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Introduction

Stability is a property possessed by certain complete first-order theories. Intuitively, a theory
is stable if it is impossible to encode the natural numbers as a totally ordered set in it. It
is well-known that a theory is stable if it does not have too many complete types, i.e. if
the cardinality of the set of complete types S(A) over any set of parameters A of a certain
cardinality κ does not exceed κ.

Stability theory was introduced by Saharon Shelah in [17]. It was used as a dividing line
on the class of first-order theories, intended to prove that if κ < λ are uncountable cardinals,
then for any theory T , the number of models of T of cardinality κ is at most the number of
models of T of cardinality λ (both up to isomorphism). This was a generalization of a famous
theorem by Morley, stating that if a countable theory has up to isomorphism only 1 model of
cardinality κ for some uncountable κ, then this is the case for every uncountable cardinal.

Ever since stability was first introduced by Shelah in the 1970’s, it has been rapidly devel-
oping into a whole new field of mathematical logic. Many more classes of first-order theories
have been defined (simple, superstable, strongly minimal, etc.), and the relation between these
classes has been studied in detail. The most fruitful development has been the introduction
of the so-called stable groups. This notion opened up the possibility to apply model theory to
algebra and algebraic geometry, and it lead to the now active field of research called geometric
stability theory. The most spectacular result of these developments was Hrushovski’s proof of
the Mordell-Lang conjecture for function fields in arbitrary characteristic. (this is explained
in [2]).

This thesis is intended to serve as a set of lecture notes for a course on stability theory
in the Dutch mastermath system. As such, there are a number of exercises throughout the
thesis, intended for students to serve as practice. The solutions to these exercises are in the
appendix (which is not intended to become publicly available). In writing this thesis, we have
mainly used [5] as our guideline, but we have also drawn from other sources, such as [15],
[9] and [17]. No original research has been done in this thesis, and no new ideas have been
introduced. However, many proofs have been worked out in more detail, and the solutions to
most exercises are original work.

The remainder of this introduction will be devoted to outlaying the contents of the thesis.
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CONTENTS 2

In chapter 1, we will treat some preliminary notions on model theory and set theory. Most
of these are treated in basic courses on model theory and set theory. The reader who has done
such courses and is therefore already familiar with the material is still encouraged to quickly
read this part, since it will outlay a number of conventions on notation and terminology.

In chapter 2, the notion of stability is defined, as well as a few other classes of first-order
theories. We will consider some examples of stable and unstable theories, and give a number
of equivalent definitions of a theory being stable.

In chapter 3, we will take a look at a few rank functions. The definitions in this chapter
are self-contained, but some of the results require definitions from chapter 2.

In chapter 4, we will investigate the important notions of dividing and forking. We will
also take a look at some extensions of types, and introduce the concept of simple theories.
We will see that these simple theories behave very nicely with respect to forking and dividing,
and we will see that all stable theories are simple. The first three sections of this chapter are
independent of chapter 3. In fact, they draw heavily on section 2.3, but are independent of
the rest of chapter 2.

In chapter 5, we will take a look at a part of the classification picture. This is a picture
of all known classes of first-order theories, displaying the various inclusions. Although the
classification picture is in its full generality far too much for this thesis, we will take a look
at a few of the inclusions relating to the classes of theories that where introduced in chapters
2 and 4. This material is independent of chapter 3.

In chapter 6, we will take a closer look at how forking behaves in stable theories, and
also define what is known as the forking calculus. In order to do this, we will first consider
some properties of automorphisms, and extend our theory to one in many-sorted logic. In
the fourth section of chapter 6, we will connect chapters 3 and 4 to each other by showing
how forking can be characterized in terms of a rank function. Chapter 6 is independent of
chapter 5, but draws heavily on all the other chapters.

In chapter 7, we will take a short look at stable groups and the Mordell-Lang conjecture.
The first two sections of this chapter are independent of the chapters 3 up to and including
6.



Chapter 1

Preliminaries

1.1 Basic model theory

In this chapter we will treat some preliminary notions which will be used throughout the
thesis. Proofs of statements will mostly be omitted. We will assume that the reader is
familiar with some basic notions in model theory, such as the compactness theorem, quantifier
elimination, the Löwenheim-Skolem theorems, and some examples of theories, such as Peano
arithmetic (PA), the theory of dense linear orders without endpoints (DLO) and the theory
of algebraically closed fields in characteristic p (ACFp). If the reader is not yet familiar with
the notions discussed in these preliminaries, then brushing up on basic model theory might
be wise. This material can be found in standard books on model theory, such as [13] or [18].
These books are also filled with useful exercises, which are highly recommended to anyone
who really wants to understand the material.

Throughout this thesis, we will only consider theories of first-order logic with equality,
we will usually denote such theories by T . Our theories are assumed to be written in a
language L. We let |T | denote the cardinality of the theory T , and we let |L| denote the
cardinality of the set of L-formulas. If we expand our language with a set of elements A
from a model, we will call this newly obtained language L(A). Formulas in the language L
will be denoted by φ(x), φ(x, y), φ(x, y, z), etc. We will never distinguish between variables
and tuples of variables. So if we write φ(x), this x could be a single variable or a tuple of
variables. Formulas in the language L(A) will often be denoted by φ(x, a), so we use x, y, z for
(tuples of) variables and a, b, c, for (tuples of) parameters. If x and y are tuples of variables
(x0, ..., xn) and (y0, ..., yk) (possibly of length 1), then by xy we mean the tuple of variables
(x0, ..., xn, y0, ..., yk). We use the same notation for parameters. If M is a model of T , φ(x) is
an L-formula and A ⊆M , then we use φ(A) for the set {a ∈ A | M |= φ(a)}.

We will always assume that our theories are consistent, complete, and have only infinite
models. Note that these assumptions are not very strong for the following reasons: if a theory
T is not complete, we can just extend it to a complete theory by taking the theory of a model
of T . Also, if some complete theory T has an infinite model, then it has only infinite models.
Indeed, we can express in the empty language that there are more then n elements for every
natural number n, and since these sentences are true in the infinite model and T is complete,
they must be part of the theory. And if T has a finite model, then all of its models are finite,
and in fact they are all isomorphic (since in that case, the theory completely specifies the
structure of the model). So the complete theories admitting only infinite models are really the

3



CHAPTER 1. PRELIMINARIES 4

only interesting theories to consider. So from now on, whenever we say ‘let T be a theory’, we
mean ‘let T be a consistent and complete first-order theory admitting only infinite models’.
We will sometimes want to prove that a certain theory is complete, for which we will often
use the  Loś-Vaught test:

Theorem 1.1. Suppose T is a consistent theory admitting only infinite models, but for which
we do not assume completeness. If T is κ-categorical for some κ ≥ |L|, then T is complete.

We will make extensive use of the notion of types.

Definition 1.2. Let T be a theory, let M be a model of T and let A ⊆ M . Let T ′ be the
theory of M in the language L(A). We say that a set of L(A)-formulas p(x) (so with the tuple
of variables x specified) is a partial type if p∪T ′ is consistent. We say that p is a complete type
if it is a partial type, and for every formula φ(x, a) ∈ L(A), either φ(x, a) ∈ p or ¬φ(x, a) ∈ p.

If a is an element of a model M and B ⊆ M a set of parameters, then we can consider
the type of a over B. This is tp(a/B) = {φ(x, b) | φ(x, y) ∈ L, b ∈ B, M |= φ(a, b)}.
Note that this is indeed a complete type over B. If A is a set, then tp(A/B) is the set of
those L(B)-formulas φ(x, b) such that M |= φ(a, b) for every a ∈ A. If p is a type, then
the set of parameters of formulas occurring in p is called the domain of p. Note that if p
is a complete type over A, then dom(p) = A. We will denote the space of complete types
over a set of parameters A by S(A). Note that the term ‘space’ is correct here, since we can
equip the set S(A) with a topological structure by letting the sets of the form [φ(x, a)] =
{p ∈ S(A) | φ(x, a) ∈ p} be the basic opens. With this topology, S(A) is a Stone space (a
compact Hausdorff space with a basis of clopens). We can also restrict ourselves to a finite
set of formulas ∆, and do the same thing. So suppose again we have a theory T written in a
language L, we have a model M of T and a set of parameters A ⊆ M . Now if ∆ is a finite
set of L-formulas of the form φ(x, y), then a complete ∆-type is a maximal consistent set p of
Boolean combinations of formulas of the form φ(x, a) with φ(x, y) ∈ ∆ and a ∈ A. The space
of complete ∆-types over A will be denoted by S∆(A), and can be given the structure of a
topological space in the same way as S(A). If the set ∆ contains only one formula φ(x, y),
then we write Sφ(A) instead of S∆(A).

Given a partial type p, we say that p is realized in a model M if there is some a ∈ M
such that for every φ(x) ∈ p, we have M |= φ(a). If this is not the case, we say that M
omits the type p. We say that a type p ∈ S(A) is definable if for every φ(x, y) ∈ L there is
some L(A)-formula dpφ(y) such that for every a ∈ A, we have that φ(x, a) ∈ p if and only
if M |= dpφ(a). If B ⊆ A then we say that p is B-definable if every formula dpφ(y) is an
L(B)-formula.

Once we have specified a theory, it would be of great help if we could fix some very large
model of this theory, and always work within this model. And in fact it turns out that we
can actually do this.

Definition 1.3. Let κ be some infinite cardinal, and let M be a model of a complete theory T .
Then we say that M is κ-saturated if for any set of parameters A ⊆M such that |A| < κ, every
partial type over A can be realized in M . We say that M is saturated if it is |M |-saturated.

We can use the concept of saturation to formulate a very useful test for quantifier elimi-
nation. We first need the following definition:
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Definition 1.4. Let M,N be models of a theory T in a language L, and let A ⊂M be a finite
set. A map f : A → N is called a local isomorphism if for every quantifier-free L-formula
φ(x) and for every a ∈ A we have M |= φ(a) if and only if N |= φ(f(a)).

Lemma 1.5. Let T be a theory, then T has quantifier elimination if and only if for every
infinite cardinal κ and for every pair of models M,N of T such that N is κ-saturated, if
A ⊆M is finite and f : A→ N a local isomorphism, then for every element m ∈M there is
a local isomorphism fm : A ∪ {m} → N extending f .

The following is Theorem 4.3.20 from [13].

Theorem 1.6. Let T be a theory, and let M and N be saturated models of T of the same
cardinality. Then they are isomorphic.

Definition 1.7. Let κ be some infinite cardinal, and let M be a model of a complete theory
T . Then we say that M is κ-homogeneous (sometimes called strongly κ-homogeneous) if any
partial elementary map on M with domain strictly smaller then κ can be extended to an
automorphism of M .

The automorphisms of a model M are often under consideration. We denote the set of
automorphisms of M by Aut(M). If A ⊆M is a set of parameters in M , then Aut(M/A) is
the set of automorphisms of M which fix A pointwise.

Theorem 1.8. Let T be a theory and let κ be some infinite cardinal. Then there exists a
κ-saturated and κ-homogeneous model M of T .

And in fact, if we assume the generalized continuum hypothesis, we can go a little but
further. This is Corollary 4.3.13 from [13].

Theorem 1.9. Assume GCH, let T be a theory and let κ be some infinite cardinal. Then
there is a saturated model of cardinality κ+ of T .

These results enable us to do the following: if we are given a complete theory T , we
can fix some very big cardinal number κ, and fix a model of T which is κ-saturated and
κ-homogeneous. We will call this the monster model of T (sometimes we will just say ‘the
monster’). We will denote the monster model by M, and consider every model M of T as
an elementary substructure of M. Given a complete theory T , we will assume that such a
monster model is already fixed, and that models, elements and sets of parameters are all
taken in this monster model. We will say that a model or a set of parameters is small if
its cardinality is strictly less then κ. We will abbreviate M |= φ(a) by |= φ(a). One of the
advantages of working in a monster model is that we can give our compactness arguments
in a nice way. Normally, whenever we use compactness we have to say that there is some
elementary extension of our model which models a larger theory (usually with new constants
added), but now we can do this inside the monster, and just say that the larger theory holds
in the monster model (and there is an interpretation for the new constants in the monster).

