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Abstract

This thesis introduces a technique for procedurally generating terrains for strategy video
games. In our approach, we use graphs to represent regions and corridors in the terrain. We
implemented a tool that a game designer can use to define a terrain graph with geometric
properties that the maps should have, such as the connectivity structure and physical di-
mensions of the regions and corridors. Our terrain generator uses a graph layout algorithm
to find a terrain graph layout that meets the specifications, and generates a heightmap based
on that layout. We tested the effectiveness of our method with various test cases in different
experiments, and found that the generated terrains match the designer’s intent quite well.
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1 Introduction

Terrains are an important component of most strategy video games. They form the battle-
grounds upon which virtual wars are waged. Game units—from swordsmen to hovertanks—move
around the map, navigating around impassable obstacles like rivers and cliffs, trying to outflank
or outrun enemy forces. Barracks and factories are built in flat, open regions to raise and sup-
ply armies, protected by bunkers and turrets placed near narrow choke points. Players send out
scouts to explore previously unknown terrain, on the lookout for enemy troops and new resources
to be gathered.

Making a good map is essential if you want to build a great strategy game. However, making
one map is not enough, no matter how well-designed that map is. Most players would lose
interest if they had to play on the same map every time. That is why good strategy games have
a variety of maps. With gamers constantly demanding more, larger and more detailed maps, it is
hard for game designers to keep up. The production of game content has become a bottleneck in
the game development process, making it cost ever more time, money and manpower to produce
video games [14].

Procedural content generation techniques aim to help out by automating the creation of video
game content. A wide range of procedural techniques exist, capable of generating all kinds of
content—from the trees and plants in a forest visited in a first-person shooter to the layout
of a roguelike game’s labyrinthine underground dungeons. Procedurally generated maps have
been used in some strategy games, such as the Civilization series. However, for many games,
current procedural generation techniques are unable to produce terrains that match human-
designed maps when it comes to aspects such as gameplay balancing and interestingness [2].
Consequently, most strategy games still use handmade maps.

1.1 Problem Statement

Terrains for strategy games contain accessible and inaccessible areas. Units move over accessible
heightmap cells, and structures can be placed in accessible areas. The parts of the map that are
not part of a region or corridor are inaccessible. Ground-based units and structures cannot be
inside these areas. They will have to navigate around inaccessible parts of the terrain to reach
their destinations.

The accessible areas on the map are all connected, and form a system of open regions (which
are well suited for constructing bases) connected by narrower corridors (which form defensible
choke points).

One of the most important requirements that procedurally generated terrains for strategy
games must meet is that they should be balanced. Each player should have the same chance of
winning the game when they begin a match at their designated starting location.

In this thesis, we will investigate the problem of procedurally generating balanced terrains
with a clear structure of regions and choke points. There are multiple geometric properties of
the map that can influence players’ winning chances, which we will list below. A map generator
that produces balanced maps should take such properties into account.

In order for a map to be balanced, different players should start in regions of a similar size—it
would be unfair if some players had more room to build base structures than others. All players
should be provided with equally promising neighboring locations where secondary bases can be
constructed, so the non-starting regions should be similarly sized on each player’s side of the
map, too.

Each player should have equal access to resources and other special objectives on the map.
The distances it takes units to travel between player bases and the various regions that contain



those resources and objectives should be the same for each player.

Finally, the regions controlled by one player should be just as defensible as the regions of the
other players. The number and width of the corridors leading into the regions on each player’s
side of the map should be the same.

1.2 Contributions

We present a new procedural content generation technique that attempts to tackle the problem

of generating balanced terrains. Our approach combines the speed and versatility of automated
generation methods with the expertise of game designers, who can take the gameplay consider-
ations listed in the previous subsection into account.

We have implemented a tool that aids game developers in the creation of strategy game maps.
The tool allows a designer to quickly and intuitively define the overall layout that a terrain should
have. The user of our tool draws a planar graph that represents the high-level structure of the
terrain that will be generated. Graph nodes represent regions, and edges stand for corridors.
The procedural generation method we will present generates terrains with regions and corridors
structured according to the user-drawn graph.

For each node p in the graph, we ask the user to define a radius r,. For each edge e in the
graph, the user should specify a length [., a corridor width w,, and a slack factor s..

Our method applies a graph layout algorithm based on the approach described by Dwyer [5]
to the user-drawn graph. We also make use of a modified version of the force-directed method
introduced by Fruchterman and Reingold [I0]. If the layout method is able to find a graph layout
without overlapping nodes or intersecting edges, our method ensures that the generated terrains
will have a number of geometric properties that match the user’s specifications.

Connectivity structure. If there are n nodes in the initially provided graph drawing, there
will be n nodes in the generated terrain. There will be a terrain corridor directly connecting the
two regions corresponding to two graph nodes p and ¢ if and only if there is an edge connecting
two nodes p and ¢ in the initial graph. The terrain’s regions and corridors have a connectivity
structure equivalent to the user-provided graph embedding.

Region size. The size of each region in the produced terrains is at least as large as the user
wanted. It is difficult to define where the exact boundaries between open regions and corridors
lie in the generated terrains, and humans do not always subdivide terrains in the same way
(see for example the study by Perkins [25]). Therefore, we define the size of a region to be the
distance from its center to the nearest inaccessible obstacle. Formally, for each region P with
corresponding graph node p with radius r,, we define the position of the center of that region,
P, to be equal to the position p of the node, p. For each region in the generated terrain, the
following property holds:
di(P,v) > 1,

where v is the inaccessible point on the map nearest to P, and d; indicates the length of the
shortest path that ground-based game units traveling only over accessible areas would take to
travel between two points.

Corridor width. For each initial edge e, the width of the corresponding terrain corridor is at
least as large as the user-defined value w,. Corridors are bounded by two walls of inaccessible
obstacles. If we define the medial axis A of the corridor as the set of all points in that corridor



where the distance to the nearest points on both corridor walls is equal, then the following
property holds:
Va € A:di(a,v) > w,

where v is any of the inaccessible points on the map nearest to a, which is a point on the medial
axis. There is also at least one point a’ on the corridor’s medial axis where d;(a’,v) = we.

Inter-regional distance. If a pair of nodes (p, ¢) is connected by an edge e, the corresponding
regions P and @ (with region center positions P and Q) are directly connected by a corridor.
Our method attempts to generate terrains with the following property:

dt(P>Q) =lc - 5¢

where [, is the user-specified edge length and s. is the edge’s slack factor, also set by the user.
Unlike the previously listed properties, this property is only approximated; it is not guaranteed
to be present.

As we mentioned earlier, if the obtained graph layout has overlapping nodes or intersecting
edges, these properties will no longer be true for all regions and corridors.

These geometric properties affect the gameplay balance. If the designer creates graph with
balanced specifications (ensuring, for instance, that the distance between all players’ starting
regions is equal), and the input is reasonable (meaning it is not impossible to place all nodes on
the map without overlap), our method produces reasonably balanced terrains, since it takes the
mentioned properties into account.

We experimentally evaluated our approach to find out how well the geometric properties of
the produced terrains match the properties that were specified by the designer. Since we focus on
the generation of balanced maps, the ten test cases used as input in our experiments, which are
based on StarCraft II ladder maps, are symmetric and perfectly balanced. However, it should
be noted that our method can be used to create a wide range of gameplay scenarios—symmetric
or asymmetric, balanced or imbalanced.

We found that our algorithm was able to find graph layouts without overlapping nodes or
edge crossings—and therefore realizing the first three of the mentioned geometric properties—
for a wide range of tested values for the corridor widths (we tested values between 5 and 25;
for comparison, the total size of our generated maps is 513 x 513 units). Lower values for the
slack factor (up to 1.4) resulted in high-quality layouts, but high slack factors were found to
be problematic, particularly for denser graphs; in those cases, we cannot guarantee that all
user-specified constraints are satisfied.

Finally, we found that the length of the paths between different regions in the produced
terrains are on average about 80% of what the designer specified. It should be easy to correct
for this factor in the graph design tool, resulting in paths whose length more closely matches the
designer’s intentions. We believe the resulting terrains would be suitable for casual gameplay.

1.3 Outline

The remainder of this thesis is structured as follows. In Section [2] we give an overview of prior

academic work related to this thesis. We review different types of generic procedural terrain
generation techniques, strategy game map generators, and strategic map analysis methods for
strategy games. Section [3| describes our terrain generation algorithm. The experiments we
performed to evaluate our algorithm, as well as the obtained results, are described in Section [4
We conclude with a summary and suggestions for future work in Section



Appendix [A] contains a listing of all the test cases used in our experiments. Appendix [B]
shows a selection of generated graph layouts, along with the corresponding accessibility maps. A
number of diversity images are shown in Appendix [C] Finally, Appendix [D] contains renderings
of some of our generated terrains.



2 Related Work

Procedural content generation techniques have been used to automatically generate a wide
variety of content for video games. Examples of procedurally generated game content include
textures, vegetation, puzzles, stories, levels, and more. See the book by Shaker et al. [27] and
the survey by Hendrikx et al. [I4] for an overview of procedural content generation methods for
games.

The methods that can be used to procedurally generate outdoor game environments are
particularly relevant to this thesis. In video games, such environments are often based on a
grid data structure. Two-dimensional maps are usually divided into tiles of varying terrain
types, while three-dimensional maps are typically based on heightmaps—two-dimensional grids
of terrain elevation values.

In Section [2.1] we will look at various methods for generating random heightmaps. These
can be used to generate landscapes for many different applications, including but not limited
to video games. In Section [2.2] we examine procedural techniques that have been specifically
designed to generate video game maps, and take gameplay concerns into account. Finally, we
look at some terrain analysis techniques used in game Al agents in Section [2.3

2.1 Heightmap Generation

Noise functions are often used to generate elevation values or gradient vectors on a course
grid, which are then interpolated to compute heightmap values; the method by Perlin [26] is a
well-known example. Several levels of noise can be rescaled and added together to create natural-
looking mountainous terrains, like in the technique presented by Musgrave et al. [22]. The book
by Ebert et al. [6] provides an overview of noise-based procedural techniques.

Another class of heightmap generation algorithms starts off by generating a low-resolution
heightmap. This map is then iteratively subdivided, with finer, randomized details being added
in each subdivision step. See for example the pioneering papers by Fournier et al. [8] and
Miller [21].

The aforementioned procedural generation methods are able to produce terrains that have a
similar visual appearance to natural landscapes. This is fine for games such as flight simulators,
where the terrain merely serves as a backdrop and has little influence on gameplay. However,
for many other kinds of games, such as first-person shooters or strategy games, the layout of the
terrain greatly affects the player’s movements and actions. Generating terrains that simply look
natural is not good enough for such games; we would like the the terrain generators to be able
to handle more strict constraints.

For instance, it is usually desirable that strategy game maps are balanced. A terrain generator
that created randomized terrains without regard for gameplay concerns would be unlikely to
produce balanced maps, which makes it unsuitable for generating maps for competitive strategy
games.

Some procedural methods offer the user more control over the placement of mountains, valleys,
and other terrain features. These techniques can be used by a game designer to craft terrains
that are suited for the game they are developing. The designer could, for example, place terrain
features symmetrically such that the maps are balanced.

Stachniak and Stuerzlinger [29] allow the user to define constraints via mask images. A local
search algorithm is used to find a set of deformation operations that are applied to a randomly
generated base terrain to fit the provided constraints.

Zhou et al. [35] allow the user to sketch a map of large-scale terrain features, such as mountain
ridges. Patches of terrain are then extracted from a user-provided heightmap and placed in



positions that match the features sketched by the user. This does not provide the user with
control over small details in the terrain, however. By contrast, the category of sketch-based
generation techniques does allow the user to determine the precise placement of terrain features.
This category—which includes methods by Gain et al. [TI1], Hnaidi et al. [I6], and Bernhardt et
al. [3]—consists of techniques that generate terrains that closely follow 3D curves sketched by
the user.

A downside of methods that heavily depend on the user to define what the terrain should
look like is that the use of such methods is rather labor-intensive for the game designer. This
is especially true if the designer has to take gameplay balancing into account; ensuring that the
distances between all player bases are equal, for example, requires a lot of painstaking tweaking.
Additionally, since there are so many user-specified constraints that define the exact placement
of terrain features, the diversity of the output of this class of terrain generators is also rather
limited.

