source map is an isomorphism.
In particular, it is a trivial �bration, so by Lemma 8.3.2, we are done. �

Example 8.4.3. The assemblies 2 and N are order-discrete and thus �brant.

We have already remarked that 2 and N are not contractible. The following corollary
shows that (non-terminal) order-discrete assemblies are never contractible. Note that we
really need the strong version of discreteness, as I is discrete and also contractible, as we
have already shown.

Corollary 8.4.4. A non-terminal, order-discrete assembly is never path-connected. In

particular, it is never contractible.

Proof. Immediate from Proposition 8.4.1 and Proposition 8.3.4. �

Remark 8.4.5. In Section 8.2 of [Fv18], it is remarked that in the model of [Fv18] every
two paths in an assembly are equal if they have the same endpoints. In particular, the
authors are unsure whether there exists a �brant object that has non-homotopic paths
with the same endpoints.

The situation is di�erent here. Consider X = ∇(2) (recall De�nition 5.1.9) and the
paths p, q : I → X given by p(0) = p(⊥) = 0, p(1) = 1 and q(0) = 0, q(⊥) = q(1) = 1.
These paths have the same endpoints, but are not equal. Also note that X is �brant
(even contractible) by Example 8.2.6.

In the setting of [Fv18], it shown (Proposition 7.10) that each �brant assembly X is
homotopy equivalent to its assembly of path components. This is then used to show that
the homotopy category of �brant assemblies is equivalent to the category of modest sets.
One might hope for similar results in our setting.

Proposition 8.4.6. The full subcategory of Asm(S) on order-discrete assemblies of

Asm(S) is re�ective.

Proof. Let X be an assembly. Consider the coequalizer

XI X Xpc

s

t

q

and observe that Xpc is the assembly (|X|/∼, E) where x ∼ y i� x ∈ [y] and E([x]) =⋃
y∈[x]EX(y). So we may think of Xpc as the object of path components of X.
We will show that Xpc is order-discrete. To this end, one may adapt the proof of

[Fv18, Proposition 7.9], but we prefer to give a direct proof here. Assume we have
[x], [y] ∈ Xpc and U ∈ E([x]), V ∈ E([y]) such that U ⊆ V . Find x′ ∈ [x] and y′ ∈ [y]
such that U ∈ EX(x′) and V ∈ EX(y′). By Proposition 8.3.5, we �nd x′ ∈ [y′], so
[x] = [y]. Thus, Xpc is order-discrete.

We now prove the required universal property. Suppose f : X → Y is a morphism
with Y order-discrete. We must prove that f factors uniquely through q. By the universal
property of the coequalizer, it su�ces to show that f equalizes the source and target maps
ofX. But this is easy, for fsX = sY f

I and ftX = tY f
I, but sY = tY by Proposition 8.4.1,

so we are done. �



72 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

De�nition 8.4.7. Let C be a category with a model structure. The homotopy category

of C, denoted by Ho(C), has as objects the objects of C that are both �brant and co�brant
and as morphisms the homotopy classes of morphisms of C.

Since the order-discrete objects have no homotopy, the situation above carries over
to Ho(Asmf (S)).

Proposition 8.4.8. Let us write OrdDisAsmf for the full subcategory of Asm(S)f on

�brant order-discrete assemblies. The quotient functor OrdDisAsmf → Ho(Asmf (S)) has
a left adjoint.

Proof. Given a morphism [f ] : X → Y in Ho(Asmf (S)), we show that it factors uniquely
through [q] : X → Xpc. By the previous proposition, there is a unique morphism
f̃ : Xpc → Y such that f̃ q = f . Clearly, then [f̃ ] makes [f ] factor through [q]. It
remains to show that it is unique. But this must be, as there is no homotopy on Y .
Indeed, if [g] is such that gq and f are homotopic, then gq(x) = f(x) for any x ∈ |X|
as any path in Y factors through the terminal object. Hence, g = f̃ by the universal
property in Asmf (S). �

8.5 Closure properties of �brant assemblies

So far, the only �brant assemblies we have encountered were quite extreme from a homo-
topical viewpoint (either contractible or without any non-trivial paths). In this section
we show that the full subcategory on �brant assemblies has �nite (co)products. We will
then use this to give an example of a �brant assembly that is not contractible and has
non-trivial paths.

The following proposition follows from the dual of Lemma 11.1.4 in [Rie09]. We give
a simple, direct proof here.