A type can have the entire monster model as its set of parameters. A type p ∈ S(M) will
be called a global type. Note that global types need not be realized. For example, if we have
a monster model M of DLO, and we look at p(x) = {a < x | a ∈ M}, then we see that this
is a type because every finite subset is consistent, but this type is not realized, because an
element realizing it would be an endpoint.
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We say that a subset A ⊆M is definable if there is some L(M)-formula φ(x) such that for
every a ∈ M, we have |= φ(a) if and only if a ∈ A. If this formula is an L(B)-formula with
B some set of parameters, then we say that A is B-definable. Given a formula φ(x), we will
sometimes not distinguish between the formula and the definable subset that it defines. We
notice that by taking A to be a one-element set, we can talk about the elements that are B-
definable. The set of all B-definable elements is called the definable closure of B, and denoted
dcl(B). If a is an element such that |= φ(a) with φ(x) an L(B) formula with only finitely
many solutions, then we say that a is algebraic over B. The set of all algebraic elements over
B is called the algebraic closure of B, and denoted acl(B).

1.2 Basic set theory

Since model theory is very pinned down on ZFC, we will often need to use some set-theoretical
results and definitions. For those who want to take a closer look at the set-theoretical concepts
involved, [10] contains everything there is to know on set theory, and more. Note that this
part on set theory will not really be a coherent story, but rather we will be summing up all
the things that we need at some point. Also note that we will only treat the basics here.
Some more set-theoretic tools will be treated in more detail throughout the thesis. In this
part however, proofs will again be omitted, but can usually be found in [10].

A very useful piece of combinatorial set theory is Ramsey’s theorem.

Theorem 1.10. Let n, k ∈ ω, and suppose {X1, ..., Xk} is a partition of all the n-element
subsets of ω. Then there is some infinite A ⊆ ω such that there is some i ∈ {1, ..., k} such
that every n-element subset of A is in Xi.

Intuitively, this means that if we color every pair of natural numbers red or blue, then
there is some infinite set A of natural numbers such that the elements of A2 all have the same
color. But obviously, the theorem generalizes pairs to n-element subsets and red and blue to
k colors.

Let κ be some (possibly finite) cardinal number. Then the beth-function is defined as
follows:

• i0(κ) = κ.

• iα+1(κ) = 2iα(κ).

• iλ(κ) =
⋃
µ<λ iµ(κ).

Here α is an ordinal and λ is a nonzero limit ordinal. We sometimes write iα instead of iα(ℵ0)
Note that the generalized continuum hypothesis can be formulated as ‘for every ordinal α,
we have ℵα = iα’.

Lemma 1.11. For all ordinals α, β and cardinals κ: iα+β(κ) = iβ(iα(κ)).

One can prove this by induction on β.

Lemma 1.12. If α is a cardinal and λ ∈ α+ then iα+(ℵ0) > iλ(λ).

The following theorem is known as the Erdőś-Rado theorem.
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Theorem 1.13. Let κ be some infinite cardinal and let n ∈ ω. Let X be a set such that
|X| > in(κ). Now let I be some index set such that |I| ≤ κ and let (Ci)i∈I be sets such that
{A ⊆ X | |A| = n + 1} ⊆

⋃
i∈I Ci. Then there is some Y ⊆ X and some i ∈ I such that

|Y | > κ and {A ⊆ Y | |A| = n+ 1} ⊆ Ci.

Definition 1.14. Let α be a limit ordinal and let β ⊆ α. Then we say that β is cofinal in α
if for all a ∈ α there is some b ∈ β such that a ≤ b.

The notion of cuts in linear orders should be introduced. If (I,<) is a linear order, then a
cut in I is a pair (A,B) of nonempty subsets of I such that A∪B = I and such that a < b for
every a ∈ A and b ∈ B. In the following, we will only consider infinite cardinals, so whenever
we say that κ is a cardinal, we will mean that κ is an infinite cardinal.

Definition 1.15. Let κ be some cardinal, then the Dedekind number of κ, denoted ded(κ),
is the maximal cardinal λ such that there is a linear order of size κ with at least λ many cuts.

Lemma 1.16. For all cardinals κ, we have κ < ded(κ).

Proof. Let µ be the smallest cardinal such that 2µ > κ. Then consider the set 2<µ =
⋃
λ<µ 2λ.

We order this set lexicographically, so if f, g ∈ 2<µ we say that f < g if for the smallest α
such that f(α) 6= g(α), we have f(α) < g(α). And if f(α) = g(α) for every α in the domain of
both f and g, then we say that f < g if dom(f) < dom(g). Notice that µ ≤ κ, since κ < 2κ,
and also notice that if λ < µ, then we have that 2λ ≤ κ. It follows that |2<µ| ≤ κ · κ = κ. So
we have a linear order of size at most κ, but every element of 2µ defines a cut in this linear
order, so we have at least 2µ > κ many cuts in this order. Hence κ < ded(κ).

Notice that in order to prove that the cardinality of a set A is at least ded(κ) for some
cardinal κ, we would have to prove that for any linear order I with |I| = κ, the number of
cuts in I is at most as large as the cardinality of A. But in fact it suffices to prove that
this is the case for dense linear orders. For suppose I is a linear order with |I| = κ and the
number of cuts in I is ded(κ). Then consider the linear order I ′, which is I but with a copy
of Q added between every pair of elements i < j such that j is the successor of i. Notice that
|I ′| ≤ κ · |Q| = κ. Also notice that I ′ is a dense linear order, and if we denote the number
of cuts in I ′ by C(I ′), then we find that ded(κ) ≤ C(I ′) ≤ ded(κ) · |R| = ded(κ). Here the
second inequality is due to the fact that R is exactly the set of cuts in Q, and the last equality
is due to the fact that κ ≥ |Q| and hence ded(κ) ≥ ded(|Q|) = |R|.

Definition 1.17. A Boolean algebra is a structure 〈B,∨,∧,¬, 0, 1〉 where B is called the
universe of this algebra, 0 and 1 are two distinct elements of B, ∨ and ∧ are two binary
operations on B and ¬ is a unary operation on B such that for all a, b, c ∈ B we have:

a ∨ b = b ∨ a a ∧ b = b ∧ a
a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
0 ∨ a = a 1 ∧ a = a
a ∨ ¬a = 1 a ∧ ¬a = 0

We shall denote a Boolean algebra 〈B,∨,∧,¬, 0, 1〉 by its universe B. We call ∨ the join
on B, ∧ the meet on B and ¬ the inverse on B. We can define a partial order on Boolean
algebras by letting a ≤ b if and only if a = a ∧ b. We say that an element b ∈ B is an atom
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if for every a ∈ B if a ≤ b, then a = 0 or a = b. If B is a Boolean algebra, then an ideal
in B is a set I ⊆ B such that 0 ∈ B and 1 6∈ B, I is closed under joins and if a ≤ b and
b ∈ I, then a ∈ I. If I is an ideal in B, then we can define B/I = {a ∧ I | a ∈ B}. Note
that the L(A)-formulas (with A some set of parameters) of a given theory T form a Boolean
algebra with the meet being conjunction, the join being disjunction, and the inverse being
negation. Here 0 is ⊥ and 1 is >. We will give some special attention to ideals in such a
Boolean algebra.

Definition 1.18. Let A be a set of parameters, and let Φ(x) be a nonempty collection of
L(A)-formulas (equivalently, a nonempty collection of A-definable sets) in a fixed tuple of
variables x. Then Φ(x) is called an ideal if:

• If B ⊆ C and C ∈ Φ(x), then B ∈ Φ(x), that is, if φ(x) |= ψ(x) and ψ(x) ∈ Φ(x), then
φ(x) ∈ Φ(x).

• If φ(x), ψ(x) ∈ Φ(x), then φ(x) ∨ ψ(x) ∈ Φ(x).

• > 6∈ Φ(x).

Note that if Φ(x) is an ideal, then ∅ ∈ Φ(x). this is because Φ(x) is nonempty, so there
is some B ∈ Φ(x), and ∅ ⊆ B. If Ψ(x) is a collection of formulas, then we can consider the
ideal generated by Ψ(x), which is the smallest ideal containing all the formulas in Ψ(x). This
ideal will be denoted by (Ψ(x)). If Φ(x) is an ideal over a set of parameters A, and B is some
other set of parameters, then we say that Φ(x) is B-invariant if whenever φ(x, a) ∈ Φ(x)
and a ≡B b, we have φ(x, b) ∈ Φ(x). Here a ≡B b means that |= φ(a) ↔ φ(b) for every
L(B)-formula φ.

The notion of an ideal also has a dual, which is known as a filter.

Definition 1.19. Let A be a set of parameters, and let Ψ(x) be a nonempty collection of
L(A)-formulas (equivalently, a nonempty collection of A-definable sets) in a fixed tuple of
variables x. Then Ψ(x) is called a filter if:

• If B ⊆ C and B ∈ Ψ(x), then C ∈ Ψ(x), that is, if φ(x) |= ψ(x) and φ(x) ∈ Ψ(x), then
ψ(x) ∈ Ψ(x).

• If φ(x), ψ(x) ∈ Ψ(x), then φ(x) ∧ ψ(x) ∈ Ψ(x).

• ⊥ 6∈ Ψ(x).

Note that if A is a set of parameters and Φ(x) is a nonempty collection of L(A)-formulas,
then Φ(x) is an ideal if and only if the set ¬Φ(x) = {¬φ(x) | φ(x) ∈ Φ(x)} is a filter.

A filter that is maximal w.r.t. inclusion is called an ultrafilter .

Lemma 1.20. Every filter can be extended to an ultrafilter.

Note that a filter of L(A)-formulas is exactly the same as a partial A-type, and an ultra-
filter of L(A)-formulas is an element of S(A).



Chapter 2

Stable theories

2.1 Stable formulas and stable theories

In this section, we will start the investigation of the notion of a stable theory. Most of this
section is taken from [5].

Definition 2.1. Let k ∈ ω. A formula φ(x, y) has the k-order property if there are sequences
(ai)i<k and (bi)i<k in the monster model M such that |= φ(ai, bj) if and only if i < j. If a
formula has the k-order property for all k ∈ ω, we call it unstable, otherwise it is called stable.
A theory T is called stable if all L-formulas are stable in the monster model of T , and is called
unstable otherwise.

Lemma 2.2. A formula φ(x, y) is unstable if and only if there are sequences (ai)i∈ω and
(bi)i∈ω such that for all i, j ∈ ω: |= φ(ai, bj) if and only if i < j.

Proof. If there are sequences (ai)i∈ω and (bi)i∈ω such that for all i, j ∈ ω: |= φ(ai, bj) if and
only if i < j, then clearly φ(x, y) has the k-order property for every k, by taking the first k
elements of these sequences. So suppose that φ(x, y) has the k-order property for every k ∈ ω.
Now consider two new sets of constants: {ci | i ∈ ω} and {di | i ∈ ω}, and consider axioms
φ(ci, dj) for all i, j ∈ ω such that i < j and ¬φ(ci, dj) for all i, j ∈ ω such that i ≥ j. Any
finite subset of these axioms is consistent with T because we can take a sufficiently large k
and a sequence witnessing that φ(x, y) has the k-order property. So we have interpretations
(ai)i∈ω and (bi)i∈ω of these constants, and hence we have |= φ(ai, bj) if and only if i < j.

The alternative characterization of stability provided in Lemma 2.2 will very often be used
as the definition of unstable formulas. Before we continue, we will give the definition of a
stable theory some thought. One could wonder in what sense stability is actually a property
of a theory, rather then a property of the monster model that we picked. But notice that
if some formula is unstable in some monster model M, then we can add new constants to
our language for the sequences witnessing this, and sentences telling us that these constants
are sequences witnessing this. The theory we obtain is consistent, for M is a model. By the
downward Löwenheim-Skolem theorem there is some model M of this theory with a smaller
cardinality (say, a countable model). But any small model will be seen as a substructure of
our monster model. Hence M is contained in any monster model that we pick, and hence these
sequences will be contained in every monster model. So if T would be unstable given some

9
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choice of monster model, then it is unstable given every choice of monster model. This means
that T will either always be stable or always be unstable. So stability is truly a property of
the theory, and independent of what monster model we pick.

Exercise 1. Show that a theory T is stable if and only if there is no L-formula φ(x, y) and
sequence (ci)i∈ω in M such that |= φ(ci, cj) if and only if i < j.

Before we continue working with the notion of stability, we will take a look at a number
of examples. In fact, we can just consider any theory we like, and ask ourselves whether or
not it is stable. It turns out that most known theories are unstable, so we start with some
examples of those.

Example 2.3. • The theory of a model of ZF(C) is unstable. To see this, consider the
formula x ∈ y, and consider the sequence (ai)i∈ω given by the finite ordinals. We see
that for every i, j ∈ ω we have ai ∈ aj if and only if i < j. And hence we find that this
formula is unstable, so ZFC is unstable.