2.2 Terrain Generation for Strategy Games

There are some procedural methods that are specifically geared towards generating terrains for
strategy games. Olsen [24] combined a noise-based terrain with hills with adjustable heights in
a terrain generator that creates terrains that can be used in strategy games. The generator aims
to generate terrains that meet two playability criteria: the heightmap cells with a slope small
enough to allow for unit movements must form a large connected area, and there should also be
enough flat area of sufficient size to allow for the placement of buildings.

Another procedural generation technique that ensures generated terrains have enough accessi-
ble area to be used in a strategy game was invented by Frade et al. [9]. They used an evolutionary
algorithm to evolve mathematical expressions that define the elevation values of heightmap cells.
The terrains generated by this technique are filled with smooth, curving features and geometric
shapes and have a distinct, otherworldly look. They have a lot of accessible area, while there is
simultaneously a lot of inaccessible terrain forming obstacles for units to move around.

The previous methods do not consider the balance of the generated maps. Strategy game
matches played on the produced terrains could be very unfair. The method by Togelius et
al. [B1], on the other hand, does aim to produce fair maps. This method makes use of an
evolutionary algorithm. It optimizes the placement of player bases, resource locations, and
Gaussian-distribution-shaped mountains on a heightmap such that games played on the map
would be fair for all players. They used various fitness functions to produce balanced maps,
favoring terrain properties such as equal distances between all player bases, and equal distances
between each player’s base and the nearest resource location.

Additionally, Togelius et al. generated 2D tile-based maps for the strategy game StarCraft
using similar fitness functions, evolving the locations of player bases, resources, and patches of
inaccessible tiles.

Another method by Mahlmann et al. [20] generates 2D maps for a simpler strategy game,
Dune 2, using an evolutionary algorithm. The placement of patches of different types of terrain
(including the player starting zones) are evolved to obtain random two-player maps that are fair
for both players.

Uriarte and Ontandén [33] generated symmetric, balanced StarCraft maps. They created ter-
rain regions based on the Voronoi diagram of random 2D point sets, complete with game resources
and player starting positions. According to the authors’ metrics, the balance is comparable to
real tournament maps.

Barros and Togelius [2] used real-world terrain data and resource maps to produce maps for
the strategy game Civilization. The player starting positions were evolved with an evolutionary



algorithm to find maps where the distance between player base and resources was equal for each
player.

Liapis et al. [I9] created a tool that allows the user to make a sketch of a strategy game
map on a small 2D grid. Each tile on the grid can be passable, impassable, a player base, or
contain resources. The tool evaluates the sketched map using various metrics, such as resource
safety (the number of resources that lie very close to a single base) and an exploration score
(determining how hard it is for enemies to find each base). These allow the user to see how
balanced their current sketch is. The tool also provides suggested alternative or improved maps,
evolved using a genetic algorithm, and can generate a detailed, high-resolution map based on
the user’s final sketch.

Smith and Mateas [28] describe how answer set programming is used in the real-time strategy
game Warzone 2100 to generate maps. The user defines a number of desired properties up front
that the maps should have. For instance, the distance between player bases and resources should
be maximized, and different player bases should be equally well protected by surrounding cliffs.
An answer set solver then searches for the optimal terrain elevation values and base and resource
positions. Additionally, answer set programming was used to optimize the placement of buildings
inside player bases.

2.3 Strategy Game Terrain Analysis

Procedural content generation is not the only area of research interest related to strategy games.

A number of papers describe techniques for analyzing terrains; such techniques are often used in
game Al agents. Al players in a strategy game need to know in which locations to build their
bases, where to place defenses and retrieve resources, and where to attack the enemy. There are
various techniques, such as influence maps [32] and potential fields [12], that allow AT agents to
perform spatial reasoning. The paper by Lara-Cabrera et al. [I8] provides an overview of such
methods.

Many such techniques depend on game-specific information about dynamically changing and
often only partially-known game state, such as the position of enemy forces, or the type and
location of resources. These methods do not fall inside the scope of this section. We will only
look at techniques that make a strategic analysis of the base terrain itself—a tile-based map or
heightmap with passable and impassable areas.

Forbus et al. [7] computed a Voronoi diagram of a terrain’s impassable obstacles, with each
Voronoi cell containing all points that are closest to one particular terrain obstacle. Regions of
free space, which lie around Voronoi vertices, are then identified. The traversable areas that
do not lie inside free regions are marked as corridors. This subdivision of the terrain into free
regions and corridors can be used by an Al agent to make decisions. For instance, when a new
base should be constructed, an agent can choose a large free region with enough room to contain
various structures.

Higgins [I5] presented a technique for identifying choke points. An influence aura around
each obstacle is grown outwards. The points where two different auras meet are marked as choke
points. Choke points are good places for an Al agent to place defenses, and are likely locations
where enemy units may lie in wait.

A similar technique that uses expanding auras to detect choke points and regions was intro-
duced by Obelleiro et al. [23]. In addition to computing auras, they calculated a large number
of paths between random points on the terrain. This pathfinding data was used to discard false
choke points in isolated corners of the map (those choke points had few paths crossing through
them) and sort the remaining choke points based on strategic importance (the more paths cross
through a choke point, the more important it is).



The map decomposition method by Halldérsson and Bjérnsson [13], which can identify regions
and choke points, is similar to the expanding obstacle auras used by Obelleiro et al. and Higgins.
The difference is that this algorithm simulates the map being flooded with water while keeping
track of the rising water level. Essentially, auras are grown from the centers of accessible areas,
rather than around inaccessible obstacles.

Perkins [25] described how most aforementioned choke point detection methods fail to detect
choke points whose two walls are part of the same obstacle. Such choke points form the entrance
to a region that has no other entrances; that region would be cut off from the test of the map if
that choke point were to be walled off. The method by Perkins, on the other hand, can detect
that type of choke point, as well as the usual kind where the choke point walls belong to two
different obstacles. Perkins computed the Voronoi diagram of the line segments that form the
boundaries of impassable polygonal obstacles. Next, this Voronoi diagram was pruned, forming
a graph with nodes that are then marked as belonging to regions and choke points. Uriarte and
Ontanén [34] further improved this method, making it more robust and efficient.

The algorithm by Bidakaew et al. [4] finds the medial axis of a map’s accessible areas. This
medial axis is then used to detect choke points. This method can detect three different types
of choke point: narrow openings between two different obstacles, narrow openings between two
parts of the same object, and area choke points, which are narrow corridors rather than a single
point.
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3 Method

A large part of gameplay balancing concerns the placement and dimensions of regions and choke

points in the terrain. As we have seen in the previous section, strategy game Als often make use
of this information. Most map generator algorithms, however, do not explicitly take this into
account; our method, which aims to procedurally generate balanced strategy game maps, is one
of the first.

We implemented a tool that allows a game designer to specify how many regions there should
be, and how large they would like each region to be. They can also define which regions should be
connected by corridors, how wide each corridor should be, and the distance units have to travel
between connected regions. With this tool, the designer can craft a specification that describes
a balanced terrain. They can ensure that each player’s starting region has the same size, that
the distance between all player bases is the same, that choke points have the same width on each
player’s side of the map, and so on.

Our terrain generation method will attempt to generate terrains that match the designer’s
specifications, while preventing different regions and corridors from overlapping with each other.
If they did overlap, a direct connection between different areas of the map is introduced at the
point of overlap, while those different areas should have been separated. This would result in
game units being able to take shortcuts, reaching distant locations much faster than intended,
which would upset the game balance.

In Section [ we evaluate how well our generator performs based on the results of several
experiments. In the rest of this section, we will describe the terrain generation method we
implemented.

3.1 Overview

Our method accepts a graph drawing as input, drawn by a game designer. In this graph, nodes
represent terrain regions and edges represent corridors. The designer assigns various properties
to the nodes and edges, such as node sizes and edge lengths, that affect the map’s balance; see
Section

In the initial layout phase, the terrain generator takes the designer’s graph drawing and
applies a graph layout algorithm that makes use of constraint projections, first presented by
Dwyer [5]. The layout method is used to compute a graph layout with edge lengths that match
the designer’s intentions as closely as possible, without any overlapping nodes. This is described
in Section

One component of our layout method is a modified version of the Fruchterman—Reingold
force-directed graph layout algorithm, described in Section Attractive and repulsive forces
between all connected pairs of nodes move the nodes around in an attempt to give all edges
the desired length specified in the input. Additionally, repulsive forces force apart overlapping
nodes. These forces work in conjunction with the aforementioned constraint projections.

The corridor layout phase comes after the initial layout phase. In this phase, chains of corridor
nodes, connected by corridor edges, are added to the graph. These chains represent space in the
terrain that will be occupied by corridors. Another run of the graph layout algorithm finds good
positions for the corridor nodes such that they do not overlap each other and each corridor node
touches the neighboring nodes in its chain. This process is described in Section

A third kind of force, the stiffness force, was added to the force model to increase the angles
between incident corridor edges in each chain. This straightens the corridors, making for larger,
smoother bends. See Section [B.6] for more details.

After the graph layout method has converged (or it has been terminated after reaching the
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maximum number of iterations), an accessibility map is created; see Section This two-
dimensional grid contains Boolean values that determine whether the terrain in that cell should
be accessible or not. All accessibility map cells that are covered by a graph node’s circular shape,
as well as all cells that fall inside the convex hull of two nodes that are connected by a corridor
edge, are marked as accessible. All other map cells are marked as inaccessible.

An important component of our algorithm that improves the quality of the created accessi-
bility maps are the node repulsion radii. These radii, which are larger than the nodes’ regular
radii, are computed for every node after the corridor node chains are added. They are used to
move overlapping nodes apart, preventing them from overlapping with the convex hull of other
pairs of nodes that are connected by a corridor edge. This prevents corridors from overlapping.
A detailed description is given in Section [3.8

Section (3.9 explains how the accessibility map is used to generate a heightmap that describes
a three-dimensional terrain. A 3D terrain mesh, ready to be used as the base terrain in a strategy
game, can be generated based on the heightmap.

Finally, Section describes various details that are specific to our implementation of the
described terrain generation method.

3.2 Algorithm Input

Our terrain generation method takes a user-provided embedding of a weighted planar graph
G = (V,E,wy,w.) as input. V is the set of nodes, and F is the set of edges; all edges are
straight line segments. The nodes and edges provided by the user in the graph drawing are
called initial nodes and initial edges. This graph drawing is an abstract representation of the
terrain that will be generated; see Figure [I] for an example.

For each initial node, a circular-shaped region of open, accessible space will be placed in the
generated terrain’s heightmap, centered at that node’s final position. w,: V — Rs¢ maps nodes
to their radius; a positive value that determines how wide that node’s region in the terrain should
be. The designer can use this to influence gameplay, since larger regions offer more space in a
strategy game for players to construct buildings and place defenses than smaller regions.

A corridor of traversable terrain which connects two regions will be generated for each initial
edge. w.: F — R+ associates a desired positive length with each edge. The algorithm will
reposition connected nodes in an attempt to make the distance between them equal to the
desired edge length. The value the user defines is taken to be the distance between the boundary
of two nodes. By constraining this property to positive values, we ensure two regions will never
overlap when the desired distance between them is achieved. By tweaking the assigned edge
lengths, the user can change the distances between terrain regions. The algorithm cannot set
edges to their desired length if the specification contains impossible situations (such as a cycle of
three edges, whose lengths violate the triangle inequality), so such situations should be avoided.

3.3 Constrained Graph Layout

The terrain generator starts off by performing a two-phase graph layout algorithm. It starts
with the initial layout phase, which operates on the input graph and is described in the next two
sections. After that, the graph is extended with new nodes and edges, and a modified version of
the layout method then finds a good layout for that extended graph; see Section

The goal of the initial layout phase is to produce a graph drawing without any overlapping
nodes or crossing edges, where each initial edge has a length equal to the user’s specifications.
This is important because the nodes represent regions in the terrain. If the terrain is to be used
in a strategy game, the distances between regions need to match up with the designer’s intent.

12



For example, it would be unfair if one player had to travel a much shorter distance from their
starting region to the nearest resource location than other players. The map designer could set
the desired edge lengths between starting regions and nearby resource regions to be equal for
each player, but this is only useful if the right layout method is chosen. A layout algorithm that
produces wildly diverging edge lengths could result in an imbalanced map where one player has
significant advantages.

