
Beyond Spatiotemporal Variance-Guided Filtering: Temporally
Stable Filtering of Path-Traced Reflections in Real-Time∗

Victor Voorhuis

Utrecht University

Utrecht, �e Netherlands

victorvoorhuis@gmail.com

Figure 1: Various scenes, shown before and a�er �ltering with our extended and modi�ed version of SVGF by Schied et al. [21].

Our extended SVGF technique is able to reconstruct temporally stable path-traced re�ections in real-time using a one sample

per pixel render and a history bu�er, which SVGF is unable to.

ABSTRACT

�e path tracing rendering algorithm has long been considered

to be unsuitable for real-time rendering, since a large amount of

samples is required to produce noise-free renders. Many �ltering

methods have been proposed, which denoise renders by trading

variance for bias. �e recently introduced Spatiotemporal Variance-

Guided Filter (SVGF) [21] achieves real-time denoising of path-

traced renders, requiring only one sample per pixel.

SVGF employs a reprojection step to increase the amount of

samples in the �lter input. �is leads to increased temporal stability.

Reprojection is also employed to estimate the per-pixel variance,

which is used to locally adapt the �lter bandwidth to the signal.

SVGF however only reprojects the primary hit, and is therefore not

able to reproject geometry visible in re�ections. We extend SVGF

to reproject and �lter geometry visible in both pure and glossy

specular re�ections. To prevent this reprojection from introducing

ghosting artifacts, we apply a form of neighborhood clipping which

is tailored to SVGF. With our modi�cations, SVGF can produce

temporally stable �ltered re�ections in real-time.

We also extend SVGF to support supersampling and introduce

several modi�cations to improve the robustness of the algorithm

when the probability of paths that return energy is low. Our work

makes SVGF usable in a wider variety of scenes and improves

reconstruction quality in several scenarios, while retaining real-

time performance on consumer hardware.

∗
Master thesis, Utrecht University, ICA-4146034

1 INTRODUCTION

�e path tracing rendering algorithm [10] o�ers numerous advan-

tages over traditional rasterization based approaches. By evalu-

ating multidimensional integrals using Monte Carlo integration,

physically accurate light transport can be modeled and evaluated.

Numerous visual e�ects, such as indirect di�use illumination, �t

elegantly into the path tracing framework. �e advantages of path

tracing have led to its wide adoption in the movie industry [12].

For an introduction to path tracing, we refer to Appendix B.

�e Monte Carlo integration which lies at the core of the path

tracing technique unfortunately also introduces the technique’s

main drawback: the pixel estimates contain variance, which shows

up in the image as noise. �is variance decreases as the number

of collected samples increases, but reducing the visible noise to an

acceptable level can take a prohibitively large amount of time. �is

has led to the development of a wide variety of �ltering approaches

[28], which introduce some bias to reduce visible noise. Even with

these �lters, path tracing has long been considered to be too costly

for real-time rendering applications.

Recently, several �ltering approaches have been proposed [2, 4,

6, 14, 21] that aim to make the path tracing algorithm applicable to

real-time rendering. One of the current state-of-the-art approaches

is the Spatiotemporal Variance-Guided Filter (SVGF) [21], which

is able to reconstruct temporally stable sequences of path-traced

renders in real-time. SVGF makes use of reprojection, re-using

samples taken in the past where possible for increased temporal

stability and an increased e�ective sample count. Filtered frames

1

are produced with only one sample per pixel and a history bu�er.

However, the reprojection technique used by SVGF is not aware of

re�ected geometry, which results in ghosting re�ections.

In this work, we introduce several modi�cations and extensions

to the SVGF approach, making the technique both more e�ective

and applicable to a wider variety of materials. Speci�cally, we

extend SVGF to reproject pure and glossy specular re�ections ac-

curately, which allows for temporally stable �ltering of re�ections

without ghosting artifacts. Our contributions include:

• We introduce a fast motion vector estimation technique

for geometry visible in pure specular re�ections, based on

diamond search [27]. �is allows us to accurately reproject

and �lter geometry visible in pure specular re�ections.

• We develop a heuristic that allows us to apply our motion

vector estimation technique to glossy specular re�ections,

enabling reprojection and �ltering of geometry visible in

glossy specular re�ections.

• We extend SVGF with a neighborhood clipping step that is

speci�cally tailored to SVGF. �is helps to reduce ghosting

artifacts for reprojected re�ections.

• We extend SVGF to support supersampling using a modi-

�ed guide rays approach. �is supersampling allows for

sharp anti-aliasing and increased �ltering robustness.

• We apply several modi�cations to the SVGF algorithm,

improving its robustness in situations where the energy in

an area is concentrated in a few bright samples.

2 RELATED WORK

�e visually disturbing noise in images rendered by path tracing

arises due to variance present in the per-pixel color estimates. As

we gather more samples, the variance of our estimates decreases,

eventually leading to the noise disappearing. To speed up the

rendering process, many denoising �lters for path tracing have been

proposed. �e idea of these �lters is to combine pixel estimators

that should converge to similar values, trading variance for bias.

We will brie�y discuss some of these �ltering approaches. For a

more in-depth discussion, we refer to the survey by Zwicker et al.

[28] and our own in-depth literature study in Appendix B.

Denoising Monte Carlo Renders To denoise Monte Carlo renders

e�ectively, smoothing has to be performed while retaining high-

frequency details such as edges. �ere are several ways to achieve

this. One can for example employ a bank of �lters with varying

kernel sizes. Rousselle et al. [19] greedily choose from a bank of

Gaussian �lters, choosing the �lter likely to have the smallest error

for each pixel. Another approach is to use non-linear �lters, such

as the bilateral �lter [24]. In the bilateral �lter, weights between

pixels are not only based on spatial proximity, but also on similarity

in pixel color intensity. �is makes the �lter preserve edges, but

also means that high-frequency noise in the input is preserved.

Xu and Pa�anaik [26] use the bilateral �lter for Monte Carlo de-

noising, dealing with the preservation of high-frequency noise by

pre�ltering using a Gaussian �lter.

Many recent approaches use auxiliary features of the pixels in the

�ltering process. Li et al. [13] use Stein’s Unbiased Risk Estimator

(SURE) to select from a bank of joint-bilateral �lters with varying

spatial support. �e joint-bilateral �lter also factors the similarity

between feature values of pixels, such as the normal of the �rst hit,

into the weight calculation. Rousselle et al. [20] also use SURE to

select a �lter from a �lterbank, but instead use NL-means �lters,

which have a higher computational complexity than bilateral �lters

but are more robust against noise. �e regression-based approaches

[2, 3, 15, 16, 17] use auxiliary features in a radically di�erent way:

smoothing is performed by locally ��ing �xed order regression

models, which map from the auxiliary features to the noisy image

as closely as possible. �e �nal �ltered image is formed using these

��ed regression models.

Auxiliary features have proven to be e�ective in steering de-

noising �lters. Unfortunately, several phenomena, such as depth

of �eld and motion blur, introduce noise in these features. �ere

are several ways of dealing with this. Moon et al. [15] perform

a Truncated Singular Value Decomposition (TSVD) on their fea-

ture space, allowing them to operate on a smaller set of less noisy

features. Sen and Darabi [22] measure how reliant the features

are on the random parameters, diminishing the in�uence of more

noisy features. Delbracio et al. [7] forego the usage of auxiliary

features altogether, instead using color histograms to mix pixel

color estimates that have similar color distributions together.

Denoising Monte Carlo Renders in Real-Time With the increasing

capabilities of graphics hardware, path tracing in real-time has

become a reality, albeit with low sample counts. �is has led to an

increased interest in denoising methods that execute in li�le time,

while being able to work with low sample counts. Combined with

a fast path tracer, these �lters aim to make path tracing applicable

to real-time rendering.

To achieve su�cient denoising at low sample counts, bilateral

�lters with large �lter footprints would be required. �e computa-

tional complexity of these �lters is high. �us, di�erent approaches

are required. Bauszat et al. [2] employ the guided image �lter,

which smooths by locally ��ing �rst-order regression models. Later,

Bauszat et al. [1] succesfully �ltered path traced renders with depth

of �eld by combining adaptive manifolds [8] and sweep blur [23].

Dammertz et al. achieve real-time �ltering by employing the fast

undecimated À-Trous wavelet transform to approximate a joint-

bilateral �lter with a large kernel. �is comes down to repeatedly

�ltering the image with larger and larger kernels, which all contain

the same amount of non-zero entries. A variety of edge-stopping

functions, which use auxiliary feature values, is used in the weight

calculation of these �ltering steps to retain high-frequency con-

tent. �e �lter runs in real-time, but the method is not temporally

stable, which results in distracting �ickering. Feature bu�ers are

assumed to be free of noise, making the technique incompatible

with stochastic primary ray e�ects.

Recently, Chaitanya et al. [4] employed a recurrent denoising

autoencoder to denoise Monte Carlo renders. �e recurrent denois-

ing autoencoder is a convolutional neural network that contains

recurrent connections. �ese recurrent connections connect to

the state in the previous frame, allowing a trained network to use

information from the previous frame to create temporally coherent

sequences of images. �e approach produces high quality results

without requiring guidance from the user, but unlike SVGF [21],

is currently unable to run at real-time framerates on consumer

hardware.

2

1 spp input

Indirect illumination

Direct illumination

Demodulate

Demodulate

Indirect history

Integrated ind. illum.
Integrate

Estimate
Ind. illum. variance

Direct history

Integrated dir. illum.
Integrate

Estimate
Dir. illum. variance

Filtered ind. illum.

Filtered variance

Filter

Filter

Filtered dir. illum.

Filtered variance

Filter

Filter

Filtered ind. illum.

Filtered variance

Multiple iterations

Multiple iterations

Filtered dir. illum.

Filtered variance

Multiple iterations

Multiple iterations

Update history

Update history

Raw output

Remodulate

Tonemapped output
Tone mapping

Final output
Temporal antialiasing

Figure 2: A diagram describing the working of the SVGF approach [21]. A one sample per pixel (spp) input is demodulated,

split into direct and indirect illumination, temporally integrated using a history bu�er and �ltered using several À-Trous �lter

iterations. A variance estimate is also �ltered in each iteration and used to control the illumination edge stopping.

3 SPATIOTEMPORAL VARIANCE-GUIDED

FILTERING (SVGF)

Our work is an extension of the Spatiotemporal Variance-Guided

Filter (SVGF), which was introduced by Schied et al. [21]. In this

section, we will give a brief description of the �lter. An overview is

provided in Figure 2.

SVGF performs smoothing using the same À-Trous wavelet �lter

as was used by Dammertz et al. [6], although with alternative, scene-

agnostic edge stopping functions. Indirect and direct illumination

are �ltered separately to increase reconstruction quality. To prevent

the �lter from having to retain high-frequency texture details, the

authors demodulate the direct and indirect illumination with the

surface albedo before �ltering, and remodulate the illumination

components a�er �ltering. By �ltering the separated, demodulated

illumination, texture detail is preserved.

Schied et al. extend the work by Dammertz et al. by introduc-

ing a reprojection step. �e technique uses screen-space motion

vectors, derived from a rasterization pass for primary visibility,

which describe what pixels in the previous frame correspond to the

pixels in the current frame. Using these motion vectors, pixels from

the previous frame are mixed with the un�ltered samples of the

current frame using an exponential moving average. To prevent

incorrect reprojections, there are several consistency tests based

on the auxiliary features. �e temporal reprojection leads to less

noisy and more temporally stable sequences of �ltered images.

Temporal reprojection is also used in SVGF to estimate the vari-

ance of the di�erent pixel illumination values. When there are less

than 4 successful reprojections, a spatial variance estimate is used

instead. �e bandwidth of the luminance edge stopping function

is scaled using the variance estimate, meaning that noisy pixels

are allowed to blend more with dissimilar pixels than less noisy

pixels. A�er the temporal reprojection and the �ltering passes, the

�ltered direct illumination and the �ltered indirect illumination are

combined and remodulated using the surface albedo. �is output is

tone mapped, and a temporal antialiasing [11] step is performed to

reduce aliasing artifacts and further increase temporal stability.

�e introduced temporal reprojection step reduces variance in

the input to the À-Trous �lter and improves temporal coherence,

but can also increase bias. �e temporal reprojection assumes that

the illumination at a world position in the current frame is similar to

the illumination of the corresponding world position in the previous

frame. Unfortunately, when this assumption is false (for example

when moving the camera around a specular surface), samples from

the previous frame are mixed in incorrectly, introducing bias visible

as ghosting artifacts.

Similar to the �lter by Dammertz et al., SVGF assumes noise-free

feature bu�ers and is thus incompatible with stochastic primary

ray e�ects.

4 REPROJECTION AND FILTERING OF

REFLECTIONS

SVGF reprojects pixels using a bu�er of 2D screen space motion

vectors, which are derived from a rasterization pass for primary

visibility. �ese motion vectors allow for �nding a pixel in the

previous frame with a similar primary hit. Unfortunately, that

does not mean that the same re�ected geometry is visible in that

pixel: di�erent re�ected geometry is visible at the same primary

hit, depending on the viewpoint. Reprojecting using the primary

motion vectors leads to ghosting re�ected geometry.

For correctly �ltered re�ections, we require motion vectors de-

scribing the screen space motion of re�ected geometry. �ese are

much harder to determine, especially considering the fact that re-

�ective surfaces can have arbitrary shapes. In this section, we

3

introduce a method to determine such “re�ection motion vectors”

in real-time, for both pure and glossy re�ections.

4.1 Pure specular re�ections

In order to �lter pure specular re�ections without blurring high-

frequency details, we use auxiliary features of the �rst non-pure

specular hit, instead of auxiliary features of the �rst hit. We also

demodulate with the surface albedo of the primary hit multiplied

with the surface albedo of the re�ected geometry.

To prevent ghosting re�ections, we reproject using motion vec-

tors which describe the motion of the re�ected geometry. To derive

this motion vector for a specular pixel p, we search for the specular

pixel q in the previous frame that has the closest world position

feature to p. A naive way to do this is to examine all specular pixels

in the previous frame, or to examine a large window of pixels in

the previous frame. �e computational cost of doing this for every

specular pixel p is unfortunately prohibitively high.

E�ciently estimating motion vectors has been studied exten-

sively for the purpose of video compression, where temporal redun-

dancy between frames is exploited by estimating motion vectors for

blocks of pixels. A popular algorithm for fast block-matching mo-

tion estimation is the diamond search algorithm [27], which �nds

matching blocks in di�erent frames e�ciently using a sequence of

search iterations.

In each iteration, a pa�ern of taps centered on the current best

match is evaluated. In the �rst phase, a Large Diamond Search

Pa�ern (LDSP) is used. A�er each iteration, the search pa�ern

is centered on the best found tap. �e search continues until an

iteration �nds no improvements. �e algorithm then moves on to

the second phase, in which a Small Diamond Search Pa�ern (SDSP)

is used for one �nal search step. �e best found match determines

the �nal motion vector. By starting with the LDSP, which has taps

spread apart further than the SDSP, the algorithm can cover large

distances quickly and is relatively resistant to ge�ing stuck in local

minima.

We employ a modi�ed version of the diamond search algorithm

to �nd a specular pixel q in the previous frame with a matching

world position feature to p. During each search step, we choose the

pixel q with the smallest distance to p:

dist(p,q) = | |worldp −worldq | |. (1)

Before starting the diamond search, we evaluate two starting

positions and choose the best one. We evaluate the position of p
and the matching position of p in the previous frame according to

the primary hit motion vector, which in many scenarios is close to

the best match. For increased e�ciency, we use an LDSP with 5 taps

instead of 9, as was also done by Cheng et al. [5] (see Figure 3). We

modify the algorithm to start with a scaled up LDSP, and reduce the

step size when no improved taps are found. �e initial larger steps

make the algorithm less prone to ge�ing stuck in local minima and

can speed up searches for large motion vectors. For a visualization

of the working of the algorithm, see Figure 4. Pseudocode of the

algorithm is given in Appendix A.

�e described search algorithm produces motion vectors which

lack subpixel accuracy. �is can lead to unstable reprojection over

multiple frames, visible as shaking re�ections. To approximate the

subpixel detail of the motion vectors, we score the 8 pixels around

(a) LDSP (b) SDSP

Figure 3: �e search patterns used by our motion vector di-

amond search. �e LDSP is the same as was used by Cheng

et al. [5], but we scale up the distance of the taps from the

center tap during early search steps.

the best matching pixel in the previous frame. We choose the block

W of 2 × 2 pixels with the best combined score, and then obtain a

subpixel position between the 4 pixels by weighting the coordinates

of the 4 pixels using their scores. �e weight of each pixel is the

product of the distances of the other pixels, so that pixels with a

smaller distance get a relatively higher weight:

wp =
∏

q∈(W /p)

dist(p,q), (2)

coor
match

=

∑
q∈W (wq ∗ coorq)∑

q∈W wq
. (3)

4.2 Glossy specular re�ections

We will now extend the reprojection approach proposed in the

previous subsection to glossy specular re�ections. We will dis-

cuss motion vector estimation, an adjusted À-Trous �lter and a

neighborhood clipping procedure.

4.2.1 Motion vector estimation for glossy speculars For glossy

speculars with a roughness below a threshold, we derive motion

vectors describing motion of re�ected geometry. For materials

that are more di�use, we instead use primary hit motion vectors,

since geometry becomes hard to recognize in the re�ections. In

our renderer, which uses a Beckmann normal distribution, we use

roughness threshold 0.4. Deriving motion vectors for geometry

visible in the blurry re�ections is challenging, because pixels no

longer have a single deterministic secondary hit. Instead, there

is a distribution of secondary hits, which together determine the

pixel color. For e�ective reprojection, a pixel needs to temporally

accumulate with a pixel in the previous frame that has a similar

distribution of secondary hit points, instead of with a pixel that

happened to sample a similar hit point. However, gathering enough

samples to characterize this distribution is expensive. Instead, we

propose a cheap but e�ective approach based on a heuristic, that

yields good results at low sample counts.

We perform the same modi�ed diamond search algorithm as in

the previous subsection, but use a di�erent distance function. �e

distance between secondary hits no longer works well for glossy

speculars: two pixels may have similar secondary hit distributions,

but may have sampled two far apart positions. Instead, we base the

distance function on the distance between the secondary hit points
with the highest probability. Our heuristic makes the assumption

that, if the secondary hits with the highest probability of two glossy

4

(a) Pixel p in the

current frame.

(b) Consider two

starting positions.

(c) Go to the best

found tap in LDSP.

(d) Reduce LDSP

size.

(e) Go to the best

found tap in LDSP.

(f) Reduce LDSP

size.

(g) Go to the best

found tap in LDSP.

(h) Go to the best

found tap in LDSP.

(i) Switch to SDSP. (j) Best match in

SDSP is match q.

Figure 4: A visualization of our motion vector search approach, based on diamond search, running for a pixel p. In (a), the

green pixel is the current pixel p in the current frame. In a set of search iterations we search for a matching pixel q in the

previous frame. In these images, the considered taps are marked as red, with the best considered tap marked as green.

x

Figure 5: Visualization of our glossy reprojection heuristic.

For paths with a primary hit on a glossy specular (shown

in blue), we record a “representative ray” in the direction

the re�ection would have been in if the material was purely

specular (see the dashed arrows). �e distance function is

calculated by taking the path with the smallest secondary

depth, and taking the representative ray at that depth (point

x). �e shortest distance from that point to the other repre-

sentative ray is the distance value (shown as the red arrow).

pixels are close together, the distributions of secondary hits of the

two pixels are likely also similar.

