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Chapter 1

Introduction

In computability theory one studies computable functions. Intuitively, a function on
the natural numbers is computable if it can be calculated using an algorithm. Since
algorithms need not terminate on every input, it is natural (and necessary) to consider
partial functions. Abstractly speaking, an algorithm is simply a finite set of data, and
as such it can be encoded by a natural number. This allows us to think of applying the
number m to the number n as calculating the output of the algorithm encoded by m on
input n. This then blurs the distinction between the functions and their input. A fun-
damental result in computability theory is that there are encodings that are computable
themselves. This means that there is a universal algorithm, an algorithm w such that u
applied to input 2"3™ yields the output of the algorithm with code n on input m. We
call u universal, because it can simulate any other algorithm for us (provided that we
know its encoding).

One can generalize this as follows: consider a structure A consisting of a non-empty
set A of ‘programs’ and a binary partial map (the application map). We impose some
properties on A to ensure that the application map is represented (in some sense) by a
program in A. Such a structure is known as a partial combinatory algebra (pca) and can
be thought of as a model of computation.

A partial combinatory algebra gives rise to an interesting and rich category: the cat-
egory of assemblies. Intuitively, assemblies are sets with some computational content.
Arrows in this category are simply functions that are ‘computable’ in the partial com-
binatory algebra. Although there is much structure on the category of assemblies, it falls
short of being a topos. This, for example, means that we cannot interpret higher-order
logic in it.

Fortunately, this situation can be remedied: it is possible to construct a topos over a
pca A, known as the realizability topos of A and denoted by RT(A), such that it contains
the category of assemblies as a full subcategory. One may view RT(A) as a mathematical
universe with some built-in notion of computation.

The name “realizability topos” warrants some explanation. Realizability was invented
by Kleene [Kle45| to study constructive mathematics. It is a technique used to endow
constructive proofs with computational content. For example, a proof of Vz3yep(z,y)
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2 CHAPTER 1. INTRODUCTION

should be some computable function f that, given an x, produces a witness y and a
proof that that witness is correct, viz. f(x) should be some pair (fo(x), f1(x)) such that
fi(z) proves (or realizes) ¢(z, fo(x)).

The first and most well-known example of a realizability topos is Hyland’s [Hyl82]
Effective Topos (denoted here by Eff). One of the remarkable aspects of Eff is that its
internal logic is governed by Kleene-realizability. This means that for a statement ¢ about
the natural numbers, ¢ is true in Eff if and only if ¢ is Kleene-realizable, i.e. there is
some computable function that proves it as described above. Hyland’s construction thus
connected topos theory and realizability and was generalized via tripos theory [HJP80].

The Effective Topos arises as the realizability topos of Kleene’s first model: the pca
with the natural numbers as its underlying set and partial recursive application. Another
example of a pca is Scott’s graph model [Sco76|, denoted here by S. The realizability
topos RT(S) of this pca is the object of study in this master’s thesis.

1.1 Overview

In this section I give a brief description of each chapter.

Chapter 2 develops the theory of partial combinatory algebras and provides examples
of pcas. We study Scott’s graph model in particular.

We continue in Chapter 3 by studying assemblies and in Chapter 4 we develop some
tripos theory and are finally able to construct and describe realizability toposes.

Chapter 5 identifies a particular subcategory of the realizability topos RT(S) of Scott’s
graph model: the subcategory of order-discrete objects. These objects will reappear in
Chapter 6 where we investigate first and second order arithmetic in realizability toposes
and RT(S) in particular.

In Chapter 7 we take our first steps in synthetic domain theory and we examine a
particular dominance on RT(S). We also look at Lambek algebras for the lift functor.
The dominance gives rise to a model structure on RT(S), which we describe in Chapter
8, together with the basic theory of model structures.

Finally, Chapter 9 lists some questions for future research.

1.2 Preliminaries

Familiarity with partial combinatory algebras, assemblies or realizability (toposes) is not
required, as I treat all of this in detail in the coming three chapters. This thesis should
be readable by anyone with knowledge of category theory: in particular, adjunctions,
cartesian closed categories, elementary toposes and categorical logic. Familiarity with
basic computability theory is useful, but not strictly necessary (for the bulk of this thesis).
For example, we mention partial recursive functions in Example and primitive
recursive functions in the chapter on arithmetic. Moreover, one would certainly benefit
from having studied intuitionistic logic. Lastly, I use the axiom of choice freely and
(often) without mention.



Chapter 2

Partial Combinatory Algebras

This chapter introduces partial combinatory algebras. These structures give rise to in-
teresting categories which we will study later: categories of assemblies and realizability
toposes. Although we will mostly be interested in one particular partial combinatory
algebra, I have decided to treat most of the material in full generality. The reason is two-
fold. Firstly, it allows us to compare our topos to other realizability toposes. Secondly,
many results can be obtained for the general setting without much additional effort.

This chapter contains no original results. We follow Chapter 1 of Van Oosten’s
comprehensive book Realizability |Oos08|. I have also consulted [Zoel8, Chapter 1| for
comparison.

2.1 Basic definitions

Definition 2.1.1. A partial applicative structure (pas) A is a non-empty set A with a
partial map A x A — A called application. It is denoted by juxtaposition: (a,b) — ab.
Our convention is that application associates to the left, i.e. we write abc for (ab)c.

In this section A will always denote a pas with A as its underlying set.

Definition 2.1.2. Fix a countably infinite set of variables V. The set of terms over A
is the least set T'(A) such that:

(i) every variable is a term over A;
(ii) for each a € A, we have a constant (also denoted by a) that is also a term over A;
(iii) if s and t are terms over A, then so is (st).

A term with no variables is called closed. We adopt the same convention concerning
parentheses as above. Furthermore, when the context is clear, we will simply speak of
terms.

If we read the juxtaposition of terms as application, then we might view a term ¢
with variables z1,...,z, as a partial function A™ — A. Accordingly, closed terms should

3



4 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

be viewed as elements of A. A partial combinatory algebra will be a pas that is a ‘model
of computation’. Thus, we would like it to able to represent these partial functions
inside our pas itself. Providing substance to this idea is the motivation for the following
definitions and results.

Definition 2.1.3. We define the relation ¢t a (read as t denotes a) between closed terms
and elements of A as the least relation satisfying:

(i) ala for any a € A;
(ii) (st)la if and only if there are b,c € A with s b, t] ¢, be is defined and bc = a.
We will write t| (read as t denotes) if there is an a € A such that ¢ a.

One easily shows that if ¢ denotes both a and b, then a must be equal to b. Thus,
notationally, we will not distinguish between a closed term that denotes and the element
that it denotes. For example, ab| if and only if (a, b) is in the domain of the application
map. Finally, observe that if a term denotes, then all of its subterms must also denote.

Next, we define substitution and equality on closed terms.

Definition 2.1.4. For two closed terms s and ¢, we write
(i) s =t if and only if ¢ and s both denote the same element of A;

(ii) s ~ t for the Kleene equality, viz. either s and ¢ do not denote, or s and ¢ both
denote the same element of A.

Definition 2.1.5. For a term s and a term ¢ with variable x, we will write t[s/x] for
the result of substituting s for x in t. Moreover, if we display all variables of a term
t(x1,...,x,) then we will write t(aq, ..., ay,) for the result of substituting each a; for z;,
where a; € A.

We are now in position to define partial combinatory algebras.

Definition 2.1.6. We say that A is combinatorially complete if, for any integer n € N
and term t(x1,...,Tp41), there exists an element a € A such that for all ay, ..., a1 € A,
we have:

(i) aay---anl;
(i) aaq - aps1 = t(ag, ..., ane1)-
A partial combinatory algebra (pca) is a combinatorially complete pas.

Thus, we may view a pca as a pas which for each term has an element that ‘computes’
this term. An inconvenience of this definition is that using it to check that a pas is actually
a pca can be quite difficult. Fortunately, there is an easier characterization, which is due
to Feferman.
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Theorem 2.1.7 (Feferman). Let A be a pas. Then A is a pca if and only if there exist
elements k,s € A such that for any a,b,c € A:

(i) kab = a;
(ii) sabl;
(#i1) sabc ~ ac(bc).

Proof. Suppose first that A is a pca. Consider the term ¢(z,y) = z. Combinatorial
completeness for this term immediately provides an element of A that satisfies (i). For
(ii) and (iii), apply combinatorial completeness to the term ¢(z,y, z) = xz(yz).

To prove the converse, assume we have elements k, s satisfying (i) — (iii). We first
develop some convenient notation. For any variable x and term ¢, define a term A*z.t by
recursion on t:

A*z.x is the term skk;
A*x.t is the term kt if ¢ is a constant from A or any variable different from z;
Nz (t1te) is the term s(A\*x.t) (A x.t2).

It may be proven by induction on terms that for any term ¢(x,z1,...,2,) and any
a,ai,...,an €A the following hold:

the variables of \*x.t are exactly those of ¢ minus x;
(Nz.t)(a,...,an)d;
(Nzx.t)(ay,...,an)a ~t(a,a1,. .., ap).

For example, A*z.x denotes, because skk always denotes by (ii) in the definition of com-
binatorial completeness. Furthermore, (\*z.x)a ~ skka ~ ka(ka) = a.

We are now ready to prove combinatorial completeness of A. Let t(z1,...,Tp41)
be any term and let us write \*xy,...zp41.t for Xz (AN 2. (... (N zpy1.t)...)). Then
A*x1 - - Tpe1.t denotes and it functions as the required element in the definition of com-
binatorial completeness. For, if ay,...,an+1 are elements of A, then

(Nay- - xpyr.t)ar - ap ~ (N xppr.t)(a, ... an),
which denotes by above and
Ny zppr.t)ar - ape1 =~ (N zpyr.tlar, ... an))ans1 = tlar, ..., an+1),

as desired. ]
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Remark 2.1.8. The elements k and s are called combinatord] It may be the case that
multiple elements of A satisfy the requirements of the k and s combinators. From now
on, we will assume that we have made a choice for k and s for any pca. This allows us
to freely employ the notation A*x1 - - x,41.t when working with pcas.

Remark 2.1.9. The notation \* is suggestive, as we have something that resembles \-
abstraction. However, some care is required. For example, one might expect (A\*z.t1)tg ~
ti[t2/z] to hold, but in general it does not. If we take ¢; to be a constant b € A, then
(A z.t1)ty ~ kbta, while t1[ta/x] = b and kbt ~ b does not hold if t3 does not denote.

2.2 Basic combinators

To back up our claim that pcas serve as models of computation, we show in this section
that we can define basic programming constructions in pcas.

We have already seen the combinators k and s. We also saw that skka = a for any
a € A, so have an identity combinator i = skk . Now define k as ki. Observe that for
any a,b € A, we have kab ~ kiab ~ ib = b, so k works like k, but it outputs the second
element instead of the first.

If we interpret k as ‘true’ and k as ‘false’, then the i combinator functions as an
if-else-operator (‘if true, then a, else b’):

ikab = kab = a, ikab = kab = b.
One may extend this to closed terms: given closed terms s and ¢, define the closed term
r=Nz.x(A\y.s)(Ny.t)k
and observe that
rk ~ k(Xy.s) (N y.t)k ~ (\y.s)k ~s and vk~ k(A\*y.s) (N y.t)k =~ (\*y.t)k ~ ¢.

Remark 2.2.1. A note on a subtlety of this case distinction operator is in order. It
seems more natural to take the simpler A*z.xst. However, this does not work. For
suppose s denotes, but ¢ does not. Then, (\*z.xst)k ~ kst does not denote while s
does. Consequently, (\*z.xst)k % s. But a term of the form A\*y.t always denotes by
construction, explaining the need for its appearance above.

We also have pairing in our pca. Define the closed term p = A\*zyz.zxy and observe
that pab ~ A\*z.zab always denotes. Let pg = A*w.wk and p; = A*w.wk and note that:

po(pab) =~ pabk ~ (A\*z.zab)k ~ kab = a and similarly, p1(pab) = b.

Thus, we think of pab as the (coded) pair (a,b) and pg and p; as the projections. We
call p the patring combinator and pg and p; the projection combinators.

!The letters “k” and “s” come from Moses Schonfinkel’s combinatory logic. They respectively come
from the German words “Konstanzfunktion” (constant function) and “Verschmelzungfunktion” (merge
function). Of course, “Verschmelzungsfunktion” starts with a “v”, but Schonfinkel had to avoid confusion
as there was also a swap-arguments combinator called the “Vertauschungsfunktion” [Sch24].
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Remark 2.2.2. Before we go on, we would like to exclude some trivialities. So, from now
on, A will be a non-trivial pca, that is, its underlying set A should have more than one
element. It is not hard to show that this is equivalent to demanding that k and s do not
coincide (see Proposition 1.3.1 in [O0s08]).

We continue by showing that we have a copy of N inside an pca and that we can
perform recursion inside our pca.

Definition 2.2.3. The Curry numerals are defined inductively as follows:
0=i
n+ 1 = pkn.

One may show that our assumption that A is non-trivial guarantees that all Curry
numerals are distinct.

The next proposition shows us that the Curry numerals really behave as natural
numbers.

Proposition 2.2.4. There are successor, predecessor and zero-test combinators in A,
denoted by S,P and Z, viz. for all n € N the following hold:

Sn=n+1; P0=0; Pnt+l=m Z0=k Zn+1=k

Proof. Define Z = po. This works since i was defined as skk. The successor is also easily
found: put S = pk. For the predecessor, P = \*x.poxz0(p1z) does the job:

PO = po0 0(p10) = kO(p10) =0 (recall that po0 = po(skk) = skkk = ik = k);
Pn+1=pon+10(pin+1)=k0

n=n. |

Proposition 2.2.5. There are fixed point combinators y, z in A such that for all f,a € A
the following hold:

(4) yf = Flyf)

(i) zf | and zfa ~ f(zf)a.

Proof. Write w = N*zy.y(xxy) and put y = ww. Note that ww indeed denotes, because
w denotes by construction, so that ww ~ (Ay.y(xzy))[w/x], which denotes (see the
proof of Theorem [2.1.7). Observe that:

yf =wwf ~ flwwf) =~ f(yf),

as desired.
For z we can do something similar, but with an extra variable: put u = N xyz.y(zzy)z
and let z = wu. Then,

zf ~uuf ~ XNz f(uuf)z,
which denotes and moreover,
2fa = f(uuf)a = f(zf)a,

as we wished. [
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The fixed point combinator z allows to perform primitive recursion in our pca.

Proposition 2.2.6. There is a primitive recursion combinator R in A such that for all
f,a €A and n € N, we have:

Raf0 = a;
Rafn + 1~ fra(Rafmn).

Proof. The existence of R seems plausible, since, in principle, all we need is a zero test, a
predecessor and repeated application. These are provided by Z,P and z. Now, one may
define

R = Nrxzgm.Zm(kz)(A*y.g(Pm)(rzg(Pm)i))

and

R = ANxzgm.zRxzgmi.

Observe:

Raf0 ~ zRafOi
~ R(zR)afOi
~ Z0(ka)(A\*y. f(PO)(zRaf(P0)i))i
~ k(ka)(X\*y. f(P0)(zRaf(P0)i))i

~ kai = a;
and

Rafn + 1~ zRafn + 1i
~ R(zR)afn + 1i
~ Zn T 1(ka)(\*y. f(Pn T 1) (zRaf (Pn + 1)i))i
~ k(ka)(A\*y. fr(zRafni))i
~ (Ny. fr(zRafmi))i
~ fr(zRafmi)
~ fn(Rafn);

as desired. |

Given the above, it will come as no surprise that, using the Curry numerals, one can
code finite sequences of elements of A inside A. Moreover, this can be done such that
all elementary operations on these sequences (e.g. concatenation and computing lengths)
are represented in A. This coding is straightforward, but tedious. Details may be found
in Section 3.5 of [Oos08|.
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2.3 Examples of pcas

In this section we present four examples of pcas. We skip the details in most cases,
except for one. Scott’s graph model will be studied further in this thesis, so we work out
all the details there. The other examples are mostly provided for comparison.

Example 2.3.1. Our first example is a degenerate pca and is only included for com-
pleteness. It is the trivial pca: the underlying set is a singleton {*} and the application
is given by (x, %) — .

Example 2.3.2. Our second example is the prime example of a pca, it is known as
Kleene’s first model ICi. Its underlying set is N and the application is given by (n,m) —
©n(m) where ¢ is a partial recursive enumeration function.

Example 2.3.3. Another example is Kleene’s second model Ko. Its underlying set is
NN, The application is somewhat involved. First of all, we fix a bijection (—) from the
set of finite sequences of N to N. Furthermore, we write an = (a(0),...,a(n — 1)) and
a0 for the empty sequence (). Now each o € NV determines a partial map F,: NN —~N
as follows:

Fo(f) = {a(ﬁn) —1 if n € Nis the least k¥ € N such that a(8k) > 0

undefined if no such integer exists.

For n € N and a € NN, write (n) * o for the function 3: N — N defined by 3(0) = n and
B(k 4+ 1) = a(k). Finally, we can define an application on NV by:

5 {the function n — F,((n) * 8) if F,({(m) % 3) is defined for each m € N
(8] =

undefined else.

One may endow NV with a natural topology, the Baire topology, which is obtained
by giving N the discrete topology and NN the product topology. Interestingly, there is
a connection between continuous functions for this topology and the application we just
defined. If we write G, for the partial endofunction on NN given by  +— «f, then
one may check that G,: dom(G,) — NN is continuous (where dom(G,) C NN has the
subspace topology). Conversely, any partial endofunction on NN that is continuous on
its domain may be extended to a function of the form G, for some a € NV,

Example 2.3.4. Our last example is Scott’s graph model S. Its underlying set is the
powerset of N, for which we shall write S. Since we want to model computations, it seems
natural that the elements of our pca act only on a finite amount of data. Therefore, we
first define a bijection from the set of finite subsets of N to N. Such a bijection is given
by mapping a finite subset of N to its characteristic string: x: Pan(N) = N, p — ¥;e,2%.
Let us write e(_y for the inverse of x, so eg = 0),e1 = {0},e2 = {1},e3 = {0, 1}, etc.
Next, we fix a bijective pairing (—,—): N> — N. Finally, we define the application as
follows:
UV ={meN|3n(e, CV,(n,m)eU)}.
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We think of U as the graph of some function acting on finite subsets of V.

As with Kleene’s second model, there is an interesting connection with continuous
functions. First, identify S with {0,1}" and equip {0,1} with the Sierpinski topology
(the open sets are (),{0,1} and {1}). We then topologize S by giving it the product
topology (with N as index set). This topology is known as the Scott topology. Since {1}
is the only non-trivial open of the Sierpinski topology, the basic open sets of S are of the
form tp ={U €S | U 2 p} for some finite subset p of N. Therefore, it is not surprising
that a function F': S — S is continuous if and only if F' is completely determined by its
values on P (N), viz. F(U) = U{F(p) | p C U finite} for any U € S. Indeed, if F is
continuous, then F~1(1{m}) is a union of basic opens for any m € N. Hence, m € F(U)
if and only if there is some finite ¢ C U with m € F(q). Conversely, given such an F', we
have:

F7i(tp) ={V eS| F(V)2p}
={ves||J{F(g) | qCV finite} D p}
= J{1a| F(g) 21},

so F~1(1p) is open and F is continuous.

From the definition of the application it easy to see it is continuous. Hence, for any
positive integer k, the map S¥ — S given by (Ui, ...,Ui) — Uy - - - Uy is also continuous.
Conversely, given any continuous function F': S* — S, we can define a set U € S such
that F(Uy,...,Uy) = UUy---Uy, for any (Uy,...,U;) € SF. Indeed, if we define the
graph of F as

graph(F) = {(n1, (na, ..., (ng,m)...)) | n1,....,np € Nym € F(en,,...,en,.)},

then graph(F') has the desired property. For if m € F(Uy,...,Uy), then, by continuity,
we find nq,...,n, € Nsuch that m € F(ep,,...,ep,)and ey, C Uy, ..., en, C Uy. Hence,
(n1, (ng,...,(ng,m)...)) € graph(F) and thus, m € graph(F)U; ---Uy. Similarly, one
proves that graph(F)U; --- Uy C F(Uy,...,Uy).

It is now easy to prove that S is in fact a pca. A k combinator exists, because the
function from S? to S defined as (U, V) + U is continuous. Further, an s combinator
exists, because the assignment (U, V, W) — UW (UV) is continuous.

Thus, § is a pca and we may think of its elements as (graphs of) continuous functions
(w.r.t. the Scott topology).

Remark 2.3.5. When working with S, it will be convenient to fix a particular pairing and
some notation for it. The pair of two subsets U and V of N is given by the set

UV]={2n|neUtUu{2m+1|meV}.