• Let R be an ordered field, that is, a field equipped with a linear order ≤ such that for
all a, b, c ∈ R we have that if a ≤ b, then a + c ≤ b + c, and for all a, b ∈ R we have
that if 0 ≤ a and 0 ≤ b, then 0 ≤ a · b. Then the theory of R is unstable. This is easy
to see since any such field will contain a strictly increasing sequence (ai)i∈ω (since any
ordered field is infinite), and we see that if φ(x, y) is the formula x ≤ y ∧ x 6= y, we find
that |= φ(ai, aj) if and only if i < j. This implies in particular that the theory of the
real numbers (considered as ordered field) is unstable.

• A monoid is a set X equipped with a binary operation · : X ×X → X such that this
operation is associative (so for every a, b, c ∈ X we have a · (b · c) = (a · b) · c) and there
is an identity element e ∈ X such that for every a ∈ X we have that e · a = a · e = a.
Notice that if every element of a monoid X would have an inverse element, then X
would in fact be a group. We say that a monoid X has the cancellation property if we
have for all a, b, c ∈ X that if a · b = a · c, then b = c, and if b · a = c · a then b = c. We
say that a monoid X is commutative if for every a, b ∈ X we have that a · b = b · a.

Now let X be a commutative monoid with the cancellation property which is not a
group, so there is an element which does not have an inverse. We claim that the theory
of this monoid is unstable. To see this, notice that the formula ∃x¬∃y(x ·y = y ·x = e) is
contained in our theory, because this is true in X. This means that there is an element
a in the monster model of this theory which has no inverse. Now consider the sequence
(an)n∈ω, and let φ(x, y) be the formula

∃z(z · x = x · z = y ∧ x 6= y)

We notice that if n < m, then am−n · an = an · am−n = am while an 6= am. This is the
case because if an = am then by the cancellation property we would find that am−n = e,
and hence am−n−1 would be an inverse to the element a.

If n = m, then clearly we see that am = an.

Suppose that n > m, then we find that if there is some element z such that z · an =
an · z = am, then by cancellation we find that an−m · z = z · an−m = e, and hence we
find that an−m−1 · z is an inverse to a.
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So we can conclude that |= φ(an, am) if and only if n < m. So this formula is unstable,
and hence this theory is unstable.

Exercise 2. Prove that the theory DLO (Dense Linear Orders without endpoints) and the
theory of a model of PA (Peano arithmetic) are unstable.

So it turns out that it is relatively easy to show that certain theories are unstable. However,
proving stability is much harder, and can not be done in such a näıve way. So before we take
a look at a few examples of theories which are stable, we will first take a closer look at the
theoretical side of stability. First, stability of some formula can tell us a lot about stability
of other formulas, as is described in the following lemma.

Lemma 2.4. Let φ(x, y) and ψ(x, z) be stable formulas.

1. The formula χ(y, x), defined by χ(y, x) := φ(x, y) is also stable.

2. The formula ¬φ(x, y) is also stable.

3. The formula χ(x, yz) := φ(x, y) ∧ ψ(x, z) is also stable.

4. The formula χ(x, yz) := φ(x, y) ∨ ψ(x, z) is also stable.

5. If y = uv and c is some constant, then the formula χ(x, u) := φ(x, uc) is also stable.

Proof. We prove parts 1 and 4, and leave the rest as an exercise. To prove 1, we will prove
that if χ(y, x) is unstable, then φ(x, y) is also unstable. So suppose χ(y, x) is unstable, and
let k ∈ ω. Then we know that there are sequences (ai)i<k and (bj)j<k such that for all i, j < k
we have: |= χ(ai, bj)⇔ i < j. Now define new sequences (ci)i<k and (dj)j<k by ci = bk−i for
all i < k and dj = ak−j for all j < k. We now find:

|= φ(ci, dj) iff |= χ(dj , ci)

iff |= χ(ak−j , bk−i)

iff k − j < k − i
iff i < j.

So φ(x, y) also has the k-order property for every k ∈ ω, and hence φ(x, y) is unstable. So it
follows that if φ(x, y) is stable, then χ(x, y) is also stable.
To prove 4, we will use Ramsey’s theorem. So suppose the formula χ(x, yz) is unstable, then
by Lemma 2.2 there are sequences (ai)i∈ω and (bici)i∈ω such that |= χ(ai, bjcj) iff i < j. Now
let A = {(i, j) ∈ N2 | i < j}. We notice that for every (i, j) ∈ A we have |= φ(ai, bj) or
|= ψ(ai, cj). Now by Ramsey’s theorem there is an infinite subset I ⊆ N such that we have
for all (i, j) ∈ A ∩ I2 that |= φ(ai, bj), or for all (i, j) ∈ A ∩ I2 that |= ψ(ai, cj). In the first
case we see that φ(x, y) is unstable, using the sequences (ai)i∈I and (bi)i∈I , and in the second
case we see that ψ(x, y) is unstable, using the sequences (ai)i∈I and (ci)i∈I . We conclude that
χ(x, yz) has to be a stable formula.

Exercise 3. Prove parts 2, 3 and 5 of Lemma 2.4.
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The notion of stability of a theory might already be familiar, but under a different def-
inition. In literature, one sometimes finds the definition that a theory T is κ-stable (with κ
some cardinal) if for every set of parameters A of size at most κ, there are at most κ complete
types over A, and stable if it is κ-stable for some κ. And in fact this indeed turns out to be
an equivalent definition of stability. To prove this we first need the following theorem from
combinatorial set theory, which is due to Erdőś and Makkai.

Lemma 2.5. Let A be an infinite set and let F ⊆ P(A) be such that |A| < |F |. Then there
are sequences (ai)i∈ω in A and (Si)i∈ω in F such that one of the following holds:

1. For all i, j ∈ ω, we have ai ∈ Sj ⇔ j < i.

2. For all i, j ∈ ω, we have ai ∈ Sj ⇔ i < j.

Proof. Since the cardinality of the set of pairs (B,C) where B and C are finite subsets of A
is equal to the cardinality of A, we can choose a subset F ′ ⊆ F such that |F ′| = |A|, and if
two finite subsets of A can be separated by an element of F (so if there is some element of
F which contains one of the finite subsets and is disjoint from the other), they can also be
separated by an element of F ′. Now let S ∈ F be such that S is not a Boolean combination
of elements of F ′. Such a set exists since |F ′| < |F |. Now we will construct sequences (bi)i∈ω,
(ci)i∈ω and (Si)i∈ω such that the following conditions are satisfied:

• For every i ∈ ω, we have Si ∈ F ′, bi ∈ S and ci ∈ A\S.

• For every i ∈ ω, the set Si separates the sets {b0, ..., bi} and {c0, ..., ci}.

• For every n ∈ ω and every i < n, we have bn ∈ Si iff cn ∈ Si.

We will construct these sequences by induction. First choose b0 ∈ S and c0 ∈ A\S arbitrarily,
which is possible since S is not empty and S 6= A. Notice that the sets {b0} and {c0} are
being separated by the set S ∈ F , and hence we can choose a set S0 ∈ F ′ which separates
them.

Now suppose that for some n ≥ 1 we have already constructed the sequences (bi)i<n,
(ci)i<n and (Si)i<n. Since S0, ..., Sn−1 ∈ F ′ we know that S is not a Boolean combination of
S0, ..., Sn−1. We claim that from this it follows that there are elements bn ∈ S and cn ∈ A\S
such that for all i < n, we have bn ∈ Si if and only if cn ∈ Si. To prove this we define
the function f : A → 2n by (f(a))k = 1 if and only if a ∈ Sk, where (f(a))k is the kth
coordinate of the vector f(a). Now suppose that there are two elements a1, a2 ∈ A such
that f(a1) = f(a2). Then we notice that we are done if one of them is in S and the other
is not. So suppose that for any a1, a2 ∈ A we have either a1, a2 ∈ S or a1, a2 6∈ S. This
way we find that for every vector v ∈ 2n we have f−1(v) ⊆ S or f−1(v) ⊆ A\S. And
since we know that A =

⋃
v∈2n f

−1(v), we find that there are elements v0, ..., vk−1 ∈ 2n such
that

⋃
i<k f

−1(vi) = S. But since by definition of f any set f−1(v) for v ∈ 2n is a Boolean
combination of the sets S0, ..., Sn−1, we find that S is also such a Boolean combination. We
arrive at a contradiction, hence we can conclude that there are two elements bn, cn ∈ A such
that bn ∈ S and cn 6∈ S and f(bn) = f(cn). Now we can choose Sn as any set in F ′ separating
the sets {b0, ..., bn} and {c0, ..., cn}, which exists because these two sets are already separated
by the set S ∈ F .
Now that we have these sequences, we can apply Ramsey’s theorem. We know that for every
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pair (k, r) with k < r, either br ∈ Sk or br 6∈ Sk. So by Ramsey’s theorem there is an infinite
subset I ⊆ N such that exactly one of the following holds:

1. For all i, n ∈ I, we have i < n⇒ bn ∈ Si.

2. For all i, n ∈ I, we have i < n⇒ bn 6∈ Si.

Suppose we are in the first case. We also notice that we have:

∀n ∈ I({b0, ..., bn} ⊆ Sn ∨ {c0, ..., cn} ⊆ Sn)

So there must be some infinite subset J ⊆ I such that we either have for all n ∈ J :
{b0, ..., bn} ⊆ Sn, or for all n ∈ J we have: {c0, ..., cn} ⊆ Sn. So by restricting the se-
quences (bi)i∈ω, (ci)i∈ω and (Si)i∈ω to their subsequences indexed by J , we now find if
∀n ∈ J({b0, ..., bn} ⊆ Sn), then ∀i, j ∈ J(i < j ⇒ bj ∈ Si), and hence we also have:

∀i, j ∈ J(i < j ⇒ cj ∈ Si).

∀i, j ∈ J(i ≥ j ⇒ cj 6∈ Si).

So we can take the sequence (ai)i∈ω to be the sequence (cj)j∈J .
In the case that we have ∀n ∈ J({c0, ..., cn} ⊆ Sn), we are in a very similar situation, and can
take (ai)i∈ω to be the sequence (bj)j∈J .
Now suppose we are in the second case. So we know that ∀i, n ∈ I(i < n⇒ bn 6∈ Si). We again
find some infinite subset J of I such that either for all n ∈ J we have {b0, ..., bn} ⊆ Sn, or for
all n ∈ J we have: {c0, ..., cn} ⊆ Sn. So by again restricting the sequences (bi)i∈ω, (ci)i∈ω and
(Si)i∈ω to their subsequences indexed by J , we now find in the case that ∀n ∈ J({b0, ..., bn} ⊆
Sn that we have: ∀i, j ∈ J(i < j ⇒ bj 6∈ Si), and we also have ∀i, j ∈ J(i ≥ j ⇒ bj ∈ Si). So
now we define ai = bji+1 for all i ∈ ω, (where J = {j0, j1, j2, ...}) and we have found a sequence
with the desired properties. Likewise, if we are in the case that ∀n ∈ J({c0, ..., cn} ⊆ Sn, we
can define ai = cji+1 for all i ∈ ω.

Now we are ready to prove that the two different notions of stability of a theory actually
coincide.

Theorem 2.6. Let T be an unstable theory. Then for any infinite cardinal κ, there is a model
M of T such that |M | = κ and such that |S(M)| > κ.

Proof. Let κ be some cardinal, and let φ(x, y) be a formula in T which has the k-order
property for every k ∈ ω. Let I be a dense linear order such that |I| = κ. We claim that
there is a model M |= T and sequences (ai)i∈I and (bi)i∈I in M such that for all i, j ∈ I,
we have M |= φ(ai, bj) ⇔ i < j. To prove this we extend our language L to a language
L′ = L∪ {ci | i ∈ I} ∪ {di | i ∈ I} where the ci and di are new constants. We now extend the
L-theory T to the L′-theory T ′, defined by

T ′ = T ∪ {φ(ci, dj) | i < j} ∪ {¬φ(ci, dj) | i ≥ j}.

We will use the compactness theorem to prove that the theory T ′ is consistent. For let T ′′ be
a finite subtheory of T ′, then we notice that any model of T can be made into a model of T ′′,
since φ has the k-order property for every k ∈ ω. This means that T ′ is consistent, hence it
has a model M , which is also a model of T , and contains the desired sequences. By using the
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downward Löwenheim-Skolem theorem we may assume that |M | = κ. Now let C = (A,B)
be a cut in I, and let ΦC be the following set of formulas:

ΦC = {φ(x, bj) | j ∈ B} ∪ {¬φ(x, bi) | i ∈ A}.