Proposition 8.5.1. The class of �brant assemblies is closed under �nite products in

Asm(S).

Proof. It is easy to verify that 1 is �brant. Now let c : U → Z be any co�bration and let

• X × Y

Z × I 1

c⊗̂∂i

f

be a lifting problem. If X and Y are �brant, then the lifting problems

• X

Z × I 1

c⊗̂∂i

π0f

and
• Y

Z × I 1

c⊗̂∂i

π1f

have solutions l0 and l1, respectively. A solution to the original lifting problem is then
given by 〈l0, l1〉. Hence, X × Y is �brant as well. �



8.5. CLOSURE PROPERTIES OF FIBRANT ASSEMBLIES 73

Remark 8.5.2. Observe that one may similarly show that if X,Y are contractible, then
so is X × Y .

Example 8.5.3. By the previous proposition, X = ∇(2) × 2 is �brant. Observe that
it is not order-discrete ((0, 0) and (1, 0) share realizers). So by Proposition 8.4.1, X
has non-trivial paths. Moreover, X is not contractible. For suppose we had retraction
r : L(X)→ X. Assume without loss of generalization that π1r(⊥) = 0. Then, p1(R∅) =
0, where R tracks r. But this implies that π1r(x) = 0 for any x ∈ |X|. So r is not a
retraction.

Proposition 8.5.4. The class of �brant assemblies forms an exponential ideal in Asm(S).

Proof. We are to prove that if X is �brant, then so is XY for any assembly Y . We will
need an intermediate result: if f and g are co�brations, then f × g is again a co�bration.
It is not hard to provide the required pullback diagrams.

We use Lemma 8.3.2. Observe that
(
XY
)I

is naturally isomorphic to
(
XI)Y , so it

su�ces to show that sY is a trivial �bration where s is the source map XI → X. Now
suppose we are given a lifting problem

U
(
XI)Y

Z XY

c sY

where c : U → Z is a co�bration. Consider the transpose lifting problem

U × Y XI

Z × Y X

c×idY s

By our earlier remark, c× idY is again a co�bration, so this has a solution as X is �brant.
The transpose of this solution then solves our original lifting problem. �

Remark 8.5.5. By considering transpose lifting problems, one may also show that the
class of contractible objects forms an exponential ideal in Asm(S).

The interval object I is strongly indecomposable, in the following sense.

Lemma 8.5.6. For any two assemblies X and Y , we have (X + Y )I ∼= XI + Y I.

Proof. This is similar to Proposition 5.2.5. �

Proposition 8.5.7. The class of �brant assemblies is closed under �nite coproducts in

Asm(S).



74 CHAPTER 8. A MODEL STRUCTURE ON A SUBCATEGORY OF RT(S)

Proof. One easily checks that the initial assembly is �brant. Suppose X and Y are
�brant assemblies. By Lemma 8.3.2, the source maps sX : XI → X and sY : Y I → Y
are trivial �brations and we must prove that the source map s : (X + Y )I → X + Y
is a trivial �bration as well. By the previous lemma, it su�ces to show that the map
sX + sY : XI + Y I → X + Y is a trivial �bration.

Let c : U → Z be any co�bration and let

U XI + Y I

Z X + Y

f

c sX+sY

g

be a lifting problem.
De�ne an assembly ZX by putting |ZX | = {z ∈ |Z| | π0g(z) = 0}, the set of elements

of |Z| that get mapped into X and letting EZX
be the appropriate restriction of EZ .

Similarly, de�ne ZY and assemblies UX and UY with |UX | = {u ∈ |U | | π0f(u) = 0}.
Note that the restriction cX of c to |UX | is a well-de�ned map from UX to ZX . It is not
hard to check that cX is again a co�bration. Since sX is assumed to be a trivial �bration,
we have a solution lX to the lifting problem

UX XI

ZX X

cX

f|UX

sX

g|ZX

lX

Similarly, we have a solution lY : ZY → Y I. Since |Z| = |ZX | ∪ |ZY |, the functions lX
and lY can be patched together to obtain a function l : |Z| → |XI|+ |Y I|. If we can show
that this map is tracked, then this yields a solution to our original lifting problem.

To this end, we �rst prove that ZX ⊆Σ Z. Let G and P0 be continuous functions
whose graphs track g and π0. Note that

|ZX | = {z ∈ |Z| | π0g(z) = 0}
= {z ∈ |Z| | (P0G)−1(0) ⊇ EZ(z)}
= {z ∈ |Z| | (P0G)−1(↑ 0) ⊇ EZ(z)}.