It is easily verified that the map (U, V') — [U, V] is a continuous bijection and that there
are continuous projections [U, V]~ U and [U, V] — V.



Chapter 3

Assemblies

Partial combinatory algebras give rise to an interesting category called the category of
assemblies. It has many enjoyable properties, e.g. it is regular, cartesian closed, finitely
cocomplete and it has a natural numbers object.

Again, we follow [Oo0s08|, Section 1.5] and |Zoel8, Section 2.5, and A will denote an
arbitrary pca with A as its underlying set throughout.

3.1 Assemblies and their morphisms

Definition 3.1.1. An assembly X (over A) is a pair (|X|, Ex) with |X| a set and
Ex:|X|— P*(A) a function from | X]| to the set of non-empty subsets of A.

We sometimes say that a € Ex(x) realizes x or that it is a realizer of . We also
refer to E'x(z) as the realizing set of x.

We think of Ex(x) as computational data accompanying z. Later, we will see it
as a set of computational witnesses of the existence of x. Accordingly, a morphism of
assemblies should take the computational data into account.

Definition 3.1.2. Let X and Y be assemblies. A morphism of assemblies X — Y is
a function f: |X| — |Y| such that there exists a € A satisfying: for any x € X and
b€ Ex(x), we have ab| and ab € Ey(f(x)).

We say that f is tracked by a and call a a tracker of f. In other words, given a realizer
of x, the tracker computes a realizer of f(x).

It is important to note that trackers are not necessarily unique and are not part of
the morphism.

Proposition 3.1.3. The assemblies and their morphisms form a category, caolled the
category of assemblies (over A) and denoted by Asm(A).

Proof. It suffices to show that the identity function is tracked and that if f: X — Y and
g: Y — Z are morphisms of assemblies, then their function composition ¢gf is tracked.
Observe that the identity function is tracked by the i combinator. Further, if a tracks f

11
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and b tracks g, then \*u.b(au) tracks gf. Indeed, if z € X and ¢ € Ex(z), then ac] and
ac € Ey(f(x)), so b(ac)| and b(ac) € Ez(gf(x)). [ |

3.2 Properties of the category of assemblies

Proposition 3.2.1. The category Asm(A) has finite (co)limits.

Proof. First of all, observe that ({*},* +— A) is a terminal object, as for any assembly
X, the unique function |X| — {x} is tracked by i.

The product X x Y of two assemblies X and Y is the assembly (|X| x |Y], Exxy)
where

Exxy(z,y) = {pab | a € Ex(z),b € Ey(y)}-

Let us verify the desired universal property. It suffices to show that the usual maps in Set
are tracked. The projections mp: X XY — X and 71: X XY — Y are clearly tracked by
po and pi, respectively. Suppose we have arrows f: Z — X and g: Z — Y, tracked by
ay and ag4, respectively. Then the map (f,g): Z — X xY is tracked by Nz.p(asx)(agz).

To establish that Asm(.A) has finite limits, we show Asm(A) also has equalizers.
Suppose we have parallel morphisms f,g: X — Y of assemblies. Let X’ be the assembly
({x € X | f(x) =g(x)}, Exs), where Ex/ is the restriction of Ex to |X'|. The inclusion
i: | X'| = |X] is obviously tracked by i and we have fi = gi. We must show that
any morphism of assemblies h: Z — X satisfying fh = gh, factors through ¢. From
considerations in Set, it follows that there is a unique function k: |Z| — |X'| with
ik = h. It is defined as z — h(z). It remains to show that k is tracked, but it is, since
any tracker of h also tracks k. Thus, X' is an equalizer and Asm(.A) has finite limits.

For finite cocompleteness, observe that (), () is an initial object and that the copro-
duct X +Y of two assemblies X and Y is given by (|X|+ |Y|, Ex+y) where

Ex.y(0,7) = {pka | a € Ex(z)} and Ex y(1,y) = {pkb | b € Ey(y)}.

To verify the universal property, it again suffices to show that the appropriate maps in
Set are tracked. Observe that the inclusions X — X+Y and Y — X +Y are respectively
tracked by pk and pk. Suppose f: X — Z and g: Y — Z are morphisms of assemblies,
tracked by ay and ag, respectively. The map [f,g]: X +Y — Z is tracked by a variation
of the case distinction operator (c.f. Remark [2.2.1)):

lar,aq] = Nu.pou(XN*v.ar(pru)) (N w.aq(pru))k.
Indeed, for b € Ex(x), we have:

[ag, aglpkb = k(\*v.az(p110)) [pkb/u] (\'w. g (pru)) [pkb/ )k
— (*v.7(pyu))[pkb/ulk
= as(p1u)[pkb/u]
=aysb € Ez(f(x)),
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as desired. (Note our careful handling of the substitution in light of Remark [2.1.9])
Similarly, [af, ag]lpkb € Ez(g(y)) for b € Ey (y).

Next, we construct coequalizers. Suppose we have parallel morphisms f,g: X — Y.
Let ¢: |Y] — [Y|/~ be their coequalizer in Set. Define the assembly Y/ = (|Y|/~, Ey)
with Ey+([y]) = Uyep Ev(y'). Observe that g is a morphism from Y to Y as it is
tracked by i. Now suppose r: Y — W is a morphism with rf = rg. We must show that
it factors uniquely through ¢. Since |Y’] is the coequalizer of f and g in Set, there is a
unique k: |Y’| — |W/| such that kg = r. Moreover, it is tracked, because any tracker of
r also tracks k (since ¢ is tracked by i). We conclude that Asm(.A) has finite colimits, as
desired. |

It will be convenient to have a characterization of regular epimorphisms in Asm(.A).

Lemma 3.2.2. A morphism e: X — Y is a regular epimorphism if and only if e is
surjective and the surjectivity is witnessed in A, that is: there is some a € A such that
for any y € |Y| and b € Ey(y), abl and ab € Ex(z) for some x € | X| with e(zx) = y.

Proof. First of all, observe that the requirement that the surjectivity is witnessed is
equivalent to requiring that idjy| is tracked as a morphism from Y to Y’ = (|Y], Ey»)
with Ey (y) = Ue(x):y EX(:E>

Suppose first that e: X — Y is a regular epimorphism. From our description of
coequalizers above, we see that e must be surjective. Furthermore, the function e is
tracked (by i) as a morphism X — Y’ and therefore, it factors through e: X — Y, so we
see that id|y is tracked as a morphism from Y to Y’

Conversely, suppose e: X — Y is a morphism satistying both properties. Since idy
is always tracked as a morphism Y’ — Y, we see that Y is isomorphic to Y’. By our
description of coequalizers, it is clear that

({(@.2) | e(@) = e(a)}, B) — 3 X —= V",

where E is the appropriate restriction of Fxxx, is a coequalizer diagram in Asm(.A).
Hence, e is regular epic. |

Proposition 3.2.3. The category Asm(A) is regular.

Proof. Tt remains to show that regular epis are stable under pullback. We apply the
previous lemma. Suppose e: X — Y is a regular epi. Let

XxyZ —X

J
ie
g%lf

be a pullback. By our description of finite limits, we have

X xy Z=({(z,2) € [X| x|Z| [ e(x) = f(2)}, Exxy 2),
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where Ex«, 7 is the appropriate restriction of EFxxz.

The map X Xy Z — Z is obviously surjective. We must find an element a € A
witnessing it. Since e is assumed to regular epic, take b € A witnessing its surjectivity
and let ¢ track f. We claim that a = A*u.p(b(cu))u does the job. Indeed, if z € |Z| and
d € Ez(z), then cd| and cd € Ey(f(2)), so b(cd) | and b(cd) € Ex(z) for some z € | X]|
with e(xz) = f(z). Hence, p(b(cd))d € Exx, z(x, z), as desired. [ |

Proposition 3.2.4. The category Asm(A) is cartesian closed.

Proof. Let X and Y be two assemblies. Define the assembly Y X as
YX = ({f: |X| = [Y]]| f is tracked}, By-x)

with Eyx (f) = {a € A | a tracks f}. We have an evaluation morphism ev: YX x X — Y
given by (f,x) — f(z) and tracked by A*u.pou(piu). Suppose we have an assembly Z

and a map Z X X 9y Y. We must show that there is a unique Z gy vX such that
ev(g x idx) = ¢. Since Set is cartesian closed, it suffices to prove that g defined as
§(2) = (z — g(z,2)) is well-defined and tracked as a morphism from Z to YX. If a
tracks g, then A*wv.a(puv) tracks g. Moreover, Ez(z) is non-empty for any z € |Z], so
G(2) has a tracker for any z € |Z|. Thus, § is a well-defined morphism from Z to Y, as
we wished to show. [ ]

Proposition 3.2.5. The category Asm(A) has a natural numbers object.

Proof. Let N be the assembly (N, E) with Enx(n) = {n} (where 7 is the Curry numeral
from Definition . Note that we have maps 1 = N 3 N given by z(x) = 0 and
s(n) =n+ 1 and tracked by Z and S (recall Proposition [2.2.4)), respectively.

Suppose we have 1 i> X 2, N. We must show that it factors through 1 & N 3 N,
i.e. there must be a unique k: N — X such that

commutes. By inspection, we have no choice but to define k recursively as:
k(0) = f(x) and k(n + 1) = g(k(n)).

We must show that this is tracked. For this, let a be any element of Ex (f(x)), let ¢ track
g and put ' = Nuwv.t(kuv). We show by induction that k is tracked by Rat’. Since we
defined k recursively, it comes as no surprise that we need the primitive recursion com-
binator R from Proposition Remember that Rat’'0 = a € Ex(f(x)) = Ex(k(0)).
Further, if we assume that Rat'n € Ex(k(n)), then Rat'n + 1 ~ t'n(Rat'n) ~ t(Rat'n).
Now, the latter is an element of Ex(g(k(n))) = Ex(k(n + 1)), because t tracks g and
Rat'm € Ex(k(n)) by assumption. This concludes our proof. [ |
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Definition 3.2.6. An assembly X is called discrete if the realizing sets are disjoint, viz.
Ex(z) N Ex(y) = 0 for all distinct z,y € | X].

We will also refer to a discrete assembly as a modest set. The full subcategory of
Asm(A) on modest sets will be denoted by Mod(.A).

Example 3.2.7. The natural numbers object N is an example of a modest set (provided
that the pca A is non-trivial).

Lemma 3.2.8. Let X be an assembly and Y a modest set. If there is an injective
morphism from X to'Y, then X is a modest set as well. In particular, the notion of
modest set is stable under isomorphism.

Proof. Let f: X — Y be an injective morphism tracked by a € A. Assume that we have
an element b € Ex(x) N Ex(2') for certain z,2’ € |X|. We prove that 2 = 2/. Observe
that ab| and ab € Ey(f(z)) N Ey(f(2')), so that f(z) = f(2') (as Y is modest). By
injectivity of f, we get that x and z’ are equal, as desired. |

Proposition 3.2.9. The category Mod(A) is an exponential ideal in Asm(A).

Proof. Suppose Y is a modest and X is an assembly. Consider the exponential Y.
Suppose f and g are two different elements of |YX|, i.e. different morphisms from X to
Y. Assume for a contradiction that we have some element a € A that tracks both f and
g. Since f and g are distinct, we may find x € | X| with f(z) # g(x). Let b € Ex(z).
Then abl and ab € Ey (f(z)) N Ey(g(x)). But this is impossible, because Y is a modest
set and f(z) # g(x). We conclude that Y is a modest set. [ |

Proposition 3.2.10. The category Mod(.A) is reqular. Moreover, the inclusion functor
Mod(A) — Asm(A) is regular.

Proof. Tt is straightforward to verify this using the description of finite limits and regular
epimorphisms given above. |



Chapter 4

Realizability Toposes

In the previous chapter we introduced the category of assemblies, which had quite a bit
of structure. It falls short of being a topos, however. In this chapter we construct a topos
over a pca, known as the realizability topos of the pca. We also investigate its structure
and logic and give characterizations of some categorical properties. Finally, we show that
the realizability topos may be seen as a generalization of the category of assemblies.

We follow the expositions in [Oos08, Chapter 2] and [Zoel8|, Chapter 3]. Again, let
A denote an arbitrary, but fixed pca with A as its underlying set. We start by studying
P(A)-valued predicates and tripos theory. Both are paramount in describing the internal
logic of realizability toposes.

4.1 P(A)-valued predicates

Definition 4.1.1. Given any set X, a P(A)-valued predicate on X is a function ¢ from
X to the powerset P(A) of A. For x € X and a € p(z), we will say that a realizes ¢(x)
or that a is a realizer for p(x).

Given a P(A)-valued predicate ¢ and = € X, we think of a € ¢(z) as a proof or
witness that the “predicate” ¢ holds for . The partial combinatory structure of A
allows us to turn the set of P(A)-valued predicates into a Heyting prealgebra, which we
define now.

Definition 4.1.2. Let (P, <) be a preorder.

(i) The poset reflection of the preorder (P,<) is the poset obtained by identifying
p,q € P for which p < g and ¢ < p.

(ii) A Heyting prealgebra is a preorder whose poset reflection is a Heyting algebra.

Definition 4.1.3. For a fixed set X, we define a relation < on the set of P(A)-valued
predicates P(A)¥ by putting ¢ < ¢ if we can uniformly obtain 9 from ¢, viz. there is
an element a € A such that for any z € X and b € ¢(z), we have ab| and ab € ().
We also say that the element a realizes ¢ < 1.

16



4.1. P(A)-VALUED PREDICATES 17

Proposition 4.1.4. For any set X, the pair (P(A)X, S) is a Heyting prealgebra.

Proof. We commence by showing that < is indeed a preorder. Reflexivity holds by
existence of the i combinator. For transitivity, suppose that ¢ < ¢ and ¥ < x are
realized by a and b, respectively. We claim that ¢ < x is then realized by A*u.b(au).
Indeed, if z € X and ¢ € ¢(z), then ac € ¢(x), so b(ac) € x(x), as desired.

We have top T and bottom L elements given by T(z) = A and L(x) = 0 for any
x € X. Indeed, i realizes the inequalities L < ¢ < T for any ¢: X — P(A).

We proceed by defining meet (A) and join (V) operations. For x € X, put:

(pA)(x) = {pab | a € p(x),b € P(x)};
(o V) (z) = {pka | a € p(z)} U {pkb | b € ¥(x)}.

Proving that these operations satisfy the desired universal properties is similar to proving
that the category of assemblies has (co)products, as we have seen in the previous section.
Therefore, we omit the details here.

Finally, we define the Heyting implication by:

(p = Y)(x) ={ac A|Vbe p(x),abl and ab € ¢(z)} for any z € X.

For suppose x A ¢ < 1 is realized by a. Then y < ¢ — 1 is realized by A uv.a(puv).
Conversely, if b realizes x < ¢ — 1, then x A ¢ < 1) is realized by A u.b(pou)(piu). W

At the beginning of this section, we mentioned the importance of P(A)-valued pre-
dicates in categorical logic. The proposition above yields quite a bit of logical structure,
but we should also consider quantifiers. This is what we do next.

Lemma 4.1.5. Suppose (P, <) and (Q, <) are preorders. Let f: Q — P and g: P — Q
be functions such that f(q) < p if and only if ¢ < g(p). Then f is left adjoint to g when
seen as functors between preorder categories.

Proof. 1t suffices to show that f and g are functors, i.e. order preserving. Suppose
p <p € P. Since g(p) < g(p) holds, we have f(g(p)) < p < p' and therefore, g(p) < g(p').
Thus, g is order preserving. Similarly, f is. |

Definition 4.1.6. For f: X — Y, let us write f* for the function f*: P(A)Y — P(A)X
defined by f*(¢)(x) = ¢(f(z)) for any ¢: Y — P(A) and z € X.

Proposition 4.1.7. For any f: X —, the function f* is a morphism of Heyting preal-
gebras. Moreover, f* has left and right adjoints, for which we will write 3¢ and Vg,
respectively.

Proof. The proof of the first claim is straightforward, we omit it here.
For the second claim, we apply Lemma Define

Vi(p)(y) ={a € A|Vbe AV € X (if f(z) =y, then ab| and ab € ¢(z))},
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for any p: X - P(A)andy €Y.

It is immediate from the definitions that a realizes 3¢(¢) < 9 if and only if a realizes
@ < fr(¥).

Suppose a realizes ¢ < V¢(p). If b € (f(x)), then ab| and ab € V¢(¢)(f(x)), so
that abk € ¢(z). Hence, Nu.auk is a realizer of f*(¢) < .

Conversely, assume b realizes f*(1)) < ¢. We claim that AM*uv.bu realizes 1) < V().
Indeed, for ¢ € ¥(y), we have (N uv.bu)c ~ (ANv.bu)[u/c], so if f(x) =y and d € A, then
(A v.bu)[u/cld = be € (). [ |

One notices a certain asymmetry in the definitions of the adjoints: V is a bit more
complicated than 3. This situation is prettier if f is surjective (which it always will be
in later use).

Lemma 4.1.8. If f: X — Y is surjective, then a right adjoint of f* is given by

where p: X — P(A) and z € X.

Proof. Tt is not hard to verify that a realizes ¢ < Vy(y) if and only if a realizes f* (1)) < ¢.
Surjectivity of f is used in the if-direction, as follows. Suppose a realizes f*(¢) < .
If b € ¢¥(y), then for any x € X with f(x) = y, we have ab] and ab € ¢(x). Since f
is surjective, there is at least one such z. Hence, ab always denotes. Thus, a realizes
1 < Vy(p), as desired. [ |

Example 4.1.9. Let ¢ and 9 be two P(A)-valued predicates on a set X. Consider the
unique function X — {x}, which is obviously surjective (or empty if X = ). Then we
see that ¢ <4 if and only if (N, cx(¢(2) — ¥ (z)) is non-empty.

4.2 Realizability triposes

In this section we show that the P(A)-predicates and the maps f*,V¢, 37 allow us to
interpret many-sorted predicate logic without equality.

Definition 4.2.1. We will write Heytpre for the category of Heyting prealgebras: its
objects are Heyting prealgebras and morphisms are Heyting prealgebra morphisms.

The realizability tripos of A is the functor P: Set®® — Heytpre defined on objects by
P(X) = (P(A)X, <) and on morphisms by P(f: X —Y) = f*: P(Y) = P(X).

Definition 4.2.2. A Set-typed language L is a set of relation symbols assigning to each
relation symbol a finite sequence sequence of sets, called its type.
Next, we define L-terms recursively:

(i) for each set X, we assume to have variables x3%, 25, ... of type X and these are all
L-terms;
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(ii) if ¢q,...,t, are L-terms of types X1i,..., X, respectively and f is a function from
X1 X -+ x X, = Y, then we have a function symbol (also denoted by f) and
f(ti,...,ty) is a term of type Y.

Finally, we recursively define L-formulas:
(i) L and T are L-formulas;

(ii) if R is a relation symbol of type (X1,...,X,) and t1,...,t, are L-terms of types
X1,..., X, respectively, then R(t1,...,t,) is an L-formula;

(iii) if ¢ and 1 are L-formulas, then so are ¢ V¢, o A, o — 1 and —g;
(iv) if ¢ is a L-formula and z is a variable, then Vxy and 3xy are L-formulas.
In the remainder we will often simply speak of terms and formulas, suppressing ref-

erence to the language when it is clear from the context.

Remark 4.2.3. We will assume that — has the lowest precedence (w.r.t. =,V and A), e.g.
we write o A — x for (p A1) — x.

Next, we turn to interpreting £ in a realizability tripos P.

Definition 4.2.4. Let P be a realizability tripos and let £ be a Set-typed language. An
interpretation of L in P assigns to every relation symbol R in £ of type (X1,...,X,) an
element [R] of P(X1 x -+ x X,,).

It will be convenient to introduce the following notation: if a term t has free variables
Xt aXn then we write [fv(t)] for X3 x --- x X,,. If a term has no free variables,
then [fv(¢)] = 1, the terminal object in Set. We adopt a similar notation for formulas.

Further, for every term ¢ of type X we define a function [t]: [fv(¢)] — X by recursion:
(i) [z¥] is the identity map on X;

(i) [f(t1,...,tn)] is defined as the composition
B (F(trs oo a))] = [B(t2)] oo x [o(te)] 220 X s x, 4 x

Now we are ready to define an interpretation [¢] of an L-formula ¢ in P. A formula
¢ will be interpreted as an element [p] € P([fv(¢)]). We do so recursively of course:

(i) [L] and [T] are the bottom and top elements of P(1) (where 1 is a terminal object

of Set);

(ii) if R is a relation symbol of type (Xi,...,X,) and t1,...,t, are terms of types
X1,..., X, respectively, then we define [R(t1,...,t,)] as ([t1]m1,..., [tn]7n)*[R],
where m; is the projection [fv(R(t1,...,tn))] = [fv(t:)];

(iii) [¢ A 9] is defined as the meet 7§[p] A 75[¢] in P([fv(e A ¢)]) where o and 7 are
the projections from [fv(¢ A 9)] to [fv(p)] and [fv(¢))] respectively; similarly, one
defines [p V 9], [¢ — 1] using the appropriate Heyting prealgebra operations;
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(iv) [y] is defined as [ — L];

(v) [Vze] and [3zy] are defined as Vi [p] and 3:[p], respectively, where 7 is the projec-
tion from [fv(y)] to [fv(Vzy)] = [fv(Tzp)].