We chose to apply a constrained graph layout algorithm based on the method introduced
by Dwyer [5]. This algorithm supports graph layout subject to Euclidean distance constraints
between nodes.

We generate a distance constraint between each pair of nodes that is connected by an initial
edge. Specifically, for the positions p and q of two nodes connected by an edge with desired
length k, the following constraint is generated:

Ip—a| =k

Dwyer’s method can easily incorporate non-overlap constraints for circular nodes. For each
pair of nodes p and ¢ with radii 7, and r4, we generate the following constraint:

p—al>m+7y

The layout method considers each constraint in turn, one at a time. For every constraint,
the two involved nodes are moved by the same distance, chosen to be as short as possible to
satisfy that constraint. This adjustment of the node positions is called a constraint projection.
For the edge length constraint, for example, a constraint projection moves a pair of nodes by the
smallest vector r that satisfies the following:

(p—r)—(a+r) =k

Like Dwyer, our layout algorithm is performed in three stages. First, an iterative graph layout
method without any constraints is executed to obtain an initial layout. This layout method is
repeated until the nodes have converged upon their final positions, or a maximum number of
iterations is reached.

Next, a number of layout iterations are performed with added distance constraint projections
that are performed at the end of every layout iteration; this is the second stage. Finally, in
the third stage, non-overlap constraints are added, which are also projected at the end of every
layout iteration.

Since each distance constraint is projected in turn, a projection can violate constraints that
were solved by earlier projections; however, Dwyer found that simply cycling over all constraints
several times per layout iteration, projecting them one by one, gives good results. We perform
50 constraint projection cycles after each layout iteration in the second stage. In the third stage,
with the added non-overlap constraints, 10 constraint projection cycles are performed at the end
of each layout iteration. In our implementation, we cycle through all nodes and edges in the
order they were added to the graph when performing both constraint projections and force-based
graph layout iterations.

13



3.4 Modifying the Fruchterman—Reingold Layout Method

The method by Dwyer requires a graph layout algorithm that performs layout iterations. We
chose to use a force-directed graph drawing algorithm with a force model based on the method
by Fruchterman and Reingold [10].

In the force-directed method by Fruchterman and Reingold, each node in the graph applies
an attractive force f, to the other graph nodes to which it is connected via a graph edge. This
attractive force pulls connected nodes closer together. Simultaneously, repulsive forces f, act
between all pairs of nodes (whether those nodes are connected or not), pushing nodes apart.
The forces are defined as follows:

d2
fa —z

2
=T

d is the distance between the two nodes for which the forces are being calculated; k is the optimal
distance between nodes set by the user. Crucially, the attractive and repulsive forces cancel out
at a distance of exactly k, which is why this force model was chosen for our graph layout method.

Unfortunately, the original Fruchterman—Reingold method only guarantees that the distance
between nodes is k for a single, connected pair of nodes. Once more nodes are added to the
graph, the additional nodes’ repulsive forces will result in a total force sum that does not cancel
out at a distance of k—the k parameter merely serves as a hint to the algorithm, not as a hard
constraint.

As a result, using a plain, unmodified Fruchterman—Reingold method for the layout iterations
in Dwyer’s constraint projection algorithm results in blown-up graphs whose nodes are pushed
away from the center, towards the edges of the surface upon which the graph is drawn. This
is the peripheral effect described by Hu [I7]: nodes close to the center tend to be further apart
than nodes near the boundary, even if the desired distance between nodes provided to the layout
method is constant.

In one example, Hu describes how edge lengths varied between about 1.5 and 4.1, while k
was set to 1. While Dwyer’s constraint projections could restore the proper distances between
nodes, starting with a blown-up graph could result in a different graph embedding than the user
drew and often introduces edge crossings, which is unacceptable. For our purposes we need a
layout method that preserves the user’s graph embedding and produces edge lengths that closely
match k.

In order to remedy this, we opted to modify the Fruchterman—Reingold algorithm. Specifi-
cally, we chose to compute the attractive and repulsive forces for each pair of connected nodes
without taking other nodes’ repulsive forces into account. In other words, rather than repulsive
forces acting on all node pairs, there are now repulsive forces pushing each pair of connected
nodes apart—just like the attractive forces pull each pair of connected nodes together.

Fruchterman and Reingold chose a value of k that results in a uniform distribution of nodes.
That is not desired here; instead, the input graph edges contain desired lengths, which are used
as values for k. Note that & was a global constant in the original algorithm, while it varies per
graph edge here.

Additionally, if two non-adjacent nodes p and g overlap, a small repulsive force with k = r,+7,
is applied to the two nodes to remove the overlap. Since they are not connected by an edge, the
repulsive force is removed once p and ¢ cease to overlap.

During the graph layout algorithm, the positions of the nodes are constrained, forcing the
entire node to remain inside the rectangular surface that contains the graph drawing.
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The result of the modified Fruchterman—Reingold algorithm is a graph whose nodes are
not pushed apart as strongly as they would have been if the unmodified algorithm was used.
The resulting layout will not have uniformly distributed nodes (which is a property that the
original Fruchterman—Reingold algorithm tries to achieve), but the distance between each pair
of connected nodes should closely match the desired edge length as specified by the user, with
few overlapping nodes.

The force-directed layout method only makes a best effort to produce a layout that approx-
imately satisfies the distance and non-overlap constraints; it cannot make any guarantees. The
layout method is therefore combined with the constraint projections by Dwyer to better meet
the constraints. If the user gives a realistic input, without constraints that are impossible to sat-
isfy, the layout algorithm should produce a graph layout with no crossing edges, no overlapping
nodes, and edges whose lengths closely match the desired edge lengths given by the user.

Figure 1: An example of a graph after the Figure 2: The graph from Figure[T] after the
initial layout phase. corridor layout phase.

3.5 The Corridor Layout Phase

After the graph layout method has produced a good layout for the initial graph, the approximate
location of open regions in the terrain is known. Terrain corridors must be placed for each initially
drawn graph edge, connecting the various regions. In addition to the desired length of an initial
edge, there are two more user-defined properties per edge that allow one to influence the corridors
that will be generated.

First of all, each initial edge has a width property, determining the width of the corridor in
the generated terrain. In a strategy game, it is easier for large troop formations and large units
(such as tanks) to move through wide corridors than narrow corridors. The width is typically
smaller than the diameter of the nodes on either end of the edge, resulting in a relatively narrow
corridor between two wider regions.

Secondly, the length of the corridor can be changed too. As mentioned before, each initial
edge has a desired length property that determines the Euclidean distance between two regions.
The longer the desired edge length, the longer the length of the corridor. However, in a natural
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terrain, corridors connecting regions are not perfectly straight lines—they tend to meander. The
more a corridor twists and turns, the longer it would take for units to travel from one end of the
corridor to the other.

A user-specified slack factor property is assigned to each initial graph edge to determine how
twisting the corresponding terrain corridor will be. Like a rope, little slack results in a relatively
tight, straight path from beginning to end, while a lot of slack results in more bends in the path,
increasing the travel time between the two ends of the corridor.

Given two regions P and @ that are connected by a corridor, with P and Q being the positions
of the region centers and rp and rg the radii of the regions, the slack factor property of the edge
between P and @ influences the length of the connecting corridor—and therefore the time it
would take units to travel between P and Q in a strategy game—in the following way:

distance(P, Q)
= slack-factor(initial-edge(P, @)) - length(initial-edge(P, Q))
=rp + rg + length(corridor(P, Q))

After the initial layout phase has concluded, a chain of corridor nodes, each one connected to
the next in the chain by a corridor edge, is inserted in the graph for each initial edge connecting
two initial nodes p and ¢. The first corridor node in the chain is connected by a corridor edge to
p, and the chain’s last corridor node is connected to ¢q. Each chain of corridor nodes determines
the position of one terrain corridor. For an example, see Figure

Every corridor node gets a diameter based on the corresponding initial edge’s width w that
was set by the user. In order to generate natural-looking corridors, we try to select random
corridor node diameters between w and 2w when possible. The upper limit of 2w was chosen
because the resulting corridors’ visual appearance seemed acceptable to us; other implementation
choices are possible too. In edge cases where the desired corridor length is very wide (more than
half as wide as the smaller of the two regions being connected), we additionally constrain the
corridors to be no wider than the two regions between which the corridor runs.

Corridor nodes with random diameters are added to the chain until the sum of the corridor
node diameters in the chain is at least length(corridor(P, @)). We also ensure that at least one of
the nodes in each chain has the minimum diameter w. This is important for gameplay purposes;
if the narrowest point in the corridor were wider than w, it would be too easy to move through
the corridor, violating the designer’s specifications. Finally, the list of corridor nodes in the chain
are randomly shuffled to avoid any directional artifacts.

The corridor nodes are placed in between the regions P and ). Specifically, they are placed
at uniform intervals on the part of the edge between P and @ that lies outside the boundaries of
P and Q. In this initial position, the corridor nodes in a chain overlap each other. The layout
algorithm will quickly push the nodes apart, removing any overlap. If all corridor nodes have an
initial position exactly on the straight line between two region centers, an edge case occurs in
which the nodes do not push each other outwards, but only along the edge, which causes node
overlap to remain present. We add a very small random offset to the initially computed position
of each node; this causes the nodes to be correctly separated during the graph layout algorithm.

All corridor edges between two nodes p and ¢ in the chain have a desired length of r, + r4;
we want the nodes in the corridor chain to touch each other without overlap.

When a chain of corridor nodes has been inserted for each initial graph edge, the three-stage
layout method by Dwyer is run again. This results in a final graph layout with a chain of touching
corridor nodes of the appropriate length running between each connected pair of initial graph
nodes.

If the input constraints are hard to satisfy, the constraint projections can introduce edge
crossings in the corridor layout phase. These crossings may or may not be resolved in later

16



layout iterations. If we detect edge crossings in 50 consecutive layout iterations, we remove all
corridor nodes and edges and create new corridors, restarting the corridor layout phase. It should
be noted that edge crossings involving initial edges do not matter and are ignored. Crossings
between two corridor edges, on the other hand, result in corridors that cross each other in the
generated terrain, which should be avoided.

3.6 Improving the Corridors

The graph layout method we described thus far tends to form zig-zagging corridor node chains,
with a large number of sharp turns along their paths. This does not look very much like corridors
in naturally formed terrains. The zig-zagging artifacts can also result in a significantly shortened
travel time between regions; see Figure[3] We added a third force, the stiffness force, to the force-
directed layout model alongside the attractive and repulsive forces to improve the appearance
of the corridors. The stiffness forces straighten the corridor node chains, causing corridors to
smoothly curve rather than zig-zag. This also causes the travel time through a corridor to more
closely match the game designer’s specifications; see Figure

Figure 3: A chain of corridor nodes, with
the corridor edges drawn on top. This lay-
out was produced without stiffness forces.
The corridor edges form an unnatural zig-
zagging chain, and units traveling through
the corridor would be able to travel in a
straight line, making the travel time far
shorter than intended.

Figure 4: A chain of corridor nodes, with
the corridor edges drawn on top. Unlike
the situation from Figure [3] this layout was
produced with stiffness forces. The chain of
corridor edges curves smoothly, and units
would have to follow the bends as well, mak-
ing the travel time much closer to what the
designer had in mind.

In the corridor layout phase, the stiffness forces are calculated and accumulated for each node,
just like the other forces; a node’s displacement in the force-directed layout method is based on
the sum of all three types of forces. In the initial layout phase, there are no stiffness forces.

For every corridor node p, the stiffness forces aim to push apart the two neighboring nodes ¢
and r; see Figure |5l In order to determine the stiffness force that p applies to its neighbors, the
angle # between the two corridor edges incident to p is calculated; § = Zqpr.



The stiffness force fs acting on g caused by node p is perpendicular to pq, the corridor edge
connecting p and ¢q. The force points away from 7. Similarly, p also causes a stiffness force to act
on r, which is perpendicular to pr and points away from q. See Figure ol Both stiffness forces
have the same magnitude, described by the following formula:

T—0

s

|f8| = Cstiffness * StiﬂneSS(p) .