By compactness we see that ΦC is a consistent set of formulas, since every finite subset of ΦC

is realized by some an which lies below all the elements of the finite subset of B, but above
all the elements of the finite subset of A. Now let PC ∈ S(M) be a complete type extending
ΦC . We notice that if C and C ′ are different cuts, then PC 6= PC′ . So since every cut in I
defines a complete type in S(M), we find that |S(M)| is at least as large as the number of
cuts in I. And since I was an arbitrary dense linear order of size κ, we can conclude that
|S(M)| ≥ ded(κ) > κ.

The other direction of our equivalence is almost a direct consequence of Lemma 2.5.

Theorem 2.7. Let φ(x, y) be a formula and suppose |Sφ(A)| > |A| for some infinite set of
parameters A. Then φ(x, y) is unstable.

Proof. Let for any parameter b ∈ M the set Sb be given by Sb = {a ∈ A | |= φ(b, a)}. So for
every b ∈ M we see that Sb ⊆ A. Now let F = {Sb | b ∈ M}. We notice that |A| < |F |, since
|Sφ(A)| > |A|. So we can apply Lemma 2.5 to A and F to find a sequence (ai)i∈ω in A and
(bi)i∈ω in M such that one of the following holds:

1. For all i, j ∈ ω we have ai ∈ Sbj iff j < i.

2. For all i, j ∈ ω we have ai ∈ Sbj iff i < j.

In the first case we see that φ(x, y) is unstable by Lemma 2.2, and in the second case it is
unstable by Lemma 2.4 and Lemma 2.2.

We can now combine Theorem 2.6 and Theorem 2.7 into the following corollary:

Corollary 2.8. Let T be a theory, Then T is stable if and only if for some cardinal κ and
for every set of parameters A with |A| ≤ κ, we have |S(A)| ≤ |A|.

Exercise 4. Prove Corollary 2.8

Now we are ready to consider examples of stable theories, because now we have Theorem
2.6, which tells us that if the number of complete types over a model M can never exceed the
cardinality of the model itself, then the corresponding theory is in fact stable.

2.2 Examples of stable theories

In this section, we will consider three examples of stable theories. The second of these three
will be given in the form of exercises. The first two examples are from [5], and the last is
from [18] and [14].
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The theory of Algebraically closed fields

Our first example of a stable theory is the theory of algebraically closed fields of characteristic
0. It is well-known that this theory has quantifier elimination, so any complete type is
completely determined by the quantifier-free formulas in that type. So let K be a small
algebraically closed field, viewed as a subfield of a monster modelM. SinceM is |K|-saturated,
we know that any complete type over K is realized by some element a ∈M. So any complete
type over K is determined by a complete set of quantifier-free formulas (which in this case
means a set of polynomial equalities and inequalities with coefficients in K) which are satisfied
by some a ∈M. Now there are two options, the first is that a is transcendental over K, which
means that it is not the zero of any such a polynomial, which completely determines the
type. The other option is that it is algebraic over K, meaning that it is in fact an element
of K, because K is algebraically closed. So the number of complete types over K is at most
the number of elements of K (and 1 more for the transcendental elements, but this has no
influence on the cardinality), which is |K|. So we see that this theory is indeed stable.

A theory of equivalence relations

Our next example of a stable theory is a theory of equivalence relations. Specifically, our
language LE is a set of relation symbols {En(x, y) | n ∈ ω} and our theory TE consists of
axioms telling us that each En is an equivalence relation, each relation En has an infinite
number of classes and for every n ∈ ω every class of En is the union of an infinite number of
classes of En+1. We can prove that this theory has quantifier elimination using the test that
we saw in the preliminaries:

Exercise 5. Use Lemma 1.5 to prove that the theory TE has quantifier elimination.

Now that we know that this theory has quantifier elimination, we know that the complete
types are completely determined by the quantifier-free formulas that they contain. So the
number of complete types over a set of parameters A is at most the number of maximal
consistent sets of quantifier-free formulas.

Exercise 6. Show that the number of complete types over a set of parameters A is at most
|A|ℵ0 , and conclude that TE is stable.

The theory of modules

Our last example of a stable theory will be the theory of a module. This example will be rather
lengthy and involved, and we will need to assume some knowledge of basic group theory.

We will first give the definition of a module. Intuitively, a module is to a ring what a
vector space is to a field.

Definition 2.9. Let R be a ring. An R-module (M, 0,+, r)r∈R, also denoted M , is an abelian
group (M, 0,+) together with for every r ∈ R a map M → M , also denoted by r, such that
we have for all x, y ∈M and r, s ∈ R:

• r(x+ y) = rx+ ry.

• (r + s)x = rx+ sx.
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• (rs)x = r(sx).

• 1x = x.

Note that we use rx as shorthand for r(x), just as we do with scalar multiplication for vec-
tor spaces. In this section, we will show that the theory of any infinite R-module is stable. In
our previous examples, it was a big help that our theories had quantifier elimination, because
this gave us a good idea of how many formulas, up to equivalence, there were. However, this
theory does not have quantifier elimination. But we do have quantifier elimination up to a
certain class of formulas, called the positive primitive formulas. Note that we will be working
in the language of R-modules, consisting of the constant element 0, the binary operation +,
and a unary function symbol r for every element r ∈ R. The inverse of an element m ∈ M
under the operation + will be denoted by −m, and the expression a+(−b) will be abbreviated
by a− b. Throughout this section, whenever we say ’formula’, we will mean a formula in the
language of R-modules, unless specified otherwise.

Definition 2.10. Let φ(x0, ..., xn) be a formula, then we say that φ is an equation if it is of
the form

r0x0 + ...+ rnxn = 0

for certain r0, ..., rn ∈ R.

Note that any atomic formula is equivalent to an equation, since any atomic formula will
(after possibly applying some of the axioms) be of the form r0x0 + ... + rnxn = s0y0 + ... +
skyk for some n, k ∈ N and some r0, ..., rn, s0, ..., sk ∈ R. And this formula is equivalent to
r0x0 + ...+ rnxn − s0y0 − ...− skyk = 0.

Definition 2.11. Let φ(x) be a formula, then we say that φ is positive primitive (or: φ is a
pp-formula) if it is of the form

∃y(ψ0(x, y) ∧ ... ∧ ψn(x, y))

where ψ0, ..., ψn are equations.

Notice that the class of pp-formulas is closed under ∧ and ∃. Also notice that any equation
is also equivalent to a pp-formula, since we can just quantify over a dummy variable. Our
claim is that for every R-module M , under the assumption of the theory of M , any formula
will be equivalent to a pp-formula. In order to prove this claim, we will first have to do some
group theory.

Exercise 7. Let φ(x0, ..., xn) be a pp-formula. Prove that φ(Mn+1) is a subgroup of the
Abelian group Mn+1.

From now on we will no longer be bothered about the number of variables in formulas.
So φ(x0, ..., xn) will just be denoted φ(x), and φ(Mn+1) will just be denoted φ(M).

Lemma 2.12. Let φ(x, y) be a pp-formula, and let a ∈M . Then φ(M,a) is either empty or
a coset of φ(M, 0).
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Proof. First note that this lemma makes sense since φ(x, 0) is itself a pp-formula, and hence
φ(M, 0) is a group. Suppose φ(M,a) is nonempty. Then there is some element b such that
M |= φ(b, a). We will prove that M |= ∀x(φ(x, 0) ↔ φ(b + x, a). So let c ∈ M and suppose
M |= φ(c, 0). We know that φ(x, y) is a positive primitive formula, so it will be of the form

∃z(ψ0(x, y, z) ∧ ... ∧ ψn(x, y, z))

where the ψi are equations. So we notice that

M |= ∃z(ψ0(c, 0, z) ∧ ... ∧ ψn(c, 0, z)).

And we also know by definition of b that

M |= ∃w(ψ0(b, a, w) ∧ ... ∧ ψn(b, a, w)).

So if we let s and v be witnesses to this, respectively, then we see that M |= ψi(c, 0, s) ∧
ψi(b, a, v) for every i ≤ n. But from this and the structure of equations, we see that M |=
ψi(b+ c, a, s+ v) for every i ≤ n, so we find that

M |= ∃u(ψ0(b+ c, a, u) ∧ ... ∧ ψn(b+ c, a, u)).

So we indeed see that M |= ∀x(φ(x, 0)→ φ(b+ x, a)).
For the other direction, we suppose that c is such that M |= φ(b+ c, a). So we know that

M |= ∃y(ψ0(b+ c, a, y) ∧ ... ∧ ψn(b+ c, a, y)).

And we also know that M |= φ(b, a), so we also know that

M |= ∃z(ψ0(b, a, z) ∧ ... ∧ ψn(b, a, z)).

So if we let u and v be witnesses to this, respectively, then we see that

M |= ψ0(c, 0, u− v) ∧ ... ∧ ψn(c, 0, u− v))

So we indeed find that M |= ∀x(φ(x, 0)↔ φ(b+ x, a)). So φ(M,a) is indeed either empty or
a coset of φ(M, 0).

As an immediate corollary to this, we see that if a, b ∈M , then either φ(M,a) = φ(M, b),
or φ(M,a) ∩ φ(M, b) = ∅, because cosets of φ(M, 0) are disjoint.

Lemma 2.13. Let (G,+, 0) be a group and let H0, ...,Hn be subgroups of G and g0, ..., gn ∈ G
such that G =

⋃
i≤n(gi + Hi). Then at least one of the groups H0, ...,Hn has finite index in

G.

Proof. We will use induction on the number of subgroups to prove this. So suppose n = 0,
so there is only one subgroup H0, and G = g0 + H0 for some g0 ∈ G. Then clearly H0 has
finite index in G.
So now suppose the lemma is true for some natural number n, we will prove it for n+ 1. For
this, consider the subgroup Hn+1. We will assume that the groups H0, ...,Hm are all different
from Hn+1, while Hm+1 = ... = Hn = Hn+1, for some m ≤ n. Now there are two possible
cases to consider. If G =

⋃n+1
i=m+1(gi +Hi), then we see that Hn+1 has finite index in G. So
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now suppose that there is some g ∈ G such that g 6∈
⋃n+1
i=m+1(gi + Hi). Since g + Hn+1 is a

coset of Hn+1 in G and cosets of Hn+1 are disjoint, we now find that

g +Hn+1 ∩
n+1⋃

i=m+1

(gi +Hi) = ∅.

So from this we find that g +Hn+1 ⊆
⋃
i≤m(gi +Hi), so

Hn+1 ⊆
⋃
i≤m

(−g + gi +Hi).

So Hn+1 is a finite union of cosets of the other subgroups. So any coset of Hn+1 will also
be a finite union of cosets of the other subgroups, and hence G is a finite union of cosets of
H0, ...,Hn. It follows from the induction hypothesis that one of these subgroups has finite
index in G.

Lemma 2.14. Suppose H,K are subgroups of G with finite index in G. Then H ∩K also
has finite index in G.

Proof. First note that two elements x, y are in the same left coset of a subgroup H of K, if
and only if −x + y ∈ H. This is because if −x + y ∈ H, then y ∈ x + H, and obviously
x ∈ x + H. And if x, y ∈ a + H for some a ∈ G, then x = a + h and y = a + h′ for some
h, h′ ∈ H. It follows that −x+ y = −h− a+ a+ h′ = h+ h′ ∈ H.

Now we use this observation to see that if x, y are in the same left coset of H and in the
same left coset of K, then they are in the same left coset of H ∩K. For if −x + y ∈ H and
−x+ y ∈ K, then −x+ y ∈ H ∩K. And from this we see that if x and y are in different left
cosets of H ∩K, then they are either in different left cosets of H or in different left cosets of
K. Hence if H has index n and K has index m, then H ∩K has index at most nm.

Lemma 2.15. Let (G,+, 0) be a group and let H0, ...,Hn be subgroups of G and g0, ..., gn ∈ G
such that G =

⋃
i≤n(gi + Hi). Suppose the groups H0, ...,Hn are ordered such that for some

m ≤ n, the groups H0, ...,Hm have finite index in G and the groups Hm+1, ...,Hn have infinite
index. Then G =

⋃
i≤m(gi +Hi).

Proof. Let D =
⋂
i≤mHi. By Lemma 2.14, the group D has finite index in G, and hence it

also has finite index in every Hi for i ≤ m. This means that there are elements d0, ..., dr ∈ G
for some r ∈ ω such that

⋃
i≤r(di +D) =

⋃
i≤m(gi +Hi). So we find that

G =
⋃
i≤r

(di +D) ∪
⋃

m+1≤i≤n
(gi +Hi).