To determine the secondary hits with the highest probability, we

store for each pixel with a glossy specular primary hit the direction

in which the ray would have been re�ected if the material was

purely specular. We call this direction, together with the primary

hit as origin, the “representative ray” for the distribution of possible

outgoing re�ection rays. We assume that a BRDF is used in which

the representative ray is the outgoing ray with the highest proba-

bility. �e most likely secondary hit of a pixel is the representative

ray’s �rst intersection with the scene. To avoid an expensive ray-

cast, we approximate the hit of the representative ray by extending

it from its origin with the depth of the taken sample:

approx hit(rp) = rp .o + rp .d ∗ depthp . (4)

Using the distance between approximate representative ray hits

of two pixels to steer the motion vector search algorithm already

yields more stable reprojection and less noisy results than using the

noisy world positions of the samples, but there is still an important

issue. Consider a pixel p, whose samples partially hit an object

in the foreground and partially hit the background. Pixel q in the

previous frame has a similar distributions of secondary hits: p and q
are suitable for temporal accumulation. However, if p’s sample hits

an object in the foreground (depthp is small) and q’s sample hits an

objects in the background (depthq is large), the distance between

approx hit(rp) and approx hit(rq) will still be large, leading to no

temporal accumulation between p and q.

To make sure p and q would temporally accumulate in this sce-

nario, we do not directly use the distance between approximate

representative ray hits. Instead, we use the shortest distance from
the closest approximate representative ray hit to the other represen-
tative ray. Now, p and q will be considered as good candidates for

temporally accumulation, because approx hit(rp) is close to rq (see

Figure 5). We measure the distance from approx hit(rnear) to r
far

,

because we favor reprojecting near geometry over reprojecting far

geometry: an incorrect foreground pixel color component tends

to be more noticeable than an incorrect background pixel color

component. �is gives our �nal distance function:

dist(p,q) = | |r
far

.d × (approx hit(rnear) − rfar
.o)| |. (5)

4.2.2 Applying the À-Trous filter to glossy speculars Using the

noisy features of geometry visible in the re�ections to edge-stop in

the À-Trous �lter passes would lead to noisy results. Instead, we use

the features of the glossy specular surface itself. �ere is no need for

precise edge stopping on the blurry re�ected geometry: previously,

two nearby pixels could have completely distinct secondary hits

5

(a) Without ray di�erentials (b) With ray di�erentials

Figure 6: A glossy specular orb from a long distance. When

there is a large amount of geometry visible in a small

amount of pixels on a glossy specular, overblur is prevalent.

By scaling the spatial bandwidth using ray di�erentials, this

overblur is reduced.

and completely di�erent values. Combining the estimators would

heavily bias the result. But now, two nearby pixels will likely have

similar distributions of secondary hits, meaning that combining

adjacent pixels is unlikely to lead to a large bias.

�ere is one caveat, however. If a large amount of geometry is

visible in a small amount of pixels, it is still possible that two nearby

pixels will have dissimilar distributions of secondary hits (if we

look at a blurry re�ection from far away, it will appear sharp again).

�e lack of edge stopping on features of re�ected geometry and a

�xed spatial bandwidth can now lead to overblur. To reduce this

overblur, we calculate the world position ray di�erentials
∂P
∂x and

∂P
∂y at the secondary hit a�er a pure specular re�ection (see [9]).

We then use these to dynamically calculate a spatial bandwidth for

a Gaussian kernel, which is then used in the À-Trous �lter passes:

σ
spatial

= exp

©­­«
−

(
∂P
∂x +

∂P
∂y

)
/2

ω

ª®®¬, (6)

whereω is a scaling factor. We found a value ofω = 0.5 to work well

in our scenes. See Figure 6 for an example. We apply this to glossy

specular surfaces with a roughness value under our roughness

threshold, because on those surfaces this overblur can occur.

4.2.3 Reducing ghosting using neighborhood clipping In the SVGF

technique, temporal accumulation only occurs if the features of

samples are consistent, preventing ghosting. �is approach does

not work well for geometry visible in glossy re�ections: a pixel

might now correctly reproject to pixels with signi�cantly di�erent

feature values. We disable the consistency checks for glossy re�ec-

tions, but this can lead to ghosting artifacts. Besides this, our glossy

re�ections in which geometry is hard to recognize (the roughness is

above our threshold of 0.4) is reprojected using primary hit motion

vectors, which can also lead to ghosting.

In temporal antialiasing (TAA) [11], reprojection is also done, but

to prevent ghosting, neighborhood clipping is performed instead of

consistency checks with auxiliary features. Neighborhood clipping

clips the history to the range of unreprojected colors in a small

window (neighborhood) around the current pixel. �is reduces

ghosting drastically, because if a reprojected color does not occur

in the local unreprojected neighborhood, it gets clipped away.

Neighborhood clipping cannot be applied to our SVGF repro-

jection as is. �e current frame contains noise from the stochastic

sampling, which means that the neighborhoods of nearby pixels

can di�er dramatically, leading to noisy results. To increase co-

herence of neighborhoods of nearby pixels, we apply a two-pass

7 × 7 Gaussian �lter to the current un�ltered frame and take the

neighborhood colors from the �ltered image. To further reduce

possible artifacts, we use a somewhat large neighborhood of 5 × 5

pixels. �is neighborhood clipping step is applied to all pixels that

have a primary hit with a roughness that we consider to not be

perfectly di�use (in our case, a roughness lower than 0.9).

5 SUPERSAMPLING FOR SVGF

Supersampling involves sampling each pixel with multiple samples

for anti-aliased results and be�er sampling of subpixel details. �is

introduces a challenging issue: there are now multiple auxiliary

feature values per pixel. To �lter correctly, �ltering would have

to occur on a sample-level instead of on a pixel-level. �is would

increase memory usage and computational costs signi�cantly. Aver-

aging the features of the samples together to �lter on a pixel-level is

not viable, since it could lead to nonsensical feature values. Schied

et al. [21] consider it to be unlikely that taking multiple samples

per pixel will be feasible at real-time framerates for the foreseeable

future. Instead of applying supersampling, they include a temporal

anti-aliasing (TAA) step in SVGF for anti-aliased results.

We however �nd that taking multiple samples per pixel is pos-

sible for simple scenes. In these cases, supersampling might be

preferable over using TAA, which tends to blur details under mo-

tion. Supersampling could also help to reconstruct areas where the

probability of paths that return energy is low, which SVGF struggles

with when there is no history available. Because of these reasons,

we extend SVGF with support for supersampling.

Bauszat et al. [2] proposed an approach with “guide rays” to per-

form supersampling while �ltering on the pixel-level. �is involves

always sending the ray of the �rst sample through the center of the

pixel and �ltering only the samples of these rays, known as guide

rays. A�er �ltering, one determines for each additional, non-guide

ray sample to which of the four neighboring guide ray samples it

is the most similar. �e similarity is calculated using the depth and

normal features. To produce the �nal render, the �ltered color of

each non-guide ray sample is set to the �ltered color of the most

similar guide ray (see Figure 7).

�e guide rays approach produces anti-aliased results, but dis-

cards the energy values of non-guide ray samples. We modify the

approach, making use of these extra samples to improve the quality

of the �lter input. Instead of determining the most similar guide ray

sample of each non-guide ray sample a�er �ltering, we already do

this before the �ltering. We then mix the un�ltered sample energy

of each non-guide ray sample into the un�ltered sample energy of

the most similar guide ray:

ûi (p) =
ui (p) +

∑
q∈A(p) ui (q)

1 + |A(p)|
, (7)

where ui (p) is the i’th color channel of a guide ray sample p and

A(p) is the set of non-guide ray samples whose most similar guide

ray is p. To obtain anti-aliased results, we still set the colors of the

non-guide ray samples to the sample of the most similar guide ray

a�er �ltering.

6

Figure 7: Visualization of the guide rays approach with 5

samples per pixel. �e non-guide ray samples (black) of

each pixel �nd the guide ray sample (red) with the most

similar attributes (see the blue line). �e �nal color of a

pixel is formed by averaging its samples, where non-guide

ray samples are set to the �ltered color of their most sim-

ilar guide ray. Two non-guide rays without a blue line are

shown: these map to guide rays outside the image.

Mixing in non-guide ray samples before �ltering leads to reduced

variance in the �lter input, but can also introduce additional bias,

since non-guide ray samples will be �ltered using the feature values

of their most similar guide ray. However, the features of the most

similar guide ray sample tend to be similar to the features of the

non-guide ray sample, limiting introduced bias.

6 IMPROVING THE ROBUSTNESS OF SVGF

Areas where paths that return energy occur with a low probability

are challenging to �lter. At 1 sample per pixel, energy tends to be

focused in a few bright samples, which have to be spread over a

large area to produce good looking results. Schied et al. found that

the variance in such areas is underestimated at low sample counts.

For example, a�er a disocclusion, a pixel in such an area might be

surrounded by exclusively black pixels, leading to a spatial variance

estimate of 0. Insu�cient smoothing occurs, resulting in black

patches and bright dots. To counteract this, Schied et al. �ltered

their variance estimates with a small spatial �lter. We observe that,

even with the spatial �lter, dimly lit areas are o�en still smoothed

insu�ciently a�er a disocclusion. To handle these areas more

robustly, we introduce a number of modi�cations.

More reliable spatial variance estimate In SVGF, variance is es-

timated using a spatial window for the �rst three frames a�er a

disocclusion. Instead of estimating the variance from the current

luminance values in the spatial window, we estimate the variance

using the current temporally accumulated raw luminance moments
µ1 and µ2 of the pixels in the spatial window. �e spatial variance

estimate is now based on more samples when some history is avail-

able, improving its reliability. To ensure that µ1 and µ2 are accurate,

we accumulate them using actual averages instead of exponential

moving averages when there are 4 or less successful reprojections.

Increased luminance bandwidth at low sample counts �e underes-

timation of variance is causing insu�cient smoothing, because the

estimated variance in�uences the strength of the luminance edge

stopping. To counteract this, we scale the luminance bandwidth

using the pixel’s amount of successful reprojections h:

σ ′l = σl ∗ (8 −min(7,h)). (8)

When a pixel has less than 7 successful reprojections, the luminance

bandwidth gets increased. �is prevents insu�cient smoothing,

but can, for a few frames a�er disocclusion, cause overblur of high-

frequency content that is not preserved by auxiliary feature edge

stopping alone. We prefer this over visually disturbing artifacts.

Fire�y suppression It is possible for bright samples to not be

smoothed su�ciently, which results in �re�ies in the �nal render.

To get rid of these, we propose a �re�y suppression step. Fire�ies

are suppressed by applying a 3 × 3 median �lter a�er the À-Trous

�lter has been applied. �is does not in�uence the stored history

for the next frame, but ensures that no �re�ies appear in a frame

presented to the user. To prevent specular highlights from being

suppressed erroneously, we only apply this to pixels that have a

di�use primary hit.

Disabled indirect illumination variance �ltering SVGF repeatedly

�lters the variance estimates, estimating the variance of the �ltered

illumination a�er every iteration of the À-Trous �lter. �e illumi-

nation values are based on more and more samples as the �lter

iterates, meaning that the variance estimates decrease a�er every

iteration. By using these �ltered variance values to control the

strength of illumination edge stopping, overblurring is prevented.

However, in our experience, this overblurring prevention o�en

leads to insu�cient smoothing for indirect illumination. For this

reason, we disable variance �ltering for indirect illumination in

our SVGF implementation. �is may cause overblurring of indirect

illumination, but we found the more smooth and more temporally

stable indirect illumination to be worth the trade-o�.

7 IMPLEMENTATION AND RESULTS

To achieve real-time rendering with path tracing and SVGF, we

make use of an e�cient custom GPU path tracer. �e path tracer

is implemented using the NVIDIA CUDA platform. We integrate

SVGF, along with our extensions and modi�cations, as a set of

CUDA kernels which run on the GPU.

We perform a variety of experiments to evaluate the produced

results and performance of our proposed extensions and modi�-

cations, comparing results to our own base SVGF implementation.

�ality of produced renders is evaluated using the Root-Mean

Squared Error (RMSE) and the Structural Similarity Index (SSIM)

[25] of renders to 4096 sample per pixel (spp) reference renders.

�e RMSE is based on per-pixel errors, and is calculated using tone-

mapped images without gamma correction (in SVGF, tone-mapping

is performed before the TAA step, so to evaluate the entire SVGF

algorithm, tone-mapped images are required). SSIM is a percep-

tual metric, giving us an indication of perceived image quality by

humans. We calculate SSIM using the �nal gamma-corrected, tone-

mapped images. All experiments are conducted using an NVIDIA

GTX 1070 at a 1280 × 720 resolution. We use SVGF parameters

σz = 1, σn = 64 and σl = 5, which we found to produce good

results in all tested scenes. Temporal integration uses α = 0.2 for

pixels with di�use primary hits and α = 0.1 for pixels with specular

primary hits.

7

Ours 1 spp Reference Ours NoSpecReproj Base

RMSE SSIM RMSE SSIM

S
p
o
n
z
a
G
l
o
s
s
y
F
l
o
o
r

0.011 0.861 0.011 0.811

S
p
o
n
z
a
P
u
r
e
S
p
e
c
u
l
a
r
s

0.034 0.803 0.026 0.778

S
a
n
M
i
g
u
e
l
T
a
b
l
e

0.079 0.803 0.077 0.760

S
a
n
M
i
g
u
e
G
l
o
s
s
y
F
l
o
o
r

0.062 0.740 0.065 0.624

C
o
r
r
i
d
o
r
R
o
b
o
t

0.038 0.876 0.041 0.863

Figure 8: �e benchmark frames, taken from animated �ythroughs, used to evaluate the quality of �ltered re�ections. Base
smears out re�ections due to using primary hit motion vectors. NoSpecReproj produces temporally unstable re�ections that

o�en still contain noise. Our method produces temporally stable re�ections without the ghosting artifacts of Base. Under

each benchmark frame, the RMSE (lower is better) and SSIM (higher is better) of the entire benchmark frame to a 4096 spp

render is given.
8

7.1 �ality and temporal stability of

re�ections

We evaluate the quality of re�ections �ltered by our technique using

a variety of benchmark frames in various scenes. �ese benchmark

frames are taken from animated �ythroughs: this ensure that our

results are typical for a frame in an interactive se�ing. For each

frame in the �ythrough, one path-traced sample is taken for each

pixel. Five benchmark frames are used: SponzaGlossyFloor and

SanMiguelGlossyFloor feature glossy specular �oors, Sponza-

PureSpeculars has a �oor and an orb that are both purely specular,

and SanMiguelTable and CorridorRobot feature both promi-

nent pure and glossy specular re�ections. In SanMiguelTable, the

cups are purely specular and the brown �oor is a glossy specular.

CorridorRobot contains a purely specular robot and a door that

is a glossy specular.

We �lter the benchmark frames with our extended SVGF tech-

nique (Ours) and with our base SVGF implementation (Base). Di-

rectly comparing the �ltered results of Ours and Base does however

not hold much value: Base is reprojecting re�ected geometry incor-

rectly, allowing us to arbitrarily increase its reconstruction error by

speeding up camera motion. Instead, we compare reconstruction

quality of Ours to NoSpecReproj, which is a version of base SVGF

that does not apply reprojection and TAA to specular pixels. �e

�ltered benchmark frames, along with the RMSE, SSIM and several

insets comparing the di�erent techniques, are given in Figure 8.

Base is reprojecting re�ections incorrectly, leading to smeared

out re�ections. NoSpecReproj and Ours do not su�er from this. �e

reprojection of speculars in our technique reduces the variance

of pixel estimates before the �lter passes are applied. �is leads

to less noisy �lter output, especially in areas with large amounts

of variance, such as the glossy speculars in SponzaGlossyFloor,

SanMiguelGlossyFloor and SanMiguelTable. �e reprojection

makes a substantial di�erence: Ours is able to e�ectively �lter out

noise in these areas, whereas NoSpecReproj is unable to. �is is

re�ected in the SSIM values of these scenes.

�e reduced variance due to reprojection also allows for denois-

ing noisy pure specular re�ections, such as the second inset of

SponzaPureSpeculars, be�er than NoSpecReproj. In addition, our

technique edge stops using feature values of geometry in pure spec-

ular re�ections and demodulates using albedo of geometry in pure

specular re�ections before �ltering, allowing it to be�er retain de-

tails in pure specular re�ections. See for example the �rst insets of

SponzaPureSpeculars and SanMiguelTable. �ese advantages

of Ours over NoSpecReproj, combined with our modi�cations for

improved robustness, lead to be�er SSIM values in all scenarios.

Our reprojection is extending our �lter into the temporal dimen-

sion, leading to a lower variance. However, this additional temporal

�ltering can also introduce additional bias. Base introduces a large

amount of bias due to incorrect reprojection. Ours introduces much

less, but it does still introduce some bias. NoSpecReproj does not

�lter temporally, so no temporal bias is introduced. �is tempo-

ral bias is re�ected in the RMSE values of our benchmark frames:

NoSpecReproj has be�er, lower RMSE values than Ours for two out

of �ve benchmark frames.

Although our technique sometimes produces renders with a

higher RMSE than NoSpecReproj, it is consistently producing more

0 10 20 30 40 50 60

0.000

0.001

0.002

0.003

0.004

0.005

Frame Index

Te
m

po
ra

l E
rr

or

Ours Base NoSpecReproj

(a) SponzaGlossyFloor

0 10 20 30 40 50 60

0.000

0.001

0.002

0.003

0.004

0.005

Frame Index

Te
m

po
ra

l E
rr

or

Ours Base NoSpecReproj

(b) SponzaPureSpeculars

Figure 9: Temporal error in two scenes, measured over 60

frames with a �xed camera and scene. Due to a lack of spec-

ular reprojection, NoSpecReproj produces much less tempo-

rally stable results than our method and base SVGF.

desirable results. A key property of our approach is that it pro-

duces temporally stable results. NoSpecReproj does not produce

temporally coherent frames due to lack of reprojection: �ltered

speculars �icker heavily. To measure this di�erence in temporal

stability, we take SponzaGlossyFloor and SponzaPureSpeculars,

and measure the average luminance di�erences of pixels in sub-

sequent frames for a �xed viewpoint. �is method is known as

measuring the temporal error, and was introduced by Schied et al.

[21]. Results are shown in Figure 9.

�e temporal error for NoSpecReproj is on average 4.4 times

higher than for our technique in SponzaGlossyFloor, and on

average 7 times higher in SponzaPureSpeculars. Base, which

does apply temporal reprojection for speculars, introducing large

amounts of bias in the process, has a comparable temporal error

to our technique. In SponzaPureSpeculars, Base converges to

a lower temporal error than our technique, because it does not

perform edge stopping using features of geometry in pure specular

re�ections, and thus is performing more spatial �ltering.

7.2 Improved robustness of the �lter

We have made several adjustments to improve SVGF’s robustness

(see Section 6). We evaluate the image quality with and without

our adjustments on two benchmark keyframes from animated �y-

throughs. Both benchmark keyframes contain areas where paths

that return energy occur with a low probability, causing the energy

to be focused in a small amount of bright samples. We take frames

in which such areas have recently been disoccluded, so that there

is li�le to no history available.

SponzaPillars is taken from an animated sequence in which

the camera �ies along a series of pillars: each pillar occludes the

background for a few frames. We take a frame right a�er such a

disocclusion. �e animated sequence of SanMiguelStairs quickly

moves the camera past a wall, unveiling a dimly lit area almost

exclusively lit by indirect light. �e �ltered benchmark frames,

along with RMSE, SSIM and insets demonstrating the di�erence

our modi�cations make, are given in Figure 10.

9

Ours 1 spp Reference Base SVGF Ours

RMSE SSIM RMSE SSIM

S
p
o
n
z
a
P
i
l
l
a
r
s

0.040 0.878 0.040 0.901

S
a
n
M
i
g
u
e
l
S
t
a
i
r
s

0.030 0.782 0.029 0.873

Figure 10: �e di�cult to �lter benchmark frames, taken from animated �ythroughs, used to evaluate the impact of our ro-

bustness improvements. Base SVGF is unable to e�ectively denoise parts of these frames when there is no temporal history

available (see the insets). With our modi�cations, artifacts either disappear completely or become much less prevalent. Un-

der each benchmark frame, the RMSE and SSIM of the entire benchmark frame to a 4096 spp render is given. Our method

outperforms base SVGF in terms of SSIM, with RMSE staying approximately the same.