0 is measured in radians here. The stiffness force is largest when 6 is small; it linearly decreases
to zero as € increases to the maximum angle of 7.

Each node p has a stiffness constant stiffness(p) that determines how hard its adjacent corridor
nodes are pushed apart. We opted to give each node a random value between 0 and 1 when that
node is created. The effect of giving different corridor nodes different stiffness values is that the
curvature varies along the path of the corridor. The corridor will have sharper turns when it
passes through corridor nodes with a small stiffness value, since those nodes are unable to push
their neighbors very far apart. Smoother bends are encountered where the corridor nodes have
a high stiffness value, since those nodes pushed their neighbors far apart, straightening the path
of the corridor.

Finally, a global constant csgmess is used to tweak the overall appearance of the generated
corridors. A large value for this constant results in smoothly curving corridors, while a small
value results in more and sharper turns.

Since most corridor nodes p are connected to two adjacent corridor nodes, both neighbors
will apply a stiffness force to p. These two stiffness force vectors are added up (together with
the attractive and repulsive force vectors) to calculate p’s displacement vector during the layout
iterations in the corridor layout phase.

Figure 5: Corridor node p causes stiffness forces f; to act on its neighboring corridor nodes, ¢
and r. The magnitude of fs depends on the indicated angle, . Note that ¢ and r would also
both cause a stiffness force to act on p; those vectors are not displayed here.
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3.7 Creating the Accessibility Map

Once the layout of the graph with added corridor nodes has been computed, an accessibility
map is created. This map indicates which parts of the plane are accessible to game units and
structures, and which parts are inaccessible. In our implementation, the accessibility map is a
two-dimensional grid that covers the surface which contains the graph drawing. We chose to
use a grid-based representation because, as will be seen in Section it is straightforward to
convert a grid-based accessibility map into a heightmap. In our particular implementation, this
heightmap can then be used to generate a 3D terrain with little effort; see Section We
found that a grid with a few hundred thousand cells offered a high enough resolution to produce
moderate-sized heightmaps and terrains for strategy games. However, it would also be possible
to use a vector-based accessibility map, which would have an effectively unlimited resolution,
should one so desire.

Each grid cell contains a Boolean value that determines whether the terrain in that cell is
accessible or not. The terrain generator will ensure that all map cells marked as accessible will
indeed be reachable by game units that start from some known accessible start cell, such as a
player’s starting position. All cells marked as inaccessible, on the other hand, cannot be reached
by game units from any accessible position.

All map cells whose center lies within a node’s circular region are marked as accessible. For
every pair of nodes that is connected by a corridor edge, the convex hull of the two nodes’ circles
is constructed. All accessibility map cells whose center that lies inside such a convex hull are
also marked as accessible. Every cell whose center does not lie inside any of the node circles nor
any of the constructed convex hulls is inaccessible. Figure [6] shows an example.

Figure 7: The heightmap that was gen-
erated based on some Perlin noise and a

Figure 6: The graph from Figure [2] on top
of its accessibility map. Black pixels denote
inaccessible cells. Cells that are white or
underneath nodes are accessible. The initial
graph edges have been hidden for clarity.

blurred version of the accessibility map
from Figure [6] The lighter a pixel is, the
lower the corresponding heightmap cell’s el-
evation.
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3.8 Using Repulsion Radii to Resolve Node Overlap

As we mentioned earlier, different regions and corridors must not overlap to prevent the formation
of unwanted shortcuts in the terrain. Due to the non-overlap constraints, the graph layout
method already ensures any nodes (both initially placed nodes, which become terrain regions,
and corridor nodes that form part of the corridors) do not overlap each other. However, the
previously described non-overlap constraints do not fully prevent a node from entering the area
inside the convex hull of another pair of nodes. If that were to happen, separate areas of accessible
terrain would be erroneously connected, as is demonstrated in Figure

To prevent nodes from overlapping with convex hulls, we modify the generated non-overlap
constraints. Figure[J]shows an example of a situation where repulsion radii prevent overlap. Our
approach is inspired by the paper by Stolpner et al. [30], who approximated a 3D shape by a
union of spheres.

Figure 8: A problematic situation that oc-
curred when repulsion radii were disabled.
Nodes from one corridor overlap with the
convex hull of connected node pairs from a
neighboring corridor. This causes the cor-
ridors in the accessibility map (seen in the
background of the image) to overlap, while
they should have been separated.

Figure 9: A situation similar to the one dis-
played in Figure This time, repulsion
radii (the large gray radii around the nodes)
were enabled. The layout method uses the
repulsion radii in the calculation of non-
overlap constraints and repulsive forces, en-
suring the corridors in the accessibility map
do not overlap.

Each convex hull is formed out of the circles of two graph nodes p and ¢ that are connected
by a corridor edge. Since, as mentioned before, the length of that corridor edge is equal to 7, + 7,
(the sum of the radii of the two incident nodes), the circles should be touching each other at a
single point v after the graph layout algorithm has concluded (see Figure[10). In such a situation,
there are two external bitangent lines: two lines that are tangent to both circles, and for which
the circles fall on the same side of the line.

For each pair of nodes connected by a corridor edge, we find the circle intersection point v
and the point v on one of the external bitangent lines ¢ (it does not matter which one) nearest to
v. If the radius of the two circles were increased until both circles touched v, the whole convex
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hull of the original two circles would be inside the area covered by the enlarged circles. We store
the radii of the enlarged circles, r;, and T;; such a radius is called the repulsion radius.

A node p usually has multiple incident corridor edges. A convex hull is computed for each
one, resulting in multiple computed values for r;,; each value is the enlarged radius necessary
to contain a different convex hull. A node’s repulsion radius is the mazimum of all computed
enlarged radii for that particular node.

During the graph layout algorithm, we use the repulsion radii when generating non-overlap

constraints, rather than the regular node radii:
! !/
p—ql >+,

This ensures no nodes overlap with any convex hulls of other node pairs. If a node pair is
connected by a corridor edge, the nodes are supposed to touch, and the repulsion radii should
indeed overlap, as in Figure That is why the non-overlap constraints are only generated for
pairs of nodes that are not connected by a corridor edge.

We also use the repulsion radii in the computation of the repulsive forces between two non-
adjacent overlapping nodes, again pushing those nodes apart until the distance between the nodes
is at least ), + ;. The regular node radius is still used when generating the accessibility map.

Figure 10: Computation of the repulsion radii r), and 77 of the nodes p and q. We take the
point where the two nodes intersect, v, and find its orthogonal projection v’ on one of the circles’
external bitangent lines, . The repulsion radius of a node is the distance from its center to v’.

3.9 Generating the Terrain

The next step is to generate the terrain on which the game will be played. For simple tile-
based games which only need a Boolean accessibility value per tile, the accessibility map can be
used directly. For more complicated games with three-dimensional terrain, a heightmap can be
generated based on the generated accessibility map, and after that the terrain itself.

The heightmap is a grid of the same size as the accessibility map. Every cell has an elevation
value that indicates the height of the terrain at that location. The exact details of the heightmap
generation phase will vary depending on the game. For example, the inaccessible areas could
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be given much higher elevations than the surrounding accessible areas, resulting in inaccessible
mountainous terrain. Alternatively, inaccessible map cells could be given lower elevation values
than accessible cells. The inaccessible parts of the map could then optionally be flooded with
water or lava. Inaccessible terrain could also be covered by other obstacles, such as dense forests
or tall buildings.

After a heightmap has been created, a three-dimensional polygonal terrain mesh can be
generated, with the vertex heights being determined by the heightmap elevation values.

Figure 11: The 3D terrain that was generated based on the heightmap from Figure [7]

3.10 Implementation

Our implementation of the described terrain generation method was written in C# as a set of
scripts for the Unity game engine [I]. The produced heightmaps have a size of 513 x 513 cells
(while our method can be used to generate heightmaps of any size, Unity only supports square
heightmaps whose sides have a length equal to a power of two plus one). The three-dimensional
terrain meshes, complete with navigation meshes for pathfinding, were constructed by Unity
based on our generated heightmaps. The generator we implemented takes about one or two
minutes to generate a 3D terrain from an initial user-supplied graph drawing.

In our implementation, we gave all accessible heightmap cells a very low elevation value, and
all inaccessible areas a very high elevation. A Gaussian blur was applied to the heightmap to
smooth out the borders between accessible and inaccessible areas. We found that a kernel size
of 15 x 15, with o0 = 2.0, produced nice, steep hills in our terrains. On top of that, some Perlin
noise was added using Unity’s built-in noise function. We used the terrain system in the Unity
game engine to create a 3D mesh out of the generated heightmap.

A strategy game that used the heightmaps generated by our specific implementation would
take place in mountainous terrain, with the corridors forming canyons running between different
regions. The accessible areas are bounded by tall cliffs; a small radius was chosen for the Gaussian
blur so that the slope of the mountains is too steep for units to climb.
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4 Experiments

We performed a number of automated experiments to assess the effectiveness of the terrain
generation method. We wanted to know how well our generated terrains satisfied the constraints
specified by a game designer. Additionally, we wanted to know what kind of test cases our
algorithm would support well, and in which cases it was unable to produce good terrains. Our
experiments also served to find good values for the input parameters for the terrain generation
algorithm. Moreover, we ran some experiments with certain parts of the algorithm disabled, to
find out whether each component of the generation method does indeed improve the quality of
the output. Finally, we desired to know how different the various terrains we generated were. In
order to determine the diversity of the output of our algorithm, we made various visualizations.

Section [4.1] contains a list of the different measurements we performed on the generated
graph layouts and terrains. Section describes the test cases that were used as input for
the generation algorithm. This is followed by Section which contains a discussion of the
different experiments that were conducted. Section [{:4] gives an overview of the experiment
results. Finally, Section [£.5] discusses the observed results.

4.1 Measurements

In order to determine how well the geometric properties of the generated terrains match up with

the properties defined by the designer in the initial graph, we measured various aspects of the
generated graph layouts, accessibility maps, and 3D terrains.

We want each region and corridor in the terrain to be clearly separated from other regions
and corridors. A graph layout with overlapping nodes or intersecting edges causes shortcuts to
be formed in the terrain that allow units to travel between regions faster than intended, and
results in terrains with a different high-level structure than the designer intended. In order to
determine whether regions and corridors are actually separated, we record the number of corridor
edge crossings and the number of overlapping node pairs present in the produced graph layouts.
The lower these numbers are, the better. Ideally, there should be zero edge crossings and no
overlapping node pairs.

A very small amount of overlap was found to occur frequently for pairs of adjacent nodes (in
this section, the term “adjacent nodes” will be used to refer to two nodes connected by a corridor
edge—initial edges do not count). Since adjacent nodes are part of the same corridor anyway,
those cases of overlap do not lead to different parts of the terrain being erroneously connected.
That is why we chose to measure the number of non-adjacent overlapping node pairs—nodes
that overlap, but are not connected by a corridor edge. Ideally, there will be zero such node pairs
in each generated graph layout. We do not use the repulsion radii of nodes to determine whether
they overlap. Instead, the regular node radius is used, since terrain shortcuts only form when
the distance between two non-adjacent nodes is smaller than the sum of their regular radii.

The number of nodes and edges is different in the various test cases we will describe in the
next section. In some experiments, different tested values for the input parameter also resulted
in different numbers of nodes and edges (for example, a higher slack factor will result in more
corridor nodes and edges being placed in each corridor). There were typically between 100 and
550 nodes, and about 130 to 600 edges in a graph after the addition of corridor nodes and edges.

In order to perform a fair comparison between different counts of edge crossings and overlap-
ping node pairs, we normalized the values. Specifically, we divided the number of intersecting
corridor edge pairs by the total number of corridor edge pairs; similarly, the number of non-
adjacent overlapping node pairs was divided by the total number of node pairs. This allows us
to compare the fraction of object pairs that overlaps or intersects.
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We also wanted to know how well the distances units have to travel between regions in the
terrain matched the designer’s specifications. If the designer specified a balanced map, and these
distances are not what the designer intended, the map will be imbalanced. We measured two
distances: the graph distance and the terrain distance.