Now suppose that G 6=
⋃
i≤r(di + D), then there is some coset of D, say g + D, which is

contained in
⋃
m+1≤i≤n(gi + Hi), since different cosets of D are disjoint. This means that

D ⊆
⋃
m+1≤i≤n(−g + gi + Hi). Since D has finite index in G, this means that there are

elements h0, ..., hl for some l ∈ ω such that G =
⋃
j≤l
⋃
m+1≤i≤n(hj − g + gi +Hi). It follows

from Lemma 2.13 that at least one of the groups Hm+1, ...,Hn should have finite index in G.
This contradicts our assumption, and hence we can conclude that G =

⋃
i≤m(gi +Hi).

As an immediate corollary to this, we see the following:
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Corollary 2.16. Let (G,+, 0) be a group and let H0, ...,Hn be subgroups of G such that for
some k < n we have that H0/(H0 ∩Hi) is infinite for all i > k. If g0, ..., gn ∈ G are such that
g0 +H0 ⊆

⋃n
i=1 gi +Hi, then g0 +H0 ⊆

⋃k
i=1 gi +Hi.

Now we just need one more combinatorial result to finally be able to prove that the theory
of M has quantifier elimination up to pp-formulas.

Lemma 2.17. Let A0, ..., Ak be sets, where A0 is finite. Then A0 ⊆
⋃k
i=1Ai if and only if

∑
B⊆{1,...,k}

(−1)|B|

∣∣∣∣∣A0 ∩
⋂
i∈B

Ai

∣∣∣∣∣ = 0.

Proof. First suppose that A0 ⊆
⋃k
i=1Ai. Notice that we can assume that A0 =

⋃k
i=1Ai,

since the elements in the Ai that are not contained in A0 will never have an influence on the
mentioned sum. Now we know from the inclusion-exclusion principle from combinatorics:

|A0| =
∑

∅6=B⊆{1,...,k}

(−1)|B|+1

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ .
So by subtracting the right side from both sides and taking the intersection with A0 (which
will have no effect), we find:

∑
B⊆{1,...,k}

(−1)|B|

∣∣∣∣∣A0 ∩
⋂
i∈B

Ai

∣∣∣∣∣ = 0.

For the other direction, we will assume that A0 6⊆
⋃k
i=1Ai, so let {a0, ..., an} ⊆ A0 be

A0\
⋃k
i=1Ai. Note that we can assume that

⋃n
i=1Ai ⊆ A0, because the elements in this

union that are not contained in A0 have no influence on the situation. Now we find using the
inclusion-exclusion principle that

|A0\{a0, ..., an}| =
∑

∅6=B⊆{1,...,k}

(−1)|B|+1

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ .
And from this we find that

∑
B⊆{1,...,k}

(−1)|B|

∣∣∣∣∣A0 ∩
⋂
i∈B

Ai

∣∣∣∣∣ = n+ 1 6= 0.

Now we have acquired all the ingredients for proving quantifier elimination up to pp-
formulas.

Theorem 2.18. If R is a ring and M is an infinite R-module, then in any model of the
theory of M , every formula is equivalent to a Boolean combination of pp-formulas.
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Proof. We will use induction on the complexity of formulas. Notice that the class of Boolean
combinations of pp-formulas is closed under conjunction, disjunction and negation. So it is
enough to prove that this class is also closed under universal quantification, since we know
it contains all the quantifier-free formulas. So suppose ψ(x, y) is equivalent to a Boolean
combination of pp-formulas, we will show that ∀xψ(x, y) is also equivalent to a Boolean
combination of pp-formulas.
Since ψ(x, y) is equivalent to a Boolean combination of pp-formulas, we see that it is equivalent
to a conjunction of formulas of the form

φ0(x, y)→ φ1(x, y) ∨ ... ∨ φn(x, y)

where the φi are all pp-formulas. It suffices to consider the case where ψ(x, y) is itself of
this form, since universal quantification distributes over conjunction. We now define the
subgroup Hi = φi(M, 0) for every i ≤ n. So for every parameter y, we see that φi(M,y)
is either empty or a coset of Hi, by Lemma 2.12. So if φi(M,y) is nonempty, we will write
φi(M,y) = yi + φ(M, 0) = yi + Hi. We can assume w.l.o.g. that the groups H0, ...,Hn are
ordered such that for some k ≤ n we have that H0/(H0 ∩ Hi) is finite for all i ≤ k and
H0/(H0 ∩Hi) is infinite for all i > k. We now see by Corollary 2.16:

M |= ∀xψ(x, y) iff M |= ∀x

(
φ0(x, y)→

n∨
i=1

φi(x, y)

)

iff φ0(M,y) ⊆
n⋃
i=1

φi(M,y)

iff y0 +H0 ⊆
n⋃
i=1

(yi +Hi)

iff y0 +H0 ⊆
k⋃
i=1

(yi +Hi)

iff M |= ∀x

(
φ0(x, y)→

k∨
i=1

φi(x, y)

)
.

So we see that we need to prove that φ0(M,y) ⊆
⋃k
i=1 φi(M,y) if and only if some pp-formula

is true in M . For this we will first prove that this is the case if and only if

φ0(M,y)/(H0 ∩ ... ∩Hk) ⊆
k⋃
i=1

φi(M,y)/(H0 ∩ ... ∩Hk).

We notice that the left to right direction is clear, so suppose we have an element in φ0(M,y),
which must be of the form y0+h0, with h0 ∈ H0. Since we know that y0+h0+(H0∩...∩Hk) ∈⋃k
i=1(yi +Hi)/(H0 ∩ ...∩Hk), we see that there must be some i with 1 ≤ i ≤ k, some hi ∈ Hi

and some h ∈ H0 ∩ ... ∩Hk such that y0 + h0 = yi + hi + h. But since hi + h ∈ Hi, we find
that y0 + h0 ∈ yi +Hi, so we indeed see that φ0(M,y) ⊆

⋃k
i=1 φi(M,y).

Now we define for every i ≤ k the set Ai = φi(M,y)/(H0 ∩ ... ∩ Hk), and notice that A0 is
finite, since H0 ∩ ... ∩ Hk has finite index in H0. So we can now apply Lemma 2.17 to find
that M |= ∀xψ(x, y) if and only if A0 ⊆

⋃k
i=1Ai if and only if∑

B⊆{1,...,k}

(−1)|B|SB = 0
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where SB = 0 if
⋂
i∈B φ(M,y) = ∅, and

SB =

∣∣∣∣∣
(
H0 ∩

⋂
i∈B

Hi

)
/(H0 ∩ ... ∩Hk)

∣∣∣∣∣
otherwise. This is the case because every φi(M,y) is either empty or a coset of Hi, so it is
either empty or a number of cosets of H0 ∩ ...∩Hk, and we see that φ0(M,y)∩

⋂
i∈B φi(M,y)

consists of the same number of cosets of H0 ∩ ... ∩ Hk as H0 ∩
⋂
i∈BHi does. Now we see

that SB is just something we can compute for every set B, and we see that it is not equal
to 0 if and only if M |= ∃x(φ0(x, y) ∧

∧
i∈B φ(x, y)), which is a pp-formula. So we only have

to compute SB in these cases, and hence we find that M |= ∀xψ(x, y) if and only if some
Boolean combination of pp-formulas holds.

Now it turns out that this relative quantifier elimination result is by far the most important
ingredient in proving that the theory of any R-module is stable. So we now find relatively
quickly:

Theorem 2.19. Let R be a ring and let M be an infinite R-module. Let κ be a cardinal such
that κ|R|+ℵ0 = κ, then the theory of M is κ-stable, and hence stable.

Proof. Let M be our chosen monster-model of the theory of M . Let B ⊂ M be such that
|B| ≤ κ. Since our monster-model is κ-saturated, we know that every type over B is satisfied
by some element in M. And the type of an element a ∈ M over B is completely determined
by the pp-formulas that a satisfies. So let Φ(B) be this set of pp-formulas, then we see that
for every pp-formula φ(x, y), if b, b′ ∈ B, then only one of φ(x, b) and φ(x, b′) can be in Φ (up
to equivalence), because φ(M, b) and φ(M, b′) are either the same or disjoint. So the type of a
is determined by a function f mapping every pp-formula (of which there are at most |R|+ℵ0

many) to an element of B. It follows that

|S(B)| ≤ |B||R|+ℵ0 ≤ κ|R|+ℵ0 = κ.

So we indeed see that the theory of M is κ-stable for a suitable κ, and hence this theory is
stable.

2.3 Indiscernibles

A notion that will be important in the future and that also gives us an alternative characteri-
zation of stable theories is the notion of a sequence of indiscernibles, which we will investigate
in this section. This material is again taken from [5].

Definition 2.20. Let I be some linearly ordered index set and (ai)i∈I a sequence ordered
by I. We say that (ai)i∈I is a sequence of indiscernibles over a set of parameters A (also
called an A-indiscernible sequence) if ai0ai1 ...ain ≡A aj0aj1 ...ajn for all i0 < i1 < ... < in and
j0 < j1 < ... < jn from I and n ∈ ω.

So for any L(A)-formula φ(x0, ..., xn), the truth of φ(ai0 , ..., ain) depends only on the order
of the sequence i0, ..., in.

Exercise 8. For the following sequences, determine whether they are indiscernible over a set
of parameters A:
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1. A constant sequence.

2. A subsequence of an A-indiscernible sequence.

3. A sequence in the theory of equality.

4. A sequence in a linear order.

Exercise 9. Let T be the theory of the structure (N, 0, S,<,+,≡2,≡3,≡4, ...). Here S is
the successor function, and ≡n stands for congruence modulo n. You can use without proof
that this theory has quantifier elimination (a proof of this fact can be found in [8]). Give an
example of a non-constant ∅-indiscernible sequence indexed by ω in the theory of a suitable
model of T .

Given a sequence in the monster model, it will always be possible to find an indiscernible
sequence closely resembling it. This is made more precise in the following definition.

Definition 2.21. Let I, J be linear orders and let (ai)i∈I be a sequence in M, and let A be
a set of parameters. We say that a sequence (bj)j∈J in M is based on (ai)i∈I (relative to A)
if for any j0 < ... < jn in J and any finite set of L(A)-formulas Φ, there is some sequence
i0 < ... < in in I such that for all φ ∈ Φ we have

|= φ(ai0 , ..., ain) iff |= φ(bj0 , ..., bjn).

Our claim is that for any sequence in M, we can find an indiscernible sequence in M based
on it. To prove this we need the notion of the Ehrenfeucht-Mostowski type of a sequence.

Definition 2.22. Let I be a linear order and let a = (ai)i∈I be a sequence of elements in
M. The Ehrenfeucht-Mostowski type of a, denoted EM(a/A) is the following collection of
formulas:

EM(a/A) = {φ(x0, ..., xn) | n ∈ ω, φ an L(A)-formula , ∀i0 < ... < in : |= φ(ai0 , ..., ain)}.

We say that a sequence b realizes EM(a/A) if EM(a/A) ⊆ EM(b/A). Note that a and b
need not be indexed by the same set.

Exercise 10. Let I, J be linear orders, A a set of parameters, a = (ai)i∈I and b = (bj)j∈J
sequences of elements in M such that b is indiscernible. Show that b is based on a if and only
if b realizes EM(a/A).

Theorem 2.23. Let I, J be infinite linear orders and A a set of parameters. If a = (ai)i∈I
is a sequence in M, then there is an A-indiscernible sequence b = (bj)j∈J based on a.

Proof. We will add a sequence of constants c = (cj)j∈J to our language, and we will extend
our theory T to a theory T ′ containing a set of formulas Φ telling us that the interpretation
of c realizes EM(a/A):

Φ = {φ(cj0 , ..., cjn) | n ∈ ω, j0 < ... < jn ∈ J, φ ∈ EM(a/A)}

and a set of formulas Ψ telling us that the interpretation of c is A-indiscernible:

Ψ = {ψ(ci0 , ..., cin)↔ ψ(cj0 , ..., cjn) | i0 < ... < in ∈ J, j0 < ... < jn ∈ J,
ψ(x0, ..., xn) an L(A)-formula}.
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By Exercise 10 it is enough to show that this theory is consistent. The interpretation of
the sequence c will be the desired sequence. So let T ′′ be a finite subtheory of T ′. We see
that every formula in Φ is true if we interpret c as some subsequence of a. Now suppose
that T ′′ contains k formulas from Ψ. Call this set Ψ′. Note that we may assume that
every formula in Ψ′ has length n + 1. Now define a relation on tuples of elements from a
of length n + 1 as follows: two tuples w, v are equivalent if and only if ψ(w) ↔ ψ(v) for
every ψ(cj0 , ..., cjn) ↔ ψ(ci0 , ..., cin) in Ψ′. Note that this is indeed an equivalence relation,
and that it has at most 2k many equivalence classes. This means that by Ramsey’s theorem,
there is some infinite subsequence aK = (ak)k∈K of (ai)i∈I such that every increasing tuple
from aK of length n+ 1 is in the same equivalence class. This means that we have found an
interpretation for those elements of c which occur in T ′′, in the form of the sequence aK . So
T ′′ is satisfied by the monster model, and hence T ′ is consistent.