Put UX := (P0G)−1(↑ 0) and note that this is open. Furthermore, UX witnesses that
ZX ⊆Σ Z. Similarly, one obtains UY witnessing ZY ⊆Σ Z. Finally, it is the case that
UX ∩ UY = ∅, so that the function from S to S given by

V 7→


[0, LXV ] if V ∈ UX ;

[1, LY V ] if V ∈ UY ;

∅ else;

where LX and LY respectively track lX and lY , is well-de�ned. Moreover, it is continuous
and its graph tracks l. �



Chapter 9

Future Research

In this section I describe some aspects that warrant further research, but that (due to
time constraints and scope limitations) I have been unable to treat.

9.1 Axiomatization of second order arithmetic

My supervisor and I have given considerable thought to the following question: is it
possible to give an axiomatization (à la [Tro71] or [Oos94]) of the second order arithmetic
of RT(S)?

We found this question to be very di�cult to answer. A particular problem is that it
seems hard to capture the application in the arithmetic of RT(S). In Eff, we can capture
the recursive function application using the primitive recursive function symbols in the
language of arithmetic. In RT(K2), we can capture the application of Kleene's second
model, by considering the exponential NN (where N is the natural numbers object).

Again, write S for the object of realizers (S, {−}) in RT(S) and recall the membership
relation from De�nition 7.1.3. The application map of S induces a morphism S×S → S,
which we will also denote by juxtaposition. One might hope

∀X,Y :S∀x:N(x ∈ XY → ∃y:N(〈y, x〉 ∈ X ∧ ey ⊆ Y ))

to be true in RT(S). Sadly, it is not. For if it were, then there is a realizer U ∈ S such
that for any A,B ∈ S and n ∈ AB, we have: UABn = k with 〈k, n〉 ∈ A and ek ⊆ B.
Taking A = {〈k, 0〉 | k ∈ N} and B ∈ S arbitrary, we see that by continuity in A of
U , we must have U〈0, 0〉B0 = 0, while U〈1, 0〉B0 = 1. Hence, UAB0 ⊇ 0 ∪ 1, which is
impossible as UAB0 must be a singleton.

9.2 Computing the homotopy category of �brant assemblies

In [Fv18], the quotient map from a �brant assemblyX to its assembly of path components
Xpc is a trivial �bration. This allows the authors to compute the homotopy category of
the �brant assemblies as the category of modest sets. It is a consequence of the fact that

75



76 CHAPTER 9. FUTURE RESEARCH

the quotient map is a trivial �bration that any �brant, path-connected assembly is in
fact contractible.

Is the quotient map also a trivial �bration in Asmf (S)? This would enable us to
compute Ho(Asmf (S)) as the full subcategory on �brant, order-discrete assemblies. I
believe that the quotient map is not a trivial �bration in this case, but I have been unable
to provide a counterexample. The existence of a �brant, path-connected, non-contractible
assembly (c.f. Example 8.3.8) would also settle this question. Constructing such an
assembly has proved to be challenging, however. Obtaining a better understanding of
�brancy seems to be key.

9.3 Embedding of topological spaces

In his PhD thesis [Bau00], Andrej Bauer showed that the category Mod(S) of modest sets
is equivalent to the category of equilogical spaces. In particular, there is an embedding
of countably based, T0 spaces into Mod(S). Can one use this embedding to give a model
structure with a natural notion of homotopy on Mod(S) or on RT(S)?

9.4 Relative realizability

Let A and A′ be two partial combinatory algebras with underlying sets A and A′. An
elementary inclusion of pcas is an inclusion A′ ⊆ A such that the application of A′ is
the restriction of the application of A to A′ and moreover, there are elements k, s in A′
witnessing that A′ and A are pcas.

Let us write Sre for the subset of S consisting of the recursively enumerable sets of
natural numbers. One can de�ne an application on Sre such that we obtain a pca Sre
and moreover, the inclusion Sre ⊆ S is an elementary inclusion of pcas.

This elementary inclusion gives rise to two realizability toposes. The �rst is RT(Sre)
and the second is the relative realizability topos RT(Sre,S). An object of the latter is an
object of RT(S) such that the transitivity and symmetry are realized in Sre. Similarly,
a morphism in RT(Sre,S) is a morphism of RT(S) such that the functional relation
properties are realized in Sre.