�e base SVGF method produces noisy areas in both of these

frames. SponzaPillars features recently disoccluded areas (above

the curtain and next to the circular pillar) where there is no direct

illumination and no available history. Variance is underestimated

due to the low probability of samples that return energy. Insu�-

cient smoothing occurs, leading to the bright samples still being

visibly brighter than their neighborhood in the �ltered frame. Sim-

ilar situations are visible in SanMiguelStairs. �e dimly area

near the le� edge of camera’s �eld of view lacks history: bright

samples get smoothed insu�ciently and dark areas do not blend

with bright areas around them. Bright horizontal strokes are visible

on the wall in the center of the frame. �ese appear because the

temporal reprojection has smeared out bright samples that arose

from insu�cient smoothing.

Our modi�cations make the �lter more robust against these sce-

narios: artifacts are either completely gone or much less prevalent

than before. For our benchmark frames, our modi�ed SVGF method

produces higher SSIM values for both �ltered frames. �e RMSE

stays approximately the same.

7.3 Improving results using supersampling

We have introduced supersampling to SVGF by using a modi�ed

guide rays approach (see Section 5). We will now evaluate whether

taking expensive extra samples with this method is able to improve

the quality of �ltered results. Our supersampling method should

both help to produce sharp anti-aliased results and to decrease

variance in the input to the �lter, improving reconstruction quality

in areas with a low probability of paths that return energy.

We again take benchmark frames from animated �ythroughs,

which are shown with RMSE, SSIM and various insets in Figure 11.

We �lter with 1 spp, with and without TAA, and with 4 spp, with-

out TAA. TAA is disabled to test if anti-aliased, non-blurry results

can be produced using purely our supersampling. We �lter the

benchmark frames SanMiguelTable and SanMiguelStairs. San-

MiguelTable features purely specular cups and an intricate chair,

whose details tend to be overblurred by TAA. SanMiguelStairs

features areas with a low probability of paths that return energy,

right a�er a disocclusion. We demonstrated that our robustness

modi�cations help reconstruct these areas, but some artifacts still

remain.

At 1 spp, the detailed re�ections in the cups and the chair in

SanMiguelTable are overblurred by TAA, but without TAA alias-

ing is prevalent. Our supersampling method with 4 spp produces

sharp anti-aliased results. �is is re�ected in a be�er SSIM value

for the supersampled frame. Supersampling with 4 spp also causes

the remaining artifacts in SanMiguelStairs to disappear, again

leading to a be�er SSIM value. RMSE values increase slightly over

TAA with 1 sample per pixel: the guide rays approach is se�ing

the �ltered color of each non-guide ray sample to the �ltered color

of its most similar guide ray sample, which can increase bias.

10

Ours, no TAA

4 spp 1 spp

Reference

4096 spp

Ours

1spp

Ours, no TAA

1 spp

Ours, no TAA

4 spp

RMSE SSIM RMSE SSIM RMSE SSIM

S
a
n
M
i
g
u
e
l
T
a
b
l
e

0.079 0.803 0.103 0.813 0.083 0.856

S
a
n
M
i
g
u
e
l
S
t
a
i
r
s

0.029 0.873 0.043 0.855 0.030 0.900

Figure 11: Benchmark frames, taken from animated �ythroughs, used to evaluate both advantages of our supersampling

method: sharp, e�ective anti-aliasing (SanMiguelTable) and improved reconstruction quality (SanMiguelStairs). Apply-

ing our supersampling technique with 4 spp produces non-blurry anti-aliased results (see SanMiguelTable) and improves

reconstruction quality in areas where the probability of sampling a path that returns energy is low (see SanMiguelStairs).

Under each benchmark frame, the RMSE and SSIM of the entire benchmark frame to a 4096 spp render is given.

7.4 Motion vector estimation

To evaluate the accuracy of motion vectors for re�ected geometry

generated using our search algorithm (see Section 4.1), we measure

the di�erence between our specular motion vectors and specular

motion vectors generated using a brute-force approach. �e brute

force approach always �nds the best matching pixel q in the previ-

ous frame by inspecting a window of 200 × 200 pixels around the

current pixel p (no motion vector in our experiment exceeds 100

pixels). For the brute force approach, we perform the same steps to

approximate subpixel accuracy as were described in Section 4.1.

We measure the errors of our motion vectors during �ythroughs

of two modi�ed version of the Corridor scene: one contains a

purely specular orb and the other contains a glossy specular orb.

We also evaluate the error of specular motion vectors which would

be generated without our LDSP scaling, to determine whether LDSP

scaling improves results. No other specular materials are present:

otherwise, the brute-force approach might incorrectly �nd match-

ing geometry in a di�erent re�ection. Our approach, which takes

search steps of a few pixels, does not su�er from this. Results are

given in Figure 12 and Figure 13.

For the purely specular orb the average motion vector error of

our approach varies between 0.11 and 1.26 pixels, and for the glossy

orb the average error varies between 0.06 and 1.09 pixels. �ese

errors are purely caused by the search algorithm ge�ing stuck in a

0 50 100 150 200

0.
0

1.
0

2.
0

3.
0

Frame Index

A
ve

ra
ge

 E
rr

or
 (

pi
xe

ls
)

With LDSP scaling Without LDSP scaling

Figure 12: �e average error of our motion vectors during a

�ythrough of Corridor with a purely specular orb. Results

are shown with and without our LDSP scaling adjustment.

local minimum before �nding the optimal motion vector. Our LDSP

scaling makes the algorithm less prone to ge�ing stuck in local

minima, consistently reducing the average motion vector error. On

average, more than 90% of the found motion vectors in a frame

is within one pixel of the optimum, for both the purely specular

orb and the glossy specular orb. It is worth noting that, even if

our approach �nds an incorrect motion vector, our neighborhood

clipping step (see Section 4.2.3) will prevent ghosting artifacts by

e�ectively rese�ing the pixel’s history.

11

0 50 100 150 200

0.
0

1.
0

2.
0

3.
0

Frame Index

A
ve

ra
ge

 E
rr

or
 (

pi
xe

ls
)

With LDSP scaling Without LDSP scaling

Figure 13: �e average error of our motion vectors during a

�ythrough of Corridor with a glossy specular orb. Results

are shown with and without our LDSP scaling adjustment.

7.5 Impact on performance

�e runtime of SVGF varies exclusively due to the spatial variance

estimation method, used for pixels with less than 4 successful re-

projections, being more expensive than the temporal method. In

our modi�ed version of the algorithm, the types of materials hit by

primary hits also a�ect runtime. To measure the performance of

our algorithm under di�erent circumstances, we measure the �lter

runtime during a 570 frame �ythrough of three versions of Sponza.

We test the regular scene with a di�use �oor, a version with a glossy

specular �oor (roughness 0.1) and a version with a purely specular

�oor. Results of the �ythrough are shown in Figure 14. We also

include the performance of our base SVGF implementation in the

scene with the di�use �oor, which excludes any of the modi�ca-

tions and extensions we have proposed. Performance of the base

algorithm in the other two scenes is nearly identical and has been

omi�ed.

In the di�use scene, our modi�ed SVGF approach takes on av-

erage 1.1 ms longer to �lter than our base SVGF implementation,

or about 6.67% of the average runtime of the base SVGF imple-

mentation. Pixels with a specular primary hit further increase the

runtime. �e relationship between the amount of pixels with a

specular primary hit and the increase in runtime compared to the

di�use �ythrough is roughly linear, with purely specular pixels

being more expensive than glossy specular pixels. �e cost of a

specular pixel is highly dependent on the camera movement and

scene, since those in�uence the amount of steps our diamond search

algorithm has to take. In the Sponza �ythroughs, the lowest per-

formance, disregarding the start where no history is available, is

about 20 ms. Combined with an optimized GPU path tracer that

can render 1 spp renders of Sponza in less than 30 ms, a real-time

framerate of 20 fps is possible on our hardware.

We also measure the impact of our supersampling method by

measuring �ltering runtime in a �ythrough of Sponza with a di�use

�oor with TAA disabled: see Figure 15. Going from 1 to 2 spp

increased the �lter runtime by 3.38 ms on average, a�er which

every additional sample cost about 1.8 ms. �is linear relationship

between additional samples and �lter runtime is an improvement

over the exponential increase in costs caused by additional samples

when �ltering on the sample level. We argue that, if processing

power is available to take additional samples, the extra needed

constant �lter time per extra sample is likely of li�le concern.

0 100 200 300 400 500

16
18

20
22

Frame Index

F
ilt

er
 T

im
e

(m
s) Ours, pure specular

Ours, glossy specular
Ours, diffuse
Base, diffuse

Figure 14: Filter runtime of our extended SVGF implementa-

tion and our base SVGF implementation during a �ythrough

of three variants of Sponza. �e �rst variant contains a dif-

fuse �oor, the second a purely specular �oor and the third a

glossy specular �oor. Since the runtime of base SVGF does

not depend on the specularity of the �ltered materials, its

performance is shown only for the di�use Sponza scene.

0 100 200 300 400 500

14
18

22
26

Frame Index

F
ilt

er
 T

im
e

(m
s) 1 spp 2 spp 3 spp 4 spp

Figure 15: Runtime of our �ltering method during a �y-

through of Sponza with a di�use �oor for di�erent sample

counts. �e �rst additional sample is the most expensive, af-

ter which each sample adds a constant amount of runtime.

TAA is disabled during these �ythroughs, hence the faster

runtime at 1 spp compared to Figure 14.

7.6 Limitations

Our extensions to SVGF enable reprojecting and �ltering both

glossy and pure specular re�ections, producing temporally sta-

ble results. However, our technique currently has several important

limitations. We will discuss the two limitations which we deem to

be the most important.

Usage of only one motion vector per pixel Our technique struggles

when a path is able to choose between multiple distinct, dissim-

ilar distributions of outgoing directions, because it is limited to

one motion vector per pixel. �is means that our technique can-

not �lter dielectrics e�ectively: it cannot reproject re�ection and

transmission components contributing to a pixel color separately.

Overblurring of texture detail in glossy re�ections SVGF demodu-

lates the direct and indirect illumination with the surface albedo

before �ltering. A�er �ltering, the �ltered illumination is remodu-

lated. �is preserves texture detail. We extended this concept to

pure speculars, demodulating using the multiplied surface albedo

of both the specular surface and the re�ected geometry. However,

this approach does not work for glossy specular re�ections. A pixel

12

no longer has one deterministic �rst di�use hit, so while we could

demodulate our samples, we do not have one texture color with

which we could remodulate the pixel a�er �ltering. For this reason,

we �lter textured illumination components for glossy re�ections.

�is, combined with the fact that we do not use auxiliary features

of re�ected geometry to edge stop for glossy re�ections, can lead

to overblur of texture detail in glossy re�ections.

8 CONCLUSIONS AND FUTURE WORK

We have extended the SVGF algorithm in several ways. We have

presented a technique for reprojection and �ltering of both pure

and glossy specular re�ections. Base SVGF produces temporally

stable re�ections, but heavily biases the results due to incorrect

reprojection of re�ected geometry. SVGF can be modi�ed to not

reproject specular re�ections, which leads to renders without this

bias. However, even at modest variance levels, the lack of reprojec-

tion has been shown to lead to noisy results, and more importantly,

the lack of reprojection leads to temporally unstable, �ickering

sequences of frames. We have presented a technique that is able

to reproject re�ected geometry accurately, producing sequences of

frames in which re�ections are both temporally stable and devoid

of ghosting artifacts.

To reproject re�ected geometry in a small amount of time we

have introduced a motion vector search technique based on dia-

mond search. We have shown the e�ectiveness of the technique

and have demonstrated that our LDSP scaling modi�cation im-

proves accuracy. With several modi�cations we have made the

SVGF algorithm more robust against artifacts in areas where paths

that return energy occur with a low probability. Finally, we have

introduced supersampling to SVGF, having demonstrated its value

for producing sharp anti-aliased images and improving reconstruc-

tion quality. Our modi�cations have made real-time rendering of

physically accurate re�ections on consumer hardware a reality.

�ere are several directions for future work. We consider the

extension of SVGF to dielectrics the next logical step for the tech-

nique: for this, a new reprojection scheme based on multiple motion

vectors seems required. A true drawback of our method that we

would like to see solved is the large amount of parameters. While

our set of parameters was e�ective on all scenes we have tested,

dynamically choosing the best parameters is desirable. Currently,

our motion vector estimation approach does not support animated

scene content. In the future, we would like to extend our method

to support this.

ACKNOWLEDGMENTS

I would like to thank Jacco Bikker for his supervision and guid-

ance during my research, and for authoring the used path tracer.

I would also like to thank Frank van der Stappen for ful�lling the

role of second examiner. �anks go out to 3DIMERCE, in par-

ticular to Huub van Summeren. �e scenes and objects used to

evaluate our method were modeled by Guillermo M. Leal Llaguno,

Marko Dabrovic, Unity Technologies, Benedikt Bi�erli and David

Rodriguez. Plots in this paper were created using R [18].

REFERENCES

[1] P. Bauszat, M. Eisemann, S. John, and M. Magnor. 2015. Sample-Based Manifold

Filtering for Interactive Global Illumination and Depth of Field. Comput. Graph.

Forum 34, 1 (Feb. 2015), 265–276. DOI:h�p://dx.doi.org/10.1111/cgf.12511

[2] Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image

Filtering for Interactive High-quality Global Illumination. In Proceedings of the
Twenty-second Eurographics Conference on Rendering (EGSR ’11). Eurographics

Association, Aire-la-Ville, Switzerland, Switzerland, 1361–1368. DOI:h�p://dx.

doi.org/10.1111/j.1467-8659.2011.01996.x

[3] Benedikt Bi�erli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián,

David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly

Weighted First-order Regression for Denoising Monte Carlo Renderings. Comput.
Graph. Forum 35, 4 (July 2016), 107–117. DOI:h�p://dx.doi.org/10.1111/cgf.12954

[4] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco

Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive

Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising

Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. DOI:
h�p://dx.doi.org/10.1145/3072959.3073601

[5] Y. Cheng, Xine You, Minlian Xiao, and Minlei Xiao. 2011. A Modi�ed Diamond

Search algorithm. In 2011 IEEE International Symposium on IT in Medicine and
Education, Vol. 2. 481–485. DOI:h�p://dx.doi.org/10.1109/ITiME.2011.6132154

[6] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch.

2010. Edge-avoiding À-Trous Wavelet Transform for Fast Global Illumination

Filtering. In Proceedings of the Conference on High Performance Graphics (HPG
’10). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 67–75.

h�p://dl.acm.org/citation.cfm?id=1921479.1921491

[7] Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas

Phelps, and Jean-Michel Morel. 2014. Boosting Monte Carlo Rendering by

Ray Histogram Fusion. ACM Trans. Graph. 33, 1, Article 8 (Feb. 2014), 15 pages.

DOI:h�p://dx.doi.org/10.1145/2532708

[8] Eduardo S. L. Gastal and Manuel M. Oliveira. 2012. Adaptive Manifolds for

Real-time High-dimensional Filtering. ACM Trans. Graph. 31, 4, Article 33 (July

2012), 13 pages. DOI:h�p://dx.doi.org/10.1145/2185520.2185529

[9] Homan Igehy. 1999. Tracing Ray Di�erentials. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99).
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 179–186. DOI:
h�p://dx.doi.org/10.1145/311535.311555

[10] James T. Kajiya. 1986. �e Rendering Equation. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’86).
ACM, New York, NY, USA, 143–150. DOI:h�p://dx.doi.org/10.1145/15922.15902

[11] Brian Karis. 2014. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, SIGGRAPH Courses 1 (2014).

[12] A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C.

Eisenacher, and G. Nichols. 2015. �e Path Tracing Revolution in the Movie

Industry. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). ACM, New York, NY,

USA, Article 24, 7 pages. DOI:h�p://dx.doi.org/10.1145/2776880.2792699

[13] Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based Optimization

for Adaptive Sampling and Reconstruction. ACM Trans. Graph. 31, 6, Article 194

(Nov. 2012), 9 pages. DOI:h�p://dx.doi.org/10.1145/2366145.2366213

[14] Michael Mara, Morgan McGuire, Benedikt Bi�erli, and Wojciech Jarosz. 2017.

An E�cient Denoising Algorithm for Global Illumination. In Proceedings of High
Performance Graphics (HPG ’17). ACM, New York, NY, USA, Article 3, 7 pages.

DOI:h�p://dx.doi.org/10.1145/3105762.3105774

[15] Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering

Based on Weighted Local Regression. ACM Trans. Graph. 33, 5, Article 170 (Sept.

2014), 14 pages. DOI:h�p://dx.doi.org/10.1145/2641762

[16] Bochang Moon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell.

2015. Adaptive Rendering with Linear Predictions. ACM Trans. Graph. 34, 4,

Article 121 (July 2015), 11 pages. DOI:h�p://dx.doi.org/10.1145/2766992

[17] Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016.

Adaptive Polynomial Rendering. ACM Trans. Graph. 35, 4, Article 40 (July 2016),

10 pages. DOI:h�p://dx.doi.org/10.1145/2897824.2925936

[18] R Core Team. 2017. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. h�ps://www.R-project.

org/

[19] Fabrice Rousselle, Claude Knaus, and Ma�hias Zwicker. 2011. Adaptive Sampling

and Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6,

Article 159 (Dec. 2011), 12 pages. DOI:h�p://dx.doi.org/10.1145/2070781.2024193

[20] Fabrice Rousselle, Marco Manzi, and Ma�hias Zwicker. 2013. Robust Denoising

using Feature and Color Information. Computer Graphics Forum 32, 7 (2013),

121–130. DOI:h�p://dx.doi.org/10.1111/cgf.12219

[21] Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty

R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn,

and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time

Reconstruction for Path-traced Global Illumination. In Proceedings of High Per-
formance Graphics (HPG ’17). ACM, New York, NY, USA, Article 2, 12 pages. DOI:
h�p://dx.doi.org/10.1145/3105762.3105770

[22] Pradeep Sen and Soheil Darabi. 2012. On Filtering the Noise from the Random

Parameters in Monte Carlo Rendering. ACM Trans. Graph. 31, 3, Article 18 (May

2012), 15 pages. DOI:h�p://dx.doi.org/10.1145/2167076.2167083

13

http://dx.doi.org/10.1111/cgf.12511
http://dx.doi.org/10.1111/j.1467-8659.2011.01996.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01996.x
http://dx.doi.org/10.1111/cgf.12954
http://dx.doi.org/10.1145/3072959.3073601
http://dx.doi.org/10.1109/ITiME.2011.6132154
http://dl.acm.org/citation.cfm?id=1921479.1921491
http://dx.doi.org/10.1145/2532708
http://dx.doi.org/10.1145/2185520.2185529
http://dx.doi.org/10.1145/311535.311555
http://dx.doi.org/10.1145/15922.15902
http://dx.doi.org/10.1145/2776880.2792699
http://dx.doi.org/10.1145/2366145.2366213
http://dx.doi.org/10.1145/3105762.3105774
http://dx.doi.org/10.1145/2641762
http://dx.doi.org/10.1145/2766992
http://dx.doi.org/10.1145/2897824.2925936
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1145/2070781.2024193
http://dx.doi.org/10.1111/cgf.12219
http://dx.doi.org/10.1145/3105762.3105770
http://dx.doi.org/10.1145/2167076.2167083

[23] Peter Shirley, Timo Aila, Jonathan Cohen, Eric Enderton, Samuli Laine, David

Luebke, and Morgan McGuire. 2011. A Local Image Reconstruction Algorithm for

Stochastic Rendering. In Symposium on Interactive 3D Graphics and Games (I3D
’11). ACM, New York, NY, USA, 9–14. DOI:h�p://dx.doi.org/10.1145/1944745.

1944747

[24] C. Tomasi and R. Manduchi. 1998. Bilateral Filtering for Gray and Color Images.