Finally, we say that a sentence ¢ is true in P (written as P |= ¢) if [p] is the top
element of P(1). That is, [¢](x) has a realizer, viz. [p] C A is non-empty.

Remark 4.2.5. For convenience, we employ a lower-case, upper-case correspondence
between variables and types, viz. we write x,2’,2”,... for variables of type X. Fur-
thermore, given a predicate ¢ € P(Xy,...,X,), we will also write ¢ for the relation
symbol of type (X1,...,X,,) that is interpreted by this predicate.

Example 4.2.6. It may be instructive to write out the quantifier cases above. Let ¢
be a formula with one free variable xz and assume X # (). Let 7: [fv(p)] — 1 be the
unique map. By definition of 3, we find P |= Jze(x) if and only if |, x[¢](a) # 0. In
light of Lemma [4.1.8] and the fact that projections are surjective, we see that similarly:
P = Vap(x) if and only if N,c y[p](a) # 0.

Moreover, by Example [1.1.9] [¢(x)] < [¢()] if and only if P = Vz(p(z) = ¢(z)).

Example 4.2.7. Let ¢ be a formula. Since [L] maps any element to the empty set, we
see that [-¢] = [¢ — L] has a realizer if and only if [p] = [L]. In fact, since any realizer
will work if [¢] = [L], we have:

for any = € [fv(p)].

Remark 4.2.8. We employ the following (potentially confusing) notation. If ¢ is a formula
with free variables a:{ﬁ, cooxinand ap € X5, ..., an € X, then we write [p(ay, ..., an)]
for [@](ab s 7an)'

Theorem 4.2.9 (Soundness Theorem). Let ¢ be a sentence in a Set-typed relational
language L. If ¢ is provable in intuitionistic predicate logic without equality, then P |= ¢
for every interpretation of L in P.

Proof. This can be done by induction on ¢ and the proof tree for ¢. Further, it relies
on a substitution lemma and on the Beck-Chevalley condition. We do not go into these
matters here, but one may consult [Oos08, Theorem 2.1.6]. |

4.3 Objects and morphisms of realizability toposes

Throughout this section, let P be the realizability tripos of the pca A.
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Definition 4.3.1. For a set X, a partial equivalence relation (over P) on X is an element
~ of P(X x X) such that:

PEVar (z ~2" — 2 ~ 1) (~ is symmetric);

PEVer'z (zx~2' Na' ~ 2" — 2~ 2") (~ is transitive).
(Recall our convention from Remark [4.2.5])

Explicitly, this means that there are elements s, € A witnessing the symmetry and
transitivity, respectively, viz. for any z,2/,2” € X, if a € [¢ ~ 2'], then sa | and
sa € [¢' ~x]and if a € [x ~ 2'],b € [2' ~ 2"], then t(pab)] and t(pab) € [z ~ z].

Observe that ~ is really partial, since we do not require P |= Vz(z ~ x). We think
of elements of [z ~ z] as realizers witnessing the existence of x.

The reason for stating the definition using the tripos, without explicit mention of the
realizers is twofold. For one, the language of the tripos is convenient. Moreover, the
Soundness Theorem makes it easy to derive further properties. For example, it yields
PEVer(x ~2' - x~xz N1’ ~2a'), soif elements are related, then they both exist.

The objects of a realizability topos will be pairs of sets with partial equivalence
relations. Next, we turn to defining morphisms.

Definition 4.3.2. Let (X,~x) and (Y,~y) be two sets with partial equivalence re-
lations. A functional relation (over P) from (X,~x) to (Y,~y) is an element F' of
P(X x Y) such that:

F is strict);

F is relational);

PEVey(F(z,y) > x~x z Ay ~y y)

P Vax'yy (F(z,y) Ae ~x @' Ny ~y y — F(2',y)
P EVayy (F(z,y) A F(z,y) = y~vy y)

PEVe(r ~x v — JyF(z,y))

F is single-valued);
F is total).

NN S

We are now in position to formulate the definition of a realizability topos.

Definition 4.3.3. The realizability topos RT(A) of A is the category defined as follows.
An object X is a pair (|X|,~x) with |X| a set and ~x a partial equivalence relation
on | X|. A morphism in RT(A) from X to Y is an isomorphism class in P(|X| x |Y]) of
functional relations from X to Y. If f: X — Y is such a morphism and F' is an element
of the isomorphism class f, then we say that the functional relation F' represents f.

Remark 4.3.4. We extend our convention from Remark to variables x, 2/, 2", ...
and objects X = (| X|, ~x).

We should of course verify that this is a valid definition, i.e. that this really defines a
category. We will do so shortly. First, we introduce a useful lemma.

Lemma 4.3.5. Let X and Y be two objects of RT(A) and let F' and G be two functional
relations from X to Y. If F < G, then F and G are isomorphic. Hence, they define the
same morphism in RT(A).
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Proof. This is most easily proved using the Soundness Theorem. Thus, we argue inform-
ally in intuitionistic predicate logic. Suppose F' < G, viz. P E Vay(F(z,y) — G(z,v)).
We wish to show that G < F holds. To this end, suppose G(z,y) is the case. By strict-
ness, we find x ~x z. By totality of F, we find F(z,y’) for some y'. Hence, G(x,y’),
because ' < G. As G is single-valued, we get y ~y 3. Finally, F is relational, so
F(z,y), as desired. [ |

Proposition 4.3.6. RT(A) is a category.

Proof. For every object X, define idx: X — X as the isomorphism class of ~x. Sym-
metry and transitivity of ~x ensure that ~x is indeed a functional relation from X to
X. Given morphisms X — Y and Y — Z represented by F' and G, respectively, define
their composition as the isomorphism class of [Jy(F(x,y) AG(y, 2))] € P(|X|x |Z]). Tt is
now not hard to use the Soundness Theorem to verify that composition is well-defined,
associative and that composition with idx does nothing. |

Example 4.3.7. The realizability topos RT(K;) over Kleene’s first model is the first and
most well known example of a realizability topos. It is commonly known as the Effective
Topos and denoted here by Eff.

Example 4.3.8. In the upcoming chapters we will mainly be interested in RT(S): the
realizability topos over Scott’s graph model.

4.4 Properties of realizability toposes

It will be convenient to characterize the isomorphisms in RT(.A). Tt is also a nice exercise
in dealing with functional relations.

Lemma 4.4.1. Let f: X — Y be a morphism of RT(A) represented by F. Then f is an
isomorphism if and only if

PEVZ2y(F(zx,y) AN F(2',y) —» z ~x 2'); (4.4.1)
PEvyly ~y y = JeF(z,y)).

Proof. Assume first that f is an isomorphism with inverse g represented by GG. Then,

P E Vo' By(F(z,y) AG(y,2")) <z ~x 2'); (%)
P = Vyy' (Fz(G(y, x) A F(2,y)) <y ~v y). ()

We use the Soundness Theorem. Equation is immediately obtained from ().
Now reason informally in intuitionistic logic. Suppose we have F(x,y) A F(2',y). By
strictness of F, we get y ~y y, so by (xx) we obtain G(y,z”) for some 2. Thus, we have
G(y,2") N F(z,y) A F(2',y), so that (x) yields z ~x 2’ Ax’ ~x x”. So by transitivity
and symmetry, x ~x 2/, as desired.

Conversely, assume F satisfies (4.4.1) and (4.4.2). One easily checks that G(y,z) =
F(z,y) is a functional relation from Y to X. Using (4.4.1) and (4.4.2]) and the fact that
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F is a functional relation, it is straightforward to verify that (%) and (#x) hold for this
G. Hence, F represents an isomorphism. |

Remark 4.4.2. Later (c.f. Lemma and Example 4.5.1)), we shall see that f is a
monomorphism /epimorphism if and only if holds. Of course, once we know
that RT(A) is a topos, the lemma above follows from this. We prove it here already as
it is convenient for showing that RT(A) is indeed a topos.

Given the fact that the objects of RT(A) are sets with a partial equivalence relation,
it seems natural to ask ourselves how we may relate a morphism X — Y of RT(A) to
functions from |X| to |Y|. The following lemmas shed some light on these matters.

Lemma 4.4.3. Let X and Y be objects of RT(A) and let f: |X| — |Y| be any function.
If f satisfies
PlVar (z ~x o' — f(x) ~y f(2')), (4.4.3)

then f induces a morphism from X to'Y represented by
Fy=[z~x x A f(x) ~y y| € PIX]x [Y]).

Proof. Observe that [z ~x x A f(x) ~y y| is always strict and single-valued. By the
additional requirement, it is also easily seen to be total and relational. |

Moreover, in some cases, any morphism is induced by a function on sets.

Lemma 4.4.4. Let X and Y be objects of RT(A) and write S(|X|,|Y]) for the set of
functions from |X| to |Y| that satisfy Equation . Suppose y ~y y' = 0 for any
distinct y,y' € |Y|. Moreover, assume that x ~x x # () for any © € |X|. Then, there
is a bijective correspondence between S(|X|,|Y]) and RT(A)(X,Y) given by f — [Fy],
where [Fy] denotes the isomorphism class of Fy.

Proof. The previous lemma showed us that the above map is well-defined. It remains to
show that it is bijective.

For surjectivity, suppose F' represents any morphism X — Y. We wish to define a
function f: |X| — |Y| such that F and F' are isomorphic in P(|X| x |Y']). To this end,
let x € | X| be arbitrary. Since z ~x x is assumed to be non-empty, there is, by totality,
ay € |Y| such that F(x,y) # 0. Now if F(z,y) and F(z,y’) are both non-empty, then
by single-valuedness of Y, we must have that y ~y 3y # 0, which implies that y are 3’
are equal. Thus, we may define a function f: |X| — |Y]| by sending x to the unique
y € Y with F(z,y) # (. To show that F and Fy represent the same morphism, we apply
Lemma and prove that ' < Fy. But this is immediate by strictness of F' and the
our choice of f.

For injectivity, assume Fy and F, represent the same morphism. That is, P =
Va(r ~x © — f(z) ~y g(x)). Since z ~x z is non-empty for any x € |X/|, we find that
f(z) ~y g(x) is non-empty for any = € |X|. Hence, by our assumption on Y, we have
f(z) = g(x) for any = € | X|. We conclude that f = g, as desired. [ |
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In the lemma above we had to assume that @ ~x x # () for any = € |X|. The next
lemma shows that we may generally do so.

Lemma 4.4.5. Any object X of RT(A) is isomorphic to an object Y of RT(A) such that
y~y y#0 forany y € [Y].

Proof. Let X be an any object of RT(.A). Define the set X' = {z € |X| | z ~x = # 0}, let
~ be the restriction of ~x to X’ x X" and write Y = (X', ~). Observe that the inclusion
X' — | X| satisfies Equation , so we have a morphism ¢: Y — X represented by
[t~z ANz ~x y] = [r ~x y]. We use Lemma to show that ¢ is an isomorphism.
By symmetry and transitivity we have (4.4.1). Moreover, requires us to find an
element of ﬂxax‘(:ﬂ ~x T — UyGX, x ~ y). But one may take i; for x ~x x is non-empty
if and only if z € X’. We conclude that X and Y are isomorphic. |

Proposition 4.4.6. The category RT(A) has finite limits.

Proof. For the terminal object, define 1 = ({*},~) with * ~ x = A. Let X be an
arbitrary object of RT(A). We must show that there is a unique morphism from X to
1. By Lemma we may assume that z ~x x # () for any = € | X|. So we can apply
Lemma [4.4.4] and since there is exactly one function from {x} to |X|, there is a unique
morphism from X to 1.

If X and Y are two objects, then we define their product as X xY = (| X|x|Y], ~xxy)
where (z,y) ~xxy (2/,y') is defined as [(z ~x 2') A (y ~y ¢')]. One easily shows that
~xxy is symmetric and transitive. The projections mg: X XY - X and m: X xY =Y
are represented by [x ~x ' Ay ~y y] € P(|X| x |Y| x |X]|) and [y ~y ¥ Ax ~x 7] €
P(|X| x |Y| x|Y]), respectively. Given morphisms f: Z — X and g: Z — Y represented
by F and G, we have an arrow (f, g): Z — X xY represented by [F(z,2) ANG(z,y)]. Now,
mo{f, g) is represented by [3x'y(F(z,2') AG(z,y) Na’ ~x x Ay ~y y] and this is smaller
than [F(z,z)] because F is relational. So by Lemma we see that mo(f,g9) = f.
Similarly, m1(f,g) = ¢g. It is not much harder to check that (f,g) is unique with this
property.

Next, we show that RT(A) has equalizers. Let f,g: X — Y be two arrows respectively
represented by F' and G. Construct the object E = (|X|, ~g) with partial equivalence
relation [z ~p 2'] = [z ~x ' A Jy(F(z,y) A G(x,y))]. The identity on |X| induces a
morphism ¢: £ — X represented by ~g. The composite fi is represented by

B’ (x ~x 2" A Fla,y) A3y (F(z,y') AGlz,y')))]
[’y (x ~x &' ANF(z,y) NF(z,y) AG(z,y))]
32"y (z ~x 2" ANG(x,y) AF(z,y) AG(z,y))]
[Ba'(x ~p 2" ANG(2,y))],

12

32 (x ~p 2’ A F (2, y))]

1R

1%

where the penultimate equivalence holds because F' and G are relational and single-
valued. So we see see that fi = gi. Now suppose h: Z — X is an arrow such that
fh = gh. We must show that it factors uniquely through <. If H represents h, then we
have

P = VYyz(3x(H(z,2) A F(x,y)) < Jx(H(z,2) A G(z,y))).
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Using this, one verifies that H is also a functional relation from Z to F and that it yields
the required unique factorisation of h through i. We conclude that RT(A) has finite
limits. ]

Lemma 4.4.7. A functional relation F from X to 'Y represents a monomorphism if and

only if F satisfies Equation (4.4.1)).

Proof. Suppose I represents an arrow f and consider the kernel pair of f. By our
description of finite limits above, the pullback is given by the object E = (| X| x | X]|, =)
where (xg,21) ~ (z{,2}) is defined as [xg ~x x5 A x1 ~x @) A Jy(F(zo,y) A F(z1,9))]
for zo, 1, x(), ) € | X|.

Now, f is monic if and only if the map X — FE represented by [x ~x zoAx ~x x1] (for
z,xo, 1 € | X|) is an isomorphism. Using Lemmald.4.1] it is then not hard to show (using
the Soundness Theorem) that the latter is equivalent to F' satisfying Equation (4.4.1). H

Now that we have characterized monomorphisms, let us turn to subobjects.

Definition 4.4.8. A strict relation ¢ on an object X is an element ¢ € P(]X]) such that
 is strict and relational, i.e.

P = Va(p(@) > @ ~x @)
P E Vo' (p(z) Ao ~x 2’ — p(2)).

For a strict relation ¢ on X, let us write X, for the object (|X|,~,) where x ~, 2’ =
[z ~x 2’ Ap(z)].

Lemma 4.4.9. Let ¢ be a strict relation on X. The map X, — X represented by ~ is
a mono. Moreover, if f: Y — X is a mono, represented by F, then Y is isomorphic as
a subobject of X to Xy where ¢ = [Fy(F(y,x))].

Further, given two strict relations ¢ and ¢ on X, we have X, < Xy, as subobjects if
and only if ¢ < as P(A)-valued predicates on | X|.

Proof. The first claim is routine to check. For the second one, suppose F represents
a monomorphism from Y to X. Note that ¢ = [JyF(y,x)] is a strict relation on X.
One readily verifies that F' is a functional relation from Y to X,. Of course, it satisfies
Equation and by our choice of ¢ Equation also holds. Therefore, the map
Y — X, is an iso. Lastly, the triangle

Y - X
N,
X‘P

clearly commutes. Hence, the subobject Y is isomorphic to X.
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Finally, observe that we have a commutative triangle

X, « X

NS

Xy

if and only if P = Va(p(z) — ¢(x)) which is equivalent to ¢ < 4 (c.f. Example[4.1.9). W

It will be convenient to describe pullbacks of subobjects.

Lemma 4.4.10. Let ¢ be a strict relation on X and let f:' Y — X be any morphism.
The pullback of X, — X along f is given by the strict relation [3x(F'(y,x) A ¢(z))] on
Y, where F is a representative of f.

Proof. By our description of finite limits, the pullback X, x x Y is given by the object
(|IX| x Y], ~) with

(r,y) ~ (') = [z ~x 2 Ay ~y v NI (2" ~x 2 Ap(a”) A F(y,2"))].
The map X, xx Y < Y is represented by
(@,9,9) = [(z,9) = (z,y) Ny ~y ¥].
A routine calculation shows that
PEVay((z,y) = (z,y) < Fy,z) A p(x)),
so that X, x x Y < Y is also represented by
(@, y,9) = [Fy,x) Ap(a) Ay ~y o]
By Lemma the subobject X, xx Y of Y is isomorphic to Y, with
(') = Bay(Fy, ) Ap(x) Ay ~y ¥ = Ba(F (Y, z) A p(z))],
as desired. ]

Having a good understanding of subobjects and their pullbacks allows us to prove
the following.

Proposition 4.4.11. The category RT(A) has power objects.

Proof. Intuitively, a power object of X should be all the subobjects of X. Hence, for an
object X we define its power object PX as the object (P(A)'X‘, N’px) with

o ~px ¢ = [Va(p(z) = @ ~x 2) AVaa/(z ~x 2’ A p(x) = (@) AVa(e(z) < ¢'(2))],

where ¢, are variable of type P(A)XI. Observe that for P(A)-valued predicates ¢
and 1 on | X|, the relation ¢ ~px 1 expresses that ¢ is a strict relation on X and that
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© = ). It is easy to show that ~py is symmetric and transitive (check that ¢’ is also a
strict relation in the internal logic of P).

Next, we must define a subobject €x of X x PX. We may do so by giving a strict
relation on | X | x P(A)X]: define €x as x €x ¢ = [p ~px ¢ Ap(z)] and observe that it
is indeed a strict relation.

Finally, suppose we are given a subobject (X x Y), — X x Y. We are tasked with
showing that there is a unique arrow f: Y — PX such that

(X xXY)y —— €x

\[ ) \[
idfo
X XY —= X xPX

is a pullback.
Suppose first that F' represents such an arrow. By the previous lemma and the second
part of Lemma [4.4.9] this means precisely that

P EVey((z,y) < Io(F(y,p) Nz €x ¢)).

Combining this with the fact that F' is a functional relation allows us to deduce:

PEYyo(F(y,o) = y~y yAp ~px o AVz(z €x ¢ < ¥(x,9))). (*)

Now one may show that [y ~y yAp ~px @ AVz(x €Ex ¢ <> ¥(x,y))] is itself a functional
relation from Y to PX (use v for verifying totality). Moreover, by Lemma and ()
it is unique up to isomorphism (and so the arrow it represents is unique). We conclude
that RT(A) has power objects. [ |

Combining the above, we obtain the following result.
Theorem 4.4.12. The category RT(A) is a topos.
For future reference, we describe the subobject classifier of RT(A).

Lemma 4.4.13. The subobject classifier Q of RT(A) is given by (P(A), <), where < is
the Heyting bi-implication in P(A){*} = P(A). We will write p,q,r for variables of type
1] = P(A). The true map t: 1 — Q is represented by [p <> T]. Given a subobject X, of
an object X, the unique map x,: X — § such that

X, —— 1
) j
j ¢
X
X —Q
is a pullback is given by [p <> o(x) ANx ~x x]

Proof. This follows from our construction of power objects and the fact that P1 is a
subobject classifier. [ ]
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4.5 Logic in realizability toposes

In this section we show that the internal logic of realizability toposes is governed by the
internal logic of the tripos and the partial equivalence relations.

Suppose L is a many-sorted first-order language with relation symbols, function sym-
bols and equality. An interpretation of £ in RT(.A) consists of the following:

(i) for every sort o of £, an object [o] = X of RT(A);

(ii) for every relation symbol R of L of type (o1,...,0,), a subobject [R] of
[o1] -+ x [on] in RT(A);

(iii) for every function symbol f of L of type (o1,...,0, — 7), a morphism

[f]: [o1] x -+ x [on] = [7] in RT(A).