The notion of a sequence of indiscernibles can obviously be generalized to a notion where
the truth of a tuple of elements is only dependent on whether or not these elements are
different from each other. To be precise:

Definition 2.24. Let I be some index set and (ai)i∈I a sequence indexed by I. We say
that (ai)i∈I is a totally indiscernible sequence over a set of parameters A if ai0ai1 ...ain ≡A
aj0aj1 ...ajn for all i0, i1, ..., in and j0, j1, ..., jn from I and n ∈ ω as long as ir 6= ik and jr 6= jk
for all distinct k, r ≤ n.

Note that we no longer need the ai to really be a sequence, which is why we no longer
desire I to be a linear order. So we can also speak about a totally indiscernible set.

Exercise 11. Consider the language of groups, and consider the free group G on a set of
generators X. Show that the set X is a totally indiscernible set over ∅.

We can prove that stable theories are exactly the class of theories in which the notions
of indiscernibility and total indiscernibility coincide. To do this, we will first take a look at
what we know about a sequence if we know its Ehrenfeucht-Mostowski type.

Exercise 12. Let I be a linear order and A a set of parameters. Prove that a sequence
a = (ai)i∈I is A-indiscernible if and only if EM(a/A) is complete (so for every L(A)-formula
φ, we have φ ∈ EM(a/A) or ¬φ ∈ EM(a/A)).

Now suppose that a = (ai)i∈I and b = (bi)i∈I are both A-indiscernible sequences, indexed
by the same linear order I. If they have the same EM-type over A, then in fact they have the
same type over A. For suppose φ(x0, ..., xn) is an L(A)-formula and i0, ..., in ∈ I are such that
|= φ(ai0 , ..., ain). Now we can rearrange the elements i0, ..., in such that they are in increasing
order, say i′0 < ... < i′n. Now define a new formula ψ(y0, ..., yn) which is just φ, but with the
variables arranged in this increasing order. This means that |= ψ(ai′0 , ..., ai′n), and since a is

A-indiscernible, this means that ψ ∈ EM(a/A). This means that ψ ∈ EM(b/A), and hence
we see that |= φ(bi0 , ..., bin). This means that a ≡A b.

Lemma 2.25. Suppose I ⊆ J are linear orders (where I ⊆ J means that the order on J
extends the order on I), A is a small set of parameters and a = (ai)i∈I is an A-indiscernible
sequence. Then there is an A-indiscernible sequence b = (bj)j∈J such that bi = ai for all i ∈ I.
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Proof. Consider an A-indiscernible sequence c = (cj)j∈J based on a. Then by the consid-
eration above we see that a ≡A (ci)i∈I . This means that there is a partial elementary map
f : A ∪ {ci | i ∈ I} →M fixing A and such that f(ci) = ai for every i ∈ I. Since the monster
model is κ-homogeneous for some sufficiently large κ, this means that we can extend f to
an automorphism σ : M → M. Now we define b by bj = σ(cj) for every j ∈ J . Since c is
A-indiscernible, we see that b is also A-indiscernible, and bi = ai for every i ∈ I.

Now we have all the tools we need for our main result.

Theorem 2.26. A theory T is stable if and only if every indiscernible sequence over a small
set of parameters A is totally indiscernible over A.

Proof. First suppose T is unstable. Then by Exercise 1 there is a formula φ(x, y) and a
sequence a = (ai)i∈ω such that |= φ(ai, aj) if and only if i < j. Now let b = (bi)i∈ω be an
A-indiscernible sequence based on a. Now if i < j then there are k < r such that |= φ(bi, bj)
if and only if |= φ(ak, ar). And we know that |= φ(ak, ar) is true since k < r, and hence we
find that i < j ⇒ |= φ(bi, bj). Using the same method, we see that i ≥ j ⇒ |= ¬φ(bi, bj). So
this sequence is indiscernible but not totally indiscernible.

Suppose on the other hand that there is a sequence a = (ai)i∈I for some linear order I
which is A-indiscernible for some set of parameters A, but is not totally indiscernible over
A. Because of Lemma 2.25, we can assume that I is a dense linear order. For otherwise, we
could just extend I to a dense linear order J , and find a new sequence indexed by J , which
will also be A-indiscernible but not totally A-indiscernible. Now there is some L(A)-formula
φ(x0, ..., xn) and some r0 < ... < rn and some σ ∈ Sn+1 such that

|= φ(ar0 , ..., arn) ∧ ¬φ(aσ(r0), ..., aσ(rn)).

Since every element of Sn+1 can be written as a product of transpositions of neighboring
elements, we know that there are some elements l0, ..., ln such that for some element j < n,
we have:

|= φ(al0 , ..., aln) ∧ ¬φ(al0 , ..., alj−1
, alj+1

, alj , alj+2
, ..., aln).

Now w.l.o.g. we can assume that lj < lj+1, otherwise we could consider the formula ¬φ and
follow the same line of reasoning. Now we define the formula

ψ(x0...xn, y0...yn) := φ(x0, ..., xj−1, xj , yj+1, ..., yn)

and we define the sequence (bi)lj<i<lj+1
(note that there are infinitely many such i) by

bi = al0 ...alj−1
aiaialj+2

...aln .

Now since a is A-indiscernible, we see that |= ψ(bi, bk) if and only if i < k. By Exercise 1 it
follows that T is unstable.

2.4 Unstable theories are IP or SOP

In this section we will investigate an alternative characterization of stable theories: we prove
that a theory is stable exactly when it satisfies neither of two properties called the strict order
property and the independence property. The material in this section is taken from [6].
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Definition 2.27. A formula φ(x, y) has the strict order property (or SOP), if there is a
sequence (bi)i∈ω such that for all i ∈ ω, φ(M, bi)  φ(M, bi+1). A theory T has SOP if there
is some L-formula which has SOP. We will also denote the class of all theories which have
SOP by SOP. The class of theories which are not in SOP will be denoted by NSOP.

Note that a formula having SOP or not depends on the monster model, and therefore it
depends on the theory.

Lemma 2.28. If a formula ¬φ(x, y) has SOP, then φ(x, y) has SOP.

Proof. Suppose that (bi)i∈ω is a sequence such that for all i ∈ ω we have that ¬φ(M, bi)  
¬φ(M, bi+1). Now let k ∈ ω be given, and define for all i ≤ k: di = bk−i. Then we notice
that for all i < k we have: φ(M, di)  φ(M, di+1). Now we can use the compactness theorem.
Consider a new set of constants (ci)i∈ω and axioms ∀x(φ(x, ci)→ φ(x, ci+1)) for all i ∈ ω and
∃x(φ(x, ci+1)∧¬φ(x, ci)) for all i ∈ ω. Consider a finite subset of these axioms, then there is
some n ∈ ω such that no constant ci occurring in this subset has an index larger than n. Now
we notice that this subtheory is consistent with T by interpreting the sequence (ci)i≤n with
the sequence (di)i≤n as defined above. And hence the entire theory is consistent, so we can
find an interpretation of the sequence (ci)i∈ω in M such that the axioms above are satisfied.
It follows that φ(x, y) has SOP.

Definition 2.29. A formula φ(x, y) has the independence property (or IP), if there are se-
quences (bi)i∈ω and (as)s⊆ω such that for all i ∈ ω and s ⊆ ω: |= φ(as, bi) iff i ∈ s. A theory
T has IP if there is some formula which has IP. We will also denote the class of all theories
which have IP by IP. The class of theories which are not in IP will be denoted by NIP.

Lemma 2.30. Let φ(x, y) be a formula. If for some sequence (bi)i∈ω and for all n ∈ ω and
µ ∈ 2n we have:

|= ∃x

 ∧
µ(i)=1, i<n

φ(x, bi) ∧
∧

µ(i)=0, i<n

¬φ(x, bi)

 ,

then φ(x, y) has IP.

Proof. Consider a set of new constants {cs | s ⊆ ω} and for all s ⊆ ω and i ∈ ω an axiom
φ(cs, bi) if i ∈ s and ¬φ(cs, bi) if i 6∈ s. Any finite subset of this infinite set of axioms is
consistent with T , since we only have a finite number of axioms containing cs, for any s.
So for every s, let ns + 1 be maximal such that φ(cs, bns) or ¬φ(cs, bns) occurs in this finite
subtheory, then we can simply choose a suitable µ ∈ 2ns , and since we have a witness to

|= ∃x

 ∧
µ(i)=1, i<ns+1

φ(x, bi) ∧
∧

µ(i)=0, i<ns+1

¬φ(x, bi)

 ,

we obtain an interpretation for cs in M. If follows by compactness that φ(x, y) has IP.

Lemma 2.31. Let φ(x, y) be a formula. If there is an n ∈ ω and a µ ∈ 2n such that the
formula ψ(x, y0, ..., yn−1) defined by

ψ(x, y0, ..., yn−1) =
∧

µ(i)=1, i<n

φ(x, yi) ∧
∧

µ(i)=0, i<n

¬φ(x, yi)

has SOP, then φ(x, y) has SOP.
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Proof. Since the formula ψ has the strict order property, we have sequences (bki )i∈ω for ev-
ery k < n such that for every i ∈ ω we have that ψ(M, b0i , ..., b

n−1
i )  ψ(M, b0i+1, ..., b

n−1
i+1 ).

This means that for every i ∈ ω there is a number k < n such that there is some xi ∈
φ(M, bki )\φ(M, bki+1) or xi ∈ ¬φ(M, bki )\¬φ(M, bki+1). It now follows from the pigeonhole prin-
ciple that there is some infinite subset A ⊆ ω such that we either have for all i ∈ A: there
is some k < n such that there is some xi ∈ φ(M, bki )\φ(M, bki+1), or for every i ∈ A there is
some k < n such that there is some xi ∈ ¬φ(M, bki )\¬φ(M, bki+1). Because of Lemma 2.4, we
can say without loss of generality that we are in the first case. Since n is finite, it follows
by the pigeonhole principle that there is some k < n such that there is an infinite number of
i ∈ A such that φ(M, bki )  φ(M, bki+1). This infinite subsequence of (bi)i∈ω is a witness to the
statement that φ(x, y) has SOP.

Theorem 2.32. A formula φ(x, y) is unstable iff φ ∈ IP ∪ SOP.

Proof. Suppose first that φ has SOP, say that the sequence (bi)i∈ω is a witness to this. Now
let k ∈ ω be given. For every i < k, choose an element ai ∈ φ(M, bi+1)\φ(M, bi). Then we
notice that we have sequences (ai)i<k and (bi)i<k such that for all i, j < k we have |= φ(ai, bj)
iff i < j. So φ(x, y) has the k-order property for every k ∈ ω, hence it is unstable.
Now suppose that φ has IP, say that the sequences (bi)i∈ω and (as)s⊆ω are witnesses to this.
Now let k ∈ ω be given and define for every i < k: ci = a{i+1,i+2,...,k}. Then we notice that for
all i, j ∈ ω we have |= φ(ci, bj) iff i < j, so φ(x, y) has the k-order property, hence φ is unstable.