In Proceedings of the Sixth International Conference on Computer Vision (ICCV
’98). IEEE Computer Society, Washington, DC, USA, 839–. h�p://dl.acm.org/

citation.cfm?id=938978.939190

[25] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image �ality

Assessment: From Error Visibility to Structural Similarity. Trans. Img. Proc. 13, 4

(April 2004), 600–612. DOI:h�p://dx.doi.org/10.1109/TIP.2003.819861

[26] Ruifeng Xu and Sumanta N. Pa�anaik. 2005. A Novel Monte Carlo Noise Re-

duction Operator. IEEE Comput. Graph. Appl. 25, 2 (March 2005), 31–35. DOI:
h�p://dx.doi.org/10.1109/MCG.2005.31

[27] Shan Zhu and Kai-Kuang Ma. 2000. A New Diamond Search Algorithm for Fast

Block-matching Motion Estimation. Trans. Img. Proc. 9, 2 (Feb. 2000), 287–290.

DOI:h�p://dx.doi.org/10.1109/83.821744

[28] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P.

Sen, C. Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and

Reconstruction for Monte Carlo Rendering. Comput. Graph. Forum 34, 2 (May

2015), 667–681. DOI:h�p://dx.doi.org/10.1111/cgf.12592

14

http://dx.doi.org/10.1145/1944745.1944747
http://dx.doi.org/10.1145/1944745.1944747
http://dl.acm.org/citation.cfm?id=938978.939190
http://dl.acm.org/citation.cfm?id=938978.939190
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/MCG.2005.31
http://dx.doi.org/10.1109/83.821744
http://dx.doi.org/10.1111/cgf.12592

A REFLECTION MOTION VECTOR DIAMOND SEARCH ALGORITHM

ALGORITHM 1: Re�ection Motion Vector Diamond Search

Input: Pixel p , world position of pixel p , primary motion vector of pixel p , world position bu�er of previous frame.

Output: Estimated motion vector for pixel p .

stepSize = 4;

bestPos = center Pos = coordinates of pixel p ;

bestDist = | |Worldp − PrevW orldp | |;
pixelm = pixel at (coordinates of pixel p - primary motion vector of pixel p);

if | |Worldp − PrevW orldm | | < bestDist then

bestDist = | |Worldp − PrevW orldm | |;
bestPos = center Pos = coordinates of pixelm;

end

while true do

for each pixel q in (LDSP * stepSize) centered on center Pos do

if | |Worldp − PrevW orldq | | < bestDist then

bestDist = | |Worldp − PrevW orldq | |;
bestPos = coordinates of pixel q;

end

end

if bestPos == center Pos then

if stepSize == 1 then

break;

else

stepSize /= 2 ;

end

end

center Pos = bestPos ;

end

for each pixel q in SDSP centered on center Pos do

if | |Worldp − PrevW orldq | | < bestDist then

bestDist = | |Worldp − PrevW orldq | |;
bestPos = coordinates of pixel q;

end

end

return coordinates of pixel p - bestPos ;

15

B PRELIMINARIES AND LITERATURE STUDY

16

Filtering for Path Tracing
Preliminaries and Literature Study

by

Victor Voorhuis

Faculty of Science

Department of Information and Computing Sciences

June 2018

Contents

1 Introduction 1

2 Preliminaries 2

2.1 From Rasterization to Physically-based Rendering 2

2.2 Realistic Light Transport with Path Tracing 3

2.2.1 The Rendering Equation . 3

2.2.2 The Measurement Equation . 4

2.2.3 Whitted-style Ray Tracing . 5

2.2.4 Rendering with Monte Carlo Integration 6

2.3 Variance Reduction . 8

2.3.1 Importance Sampling . 8

2.3.2 Russian Roulette . 9

2.3.3 Next Event Estimation . 9

2.4 Filtering for Path Tracing . 10

2.4.1 Only Combining Similar Pixels . 11

2.4.2 Real-time Performance using Filtering 13

2.4.3 Wavelets and the Discrete Wavelet Transform 13

3 Literature study 16

3.1 Early Influential Work . 16

3.2 Bilateral Filtering for Monte Carlo Denoising 18

3.3 Wavelet Shrinkage for Monte Carlo Denoising 18

3.4 An Iterative Adaptive Sampling Strategy 19

3.5 Filter Selection and Adaptive Sampling using Error Estimation 19

3.5.1 Greedy Error Minimization (GEM) 20

3.5.2 SURE-Based Filtering . 20

3.5.3 NL-Means Filtering . 21

3.5.4 Robust Denoising using Features and Color (RDFC) 21

3.5.5 General and Robust Error Estimation and Reconstruction 22

3.6 Random Parameter Filtering . 22

3.7 Filtering without Geometric Information 23

3.7.1 Ray Histogram Fusion . 23

3.7.2 General Image Denoising (GID) . 23

3.8 Real-time Denoising with the Edge-Avoiding À-Trous Wavelet Transform 24

3.9 Real-time Denoising with the Guided Image Filter 26

3.10 Local Regression-Based Filtering . 27

3.10.1 Employing Weighted Local Regression 27

i

Contents ii

3.10.2 Adaptive Rendering with Linear Predictions 28

3.10.3 Fitting Polynomials . 29

3.10.4 Nonlinearly Weighted First-Order Regression 29

3.11 The Learning-Based Filter . 30

3.12 Filtering Depth of Field and Hemisphere Noise Separately 30

3.13 The Virtual Flash Image . 31

3.14 Alternatives to Filtering Pixel Colors . 32

3.14.1 Radiance Filtering . 33

3.14.2 Path Space Filtering . 33

3.14.3 Multidimensional Adaptive Sampling and Reconstruction 33

3.15 A Priori Methods . 34

3.16 Recent Work . 35

3.16.1 Spatiotemporal Variance-Guided Filtering (SVGF) 35

3.16.2 Separate Filtering Chains for Matte and Glossy Rays 37

3.16.3 Reconstruction using a Recurrent Denoising Autoencoder 38

3.17 Assessment and Summary . 39

Bibliography 42

Chapter 1

Introduction

This document discusses required preliminary knowledge and gives an overview of in-

sights gathered during an extensive literature study. We recommend Chapter 2 to those

who are unfamiliar with path tracing and filtering for path tracing. Chapter 3 gives an

overview of previous work on filtering path-traced renders, and is recommended to those

who desire a more in-depth overview of previous work.

1

Chapter 2

Preliminaries

This chapter serves as an introduction to path tracing and the filtering of path traced

renders. The concept of path tracing will be introduced and contextualized, and several

advanced techniques to improve its convergence speed will be discussed in depth. We

will conclude with an introduction to the general principles of filtering for path tracing.

2.1 From Rasterization to Physically-based Rendering

Rasterization-based rendering is currently considered to be the algorithm of choice for

rendering three-dimensional environments in real-time. The virtual environment, which

consists of triangles, is rendered to a two-dimensional image by sequentially processing

the triangles in isolation. The vertices of the triangles that lie within the view frustum of

the camera are projected to the 2D view of the camera (see Figure 2.1). The fragments

covered by the projected triangle are then processed to determine the color they should

have in the render: they are shaded. To create the illusion of realistic lighting, informa-

tion about the lights in the scene is often used in combination with normal information

to shade the fragments. A z-buffer, which stores depth information for the rendered

geometry so far, is used to deal with triangles occluding each other.

Because the triangles in the scene are processed in isolation, dedicated hardware pipelines

can quickly draw large amounts of triangles. This makes the approach well-suited for

real-time rendering. However, this isolation of the triangles comes at a price. In re-

ality, light does not simply travel from light sources directly to every triangle in the

scene. Objects occlude light sources, creating shadows, and reflect light, creating indi-

rect illumination. The processing of triangles in isolation means that such effects do not

naturally arise in rasterization.

The desire for more realistic looking graphics has led to the creation of a wide variety of

“tricks” to crudely approximate physical phenomena. For example, shadow maps can be

used to approximate shadows, cube maps can approximate reflections, and screen-space

2

Preliminaries 3

Figure 2.1: A demonstration of the working of rasterization. The vertices of the
triangle are projected to the screen plane of the camera. Afterwards, fragments falling
inside of the triangle are shaded.

ambient occlusion can approximate global illumination. To get results that look physi-

cally accurate, a large number of these approximation techniques and tedious tweaking

is required. This has made the development of software that renders realistic looking

virtual worlds a large undertaking, while the results often leave much to be desired.

Physically-based rendering offers an attractive alternative to the rasterization approach.

The general idea is that, by simulating light transport more realistically, using the phys-

ical laws that govern light transport in the real world, photorealistic rendering becomes

possible without requiring large amounts of tricks and tweaking. Realistic effects, such

as soft shadows, indirect illumination, reflections and refractions arise naturally by fol-

lowing rules that are based on those that apply in reality.

2.2 Realistic Light Transport with Path Tracing

The key to physically-based rendering is physically-based light transport. In reality, a

surface is not only lit by light traveling directly from light sources to the surface; surfaces

themselves also reflect light and receive light that is reflected from other surfaces. Algo-

rithms that simulate this concept are known as global illumination algorithms. Crude

approximations of global illumination, such as screen space ambient occlusion (SSAO),

are used in games of today to achieve more realistic looking graphics in rasterization

based engines.

2.2.1 The Rendering Equation

Instead of using crude approximations, we want to simulate physical light transport.

Such realistic light transport can be described using the rendering equation, first formu-

lated by Kajiya [Kaj86]. It is also often referred to as the light transport equation. By

Preliminaries 4

Ω
ωo

x

ωi

Figure 2.2: A visualization of the quantities involved in the rendering equation.
Radiance leaves x in direction ωo. This outgoing radiance consists of the radiance
transmitted by x towards ωo and the reflected radiance. The reflected radiance is
determined by integrating over all directions on hemisphere Ω. For each direction,
radiance is converted to irradiance and scaled by the BSDF. In this figure, one
incoming direction ωi is shown.

assuming that light travels instantly in straight lines, the equilibrium of light transport

in a scene is expressed in an equation. One formulation of this rendering equation is:

Lo(x, ωo) = Le(x, ωo) +

∫

Ω
fs(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (2.1)

The radiance leaving position x in direction ωo (Lo(x, ωo)) consists of the radiance that

x emits into direction ωo (Le(x, ωo)) and the radiance that is reflected from x towards

direction ωo. The reflected radiance is an integral over the possible incoming directions

on the hemisphere Ω. For an incoming direction ωi, the reflected radiance towards ωo

is the incoming radiance from that direction at x (Li(x, ωi)), converted from radiance

to irradiance on the surface (by multiplying with (ωi · n)), and finally multiplied by

the bidirectional scattering distribution function (BSDF). The BSDF expresses how the

material at x scatters incoming irradiance to outgoing radiance for a pair of directions

(fs(x, ωi, ωo)). See Figure 2.2 for a visualization of these quantities.

The rendering equation expresses the radiance leaving an arbitrary point in an arbitrary

direction. This is only one possible formulation, however. For example, the alterna-

tive three-point form does not integrate over the hemisphere at the intersection, but

over all scene surfaces. A visibility term ensures that only light from visible surfaces

is integrated. Extensions also exist, such as one that distinguishes between different

wavelengths, allowing for spectral rendering.

2.2.2 The Measurement Equation

We are specifically interested in rendering an image, instead of just calculating the

amount of radiance exiting certain points in certain directions. This is where the so-

called measurement equation comes into play:

Preliminaries 5

p =

∫

P×Ω
W (x, ω)Li(x, ω)dxdω (2.2)

The measurement equation models a sensor in the virtual scene: it integrates over the

surface of the sensor (P) and the possible incoming directions (Ω). W (x, ω) is the

sensitivity of the sensor at x for direction ω. Using this, we can create a virtual camera.

For example, a “perfect” pinhole camera would consist of a sensor for each pixel, with

each position on the sensor being sensitive to only one direction.

Similar to the rendering equation, different forms of the measurement equation exist.

We could simplify it by not integrating over the sensor surface and possible directions,

simply assigning each pixel one position and one direction. The lack of an integral over

the pixel surface would then result in visible aliasing. But we could also expand it, by

for example also integrating over the surface of a lens to achieve depth of field, or by

integrating over time to achieve motion blur.

An image with light transport following the rendering equation could now theoretically

be rendered by solving the measurement equation for each pixel of our virtual camera.

Unfortunately, analytically solving the high-dimensional integral is impossible in every

non-trivial scene. Rasterization-based rendering is essentially solving a simplified version

of the rendering equation without integrals, in which only light traveling directly from

light sources to geometry is considered.

2.2.3 Whitted-style Ray Tracing

Whitted-style ray tracing [Whi79] is a rendering method which does not render scenes

by sequentially drawing the different triangles, but by tracing a ray for each pixel. For

each pixel, a ray is intersected with the scene geometry to obtain the geometry visible

in that pixel. The pixel is then shaded by casting shadow rays from the intersection to

the different light sources, determining whether light travels from the light source to the

geometry being shaded (see Figure 2.3). Fully specular reflections can be rendered by

reflecting the ray off the specular surface and tracing the reflected ray. Refraction can

also be accurately rendered by transmitting rays into objects.

Shadows, reflections and refractions fit elegantly into Whitted-style ray tracing; the ren-

dering equation is approximated closer than by rasterization-based rendering. However,

we are still omitting the integrals in the rendering equation. Distribution effects, such

as light arriving from all directions on the hemisphere, area lights, depth of field and

motion blur remain unsupported.

Preliminaries 6

x

L1

L2

Figure 2.3: Whitted-style ray tracing demonstrated. The solid blue ray goes
through a pixel and intersects the red triangle at x. Two shadow rays are cast from x:
one towards L1 and the other towards L2. L1 is visible, but the shadow ray to L2

intersects the green triangle, indicating that L2 is not visible from x.

2.2.4 Rendering with Monte Carlo Integration

Path tracing is a rendering method introduced by Kajiya [Kaj86]. Unlike rasterization

and Whitted-style ray tracing, the path tracing technique does not simplify the ren-

dering equation to make rendering the scene possible. Instead, it employs Monte Carlo

integration to approximate the high dimensional integral. The idea of Monte Carlo in-

tegration is to approximate the value of the integral by taking random samples from the

integral:

∫ B

A
f(x)dx ≈ B −A

N

N∑

i=1

f(Xi),where X1, ..., XN ∈ [A,B]. (2.3)

The key here is that we approximate the integral by performing a stochastic experiment.

N random samples of the function to be integrated are taken, which are then combined

with the formula to obtain an estimate of the integral. The expected value of this

experiment is the actual value of the integral. The variance of the outcome of the

experiment decreases linearly with the number of samples N , and thus, the standard

deviation of the outcome decreases with a rate of 1√
N

. As the amount of samples

approaches infinity, the standard deviation of the estimator approaches 0 and thus, the

outcome of the experiment approaches the true value of the integral.

Path tracing applies Monte Carlo integration to approximate the incoming light accord-

ing to the high dimensional integral (formed by the measurement equation and rendering

equation) for each pixel of the virtual camera. For each pixel, a ray is cast, similar to

Preliminaries 7

Figure 2.4: A path is recursively traced with a simple path tracing algorithm. First,
a ray is shot from the camera which intersects the red box. Then, a random direction
on the hemisphere is chosen and a new ray is shot. This continues until a light source
is hit or a ray leaves the scene. At each intersection, the potential throughput is
scaled with the BSDF fs(x, ωi, ωo) and a factor (ωi · n).

Whitted-style ray tracing. The ray is intersected with the scene, and the rendering

equation is evaluated for the intersection x. This is where the integral in the rendering

equation appears: we cannot evaluate the integral over the hemisphere at x directly.

So instead, we simply choose a random direction and cast a new ray, evaluating the

light that travels along that ray to x. The radiance found from this recursive call is

scaled by the BSDF fs(x, ωi, ωo) and a factor (ωi · n). A light path terminates when

a light source is hit: at that point, light transport from that light source to the eye is

found. This sample is used to update the current estimate for this pixel. This scheme is

repeated, sending more and more rays through the virtual pixels, establishing paths to

light sources, so that each pixel color estimate is based on more and more samples. See

Figure 2.4 for a visualization of a path being traced.

As the number of rays through a virtual pixel approaches infinity, each pixel’s color

estimate eventually converges to the true value. An estimator is unbiased if the expected

error of the estimator equals zero, which is the case for path tracing. The error in an

unbiased estimator completely consist of variance. If the expected error approaches zero

as the amount of samples increases, the estimator is consistent. Note that it is possible

for an estimator to be biased, yet consistent: then, the bias vanishes as the amount of

samples approaches infinity.

Path tracing can be used to approximate a variety of difficult effects. For example,

refractive objects can be accurately simulated by “rolling dice” to determine whether a

refracted or reflected ray should be chosen. We can get smooth, anti-aliased results by

integrating over the surface of the virtual pixel in the measurement equation: we then

choose a random position on the pixel for each sample. Depth of field can be accurately

Preliminaries 8

simulated by integrating over the surface of a virtual lens in the measurement equation:

we choose a random position on the lens for each sample.

Unfortunately, for the variance of our pixel estimates to become reasonably small, a

large amount of samples can be required. The variance in the pixel estimates, caused

by under-sampling of the integrals, shows up in the rendered images as noise. The

introduction of additional dimensions to the integral, such as for anti-aliasing, depth of

field or motion blur, makes the problem worse: more samples will be required to reach

convergence. Fortunately, techniques exist that lead to faster convergence. Also, it is

possible to use filters to try to filter this noise out of the images.

2.3 Variance Reduction

An important observation to make is that in path tracing, some samples will return

significantly more energy than others. The more bounces before a light source is hit, the

smaller the light transport along the path will generally be. After all, non-fully specular

surfaces scatter light as they reflect it. And there are many other factors: some lights

transmit more energy than others, certain materials reflect more light along certain

directions, and the list goes on.

2.3.1 Importance Sampling

Fortunately, we don’t have to select our samples with uniform probability. We can select

our samples using a probability density function (pdf) p(x) of our choosing, as long as

the pdf is positive for any sample with a positive value (=positive light transport) and

integrates to one. The Monte Carlo integration then works as follows:

∫

Ω
f(x)dx ≈ 1

N

N∑

i=1

f(Xi)

p(Xi)
. (2.4)

Samples with a higher pdf value may now be chosen more often, but they will not con-

tribute disproportionately to the final estimate, because they are also divided by a higher

pdf value. Now we can distribute the samples almost completely freely. It is a good idea

to sample the paths with a higher contribution with a higher probability, because those

paths have the most influence on the final color estimate. Doing this will decrease the

variance of our estimates: having less accurate estimates of the light transport through

less influential paths does not decrease quality of our estimates significantly, while having

more accurate estimates of the light transport through more influential paths leads to

better estimates. For example, it is a good idea to sample paths according to their value

for the (ωi · n) term, or according to the value of the BSDF function (see Figure 2.5).

Preliminaries 9

Figure 2.5: An example of importance sampling: more samples are sent to
directions on the hemisphere which are likely to have a higher contribution.

2.3.2 Russian Roulette

Like stated before, the more bounces, the less throughput a path will generally have.

For unbiased estimates, we would technically have to keep bouncing until a light source

is hit or a ray leaves the scene. This means that we could be tracing long paths with

little light transport.

Fortunately, we can again apply importance sampling. We want to consider shorter

paths, which generally have a higher throughput, as more important. A simple tech-

nique to realize this is to have a termination probability at each bounce. If the path

survives, the contribution of the path is scaled by dividing by this termination prob-

ability. Because of this, paths that are unlikely to be sampled will be scaled up to

compensate for that fact. Each path still has a non-zero probability, which means that

the result remains unbiased.

2.3.3 Next Event Estimation

Consider an intersection x with a surface along one of the paths that is being traced. If

the surface is diffuse, it is easy to see that direct light, light that travels directly from

a light source to x, will likely contribute more light transport than light that travels

to x via one or more bounces. Thus, the rays from x towards light sources are likely

important.