Given such an interpretation, terms and formulas of £ are interpreted in RT(A) in
the standard way using inductive clauses (c.f. Section . A term t of L of type
(01,...,0n — 7) is interpreted as a morphism [t]: [o1] X -+ X [o,] = [7]. A formula ¢
with free variables of sorts o1, ..., 0y, is interpreted as a subobject [¢] of [o1] X - - - x [o,].
Recall that subobjects of RT(A) are essentially strict relations.

In particular, if ¢ and s are terms of the same sort 7, then [t = s] is given by the
equalizer of

[t]me

dom([t]) x dom([s]) ——% [],
[s]ms
where m; and 7, are the obvious projections. If [t] and [s] are represented by functional
relations F' and G, respectively, then by our description of finite limits in RT(A), we see
that [t = s] is represented by the strict relation [Jy(F(x,y) A G(z,y))].

We can show that the logical structure on the lattice of subobjects is essentially given
by the logical structure of the tripos P. To this end, let X be an arbitrary object of RT(.A).
The greatest subobject of X is represented by the strict relation [x ~x z] € P(]X]) on
X. The least subobject is given by the strict relation L € P(|X]). Given two strict
relations ¢ and ¥ on X, one easily verifies that the meet and join of these subobjects are
respectively given by strict relations [p(z) A ¢ (z)] and [p(x) V ¢ (z)]. With implication
one has to be a bit careful, because [p(z) — ¥ (x)] is not generally strict. One can check
that [z ~x = A (p(z) = ¥(x))] does the job, however.

Further, suppose [¢(z,y)] is a subobject of X x Y, represented by the strict relation
R, (z,y) € P(|X]| x |Y]). Then [Jyp(x,y)] is represented by [FyR.,(z,y)] € P(|X]).
Moreover, [Vyp(z,y)] is the strict relation [z ~x  AVy(y ~y y = Ry(z,y))] € P(|X]).

Finally, we can interpret higher-order logic in RT(.A) as well, because we can interpret
a higher-order language with quantifiers 3X,VX intending to range over subsets of sort
o, by letting them range over the power object P([o]) (recall Proposition [1.4.11)).

Example 4.5.1. In any topos, a map f: X — Y is a (regular) epimorphism if and only
if [3x(f(z) = y] is the greatest subobject of Y. From the above paragraphs, we can see
that a morphism f: X — Y of RT(A), represented by F', is a (regular) epimorphism if
and only if Equation holds.
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Example 4.5.2. Given a strict relation ¢ on an object X, we see that its double negation
is interpreted as:

[==p(@)] = [~p(x) = L]
= [z ~x 2 A (o) = L]

=[x ~x & A ——p(x)].

4.6 Assemblies in realizability toposes

The category RT(A) can be seen as a generalization of the category of assemblies.
Proposition 4.6.1. The category Asm(A) is equivalent to a full subcategory of RT(A).

Proof. Let us write D for the full subcategory of RT(A) on those objects X such that
[ ~x x] # 0 for any x € | X| and [z ~x 2'] = () for any distinct z,2’ € | X]|.
For an assembly X = (|X|, Ex), write X’ = (|X|, ~x) for the object of RT(A) with

5 oy 2] = Ex(z) ifz =2
0 else.

Note that X’ is an object of D.

Define a functor I: Asm(A) — D on objects by X — X’ and on arrows by f — [Fy],
where Fy is as in Lemma [£.4.3] Note that if f € Asm(A)(X,Y), then f satisfies Equa-
tion because f is tracked, so by Lemma Fy indeed represents a morphism
from X’ to Y.

It is easy to see that I preserves identities. Moreover, recall that if f: X — Y and
g: Y — Z are morphisms of assemblies, then I(g)I(f) is represented by [Jy(Fr(x,y) A
Fy(y,2))] =2 [Ex(z) NEy (f(x)) NEz(g(f(x))]. But this is isomorphic (since f is tracked)
to [Ex(z) A Ez(g(f(x)))], which in turn represents I(gf). Thus I is a indeed a functor.

Moreover, Lemma tells us that [ is fully faithful. Lastly, given an object X
of D, the pair (|X|, Ex) with Ex(z) = [x ~x z] is easily seen to be an assembly that
gets mapped to X by I. Thus, the functor I is also (essentially) surjective and we may
conclude that it is an equivalence. |

We will often identify the full subcategory above with Asm(A) and simply write
X = (|X], Ex) for an object of the full subcategory.

We can also characterize the assemblies in RT(.A) logically. Recall that on any topos,
we have the double negation (——) Lawvere-Tierney topology.

Proposition 4.6.2. An object X of RT(A) is =—-separated if and only if X is isomorphic
to an assembly.

Proof. Firstly, recall that X is ——-separated if and only if the diagonal A: X — X x X
is =—-closed [Joh02a, Lemma A4.3.6(a)|. The diagonal, as a subobject, is represented
by the strict relation [z ~x 2’] on X x X. Its —=—-closure is, c.f. Example [1.5.2] given
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by the strict relation [ ~x = A2’ ~x 2/ A ==(x ~x 2’)]. Hence, by the third part of
Lemma [4.4.9] an object X is ——-separated if and only if

PEVer (z ~x 2 A2’ ~x o' AN—=(z ~x 2') = 2 ~x o). (%)

Suppose first that X = (|X|, Ex) is an assembly. Then (recall Example {4.2.7))

B if 2 = o A ifz=a
oy o] = {EX@ BT=T0 e = {2 BT
1] else; 0 else.

Therefore, it is easy to see that [Vza'(x ~x x A2/ ~x 2/ A ==(z ~x 2') = & ~x )]
has a realizer.

Now suppose X is an object satisfying (x). We construct an assembly Y such that X
and Y are isomorphic. First of all, assume without loss of generalization that x ~x = # ()
for any = € | X|. Then the relation ~ on |X| x |X| defined as

r~r sr~xa #£0

is an equivalence relation. Write ¢ for the quotient map |X| — |X|/~. Define the
assembly Y = (|X|[/~, E) with E(y) = U,e,  ~x 2. Then by Lemma @ the map ¢
induces a functional relation F, from X to Y. It remains to show that F| represents an
isomorphism. The fact that F} satisfies Equation is easily checked by our choice
of E. To show that F} also validates Equation , consider the following argument.
By construction of Y and (xx) we see that

Voz'y(x ~x 2 Aq(x) ~y yAa' ~x ' Aq(!) ~y y = (2 ~x 1))]

is realized by the i combinator. As () also holds, we see that F; indeed satisfies Equa-
tion (4.4.1)). This completes the proof. [ |

In later sections we will often calculate products or exponentials in RT(.A) of assem-
blies. Therefore, the following propositions will be quite useful.

Proposition 4.6.3. The category Asm(A) is an exponential ideal in RT(A).

Proof. The ——-separated objects of any topos form an exponential ideal, see Lemma
A4.4.3(ii) in |Joh02a]. |

Proposition 4.6.4. The functor I has a left adjoint. Consequently, I preserves all finite
limats.

Proof. Let (X,~) be an arbitrary object of RT(A). Construct the object (X,~) with
[trd]=[x~zAN2 ~a2 N==(x ~2')]. Using (%) from Proposition it is easily
seen that (X, ~) is an assembly. Using Lemmal4.4.3] one quickly verifies that the identity
on X induces a morphism nx: (X,~) = (X, =).

Now suppose that f: (X,~) — Y is a morphism in RT(A) with Y an assembly. We
are to prove that there is a unique morphism f: (X,~) — Y such that an = f.
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By Lemma we may assume that x ~ x # () for any x € X. Moreover, since Y
is an assembly, we can use Lemma Hence, f is induced by a function f from X to

|Y'|. Similarly, any morphism from (X, ~) to Y will also come from a function. Thus, by
Lemma, we see that we are done if

P Ve (v~ a2 — f(x) ~y f(2))). (%)

Now we know that
P Ve (z ~ 2" — f(z) ~y f(2')).

By definition of &~ and the Soundness Theorem, we thus obtain

PEVar'(z ~ 2’ — f(z) ~y fla) A f(@") ~y f(2') A==(f(@) ~y f(2))).
But Y is =—-separated, so this implies (x%), as we wished. [ |
Proposition 4.6.5. The functor I preserves reqular epimorphisms.

Proof. This follows from Example and Lemma as writing out Equation (4.4.2)
yields the criterion described in Lemma [3.2.2] |

Proposition 4.6.6. The functor I preserves the natural numbers object.

Proof. By Corollary A2.5.11 in [Joh02a], any natural numbers object in a topos is ——-
separated. Thus, by Proposition it suffices to show that RT(.A) has a natural
numbers object. By [Fre72, Theorem 5.44| (or [Joh77, Corollary 6.15]), it suffices to
exhibit an object X of RT(A) such that 1 + X and X are isomorphic. However, in
Asm(A), the natural numbers object is such an object (one may verify this directly or
consult [Fre72, Theorem 5.43] or [Joh02a, Lemma A2.5.5] and [Joh02b, Theorem 5.43]).
Since any functor preserves isomorphisms, we are done. |



Chapter 5

Order-discrete Objects

In this chapter we introduce the order-discrete objects of RT(S). These objects reappear
in subsequent chapters; we meet them again when investigating choice axioms and when
examining homotopy in RT(S).

The notion of order-discreteness is (as far as I am aware) original (although order-
discrete modest sets already make an appearance in [Lie99|). The treatment is similar to
that of the discrete objects in Section 3.2.6 of [O0s08]. In particular, Proposition [5.3.]]
is very similar to [Oos08, Proposition 3.2.19(iii)]. Moreover, the exposition has benefited
from comments by my supervisor Jaap van Oosten; the (formulation of the) first two
definitions are due to him, for example.

Throughout this chapter, let us write 0 = {0} and 1T = {1}.

5.1 The Sierpiriski assembly and order-discrete objects
Definition 5.1.1. The Sierpiriski assembly ¥ is the assembly (over S) with |¥| = {0,1}
and Ex(0) = {0} and Ex(1) = {I}.

In later chapters ¥ will play an important role as a dominance. For now, we use it
to define the order-discrete objects.

Definition 5.1.2. An object X of RT(S) is called order-discrete if the diagonal X 9 x¥
is an isomorphism.

Lemma 5.1.3. Let C be any cartesian closed category and let X be any object of C. If
A — B is an epi in C, then XB — X4 is a mono.

This proof was communicated to me by my supervisor Jaap van Oosten.

Proof. Write G for the functor X(=): C — C°P and G for the functor X(=): C°P — C.
Observe that we have the following chain of natural isomorphisms:

CP’(GA,B) =C(B,GA) = C(B x A, X)=C(A, XP)=C(A GB).

Hence, G - G. Now, if A — B is epic in C, then it is monic in C°?, so G(4 — B)
XB — X4 is a mono in C, as right adjoints preserves finite limits.
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Corollary 5.1.4. An object X is order-discrete if and only if 0 is epic.

Proof. Tt suffices to show that the diagonal § is always monic, but this follows by the
lemma as the unique map ¥ — 1 is easily seen to be epic. |

Definition 5.1.5. An assembly over a pca A is called partitioned if it is isomorphic to
an assembly X such that each realizing set Ex(z) is a singleton.

Lemma 5.1.6. Let A be any pca. If P is a partitioned assembly and X is any object of
RT(A), then the exponential X is isomorphic to the object (| X[, ~) where

f~g=[p(Ep(p) = f(p) ~x 9(p))]-
Proof. See |O0s08, pp. 136-137|. |

We can characterize the order-discrete objects in terms of their realizers.

Proposition 5.1.7. An object X is order-discrete if and only if there is A € S such
that for any z,2' € |X|: if U € [x ~x 2| and V € [2/ ~x '] with U C V, then
AUV € [z ~x 2/].

Proof. Suppose first that X is order-discrete. We construct the desired element A € S.
Assume we have z,2’ € |X| and U € [z ~x z|,V € [¢/ ~x /] with U C V. By
Lemmawe have X> = (| X101} x). Define f: {0,1} — |X| by f(0) = = and
f(1) = 2'. The map H:S? — S defined as

(W, W) = {{0,n) |Ine W}U{{(2,n) |ne W}

is easily seen to be continuous. Write G = graph(H). We claim that GUV € [f ~ f].
Indeed, GUV = {{(0,n) | n € U}U{(2,n) | n € V}, so that GUV) =U € [f(0 ) (0)].
Moreover, GUVI={n e N|(0,n) e Uor (2,n) e V} =UUV =V € [f(1) ~x f(l)],
since ¢g = () and ez = 1 (recall Example and U C V. Thus, GUV € [f = f].
Now let R € S be a realizer of the fact that § is epic. Then R(GUV) is an element
of Vp(Ex(p) — zo ~x f(p))] for some zy € |X|. Thus, R(GUV)D € [xg ~x 7]
and R(GUV)1 € [xg ~x «']. Finally, let ¢,s € S respectively realize transitivity and
symmetry of ~x. Then, we see that

N uv.t(p(s(R(Guv)d))(R(Guv)1))

is the desired element A.

Conversely, suppose we have an A € S as in the proposition. Let f: {0,1} — |X]|
be arbitrary. By Corollary it suffices to show that from an element of [f ~ f],
we can continuously find an x € |X| and an element of [Vp(Ex(p) — = ~x f(p))].
Let F € [f ~ f]. Then FO € [f(0) ~x f(0)], FI € [f(1) ~x f(1)] and F C FI,
so A(F0)(F1) € [f(0) ~x f(1)] and A(FO)(F0) € [f(0) ~x f(0)]. Hence, if we set
x = f(0), then the graph of the continuous function

0 — A(FO)(FO), W # 0 A(FO)(FT)

is the desired element. [ ]
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Corollary 5.1.8. An assembly X is order-discrete if and only if the existence of realizers
Ue€ Ex(z) and V € Ex(y) with U CV implies that x and y are equal.

Proof. Immediate. [ |

Definition 5.1.9. Let A be any pca. Write V(2) for the assembly ({0,1}, E) where
E(z) = A for any x € {0,1}. An object X of a realizability topos RT(A) is called
discrete if the diagonal X — XV®) is an isomorphism.

By [O0s08, Proposition 3.2.18], this definition is in line with the definition of a discrete
assembly from Definition

We can use our characterization of order-discrete objects to see that any order-discrete
object is discrete (as one might expect from the terminology).

Proposition 5.1.10. Any order-discrete object is discrete.

Proof. This follows from Proposition and |Oo0s08|, Corollary 3.2.20]. The statement
in [Oos08| carries over to arbitrary realizability toposes. [ |

5.2 Closure properties of order-discrete objects

Proposition 5.2.1. The class of order-discrete objects is closed under finite products
and forms an exponential ideal in RT(S).

Proof. Let X and Y be order-discrete objects of RT(S). Then we have natural isomorph-
isms:
(X xY)P=XExY®=X xY,

so X x Y is again order-discrete.
Now if Z is any object, then we have natural isomorphisms:

(x%)" = (x%) = X7,
so X7 is order-discrete. |

The notion of internally projective objects will play a role in the following proposition.
We define it here.

Definition 5.2.2. An object P in a topos & is called internally projective if the endo-
functor (—)F: & — & preserves epimorphisms.

Lemma 5.2.3. An object is internally projective if and only if it is isomorphic to a
partitioned assembly.

Proof. This follows from [Oo0s08, pp. 135-137|. The proofs generalize to an arbitrary
realizability topos. n

Proposition 5.2.4. The order-discrete objects are closed under subobjects and quotients

in RT(S).
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Proof. By the lemma, ¥ is internally projective. Furthermore, it is easily checked that
the unique map ¥ — 1 is epic. The claim now follows from [HRR90, Lemma 2.3 and
Lemma 2.8]. [

The object ¥ is strongly indecomposable, in the following sense.

Proposition 5.2.5. For any two objects X and Y of RT(S), we have (X + Y)* =
X¥4+YE
Proof. Let X and Y be arbitrary objects. Construct their coproduct as (|.X|+|Y], ~x+v)
where B
{03 A[z~xyl ifi=j=0;
[, 2) ~xqv (Ghy)l = ({1t A [e ~y y] ifi=j=1;
0 else.

The coprojections yield maps X* — (X +Y)* and Y* — (X +Y)*, so that we get a
morphism i: X +Y> — (X +Y)*. Since we are working in a topos (in particular, a
distributive category), i is a mono. Therefore, it suffices to prove that it is epic.

Render (X 4+ Y)¥ as ((|X] + [V, ~) using Lemma We claim that if
f:{0,1} — |X| + |Y| is such that [f =~ f] is non-empty, then f factors through |X| or
|Y|. To this end, suppose R € [f ~ f] and assume without loss of generalization that
f(0) € |X|. Then 0 = po(R0) C po(R1) € {0,1}. Hence, po(R1) = 0, since 0 Z 1, so
f(1) € |X| as well. This proves our claim. From our claim, it is straightforward to prove
that ¢ is also an epi, and thus an isomorphism. |

Corollary 5.2.6. The class of order-discrete objects is closed finite coproducts in RT(S).

Proof. It is immediate from the previous proposition that the diagonal X +Y — (X +Y)*
is an isomorphism if X and Y are order-discrete. |

5.3 Order-discrete reflection

This section shows that the order-discrete objects give rise to an adjunction.

Proposition 5.3.1. The full subcategory of RT(S) on order-discrete objects is reflective,
viz. the inclusion functor has a left adjoint.

Proof. We are tasked with the following: for every object X, we must construct an order-
discrete object X,q and an map nx: X — X,q such that for every map f: X — Y with
Y order-discrete, f factors uniquely through 7nx.

Let X be an arbitrary object of RT(S). In the construction of X,q we use the coding
of finite sequences in S (recall Section 2.2)). We will write [Uy, ..., U,] for the code of
the sequence (Uy,...,U,) of elements of S and write * for concatenation.

We construct X,q as follows: X,q = (| X|,~x) where z ~x 2’ is the set of codes of
sequences

[[07 U07 %7 A17 I17 Ul? Vl) e 7A7L7 I’I’lv UTL) ‘Zn]
with n > 0 such that for every 0 < i < n:
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(i) IiE{G,T} andIizﬁﬁUiQViand IZ‘:T<:>ViCUZ';

=

(ii) there are zq,...,Zpn,2(,...,2, € |X| such that for all i +1 < n, it holds that
Ui € [z ~x ], V; € [z ~x «f] and A1 € [} ~x zip1].

(iii) xo =z and 2}, = 2/;
We will say that the sequence above has length n + 1.

We think of a realizer of x ~x 2’ as a path through realizers with source z and target
z’. One might picture such a realizer as:

x =T x
The horizontal steps are inclusions or reserve inclusion (as indicated by the I;), while the
vertical steps are realized by the A;.

We should check that X,4 is indeed an object of RT(S), i.e. that ~x is a partial
equivalence relation in the tripos P. Transitivity holds because if o € [x ~x 2/] and 7 €
[#' =x 2], then from o we effectively obtain U € [2' ~x 2'] and o % [U] x 7 € [x ~x 2"].
Pictorially, we stack two paths on top of each other. Symmetry holds, because we can
simply reverse the sequence and flip each I;.

We proceed by showing that X, is indeed order-discrete. We use Proposition [5.1.7]
Note that the map S? — S given by

(U, V)~ 1[0,U,V]

is continuous. Further, if we write A for its graph, then AUV € [z =x 2] whenever
Ueclzr~z]and V € [2/ =x 2] with U C V. Thus, X,4 is order-discrete, as desired.
Next, we define a map nx: X — X,q. Observe that

PEVer (v ~x 2 = x~x ), (%)

because from an element A € [z ~x '], we can effectively obtain realizers U € [x ~x z]
and V € [2/ ~x 2'], and from these we get [0,U,U, A,0,V, V] as an element of x ~x .
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Pictorially,

Thus, by Lemma the identity on |X| induces a morphism nx: X — X,q. It is
easily established that nx satisfies Equation , S0 7mx is epic.

Finally, let f: X — Y be any with Y order-discrete. We must show that f factors
through nx. That the factorization is unique follows from the fact that nx is epic. Let
F' be a functional relation representing f. We show that F' is also a functional relation
from X,4 to Y. Since F' is a functional relation from X to Y, it remains to show that
F' is strict, total and relational with respect to ~x. The first two are easily checked,
because (x) (see above) and P |=Vz(z =x v — x ~x) hold and because F is strict and
total w.r.t. ~x.

For the proof that F is relational w.r.t &x, we describe how to recursively define the
required algorithm. Since Y is order-discrete, let A be as in Proposition Assume
F(z,y) holds. Given o € [x &x 2], inspect its length n + 1.