Now we will prove the converse to this statement, so suppose φ is unstable, so by Lemma
2.2 there are sequences (ai)i∈ω and (bi)i∈ω such that for all i, j ∈ ω we have |= φ(ai, bj) iff
i < j. By Lemma 2.23 we can assume these sequences to be indiscernible. If this formula has
IP we are done, so we will assume that it does not have IP, and prove that it has SOP. So by
Lemma 2.30 there are n ∈ ω and µ ∈ 2n such that

|= ¬∃x

 ∧
µ(i)=1, i<n

φ(x, bi) ∧
∧

µ(i)=0, i<n

¬φ(x, bi)

 . (2.1)

Now define the set X0 = {i | µ(i) = 1}, and let m = |X0|. We notice that 0 < m < n,
for suppose m = 0, then we would have |= ¬∃x

∧
i<n ¬φ(x, bi), which is impossible since

an is a witness to the statement |= ∃x
∧
i<n ¬φ(x, bi). And if m = n, then we would

have |= ¬∃x
∧
i<n φ(x, bi). However, we notice that a0 is a witness to the statement |=

∃x
∧

0<i≤n φ(x, bi), and since the sequence (bi)i∈ω is indiscernible we know that |= ∃x
∧
i<n φ(x, bi)

must also have a witness.
Now we will define sets X1, ..., XN for some N ≥ 1 such that for the sequence of sets
X0, X1, ..., XN we have that for every k ≤ N :

• For every k ≤ N : Xk ⊂ {0, ..., n− 1} and |Xk| = m,

• XN = {n−m,n−m+ 1, ..., n− 1},

• for all k < N there is some l ∈ Xk such that Xk+1 = (Xk\{l}) ∪ {l + 1}.

This can be done in the following way: if we have already constructed Xp for some p < N ,
then write Xp = {l1, ..., lm} with l1 < l2 < ... < lm, and notice that li ≤ n− 1−m+ i. Now
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let i be maximal such that li < n− 1−m+ i and let Xp+1 = Xp\{li} ∪ {li + 1}.
Now we can translate (2.1) to:

|= ¬∃x

 ∧
i∈X0

φ(x, bi) ∧
∧

i 6∈X0, i<n

¬φ(x, bi)

 .

And we also notice that we have an−m−1 as a witness to the statement:

|= ∃x

 ∧
i∈XN

φ(x, bi) ∧
∧

i 6∈XN , i<n
¬φ(x, bi)

 .

Now from these two observations and the fact that N < ω it follows that there must be some
k < N such that

|= ¬∃x

 ∧
i∈Xk

φ(x, bi) ∧
∧

i 6∈Xk, i<n
¬φ(x, bi)

 (2.2)

and

|= ∃x

 ∧
i∈Xk+1

φ(x, bi) ∧
∧

i 6∈Xk+1, i<n

¬φ(x, bi)

 . (2.3)

Now let l ∈ Xk be the element such that Xk+1 = Xk\{l} ∪ {l + 1}, and define the following
formula:

ψ(x, y, y0, ..., yl−1, yl+2, ..., yn−1) = φ(x, y) ∧
∧

i∈Xk\{l}

φ(x, yi) ∧
∧

i 6∈Xk+1∪{l}

¬φ(x, yi).

Now define for every r ∈ ω the sequence br = (b0, ..., bl−1, bl+2+r, ..., bn−1+r). Then (2.3) can
be rewritten as |= ∃x(ψ(x, bl+1, b0) ∧ ¬φ(x, bl)). Since the sequence (bi)i∈ω is indiscernible it
follows for all r ∈ ω and for all i, j ∈ ω such that l ≤ i < j < l + 2 + r:

|= ∃x(ψ(x, bj , br) ∧ ¬φ(x, bi)). (2.4)

And in much the same way we can translate (2.2) to |= ¬∃x(ψ(x, bl, b0) ∧ ¬φ(x, bl+1)) and
hence we find using the same argument that for all i, j ∈ ω with l ≤ i < j < l + 2 + r:

|= ¬∃x(ψ(x, bi, br) ∧ ¬φ(x, bj)). (2.5)

Now we notice that |= ∀x(ψ(x, bi, br) → φ(x, bi)) and hence |= ∀x(¬φ(x, bi) → ¬ψ(x, bi, br)).
From this and (2.4) we can obtain for all r ∈ ω and l ≤ i < j < l + 2 + r:

|= ∃x(ψ(x, bj , br) ∧ ¬ψ(x, bi, br)).

Now we find from (2.5):
|= ∀x(ψ(x, bi, br)→ φ(x, bj)).

And from the definition ψ, we also know that

|= ∀x, y, y′, y(ψ(x, y, y) ∧ φ(x, y′)→ ψ(x, y′, y)).
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And from this we find
|= ∀x(ψ(x, bi, br)→ ψ(x, bj , br)).

Now consider a new set of constants {ci | i ∈ ω} and a sequence of new constants B, and
consider the set of axioms:

{∃x(ψ(x, cj , B) ∧ ¬ψ(x, ci, B))} ∪ {∀x(ψ(x, ci, B)→ ψ(x, cj , B))}

for all i, j ∈ ω with i < j. Notice that any finite subset of this set of axioms is consistent
with T , by interpreting ci by bl+i and B by br for sufficiently large r. So by compactness the
entire set is consistent with T , with interpretation {c′i | i ∈ ω} and B′ in M. Now define for
all i ∈ ω: di = (c′i, B

′). Then we find that for all i ∈ ω we have ψ(M, di)  ψ(M, di+1). So ψ
has SOP, and by Lemma 2.31 it follows that φ(x, y) has SOP, concluding our proof.

Corollary 2.33. A theory T is stable iff T ∈ NIP ∩NSOP.



Chapter 3

Ranks

3.1 Cantor-Bendixson rank

There are several notions of ranks occurring in model theory. In essence, a rank is a map,
assigning an ordinal to a formula, set of formulas or a (complete) type. We will investigate
several notions of ranks, and see how they connect to each other. In a later stage we will see
how these ranks connect to stability and forking. The first notion of rank will be motivated
from topology. The material in this section is mostly taken from [5], [19] and [3].

Definition 3.1. Let X be a compact Hausdorff topological space. We define for every ordinal
α a subspace Xα of X as follows:

• X0 = X.

• Xα+1 = Xα − {p ∈ Xα | p is isolated in Xα}.

• Xλ =
⋂
α<λXα if λ is a limit ordinal.

Note that one can prove by induction that every Xα is closed in X. Indeed, X is
clearly closed in itself. If Xα is closed in X for some ordinal α, then we notice that
{p ∈ Xα | p is isolated in Xα} is a union of opens in Xα, hence it is open in Xα. We find that
Xα+1 is closed in Xα, and hence it is also closed in X. Furthermore, if λ is a limit ordinal,
then we see that Xλ is an intersection of closed sets in X (by the induction hypothesis), and
hence it is itself closed in X. It also follows that Xα is compact for every ordinal α. Now we
will define the Cantor-Bendixson rank of a point x ∈ X, denoted CB(x), as follows:

Definition 3.2. Let X be a compact Hausdorff topological space, and x ∈ X. The Cantor-
Bendixson rank of x is defined as

CB(x) = max{α | x ∈ Xα}.

And we say that CB(x) = ∞ if x ∈ Xα for all ordinals α. If CB(x) = α for some ordinal α,
we will also say that CB(x) <∞, and we will call x a ranked element.

Note that since any topological space X is itself a set, there must be some ordinal α such
that Xα = Xα+1, for otherwise, we could find an element xα ∈ Xα −Xα+1 for every ordinal
α, and the cardinality of X would exceed the ordinals. Note that if Xα = Xα+1, then we

29
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see that Xα = Xβ for all ordinals β ≥ α. So if x ∈ Xα, then CB(x) > β for all ordinals β.
Now suppose that every x ∈ X is ranked, then it immediately follows that if Xα = Xα+1,
we must have Xα = ∅. So now let α be the smallest ordinal such that Xα = Xα+1. By
Compactness, any nested sequence of nonempty closed subspaces of a compact space has a
nonempty intersection, and hence α cannot be a limit ordinal. So there is some ordinal β
such that Xβ 6= ∅ and Xβ+1 = ∅. It follows that Xβ must be a finite set of points (since it is
compact). Now from these considerations, the following definition follows:

Definition 3.3. Let X be a non-empty compact Hausdorff topological space such that every
element of X is ranked. The largest ordinal β such that Xβ is non-empty is called the Cantor-
Bendixson rank of the space X, and the Cantor-Bendixson multiplicity of X is the cardinality
of the set {x ∈ X | CB(x) = β}.

To get a feeling for the notion of Cantor-Bendixson rank, we will consider a few examples
in the Euclidean topology.

Example 3.4. Consider the space X = {0} ∪ { 1
n | n ∈ N} with the Euclidean topology.

Note that this is a compact Hausdorff space. The points 1
n are all isolated, hence they have

Cantor-Bendixson rank 0. The point 0 is not isolated, so this has a larger CB-rank. However,
if we remove all points with CB-rank 0 from the space X, we are left with just the point 0,
which has therefore become isolated, so it has CB-rank 1, which is also the CB-rank of the
space X. The CB-multiplicity of X is 1.

Exercise 13. Let n, k be natural numbers. Give an example of a topological space X with
CB-rank n and CB-multiplicity k.

Example 3.5. Consider the space Y = [−1, 0]∪X, where X is the space from Example 3.4.
We again see that all the points 1

n have CB-rank 0, but if we remove them we will be left with
the closed interval [−1, 0]. This interval contains no isolated points, and hence the CB-rank
of every point of this interval is ∞. The CB-rank of Y is therefore undefined.

The CB-rank satisfies some basic properties, which are usually proved by induction on
the ordinals.

Lemma 3.6. Let X be a compact Hausdorff topological space.

• If Y ⊆ X is a closed subspace, then Yα ⊆ Xα for all ordinals α.

• If Y,Z ⊆ X are closed subspaces, then Yα ∪ Zα = (Y ∪ Z)α.

Proof. • We use induction on α. If α = 0 the statement is trivial. So suppose Yα ⊆ Xα

for some ordinal α. Now if y ∈ Yα is isolated in Xα, then clearly it is also isolated in Yα.
It follows that Yα+1 ⊆ Xα+1. Now suppose that λ is a limit ordinal and for all ordinals
α < λ we have that Yα ⊆ Xα. Then clearly

⋂
α<λ Yα ⊆

⋂
α<λXα, so Yλ ⊆ Xλ.

• Note that by the previous part, it is clear that Yα ⊆ (Y ∪Z)α and Zα ⊆ (Y ∪Z)α. So we
only have to prove that (Y ∪ Z)α ⊆ Yα ∪ Zα for all α. This is again done by induction
on α. For α = 0 the statement is clear. So now suppose that (Y ∪ Z)α = Yα ∪ Zα for
some ordinal α. Let x ∈ (Y ∪Z)α+1, so x is not isolated in Yα ∪Zα. Since x ∈ Yα ∪Zα,
we can w.l.o.g. assume that x ∈ Yα. Now suppose that x is isolated in Yα, then there
is some open V in X such that V ∩ Yα = {x}. But since x is not isolated in Yα ∪ Zα,
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it follows that V ∩ Zα 6= {x}. And in fact, if U is an open neighborhood of x, then
U ∩ Zα 6= {x}. It follows since Zα is closed that x ∈ Zα and x is not isolated in Zα,
hence x ∈ Zα+1. So we indeed find that (Y ∪ Z)α+1 ⊆ Yα+1 ∪ Zα+1.

Now suppose λ is a limit ordinal and for all α < λ we have that (Y ∪ Z)α = Yα ∪ Zα.
Then we find:

(Y ∪ Z)λ =
⋂
α<λ

(Y ∪ Z)α

=
⋂
α<λ

(Yα ∪ Zα)

=
⋂
α<λ

Yα ∪
⋂
α<λ

Zα

= Yλ ∪ Zλ.

Where the first step is due to the induction hypothesis and the second due to the fact
that the Yα and Zα form downwards chains. We can now conclude that Yα ∪ Zα =
(Y ∪ Z)α for all ordinals α.

We find as an immediate corollary:

Corollary 3.7. Let X and Y be ranked compact Hausdorff spaces.

• If X is a subspace of Y , then CB(X) ≤ CB(Y ).

• CB(X ∪ Y ) = max(CB(X),CB(Y ))

Based on the results above, one might also expect a result like (X ∩ Y )α = Xα ∩ Yα or
CB(X ∩ Y ) = min(CB(X),CB(Y )) to hold, but it turns out that this is not the case. For
consider the spaces X = {0} ∪ { 1

n | n ∈ ω} and Y = {0} ∪ {− 1
n | n ∈ ω} with the Euclidean

topology. Then we notice that X ∩ Y = {0}, so (X ∩ Y )1 = ∅, but X1 = Y1 = {0}.