We can exploit this fact by separating the sampling of direct and indirect light traveling

to x. Instead of just sending a ray towards somewhere on the hemisphere, we now also

send a ray directly towards a random point on a light source. The contributions of these

two rays are simply summed together. If a random ray sampled with the hemisphere hits

a light, we ignore it to make sure that the contributions from the light are not sampled

Preliminaries 10

Figure 2.6: Next event estimation in action: direct and indirect lighting are now
estimated separately. From each vertex, a random ray on the hemisphere is cast
(blue) and a ray towards a random point on a light source is cast (dashed red).

more than once. Similarly, rays send directly towards a light source that do not hit the

light source are ignored. For an illustration, see Figure 2.6.

For the direct light sampling we can now use a different pdf than for the indirect light

sampling. A good value is the solid angle of the light on the hemisphere of x multiplied

by the luminance of the light source (the bigger this value, the more light transport

there could be).

2.4 Filtering for Path Tracing

Despite the existence of several effective variance reduction techniques, it can still take a

prohibitively large amount of samples to generate noise-free images with a path tracer.

This makes path tracing unsuitable for real-time applications, and even for offline ren-

dering, convergence can take prohibitive amounts of time. With more complex scenes

and more complex effects, this problem only becomes larger.

The idea of filtering for path tracing is to combine the estimates of multiple Monte Carlo

estimators, assuming that they converge to similar values, to reduce their variance. This

can help get rid of the visually disturbing noise, so that noise-free images resembling

the converged result can be obtained quickly. A popular way of doing this is to work

in image space and blend nearby pixels together, exploiting the spatial coherence in a

render:

ĉi =

∑
j∈Ni

cjw(i, j)∑
j∈Ni

w(i, j)
. (2.5)

Preliminaries 11

In this formula, ĉi is the filtered estimate of the color of pixel i, replacing the unfiltered

estimate ci. The estimate is a weighted average of the colors of the pixels in a window

Ni which is centered on pixel i. w(i, j) denotes the weight between pixels i and j.

However, one has to be careful. The assumption that neighboring pixels converge to

the same value is usually not completely true, which means that we introduce bias by

combining neighboring pixels. When the assumption is completely wrong, for example

if we were to combine samples of pixels on opposite sides of an edge, we introduce a

large amount of bias. The goal of these filtering algorithms is to reduce variance while

keeping the introduced bias small. Visible noise has to be smoothed away, while sharp

features that would be present in the converged render are retained. This is a significant

challenge, since we do not know what the converged render will look like.

It is worth noting that, while filtering on the pixel level is a popular method, alternatives

exist. When taking multiple samples per pixel, it is for example possible to filter on the

sample level instead. It is also possible to perform filtering in world space or in path

space instead of in image space. Filtering on the pixel level is however attractive, because

of low computational cost and easy integration into existing renderers.

2.4.1 Only Combining Similar Pixels

We have seen that to filter successfully, we only want to combine pixels that will converge

to similar values. This is where the weight term w(i, j) in Equation 2.5 comes in: we

can use it to weigh similar pairs of pixels highly and diminish the weight of dissimilar

pairs.

A simple choice would be to use a Gaussian kernel:

w(i, j) = exp

(−||pi − pj ||2
2σ2

d

)
, (2.6)

where pi is the screen-space position of pixel i and σd is the spatial standard deviation

of the Gaussian kernel. This weighting function will weigh pixels that are close to the

current pixel more severely than pixels that are further away. This is a good idea,

since pixels that are close together are more likely to be similar than pixels that are far

apart. σd is the “bandwidth” parameter that determines the size of the Gaussian kernel.

Filtering with a single Gaussian kernel is generally insufficient: a large kernel is required

for sufficient smoothing in noisy areas, which will blur out high-frequency details.

A popular image denoising algorithm is the non-linear bilateral filter [TM98]. Traditional

low pass filters for images, such as the Gaussian filter, blend pixels together using domain

kernels: pixels are blended together with their neighbors, with closer neighbors being

weighed more severely. The bilateral filter extends this by also letting the weights depend

on differences in range: the colors of the pixels.

Preliminaries 12

−10
−5

0
5

10−10

−5

0
5

10
0

0.5

1

∆x ∆y

w

(a)

−10
−5

0
5

10−10

−5

0
5

10
0

0.5

1

∆x ∆y

w

(b)

Figure 2.7: Two different filtering kernels visualized. The current pixel is located at
the center, and σd = 5. (a) is a Gaussian kernel: the weights for pixels around the
current pixel only depend on the difference in spatial coordinates. (b) is a bilateral
kernel. A hard edge is present at ∆x = 2.5: weights for pixels on the other side of the
edge are diminished.

w(i, j) = exp

(−||pi − pj ||2
2σ2

d

)
× exp

(−||ci − cj ||2
2σ2

r

)
. (2.7)

Now, the weight between pixels i and j also depends on their difference in color ||ci−cj ||.
A corresponding bandwidth parameter σr has been introduced, which determines how

severely differences in pixel color influence the weight. Edges are now preserved, because

the pixels of two distinct regions, with different color values, will not blend together. For

a visualized Gaussian and bilateral kernel, see Figure 2.7. Unfortunately, the bilateral

filter is not robust against severe noise that might be present in our renders. A difference

in color could not only have been caused by the pixels actually converging to different

colors, but also by undersampled Monte Carlo integration. Outlier pixels in a noisy

input do not blend with their neighbors, even if they would converge to similar values.

We can also use more information than just the color to “steer” our filter. The joint/cross

bilateral filter [ED04, PSA∗04] derives its range distance from one or more separate guide

images. This means that we could use less noisy inputs, such as the normals or depths

at the first hits, to “steer” our filter. Such extra geometric data is often referred to as

auxiliary features. We can formulate a new weight function that uses these auxiliary

features in combination with spatial and color distances:

w(i, j) = exp

(−||pi − pj ||2
2σ2

d

)
× exp

(−||ci − cj ||2
2σ2

r

)

×
K∏

k=1

exp

(−||fk,i − fk,j ||2
2σ2

k

)
,

(2.8)

where fk,i is the feature vector of the k’th feature at pixel i (e.g. the normal at pixel

i) and σk is the bandwidth parameter for feature k. The usage of auxiliary features

Preliminaries 13

can reduce introduced bias. If we, for example, introduce the depth of the first hit as a

feature, pixels with dissimilar depths would no longer be incorrectly blended together,

even if they have a similar color.

Unfortunately, auxiliary features cannot always be applied effectively. If we make use of

stochastic primary ray effects, such as depth of field or motion blur, or if we spread our

samples over a pixel’s surface (performing anti-aliasing by supersampling), one pixel no

longer has one clear value for each feature. The different samples of the pixel might,

after all, have different feature values. A popular way to handle this is to simply average

the feature values together for each pixel, but this means that our feature values are no

longer noise-free. This noise might in turn introduce noise in the filter output. Some

approaches which use auxiliary features do not support stochastic primary ray effects

for this reason, while others provide methods to filter effectively even with noise in the

features.

2.4.2 Real-time Performance using Filtering

Traditionally, path tracing was exclusively used in offline scenarios, simply because real-

time path tracing was not feasible. Thus, most earlier Monte Carlo denoising methods

have focused on this scenario as well. Only more recently has more research focused on

filtering in a real-time setting. With faster and faster graphics hardware being available

and GPU path tracers becoming the norm, path tracing can now be done in real-time,

albeit with low sample counts. This has sparked an interest in filtering algorithms that

run fast and can handle high variance input.

2.4.3 Wavelets and the Discrete Wavelet Transform

The general filtering techniques discussed so far filter out noise by blending pixel colors

with those of their neighbors. However, that is not the only effective strategy. The

discrete wavelet transform (DWT) is a powerful tool for denoising signals, including

images. An image can be denoised by first transforming it into a series of wavelet

coefficients, then modifying the wavelet coefficients and finally transforming the wavelet

coefficients back into an image. For the reader unfamiliar with the discrete wavelet

transform, we will give a brief, practical introduction here. We will leave out some

details such as scaling functions. For those who desire a more complete theoretical

understanding of wavelets, we recommend the guide by Valens [Val99].

Fourier expansion is a popular technique which allows us to represent a signal as a sum

of sines and cosines with different frequencies. The wavelet transform is similar, but does

not represent the signal using a series of unlimited sines and cosines, but using a series

of wavelets. Wavelets are waves limited in the space/time dimension. By taking one

mother wavelet, scaling and translating it in every possible way, and then convoluting

Preliminaries 14

Input High pass filter Decimation

Low pass filter Decimation High pass filter Decimation

Low pass filter Decimation

Coefficients

Coefficients

Coefficients

Figure 2.8: Calculating the 2-level discrete wavelet transform of a 1D signal with
Mallat’s algorithm. The output of the high pass filter forms the coefficients, while the
output of the low pass filter is passed on to the next level, if there is one.

these translated/scaled wavelets with the signal, we obtain a representation of the signal

that is highly redundant. This is the continuous wavelet transform (CWT).

The discrete wavelet transform (DWT) is more practical than the CWT: we obtain a less

redundant representation by not convoluting with all possible wavelets, but by a limited

amount. The scales of the used wavelets are limited to the powers of two. One can

use a wavelet of each scale for all possible integer translations (the undecimated DWT),

or reduce redundant overlap between wavelets by spacing them according to their scale

(the decimated DWT). The amount of produced coefficients by the undecimated DWT

is the same as the amount of input coefficients.

The representation of the signal obtained by the undecimated DWT is sparse: many of

the coefficients will be small, while most information is captured in a small amount of

coefficients. For images, the small coefficients often capture noise, while large coefficients

capture the actual structure of the image. This allows us to perform smoothing. By

setting the small coefficients to zero, we get rid of the small noisy features and retain

the structure of the image. Hard-thresholding sets all coefficients under a threshold to

0, while soft-thresholding subtracts the threshold from all coefficients, also shrinking

coefficients above the threshold. This denoising method is known as wavelet shrinkage.

The different wavelet scales used in the DWT capture different bands in the frequency

spectrum. It turns out that because of this, the DWT can be efficiently calculated by

repeatedly convoluting the image with a low pass and a high pass filter. This is known

as Mallat’s Algorithm [Mal89]. We begin by applying the low pass and high pass filter,

storing the result of the high pass filter as wavelet coefficients. The result of the low

pass filter is again filtered using the low pass and the high pass filter. After the filter

applications, the results are downsampled by a factor two (this is decimation). The

process is repeated for a certain amount of levels (see Figure 2.8). The DWT can be

implemented efficiently using this iterated filtering, while the wavelets do not even have

to be explicitly specified anymore.

For 2D images, the process is similar, but in each iteration, four decimated images are

obtained instead of two. The filters are combinations of vertical and horizontal high

pass and low pass filters. We obtain high pass vertical-high pass horizontal coefficients,

high pass vertical-low pass horizontal coefficients, low pass vertical-high pass horizontal

coefficients, and low pass vertical-low pass horizontal coefficients. The decimated low

Literature Study 15

(a) (b)

Figure 2.9: The discrete wavelet transform applied to the baboon image. The input
(a) is transformed into wavelet coefficients visible in (b). The wavelet coefficients can
be transformed back into (a) without any loss of information.

pass-low pass results are passed on to the next iteration. The result of the DWT for an

image is shown in Figure 2.9.

Chapter 3

Literature study

The following extensive literature study will give a detailed overview of previous work

focusing on denoising path-traced renders. The discussion is split into several main

categories, but it is worth noting that many of these techniques could easily fit under

multiple of the subsections. Influential older papers, several main categories of ap-

proaches and several state-of-the-art methods will be discussed. Finally, we conclude

with an assessment and summary of the discussed work.

3.1 Early Influential Work

Lee and Redner [LR90] were some of the first to successfully apply filtering to images

rendered using stochastic sampling. They observe that linear filters have several impor-

tant drawbacks: when the filter kernels are too narrow, not all noise is filtered out, but

when the kernels become bigger, edges are smeared out (see Figure 3.1 b). Besides this,

“pops” (pixels that differ significantly from their neighborhood, which we call outliers)

are not smoothed sufficiently, leaving clearly too bright or too dark areas.

To deal with these issues, they discuss two approaches. A median filter (see Figure 3.1

c) simply takes the median of the window around a pixel, and an alpha-trimmed mean

filter takes the average of the values in the window, while disregarding a fraction of the

most outlying values. Both these approaches effectively smooth the image, removing

visible outliers by ignoring them. In a wide range of signal processing contexts, these

outliers can reasonably be considered to be measurement errors, but in path tracing, all

samples, even outliers, are valid. Removing samples causes energy to be lost, biasing

the result.

Rushmeier and Ward [RW94] suggested an alternative filter that does preserve energy.

They still use a nonlinear filter, but instead of discarding outliers, they identify outliers,

use the average of the neighbors to guess what fraction of the energy is “excessive”, and

then spread this excessive energy over an area around the pixel. To avoid obviously

16

Literature Study 17

(a) (b)

(c) (d)

Figure 3.1: Different filters applied to the baboon image (a). (b): A Gaussian filter
with a 7× 7 kernel. Note that edges are blurred. (c): A median filter with a 7× 7
window. The median filter is effective at removing outliers, but introduces noisy
results in noisy areas. (d): A bilateral filter with a 7× 7 spatial window and a
bandwidth of 0.3 . The bilateral filter smooths surfaces with similar colors, and thus,
outliers are preserved.

Literature Study 18

brighter patches around outliers, they adjust the size of the window accordingly. The

energy can still spread over edges, which means that when outliers occur near edges,

results are heavily biased.

A later approach that is energy-preserving and respects edges was introduced by Mc-

Cool [McC99]. McCool applies anisotropic diffusion to the noisy render: the energy of

the pixels essentially diffuses, smoothing the image in the process. To maintain edges,

McCool applies a color coherence metric and a coherence map. If two pixels have dissim-

ilar colors and low estimated variances, the color coherence metric, and consequently the

diffusion between the pixels, will be low. The coherence map uses geometric information

(including normals and depths) to lower diffusion at edges. McCool was one of the first

to use (less noisy) geometric features to “steer” his filter, a concept that would become

prevalent in future work. The technique works well and preserves edges, but works using

iterations that smooth the image more and more. It is not trivial to know when to stop

iterating.

3.2 Bilateral Filtering for Monte Carlo Denoising

Xu and Pattanaik [XP05] stated that Monte Carlo noise appears both as inter-pixel

incoherence and outliers, while noting that Monte Carlo denoising techniques at the

time (including [RW94] and [McC99]) could not deal with both types in a unified way.

They extended the bilateral filter to not only deal with inter-pixel coherence, but also

with outliers, which the bilateral filter does not suppress directly.

The bilateral filter does not smooth outliers sufficiently because the neighbors do not

have similar color estimates. They resolve this by first applying a Gaussian filter to the

image, which is used as input for the illumination weight calculation. Unfortunately, the

low-pass Gaussian filter smooths out sharp features, which in turn smooths out these

features in the filter output. Sharp features can thus not be retained satisfyingly.

3.3 Wavelet Shrinkage for Monte Carlo Denoising

A technique that employs wavelet shrinkage for Monte Carlo denoising is Adaptive

Wavelet Rendering (AWR), introduced by Overbeck et al. [ODR09]. For a discussion

on wavelets and wavelet shrinkage, see Section 2.4.3. Overbeck et al. perform a discrete

wavelet transform with Daubechies wavelets and perform soft thresholding to smooth

the produced images, but make an important modification. In path tracing renders, the

noise is generally not uniform over the image. To handle this, Overbeck et al. use a

threshold that varies for different positions in the image. They conservatively estimate

the variances of the different wavelet coefficients and use the standard deviations as

the thresholds. This means that the wavelet coefficients, which encode high frequency

details, are set to the smallest value within a standard deviation of the current noisy

Literature Study 19

Uniform sampling Error estimation, distribute more samples

Filtering/Reconstruction

Sample budget left?

Yes

No

Output

Figure 3.2: The general idea of the adaptive sampling approach by Overbeck et al.
[ODR09]. Many later techniques employ a similar scheme.

estimate: the constructed image is effectively the smoothest image that is consistent

with the samples.

3.4 An Iterative Adaptive Sampling Strategy

Besides the described denoising approach, Overbeck et al. [ODR09] also use the wavelet

representation to adaptively distribute samples. The idea of adaptive sampling is to

adjust the sampling density dynamically, allocating more samples to “difficult pixels” to

speed up convergence. Overbeck et al. perform adaptive sampling iteratively by setting

a sample budget for each rendered frame. First, each pixel is sampled with 4 samples.

The output, represented in the wavelet basis, is then used to calculate priority values

for all the wavelets, which are based on the variances of the wavelet coefficients.

In each iteration, we pick the wavelet with the highest priority and send samples to

the pixels corresponding to the wavelet. This could for example be a large wavelet in a

continuous but noisy area, or a small wavelet at a noisy edge. The wavelet coefficients are

then updated, resulting in new priorities. More samples are distributed to the highest

priority wavelet. This continues until the sample budget runs out.

The general idea of Overbeck et al.’s adaptive sampling (see Figure 3.2: start with

uniform sampling, then iteratively allocate more samples until the sampling budget

runs out) has been adopted by several later approaches. We will discuss several of these

in the next subsection.

3.5 Filter Selection and Adaptive Sampling using Error

Estimation

We will now investigate a collection of denoising approaches that all follow the same

blueprint. Renders are filtered using a screen-space filtering, roughly following Equation

2.6, 2.7 or 2.8. These filters have different bandwidth parameters which influence the

filtering process. The following approaches do not choose one set of parameter values,

Literature Study 20

but create a filterbank, which contains multiple filters with each different parameter

values. Using an error estimate, the filter in the filterbank which will likely produce the

result with the lowest error is selected on a per-pixel basis. This error estimate can then

also be used to perform adaptive sampling in a similar way as was done by Overbeck et

al. [ODR09].

3.5.1 Greedy Error Minimization (GEM)

Rousselle et al. [RKZ11] follow this blueprint with their Greedy Error Minimization

(GEM) approach. The technique makes use of a bank of Gaussian filters, with each a

different kernel size. They first filter each pixel with the finest filter, and then estimate

per-pixel whether using the next filter in the filterbank, with a larger kernel, would

reduce the error. Each pixel greedily chooses larger and larger kernels, until the error

estimate indicates an increase of error. Now, pixels in areas with high-frequency detail

will use small kernels, while pixels in noisy areas which lack high-frequency detail will

use large kernels.

Rousselle et al. filter the filter selection maps with a Gaussian filter to prevent noise

appearing due to a noisy filter selection. Rousselle et al. also use their error estimation

technique to apply adaptive sampling in the same way as Overbeck et al. [ODR09],

allocating samples to the pixels which are estimated to have the highest potential im-

provement. Rousselle et al. show that their approach produces consistently better

results than Adaptive Wavelet Rendering [ODR09].

3.5.2 SURE-Based Filtering

The reason that GEM [RKZ11] uses Gaussian filters, is that the used error estimation

approach only works for symmetric filters. Li et al. [LWC12] replaced this error estimate

with Stein’s Unbiased Risk Estimator (SURE) [Ste81], a technique from statistics that

is able to estimate the MSE (mean-squared error) of a wide variety of estimators in

an unbiased manner. This allows them to instead use a filterbank of cross-bilateral

filters, which also factor the similarity of illumination and auxiliary features into the

weight calculation. To prevent a noisy filter selection, the MSE estimates are filtered

with a cross-bilateral filter. Apart from these differences, the approach is very similar

to GEM: filters in the filterbank vary purely in spatial support and iterative adaptive

sampling is done using the error estimate. The usage of cross-bilateral filters leads to

the SURE-based filter producing better results than GEM.

As discussed in Section 2.4.1, geometric features can become noisy when stochastic

primary ray effects such as depth of field and motion blur are present. To deal with

the noise in these features, Li et al. use the local sample variances of the features to

diminish their weight. For example, when strong depth of field is present, the depth

feature might normally stop adjacent pixels from blending together while they safely

Literature Study 21

i

j

Figure 3.3: When using the NL-means filter, a pixel i is blended with the pixels in
the filtering window (the blue square). The color distance of a pixel i and a nearby
pixel j depends on how similar in color the patches around the pixels (the red
squares) are.

could be. Because of its high local variance, Li et al. diminish the weight of the depth

feature, allowing for the pixels to be blended.