If n =0, then we have 0 = [I,U, V| with U € [z ~x 2],V € [¢/ ~x 2/] and I € {0,1}.
Using totality and strictness of F w.r.t ~x and ~y, we obtain 3/,y” € |Y]| such that
F(z,y') and F(2',y") and realizers U’ € [y ~y o] and V' € [y’ ~y y”]. By single-
valuedness of F', we get y ~y y'. Since application is monotone and U C V or V C U,
we have U’ C V' or V' C U’, respectively. If 0 € I, then AU'V' € [y ~y "] and if
1 € I, then AV'U’ € [y’ ~y ¢/]. Since F is relational w.r.t ~y, we get F(z/,y’). As we
also had y ~y ¢/, we get F(2/,y), as desired.

If n >0, then 0 = 7% [Ap, I, Uy, V] with 7 € [ =x 2/, 4], Up € [xn ~x Tn],
Vo € [z, ~x ] and A,, € [2],_; ~x z,]. By induction, we get F(x]_,y) from .
Using A,, we obtain F'(x,,y). Finally, using a similar argument as above, we use I,,, U,
and V,, to get F(x),y) = F(2/,y), as we wished.

Thus, F' is a functional relation from X,4 to Y, completing our proof. |



Chapter 6

Arithmetic in RT(S)

In this chapter we examine some of the logical properties of the realizability topos RT(S)
over Scott’s graph model. We look at first and second order arithmetic. It will turn
out that first order arithmetic is simply (classically) true arithmetic, but second order
arithmetic will prove to be more interesting.

6.1 First order arithmetic

This section is based on [Oos08, Section 3.1], but suitably adapted from Eff to RT(S).
The final theorem in the section is my own.
We start out with an easy but useful lemma.

Lemma 6.1.1. Let f: N¥* = N be any function with k > 1. Then we have F € S such
that F{n1}... {nx} = {f(n1,...,nx)} for every (ni,...,ng) € N¥. Similarly, we can
represent any function N¥ — S in the pca S.

Proof. Given f: N¥ = N, define F’: S¥ — S by mapping

(Ut,...,Up) — U {f(n1,...,nz)}.

n1€UL,...,np €V

Then F” is continuous by design, so we have F € S with FVy ...V, = F'(V4,..., V) for
any Vi,..., Vi € S. Clearly then, F{ni}...{ng} = {f(ni1,...,ng)} for any n € N. The
second claim is proved similarly. |

Proposition 6.1.2. The natural numbers object N in RT(S) is the assembly (N, {{—}}).

Proof. We prove this by showing that (N, {{—}}) is isomorphic to the standard natural
numbers object N = (N, Ey) with Ex(n) = {n} (here n is the nth Curry numeral in the
pca S; recall Proposition and Proposition . Since both objects are assemblies,
we may work in Asm(S).

Observe that the function N — S given by n + 7 is tracked by the previous lemma.
Therefore, the function idy is tracked as a morphism from (N, {{—}}) to N. It remains
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to show that it is tracked as a morphism N — (N,{{—}}). To this end, let R be a
primitive recursive combinator in our pca S (recall Proposition and let S € S
be such that S{n} = {n + 1} for any n € N (possible by the lemma above). Then
idy: N — (N, {{—}}) is tracked by R{0}\*zy.Sy, as one easily verifies. [ |

Remark 6.1.3. In light of the above proposition, we will henceforth write n for the
singleton {n}, with n € N, when working with the pca S.

The language of arithmetic is the first-order language with function symbols for each
primitive recursive function. In every cartesian closed category with a natural num-
bers object N, there is a standard interpretation of the primitive recursive functions: a
primitive recursive function N¥ — N is interpreted as a morphism N* — N.

Using Lemma Iml, one can show that N* is isomorphic to the assembly (N*, E)
where E((n1,...,nx)) = (n1,...,nx), with (—) a bijection from N* to N.

In Asm(S), morphisms from N* to N are determined by functions N¥ — N. Thus,
in Asm(S) the primitive recursive functions from N* to N are simply the primitive
recursive functions from N¥ to N. In RT(S), a primitive recursive function f: NF - N
is represented by the functional relation (7, m) — {p(f)m | F(i7) = m} from N* to N
(remember Lemma [£.4.3).

By the results of Section [£.5] we can inductively interpret a formula ¢ (21, ..., zy) of
arithmetic as a strict relation on N*. For i € N*, we have:

[-L1(7) =0;

[t =sl(7t) = {(@) | (t = s)(77) is true};

[e Av](E) ={pUV | U € [¢](17), V € [¥](7)};

[ v l(@) = {pkU | U € [¢](R)} U{pkV |V € [¢](7D)};
[ = ¢](7@) = {p(AU | for all V€ [o](77), UV € [](71)}
Byel@) = | el m);

meN
Vye](7) = {p@U | for all m, Um € [¢](7i,m)}.

Theorem 6.1.4. For any formula p(x1,...,2,) and ny,...,nx € N, there exists an
element of [¢](n1,...,nk) if and only if p(n1,...,nk) is (classically) true. Thus, the
first order arithmetic of RT(S) is (classically) true arithmetic.

Proof. We use induction on the logical complexity of ¢(z1,...,x,). We will only treat
implication and universal quantification; the other cases are fairly easy.

Suppose (¢ — 9)(7) is true. Then, either () is false or ¢(77) and ¢ (77) are both true.
In the first case, we have [](77) = 0 by induction hypothesis, so any element of S is an
element of o — 9] (7). In the second case, we have an element W € [¢](7) by induction
hypothesis, so N*z.W is in [ — ¢](77). Conversely, assume we have U € [ — ¢](77).
If [¢](77) = 0, then by induction hypothesis, (i) is false, so (¢ — 1)(7) is true. If we
have V' € [¢](7), then UV € [](77), so by induction hypothesis, ¢ (7) is true and thus,

(p — )(1) is true.
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Suppose (Yyp)(ii) is true. Then by induction hypothesis, we have for each m € N
some V,, € [¢](7i,m). Thus, using the axiom of choice, we can construct a function
v: N — S such that v(m) € [¢](7,m). By Lemma we have V' € S such that
Vim = v(m) for each m € N. Hence, V € [Vyp](77). For the converse, suppose that
U € [Vye](77). Then, we have an element U of [ (i, m)] for any m € N. By induction
hypothesis, ¢(7,m) is true for any m € N. Hence, (Vyp)(7) is true, as desired. [ |

6.2 Axiom of choice and modest sets

The material in this section is due to [Lie99] (c.f. [Lie04, Proposition 2.3.4]). This section
will be devoted to the following principle:

(ACxy) Vao: XFy:Yp(x,y) — 3f:Y XV Xp(x, f(z))
(Aziom of Choice for X with respect to Y').

We will only concern ourselves with objects of RT(S) that are modest sets. We will see
that ACx y holds for a surprisingly large class of objects. In particular, it holds for all

objects of finite type (i.e. N, NV, N x N, NVxN, N(NN), etc.).

Definition 6.2.1. We say that a modest set (in RT(S)) has the join-property if it is
isomorphic to a modest set X whose realizing sets are closed under (binary) joins, viz. if
U,V € Ex(z), then UUV € Ex(z).

Example 6.2.2. The natural numbers object N is an example of a modest set with the
join-property.

Proposition 6.2.3. Let X and Y be modest sets. If X has the join-property and Y is
order-discrete, then ACxy holds in RT(S).

Proof. First of all, recall from Corollary [5.1.8 what it means for an assembly to be order-
discrete. We first prove the following claim.

Claim: Let U € S be an element mapping realizers of X to realizers of Y, i.e. if
V € Ex(x) for some z € | X|, then UV € Ey(y) for some y € |Y|. Then U is extensional,
in the sense that: if V,W € Ex(z) for some = € |X|, then UV, UW € Ey(y) for some
yelY]

Proof of claim: Suppose V,W € Ex(x). Since X has the join-property, we find
VUW € Ex(x). Hence, U(VUW) € Ey(y) for some y € |Y|. Moreover, there are
v,y € |Y] such that UV € Ey(y') and UW € Ey (y"). Note that UV, UW C U(V UW)
by monotonicity of the application. So by order-discreteness of Y, we have y = ¢ = 4",
as desired. (]

For ease of notation, we will assume that ¢ has only x and y as free variables. We
may render [Vz:X3y:Yp(z,y)] as follows:

{U eS|forall z € |X|,V € Ex(x), there is some y € |Y| with po(UV) € Ey(y) and
pL(UV) € [e(z,y)]}- (%)
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Moreover [3f:Y XVa: X p(z, f(r))] is given by

{W €S |poW tracks some f: X — Y and for all z € |X|,V € Ex(z) we have
pLWV € [p(x, f(2))]}- ()

We are to find an element R of S such that for every U in (%), the element RU is
in (k). The idea is that any element of (x) yields a tracker of some map X — Y. We
claim that R = X u.p(A*v.po(uv))(A*v.p1(uv)) is a suitable choice.

To verify our choice of R, suppose U is an element of (). By the claim and the fact
that Y is modest, we see that for every x € | X|, there is a unigque y € |Y| such that for
every V € Ex(x), we have po(UV) € Ey(y) and p1(UV) € [¢(x,y)]. Thus, this induces
a function f: |X| — |Y|, by sending = € | X]| to this unique y € |Y].

We must show that po(RU) tracks f and that p1(RU)V € [p(z, f(z))] for any
element V € Ex(x). But this follows easily by construction of f and the fact that
po(RU)V = po(UV') and p1(RU)V = p1(UV). This completes our proof. [ |

Proposition 6.2.4. If X and Y are modest sets with the join-property, then their product
X XY and coproduct X +Y have the join-property as well.

Proof. Recall our choice of pairing combinators from Remark The proof of the
proposition boils down to the fact that [UUU', VUV'] = [U, V]U[U’, V'], which is easily
checked. m

Proposition 6.2.5. The class of modest sets with the join-property is an exponential
ideal in Mod(S).

Proof. Suppose Y is a modest set with the join-property. Suppose f: X — Y and let
U, U’ track f. We must show that U U U’ also tracks f. Let V € Ex(z). Then one
checks that (U U UV = UV UU'V. Since UV,U'V € Ex(f(x)), we also have that
UVUU'V € Ex(f(x)). Thus, U UU’ tracks f, as we wished. [ |

Corollary 6.2.6. The scheme ACx )y holds in RT(S) for all finite types X and Y.

Proof. This follows from the fact NV has the join-property and is order-discrete and the
fact that the order-discrete modest sets with the join property are closed under binary
products and form an exponential ideal in RT(S). [ |

6.3 Some logical principles involving finite types

The principles we consider here are the same as in [O0s08, Section 3.1]. The final pro-
position appears in [Lie99] and [Lie04, Proposition 2.3.4]. In this section we will be
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concerned with the following principles:

(CT) Vf:NV3e:NVa:N3Iz:N(T(e,z,2) ANU(2) = f(x))
(Church’s Thesis);

(WCN) Vf:NV3z:Nop(f, 2) = VfNY3zy:NYg:NY (fy = gy — (g, x)),
where fy = gy is short for V2:N(z <y — f(2) = g(2))
(Weak Continuity for Numbers);

(BP) VF:N(NN)Vf:NNEla::NVg:NN(?az =gz — F(f)=F(g))

(Brouwer’s Principle).

Using Kleene’s primitive recursive predicates 7" and U, Church’s Thesis asserts that any
function on the natural numbers is given by a partial recursive function. Brouwer’s
Principle says that any function from NV to N is continuous (where NV has the Baire
topology and N the discrete topology). Finally, WCN is both a continuity principle and
a choice principle: it states that any total relation from NV to N is determined by some
initial values of the input function.

In Eff, both CT and BP are true [Oos08| Proposition 3.1.6] (the latter by the Kreisel-
Lacombe-Shoenfield theorem), while WCN is not. In RT(K2) both WCN and BP are
valid [Oos08|, Proposition 4.3.4]. Given the topological nature of the pca S, one might
expect BP to hold in RT(S) as well. Consider the following “proof™

The object NOV™) is given by the assembly ({F | F: (NN, E) — N}, E')
where E'(F) is the set of U € S tracking F. For such U, we have that

UV = F(f) for any f: N— Nand V € E(f).

Let F be any element of ’N(NN)‘ and suppose f is any function from N to N.
Let U,V € S track F' and f, respectively. By continuity of the application,
find a finite subset p C V such that F(f) € Up. Now find m € N such that
if g € NN and fm = gm, then p C W for any W € S tracking g. Now let
g € NN be arbitrary such that fm = gm and let W € S track g. Then,
F(f)eUp CUW ={F(g)}. Hence, F(f) = F(g).

The problem with this argument is that it does not show that such m and p can be found
continuously. In fact, we have the following result.

Proposition 6.3.1. The principles CT, BP and WCN are all invalid in RT(S).

Proof. First of all, observe that N¥ is given by the assembly ({f | f: N — N}, E) where
E(f) is the set of trackers of f. In light of Lemma this object is actually (NY, F).
From this description of NV, we see that CT indeed does not hold (take f to be any
non-recursive function).

We proceed by showing that WCN and BP are equivalent in the presence of choice.
Then, we prove that BP does not hold, finishing the proof.
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Suppose WCN holds. Let F be of sort NV™) and define o(f,z) as F(f) = . Then
YV NNIz:No(f,x). By WCN we obtain: Vf:NN3y:NVg: NN (fy = gy — F(g) = F(f)).
Hence, WCN implies BP.

For the converse, we need choice. Assume BP and suppose Vf:NV3z:Np(f,z). By
ACyn~ y, we find F:NWN™) guch that VENNo(f, F(f)). Let f:NY be arbitrary. By BP,
there is y:N such that Yg:NV (fy = gy — F(f) = F(g)). Hence, we obtain WCN, as
Yg:NN(fy =gy — (g, z)) with x = F(f) holds.

Now assume for a contradiction that BP holds. Let us write 2z for the zero map from
N to N. By BP, we have:

VE:NN32:NVg: NN (gz = 22 — F(z) = F(g)).

()
Using AC (v~ 5 on this, we find ®: N such that

VF:NN g NN (Go(F) = 28(F) — F(z) = F(g)). (%)

In others words, ® is a modulus of continuity functional.

Now, any cartesian closed category with a natural numbers object is a model of HAY.
Further, one easily verifies that Mod(S) (and therefore RT(S)) is a model of extensional
HAY. By |[TD88}, Corollary 6.11, Chapter 9], (x) is inconsistent with extensional HAY;
completing our proof. |

6.4 Second order arithmetic

In this section we turn to second order arithmetic in realizability toposes. We first start
by working in a general realizability topos over a non-trivial pca. In the second subsection
we specialize to RT(S). The first section, up to Proposition , is a generalization of
[O0s08, Section 3.1.1]; Proposition and further are my own results.

6.4.1 1In general realizability toposes

Throughout this section, A will denote a non-trivial pca with underlying set A. For
second order arithmetic, we need to consider the power object PN of N. By Proposi-
tion and the fact that N is an assembly, we see that PN is given by the object
(P(A)N, NPN) with

¢ ~pn ¥ = [Vnlp(n) = (7)) AVn(p(n) < (n))].

We wish to give a more convenient representation of PN. Therefore, we prove the
following simple lemma.

Lemma 6.4.1. Suppose (X,~) is any object of RT(A) and let X' be any subset of
X. Write ~' for the restriction of ~ to X'. If the map X x X' — P(A) given by
(x,2") = [x ~ 2'] is a total relation (in the sense of the tripos), then (X, ~) is isomorphic
to (X', ~).
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Proof. One quickly verifies that ~ represents an arrow (X', ~') — (X, ~). Also observe
that ~ is a strict, relational and single-valued function from X x X’ to P(A). Thus,
if it is also total, then ~ represents a morphism (X,~) — (X’,~'). Checking that
these arrows are inverses means proving that [z ~ y] = (U,cx/[r ~ 2] A [z ~ y] and
[ ~ ] = U,exlt’ ~ 2l Az ~ 3] hold for any z,y € X and 2/,y € X'. By
Lemma [4.3.5] it suffices to show that in both cases > holds. But this is immediate,
because ~ is transitive. |

Lemma 6.4.2. The object PN is isomorphic to the object (P,~) where
P={p:N—=PA) | forallneN, ifa € p(n), then p1a =n}.

and

o~ = [Vn(e(n) < ¢(n))].

Proof. We use the previous lemma. Let ¢ be any function N — P(A). Define the
function ¢: N — P(A) by
n— {pan € Alacpn)}

and note that ¢ € P. Observe that ¢(n) — ¢(n) is realized by pgo for every n € N.
Further, assuming we have a realizer of ¢ ~px o, we have an element s € A witnessing
the strictness of ¢. Hence, from a realizer of ¢ ~pyn ¢ we effectively obtain a realizer of
Vn(p(n) = ¢(n)), namely \*z.px(sz).

By the previous lemma, PN is isomorphic to (P, ~py). Lastly, by the condition on
the elements of P, we see that PN is in fact isomorphic to (P, ~). |

For the remainder of this section, let us use upper case variables X,Y, Z for second
order variables and z, y, z for first order variables ranging over natural numbers. Further,
we will write «, 8, for elements of P.

In the proof above we already noted that pii € () ,cpla = a], so when quantifying
over second order variables, we have that [VX (X ~ X — ¢)] and [3X(X ~ X A ¢)] are
isomorphic to [VX ] and [3X ¢], respectively. The object PN is said to be uniform. As
a consequence, we have the following proposition.

Proposition 6.4.3. The following schemes

(UP) VX 3zp(X,x) — FaVX (X, x)
(Uniformity Principle)

(TP x) (= — AXY) = IX (—p — ) (with X not free in @)
(Independence of Premiss for X)

(DNS3x) ——3Xp — 3X—p
(Double Negation Shift for 3X)

hold in RT(A).
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Proof. For the Uniformity Principle, observe that by our remark,

[VX3zp(X,z)] = ﬂ {pna € A|a € [e(a,n)],n € N}
acP

and

[B2VX (X, )] = {pna eAlac (plan)ne N} :
aeP
from which it is clear that UP is realized by the i combinator.
Using Example and the fact that PN is uniform, we see that IP is realized by

Xu. (A*v.ui). Finally, DNS3 is proved similarly. [

We shall revisit the Independence of Premiss schemes in Proposition and Corol-
lary and Lemma[7.1.5] The first two show that the scheme does not hold in second
order arithmetic when quantifying over first order variables. The second is specific to
total pcas and the realizer object.

The Uniformity Principle is the most remarkable of these three (it is classically absurd,
for instance). It states that any total relation on PN x N contains a number related to
any subset. The principle has some interesting ramifications, that we list here.

Proposition 6.4.4. The schemes

—p V —g (Weak Law of Excluded Middle)
—=(p V) = =9V - (Double Negation Shift for V)
=3z — Iz (Double Negation Shift for Jx)

are all invalid in RT(A).

Proof. We will use that, in first order arithmetic, ¢ V 9 is equivalent to the formula
Jr((x=0—= @) A (nx=0—1)).
Suppose for the sake of a contradiction that the Weak Law of Excluded Middle were
true. Then, so would VX (=0 € X vV =—0 € X). Hence,
VX(0eXV-0e€eX)VXI((z=0— -0 X)A(—z=0—--0¢€ X))
= VX ((z=0—=-0€ X)A (—z=0— —--0 € X)) (by UP)
= Jz((r=0—=>VX-0€ X)A (—z=0—VX--0 € X))
(VX0 € X) Vv (VX—--0 € X).

But the final formula is obviously absurd.

For the second scheme, take ¢ = —¢ and note that —=—(¢ V =) is intuitionistically
true. Hence, Double Negation Shift for V would imply the Weak Law of Excluded Middle.

Finally, we show that the third scheme implies the second, since:

(e VYY) & mIz((z =0 =) A (nz=0— 1))
— dz(—=((x=0—=¢) A (-2 =0—1))) (assuming the third scheme)
— Jz((z=0— =) A (nx=0— =)))
— = V o). |
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We now turn our attention to ——-stable subsets of N, viz. subsets X such that
Va(——(z € X) — z € X) is true in RT(A). We will abbreviate this formula by Stab(X).

We have following proposition, which should be compared with Proposition in
the case of A =S.

Proposition 6.4.5. Not every subset is —=—-stable, i.e. the sentence VX Stab(X) is not
valid in RT(A).

Proof. Recall the set P from Lemma[6.4.2] Define the functions «, 8 € P by:
a(0) ={p00},a(n+1)=0 and B(0)={pl0},B(n+1)=10

for any n € N. Suppose for a contradiction that we have an element R € [VXStab(X)].
Since [0 € a] = a(0) and [0 € 8] = 5(0) are both non-empty, RO) must be an element of
[0€a]N[0e f] =a(0)nB(0). But this impossible, because v and /5 are disjoint. W

In the following proposition let us write (—,—) for a primitive recursive coding of N2
to N. The sentence VX3Y (Stab(Y') AVz(z € X + Jy(y,x) € Y)) is known as Shanin’s
Principle (SHP). Tt holds in the Effective Topos. Internally, it says that every subset of
N is covered by a stable subset of N.