For every pair (p, ¢) of initial nodes in the graph, we find the shortest path in the graph be-
tween those nodes, moving only across corridor edges. There are n initial nodes p,r1,...,7n_2,q
on this path, with n > 2; there are chains of corridor nodes between those initial nodes. For
every consecutive pair (p,r1), (r1,72),- - -, (rn—2,q) of initial nodes encountered on this path, we
take the initial edge e; connecting that pair. We calculate the graph distance d, between p and

q as follows:
n—1

dg(p,q) = Z slack-factor(e;) - length(e;)
i=1
The graph distance tells us how long the user intended the path from p to ¢ to be.

We use the three-dimensional terrain’s navigation mesh, created by Unity, to find the paths
that units would take to travel between the centers of every pair of regions in the terrain (with
one region center being positioned at the position of each initial graph node). We measure the
lengths of those paths; this is the terrain distance d;.

The graph distances and terrain distances are compared by computing d;/dg. The closer this
is to 1, the closer the terrain distance matches the designer’s intentions. Our terrain generation
method can only produce balanced maps if the designer’s specifications are closely matched. For
example, a game designer might specify that the corridors connecting each player’s base to the
nearest region containing resources all have the same length. If the d;/d, score of the corridors
significantly deviate from 1, that would upset the game balance—it could be too easy for players
to access resources (if d;/d, < 1) or too hard (if d;/d, > 1). Additionally, if the values for d;/d,
vary a lot, some players might have easier access to resources than other players, which would
be unfair.

There are also several properties of the algorithm’s output that we know are always present;
we do not have to measure those properties. Each region will have the size specified by the user,
and each corridor will have the specified width. The region connectivity structure will also match
the designer’s intentions—regions are connected by corridors to other regions according to the
configuration of nodes and edges in the initial graph drawing.

Some test cases are harder for the algorithm to find a good layout for than other test cases. As
was mentioned in Section [3.5 the corridor layout phase is restarted when edge crossings appear
during the graph layout algorithm. The higher the number of restarts, the more the algorithm
struggled to find a layout that is free of edge crossings. In order to find out how hard different
kinds of test cases are for our algorithm, we record the number of layout restarts in each run of
the graph layout algorithm.

Finally, we also wanted to find out how much diversity was present in the different terrains the
terrain generator produced. In each experiment, the generator was executed ten times for each
test case. This means that ten accessibility maps were produced per graph in every experiment.
We overlaid all ten produced accessibility maps for each test case. For each cell in the map, we
counted the number of times it was accessible in the ten runs of the algorithm, producing a value
between 0 and 10 for every map cell.

For each experiment, we then created a grayscale image based on these values for every graph.
Each pixel in an image corresponds to one map cell. Black pixels denote an accessibility map cell
that was marked as inaccessible during all ten terrain generation runs; white pixels denote cells
that were always accessible. Various shades of gray denote cells that were sometimes accessible,
and sometimes not; the lighter the shade of gray, the more often that accessibility map cell was
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accessible. Appendix [C]shows a selection of these diversity images.

4.2 Test Cases

We created ten different initial graph drawings to use as input in the experiments. These graph
drawings were created based on maps from the real-time strategy game StarCraft 1. Specifically,
five two-player and five four-player multiplayer maps were picked from the pool of competitive
ladder maps. These maps represent typical well-balanced strategy game maps; they have been
used in StarCraft tournaments. The maps are symmetric—no player has an advantage over
other players. Appendix [A] shows all graph drawings that were used in our experiments. In
many figures and tables presented later, we will refer to graphs by their abbreviated names.
Table [[] shows what the abbreviations mean.

Graph name Abbreviation
Abiogenesis A
Acid Plant AP
Catalyst C
Eastwatch E
Neon Violet Square NVS
Frost F
Whirlwind w
Cactus Valley (AY
Deadwing D
Invader I

Table 1: The names of the graphs used in the experiments, along with their abbreviations.

In order to create the test cases, we made a Unity editor tool that allows the user to draw a
graph and specify properties such as the desired edge lengths, slack factors, and the stiffness force
multiplier. We converted the StarCraft maps into initial graph drawings by placing an initial
node in the location of each open region on a map. If two neighboring regions were connected
via a choke point (such as a ramp), an initial edge was drawn between the two corresponding
nodes. Figure [I2]shows an example.

Initial nodes were given radii ranging from 15 to 40, depending on the size of the region on
the map. We assigned lengths ranging from about 30 to 100 to the initial edges. In our test
cases, initial nodes have between one and six adjacent nodes, with typical nodes having two or
three neighbors.

The terrains generated by our method have the same high-level structure as the StarCraft
maps, as described by the initial graph: there are as many regions in our terrains as there are
in the StarCraft maps, and two regions in the generated terrains are directly connected by a
corridor if and only if the corresponding StarCraft regions were connected.

Note that the purpose of our terrain generator is not to replicate the maps from StarCraft;
the generated terrains differ from the StarCraft maps in some ways. For example, in the Star-
Craft maps, two different regions can have different elevations, touching each other while being
separated by a cliff. There are no such cliffs in our terrains—with the heightmap generation step
that we implemented, regions will always have a low elevation, and there will always be high,
mountainous inaccessible terrain in between different regions.
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Figure 12: The Abiogenesis map from StarCraft II, overlaid with the corresponding graph draw-
ing that was used in our experiments.

4.3 Performed Experiments

We performed a number of different experiments. In each experiment, we set all input parameters
to certain constant values, and executed the terrain generation method ten times with each of
the ten graphs, producing a total of 100 terrains per experiment. In each run of the terrain
generator, both phases of the graph layout method (the initial layout phase and corridor layout
phase) are run until convergence or the maximum number of iterations (200) has been reached.
For every graph, we cleared the heightmap and then reloaded the same initial graph drawing at
the start of all ten runs, making each run independent of any previous runs.

If corridor edge crossings are detected in 50 consecutive layout iterations, the corridor layout
phase is restarted with new chains of corridor nodes and edges. In these experiments, we restarted
a maximum of ten times; if there are still crossings after ten restarts, the terrain generator will
proceed with the last graph. Since there are crossing edges in that case, there will be crossing
corridors in the terrain; at the point where two corridors cross, game units would be able to take
an unintended shortcut to get to their destinations earlier than they are supposed to.

The experiments are organized into sets. The purpose of each set of experiments was to
investigate the influence of one input parameter. For every experiment in one set, a different
value was used for one input parameter of the algorithm. The values for all other input parameters
were fixed to values that we knew worked well in other tests.

Varying stiffness force multiplier. We conducted some experiments with varying values for
the stiffness force multiplier. We tested multiplier values of 0, 0.001, 0.01, 0.1, and 1. This ex-
periment was performed because were initially unsure which value for the multiplier would result
in the closest match between the generated terrains’ properties and the designer’s specifications.
The stiffness force affects the smoothness of the created corridors—the larger the stiffness forces,
the smoother the bends—but we suspected that very strong stiffness forces might interfere too
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much with the attractive and repulsive forces, making it hard for the algorithm to produce good
graph layouts. For hard test cases, we suspected we would see more layout restarts, more graph
errors (intersecting pairs of edges and overlapping pairs of non-adjacent nodes) and terrain dis-
tances that deviated more from graph distances. During these experiments the slack factor of
each edge was set to 1.25, and all corridors had a width of 20 heightmap cells.

Varying corridor width. Next, the stiffness force multiplier was fixed to 0.01. With the slack
factor of every edge again set to 1.25, the desired width of all initial edges was set to different
values; we tested graph where all corridor widths were 5, 10, 15, 20, and 25 (recall that the size of
the heightmap is 513 x 513). The purpose of this experiment was to test whether our algorithm
was able to support a wide variety of map specifications while producing high-quality maps—
game designers might want to create some maps with narrow corridors, and other maps with
wider ones. Narrow corridors make it harder for players to send large troop formations through,
and could even block large units from passing through, affecting the balance of the game. Our
hypothesis was that narrow corridors were easier to fit in the map than wider corridors; large
corridor widths would therefore lead to more layout restarts, as well as a layout that would
not match with the initially specified distances quite as well as a layout performed with small
corridor widths.

Varying slack factor. Different slack factors were tested too. Game designers might want to
vary the slack factors used in the initial graph drawing, just like they might vary the corridor
widths. Different slack factors result in different map styles. Since longer slack factors result in
a longer travel time through corridors, the slack factor is also a tool that can be used by the
designer to balance the map. It is therefore desirable that our method can work with a variety of
slack factors while satisfying all the constraints specified by the designer. With a corridor width
of 20 and a stiffness force multiplier of 0.01, we set the slack factors of all initial edges to 1.2,
1.4, 1.6, 1.8, and 2.0. Large slack factors mean the algorithm has to fit in a lot of corridor nodes
in the available space, which we thought could be a difficult set of constraints for the algorithm
to handle.

No constraint projections. Additionally, we ran some experiments without constraint pro-
jections. After all, the attractive and repulsive forces already cancel out at the desired edge
lengths, and non-adjacent overlapping nodes are pushed apart by repulsive forces too. We won-
dered if the constraint projections were really required to obtain a high-quality layout. For these
experiments, the stiffness force multiplier was again 0.01, the corridor widths were 20, and differ-
ent values for the slack factor (slack factors 1.2, 1.4, 1.6, 1.8, and 2.0) were tested, representing
increasingly difficult constraints for the algorithm to meet.

No repulsion radii. We also tested the algorithm with constraint projections enabled, but
without computing a repulsion radius for every node. Instead, the regular radii would be used
when pushing apart overlapping nodes. On the one hand, the repulsion radii ensure the convex
hull of adjacent node pairs does not overlap with other nodes; on the other hand, each node
covers a larger area when using repulsion radii than when using the regular radii, so it might be
harder for the layout algorithm to fit all the nodes in the map. We used the same settings for
this experiment as in the experiment without constraint projections to see whether the layouts
were better with or without the use of repulsion radii.
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Unmodified Fruchterman-Reingold forces. As an aside, we also ran a couple of tests with
the regular, unmodified Fruchterman-Reingold force model, in which repulsive forces are used to
push apart all pairs of nodes, including unconnected pairs. The layouts we saw in those tests
were of a very low quality. Almost all nodes were pushed to the sides of the map, overlapping
with each other a lot; see Figure We did not think the layouts were of a sufficient quality to
warrant extensive tests.

Figure 13: A graph layout that was obtained with the unmodified Fruchterman-Reingold forces.

4.4 Results

This section describes the data we gathered in the various experiments. In the next section,
Section we analyze the data, give explanations for observed effects, and draw conclusions
based on the various measurements. Appendix [B] contains a number of graph layouts and cor-
responding accessibility maps that were generated in our experiments, and Appendix [D| shows
some of the three-dimensional terrains that were produced.

Varying stiffness force multiplier. In the experiment with varying stiffness forces, we found
that the total number of layout restarts was zero in most cases (see Table . Strong stiffness
forces slightly increased the number of required restarts, although the effect is not very strong in
most cases. There was one graph, Whirlwind, that resulted in noticeably more restarts than the
other graphs. This was also the only graph that had corridor edge crossings (a single crossing in
one of the experiments with a stiffness force multiplier of 1) and overlapping pairs of non-adjacent
nodes (usually about 1 or 2 in each experiment, with slightly more overlap occurring with strong
stiffness forces than with weak stiffness forces).

As can be seen in Figure the graph distance is about 80% of the corresponding terrain
distance on average. The range between the first and third quartile is relatively small; there are
some outliers where the graph distance is either significantly longer or shorter than the graph
distance. The relative difference between graph distances and terrain distances does not seem to
change when the stiffness forces are varied.
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Figure 14: The terrain distances between all pairs of initial nodes, divided by the corresponding
graph distance, for varying values of the stiffness force multiplier.

Stiffness force multiplier Corridor width

0 0.001 0.01 0.1 1 5 10 15 20 25
T A 0 0 0 0 0 T A 0 0 0 0 0
= AP 0 0 0 0 0 = AP 1 0 0 0 0
T C 0 0 0 0 3 T C 1 0 0 0 0
j‘g E 0 0 0 0 0 g E 3 0 0 0 0
= NVS 0 0 0 0 0 = NVS 1 0 0 0 0
: F 0 0 0 0 0 2 F 2 0 0 0 0
W 3 1 2 2 20 W 2 0 0 7 4
Z Qv 0 0 0 0 0 Z Qv 1 0 0 0 0
g D 0 0 0 0 1 g D 2 0 0 0 0
O 1 0 3 0 2 1 O 1 8 0 0 2 100

Table 2: The total number of layout restarts  Table 3: The total number of layout restarts
after generating ten terrains per graph for var- after generating ten terrains per graph for var-
ious values of the stiffness force multiplier. ious values of the corridor width.