It would be interesting to investigate these toposes. For example, does Shanin's
Principle hold in RT(Sre)? For more information on relative realizability toposes, consult
[Oos08, Section 4.5].



Bibliography

[Bau00] A. Bauer. `The Realizability Approach to Computable Analysis and Topo-
logy'. PhD thesis. Carnegie Mellon University, 2000. url: https://www.cs.
cmu.edu/afs/cs/Web/People/andrej/thesis/thesis.pdf.

[Fre72] P. Freyd. `Aspects of topoi'. In: Bulletin of the Australian Mathematical So-

ciety 7.1 (1972), pp. 1�76. doi: 10.1017/S0004972700044828.

[Fv18] D. Frumin and B. van den Berg. `A homotopy-theoretic model of function
extensionality in the e�ective topos'. In:Mathematical Structures in Computer

Science (Apr. 2018). Submitted.

[Hyl82] J. M. E. Hyland. `The e�ective topos'. In: The L. E. J. Brouwer Centenary

Symposium. Ed. by A. S. Troelstra and D. van Dalen. Vol. 110. Studies in
Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165�216. doi:
10.1016/s0049-237x(09)70129-6.

[Hyl91] J. M. E. Hyland. `First steps in synthetic domain theory'. In: Category Theory.
Ed. by G. Rosolini A Carboni M. C. Pedicchio. Vol. 1488. Lecture Notes in
Mathematics. Springer Berlin Heidelberg, 1991, pp. 131�156. doi: 10.1007/
bfb0084217.

[HJP80] J. M. E. Hyland, P. T. Johnstone and A. M. Pitts. `Tripos theory'. In: Math-

ematical Proceedings of the Cambridge Philosophical Society 88.02 (1980),
pp. 205�232. doi: 10.1017/s0305004100057534.

[HRR90] J. M. E. Hyland, E. P. Robinson and G. Rosolini. `The discrete objects in the
e�ective topos'. In: Proceedings of the London Mathematical Society s3�60.1
(1990), pp. 1�36. doi: 10.1112/plms/s3-60.1.1.

[Joh77] P. T. Johnstone. Topos Theory. Reprinted by Dover (2014). Academic Press,
1977.

[Joh02a] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Vol. 43. Oxford Logic Guides. Volume 1. Oxford University Press, 2002.

[Joh02b] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Vol. 44. Oxford Logic Guides. Volume 2. Oxford University Press, 2002.

[Kle45] S. C. Kleene. `On the interpretation of intuitionistic number theory'. In:
Journal of Symbolic Logic 10.4 (1945), pp. 109�124. doi: 10.2307/2269016.

77

https://www.cs.cmu.edu/afs/cs/Web/People/andrej/thesis/thesis.pdf
https://www.cs.cmu.edu/afs/cs/Web/People/andrej/thesis/thesis.pdf
http://dx.doi.org/10.1017/S0004972700044828
http://dx.doi.org/10.1016/s0049-237x(09)70129-6
http://dx.doi.org/10.1007/bfb0084217
http://dx.doi.org/10.1007/bfb0084217
http://dx.doi.org/10.1017/s0305004100057534
http://dx.doi.org/10.1112/plms/s3-60.1.1
http://dx.doi.org/10.2307/2269016


78 BIBLIOGRAPHY

[Lam68] J. Lambek. `A �xpoint theorem for complete categories'. In: Mathematische

Zeitschrift 103.2 (1968), pp. 151�161. doi: 10.1007/bf01110627.

[Lie99] P. Lietz. `Comparing Realizability over Pω andK2 (Draft)'. 1999. url: https:
//www.staff.science.uu.nl/~ooste110/realizability/lietz99compari

ng.ps.gz.

[Lie04] P. Lietz. `From Constructive Mathematics to Computable Analysis via the
Realizability Interpretation'. PhD thesis. Technische Universität Darmstadt,
2004. url: https://www2.mathematik.tu- darmstadt.de/~streicher/
THESES/lietz.pdf.

[LS97] J. R. Longley and A. K. Simpson. `A uniform approach to domain theory
in realizability models'. In: Mathematical Structures in Computer Science 7.5
(1997), pp. 469�505. doi: 10.1017/S0960129597002387.