Proposition 6.4.6. If |A| > |N|, then Shanin’s Principle does not hold in RT(A).

Proof. Assume for the sake of contradiction that it does. Then we have a realizer
Re (] J[Stab(8) AVa(x € a > Fy(y,x) € B)].
a€EP BeP

Let us write Ry = poR and R; = p1R. For each a € A, define the element a, € P by:
aq(0) = {pal} and au(n+1)=0 foranyn € N.

For each a € A, pick some 3, € P such that R € [Stab(5,)AVz(x € aq <> Fy(y, z) € Ba)]-
From Ry, we effectively obtain R’ € A such that for every a € A, we have:

R/(pa0) € [(m,0) € B,]
for some m € N. As |A| > |N|, there must be two different a,a’ € A such that
R/(pa0) € [(m,0) € B,] and R'(pa’0) € [(m,0) € By] (%)

for the same m € N.
From Ry, we effectively obtain s € A witnessing the stability of 8, and §,. Thus, by
(%), we can use s to get a common realizer:

s(m,0)i € [(m,0) € By] N [(m,0) € By].

Finally, using s(m,0)i and R;, we find a realizer in the intersection [0 € ag] N
[0 € ag] = ag N ay. But this is impossible, because a and a' are different, so that
aq and oy are disjoint. |

Corollary 6.4.7. Shanin’s Principle does not hold in RT(S) and RT(Kq).
Proof. Tmmediate, as |S|, [NY| > |N]. [ ]



6.4. SECOND ORDER ARITHMETIC 47

6.4.2 In RT(S)

This section focusses on some of the particular features of RT(S) with respect to second
order arithmetic. Although VXStab(X) does not hold in RT(S) (as we have seen), we
do have the following result. Again, let P be as in Lemma but now with A = S.

Proposition 6.4.8. For any o € P, we have a realizer of Stab(«). Hence, the sentence
VX —-=Stab(X) is true in RT(S).

Proof. Let o € P. Note that there is a function f,: N — S such that

fa(n)e{[nea] if [n € a] # 0;

{0} else.
By Lemma we have F, € S such that F,n = fo(n). Now note that \*zy.F,x
realizes Stab(a). [ |

We finish the chapter by turning our attention to some Independence of Premiss
schemes, as alluded to after Proposition [6.4.3] The following is a propositional version
of the Independence of Premiss scheme and is known as the Kreisel-Putnam scheme.

Proposition 6.4.9. The scheme (—p = ¢V x) = (0o = ) V (mp — x) does not hold
in RT(S).

Proof. Suppose the scheme were true. Then we would have
Re[VXYZ((-0e X -0e€YV0eZ)— (-0eX —-0e€Y)V(-0eX —0¢€e2))].

Take o € P such that =0 € « is false in RT(S). Then [-0 € o = (), so W is an element
of [ 0 €a—0€BV0e~n]forany W € S and 8,7 € P. Thus, po(RW) € {k, k} for
any W € S. In particular, po(R0) € {k,k}. Since k € k and k € k, this implies that
po(RW) = k for any W € S or po(RW) = k for any W € S.

Assume without loss generalization that that po(RW) = k for any W € S. Now
take «, 8,7 € P such that -0 € a,0 € ~ are true and 0 € 3 is false in RT(S). Fix
W' € [0 € 4]. Then V = Xz.pkW' is an element of [-0 € o — 0 € BV 0 € 74].
Thus, RV is an element of [(-0 € @ — 0 € §) V(-0 € o — 0 € v)]. By assumption,
po(RV) =k, so p1(RV) € [-0 € a — 0 € S]. But this is impossible, since [0 € 5] = 0,
while [-0 € «] is not. [ |

Corollary 6.4.10. The scheme (—¢ — ) — Jx (- — ) is not valid in RT(S).
Proof. Again, we define ¥ V x by Jz((z =0 — ¥) A (-2 =0 — x)). Let us write p for
(x=0—=¢Y)A(mz=0—= x). Then, (mp — Fzp) +> (= <> P V ), while
dz(—p = p)=TF((-p = (=02 9) A (- = (-2 =0 X))
©Jzx((z=0—= (e = ¥)A(z=0-= (- = X))
(e =2 P) V(2 = X).

Thus, the validity of the scheme in the corollary contradicts the proposition above. W



Chapter 7

A Dominance in RT(S)

Domain theory was pioneered by Dana Scott [Sco76|. It came about as solution to
the problem of finding (denotational) semantics for theories like the untyped lambda
calculus. In synthetic domain theory ([Hyl91], [OS00]), one develops domain theory not
by constructing particular sets with desirable properties, but by imposing these properties
directly using axioms. In search of semantics for synthetic domain theory, one may turn
to toposes. The cornerstone of this idea is the notion of a dominance in a topos. From
there, one considers the associated lift functor and algebras for this functor.

In this section we define and investigate some properties of a particular dominance
in RT(S). We will write S = (S,{—}) for the object of realizers. The material is an
adaptation of [O0s08, Sections 3.6.3 and 3.6.4] and also based on |OS00|. In particular,
Propositions and are similar to [Oos08, Propositions 3.2.27 and 3.2.28|. The
calculations in Sections 7.3-7.5 are my own, but were inspired by the examples in [OS00].

7.1 Basic definitions

The following definition is formulated in the internal language of a topos.

Definition 7.1.1. In a topos £ a dominance is a subobject D of the subobject classifier
Q satisfying:

(i) T € D;
(ii) Vp,¢Q(pe DA (p— (¢€ D)) = (pAq) € D).

We will show that the Sierpinski assembly ¥ (recall Definition is a dominance
in RT(S).

The following lemma is due to my supervisor Jaap van Oosten and originated from
my (incorrect) conjecture that the object of realizers S is isomorphic to the exponential
(1+1)N.

Lemma 7.1.2. The object of realizers S = (S, {—}) is isomorphic to the exponential N
with N the natural numbers object.

48
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Proof. We first prove that the underlying set of %V is {0, 1}". Since any morphism from
N to X is in particular a function from N to {0, 1}, one inclusion is clear. Conversely, if
f+ N — {0,1}, then f is tracked by graph(F'), where F': S — S is the continuous function

defined by:
1 i =1;
. if f(n) =1,
0 if f(n)=0.
Thus, ©V is the assembly ({0, 1}, E) where E(f) C'S
of f.

We have a canonical bijection

is the (non-empty) set of trackers

x:S—={0,1}Y, U~ xu
(where xy is the characteristic function of U) with inverse
X0 =S, fe ({1

It remains to prove that these functions are tracked. For yx, consider the continuous
function F':' S — S given by U — {(2",1) | n € U}. Then x is tracked by graph(F).
Indeed, if U € S and n € N, then graph(F)Un = F(U)n and thisis 1 if n € U and ()
otherwise.

For the inverse of y, we define G: S — S continuous by U — {n € N | Un = 1}.
(This is continuous, because the application of S is continuous.) We claim that y~! is
tracked by graph(G). Indeed, for f € {0,1}N and U € E(f), we have n € G(U) if and
only if f(n) =1, since U tracks f. |

Definition 7.1.3. Define a relation € between N and S by taking the following pullback
€ 1
J
| I

NxSENxYN &,y 50

where ¥ — Q is the morphism induced by the function 0 + () and 1+~ S.
Remark 7.1.4. Observe that € is given by

nel] = pnU if n is an element of U;
0 else.

In particular, € is ——-stable.

Lemma 7.1.5. Let A be a arbitrary total pca and let RT(A) be its realizability topos.
Let A = (A,{—}) be the object of realizers in the topos. The scheme

(IP4) (¢ — Fr:AY) — Fz:A(—p — )

with x not free in ¢ is valid in RT(A).
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Proof. 1t is not hard to verify that \*u.p(po(uk))(A*v.p1(uk)) realizes the scheme. W

Proposition 7.1.6. The subobject Q) of Q0 given by
O =[3X:S(p > 1 € X)]

with p ranging over §, is a dominance in RT(S). Moreover, it is ——-separated, i.e.
Vp:QY (——p — p). Furthermore, ' is closed under finite joins in Q, viz. L € Q' and
Vp,¢:Qp,qe QY —pVvqge ).

Proof. Double negation separation is immediate by Remark [7.1.4] Further, it is clear
that T € Q' (take X =1).

Suppose p € Q' and p — (q € ). Take U € S such that p <+ 1 € U. Then,
1 eU — 3X:S(q + 1 € X), so by Lemma and Remark we get that
3X:S(1 €U — (g« 1 € X)). Takesuch V € S. Then, pAg < 1 € UNV. Hence,
pAq € and @ is a dominance.

The final claim is also easily proven, since () € S and because we can take unions. W

Definition 7.1.7. Let D be a dominance in a topos £. A subobject m: A — B is
called a D-subobject if the classifying map x,, of m factors through D. Equivalently (by
pullback pasting), if the square

A——1

o
B—— D

is a pullback. We write A Cp B in this case. We also say that m is a D-map.

7.2 Assemblies and their >-subobjects

We have already remarked that the object Q' from Proposition is ——-separated.
Indeed, it is isomorphic to an assembly.

Proposition 7.2.1. The object Q' is isomorphic to X.

Proof. First of all, observe that ' is isomorphic to the object (P(S), ~) where

U~V =U+VAEWU),with
EU) = {[W,U] €S|if1 €W, then U € U and if U # 0, then 1 € W}.

Define a continuous function F': S — S by
F(0) =0 and F(V) =1 for any non-empty V.
Next, define ®: P(S) x {0,1} — P(S) by

U, i) — {[W,U,C] | [W,U] € EU),C € E,(i) and i =1 < 1 € W}
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We show that & is a functional relation from (P(S),~) to X. Strictness is immediate.
For single-valuedness, suppose we have [W,U,C| € ®(U,i) and (W', U’ ,C'] € U, ).
We show that ¢ = j. By definition, we have

i=leleWeslUcd=1eW =1

and similarly, i = 0 = j = 0. Thus, ¢ = j, as desired. Suppose [W,U,C| € ®U,1)
and B € [U <> V]. We must effectively obtain an element of ®(V,i). But if By realizes
U — V, then one easily sees that [W, BoU, C] is an element of ®(V,4). So, ® is relational.
For totality, suppose [W,U] € E(U), then [W,U, F(W)] € ®(U, i) for some i € {0,1}, by
construction of ' and F. We conclude that @ is a functional relation.

Moreover, (the arrow represented by) @ is easily seen to be epic. For, if C' € Ex(i),
then [F(C), F(C),C] € ®U;,1) with Uy = {1} and Uy = O by construction of F and
definition of Ff,.

Finally, we prove that ® is monic and hence that ® represents an isomorphism, as
desired. Suppose we have [W,U,C| € ®(U,4) and W', U',C] € ®(V,i). It suffices to
effectively provide an element of U <+ V), since [W, U] is an element of E(U) already. But
[N 2. U', \*2.U] is easily seen to do the job. [ |

Observe that a Y-subobject of an assembly is again an assembly as Asm(S) is closed
under finite limits in RT(S). The following proposition characterizes these ¥-subobjects
and justifies the name Sierpiriski assembly (as the Sierpiriski space is the classifying space
for the Scott topology).

Proposition 7.2.2. Let X be an assembly. There is a bijective correspondence between
morphisms X — X and subsets X' C |X| for which there is an open U C S with the
following properties:

re X' = Ex(z) CU;
r¢ X' = Ex(z)nU =0.

Moreover, an assembly Y is a X-subobject of X if and only if Y is isomorphic to some
assembly (X', E) where X' C |X| is as above and E is the restriction of Ex to X'.

Proof. Let f be a morphism from X to X that is tracked by U € S. Set
X' ={xeX|f(x)=1} and U={V eS|UV =1}.

We show that U is open. Let Q@ = {p C S | pis finite and Up = 1}. Recall the
notation tp = {V € S | p C V}. By continuity of the application, one can show that
U= UpeQ tp. Thus, U is an open of S.

From the definition of U and the fact that U tracks f, it is immediate that U has the
desired properties.

For the converse, assume we are given an open Y C S and a subset X’ C | X| with
the properties stated. Define f: X — X by f(z) =1ifz € X' and f(z) =0if z ¢ X'.
We claim that it is tracked by graph(F') where F(U) = {1 | U € U}. That this F is
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continuous follows from the assumption that U is open. Now if z € X and U € Ex(x),
then either f(z) = 1, in which case Ex(z) C U, so that F(U) = 1 € Ex(f(x)); or
f(z) =0, in which case E(x) NU = 0, so that F(U) =0 € Ex(f(z)). So f is tracked, as
desired.

That the operations above are each other’s inverse is readily verified. The final claim
follows immediately from the construction above and the description of pullbacks in the
category of assemblies. |

7.3 The lift functor on assemblies

Definition 7.3.1. Let D be a subobject of Q in an arbitrary topos £. A D-partial
map classifier for an object Y is an arrow Y -2 Y such that for every U Cp X and
f: U = Y (we regard this as a partial map from X to Y with domain U) there is a
unique f: X — Y such that

%
3
R

-

<
~h

is a pullback.

Given a dominance D in a topos &, there is an endofunctor L (called the lift functor)

on € and a natural transformation 7: ide = L such that ¥ 25 L(Y) is a D-partial
map classifier for Y (see [Oo0s08|, pp. 221-222] and |OS00, pp. 237-238]). The following
proposition describes this lift functor when restricted to Asm(S), for the dominance X.

Proposition 7.3.2. The lift functor L on Asm(S) is given by on objects by:
L(X) = (IX|U{Lx}, Brx)) s
where Lx is some element not in |X| and
Erx)(Lx) =1{0} and Epx)(z)= {[U])|U € Ex(x)} for z € |X].

Given an arrow f: X — Y, we define L(f) as the unique extension of f satisfying
Lx = Ly. The natural transformation n: idasms)y — L is defined as nx(z) = =.

Proof. Given a morphism f: X — Y of Asm(S) tracked by Uy € S, note that L(f) is
tracked, as

UsVo, 1] if 1€V

0 else;

[V(), Vl] — {

is a continuous map S — S. Verifying that L is indeed a functor is routine. Also, note
that nx is tracked by A\*u.[u,1]. That 7 is natural is easily checked.

Finally, suppose we have a morphism f: U — Y and U Cy, X. By Proposition [7.2.2]
we may assume that we have |[U| C |X| and an open U such that for z € | X|:

if x € |U],then Ex(z) CU and if x & |U|,then Ex(z)NU = 0.
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Define f: X — L(Y) by

7oy ) @) ifxelU;
J(@) = {J_y else.

Note that f is tracked, for if f is tracked by Uy, then

U if :
U s fU it U e U,
1] else

is a continuous map S — S, because U is open.

If we have morphisms ¢g: Z — X and h: Z — Y such that fg = 1y h, then we must
have that g(z) € |U| for any z € |Z|. Hence, g factors uniquely through (U, Eyy). This
proves that f makes the square into a pullback.

It remains to show that it is unique with this property. To this end, suppose we
have f': X — L(Y), such that the square is a pullback. From the commutativity of the
square, it follows that for = € |U| we must have f'(z) = f(z) = f(z). Now suppose for
a contradiction that we have ¢ € |X|\ |U| and f’'(z¢) € |Y|. The universal property of
the pullback then yields a map U U {xo} — U such that the inclusion |U|U {zo} — |X]|
factors through |U|, but this is impossible, as xg ¢ |U|. Hence, no such x exists and
therefore, f/ and f coincide. [ |

Remark 7.3.3. Observe that L(1) =2 ¥ and that n; =1 L.
Lemma 7.3.4. For any X, we have X Cy L(X) via nx.

Proof. 1t is straightforward to verify that

X —1

lﬂX lt

L(X) X5 %
with xx(z) = 1 and xx(Lx) = 0 is a pullback. (Note the map F(V) =1if 1 € p;V
and () otherwise is continuous and its graph tracks yx.) |

It is easy to check that the lift functor L is actually a monad on Asm(S). The
multiplication p: L?(X) — L(X) is given by the map =+ z, Lx — Ly, Lrxy = Lx.

Definition 7.3.5. An object with L is an algebra for the monad L. A strict map between
objects with L is an L-algebra homomorphism.

7.4 Lift functor for slices

Since one can define the lift functor using the internal logic of the topos (as done in
[O0s08|, pp. 221-222| and [OS00, pp. 237-238]), it follows that one can also generalize
the lift functor to an endofunctor on a slice.
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Let us first look at the dominance in the slice. Given a topos £ and an object Y of
&, the functor £ — £/Y given by X — (X x Y =5 Y) is known to be logical. That
is, it preserves the logical structure of £. In particular, if D is a dominance in &£, then
D xY =5 Y is a dominance in £ /Y. One may also verify this directly. So let us look at

¥ x Y subobjects of X Ly in RT(S)/Y. These subobjects are given as pullbacks of

Y

l<t!y,idy>
x XD sy

(where ly is the unique map Y — 1). If f: X — Y is a morphism of assemblies, then
using Proposition and the description of pullbacks in Asm(S), we see that these
pullbacks all are given by assemblies (X', E) as in Proposition The map from
(X', E) — Y is simply the restriction of f.

In this section we describe, given an assembly Y, how to generalize the lift functor
on Asm(S) to a lift functor Ly over Y on the slice Asm(S)/Y. Of course, there is again
a natural transformation 7y : idasm(s)/y = Ly and this structure classifies X-partial
maps.

By the above analysis, given

X +— (X',E) — Z

in Asm(S)/Y with (X', E) as in Proposition there is a unique morphism from X
to dom(Ly (a)) of Asm(S)/Y such that

(X',E) — X
o]
Z —" s dom(Ly (h))
is a pullback in Asm(S)/Y".

Proposition 7.4.1. Let Y be any assembly. The lift functor Ly on Asm(S)/Y is given
on objects by
Ly(fi X 5Y)=Y ;X >,

where Y Uy X is the assembly (Y + X, Ef) with

Ep(0,y) ={[0, V]|V € Ey(y)}
Ep(Lz) ={[[U,1], V]| U € Ex(x),V € Ey(f(2))};

and the arrow Y Uy X — Y is given by [idy, f]: (0,y) =y, (1,x) — f(=).
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On arrows, Ly is defined as:

yu,x — 20y, z

X—hr 7z
Ly \ / =
f g [1d)\ A’;g
Y

where Ly (h): (0,y) — (0,y), (1,2) — (1, h(x)).
Finally, the natural transformation ny : idasm(s),y — Ly is given by ny ¢(x) = (1, ).
We will henceforth simply write 1y for this map.

Proof. Firstly, observe that [idy, f] is tracked by p;. Moreover, the map Ly (h) is tracked
by the graph of the continuous function

[Un(poVo), Va] if Vo # 0;

Vo, Vi] = {[@, Vi) else;

where Uy, is a tracker of h. Obviously, Ly is a functor.

Further, ny: X — Y Uy X is tracked by A*v.[[v,1],Usv] where Uy tracks f. This
clearly defines a natural transformation n: id = Ly.

It remains to verify the desired pullback property. Assume we are given two com-

mutative triangles in Asm(S)
X +— (X',E) 2> 2z
!
N AT
Y

where again (X', E) is as in Proposition [7.2.2] Define g: X — Y U, Z by

oy — dmy(@) iz e Xl
§() {(O,f(x)) else.

Let U be an open as in Proposition and let Uy and Uy be trackers of g and f,
respectively. Then g is tracked, because the assignment

v [[UV,1],UfV] if V el;
0,U;V] else;

is continuous as U is open.

Note that for z € X', we have [idy, h|g(z) = hg(z) = f(x) and for z € | X|\ X', we
see that [idy, h|g(x)) = f(x). Hence, g is in fact an arrow of the slice Asm(S)/Y.

It remains to show that § is the unique arrow in Asm(S)/Y making the square in the
proposition into a pullback. But this follows from essentially the same arguments as in

Proposition |
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Observe that the Ly really is a generalization of L, because the functor L; is iso-
morphic to L. We can also generalize Lemma [7.3.4]

Lemma 7.4.2. For any f: X =Y, we have X Cx Y Uy X wia 1.
Proof. Similarly to the proof of Lemma one can show that

X —1

b

Viup X Xy
with xx(0,y) = 0 and xx(1,z) =1 is a pullback square. |

Finally, one may also show that Ly is actually a monad, the multiplication uy for
some f: X — Y is given by the map Y Ujq, 7 (Y Uy X) — Y Uy X defined as (0,y)
(0,9),(1,(0,9)) = (0,y) and (1, (1, x)) = (1,2).