3.5.3 NL-Means Filtering

An effective technique that does not use geometric information was proposed by Rous-

selle et al. [RKZ12]. They employ the non-local means (NL-means) filter, which is a

generalized bilateral filter. The bilateral filter determines the color weight of two pixels

using the colors of the pixels themselves. The NL-means filter instead determines color

weights using neighborhoods, or, patches, centered on the two pixels (see Figure 3.3).

Because of this, the filter is more robust against noise, but also more expensive.

Rousselle et al. apply the NL-means filter to denoise the Monte Carlo renders. The NL-

means filter uses sample variance estimates to account for the overestimation of color

distances when the colors are noisy. The original NL-means filter [BCM05] assumes

uniform noise levels, but that is not the case here. So instead, Rousselle et al. estimate

variance per pixel by splitting the samples into two buffers and analyzing the differences

between the buffers. The two separately filtered buffers are also used for an error estimate

which drives iterative adaptive sampling.

3.5.4 Robust Denoising using Features and Color (RDFC)

Rousselle et al. [RMZ13] later built upon the work by Li et al. [LWC12]. They also

use SURE to locally select the best filter, but instead of using filters with varying

spatial support, they use three carefully designed filters with varying sensitivity to color

differences. The filter weights used are the minimum of a feature weight and a color

Literature Study 22

weight. One filter exclusively uses a feature weight and is thus very robust against noise

in the colors, while another filter uses a feature weight and a color weight, being very

sensitive to noise in the colors. The third filter lies somewhere in between; the used color

weight is determined using NL-means weighting, which is more robust against noise than

using the colors of two pixels.

Rousselle et al. handle noisy features by applying NL-means filters to the feature buffers.

Similar to Li et al. [LWC12], the filter selection maps are filtered to prevent noisy filter

selection and influence of noisy features is diminished. The usage of iterative adaptive

sampling using the error estimate is again supported. RDFC outperforms both GEM

and SURE-based filtering, but because it uses computationally expensive NL-means

filters, its computational costs are higher.

3.5.5 General and Robust Error Estimation and Reconstruction

Bauszat et al. [BEEM15] proposed a technique that is able to estimate which filter of

a selection of arbitrary filters performs the best. This means that a wide variety of

different filter types can be combined. The technique works by assigning several pixels

as filter caches. For these pixels, a larger amount of samples is taken than for the other

pixels. These extra samples are used as an approximation of the ground truth of a filter

cache. By applying the different filters on the filter caches and comparing the results to

the approximation of the ground truth, error estimates for the different filters at these

filter caches are obtained.

To select the best filter for each pixel, the error estimates are extended to all other pixels

using an inpainting method based on Delaunay triangulation. However, applying the

per-pixel best filter would lead to visible seams in the image. Instead, a multi-labeling

optimization problem is solved using graph-cut optimization, giving smoother results.

Bauszat et al. show that their technique outperforms the SURE-based filter. RDFC is

outperformed for some renders, while for others RDFC performs better.

3.6 Random Parameter Filtering

Consider once again the usage of auxiliary features to steer a filter. When stochastic

primary ray effects such as depth of field or motion blur are present, these auxiliary

features can contain noise. We have already seen some possible solutions for this: weights

of noisy features can be diminished and the feature values can be filtered.

Sen and Darabi [SD12] introduced an alternative technique to deal with the noise in these

features, known as Random Parameter Filtering (RPF). The general idea of RPF is to

measure how reliant the features (such as world position, depth etc.) are on the random

parameters. They do this by calculating the mutual information of the values. When

features have a high mutual information with the random parameters, this indicates

Literature Study 23

that they “got corrupted” by the random parameters and are unreliable for steering the

filter. RPF diminishes the influence of such features. Filtering is done using multiple

cross-bilateral filter iterations with a decreasing window size. The used bandwidths are

based on user-set constants and the calculated mutual information of the features.

RPF is able to denoise effectively, even with low sample counts, but because of its

multiple filter iterations the results tend to get overblurred. There is no clear error

estimation to drive adaptive sampling. Mutual information is computed at the sample

level, which costs large amounts of memory and is computationally expensive. Park

et al. [PMKY13] later modified the approach to have a performance independent of

the sample count. At low sample counts, RPF may outperform approaches such as the

SURE-based filter, since it is quite robust against feature noise which is prevalent at low

sample counts. At higher sample counts the results are generally worse due to its lack

of an error estimate.

3.7 Filtering without Geometric Information

Instead of attempting to deal with noise in the auxiliary features, some approaches

use alternate methods to prevent bias being introduced from dissimilar pixels blending

together. These approaches are generally consider to be less effective than the ones that

use features, especially at low sample counts, but are interesting nevertheless.

3.7.1 Ray Histogram Fusion

Delbracio et al. [DMB∗14] observe that to identify which pixels can be combined without

introducing large amounts of bias, a good approach is to look at the distribution of their

samples. To prevent having to store all the gathered samples, their approach, known as

Ray Histogram Fusion (RHF), stores a histogram for every pixel. They then apply the

NL-means filter, similar to the approach by Rousselle et al. [RKZ12]. However, they do

not use it with the color distances of the pixels in the patches, but with the χ2 distances

of the histograms of the pixels in the patches. They apply the filter on multiple scales

to deal with low frequency noise.

Because no geometric information is used, even scenes with multiple simultaneous effects

(e.g. global illumination and depth of field) can be denoised. However, because the

decision of sharing samples between two pixels is purely based on the color histogram,

quite some samples are required for the histograms to become reliable. This makes

the technique less suitable for low sample counts than for example Random Parameter

Filtering [SD12].

3.7.2 General Image Denoising (GID)

Kalantari and Sen [KS13] observed that most path tracing denoising techniques at the

time used relatively simple filters, while in the image denoising field many newer, more

Literature Study 24

powerful filters exist. They offer an explanation for this: many of these newer techniques

assume spatially-invariant noise levels, which is not the case for Monte Carlo renders.

They introduce General Image Denoising (GID), which enables the usage of denoising

techniques that assume spatially-invariant noise for path tracing denoising.

GID employs the median absolute deviation (MAD) [DJ94] to estimate the variance

for every pixel. MAD uses the coefficients of the finest level of a wavelet transform to

estimate the variance, since these coefficients typically only represent noise. Once the

noise levels in the image have been estimated, a cumulative distribution function is used

to generate a set of representative noise levels. The image is then denoised multiple

times using the image denoising method, once for every noise level. Each pixel in the

final image is then constructed by alpha-blending the denoised values of the two denoised

images with closest noise levels.

Kalantari and Sen also use MAD, combined with the contrast metric by Hachisuka

et al. [HJW∗08] to perform adaptive sampling. By employing the BM3D denoising

method [DFKE06], they demonstrate improvements over Random Parameter Filtering

[SD12], Greedy Error Minimization [RKZ11] and Adaptive Wavelet Rendering [ODR09].

Unfortunately, because the noise estimate is purely based on color, noisy textures tend

to be blurred by the algorithm.

3.8 Real-time Denoising with the Edge-Avoiding À-Trous

Wavelet Transform

All of the approaches that we have discussed so far are designed to be used in an offline

rendering context, running in the order of seconds or minutes. One of the first approaches

targeted for real-time performance is the method by Dammertz et al. [DSHL10], who

employ the fast undecimated À-Trous wavelet transform to denoise Monte Carlo renders

effectively in a short amount of time.

Instead of calculating the decimated wavelet transform with Mallat’s algorithm (see

Section 2.4.3), the undecimated wavelet transform is calculated using the algorithme

à-trous. This algorithm produces wavelet coefficients by performing multiple filtering

iterations. In each iteration, one level of the wavelet coefficients is calculated by convo-

luting the input with a kernel, smoothing the image. The difference between the image

before and after the filtering form the coefficients of the current level. After each itera-

tion, the kernel size is doubled. The key is that, instead of eventually having expensive

kernels covering lots of pixels, the amount of non-zero entries in the kernel is the same

in every iteration. The kernels are increased in size by adding more zeroes in between

the non-zero entries. In iteration i, the distance between the non-zero entries is 2i (see

Figure 3.4).

Dammertz et al. introduce some important changes and extensions to apply the trans-

form for Monte Carlo denoising. First of all, they let the filtering weights not only

Literature Study 25

Figure 3.4: Three kernel levels used in the À-Trous wavelet transform. In each
iteration, a larger kernel is used, but the amount of non-zero entries (shown in green)
remains the same. The distance between the non-zero entries is 2i. Here, we show the
kernels at i = 0, i = 1 and i = 2.

depend on the spatial position in the kernel, but also on auxiliary features distances.

These weights are known as edge-stopping functions. Note that this is just like what

happens in the joint-bilateral filter. Three edge-stopping functions are used: one for the

normal, one for the world position and one for the color.

But one crucial step remains: the wavelet coefficients produced by the transform have

to be turned into a smoothed image. Instead of shrinking wavelet coefficients and trans-

forming the representation back to an image, the filtered image at the last level of the

transform is simply used as the output. This means that in practice, the approach comes

down to applying a joint-bilateral filter repeatedly, with more and more zeroes between

the coefficients of the kernel. The approach approximates a bilateral filter with a large

kernel, which would be expensive to compute.

Unlike some of the more complex techniques discussed previously, the same filter is

applied at every pixel. The bandwidth parameters for the normal and world position

are fixed and user-set, and the color bandwidth is divided by two in every iteration to

allow for smoothing smaller variations in illumination. To prevent textures from getting

blurred out, the filter can be applied to the incident illumination at each pixel, instead

of to the final shaded image. After the filtering, the material evaluation is performed for

every pixel, yielding the final image. This can however only be done for diffuse surfaces.

Dammertz et al. are able to produce filtered images quickly. However, their algorithm

assumes that the feature buffers are noise-free, making it incompatible with stochastic

primary ray effects such as motion blur and depth of field. The approach is significantly

faster than many of the other techniques, making it the first approach that is actually

Literature Study 26

i

Figure 3.5: When applying the guided image filter, pixel i is a part of many
different windows. For each window a linear regression model is fitted, approximating
the pixels inside of it. The filtered value of pixel i is the average of its approximations
in all windows it is a part of. Three such windows are drawn in this figure.

suitable for denoising Monte Carlo renders in real-time. The approach makes no attempt

to make subsequent frames coherent with one another, which means that flickering can

occur. This was addressed later in the work by Schied et al. [SKW∗17], who extended

the approach.

3.9 Real-time Denoising with the Guided Image Filter

An alternative denoising approach that targets real-time framerates was introduced by

Bauszat et al. [BEM11]. This approach does not use a bilateral filter or an approx-

imation of it, but instead applies the guided image filter [HST10]. The guided image

filter assumes that the filtered image is a local linear transformation of the geometric

information:

qi = akIi + bk, ∀i ∈ ωk. (3.1)

Here, for a pixel i in a local window ωk, the filtered pixel qi is a linear transformation of

the corresponding geometric information Ii. For the window ωk, ak and bk are calculated

using linear regression, so that the linear transformation approximates the noisy image

in the window ωk. A window is placed around every pixel in the image and a linear

regression model is fitted for each window. Each pixel now has an approximation qi

in multiple windows (all the windows the pixel is a part of, see Figure 3.5). The final

filtered image is created by averaging all approximations for each pixel.

The guided image filter smooths the input, because the linear regression models are

linear transformations of the input (the geometric features). Thus, noise in the render,

which is not present in the geometric features, disappears in the fitted linear regression

models. The guided filter has some important advantages over the bilateral filter. Its

runtime is independent of kernel size and intensity range, and it does not exhibit the

Literature Study 27

ringing and gradient reversal artifacts of the bilateral filter. It is also faster than high-

dimensional bilateral filters (although high-dimensional bilateral filters can be sped up

significantly, for example with adaptive manifolds [GO12]). Similar to the approach by

Dammertz et al. [DSHL10], the feature buffers are assumed to be noise-free, making the

approach incompatible with stochastic primary ray effects.

Bauszat et al. [BEM11] split indirect illumination and direct illumination, and then

use the guided image filter to filter the noisy indirect illumination. They note that

supersampling (using multiple samples per pixel, spreading them over the pixel surface

to obtain anti-aliased images) is not trivial to combine with the filter. This is because

the different samples might have significantly different hit points for a single pixel, and

thus different geometric information. Supersampling introduces noise in the geometric

features, which the filter does not support. To support supersampling they send one

guide ray for each pixel, which goes through the center of the pixel. The results of these

guide rays, along with their geometric information, are filtered with the guided filter.

The filtered values of the other samples are determined by selecting the filtered value of

the adjacent guide ray with the most similar geometric features.

3.10 Local Regression-Based Filtering

The discussed guided image filter is smoothing renders by locally fitting linear regression

models that map geometric feature space to a color channel. The guided image filter uses

first-order regression models. The priorly discussed bilateral filter and NL-means filter

can be seen as zero-order regression models: they do not approximate spatial windows

with a first-order function of the input, but with a constant. We will now discuss several

approaches that employ first-order and higher-order regression models.

3.10.1 Employing Weighted Local Regression

Moon et al. [MCY14] proposed a more complex regression-based filtering technique than

the guided image filter. Instead of applying unweighted regression models, they apply

weighted regression models, which prioritize fitting to pixels which have feature values

similar to the center pixel (see Figure 3.6 for a 1D example). This leads to better results.

A pixel is no longer based on its approximation in all windows containing the pixel, but

exclusively on the regression model of the window centered on it.

The filter is able to preserve texture detail by including the texture value as one of the

input features. To deal with noisy features, Moon et al. perform a Truncated Singular

Value Decomposition (TSVD). By basing the singular value threshold (which determines

which singular values are set to zero) on perturbation theory, they remove dimensions

that are likely a result of noise. Now, the set of used features is less noisy, making

the approach compatible with stochastic primary ray effects. In addition to this, the

Literature Study 28

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
50

15
0

25
0

Feature

C
ol

or
 c

ha
nn

el

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
50

15
0

25
0

Feature

C
ol

or
 c

ha
nn

el

(b)

Figure 3.6: Two linear regression models. A linear function of the feature value is
created (shown in red), which is fit as closely as possible to the noisy color channel. In
these plotted models, only one feature was used, but in the filtering approaches,
multiple features are used. (a) is an unweighted linear regression (used in the guided
image filter) and (b) is a weighted linear regression. The weighted linear regression
model prioritizes fitting to pixels with more similar feature values to the center pixel
(which has feature value 0 here).

importance of different features in the fitting of the weighted regression model is scaled

using an error estimate.

Moon et al. also performed an analysis to predict how the relative MSE (rMSE) [RKZ11]

of a pixel would decrease by giving it one more sample, which drives iterative adaptive

sampling. Moon et al. demonstrate that their approach produces better results than

Random Parameter Filtering [SD12], the SURE-based filter [LWC12] and the NL-means

filter [RKZ12]. However, unlike the guided image filter approach by Bauszat et al.

[BEM11], the approach is unsuitable for real-time framerates.

3.10.2 Adaptive Rendering with Linear Predictions

A similar but faster method was later introduced by Moon et al. [MIGYM15]. This

alternative technique does not fit a linear regression model at every pixel, but instead

fits a smaller amount of models, estimating multiple pixel values with each model. The

models are iteratively placed over the image until every pixel is predicted by at least

one model. Each model has an adaptive window size, which is determined using a novel

estimate for the prediction error that splits the pixels in a training and test set. Again,

adaptive sampling is performed based on the estimated error, and the TSVD introduced

by Moon et al. [MCY14] is used to handle noisy features.

The approach is able to produce high quality results in significantly less time than SURE

[LWC12], NLM [RKZ12] and LWR [MCY14]. Because the filter takes less time, it is able

to take more samples in an equal-time comparison. It also produces better results than

real-time filtering methods by Dammertz et al. [DSHL10] and Bauszat et al. [BEM11],

but is not suitable for interactive framerates.

Literature Study 29

3.10.3 Fitting Polynomials

Later, Moon et al. [MMMG16] proposed another regression-based technique. The ap-

proach uses higher-order regression models: polynomial functions are fitted instead of

linear functions. Polynomial functions can adapt more effectively to the data: if we

increase the order of the polynomial enough, the polynomial will fit exactly to our data

and not perform any smoothing. Moon et al. propose a method to locally estimate

the optimal order of the polynomial, which reduces variance, without introducing large

amounts of bias. Similar to Moon et al. [MIGYM15], they let one model estimate mul-

tiple pixels in the window, but they do not dynamically adjust the window sizes. To

deal with noise in the features, features are pre-filtered using a similar technique that

uses polynomial functions. Adaptive sampling is applied in the same iterative manner

as other discussed techniques.

Moon et al. achieve consistently better results than several earlier approaches ([MCY14],

[MIGYM15], [KBS15]) with the same amount of input samples. What is remarkable is

that no dynamic bandwidth selection is performed at all: only the order of the polyno-

mials is dynamically selected. Unfortunately, the approach is still slow and not suitable

for interactive framerates.

3.10.4 Nonlinearly Weighted First-Order Regression

Bitterli et al. [BRM∗16] find that in practice, zero-order models, such as the RDFC tech-

nique by Rousselle et al. [RMZ13], often outperform first-order regression approaches

such as locally weighted regression (LWR) [MCY14]. They give several explanations.

The TSVD is effectively discarding noisy features, while RDFC denoises them and still

obtains useful information from them. RDFC uses the noisy color estimates to steer

filtering, which are ignored by LWR. Finally, the selection from three carefully chosen

filters turns out to be more stable in practice than intricate spatial per-pixel estimation.

Bitterli et al. use these insights to design a hybrid approach. A first-order regression

model is employed, but instead of using a TSVD, features are pre-filtered using an NL-

means filter. To prevent residual noise artifacts in the feature buffers, samples are split

into two feature buffers and filtered using weights derived from the other buffer.

For each of the two color buffers, a first order regression models is fitted. Again, to

reduce artifacts, features from one buffer are used to fit the regression models for the

other buffer, decorrelating feature noise from color noise. The regressions are weighted,

with only the pixel color playing a role in this weight. NL-means weighting is used

for the color, making the approach more robust against noise in the color data. Each

fitted model (one model for each pixel, with a window around it) is used to predict color

values for all pixels in the window. Unlike the approach by Bauszat et al. [BEM11],

the estimates for a pixel are combined using a weighted average, reusing the regression

Literature Study 30

weights. After filtering the two buffers, they are combined and filtered one last time

using a first-order NL-means filter. No adaptive sampling is performed.

The proposed approach improves consistently upon both existing first-order and zero-

order approaches when provided with the same amount of samples. However, the ap-

proach takes significantly longer to run (in the order of minutes) and requires more

memory than previous approaches.

3.11 The Learning-Based Filter

Kalantari et al. [KBS15] state that the most successful filtering techniques for path

tracing use feature-based filters. These use a spatial bandwidth, a range bandwidth and

feature bandwidths. In Equation 2.6, 2.7 and 2.8 these are σd, σr and σk, respectively.

Kalantari et al. [KBS15] introduce the learning-based filter (LBF), which attempts to

choose effective values for these parameters automatically. They select parameters for

a large cross-bilateral filter, but show that the approach also works with other filters,

such as the NL-means filter.

Kalantari et al. train a multilayer perceptron neural network on a wide variety of scenes

(aiming to minimize the relative mean squared error [RMZ13]). The neural network

learns to predict effective feature bandwidths using a set of secondary feature values for

the pixel. The secondary feature values are derived from primary feature values, which

are the geometric features used to steer the filter. Examples of secondary feature values

are the mean, standard deviation and median absolute deviation (MAD) of the features.

The training happens offline, while the trained neural network is then used online to

determine the parameters to use while filtering.

The range bandwidth, or color bandwidth, is not predicted but fixed to prevent over-

fitting. The primary features are filtered using an NL-means filter before the secondary

features are derived from them. Now, effective bandwidth parameter values can be pre-

dicted automatically. The approach is effective, outperforming NLM [RKZ12], SURE-

based filtering [LWC12], LWR [MCY14] and RDFC [RMZ13]. Unfortunately, it is too

slow for interactive framerates.