Varying corridor width. In the experiment with a varying corridor width, we found that
the total number of graph layout restarts was usually small. For most tested corridor widths, we
saw zero restarts for most graphs. The only width that most graphs struggled width was 5; that
corridor width tended to result in a couple of restarts during the ten layout runs performed per
graph. The Invader graph formed the most notable outlier. The layout algorithm was never able
to find a layout for Invader without intersections when the corridor widths were at the maximum
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tested value of 25. In that case, all ten layout runs reached the maximum of ten restarts, for a
total of 100 restarts (see Table [3).

This is reflected in the number of intersecting edge pairs, which was zero everywhere except
when Invader was tested with a width of 25—in that case, there were between one and four edge
crossings every run. Similarly, the number of overlapping node pairs was zero almost everywhere.
For the highest tested corridor widths (20 and 25), there were on average a few overlapping pairs
in the Whirlwind and Invader graph; this increased to a few dozen overlapping pairs in the most
difficult test case for the algorithm—the Invader graph with a width of 25.

The mean value of d;/d, is about 0.8, just like in the experiments in which the stiffness force
multiplier was varied. There is one exception: in the experiment where the corridor widths were
5, the terrain distances seemed to better match the graph distances, with d;/d, being about 0.9
on average (see Figure .

" Width 5 " Width 10 ® Width 15 ®Width 20 ® Width 25
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Figure 15: The terrain distances between all pairs of initial nodes, divided by the corresponding
graph distance, for varying values of the corridor width. For the Invader graph at width 25,
there are three more outliers at the high end that are not shown, maxing out at 1.93.

Varying slack factor. We saw very different results in the experiment where varying slack
factors were tested. There were very few layout restarts in the experiments with a low slack
factor (1.2 and 1.4). In the experiments with high slack factors, there were far more restarts;
often, the maximum number of ten layout restarts was reached, after which the terrain generator
proceeded with imperfect graph layouts containing edge crossings (see Table .

The number of edge crossings also started off very low for low slack factors, increasing as the
slack factor went up. The fraction of corridor edge pairs that intersected ranged from 0 for low
slack factors to about 0.0002 for high slack factors. That last case corresponds to about 20 edge
crossings out of up to 90,000 pairs of edges (see Figure .
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The number of non-adjacent overlapping node pairs showed a very similar pattern, increasing
as the slack factor increases; see Figure [19| for the fraction of node pairs that overlapped. The
fractions of overlapping node pairs are quite small. There were 0 overlapping pairs for slack
factor 1.2, rising to typically about 100 or 200 overlapping node pairs (compared to a total node
pair count of up to 80,000) for slack factor 2.0.

When the graph distances are compared to the terrain distances, we found significant dif-
ferences between experiments with different slack factors. With a slack factor of 1.2, the mean
value for d;/d, is about 0.8 (similar to the experiment with varying a stiffness force multiplier,
which was performed with a slack factor of 1.25). As the slack factor increases to 2.0, the mean
value of d;/d, decreases to about 50% in most cases, meaning the terrain distances do not match
as well with the graph distances; see Figure There are also many more outliers at the low
end for high slack factors, representing paths in the terrain that were much shorter than the user
specified.

Notably, there was one graph, Acid Plant, where the graph layout algorithm did not reach
the maximum number of layout restarts. There were no intersecting edges and no overlapping
node pairs in the graph layouts for this test case; d;/d, decreases far more slowly when the slack
factor increases than it does for the other graphs.

Slack factor

1.2 14 16 18 20
T A 0 1 7 89 100
= AP 0 0 2 119
E C 0 0 17 100 100
% E 0 2 11 100 100
= NVS 0 0 2 100 100
c F 0 0 16 100 100
=W 3 21 100 100 100
= CVv 0 0 14 100 100
g D 0 4 67 8 100
O 1 1 19 100 100 100

Table 4: The total number of layout restarts after generating ten terrains per graph for varying
values of the slack factor.
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Figure 16: The terrain distances between all pairs of initial nodes, divided by the corresponding
graph distance, for varying values of the slack factor.

Slack factor Slack factor

12 14 16 18 20 12 14 16 1.8 20
g A 0 0 0 2 100 T A 0 0 3 39 100
< AP 0 0 0 0 4 < AP 0 0 3 6 92
t C 0 0 0 2 6 t C 0 0 10 87 100
g E 0 0 0 0 0 g E 0 1 6 44 100
= NVS 0 0 0 11 82 = NVS 0 1 8 64 100
2 F 0 0 0 2 16 2 F 0 0 4 100 100
= W 0 0 0 0 7 = W 0 1 51 100 100
= Cv 0 0 0 13 100 = v 0 0 6 100 100
g D 0 0 0 15 68 = D 0 0 4 92 100
O 1 0 0 0 2 15 O 1 0 2 48 100 100

Table 5: The total number of layout restarts  Table 6: The total number of layout restarts
after generating ten terrains per graph without after generating ten terrains per graph without
constraint projections for varying values of the  repulsion radii for varying values of the slack
slack factor. factor.

No constraint projections. We saw far fewer layout restarts in the experiment with con-
straint projections disabled (see Table than in the tests where they were enabled (see TableE[).
There were also fewer edge intersections without constraint projections (see Figure —for half
of the test graphs, there were zero edge crossings in every layout run. For the other half, there
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Figure 17: The terrain distances between all pairs of initial nodes, divided by the corresponding
graph distance, for varying values of the slack factor. Results are displayed for a selection of
graphs; results for the other graphs were similar.

were no edge crossings for low slack factors, and very few (< 10) crossings per experiment for
the highest slack factors (1.8 and 2.0).

Without constraint projections, there are more overlapping node pairs than with constraint
projections for low slack factors (although the amount of overlap is still very small). For higher
slack factors, there is less overlap without constraint projections than when the regular method
is used (see Figure [19).

For low slack factors, the mean value for d;/d, is somewhat lower in the experiments without
constraint projections than in the experiments that used the regular layout method; see Fig-
ure Since it is further away from 1, that means a poorer match between graph distance
and terrain distance. At very high slack factors, on the other hand, d:/d, was frequently higher
when constraint projections were not used. The variance was also lower without constraint
projections—the values for d;/d, for all the paths between different pairs of initial graph nodes
were more concentrated around the median.

No repulsion radii. The number of layout restarts is somewhat lower without using repulsion
radii (see Table E[) than when the normal method is used (see Table . The number of edge
crossings in the experiment without repulsion radii is sometimes lower and sometimes higher
than in the tests with the regular method (see Figure ; there seems to be no clear trend in
either direction.

There was significantly more overlap between non-adjacent node pairs in every test case when
repulsion radii were not used (see Figure. Compared to the regular method, the mean d;/d,
value is always lower when repulsion radii are not used, and there are fewer high outliers; see

Figure [T7
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Figure 18: The mean fraction of corridor edge pairs that intersect for varying values of the slack
factor. Results are displayed for a selection of graphs; results for the other graphs were similar.
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Figure 19: The mean fraction of non-adjacent node pairs that overlap for varying values of the

slack factor. Results are displayed for a selection of graphs; results for the other graphs were
similar.
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4.5 Discussion

Overall, the algorithm seemed to perform quite well in reasonable cases where all nodes were
able to be placed on the map. In those cases, we are able to make terrains with region sizes,
corridor widths and an overall connectivity structure that matches the user’s specifications.

The mean value of d;/d, typically seemed to be about 0.8, and the first and third quartiles
were not far off. Taking the outliers into account, most d;/d, values usually extended between
0.6 and 1. That means that paths between regions were typically somewhat shorter than the
designer intended. For some graphs, the layout method performed less consistently, producing
more outliers than for other graphs—some test cases were clearly more difficult for the algorithm.

The ideal value of d;/d, is 1—with terrain distances that perfectly match the realized graph
distances—but with the current graph layout method, we most often get a d;/d, below 1. It is
straightforward to see why this is the case. The graph distances specified by the user are the
distances one would travel when moving through the middle of each corridor, staying away from
the walls. The terrain distance, on the other hand, is the length of the path that Unity calculates
using its navigation mesh. This path is as short as possible, staying close to the corridor walls.
This is why the terrain distance is usually smaller than the graph distance.

In some rare cases, the terrain distance can also be longer than the graph distance. This
can happen when two corridor nodes in a chain that should have been touching each other are
forced apart by surrounding nodes. If the corridor nodes lie further apart than intended, the
corridor will be longer than the designer wanted it to be. Also, during the construction of the
corridor node chains, corridor nodes with random radii are added to a chain until the sum of
the corridor node diameters in that chain is at least as large as the desired corridor length. In
our implementation, it is possible for the total length of a corridor chain to slightly exceed the
desired length by up to the minimum corridor node radius. Since corridors are usually far longer
than the minimum radius, and corridor nodes are not usually forced apart very far, the terrain
distance usually still ends up shorter than the desired distance.

We found that the cases where d;/d, is greater than 1 tend to involve very short paths. When
we measure the actual length of the terrain path in heightmap units (with a single heightmap
cell having a size of 1 x 1 unit, and the entire map being 513 x 513 units large), the paths in the
generated terrain that were longer than desired would often only be about 10 or 20 units too
long. On the other hand, when there were a lot of overlapping nodes and edge crossings creating
shortcuts in the terrain that shortened paths between regions, terrain paths that were shorter
than the desired distance could in the worst cases be hundreds of units shorter than desired.

Since the values for d;/d, are usually clustered around 0.8, a simple improvement to the
algorithm would be to take all the desired distances d between regions given by the user, and
set the corresponding initial edge lengths to 1.25d. The produced corridors would then be 25%
longer as well: d, = 1.25d. The final realized terrain distance would then be equal to the distance
the user desires: dy = (d¢/dy) - dg = 0.8-1.25d = d.

Correcting for a mean d;/d,; would only ensure the average (and median) terrain distance is
right; there would still be paths both longer and shorter than the user desired. Two initial edges
that might have had the same desired length could result in corridors with slightly different
lengths. This indicates that we may not be able to guarantee perfect gameplay balancing of
the kind required for competitive tournaments. However, the generated terrains do seem to
be approximately balanced. While we have not performed any strategy game playtests on the
generated terrains, based on a visual inspection the generated terrains seem suitable for more
casual gameplay.

In very difficult cases (for example, in the experiments with very high slack factors), the
mean value for d;/d, may be much lower than 0.8. In such cases, there is so much overlap
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between different regions and corridors that the produced terrain loses much of the high-level
structure described by the input graph drawing. A reasonable gameplay designer would not be
interested in those cases anyway, since it is usually not physically possible to place all regions
and corridors on the map without intersections or overlap. The fact that our algorithm cannot
produce good layouts in such cases, then, is unsurprising but fortunately also of little importance
for the intended application.

Our tool works with maps of a fixed size. Nodes cannot cross the boundaries of the map. If
they were allowed to do so, it would be easier for the algorithm to find a good layout when a
lot of regions and corridors have to be placed on the map. If a game designer does not require
their map to have a certain size, a useful option that could be added to our generator would run
the graph layout algorithm on a plane without boundaries. After a layout has been computed,
the bounding box of the final graph layout would then indicate the size of the map. This could
improve the quality of the produced terrains in difficult cases with many graph nodes and edges.

Our approach offers some advantages compared to other strategy map generation methods
discussed in Section[2.2] Unlike the methods by Olsen [24] and Frade et al. [9], our method takes
the balance of the map into account. The methods by Mahlmann et al. [20] and Barros and
Togelius [2] focus on the placement of resources and player bases, and do not generate terrains
with impassable obstacles. Adding terrain generation to their methods would appear to be
significantly harder than adding the placement of resources and bases to ours, since our method
already produces terrains with open, defensible regions that are well-suited for containing player
bases and resources.

Well-designed maps created by human designers tend to be divided into regions and choke
points; strategic terrain analysis techniques, such as those reviewed in Section [2.3] make use
of that structure. Many terrain generation methods, such as the methods mentioned in the
previous paragraph as well as those described by Togelius et al. [31I] and Smith and Mateas [2§],
produce terrains that are not as clearly structured as human-built maps. We believe that this
negatively affects gameplay balance and player enjoyment. Our method, on the other hand,
produces well-structured terrains.