[Oos94] J. van Oosten. `Axiomatizing higher-order Kleene realizability'. In: Annals
of Pure and Applied Logic 70.1 (1994), pp. 87�111. doi: 10.1016/0168-
0072(94)90070-1.

[Oos08] J. van Oosten. Realizability: An Introduction to its Categorical Side. Vol. 152.
Studies in Logic and the Foundations of Mathematics. Elsevier, 2008. doi:
10.1016/s0049-237x(08)x8001-2.

[OS00] J. van Oosten and A. K. Simpson. `Axioms and (counter)examples in synthetic
domain theory'. In: Annals of Pure and Applied Logic 104.1 (2000), pp. 233�
278. doi: 10.1016/S0168-0072(00)00014-2.

[Rie09] E. Riehl. Categorical Homotopy Theory. Cambridge University Press, 2009.
doi: 10.1017/cbo9781107261457.

[Sch24] M. Schön�nkel. `Über die Bausteine der mathematischen Logik'. In: Mathem-

atische Annalen 92.3 (1924), pp. 305�316. doi: 10.1007/BF01448013.

[Sco76] D. S. Scott. `Data types as lattices'. In: SIAM Journal on Computing 5.3
(1976), pp. 522�587. doi: 10.1137/0205037.

[Tro71] A. S. Troelstra. `Notions of realizability for intuitionistic arithmetic and intu-
itionistic arithmetic in all �nite types'. In: Proceedings of the Second Scand-

inavian Logic Symposium. Ed. by J. E. Fenstad. Vol. 63. Studies in Logic and
the Foundations of Mathematics. Elsevier, 1971, pp. 369�405. doi: 10.1016/
s0049-237x(08)70854-1.

[TD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An In-

troduction. Vol. 123. Studies in Logic and the Foundations of Mathematics.
Volume 2. Elsevier, 1988.

[Zoe18] J. Zoethout. `Slices of Realizability Topoi'. Master's thesis. Utrecht University,
2018. url: https://dspace.library.uu.nl/handle/1874/361954.

http://dx.doi.org/10.1007/bf01110627
https://www.staff.science.uu.nl/~ooste110/realizability/lietz99comparing.ps.gz
https://www.staff.science.uu.nl/~ooste110/realizability/lietz99comparing.ps.gz
https://www.staff.science.uu.nl/~ooste110/realizability/lietz99comparing.ps.gz
https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/lietz.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/lietz.pdf
http://dx.doi.org/10.1017/S0960129597002387
http://dx.doi.org/10.1016/0168-0072(94)90070-1
http://dx.doi.org/10.1016/0168-0072(94)90070-1
http://dx.doi.org/10.1016/s0049-237x(08)x8001-2
http://dx.doi.org/10.1016/S0168-0072(00)00014-2
http://dx.doi.org/10.1017/cbo9781107261457
http://dx.doi.org/10.1007/BF01448013
http://dx.doi.org/10.1137/0205037
http://dx.doi.org/10.1016/s0049-237x(08)70854-1
http://dx.doi.org/10.1016/s0049-237x(08)70854-1
https://dspace.library.uu.nl/handle/1874/361954


Index of Symbols

A, 3
A, 3
∧

connection, 60
for P(A)-valued predicates, 17
for formulas, 19

Asm(A), 11
⊥

as a formula, 19
as a P(A)-valued predicate, 17

↓, 4
e(−), 9
EX , 11
∼X , 21
Eff, 22
=, 4
∃, 19
∃f , 17
JfK, 28
f∗, 17
Ff , 23
∀, 19
∀f , 17

for surjective f , 18
graph, 10
Heytpre, 18
Ho(C), 72
I, 29
I, 60
i, 6
→

for P(A)-valued predicates, 17

for formulas, 19
JσK, 28
[R], 19
[ϕ], 19
[t], 19
k, 6
K1, 9
K2, 9
L, 52
L, 18, 28
≤, 16
LY , 54
Mod(A), 15
|=, 20
Mt, 61
tM, 61
n, 7

in S, 39
∇(2), 34
¬, 19
¬¬, 29
Ω, 27
Ω′, 50
∨

connection, 60
for P(A)-valued predicates, 17
for formulas, 19

P, 26
P∗, 11
P, 7, 18
p0, 6
p, 6

79



80 INDEX OF SYMBOLS

p1, 6
[U, V ], 10
〈−,−〉, 9
⇀, 3
[x], 69
R, 8
JRK, 28
RT(A), 21
RT(S)f , 64
S, 48
S, 9
S, 7
S, 9
s, 6
sX , 68
Σ, 32
'

homotopic, 64
Kleene equality, 4

Stab(X), 46
⊆D, 50
T (A), 3
tX , 68
>

as a P(A)-valued predicate, 17
as a formula, 19

↑, 10
Xod, 35
Xpc, 71
Xϕ, 25
y, 7
Z, 7
z, 7



Index of Terms

algebraically compact, 58
application, 3
assembly, 11
associated category of domains, 59

category of assemblies, 11
category of predomains, 59
closed term, 3
co�bration, 60
combinator, 6