3.12 Filtering Depth of Field and Hemisphere Noise Sep-

arately

Bauszat et al. [BEJM15] observe that several techniques exist that can produce good

results, even when multiple effects are present (e.g. global illumination and depth of

field). However, none of these techniques is suitable for interactive settings. Bauszat et

al. propose a new technique, specifically designed for denoising Monte Carlo renders in

presence of both global illumination and depth of field in real-time.

Literature Study 31

Bauszat et al. state that two types of noise are present in these renders: noise created by

undersampling the hemispheres of the sample points and noise created by undersampling

of the virtual lens. They filter both these types of noise out separately. First, they filter

the samples to recover the global illumination for each sample. Samples are mixed

with adjacent samples with similar color and geometric features. Employing a cross-

bilateral filter to filter on the sample-level would be rather expensive. Instead, a modified

version of the adaptive manifolds approach introduced by Gastal and Oliveira [GO12]

is employed, which approximates the cross-bilateral filter but is faster.

The adaptive manifolds approach is efficient, because it avoids filtering in higher dimen-

sional space. The approach creates a collection of manifolds in this higher dimensional

space, which adapt to the signal. The manifolds are still discretized using the resolution

of the image. The colors of the pixels are splatted onto these manifolds using a Gaussian

falloff in the higher dimensional space. The manifolds are then filtered with a filter that

takes the curvature of the manifold into account. The filtered color for each sample

is then obtained using a slicing step, which blends the colors on the filtered manifolds

using the same weights as used in the splatting step.

The adaptive manifolds approach allows for efficient approximation of high dimensional

filters, because its total cost is both linear in the amount of pixels and the amount

of dimensions. The second step Bauszat et al. perform is a modified version of the

sweep-blur algorithm to filter out the noise from undersampling of the virtual lens. The

sweep-blur algorithm was introduced by Shirley et al. [SAC∗11] and is able to reconstruct

stochastic motion blur and depth of field effects from small amounts of samples. Bauszat

et al. speed up the algorithm by employing linear manifolds.

By combining adaptive manifolds and sweep-blur, Bauszat et al. are able to denoise

Monte Carlo renders with global illumination and depth of field in real-time. The ap-

proach essentially blurs the out-of-focus samples twice, which leads to slight overblurring.

This means that, at 4 samples per pixel, the approach leads to slightly higher MSE val-

ues than RDFC [RMZ13] and SURE-based filtering [LWC12] (see Section 3.5). However,

the results from these two offline denoising methods contain visually disturbing outliers

that are not present in the results by Bauszat et al. No effort is done to ensure temporal

coherence between consecutive frames, which means that flickering between consecutive

frames can occur.

3.13 The Virtual Flash Image

The usage of geometric information seems to have pros and cons: they can drastically

improve results when the amount of samples is small, but noise in these features can

be introduced by stochastic primary ray effects such as depth of field, and not all ef-

fects (such as caustics) can be represented by the geometric information. Moon et al.

Literature Study 32

Figure 3.7: The virtual flash image is rendered by reusing the direct illumination
paths used for the render and adding an additional “virtual flash light source” at the
camera position. No rays are traced for this extra light to avoid expensive raycasts
and the introduction of shadows not present in the render.

[MJL∗13] propose an interesting middle ground. They do not use geometric features

directly to steer their filtering, but render a virtual flash image.

The virtual flash image is rendered by taking the direct illumination and adding a “flash”

point light at the camera to light the areas that are not lit by direct illumination (see

Figure 3.7). This absence of indirect illumination makes the virtual flash image less

noisy than the actual image, which makes it suitable for steering an NL-means filter.

The advantage of the virtual flash image is that it contains features not represented

in the geometric features, such as refractions. The image can be rendered relatively

cheaply: no visibility tests are performed for the virtual flash light to avoid introducing

shadows that do not exist in the render, so no additional ray samples are needed.

Moon et al. note that most existing methods require manual tweaking to find a window

size that denoises effectively but does not blur excessively. In their work, they do not

adjust the window size to prevent overblurring, but only blend with the homogeneous

pixels in a large window. The homogeneous pixels of a pixel p are the pixels that are

statistically equivalent to p. They identify these by calculating the confidence interval of

p and comparing the sample means of other pixels to this interval, essentially performing

a t-test. Moon et al. demonstrate improvements over the work by McCool [McC99],

Xu and Pattanaik [XP05], Overbeck et al. [ODR09] and Dammertz et al. [DSHL10].

Unfortunately, the approach does not work well with low sample counts, making it

unsuitable for real-time filtering.

3.14 Alternatives to Filtering Pixel Colors

Most approaches discussed so far apply filters directly to the renders in image space,

filtering the current pixel color estimates. This is an efficient and straightforward way of

filtering. However, approaches that take a different approach can have large advantages.

An example is the in Section 3.12 discussed method by Bauszat et al. [BEJM15], which

Literature Study 33

employs adaptive manifolds to filter on the sample level instead. More approaches exist

that do not filter pixel colors directly. Often, these approaches are too complex and thus

too slow for real-time usage. We will briefly discuss some of them.

3.14.1 Radiance Filtering

In Schwenk’s thesis [Sch13], the radiance filtering approach is discussed. This technique

does not filter the pixel colors or irradiance values, but instead filters the incident ra-

diance of the first non-specular hit. The filter works as follows. First, a path tracing

pass is performed. For each pixel, the incident radiance of the first non-specular hit is

stored. This stored information is known as a radiance sample. Then, to filter a pixel,

stored radiance samples of neighboring pixels are retrieved. The radiance sample of the

current pixel is filtered with the neighboring radiance samples in world-space, using a

projection of the kernel in world space. The radiance samples together lead to a filtered

estimate of the exitant radiance for our current radiance sample.

3.14.2 Path Space Filtering

It is also possible to go even further and filter in path space instead of in image space.

Keller et al. [KDB16] introduce such a method. A path is filtered by taking a 3D

sphere around the first sufficiently diffuse hit and filtering with other path vertices in

the sphere. These other path vertices are found by performing a search in world space

(using a hash grid, bvh, kd-tree or divide-and-conquer method).

To prevent blurring across geometry, the contribution of found paths is weighted using

similarity of normals. Contributions are only included when visibility of point light

sources is the same, in order to prevent blurred hard shadow boundaries. To reduce

texture blur, the contribution of a neighboring sample is evaluated with the current

vertex’s surface properties. In cases where that is considered to be too costly, one can

also only consider samples with similar contributions and, if the surface is specular,

similar observation directions.

Unfortunately, path space filtering has to perform expensive searches in world space

and requires deep integration with the rendering process itself. Often, a standalone,

decoupled filter is desirable.

3.14.3 Multidimensional Adaptive Sampling and Reconstruction

The Multidimensional Adaptive Sampling and Reconstruction approach by Hachisuka

et al. [HJW∗08] operates in the high-dimensional sample space instead of in image

space. For example, in a scene with depth of field and motion blur this is a 5D space.

The algorithm starts with a coarse sampling of this space, storing samples in a kd-

tree data structure. Adaptive sampling is then performed by iteratively sending more

Literature Study 34

samples to the kd-tree leaf node with the highest sample variance, subdividing the leaf

node if necessary. A pixel color can be estimated using an anisotropic nearest neighbor

reconstruction technique.

Unfortunately, the usage of kd-trees makes the approach scale poorly to higher dimen-

sions. The approach seems similar to many a priori methods (see Section 3.15), which

mostly also operate in higher dimensional space. However, it is more general, making it

applicable to arbitrary combinations of effects. This generality comes at a price: the a

priori methods that focus on specific effects tend to produce better results.

3.15 A Priori Methods

In the survey on adaptive sampling and reconstruction for Monte Carlo rendering by

Zwicker et al. [ZJL∗15], a distinction is made between a priori and a posteriori methods.

A priori methods perform an analysis of the light transport equations and use this

to perform adaptive sampling and reconstruction, while a posteriori methods instead

analyze samples generated by the renderer to do this. A priori methods tend to require

deep integration with the renderer, while a posteriori methods can easily be added to

existing renderers. Furthermore, a priori methods are often restricted to a small selection

of effects to keep the analysis tractable, while a posteriori methods can often be applied to

arbitrary combinations of effects. For these reasons, we focus on a posteriori methods in

this work. The discussed approaches so far have all been a posteriori. For completeness,

we will now briefly discuss some a priori methods. For a more complete discussion, we

refer to the survey by Zwicker et al. [ZJL∗15].

An interesting line of work was started by Durand et al. [DHS∗05]. In their work, they

perform a frequency analysis of light transport. They look at the spectra of radiance

present in the scene, and at how these change by phenomena such as light transport,

occlusion and reflection. Durand et al. show how such an analysis can be useful for

filtering and adaptive sampling. By analyzing the light transport in a simple scene, they

estimate local bandwidths of the image signal. They then use these estimates to scale

the spatial bandwidth of a bilateral filter and distribute samples effectively.

The approach was later extended to a variety of effects. Egan et al. [ETH∗09] employed

spatio-temporal sheared filters to filter motion blur. Later work [EHDR11, EDR11]

extended the approach to more effects, such as soft shadows. Unfortunately, the sheared

filters employed in these works tend to be expensive. As an alternative, the usage of

a cheaper axis-aligned filter was proposed by Mehta et al. [MWR12], who focused on

the rendering of soft shadows. This approach has been extended with more effects,

with a later iteration [MYRD14] supporting depth of field, soft shadows and indirect

illumination. While axis-aligned filtering is faster than sheared filtering, it does require

more samples. Yan et al. [YMRD15] later proposed a faster sheared filter, allowing

Literature Study 35

them to achieve impressive results with smaller amounts of samples than required for

axis-aligned filters in a comparable amount of time.

Other a priori methods exist which do not perform a frequency analysis of light transport.

Lehtinen et al. [LAC∗11] efficiently render images with motion blur, depth of field and

soft shadows using low sample counts by reconstructing the temporal light field from a

sparse set of samples. The approach has later been extended to support diffuse indirect

illumination [LALD12].

3.16 Recent Work

In the last few years, the rise of GPU-based path tracing has made real-time path tracing

a reality. However, at interactive frame rates, the amount of samples for each pixel per

frame is still small. Currently, taking the large amount of samples required to generate

converged images in real-time seems unrealistic. Effective, fast filtering of renders with

small amounts of samples is required to render noise-free images with path tracing in

real-time.

So far, we have only discussed three approaches that target these low sample counts and

interactive framerates: the À-Trous wavelet filter by Dammertz et al. [DSHL10], the

Guided Image Filter approach by Bauszat et al. [BEM11] and the approach by Bauszat

et al. [BEJM15] that filters depth of field and hemisphere noise separately. We will now

take a look at some more recent work that has focused on this area.

3.16.1 Spatiotemporal Variance-Guided Filtering (SVGF)

The recent work by Schied et al. [SKW∗17] introduces Spatiotemporal Variance-Guided

Filtering. This work is closely related to our own work: we implement SVGF and

introduce a number of extensions and modifications.

Schied et al. build upon the the fast edge-avoiding À-Trous wavelet filter by Dammertz

et al. [DSHL10]. Just like Dammertz et al., they steer their filter using geometric

features which they assume to be noise-free. This means that stochastic primary ray

effects such as depth of field are unsupported. Schied et al. assume that in the near

future, only 1 sample per pixel (1 spp) will be practical at desired real-time framerates.

Thus, they design their filter with this constraint in mind. See Figure 3.8 for an overview

of the working of the algorithm.

The filter is applied to the direct and indirect illumination separately. Instead of filtering

the pixel colors directly, Schied et al. first demodulate the surface albedo of directly

visible surfaces. This means that they will filter the untextured illumination components.

Now, the filter will not blur texture detail and there is more possible spatial reuse

for neighboring samples. After the filtering step, indirect and direct illumination are

combined and texturing is reapplied to create the final image.

Literature Study 36

1 spp input

Indirect illumination

Direct illumination

Demodulate

Demodulate

Indirect history

Integrated ind. illum.
Integrate

Estimate
Ind. illum. variance

Direct history

Integrated dir. illum.
Integrate

Estimate
Dir. illum. variance

Filtered ind. illum.

Filtered variance

Filter

Filter

Filtered dir. illum.

Filtered variance

Filter

Filter

Filtered ind. illum.

Filtered variance

Multiple iterations

Multiple iterations

Filtered dir. illum.

Filtered variance

Multiple iterations

Multiple iterations

Update history

Update history

Raw output

Remodulate

Tonemapped output
Tone mapping

Final output
Temporal antialiasing

Figure 3.8: An overview of the SVGF approach [SKW∗17]. The 1 spp input is
demodulated, with direct and indirect illumination being filtered separately. Variance
is estimated using history when history is available (otherwise a spatial estimate is
used), which controls the illumination edge stopping. After several filtering iterations,
illumination is combined, remodulated and tone mapped. Finally, a temporal
antialiasing step is performed.

The filter first applies a temporal filtering step. This step is inspired by the popular

temporal antialiasing technique (TAA) [Kar14]. Schied’s filter stores a history buffer,

which contains a value for each pixel. By performing reprojection (based on motion

vectors), the history buffer is examined to obtain the corresponding color for the current

pixel in the previous frame. This effectively increases the amount of samples used.

By updating the history buffer in each frame, blending in our current samples using

an exponential moving average, samples are accumulated over time, even when the

viewpoint changes or objects in the scene move. It also drastically increases the temporal

coherence between frames, reducing flickering. TAA uses color information to determine

if reprojection was successful. This is not suitable for our noisy renders with 1 sample

per pixel, so instead, Schied et al. use a set of consistency tests based on the geometric

features. To improve reprojection performance, a bilinear filter is used to sample the

history buffer.

Schied et al. use different edge stopping functions (which serve to steer the filter using

geometric features) than Dammertz et al. The first one uses the depth difference, scaled

using the screen-space clip-space depth derivative to account for different local depth

models. The second edge-stopping function is a simple dot-product of normals. The final

one is based on the difference in luminance (and is thus similar to the range distance

in a bilateral filter). The luminance difference is scaled using a local estimate of the

standard deviation of the pixel’s luminance. The bandwidth parameters are set by the

user: Schied et al. give bandwidth parameter values which they found worked well on

all tested scenes.

The local pixel variance is estimated by accumulating the first and second raw moments

of color luminance. However, when disocclusions occur, reprojection fails. The variance

Literature Study 37

cannot be estimated with only one sample. So, when there is only a small amount of

history, variance is instead estimated using a 7× 7 bilateral filter steered by depths and

normals. The variance estimate can be rather noisy, so it is smoothed with a 3 × 3

Gaussian filter.

To produce the final render, filtered indirect and direct illumination are combined and

remodulated with surface albedo. Tone mapping is performed and finally, temporal

antialiasing is applied to increase temporal stability and decrease aliasing. The filter is

fast, making filtering at interactive framerates possible.

The temporal accumulation assumes that a position in world-space will have similar

illumination in the previous frames as in the current frame. When this is not the case,

the temporal accumulation introduces bias, resulting in ghosting artifacts. The motion

vectors and geometric features are generated with a rasterization pass, which means

that the motion vectors and geometric features describe the motion and properties of

a path’s primary hit. This leads to ghosting artifacts for geometry visible in specular

reflections, something which we address in our work.

3.16.2 Separate Filtering Chains for Matte and Glossy Rays

The approach by Mara et al. [MMBJ17] seems similar to the approach by Schied et al.

at first glance. It also targets real-time performance, works with only one sample per

pixel and performs temporal filtering. Mara et al. separate illumination into direct and

indirect illumination and only filter the indirect illumination. The indirect illumination

is further separated: by assuming that the BRDF is divided into matte and glossy

terms, the estimator of the pixel color is divided into a matte and a glossy part. An

approximation of the two estimators is used, factoring out several material-dependent

factors. This is similar to what Schied et al. do: untextured illumination components

are filtered.

Mara et al. have now separated the estimator into two: a matte estimator and a glossy

estimator. These estimators are filtered using separate filtering chains. The matte

estimator is first temporally filtered, blending in history dependent on a confidence

value. The result is filtered using a sparse cross-bilateral filter for efficiency reasons and

blended back into the stored historical buffer. However, that is not the image shown to

the user. The presented image is first filtered with a median filter to suppress fireflies and

then filtered with a sparse bilateral filter, which gets an expanded radius when there was

a low confidence for the reprojection. It is worth noting that normal and depth feature

values are also used to steer all bilateral filters.

The glossy estimator is filtered differently. The temporal filter is now applied to the

virtual positions of the reflected objects: if the virtual position of a considered pixel

in a previous frame is similar to the current pixel being filtered, it is blended in more

significantly. No median filter is applied: the authors state that fireflies generally occur

Literature Study 38

because of caustics, which appear on matte surfaces, while bright reflected spots on

glossy surfaces are mostly valid. No sparse bilateral filter is applied either: because of

less effective reprojection for glossy surfaces, artifacts become visible when using this

filter. Instead, a bilateral filter that is separated in two 1D passes is applied.

Mara et al. achieve impressive results in small amounts of time. Their method runs

in a similar amount of time as the approach by Schied et al., but is slightly slower.

Unfortunately, both the approach by Schied et al. and the approach by Mara et al.

are unable to accurately generate motion vectors for reflected objects. Both approaches

only have one motion vector per pixel, while there could be multiple relevant ones (e.g.

for the primary hit and for a reflected object). Zimmer et al. [ZRJ∗15] have proposed a

solution for this problem where the pixel colors are separated into multiple components

(using a classification of paths), with each component receiving separate motion vectors.

Specular motion vectors are not trivial to derive; they employ a version of manifold

exploration [JM12] to find these. Unfortunately, Schied et al. state that the method

requires precomputed frames, and is thus not effective for real-time usage, where only

previous frames are known.

3.16.3 Reconstruction using a Recurrent Denoising Autoencoder

Another recent approach that targets interactive framerates and low sample counts is

the approach by Chaitanya et al. [CKS∗17]. The approach makes use of machine learn-

ing, using artificial neural networks, but differs significantly from the earlier discussed

Learning-Based Filter by Kalantari et al. [KBS15]. The whole denoising process is

performed by a convolutional neural network, while Kalantari et al. only use an artifi-

cial neural network to determine certain filter parameters. We will forego an in-depth

discussion of convolutional neural networks here: see [CKS∗17] and its references for a

deeper explanation.

Although the approach by Chaitanya et al. is different from the approaches by Schied

et al. [SKW∗17] and Mara et al. [MMBJ17], upon closer inspection many similarities

become evident. Chaitanya et al. use a recurrent denoising autoencoder. This archi-

tecture, which is a convolutional neural network, takes the untextured illumination as

its input. Just like in SVGF, the render is demodulated by the albedo of the first hit

surface. Besides this image, it also takes a variety of auxiliary inputs: normal, depth and

roughness. These are assumed to be noise-free, making stochastic primary ray effects

such as depth of field unsupported. Contrary to other approaches which use these fea-

tures explicitly, Chaitanya et al. simply give these to the convolutional neural network

(each pixel gets 7 scalar input values) and trust the convolutional neural network to

learn how to use these effectively.

The recurrent denoising autoencoder is a convolutional neural network (CNN) with many

different layers. The input is transformed into an internal representation (“encoded”)

Literature Study 39

in the first few layers, which each transform to a lower and lower spatial resolution.

That internal representation is then transformed into the denoised result (“decoded”)

by multiple layers, which transform into a higher and higher spatial resolution. This

approach has many layers which operate on lower resolutions, making the network faster

than the CNN image restoration by Mao et al. [MSY16]. Skip connections are used

between the layers to make training easier. The used CNN contains recurrent connections

which connect to the state of the architecture in the previous frame. These inputs allow

the CNN to use this information to create temporally stable frames. Again, note the

similarities to the approaches by Schied et al. [SKW∗17] and Mara et al. [MMBJ17],

who use a history buffer to achieve temporal stability.

The CNN is trained using a large amount of frames generated in flythroughs in several

scenes. Reference images are generated and for each of them ten different noisy images

are generated, which the CNN should all reconstruct as close to the reference image.