7.5 Lambek algebras for the lift functor

Definition 7.5.1. Let C be an arbitrary category and let F' be an endofunctor on C. A
Lambek algebra for F is a morphism «a: F(X) — X. A morphism between two Lambek

algebras F(X) % X and F(Y) 5 ¥ is an arrow f: X — Y compatible with the algebra
structure, i.e. such that

«

rx) 29 peyy
8
;

X ——Y

commutes.

Definition 7.5.2. A Lambek coalgebra is the dual of a Lambek algebra, viz. a morphism
f: X — F(X). Similarly, we have a notion of morphisms between Lambek coalgebras.

Initial Lambek algebras are interesting for various reasons. For example, Lambek’s
Lemma states that any initial Lambek algebra is an isomorphism. This means that the
functor has a fixed point. Similarly, any terminal Lambek coalgebra is an isomorphism.
The proof of Lambek’s Lemma is a nice exercise in working with Lambek algebras.

Lemma 7.5.3 (Lambek’s Lemma |Lam68|). Any initial Lambek algebra is an isomorph-
1sm.

Proof. Suppose F(I) % I is an initial Lambek algebra for an endofunctor F on a category

C. We construct an inverse 7: I — F(I). Consider the Lambek algebra F2(I) ), F(I).

As o is initial, this yields a unique 7: I — F(I) such that 70 = F(o)F(1) = F(oT).
Since F preserves the identity, it suffices to prove that o7 = id;. As o is initial, we are
done if we can show that o7 is a morphism of Lambek algebras. That is, o F'(o7) = o710
should hold, but it does by our choice of 7. |
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By [OS00, Theorem 1.4 and pp. 238-239| and [Oos08, Theorem 3.6.5], the initial
Lambek algebra and terminal Lambek algebra for the lift functor both exist. We explicitly
construct them below.

Proposition 7.5.4. The initial Lambek algebra for the lift functor given by I = (N, Ef)
where Er(n) = {{0,...,n}} and o: L(I) — I defined as o(Lr) =0 and o(n) =n+ 1.

Proof. First of all, note that [ is indeed a Lambek algebra, since o is tracked by the graph
of the continuous function V + {0} U {x + 1 | 2 € poV'}. Now suppose that L(X) & X
is an arbitrary Lambek algebra for the lift functor. We must find f: I — X such that
fo = aL(f). This equality implies that we have no choice but to put f(n) = a""(Lx).
It remains to show that this function is tracked. Suppose U, tracks «. Consider the set
U={3",2"m) | neNme U0} By the monotonicity of the application, we
have U,V D U,0 for any V € S. In particular, we obtain a chain --- D U30 D U20 D U,0.
Thus U tracks f, because for any n € N we have

U{o,...,n} = JU{0,....k} = [ U0 = U0 € Ex (" (Lx)). |
k=0 k=0

Proposition 7.5.5. The terminal (also called final) Lambek coalgebra for the lift functor
is giwen by F = (NU {oc}, Ep) where Ep(n) = {{0,...,n}} and Ep(cc) = {N} and
the coalgebra structure is given by 7: F — L(F) with 7(0) = Lp,7(n + 1) = n and
7(00) = o0.

Proof. First of all, define the set T'= {(}-" ;2°,m) | n € N,0 < m < n}. One can check
that T7{0} = 0 and T{0,...,n+ 1} ={0,...,n} for any n € N. Moreover, the function

G: S — S defined as
G(V) = 0 - fV=0;
[V,1] else.

is obviously continuous. Hence, 7 is tracked by A*u.graph(G)(Tu), so it is a morphism
of assemblies.

Let X 2 L(X) be any Lambek coalgebra. We must show that there is a unique
f: X — F such that

commutes. We first prove that the commutativity of this square completely determines
f. We prove by induction that for any m € N and x € |X]| if m is the least such that
B (z) = Ly, then f(x) = m. For the base case m = 0, consider x € |X| such that
B(x) = Lx. Then Lp = L(f)(B(x)) = 7(f(x)), so f(z) = 0 = m. Now suppose the
statement is true for m. Suppose we have x € | X| such that m + 1 is the least such that
Bm™*2(z) = Lx. By induction hypothesis applied to 8(z), we find that f(B8(z)) = m.
Hence, m = f(B(x)) = L(f)(B(z)) = 7(f(x)), so f(z) = m+ 1. Thus, if z € |X| is
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such that 8™t = 1y for some m € N, then we must define f(z) as the least such
m. We prove that if no such m exists, then we must put f(z) = oo. For suppose we
had 2 € |X| such that 8¥(x) # Lx for any k € N and f(z) = m for some m € N.

Then, Ly = ™" (f(z)) = 7™(L(f)(B(x))) = --- = L(/)(B™*(x)), so f"!(z) = Lx,
contradicting our choice of . We conclude that the map f: X — F defined by

L m if m is the least such that 3™ (z) = Ly;
x
oo if no such m exists.

is unique.

Finally, f is tracked, because if Ug tracks 8, then V= {m e N| 1 € pl(UE"HV)} is
a continuous map S — S and its graph tracks f. Indeed, for any z € | X|and V € Ex(x),
it holds that 1 € py(Uf*'V) if and only if ™! (z) # Lx. [

We will write ¢ for the inclusion I — F. Note that we have an arrow (tracked by i)
from X* to X! by precomposing with ¢. We will write X* for this morphism.

Definition 7.5.6. An object X is complete if X*: X¥ — X' is an isomorphism.
Proposition 7.5.7. The object X is complete.

Proof. We define an inverse of 3*. Let f: I — X be any morphism. We prove that there
is a unique morphism f’: F — ¥ extending f. Define f': F — X by f/(n) = f(n) and

f(oo

)= 0 if f(n)=0for alln € N;
1 else.

If f is tracked by Uy, then f’ is also tracked by Uy by our choice of E; and Ep.
Furthermore, f’ is the unique extension of f, because by continuity, UsN = (Jy oy UrV
and therefore, UyN = 1 if and only if f(n) = 1 for some n € N. Thus, f — f’ (tracked
by i) is the required inverse of X*. [ |

7.6 Algebraic compactness

We conclude this chapter by sketching future developments of the material above. I only
provide a sketch as it is beyond the scope of this thesis to elaborate on it.

In domain theory, we can construct a category such that many functors have fixed
points. In synthetic domain theory, we therefore wish to consider algebraically compact
categories.

Definition 7.6.1. A category C is called algebraically compact if for every endofunctor
T: C — C there exists an initial Lambek algebra T(I) % I and a final Lambek coalgebra
F L T(F), and moreover the map ¢: I — F such that

(1) <F>

|- -
I

— F
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commutes, is an isomorphism. (Note that ¢ exists by Lambek’s Lemma and the initiality
of 0.)

Definition 7.6.2. Let £ be a topos with a dominance D and associated lift monad L.

(1) A category of predomains is a full internal subcategory C of £ which consists of
complete objects and is closed under L.

(ii) The associated category of domains is the category of algebras over the L-monad
on C.

Given such a topos &, one may then want to look for a category of predomains such
that its associated category of domains is complete and algebraically compact.

In [LS97|, a possible candidate for such a category of predomains is identified by
considering well-complete objects, which we define now.

Definition 7.6.3. An object X is well-complete if its lift L(X) is complete.

Finally, observe that in our case, if X is a modest set, then so is L(X). This means
that L can be viewed as an internal monad on the internal category of internal modest
sets (see [Oo0s08, Section 3.4.1]). The article [LS97| then suggests looking at the internal
category of well-complete modest sets with L.



Chapter 8

A Model Structure on a
Subcategory of RT(S)

Frumin and van den Berg |[Fv18| have recently given an axiomatic setup for constructing
a model structure on a full subcategory of an elementary topos. Model structures are
interesting, because they allow us to ‘do homotopy’. As such, model structures can also
provide semantics for homotopy type theory.

In this section we use the setup of [Fv18| to give a model structure on a subcategory
of RT(S).

The notions and structure of this chapter are due to [Fv18|. The particular model
structure on RT(S) and the characterizations (of contractible objects, for example) are
(as far as I am aware) original.

8.1 Basic definitions and setup

We describe the setup of [Fv18]. We assume to be working in a topos £ with a dominance
D that is closed under finite joins in 2. We wish to have an interval object in &£, which
we define now.

Definition 8.1.1. An interval object I is an object I with a mono [0, 01]: 1+1 — I and
connections A, V: I x I — I such that the following equalities hold:

A (idy x0y) = Ogm1: I x 1 — I V(

A (Og x idp) = domp: 1 x I — T V(01 xidp) = Oimp: 1 x T —= T
A(dp x01) =mg:Ix1—=1T; V (idy xdy) =mo: Ix1—=1;
A ( V(0 xidp) =m: I xIT— L

idp x01) =0im:Ix1—=1;

61><1d]1)—71'1 1><H—>]I;

The requirements for the connections say that A and V behave somewhat like the
meet and join operators of a lattice.

Finally, we require that the map [0y, 01]: 1 +1 — I to be a D-map (recall Defini-
tion [7.1.7). We refer to the D-maps as cofibrations.

60
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Definition 8.1.2. Let f, g and be two morphisms. Then we say that f has the left lifting
property (LLP) with respect to g and g has the right lifting property (RLP) with respect
to f and we write f rh g if for any commutative square

A—— B

oL

C —— D

there is a diagonal filler, i.e. an arrow [: C — B making the resulting two triangles
commute. If M is some class of morphisms, then we write M™ for the class of morphisms
having the RLP with respect to every morphism in M, and "M for the class of morphisms
having the LLP with respect to every morphism in M.

The dominance D gives rise to a weak factorization system on the topos £.

Definition 8.1.3. A weak factorization system on category C is a pair (£, R) of classes
of morphisms of C such that

(i) every morphism f: X — Y of C factors as a morphism in £ followed by a morphism
in R;

(ii) £L="R and R = L".

The next proposition is [Fv18, Proposition 2.6], but the proof is sparse on details.
We present a detailed proof here, due to my supervisor Jaap van Qosten. For a better
overview, we first present a lemma.

Lemma 8.1.4. Let C be any category and suppose M is a class of morphisms of C. Then
(i) M™ is closed under retracts;

(i) if M is a class of monomorphisms closed under pullbacks in C, then M is also
closed under retracts.

Proof. The first item is easily shown, so we focus on the second. Suppose f: A — B is
in M and let f': A — B’ be a retract of f. That is, we have a commutative diagram

id 4/

AT TSy

b

B -2sB-"2,p
idg/

Of course, we prove that f' € M by showing that f’ is a pullback of f. First, we establish
that ig is the equalizer of igrg and id4. For, suppose ¢ is such that igrgg = g. Then, g
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factors through iy via rog. The factorization is unique, because ¢ is monic. Similarly, i1
is the equalizer of 171 and idp. We are now ready to show that

A4

[

B 24 B

is a pullback. Suppose we have arrows a: C — A and b: C — B’ satisfying fa = i1b.
Then

fioTQa = ilflrga = ilrlfa = ilTlilb = ’ilb = fCL7

so that, since f is monic, igrga = a. Because iy is the equalizer of igrg and id4, this
implies that we can factor a uniquely as a = igc for some ¢: C' — A’. It remains to show
that f'c = b. We have seen that i171 fa = fa, so fa factors uniquely through 7;. But
observe that b and f’c are two such factorizations. Hence, they are equal as desired. This
establishes f’ as the pullback of f. As M is assumed to be closed under pullbacks, we
are done. |

We are now in position to prove that the dominance D yields a weak factorization
system on &.

Proposition 8.1.5. Let us write D for the class of D-maps. The pair (D,Dm) s a weak
factorization system on &.

Proof. By the previous lemma D and D" are closed under retracts. So, by the retract
argument [Rie09, Lemma 11.2.3], only the factorization needs to be proved. Thus, let
h: B — A be a morphism. We need to factor it as a map in D followed by a map in D™

In this proof let us employ set-theoretic notation for subobjects, that is, we write
{z € X | p(z)} for the subobject of the object X defined by the formula ¢.

Define B = {a € PB |Vz,y € B(x € aAy € @ — x = y}, the object of subsingletons
of B. There is an obvious inclusion B < B, which we denote by ng. Next, define L(h)
as

{(a,0,a) € Ax D x B | a C hil(a)7inhab(a) =0},

where inhab(a) = Jz(zx € a) (i.e. a is inhabited). We prove that h factors through L(h).
Note that (h,t!g,np): B — Ax D X B. One easily checks that this map equalizes y and
AxDxB—=15% Q, with x the characteristic map of the subobject L(h). Thus, we
obtain a map f: B — L(h). We will say that we have defined f by f(b) = (h(b), T, {b}).
Similarly, we define g: L(h) — A by g(a,0,a) = a. Then clearly, h factorizes as gf.

It remains to prove that f € D and that g € D". Using the definition of L(h), it is not
hard to verify that B is the pullback of the projection wp: L(h) — D along ¢t: 1 — D.
Thus, f € D, as D-maps are closed under pullbacks (by pullback pasting).
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To show that g € D", assume we have a lifting problem

U —1— L(h)

oo

Vv —F 4

where i is a D-map. Write [(u) = (k(u), p1(u), p2(u)) with w € U. Define the subobject
U' ={ueU | pi(u)}, the pullback of p; along t: 1 — D. Then U’ Cp U,s0 U’ Cp V
(by pullback pasting). Let m: V' — L(h) be given by

m(v) = (k(v),(ve U) {z € Blv e U Az € pa(v)}) = (k(v), q1(v), g2(v))-

We should check that m is well-defined, i.e. g2(v) € h~!(k(v)) and inhab(g2(v)) = q1(v).
For the former, suppose y € ¢2(v). Then v € U’ and y € pa(v), so h(y) = k(v), as
desired. For the latter, note that:

inhab(qa2(v)) = (v € U’ Ainhab(pa(v))) =v € U Ap1(v) =v e U = ¢1(v),

by definition of U’. Thus, m is well-defined.
Obviously, gm = k. Finally, if u € U, then
m(u) = (k(u),(u e U'),{xr € B|x € pa(u) NuecU'})
= (k(u),p1(u),{z € B |z € p2(u) Ap1(u)})
= (k(u)7p1(u)>p2(u))7

so m is a solution to the lifting problem. |

Definition 8.1.6. Suppose f: A — B and g: C — D are morphisms of £. The Leibniz
product (or pushout product) of f and g is the unique morphism f&®g making

Axc 9 gy

idA Xgl l idB Xg

AXD —— o

w

commute, with the square being a pushout.

Definition 8.1.7. A morphism f is a fibration if it has the right lifting property with
respect to all morphisms of the form ;&u with i € {0,1} and u a cofibration. An object
X is called fibrant if the unique map X — 1 is a fibration.

Remark 8.1.8. For a topological viewpoint, observe that this definition means that an
object is fibrant if and only if it enjoys the homotopy extension property (with respect
to cofibrations).
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Definition 8.1.9. Let f,g: X — Y be two parallel arrows in £. We say that f and g¢
are homotopic if there is a map H: X x I — Y, a homotopy, such that H(idx x9y) = f
and H(idx x01) = g. We will write f ~ ¢ in this case.

Definition 8.1.10. A morphism f: X — Y in £ is a homotopy equivalence if there is a
morphism ¢g: Y — X in & such that fg ~ idy and gf ~ idx. We call g the homotopy
inverse of f.

Definition 8.1.11. A model structure on a category C is a triple (Cof, Fib, Weq) of classes
of morphisms of C (called cofibrations, fibrations and weak equivalences, respectively)
satisfying:

(i) Weq contains all isomorphisms and is closed under 2-out-of-3, viz. if f: X — Y
and g: Y — Z are morphisms of C and two out of the tree morphisms f, g, gf are
in Weq, then so is the third.

(ii) (Cof, Fib N Weq) and (Cof N Weq, Fib) are two weak factorization systems on C.

Theorem 8.1.12. The full subcategory Ef f of £ on fibrant objects carries a model struc-
ture, where the fibrations and cofibrations are defined as above and the weak equivalences
are the homotopy equivalences.

Proof. See |Fv18, Theorem 4.4]. [ |

Example 8.1.13. In |[Fv18|, the authors take £ = Eff and D = Q (so the cofibrations
are simply all monomorphisms). The interval object I is V(2) (recall Definition [5.1.9)).

8.1.1 The model structure on the fibrant objects of RT(S)

In RT(S), the Sierpinski assembly ¥ is a dominance that is closed under finite products,
as we have seen. Accordingly, the cofibrations are the Y-maps. For the interval object,
we want an object I such that there is a ¥-map from 1+ 1 to I. Observe that 1 +1 = 2,
where 2 is the assembly ({0, 1}, Ey) with Ey(i) = {i}. In light of Lemma it seems
natural to take I = L(2), so that the required ¥-map is 72: 2 — L(2). The connections
are given as prescribed above and by putting 1o A 1o = 1o = 15V lg. The map V is
tracked, because there is a continuous function F: S — S such that

F(0,0) = F(0,0) = F(0,0) = 0;
FO,T) = FA,0) = F(0,T) = FA,0) = FA,T) = T:
F(0,0) = 0

by case inspection of finite sets and the fact that this assignment is monotone. Similarly,
A is tracked. Hence, L(2) is indeed an interval object.

By Theorem we have a model structure on the full subcategory RT(S) on
fibrant objects of RT(S).

In fact, we can show that there is even a model structure on the category of fibrant
assemblies.
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Proposition 8.1.14. If the dominance D is —~—-separated, then the model structure of
Theorem restricts to a model structure on the full subcategory of £ on fibrant
——-separated objects.

In particular, since 3 is an assembly, the model structure on RT(S)y restricts to a
model structure on the category Asm(S)s of fibrant assemblies.

Proof. 1t suffices to prove that the factorizations also exist in the subcategory on ——-
separated objects.

One of the required factorizations is described in [Fv18|, Proposition 4.3] by taking a
pullback. Since the ——-separated objects of £ are closed under finite limits in £ [Joh02al,
Lemma A4.4.3(i)], we are done here.

It remains to show that if h: A — B is a morphism between ——-geparated objects,
then then the object L(h) from Proposition is again ——-separated. We argue
informally in the internal logic of the topos £. The proof is a nice exercise in intuitionistic
reasoning. We must show that the diagonal is ——-closed, viz.

—=((a,0,a) = (d,0’,d)) = (a,0,a) = (d/,0', )

should hold where a, a’ are variables of sort A, 0,0’ are variables of sort D and «, o/ are
variables of sort B satisfying ¢ = inhab(a), ¢’ = inhab(a/) and o C h=1(a), o’ C h=1(d').
Assume = ((a,0,a) = (d’,0’,a’)). Since A and D are ——-separated, this yields:

a=d No=0c"N-(a=d).

We are to prove that o = o/. By symmetry, it suffices to show that a C o’. To this end,
suppose b € a. Then « is inhabited. Since inhab(a) = o = ¢/ = inhab(’), we see that
o/ is inhabited as well. Thus, we get some b’ with & € o/. We show that b =b'. Since B
is —=—-separated, it suffices to prove that —=—(b=1/).

To do so, assume —(b = V). As o is a subsingleton, we see that —(b € o'). Hence,
—Vz:B(x € o — = € &'). But, in combination with =—=(a = /), this yields a contradic-
tion, as desired. We conclude that —=—(b =10'), so we are done. [ |

In the next sections we examine this model structure on the assemblies. An interesting
feature of our model structure is that the domain theoretic notions from the previous
chapter reappear in the study of the model structure. For example, the contractible
objects will be the objects with L from Definition [7.3.5]

Remark 8.1.15. I am aware that many of the results in the coming sections can be
generalized to any topos £ with a dominance D such that the lift of 1 4+ 1 is an interval
object. For the sake of definiteness, however, we will only study the assemblies over S.

8.2 Contractible assemblies and trivial fibrations

Definition 8.2.1. A morphism f of a category with a model structure is called a trivial
fibration if it has the RLP with respect to every cofibration.
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Definition 8.2.2. An object X of a category with a model structure is contractible if
the unique morphism X — 1 is a trivial fibration.

The following proposition characterizes the contractible objects, using the lift functor
from the previous section.

Proposition 8.2.3. An assembly X is contractible if and only if X = L(X) has a
retraction.

Proof. Suppose f: X — 1 is a trivial fibration. By Lemma f has the RLP with
respect to nx, so we have a commutative diagram

x X x
nx / l
LX) —— 1
whence the desired retraction.

Conversely, suppose we have a retraction r: L(X) — X of nx. Let i: U — Y be a
cofibration and suppose we have a lifting problem

?