The algorithm by Uriarte and Ontafién [33] does make maps based on subdividing the plane
into different regions. However, their approach is heavily based on randomization and does not
make any guarantees about geometric properties such as the size of regions, the distance between
regions, the width of choke points, and the overall connectivity structure of the regions. On the
contrary, our method can make such guarantees. In addition to that, in order to guarantee
balanced maps, Uriarte and Ontanon only generated perfectly symmetrical maps; our approach
can be used to generate asymmetrical maps.

The tool by Liapis et al. [I9] allows a game designer to make a coarse sketch of a map,
which is then refined. The user has the freedom to make regions of any size, but they also
bear the responsibility of creating a well-structured map with regions and choke points that have
balanced properties. Our method, on the other hand, guarantees that the region and choke point
structure, complete with certain geometric properties, is present. The maps produced by Liapis
et al. appear to contain some grid-like artifacts, since they are based on a sketch that was made
in a coarse grid; our method does not suffer from such artifacts. The diversity of the output their
method can produce is also intrinsically limited, since the terrain features that were manually
placed by the game designer in their sketch will exist in every generated map.

Finally, the initial terrain representation of Liapis et al. (a small, tile-based map) is similar
to the full-resolution map, but smaller. Our method, on the other hand, uses a more abstract
terrain representation—a graph drawing. We believe that is would be easier to fully automate our
method, which would require an algorithm that produced an initial graph drawing. Conversely,
fully automating the method by Liapis et al. would involve automatically placing accessible and
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inaccessible tiles on the low-resolution sketch grid, which is essentially the same problem as
placing tiles on the full resolution map; deciding where to place the tiles is not trivial.
In the remainder of this section, we discuss the experiment results that were described in

Section [4.41

Varying stiffness force multiplier. Varying the stiffness force multiplier did not affect the
quality of the graph (measured in terms of the number of edge crossings, overlapping node pairs,
or value of d;/d,), with the exception of a minor reduction in quality at the highest tested
stiffness force value (1) for one particularly hard test case. We hypothesized that high stiffness
forces would interfere with the attractive and repulsive forces, resulting in worse layouts; this
seems to be true, but only to a very small degree.

The appearance of the corridors changes depending on the stiffness force multiplier. A very
small value will produce zig-zagging corridors with a lot of sharp twists; high values lead to
corridors with large, smooth curves. The best value for the stiffness force multiplier will depend
on what appearance the user desires; we found a value of 0.01 to work well.

The algorithm struggled somewhat with the Whirlwind graph; it was the only graph with
overlapping nodes, and it generally took more layout restarts than the other graphs in the
experiment where the stiffness force multiplier was varied. Whirlwind has several nodes with a
high degree (see Figure . Arranging all corridors around the corresponding regions without
overlap is difficult. This is especially true when the stiffness forces are strong, pushing the corridor
nodes around in an attempt to form smoothly curving corridors. See Figure [A0] for a produced
graph layout and accessibility map of Whirlwind, and Figure [50| for Whirlwind’s diversity image
for the same experiment.

Varying corridor width. The corridor widths were varied from very narrow corridors (a width
of 5) to corridors about as wide as the regions they connected (a width of 25). We thought that
wide corridors would be harder for the algorithm to fit in the map, leading to a reduced quality.
However, even very wide corridors usually did not result in problems, so the best value for the
corridor width will depend on the appearance and gameplay properties the designer desires.

There was one exception in the experiment with Invader for a corridor width of 25; see
Figure and Figure We think that is because the Invader graph has a several large parts
where initial graph edges lie unusually close to each other (see Figure ; it is hard for the
layout method to place corridor chains there such that they do not overlap.

For the other graphs, varying the corridor width was no problem. Figures and show
results of experiments with very narrow and very wide corridors, respectively; Figure and
Figure |53| are the corresponding diversity images.

The value of d;/d, was usually about the same when corridor widths were varied, except when
the narrowest corridors (with a width of 5) were tested—that resulted in terrain distances that
were noticeably closer to the corresponding graph distances. If the corridors are very narrow, the
shortest path in the terrain will deviate less from the graph distance path, which goes through
the middle of the corridors. This results in a d;/d, score closer to 1.

So, why was the value of d;/d, only significantly different for a corridor width of 57 Why did
it not not decrease further when the corridor width was increased from 10 to 257 After looking at
the generated corridor chains, we believe the most likely explanation has to do with the number
of corridor nodes in each chain. We found that this number was not that much different when
the corridor width was set to values between 10 and 25. There were typically about six nodes in
each chain when the width was 10, reducing to about three or four per chain for a width of 25.
This small difference in the number of corridor nodes seems to explain why d;/d, did not vary
much for corridor width values of 10 to 25. For a corridor width of 5, on the other hand, there
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were often a dozen or more very small corridor nodes; the navigation mesh paths were forced to
follow the paths through the node centers far more closely. This could explain why d;/d, was
higher for a corridor width of 5.

Varying slack factor. Higher slack factors clearly result in lower quality graphs; this was
indeed what we expected. The long corridors that have to be placed on the map when the slack
factors are high simply do not fit without overlapping (and often intersecting) other corridors.
With the test cases we constructed, the layout runs with slack factor 1.2 and 1.4 performed well,
but the higher slack factors resulted in a significant drop in quality. Therefore, if graphs like our
test cases are used, we do not recommend a slack factor much higher than 1.4.

If a sparser initial graph were used, there would be more room for corridors to expand without
running into other corridors. In fact, one of our test graphs, Acid Plant, was so sparse that all
tested slack factor values resulted in no edge crossings and no overlapping nodes (see Figure
and Figure[d5] for produced graph layouts and accessibility maps for slack factors 1.2 and 2.0, and
Figure and Figure for the corresponding diversity images). There seems to be a tradeoff
here: the denser the initial graph, the lower the slack factor should be.

No constraint projections. The constraint projections appear to increase the number of
layout restarts and intersections. Without constraint projections, the attractive and repulsive
forces push the nodes around, trying to achieve the desired distances between connected node
pairs; however, if there are too many other surrounding nodes pushing back, nodes will be unable
to reach their desired distances. With constraint projections, on the other hand, the positions of
pairs of nodes are adjusted such that the distances are correct, without regard for any surrounding
nodes—which can introduce edge crossings in the process.

For low slack factors, there are fewer overlapping node pairs when constraint projections are
active than when they are inactive. The non-overlap constraints help to force apart overlap-
ping nodes. Compare Figure (a graph layout produced without constraint projections) with
Figure (the same situation with constraint projections enabled) to see the difference that
constraint projections make. Figures [56| and [54] show the corresponding diversity images.

For high slack factors, this is sometimes also true. However, for some test graphs, the method
without constraints actually performed better. In the test cases with high slack factors, achieving
the desired slack factors without any intersections and overlap was actually not possible for most
graphs. In such impossible cases, the constraint projections introduce edge crossings; we saw
fewer edge crossings when constraint projections are disabled. Edge crossings also result in
overlapping nodes in the neighborhood of the points where edges intersect. Such cases of overlap
cannot be fixed by the non-overlap constraints (which is why we recommend restarting the layout
algorithm with new chains of corridor nodes when edge crossings are detected).

So, in cases were meeting all constraints is impossible, the layout method without constraints
degrades more gracefully. However, in the more reasonable test cases—where the slack factor
was low, and all corridors were possible to fit in the graph with virtually no overlap and no
intersections—the constraint projections helped reduce the overlap between nodes, and resulted
in better layouts with a higher d;/d,. Figure [47|shows how the algorithm performs without con-
straint projections on a reasonable test case with a high slack factor; compare it with Figure 5]

No repulsion radii. When the regular node radii were used to push apart overlapping nodes
(rather than the repulsion radii used in the full algorithm) we did not see a noticeable increase
or decrease in edge crossings. The number was sometimes higher without repulsion radii, and
sometimes lower; this can be attributed to the randomization present in the construction of the
corridor node chains. The number of overlapping node pairs, on the other hand, was far higher
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without repulsion radii in all cases, and the d;/d, score was also worse without repulsion radii.
When the regular node radii are used instead of the repulsion radii there are many cases where
nodes overlap with other nodes or the convex hull of a consecutive pair of nodes in a corridor
chain, forming many unwanted shortcuts in the terrain. See Figure [48| (compare with Figure
and Figure 49| (compare with Figure . Figure [57| shows the diversity image of an experiment
without repulsion radii; Figure shows the results of the experiment with the same settings
with repulsion radii enabled.

When the algorithm has to fit in many long corridors on the map, the corridors are spread
around when repulsion radii are used, filling in the available space. Interestingly, without re-
pulsion radii, the corridors are not evenly distributed on the map; instead, the layout method
forms zig-zagging corridors everywhere with the particular value of the stiffness force multiplier
we used in that experiment (0.01). In fact, most of the cases where a corridor node p overlapped
with the convex hull of some other pair of nodes (g, ) happened when p, ¢, and r were all part of
the same corridor. When such corridors were folded back upon themselves, the terrain distance
between the two end regions was far shorter than the graph distance.

This means that the repulsion radii do not only ensure that a corridor remains well separated
from other corridors; just like the stiffness forces, the repulsion radii also help ensure that a
corridor node does not get too close to other corridor nodes further down its own chain. Without
repulsion radii, the stiffness force multiplier has to be set a lot higher to prevent the formation
of zig-zagging corridors.

Diversity. While we were primarily concerned with ensuring our generated terrains satisfied
the given distance and non-overlap constraints, a secondary goal was to achieve a diverse output.
As the diversity images in Appendix [C] show, the positions of the corridors are often somewhat
varied, but regions tend to be placed at the same position every time—even if there is plenty of
room to shuffle parts of the graph around more. We think more improvements could be made to
increase the diversity of the output. For instance, random forces could be applied to the nodes
in the initial graph drawing during the initial graph layout phase, pushing the nodes around
in random directions. These forces could result in more diverse initial graph layouts that still
satisfied all distance constraints. This, in turn, would lead to more diverse accessibility maps
and, by extension, more diverse terrains.
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5 Conclusion

The goal of this thesis was to develop a procedural content generation technique that generates
balanced maps for strategy games. A terrain generation tool has been created that allows a game
designer to specify properties that affect game balance, such as the length of terrain corridors,
at a high level of abstraction. This allows the designer to easily create balanced maps. Our
generator can randomly generate heightmaps that take the designer’s specifications into account.
The resulting maps look quite playable and could plausibly form the base terrain for a strategy
video game. We conducted various experiments with symmetric—and therefore balanced—test
cases as input. Based on these experiments, we believe our method can generate maps that are
balanced enough to be used for casual gameplay.

In Section [5.1} we summarize the contents of this thesis, including the procedural method
that was presented as well as the performed experiments and the obtained results. In Section[5.2
we make suggestions for possible improvements and provide directions for further research.

5.1 Summary

We have presented a novel terrain generation technique that uses graph nodes and edges to
represent the different regions and corridors in a terrain, respectively. This abstract representa-
tion captures the high-level structure of a terrain that we believe determines in large part how
strategy game matches play out. The terrain generation tool that we have implemented lets a
game designer draw such a graph and specify geometric properties that the generated terrain
should have. Designers can choose how many regions a terrain should have, which regions should
be connected by corridors, and how large each region should be. They can also determine the
Euclidean distance between regions, as well as the width and length of the different corridors.

The terrain generator takes the designer’s graph drawing and finds a good initial graph layout
that satisfies the designer’s constraints. In order to do that, a graph layout algorithm that uses
both Dwyer’s constraint projections and a modified version of the Fruchterman-Reingold method
is used. Next, chains of corridor nodes, representing the layout of terrain corridors, are added to
the graph. The graph layout method is then run again, this time with the addition of stiffness
forces and repulsion radii to improve the quality of the layout. After the graph layout method
has converged, an accessibility map is created based on the final graph layout, indicating which
areas of the map are accessible to game units and structures. This accessibility map is used to
generate a heightmap that describes a three-dimensional terrain. Finally, a 3D terrain mesh,
ready to be used as the base terrain in a strategy game, is generated based on the heightmap.