Different training sequences are created, which consist of an area of 128× 128 pixels in

7 consecutive frames. A wide variety of training sequences is used, with different scenes,

different parts of the flythroughs, different camera orientations etc. The denoised images

during training are evaluated using a combination of loss terms: one is based on the L1

distances per pixel, another is based on the differences in gradients and the final one is

based on the differences in temporal derivatives.

It takes a long time to train the CNN (it took the authors approximately 16 hours on a

GPU), but once trained, it runs in significantly less time than the Learning-Based Filter

by Kalantari et al. [KBS15]. It is almost 30 times faster in the author’s experiments,

while producing better results. Interactive framerates become possible, although the

performance numbers given seem slower than the approaches by Schied et al. [SKW∗17]

and Mara et al. [MMBJ17].

3.17 Assessment and Summary

Having discussed a wide variety of related work, we will now provide an assessment of the

discussed work. Note that this assessment is not based on any empirical experiments,

but purely on the literature itself. See Table 3.1 for a list of the discussed a posteriori

methods.

Many effective path tracing denoising approaches exist for a wide variety of use cases.

Often, adaptive sampling is performed in combination with such a denoising approach.

The adaptive sampling can improve results significantly, but remains only useful in offline

rendering settings. The main reasons for this seem to be a lack of samples to adaptively

distribute in each frame and the requirement of an accurate error estimation, which is

not easy to derive at low sample counts.

The usage of geometric features can make our filter weights more stable against noise,

even when noise is present in these features. The Robust Denoising using Feature and

Literature Study 40

Color Information (RDFC) approach by Rousselle et al. [RMZ13] is one of the most ef-

fective methods for offline contexts, combining the NL-means filter with a robust method

of varying filter bandwidths dynamically. More recently, methods that employ local first-

order regression models have further increased filtering quality. The most effective of

these methods seems to be the Nonlinearly Weighted First-Order Regression method by

Bitterli et al. [BRM∗16], which combines the best aspects of the local regression-based

filters and RDFC.

For real-time filtering, the À-Trous wavelet filter approach by Dammertz et al. [DSHL10]

and the Guided Image Filter approach by Bauszat et al. [BEM11] were long the only

viable approaches. More recently, Schied et al. [SKW∗17] have proposed an updated

version of the À-Trous wavelet filter with their Spatiotemporal Variance-Guided Filter-

ing approach. The approach by Mara et al. [MMBJ17] operates differently, but employs

many of the same concepts as Schied et al. Chaitanya et al. [CKS∗17] employed convolu-

tional neural networks successfully for denoising Monte Carlo renders, but the approach

requires long training times and is slower than the other real-time approaches. The

approach by Bauszat et al. [BEJM15] remains the only approach that can handle both

noise from undersampling hemispheres and undersampling the lens domain.

A number of interesting alternative, “less mainstream” approaches have been proposed

over the years. The virtual flash image [MJL∗13, Sch13] seems to offer benefits over

geometric feature buffers. Kalantari et al. [KBS15] showed that using machine learning

to predict bandwidth parameter values can be effective. A wide variety of a priori

filtering methods can produce high quality results, but unfortunately these require deep

integration with the renderer and are restricted to certain effects.

For our research, we built upon the Spatiotemporal Variance-Guided Filtering approach

by Schied et al. [SKW∗17]. SVGF is both effective and can easily be integrated with

existing renderers. The approach by Mara et al. [MMBJ17] seems more restrictive,

since it assumes that the BRDF can be divided into matte and glossy terms. The

convolutional neural network by Chaitanya et al. [CKS∗17] is effective, but seems to

require more time than SVGF.

Literature Study 41

Table 3.1: A chronological overview of the discussed a posteriori methods. For each
method, we list the used smoothing method and whether the technique was designed
with a real-time performance target. We do not list reported runtimes: the increasing
capabilities of hardware mean that reported runtimes cannot be compared in a fair
manner.

Work Known as Smoothing method Real-time target

[LR90] Nonlinear Filtering in Computer Graphics Median, alpha-trimmed mean filter No
[RW94] Energy Preserving Non-Linear Filters Energy-preserving non-linear filter No
[McC99] Anisotropic Diffusion for Monte Carlo Noise Reduction Anisotropic diffusion No
[XP05] Novel Monte-Carlo Noise Reduction Operator Bilateral filter No
[HJW∗08] Multidimensional Adaptive Sampling and Reconstruction Anisotropic reconstruction No
[ODR09] Adaptive Wavelet Rendering (AWR) DWT, soft thresholding No

[DSHL10] Edge-Avoiding À-Trous Wavelet Filter (EAW) À-Trous wavelet filter Yes
[BEM11] Guided Image Filtering for Global Illumination Guided image filter Yes -
[RKZ11] Greedy Error Minimization (GEM) Gaussian filterbank No
[SD12] Random Parameter Filtering (RPF) Cross-bilateral filter iterations No
[LWC12] SURE-Based Filter Cross-bilateral filterbank No
[RKZ12] Adaptive Rendering with NL-Means Filtering (NLM) NL-means filter No
[MJL∗13] Denoising using a Virtual Flash Image NL-means, homogeneous pixels No
[KS13] General Image Denoising (GID) E.g. BM3D No
[Sch13] Radiance Filtering Filter with radiance samples neighbors No
[RMZ13] Robust Denoising (RD/RDFC) Filterbank, varying color sensitivity No
[DMB∗14] Ray Histogram Fusion (RHF) NL-means filter No
[MCY14] Local Weighted Regression (LWR) First-order regression No
[BEJM15] Sample-Based Manifold Filtering Adaptive manifolds, sweep-blur Yes
[BEEM15] General and Robust Error Estimation and Reconstruction Filter caches, filterbank No
[KBS15] Learning-Based Filter (LBF) Cross-bilateral filter No
[MIGYM15] Adaptive Rendering with Linear Predictions First-order regression No
[KDB16] Path Space Filtering 3D world-space kernel No
[MMMG16] Adaptive Polynomial Rendering Higher-order regression No
[BRM∗16] Nonlinearly Weighted First-Order Regression (NFOR) First-order regression No
[CKS∗17] Reconstruction using a Recurrent Denoising Autoencoder Recurrent denoising autoencoder Yes

[SKW∗17] Spatiotemporal Variance-Guided Filtering (SVGF) À-trous wavelet filter Yes
[MMBJ17] Efficient Denoising for Global Illumination Cross-bilateral filter Yes

Bibliography

[BCM05] Buades A., Coll B., Morel J. M.: A review of image denoising al-

gorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005),

490–530.

[BEEM15] Bauszat P., Eisemann M., Eisemann E., Magnor M.: General and

robust error estimation and reconstruction for monte carlo rendering. Com-

put. Graph. Forum 34, 2 (May 2015), 597–608.

[BEJM15] Bauszat P., Eisemann M., John S., Magnor M.: Sample-based man-

ifold filtering for interactive global illumination and depth of field. Comput.

Graph. Forum 34, 1 (Feb. 2015), 265–276.

[BEM11] Bauszat P., Eisemann M., Magnor M.: Guided image filtering for

interactive high-quality global illumination. In Proceedings of the Twenty-

second Eurographics Conference on Rendering (Aire-la-Ville, Switzerland,

Switzerland, 2011), EGSR ’11, Eurographics Association, pp. 1361–1368.

[BRM∗16] Bitterli B., Rousselle F., Moon B., Iglesias-Guitián J. A.,

Adler D., Mitchell K., Jarosz W., Novák J.: Nonlinearly weighted

first-order regression for denoising monte carlo renderings. Comput. Graph.

Forum 35, 4 (July 2016), 107–117.

[CKS∗17] Chaitanya C. R. A., Kaplanyan A. S., Schied C., Salvi M., Lefohn

A., Nowrouzezahrai D., Aila T.: Interactive reconstruction of monte

carlo image sequences using a recurrent denoising autoencoder. ACM

Trans. Graph. 36, 4 (July 2017), 98:1–98:12.

[DFKE06] Dabov K., Foi A., Katkovnik V., Egiazarian K.: Image denoising

with block-matching and 3D filtering. In Image Processing: Algorithms and

Systems, Neural Networks, and Machine Learning (Feb. 2006), vol. 6064

of Proceedings of the SPIE, pp. 354–365.

[DHS∗05] Durand F., Holzschuch N., Soler C., Chan E., Sillion F. X.:

A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (July

2005), 1115–1126.

42

Bibliography 43

[DJ94] Donoho D. L., Johnstone J. M.: Ideal spatial adaptation by wavelet

shrinkage. Biometrika 81, 3 (1994), 425–455.

[DMB∗14] Delbracio M., Musé P., Buades A., Chauvier J., Phelps N.,

Morel J.-M.: Boosting monte carlo rendering by ray histogram fusion.

ACM Trans. Graph. 33, 1 (Feb. 2014), 8:1–8:15.

[DSHL10] Dammertz H., Sewtz D., Hanika J., Lensch H. P. A.: Edge-

avoiding À-trous wavelet transform for fast global illumination filtering.

In Proceedings of the Conference on High Performance Graphics (Aire-la-

Ville, Switzerland, Switzerland, 2010), HPG ’10, Eurographics Association,

pp. 67–75.

[ED04] Eisemann E., Durand F.: Flash photography enhancement via intrinsic

relighting. ACM Trans. Graph. 23, 3 (Aug. 2004), 673–678.

[EDR11] Egan K., Durand F., Ramamoorthi R.: Practical filtering for efficient

ray-traced directional occlusion. ACM Trans. Graph. 30, 6 (Dec. 2011),

180:1–180:10.

[EHDR11] Egan K., Hecht F., Durand F., Ramamoorthi R.: Frequency analy-

sis and sheared filtering for shadow light fields of complex occluders. ACM

Trans. Graph. 30, 2 (Apr. 2011), 9:1–9:13.

[ETH∗09] Egan K., Tseng Y.-T., Holzschuch N., Durand F., Ramamoorthi

R.: Frequency analysis and sheared reconstruction for rendering motion

blur. ACM Trans. Graph. 28, 3 (July 2009), 93:1–93:13.

[GO12] Gastal E. S. L., Oliveira M. M.: Adaptive manifolds for real-time

high-dimensional filtering. ACM Trans. Graph. 31, 4 (July 2012), 33:1–

33:13.

[HJW∗08] Hachisuka T., Jarosz W., Weistroffer R. P., Dale K.,

Humphreys G., Zwicker M., Jensen H. W.: Multidimensional adap-

tive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27,

3 (Aug. 2008), 33:1–33:10.

[HST10] He K., Sun J., Tang X.: Guided image filtering. In Proceedings of the

11th European Conference on Computer Vision: Part I (Berlin, Heidel-

berg, 2010), ECCV’10, Springer-Verlag, pp. 1–14.

[JM12] Jakob W., Marschner S.: Manifold exploration: A markov chain monte

carlo technique for rendering scenes with difficult specular transport. ACM

Trans. Graph. 31, 4 (July 2012), 58:1–58:13.

[Kaj86] Kajiya J. T.: The rendering equation. In Proceedings of the 13th Annual

Conference on Computer Graphics and Interactive Techniques (New York,

NY, USA, 1986), SIGGRAPH ’86, ACM, pp. 143–150.

Bibliography 44

[Kar14] Karis B.: High-quality temporal supersampling. Advances in Real-Time

Rendering in Games, SIGGRAPH Courses 1 (2014).

[KBS15] Kalantari N. K., Bako S., Sen P.: A machine learning approach for

filtering monte carlo noise. ACM Trans. Graph. 34, 4 (July 2015), 122:1–

122:12.

[KDB16] Keller A., Dahm K., Binder N.: Path space filtering. In Monte

Carlo and Quasi-Monte Carlo Methods (Cham, 2016), Springer Interna-

tional Publishing, pp. 423–436.

[KS13] Kalantari N. K., Sen P.: Removing the noise in monte carlo rendering

with general image denoising algorithms. Computer Graphics Forum 32,

2pt1 (2013), 93–102.

[LAC∗11] Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light

field reconstruction for rendering distribution effects. ACM Trans. Graph.

30, 4 (July 2011), 55:1–55:12.

[LALD12] Lehtinen J., Aila T., Laine S., Durand F.: Reconstructing the in-

direct light field for global illumination. ACM Trans. Graph. 31, 4 (July

2012), 51:1–51:10.

[LR90] Lee M. E., Redner R. A.: Filtering: A note on the use of nonlinear

filtering in computer graphics. IEEE Comput. Graph. Appl. 10, 3 (May

1990), 23–29.

[LWC12] Li T.-M., Wu Y.-T., Chuang Y.-Y.: Sure-based optimization for adap-

tive sampling and reconstruction. ACM Trans. Graph. 31, 6 (Nov. 2012),

194:1–194:9.

[Mal89] Mallat S. G.: A theory for multiresolution signal decomposition: The

wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 7

(July 1989), 674–693.

[McC99] McCool M. D.: Anisotropic diffusion for monte carlo noise reduction.

ACM Trans. Graph. 18, 2 (Apr. 1999), 171–194.

[MCY14] Moon B., Carr N., Yoon S.-E.: Adaptive rendering based on weighted

local regression. ACM Trans. Graph. 33, 5 (Sept. 2014), 170:1–170:14.

[MIGYM15] Moon B., Iglesias-Guitian J. A., Yoon S.-E., Mitchell K.: Adap-

tive rendering with linear predictions. ACM Trans. Graph. 34, 4 (July

2015), 121:1–121:11.

[MJL∗13] Moon B., Jun J. Y., Lee J., Kim K., Hachisuka T., Yoon S.-E.:

Robust image denoising using a virtual flash image for monte carlo ray

tracing. Computer Graphics Forum 32, 1 (2013), 139–151.

Bibliography 45

[MMBJ17] Mara M., McGuire M., Bitterli B., Jarosz W.: An efficient denois-

ing algorithm for global illumination. In Proceedings of High Performance

Graphics (New York, NY, USA, 2017), HPG ’17, ACM, pp. 3:1–3:7.

[MMMG16] Moon B., McDonagh S., Mitchell K., Gross M.: Adaptive polyno-

mial rendering. ACM Trans. Graph. 35, 4 (July 2016), 40:1–40:10.

[MSY16] Mao X., Shen C., Yang Y.: Image restoration using convolutional auto-

encoders with symmetric skip connections. CoRR abs/1606.08921 (2016).

[MWR12] Mehta S. U., Wang B., Ramamoorthi R.: Axis-aligned filtering for

interactive sampled soft shadows. ACM Trans. Graph. 31, 6 (Nov. 2012),

163:1–163:10.

[MYRD14] Mehta S. U., Yao J., Ramamoorthi R., Durand F.: Factored axis-

aligned filtering for rendering multiple distribution effects. ACM Trans.

Graph. 33, 4 (July 2014), 57:1–57:12.

[ODR09] Overbeck R. S., Donner C., Ramamoorthi R.: Adaptive wavelet

rendering. ACM Trans. Graph. 28, 5 (Dec. 2009), 140:1–140:12.

[PMKY13] Park H., Moon B., Kim S., Yoon S.-E.: P-rpf: Pixel-based random

parameter filtering for monte carlo rendering. In Proceedings of the 2013 In-

ternational Conference on Computer-Aided Design and Computer Graph-

ics (Washington, DC, USA, 2013), CADGRAPHICS ’13, IEEE Computer

Society, pp. 123–130.

[PSA∗04] Petschnigg G., Szeliski R., Agrawala M., Cohen M., Hoppe H.,

Toyama K.: Digital photography with flash and no-flash image pairs.

ACM Trans. Graph. 23, 3 (Aug. 2004), 664–672.

[RKZ11] Rousselle F., Knaus C., Zwicker M.: Adaptive sampling and recon-

struction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec.

2011), 159:1–159:12.

[RKZ12] Rousselle F., Knaus C., Zwicker M.: Adaptive rendering with non-

local means filtering. ACM Trans. Graph. 31, 6 (Nov. 2012), 195:1–195:11.

[RMZ13] Rousselle F., Manzi M., Zwicker M.: Robust denoising using feature

and color information. Computer Graphics Forum 32, 7 (2013), 121–130.

[RW94] Rushmeier H. E., Ward G. J.: Energy preserving non-linear filters. In

Proceedings of the 21st Annual Conference on Computer Graphics and In-

teractive Techniques (New York, NY, USA, 1994), SIGGRAPH ’94, ACM,

pp. 131–138.

Bibliography 46

[SAC∗11] Shirley P., Aila T., Cohen J., Enderton E., Laine S., Luebke

D., McGuire M.: A local image reconstruction algorithm for stochastic

rendering. In Symposium on Interactive 3D Graphics and Games (New

York, NY, USA, 2011), I3D ’11, ACM, pp. 9–14.

[Sch13] Schwenk K.: Filtering Techniques for Low-Noise Previews of Interactive

Stochastic Ray Tracing. PhD thesis, Technische Universität, Darmstadt,

August 2013.

[SD12] Sen P., Darabi S.: On filtering the noise from the random parameters in

monte carlo rendering. ACM Trans. Graph. 31, 3 (May 2012), 18:1–18:15.

[SKW∗17] Schied C., Kaplanyan A., Wyman C., Patney A., Chaitanya C.

R. A., Burgess J., Liu S., Dachsbacher C., Lefohn A., Salvi

M.: Spatiotemporal variance-guided filtering: Real-time reconstruction

for path-traced global illumination. In Proceedings of High Performance

Graphics (New York, NY, USA, 2017), HPG ’17, ACM, pp. 2:1–2:12.

[Ste81] Stein C. M.: Estimation of the mean of a multivariate normal distribu-

tion. Ann. Statist. 9, 6 (11 1981), 1135–1151.

[TM98] Tomasi C., Manduchi R.: Bilateral filtering for gray and color im-

ages. In Proceedings of the Sixth International Conference on Computer

Vision (Washington, DC, USA, 1998), ICCV ’98, IEEE Computer Society,

pp. 839–.

[Val99] Valens C.: A really friendly guide to wavelets. ed. Clemens Valens (1999).

[Whi79] Whitted T.: An improved illumination model for shaded display. SIG-

GRAPH Comput. Graph. 13, 2 (Aug. 1979), 14–.

[XP05] Xu R., Pattanaik S. N.: A novel monte carlo noise reduction operator.

IEEE Comput. Graph. Appl. 25, 2 (Mar. 2005), 31–35.

[YMRD15] Yan L.-Q., Mehta S. U., Ramamoorthi R., Durand F.: Fast 4d

sheared filtering for interactive rendering of distribution effects. ACM

Trans. Graph. 35, 1 (Dec. 2015), 7:1–7:13.

[ZJL∗15] Zwicker M., Jarosz W., Lehtinen J., Moon B., Ramamoorthi R.,

Rousselle F., Sen P., Soler C., Yoon S.-E.: Recent advances in

adaptive sampling and reconstruction for monte carlo rendering. Comput.

Graph. Forum 34, 2 (May 2015), 667–681.

[ZRJ∗15] Zimmer H., Rousselle F., Jakob W., Wang O., Adler D., Jarosz

W., Sorkine-Hornung O., Sorkine-Hornung A.: Path-space motion

estimation and decomposition for robust animation filtering. In Proceedings

Bibliography 47

of the 26th Eurographics Symposium on Rendering (Aire-la-Ville, Switzer-

land, Switzerland, 2015), EGSR ’15, Eurographics Association, pp. 131–

142.

	Abstract
	1 Introduction
	2 Related Work
	3 Spatiotemporal Variance-Guided Filtering (SVGF)
	4 Reprojection and Filtering of Reflections
	4.1 Pure specular reflections
	4.2 Glossy specular reflections

	5 Supersampling for SVGF
	6 Improving the robustness of SVGF
	7 Implementation and Results
	7.1 Quality and temporal stability of reflections
	7.2 Improved robustness of the filter
	7.3 Improving results using supersampling
	7.4 Motion vector estimation
	7.5 Impact on performance
	7.6 Limitations

	8 Conclusions and Future Work
	Acknowledgments
	References
	A Reflection Motion Vector Diamond Search Algorithm
	B Preliminaries and Literature Study