By Proposition there is a morphism g such that

AN

<<+—J&

—

U—2 X
li nx
Yy 4 L(X)

commutes. We claim that Y 2 L(X) 5 X is the desired filler. Indeed, r§i = rnxg = g.
We conclude that f is a trivial fibration. [ |

Corollary 8.2.4. The following are equivalent for an assembly X :
(i) X is contractible;
(ii) X is an object with L;

(i1i) there is a continuous F': S — S such that F(0) € U,¢ x| Ex(2) and F(U) € Ex ()
for any U € Ex(x).
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Proof. If X is an object with |, then there is a retraction of nx, so X is contractible. If
X is contractible, then we have a retraction r of nx. It remains to show that the diagram

2x) 2 nx)
nx lr
LN

LX) ——

commutes. But this is easily verified. Hence, (i) < (ii).
The equivalence (i) < (iii) follows by writing out what it means to have a retraction
that is tracked. |

Corollary 8.2.5. Let X be an assembly. If 0 € ¢y Ex(z), then X is contractible.
Proof. Take the identity function in (iii) above. [ |

Example 8.2.6. The previous propositions allow us to produce some (non-)examples of
contractible objects.

(i) Any assembly of the form L(Y) is contractible (uy is the desired retraction). In
particular, the interval object I = L(2) and ¥ = L(1) are contractible. One should
compare this to [Fv18, Proposition 6.3], since ¥ and I are thus contractible, but
not uniform.

(ii) Any non-empty uniform assembly is contractible. For given such an assembly X,
take o € X and pick U € [,cx Ex(z). A retraction L(X) — X is then given by
mapping L to xg. The map is tracked by kU.

(iii) The assemblies 2 and N are not contractible, because there are no non-constant
morphisms L(2) — 2, L(N) — N.

We can generalize the previous proposition by considering the generalized lift functor
for slices.

Proposition 8.2.7. A morphism f: X — Y of assemblies is a trivial fibration if and
only if [idy, f]: Y Uy X =Y is a retract of f in Asm(S)/Y . Euxplicitly, the latter means
that we have a morphism r:Y Uy X — X such that

idx

X oy x 15X
Y

15 a commutative diagram.
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Proof. Let f: X — Y be a trivial fibration. By Lemma |7.4.2] we have a commutative
diagram

whence the desired retraction.
Conversely, let r: Y Ly X — X be a retraction of 7y in Asm(S)/Y . Suppose we have
a lifting problem

U—2-x
ol
zZ sy
where 7 is a cofibration. By Proposition [7.4.1] there is a morphism § in Asm(S)/Y such

that
U g X

! b

Z—9% VX
\ Aff]

commutes. We claim that rg is the desired filler. Indeed, rgi = rnyg = g and frg =
lidy, f]lg = h, as desired. |

Corollary 8.2.8. The following are equivalent for a morphism of assemblies f: X — Y
(i) f is a triwvial fibration;
(i) f is an algebra for the Ly -monad;

(#i1) there is a continuous F':' S — S such that for any y € |Y| and V € Ey (y), we have
F(pdV) € Ex(xg) for some xo € |X| with f(xo) = y and for any x € |X| with
f(x) =y and U € Ex(x), it holds that F([[U,1],V] € Ex(x).

Proof. Similar to Corollary |

8.3 Fibrant assemblies

Definition 8.3.1. For any assembly X, the morphisms dp and 0; induce morphisms
X% . XT 5 X and X% : X! — X, which we respectively refer to as the source map sx
and target map tx. If the context is clear, then we will drop the subscripts in the source
and target maps.
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Lemma 8.3.2 (Proof of Theorem 6.10 in |[Fv18|). An assembly X is fibrant if and only
if the source map s: X' — X is a trviial fibration.

Proof. By Proposition 3.5 in [Fv18|, X is fibrant if and only if s and ¢ are trivial fibrations.
Observe that our interval object I = L(2) comes with a twist map tw: 2 — 2, defined by
0~ 1,1+ 0, L — L, which is a self-inverse and that satisfies X"Vs = ¢ and X"Vt = s.
Thus, s is a trivial fibration if and only if ¢ is. So we conclude that X is fibrant precisely
when s is a trivial fibration. |

Definition 8.3.3 (Definition 6.9 in [Fv18|). Let X be an assembly and pick z € | X|. A
path-connected component of x, denoted as [z] is the set of y € |X| such that there is a
morphism p: I — X (a path in X) with s(p) = x and t(p) = y. We also say that x is
path connected to y. If for any z,y € | X| we have y € [z], then we call X path-connected.

Proposition 8.3.4. Let X be an assembly. If X is contractible, then X is path-connected.
Proof. Let x,y € | X| be fixed, but arbitrary. If X is contractible, then the lifting problem

1+1 29, x

an] |

In——1
has a solution. Hence, y € [z], as desired. [ ]

Proposition 8.3.5. Let X be an assembly and x,y € |X|. Then, x € [y] if and only
if there exist z € |X| and U € Ex(z),V € Ex(xz) and W € Ex(y) with U C V and
Ucw.

Proof. Suppose first that we have a path p: I — X with s(p) = y and ¢(p) = z. If P
tracks p, then PQ € Ex(p(L)), while P) C PO € Ex(y) and P) C P1 € Ex(z), by
monotonicity of the application.

Conversely, given such z € |X| and U,V,W in Ex(z), Ex(z) and Ex(y), we may
define p: I — X by p(0) = y,p(L) = z,p(1) = z. Observe that p is tracked by the graph
of the continuous function

VUWw if0,1 € A;

14 if1e A 0¢ A
A~
W focA1¢gA
U else.
Thus, x € [y], as we wished to prove. [ |

The following lemma gives a necessary condition for fibrancy of an assembly.

Lemma 8.3.6. If X is a fibrant assembly, then for each x € |X|, there are w € |X]|
and U € Ex(w) such that for each y,z € [z] there are V € Ex(y) and W € Ex(z) with
UCV,W.
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Proof. Let X be a fibrant object. By Lemma [8.3.2] and Proposition [8.2.7] there exists
a retraction r: X Uy, X' — X Suppose it is tracked by R. Let x € |X| be fixed, but
arbitrary and let A be any element of Ex(x). Set w = ¢r(0,2) and U = R[(, A]1. Now
suppose ¥,z € [x]. Find a, 8 € X! with s(a) = s(8) = z and t(a) = y and t(B) = 2.
Further, let U, and Up track o and 3, respectively. Set V' = R([[Ua, 1], A])1 and put
W = R([[Us, 1])A])1. From the fact that R tracks r, we find U € Ex(w),V € Ex(y) and
W € Ex(z). By monotonicity of the application, we furthermore see that U CV,W. R

The previous lemma allows to give an example of an assembly that is not fibrant.

Example 8.3.7. The assembly X = ({a,b,c}, E) with E(a) = {{0,1}}, E(b) = {{0}}
and E(c) = {{1}} is not fibrant. Indeed, by Proposition we have b, ¢ € [a], but for
every w € |X| and U € E(w) we find U Z {0} or U € {1}.

Another interesting example is the following assembly.

Example 8.3.8. Consider the assembly X = (N, F) with £(0) = {N} and E(n+ 1) =
{N\{0,...,n}}. By the previous lemma, it is not fibrant. Interestingly, X is an example
of a path-connected assembly that is not contractible. The former is easily verified
using Proposition To see that it is not contractible, suppose r: L(X) — X is a
retraction of nx: X — L(X). Write m = r(Lx) and let U, € S track the retraction r.
By continuity, U0 C U, [N\ {0, ...,m}, 1], while U, € E(m) and U.[N\{0,...,m},1] €
E(m+ 1), since r is a retraction of nx. But there are no V € E(m) and V' € E(m + 1)
with V' C V', so X is indeed not contractible.

8.4 Order-discrete assemblies again

In [Fv18| Lemma 7.2|, an assembly X is discrete if and only if every map p: I — X factors
through the terminal object. Observe that in our case, I is discrete, but the twist map
does not factor through 1. However, we have something analogous: we can characterize
the assemblies with trivial homotopy as the order-discrete assemblies.

Proposition 8.4.1. An assembly X is order-discrete if and only if every map p: 1 — X
factors through the terminal object.

Proof. If X is order-discrete, then it is immediate from Proposition that any path
in X factors through the terminal object.

Conversely, assume we have z,y € |X| and U € Ex(x),V € Ex(y) with U C V.
Define p: I — X by p(L) = x,p(0) = p(1) = y. Note that is tracked by the graph of the
continuous function

W V i W #0;
U else.

Now p factors through the terminal object, so z = y, as desired. |

Corollary 8.4.2. FEvery order-discrete assembly is fibrant.
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Proof. 1t is easy to see that if X is order-discrete, then the source map is an isomorphism.
In particular, it is a trivial fibration, so by Lemma [8.3.2] we are done. |

Example 8.4.3. The assemblies 2 and N are order-discrete and thus fibrant.

We have already remarked that 2 and N are not contractible. The following corollary
shows that (non-terminal) order-discrete assemblies are never contractible. Note that we
really need the strong version of discreteness, as I is discrete and also contractible, as we
have already shown.

Corollary 8.4.4. A non-terminal, order-discrete assembly is never path-connected. In
particular, it is never contractible.

Proof. Immediate from Proposition and Proposition [8.3.4] [ |

Remark 8.4.5. In Section 8.2 of [Fv18|, it is remarked that in the model of [Fv18| every
two paths in an assembly are equal if they have the same endpoints. In particular, the
authors are unsure whether there exists a fibrant object that has non-homotopic paths
with the same endpoints.

The situation is different here. Consider X = V(2) (recall Definition and the
paths p,¢: I — X given by p(0) = p(L) = 0,p(1) = 1 and ¢(0) = 0,q(L) = ¢(1) = 1.
These paths have the same endpoints, but are not equal. Also note that X is fibrant

(even contractible) by Example [8.2.6]

In the setting of [Fv18], it shown (Proposition 7.10) that each fibrant assembly X is
homotopy equivalent to its assembly of path components. This is then used to show that
the homotopy category of fibrant assemblies is equivalent to the category of modest sets.
One might hope for similar results in our setting.

Proposition 8.4.6. The full subcategory of Asm(S) on order-discrete assemblies of
Asm(S) is reflective.

Proof. Let X be an assembly. Consider the coequalizer

S
X! $ X 15 X,
and observe that X, is the assembly (|X|/~, E) where z ~ y iff x € [y| and E([z]) =
Uye[x] Ex(y). So we may think of X, as the object of path components of X.

We will show that X, is order-discrete. To this end, one may adapt the proof of
|[Fv18, Proposition 7.9], but we prefer to give a direct proof here. Assume we have
[z],[y] € Xpe and U € E([z]),V € E([y]) such that U C V. Find 2’ € [z] and ¢/ € [y]
such that U € Ex(2’) and V € Ex(y’). By Proposition we find 2/ € [v], so
[z] = [y]. Thus, X, is order-discrete.

We now prove the required universal property. Suppose f: X — Y is a morphism
with Y order-discrete. We must prove that f factors uniquely through ¢. By the universal
property of the coequalizer, it suffices to show that f equalizes the source and target maps
of X. But this is easy, for fsx = sy fl and ftx = ty f', but sy = ty by Proposition ,
so we are done. |
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Definition 8.4.7. Let C be a category with a model structure. The homotopy category
of C, denoted by Ho(C), has as objects the objects of C that are both fibrant and cofibrant
and as morphisms the homotopy classes of morphisms of C.

Since the order-discrete objects have no homotopy, the situation above carries over
to Ho(Asm¢(S)).

Proposition 8.4.8. Let us write OrdDisAsmy for the full subcategory of Asm(S); on
fibrant order-discrete assemblies. The quotient functor OrdDisAsm¢ — Ho(Asm¢(S)) has
a left adjoint.

Proof. Given a morphism [f]: X — Y in Ho(Asm(S)), we show that it factors uniquely
through [¢]: X — X,.. By the previous proposition, there is a unique morphism
f: Xpe — Y such that fq = f. Clearly, then [f] makes [f] factor through [q]. It
remains to show that it is unique. But this must be, as there is no homotopy on Y.
Indeed, if [g] is such that gg and f are homotopic, then gq(z) = f(x) for any z € |X|

as any path in Y factors through the terminal object. Hence, g = f by the universal
property in Asm¢(S). [ |

8.5 Closure properties of fibrant assemblies

So far, the only fibrant assemblies we have encountered were quite extreme from a homo-
topical viewpoint (either contractible or without any non-trivial paths). In this section
we show that the full subcategory on fibrant assemblies has finite (co)products. We will
then use this to give an example of a fibrant assembly that is not contractible and has
non-trivial paths.

The following proposition follows from the dual of Lemma 11.1.4 in [Rie09]. We give
a simple, direct proof here.

Proposition 8.5.1. The class of fibrant assemblies is closed under finite products in
Asm(S).

Proof. 1t is easy to verify that 1 is fibrant. Now let ¢: U — Z be any cofibration and let

° 444¥£44$ X xY

o ]

Zx] — 1
be a lifting problem. If X and Y are fibrant, then the lifting problems

mof w1 f

o ——+ X o —~ Y
sal | wtowl |
ZxIl ——1 ZxIl ——1

have solutions [y and [y, respectively. A solution to the original lifting problem is then
given by (lo,l1). Hence, X x Y is fibrant as well. ]
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Remark 8.5.2. Observe that one may similarly show that if X,Y are contractible, then
sois X xXY.

Example 8.5.3. By the previous proposition, X = V(2) x 2 is fibrant. Observe that
it is not order-discrete ((0,0) and (1,0) share realizers). So by Proposition [8.4.1 X
has non-trivial paths. Moreover, X is not contractible. For suppose we had retraction
r: L(X) — X. Assume without loss of generalization that m7(L) = 0. Then, p1(R0) =
0, where R tracks r. But this implies that mr(z) = 0 for any x € |X|. So 7 is not a
retraction.

Proposition 8.5.4. The class of fibrant assemblies forms an exponential ideal in Asm(S).

Proof. We are to prove that if X is fibrant, then so is X" for any assembly Y. We will
need an intermediate result: if f and g are cofibrations, then f x g is again a cofibration.
It is not hard to provide the required pullback diagrams.

We use Lemma Observe that (XY)]I is naturally isomorphic to (XH)Y, so it
suffices to show that s¥ is a trivial fibration where s is the source map X' — X. Now
suppose we are given a lifting problem

U—— (x1)"

}, [o

7 — 5 XY

where ¢: U — Z is a cofibration. Consider the transpose lifting problem

UxY —— X!

CXidyJ{ l‘s

ZxXY —— X

By our earlier remark, ¢ xidy is again a cofibration, so this has a solution as X is fibrant.
The transpose of this solution then solves our original lifting problem. |

Remark 8.5.5. By considering transpose lifting problems, one may also show that the
class of contractible objects forms an exponential ideal in Asm(S).

The interval object 1 is strongly indecomposable, in the following sense.
Lemma 8.5.6. For any two assemblies X and Y, we have (X +Y)' = X! + YL

Proof. This is similar to Proposition |

Proposition 8.5.7. The class of fibrant assemblies is closed under finite coproducts in
Asm(S).
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Proof. One easily checks that the initial assembly is fibrant. Suppose X and Y are
fibrant assemblies. By Lemma the source maps sy: X' — X and sy: Y! - Y
are trivial fibrations and we must prove that the source map s: (X +Y) — X +V
is a trivial fibration as well. By the previous lemma, it suffices to show that the map
sx +sy: X+ YT - X 4+ Y is a trivial fibration.

Let ¢: U — Z be any cofibration and let

UL, xt4yt

lc LSX +sy

Z -2 5X+Y

be a lifting problem.

Define an assembly Zx by putting |Zx| = {z € |Z] | mog(z) = 0}, the set of elements
of |Z| that get mapped into X and letting Ez, be the appropriate restriction of Ey.
Similarly, define Zy and assemblies Ux and Uy with |Ux| = {u € |U]| | mof(u) = 0}.
Note that the restriction cx of ¢ to |Ux]| is a well-defined map from Ux to Zx. It is not
hard to check that cx is again a cofibration. Since sy is assumed to be a trivial fibration,
we have a solution lx to the lifting problem

f\UX ;
UX — X

Ix //‘Y
Cxl s SX

ZX — X
Izy
Similarly, we have a solution ly: Zy — Y. Since |Z| = |Zx| U |Zy]|, the functions Ix
and ly can be patched together to obtain a function : |Z| — | X'+ [Y!]. If we can show
that this map is tracked, then this yields a solution to our original lifting problem.
To this end, we first prove that Zx Cx. Z. Let G and Py be continuous functions
whose graphs track g and 7y. Note that

1Zx| = {z € |2] | mg(2) = 0}
={z € 12| (RG)™1(0) 2 Ez(2)}
={z€1Z|| (RG)'(10) 2 Ez(2)}.
Put Ux = (PyG)~1(1 0) and note that this is open. Furthermore, Ux witnesses that

Zx Cyx Z. Similarly, one obtains Uy witnessing Zy Cyx, Z. Finally, it is the case that
Ux NUy =, so that the function from S to S given by

0,LxV] ifV €Uy;

Vs { [T, LyV] ifV €lUy;

0 else;

where Lx and Ly respectively track [ x and ly, is well-defined. Moreover, it is continuous
and its graph tracks . |



Chapter 9

Future Research

In this section I describe some aspects that warrant further research, but that (due to
time constraints and scope limitations) I have been unable to treat.

9.1 Axiomatization of second order arithmetic

My supervisor and I have given considerable thought to the following question: is it
possible to give an axiomatization (& la [Tro71] or [O0s94]) of the second order arithmetic
of RT(S)?

We found this question to be very difficult to answer. A particular problem is that it
seems hard to capture the application in the arithmetic of RT(S). In Eff, we can capture
the recursive function application using the primitive recursive function symbols in the
language of arithmetic. In RT(K3), we can capture the application of Kleene’s second
model, by considering the exponential NV (where N is the natural numbers object).

Again, write S for the object of realizers (S,{—}) in RT(S) and recall the membership
relation from Definition[7.1.3] The application map of S induces a morphism S xS — S,
which we will also denote by juxtaposition. One might hope

VX,Y:SVe:N(z € XY — Jy:N((y,z) € X Ney CY))

to be true in RT(S). Sadly, it is not. For if it were, then there is a realizer U € S such
that for any A, B € S and n € AB, we have: UABR = k with (k,n) € A and e, C B.
Taking A = {(k,0) | & € N} and B € S arbitrary, we see that by continuity in A of
U, we must have U(0,0)B0 = 0, while U(1,0)B0 = 1. Hence, UAB0 2 0 U 1, which is
impossible as UABO must be a singleton.

9.2 Computing the homotopy category of fibrant assemblies

In [Fv18|, the quotient map from a fibrant assembly X to its assembly of path components
Xpe 1s a trivial fibration. This allows the authors to compute the homotopy category of
the fibrant assemblies as the category of modest sets. It is a consequence of the fact that

75
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the quotient map is a trivial fibration that any fibrant, path-connected assembly is in
fact contractible.

Is the quotient map also a trivial fibration in Asm;(S)? This would enable us to
compute Ho(Asm¢(S)) as the full subcategory on fibrant, order-discrete assemblies. I
believe that the quotient map is not a trivial fibration in this case, but I have been unable
to provide a counterexample. The existence of a fibrant, path-connected, non-contractible
assembly (c.f. Example would also settle this question. Constructing such an
assembly has proved to be challenging, however. Obtaining a better understanding of
fibrancy seems to be key.

9.3 Embedding of topological spaces

In his PhD thesis [Bau00], Andrej Bauer showed that the category Mod(S) of modest sets
is equivalent to the category of equilogical spaces. In particular, there is an embedding
of countably based, T spaces into Mod(S). Can one use this embedding to give a model
structure with a natural notion of homotopy on Mod(S) or on RT(S)?

9.4 Relative realizability

Let A and A’ be two partial combinatory algebras with underlying sets A and A’. An
elementary inclusion of pcas is an inclusion A’ C A such that the application of A’ is
the restriction of the application of A to A’ and moreover, there are elements k,s in A’
witnessing that A" and A are pcas.

Let us write S, for the subset of S consisting of the recursively enumerable sets of
natural numbers. One can define an application on S,. such that we obtain a pca S;.
and moreover, the inclusion S,. C S is an elementary inclusion of pcas.

This elementary inclusion gives rise to two realizability toposes. The first is RT(S;.)
and the second is the relative realizability topos RT(Sye, S). An object of the latter is an
object of RT(S) such that the transitivity and symmetry are realized in Sy. Similarly,
a morphism in RT(S,e,S) is a morphism of RT(S) such that the functional relation
properties are realized in Sy.

It would be interesting to investigate these toposes. For example, does Shanin’s
Principle hold in RT(S,¢)? For more information on relative realizability toposes, consult
[O0s08|, Section 4.5].
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