We have created ten graph drawings based on StarCraft II ladder maps. These were used as
test cases in a number of experiments. Various values for different algorithm parameters were
tested. We found that a stiffness force multiplier of 0.01 works well. On the maps we generated,
which had a size of 513 x 513 cells, we found that our algorithm supported all tested corridor
width values—widths between 5 and 25. For inputs like the test cases we made, we found slack
factors up to 1.4 to work well, meaning the corridor length between two regions should not be
much longer than 1.4 times the Euclidean distance between those regions.

When the best parameters were used, the distance units have to travel between regions is
on average about 80% of the distance the designer specified, with half of the distances between
regions falling between 75% and 85% of the specifications. This can be attributed to the fact
that the shortest paths units can take to travel between regions tend to stay close to the corridor
walls, while the designer’s specifications—which our algorithm tries to match—specify the length
of paths through the middle of the corridors. A design tool that takes this into account, and
scales up the initially specified lengths by 25%, should make the average travel time between
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terrain regions more closely match what the designer had in mind.

When we looked at path lengths, we found some outliers; cases where the travel time for
units does not closely match the specifications. This means that a perfect balance, which would
be desirable for competitive maps such as those used in tournaments, cannot be guaranteed.
However, the imbalances appear to be minor enough to support more casual, non-competitive
matches.

We also tested our method with parts of the algorithm disabled to verify whether those
components helped to improve the quality of the generator’s output. Without stiffness forces,
a lot of zig-zagging artifacts tend to form in the corridor chains. The constraint projections
help place connected nodes at the correct distance, and resolve cases of overlap. The repulsion
radii also helped reduce the amount of overlap, preventing the convex hulls of connected node
pairs from overlapping with other nodes. Finally, without our modification to the Fruchterman-
Reingold forces, nodes are pushed away from the center of the map, piling up at the sides. Based
on the results of our experiments, we conclude that all the additions we made to the graph layout
algorithm were beneficial.

5.2 Future Work

There are multiple improvements and extensions that could be made to our method. First of
all, as we mentioned before, a simple improvement that could be made to the terrain design tool
would take into account that the average distance units have to cross in the terrain will end
up 20% shorter than the what the designer specified. This can be corrected by scaling up the
user-provided desired initial edge lengths by 25%.

Even after the mean distance between regions has been corrected, we cannot guarantee that
all geometric properties specified by the game designer are satisfied. By design, some properties
will always be present in the generated terrains for all possible inputs, as long as that input is
reasonable—meaning it is possible to fit all nodes on the map without overlap or edge crossings.
The size of each region, the width of each corridor, and the overall connectivity structure of the
regions and corridors will be what the designer intended them to be. This is not always the
case for the distances between different regions, however. In the ten test cases we used in our
experiments, we found that the produced maps still contained numerous cases where the paths
through the terrain were either too short or too long. One could create a more sophisticated
way of generating terrains that takes into account that units take the shortest path through
each corridor, traveling close to the sides of corridors. This would allow for the creation of more
balanced maps.

The corridors consist of all areas that are covered by nodes, or the convex hull of connected
node pairs. The boundaries of those convex hulls have long straight segments, which results in
corridor walls with many straight segments. This looks somewhat unnatural, and is particu-
larly noticeable in the transitions from wide regions to narrow corridors. If the corridor walls
were slightly randomly perturbed, the terrain might look a bit more realistic. Additionally, the
boundaries of regions could be improved as well. Our method currently only supports circular
regions. An improvement to our algorithm that resulted in the ability to generate regions with
a wider variety of shapes would certainly be desirable.

The repulsion radii were introduced to keep the area covered by the convex hull of connected
node pairs clear of other nodes. Since the nodes with repulsion radii have circular boundaries, we
were able to resolve overlap with simple circle-circle intersection tests. These circular shapes cover
more than just the nodes and their convex hulls, however. There is some extraneous area around
each node; this extra area causes nodes to push each other away more than strictly necessary,
making it harder for the algorithm to find a good layout. If more complex geometric primitives
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than circles were used, the convex hull of connected pairs could be covered without any additional
area sticking out. This would give the algorithm more room to place nodes, making it possible
to support more difficult constraints (such as higher slack factors) and possibly improving the
quality of the layout, matching the designer’s desired distances more closely.

Another option that could be added to our method to support situations with a large number
of nodes is the ability to run the graph layout algorithm on an unbounded plane. The map size
would then be determined by the bounding box of the final graph layout.

There is often a lot of room on the map in which nodes can be placed such that the user-
provided constraints are met. However, in our experiments, we frequently found little difference
in node positions between different runs of the layout method. The nodes could be moved around
more to improve the diversity of the generator’s output. The initial graph layout phase—the
layout phase before the corridor node chains get added—gives virtually the same layout every
time it runs. Introducing more randomization in that phase, for example by using forces to pull
the nodes in random directions, could lead to more diverse generated terrains.

We focused on generating a heightmap. The corresponding terrain can be used as the base
terrain for a strategy game map. For a full strategy game terrain generator, additional game-
specific elements would have to be added to the map, such as resources or different types of
terrain, like one-way traversable terrain. The placement of such features also affects game bal-
ance. Incorporating those elements in our terrain generator would be a possible direction for
future research.

Our current implementation is fast enough to generate moderate-sized maps (with a few dozen
initial graph nodes, and just over 260,000 heightmap cells) in about one or two minutes. If one
desires to generate very large strategy game maps, our terrain generator may not be fast enough,
since the running time scales up rapidly as the map size increases. We used a simple but naive
implementation with a graph layout time complexity of O(i-n?), where i is the maximum number
of layout iterations and n is the number of nodes in the graph, including corridor nodes. The
accessibility map generation phase takes O(m-n) time, where m is the number of heightmap cells.
With the right implementation—for example, when spatial data structures are used—we believe
it should be possible to reduce this complexity, allowing for larger maps to be be supported.

Finally, it is possible to use our method as part of a fully automated terrain generator.
The method we presented is semi-automated—it requires a designer to provide a graph drawing
as input, with specifications for properties such as the desired edge lengths. A method that
automatically generates a graph that describes the high-level structure of a terrain could be used
together with our generation method to fully automate the terrain generation process.

Our procedural generation method could also be adapted for other applications. First-person
shooters, for instance, also often make use of outdoor environments. For those games, line-of-sight
mechanics are important, so those would have to be taken into account in the generation process.
Our method could also be used to generate outdoor tracks for racing games; the curvature of
corridors plays an important role in such games, and should preferably be configurable by a game
designer. It would also be possible to use our approach to generate maps for other applications,
such as terrains for role-playing games or cavelike dungeons for roguelike games.
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A Test Cases

We used the same set of ten initial graph drawings as test cases throughout our experiments.
These graph drawings are shown in this section. They were based on StarCraft II ladder maps;
see Section for more information. The first five maps—Abiogenesis, Acid Plant, Catalyst,
Eastwatch, and Neon Violet Square—are two-player maps. The remaining maps— Frost, Whirl-
wind, Cactus Valley, Deadwing, and Invader—are four-player maps.

Figure 20: A graph drawing based on the Figure 21: A graph drawing based on the
Abiogenesis map. Acid Plant map.
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Figure 22: A graph drawing based on the Figure 23: A graph drawing based on the
Catalyst map. Eastwatch map.

Figure 24: A graph drawing based on the Figure 25: A graph drawing based on the
Neon Violet Square map. Frost map.
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Figure 26: A graph drawing based on the Figure 27: A graph drawing based on the
Whirlwind map. Cactus Valley map.

Figure 28: A graph drawing based on the Figure 29: A graph drawing based on the
Deadwing map. Invader map.
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B Generated Graph Layouts and Accessibility Maps

In this section, we present a selection of graph layouts that were produced in our experiments.
The corresponding accessibility maps are also displayed. Unless stated otherwise, the displayed
results were obtained used a stiffness force multiplier of 0.01, a slack factor of 1.25, and a corridor
width of 20.

Figure 30: A graph layout and accessibil- Figure 31: A graph layout and accessibility
ity map generated based on the Abiogenesis map generated based on the Acid Plant test
test case from Figure case from Figure
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Figure 32: A graph layout and accessibility
map generated based on the Catalyst test
case from Figure

Figure 34: A graph layout and accessibility
map generated based on the Neon Violet
Square test case from Figure
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Figure 33: A graph layout and accessibility
map generated based on the Eastwatch test
case from Figure

Figure 35: A graph layout and accessibility
map generated based on the Frost test case
from Figure



Figure 36: A graph layout and accessibility Figure 37: A graph layout and accessibility

map generated based on the Whirlwind test map generated based on the Cactus Valley
case from Figure test case from Figure

Figure 38: A graph layout and accessibility Figure 39: A graph layout and accessibility
map generated based on the Deadwing test map generated based on the Invader test
case from Figure case from Figure
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Figure 40: A graph layout and accessibil-
ity map generated based on the Whirlwind
test case from Figure The stiffness force
multiplier was 1.0.

Figure 42: A graph layout and accessibility
map generated based on the Frost test case
from Figure The corridor widths were
5.
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Figure 41: A graph layout and accessibility
map generated based on the Invader test
case from Figure The corridor widths
were 25.

Figure 43: A graph layout and accessibility
map generated based on the Frost test case
from Figure The corridor widths were
25.



Figure 44: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was

Figure 45: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was
2.0.

Figure 46: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was
1.2. Constraint projections were disabled in
this experiment.
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Figure 47: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was
2.0. Constraint projections were disabled in
this experiment.



Figure 48: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was
1.2. Repulsion radii were disabled in this
experiment.
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Figure 49: A graph layout and accessibility
map generated based on the Acid Plant test
case from Figure The slack factor was
2.0. Repulsion radii were disabled in this
experiment.



C Diversity Images

This section showcases the diversity of the maps produced in the various experiments we per-
formed. As described in Section each image is based on ten generated accessibility maps.
The lighter a pixel’s color, the more often the corresponding accessibility map cell was marked as
accessible. Black cells were never accessible; white cells were accessible in all ten maps. Unless
stated otherwise, the displayed results were obtained used a stiffness force multiplier of 0.01, a
slack factor of 1.25, and a corridor width of 20.

Figure 50: All ten accessibility maps for the Figure 51: All ten accessibility maps for the
Whirlwind graph in the experiment with Invader graph in the experiment with vary-
varying stiffness overlaid on top of each ing corridor width overlaid on top of each
other. The stiffness multiplier was 1 here. other. The corridor width was 25 here.
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Figure 52: All ten accessibility maps for the
Frost graph in the experiment with varying
corridor width overlaid on top of each other.
The corridor width was 5 here.

Figure 53: All ten accessibility maps for the
Frost graph in the experiment with varying
corridor width overlaid on top of each other.
The corridor width was 25 here.

Figure 54: All ten accessibility maps for the
Acid Plant graph in the experiment with
varying slack factor overlaid on top of each
other. The slack factor was 1.2 here.
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Figure 55: All ten accessibility maps for the
Acid Plant graph in the experiment with
varying slack factor overlaid on top of each
other. The slack factor was 2.0 here.



Figure 56: All ten accessibility maps for the
Acid Plant graph in the experiment with
varying slack factor and disabled constraint
projections overlaid on top of each other.
The slack factor was 1.2 here.
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Figure 57: All ten accessibility maps for the
Acid Plant graph in the experiment with
varying slack factor no repulsion radii over-
laid on top of each other. The slack factor
was 2.0 here.



D Generated Terrains

In this section, we show a few renderings of some terrains that were generated by our method.
The displayed results were obtained used a stiffness force multiplier of 0.01, a slack factor of 1.25,
and a corridor width of 20. See Section [3.10] for more details on how these terrains were created.

Figure 58: A view of the terrain generated based on the accessibility map of the Catalyst graph
from Figure
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Figure 59: A view of the terrain generated based on the accessibility map of the Neon Violet
Square graph from Figure

Figure 60: A view of the terrain generated based on the accessibility map of the Cactus Valley
graph from Figure



Figure 61: A view of the terrain generated based on the accessibility map of the Deadwing graph
from Figure

Figure 62: Another view of the terrain from Figure



Figure 63: Another view of the terrain from Figure

Figure 64: Another view of the terrain from Figure [61}



Figure 65: Another view of the terrain from Figure [61}
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