�xed point, 7
identity, 6
pairing, 6
predecessor, 7
primitive recursion, 8
projection, 6
successor, 7
zero-test, 7

combinatorially complete, 4
complete, 58
Curry numerals, 7

D-map, 50
D-partial map classi�er, 52
D-subobject, 50
denote, 4
diagonal �ller, 61
discrete, 34

assembly, 15
dominance, 48

E�ective Topos, 22
elementary inclusion of pcas, 76

�brant, 63
�bration, 63
functional relation, 21

graph of a continuous function, 10

Heyting prealgebra, 16
homotopic, 64
homotopy

category, 72
equivalence, 64
inverse, 64

internally projective, 34
interpretation of Set-typed language in

a realizability tripos, 19
interval object, 60

join-property, 40

Kleene
equality, 4
�rst model, 9
second model, 9

L-formulas, 19
L-terms, 18
Lambek

algebra, 56
coalgebra, 56
Lemma, 56

Leibniz product, 63
lift functor, 52

on a slice, 54

81



82 INDEX OF TERMS

lifting property
left (LLP), 61
right (RLP), 61

model structure, 64
modest set, 15
morphism

in a realizability topos, 21
of assemblies, 11
of Lambek algebras, 56
of Lambek coalgebras, 56

object with ⊥, 53
order-discrete, 32

P(A)-valued predicate on a set, 16
partial applicative structure (pas), 3
partial combinatory algebra (pca), 4
partial equivalence relation, 21
partitioned, 33
path, 69

-connected component, 69
connected (to), 69

poset re�ection, 16
pushout product, 63

realizability topos of a pca, 21
realizability tripos of a pca, 18
realize(r)
≤, 16
for a P(A)-valued predicate, 16
for an assembly, 11

realizing set, 11

relational, 21
represent, 21

Set-typed language, 18
Scott

graph model, 9
topology, 10

Sierpi«ski
assembly, 32
topology, 10

single-valued, 21
Soundness Theorem, 20
source, 68
strict, 21
strict relation, 25
strict map, 53
substitution, 4
symmetry, 21

target, 68
terms over a pas, 3
total, 21
track(er), 11
transitivity, 21
true in a tripos, 20
type, 18

uniform, 44

variables, 3

weak factorization system, 61
well-complete, 59


	Acknowledgements
	Introduction
	Overview
	Preliminaries

	Partial Combinatory Algebras
	Basic definitions
	Basic combinators
	Examples of pcas

	Assemblies
	Assemblies and their morphisms
	Properties of the category of assemblies

	Realizability Toposes
	P(A)-valued predicates
	Realizability triposes
	Objects and morphisms of realizability toposes
	Properties of realizability toposes
	Logic in realizability toposes
	Assemblies in realizability toposes

	Order-discrete Objects
	The Sierpinski assembly and order-discrete objects
	Closure properties of order-discrete objects
	Order-discrete reflection

	Arithmetic in RT(S)
	First order arithmetic
	Axiom of choice and modest sets
	Some logical principles involving finite types
	Second order arithmetic
	In general realizability toposes
	In RT(S)


	A Dominance in RT(S)
	Basic definitions
	Assemblies and their Sigma-subobjects
	The lift functor on assemblies
	Lift functor for slices
	Lambek algebras for the lift functor
	Algebraic compactness

	A Model Structure on a Subcategory of RT(S)
	Basic definitions and setup
	The model structure on the fibrant objects of RT(S)

	Contractible assemblies and trivial fibrations
	Fibrant assemblies
	Order-discrete assemblies again
	Closure properties of fibrant assemblies

	Future Research
	Axiomatization of second order arithmetic
	Computing the homotopy category of fibrant assemblies
	Embedding of topological spaces
	Relative realizability

	Bibliography
	Index of Symbols
	Index of Terms