Now we will start focussing specifically on type spaces. So we consider the space of
complete n-types over a set of parameters A as a Stone space, and define the Cantor-Bendixson
rank of a complete type p as the Cantor-Bendixson rank of this point in the space Sn(A).
This is in fact not the only possible way to define Cantor-Bendixson rank. Another way would
be by first defining the Cantor-Bendixson rank of a formula, and then use that to define the
CB-rank of a type. This is done inductively as follows:

Definition 3.8. Let φ be an L(A)-formula, with A a set of parameters. If φ is inconsistent we
define CB(φ) = −1. Now if α is an ordinal, we define Ψα to be the set of L(A)-formulas with
CB-rank smaller then α. Now we define CB(φ) = α if the set {p ∈ Sn(A) | φ ∈ p and ¬ψ ∈
p for all ψ ∈ Ψα} is non-empty and finite.

Of course in the definition above, we assume that −1 is an element that we add to the
ordinals with the property that −1 < 0. Now we find the following alternative definition of
the CB-rank of a type:

Lemma 3.9. Let p ∈ Sn(A). Then CB(p) = inf{CB(φ) | φ ∈ p}.
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Proof. We will prove by induction on the ordinal α that CB(p) = α iff inf{CB(φ) | φ ∈ p} = α.
First we notice that if CB(p) = 0, then p is an isolated point in Sn(A), so there is some
formula φ such that [φ] = {p}. It follows that CB(φ) = 0 and φ ∈ p, so we indeed have
that inf{CB(φ) | φ ∈ p} = 0. Now suppose that inf{CB(φ) | φ ∈ p} = 0, then there is some
φ ∈ p such that CB(φ) = 0. It follows from the definition of CB(φ) that the set of complete
types containing φ is non-empty and finite, say this set is {q0, ..., qn}. It follows that there
are formulas ψ0, ..., ψn such that for all i ≤ n we have ψi ∈ qi and if i 6= j, then ψi 6∈ qj . It
follows that [φ ∧ ψi] = {qi} for each i ≤ k. So the type p, being one of the qi, is an isolated
point because {p} = [φ ∧ ψi] for some i, and [φ ∧ ψi] is open. It follows that CB(p) = 0.

Now we will provide the induction step. So suppose that β > 0 is an ordinal and for
all α < β we know that CB(p) = α iff inf{CB(φ) | φ ∈ p} = α. Now first suppose that
CB(p) = β. By the induction hypothesis we see that inf{CB(φ) | φ ∈ p} ≥ β, because if
inf{CB(φ) | φ ∈ p} = α < β, then by IH we see that CB(p) = α, a contradiction. So we have
to show that there is some formula φ ∈ p such that CB(φ) = β. Notice that p is isolated in
the space of types which have CB-rank at least β, so there is some formula φ ∈ p such that
{p} = [φ] ∩ {q ∈ Sn(A) | CB(q) ≥ β}. We notice that the set of types containing φ and the
negations of all formulas with CB-rank less then β is non-empty and finite, because p is the
only type satisfying this property, by assumption. So by definition we see that CB(φ) = β,
and hence inf{CB(φ) | φ ∈ p} = β.

Now suppose that inf{CB(φ) | φ ∈ p} = β, then there is some φ ∈ p such that CB(φ) = β.
This means that there is only a finite number of types containing φ and the negations of
all formulas with CB-rank less then β, let’s say that this set is {q0, ..., qn}. Using the same
method as in the base case, we can now find a formula ψ such that p is the only type containing
ψ and such that any formula in p has CB-rank at least β. By IH this means that p is isolated
in the space of types which have CB-rank at least β, so CB(p) = β. This concludes our
proof.

Another possible way to define Cantor-Bendixson rank is by using Boolean algebras. We
know that the clopens of a topological space X form a Boolean algebra (under the usual
intersection, union and set-theoretic complement), so we can define a notion of rank on
Boolean algebras which will turn out to coincide with the notion of CB-rank on the clopens
of a Stone space.

Definition 3.10. Let B be a Boolean algebra. We assign to each ordinal α an ideal I<α and
an ideal Iα of B as follows:

1. I<0 = {0}.

2. If I<α has been defined for some ordinal α, we let Iα be the ideal of B such that I<α ⊆ Iα
and such that the image of Iα under the mapping that sends a ∈ B to a/I<α ∈ B/I<α
is exactly (at(B/I<α)), the ideal generated by the atoms of B/I<α.

3. If α > 0 and Iβ has been defined for all β < α, we set I<α =
⋃
β<α Iβ.

Notice that we have Iα ⊆ Iα+1 for every ordinal α. We can characterize in a somewhat
easier way the elements that are in Iα for some α.

Lemma 3.11. Let B be a Boolean algebra, b ∈ B and α an ordinal. If b 6∈ Iα, then there is
a subset {ai | i ∈ ω} ⊂ B such that for each i ∈ ω we have ai < b and ai 6∈ I<α and for each
i, j ∈ ω with i 6= j we have ai ∧ aj = 0.
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Proof. First suppose that there is an infinite set A ⊂ B/I<α of atoms in B/I<α, such that
for each a ∈ A we have a < b/I<α. Now let {ai ∧ I<α | i ∈ ω} ⊆ A be a countably infinite
subset of A. Pick for the element ai∧ I<α ∈ A a representative ai∧ bi ∈ B. Now the sequence
{ai ∧ bi ∧

∧
j<i ¬bj | i ∈ ω} will meet the requirements.

So suppose that the set of atoms A in B/I<α below b/I<α is only finite, say A =
{a1, ..., an}. Then we can consider the element c = b/I<α ∧ ¬a1 ∧ ... ∧ ¬an. There are
no more atoms smaller then this element, and we also notice that c 6∈ Iα. For suppose c ∈ Iα,
then since Iα is an ideal containing all the ai, we find thatb/I<α ∧ ¬∨

i≤n
ai

 ∨ ∨
i≤n

ai ∈ Iα

and hence we find that b/I<α ∨
∨
i≤n ai ∈ Iα, and since Iα is downwards closed we would find

that b/I<α ∈ Iα, a contradiction. So we can assume without loss of generality that there are
no such atoms, but b/I<α is not an atom so in that case we can pick some b0 < b, b1 < b∧¬b0,
b2 < b ∧ ¬b0 ∧ ¬b1, etc. In this case the set {bi | i ∈ ω} will meet the requirements.

Using the ideals Iα, we can define a rank notion on elements of a Boolean algebra in a
natural way.

Definition 3.12. Let B be a Boolean algebra. We define the Cantor rank of an element
b ∈ B, denoted by CR(b), by CR(0) = −1 and if b 6= 0 and α is the smallest ordinal such that
b ∈ Iα, then CR(b) = α. If there is no such ordinal, we define CR(b) =∞.

Note that using our previous lemma, we quickly find the following corollary:

Corollary 3.13. Let B be a Boolean algebra, b ∈ B and α an ordinal. Then CR(b) > α
iff there is an infinite set {ai | i ∈ ω} ⊂ B such that for each i < ω we have ai < b and
CR(ai) ≥ α and for all i, j ∈ ω with i 6= j we have ai ∧ aj = 0.

As mentioned before, this notion of rank on a Boolean algebra coincides with the notion
of CB-rank on the clopens of a Stone space.

Theorem 3.14. Let A be a nonempty clopen subset of a Stone space X. Then CB(A) =
CR(A).

Proof. We will first prove by induction that if CB(A) = α, then CR(A) ≥ α. We first notice
that since A is nonempty, we always have that CR(A) ≥ 0. Suppose that CB(A) = α and
for all ordinals β < α we know that if A′ is a clopen subset and CB(A′) = β, we have that
CR(A′) ≥ β. Now let β < α be arbitrary, then there is some a ∈ A such that a is not
isolated in the space of points of A which have CB-rank at least β. So in this space we can
find a sequence of elements (ai)i∈ω such that there are clopens (ci)i∈ω with ci ∩ cj = ∅ for
all i, j ∈ ω with i 6= j, and ai ∈ ci for all i ∈ ω, and CB(ci) ≥ β for every i ∈ ω. By the
induction hypothesis we have CR(ci) ≥ β for all i ∈ ω, and hence we find by Corollary 3.13
that CR(A) > β. So we find that CR(A) ≥ α.

Now we will prove that if CB(A) = α, we have that CR(A) ≤ α. So suppose that
CB(A) = α and CR(A) > α, and for all β < α and clopens A′ we know that if CB(A′) = β
then CR(A′) = β. Since CR(A) > α we know by Corollary 3.13 that there must be clopens
(ci)i∈ω such that each ci is contained in A and they are pairwise disjoint and all have CR-rank
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at least α. By the induction hypothesis, they must also have CB-rank at least α, so by taking
a point with CB-rank at least α from each of these clopens, we find an infinite set of points
in A which have CB-rank at least α, which is impossible as this set should be finite, since
CB(A) = α. So by contradiction we find that CR(A) ≤ α.

We conclude that CB(A) = CR(A) for all clopens A.

We also find that the CB-rank of formulas as defined in Definition 3.8 can easily be
reformulated in terms of CR-rank, because CB(φ) = CR([φ]) for every formula φ. This is
easily seen because

CR([φ]) = CB([φ])

= max{CB(p) | φ ∈ p}
= max{inf{CB(ψ) | ψ ∈ p} | φ ∈ p}
≤ CB(φ).

And on the other hand, if CB(φ) = α, then there must be some type p such that φ ∈ p and
if CB(ψ) < α we have ψ 6∈ p. Hence we also find CB(φ) ≤ max{inf{CB(ψ) | ψ ∈ p} | φ ∈ p}.

These equivalences always allow one to choose one’s favorite notion of rank.
We will now focus on local types. So let ∆ be some finite set of formulas φ1(x, y), ..., φn(x, y).

We consider the space S∆(M) of complete global ∆-types. If we assume stability, the CB-rank
of this space in fact turns out to be very well-behaved in the following sense:

Lemma 3.15. If all formulas in ∆ are stable, then for all p ∈ S∆(M) we have that CB(p) < ω.

Proof. We abbreviate the topological space S∆(M) by X. Assume that there is some p ∈ X
such that CB(p) ≥ ω, and fix some n ∈ ω. We notice that p is not isolated in the space
{q ∈ X | CB(q) ≥ n}. This means that there must be at least two different points q1, q2 ∈ X
with CB(q1),CB(q2) ≥ n, and since these are complete ∆-types, there is some δ(x, y) ∈ ∆
and some a ∈ M such that δ(x, a) ∈ q1 and ¬δ(x, a) ∈ q2. Now since CB(q1) ≥ n we know
that q1 is not isolated in the space {r ∈ X | CB(r) ≥ n− 1}. Since [δ(x, a)] is a basic clopen,
it follows that q1 cannot be the only point in [δ(x, a)] ∩ {r ∈ X | CB(r) ≥ n − 1}, so there
must be two different elements r1, r2 in this space. We see in the same way that there are two
different elements s1, s2 ∈ [¬δ(x, a)] ∩ {r ∈ X | CB(r) ≥ n− 1}. We continue in this fashion
to build a finite binary tree of formulas starting with x = x at the root, and if we have some
formula φ(x, a) in the tree, then the next formulas are by construction going to be of the form
φ(x, a) ∧ ψ(x, b) and φ(x, a) ∧ ¬ψ(x, b) for some ψ(x, y) ∈ ∆ and b ∈ M. Each path in this
tree has length n+ 2, because we stop at that point, since we have arrived at the types with
CB-rank at least 0 but not necessarily larger. Also, we notice that any path in this tree is a
consistent set of formulas, since any path is a subset of some complete ∆-type. It follows by
Compactness that there is also an infinite binary tree of formulas with the property that if we
have some formula φ(x, a) in the tree, then the next formulas are of the form φ(x, a)∧ψ(x, b)
and φ(x, a) ∧ ¬ψ(x, b) for some ψ(x, y) ∈ ∆ and b ∈ M, and such that each formula in the
tree is consistent. It follows that every path in this tree is a partial ∆-type. Now let L′ be a
countable sublanguage of our language L such that every formula in ∆ is an L′-formula, and
let M0 be a countable L′-elementary substructure of M such that all formulas in our infinite
tree are L(M0)-formulas. Remember that this is possible since this tree has cardinality |2<ω|,
so it is countable. So we have some countable set of parameters which are contained in these
formulas, and hence we can use the downward Löwenheim-Skolem theorem to find M0. Now
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we obtain an uncountable number of types (one for each path in our tree) over the countable
submodel M0, which is impossible. Hence there is no p ∈ X such that CB(p) ≥ ω.

Using the Cantor-Bendixson rank of types, we can actually define another important rank
on sets of formulas, called the ∆-rank. There is a treatment of this in [15] and [5], but they
seem to make a mistake in the definition of the ∆-rank. They define for any finite set of
formulas ∆ and for every set of formulas Φ(x) with small domain:

R∆(Φ(x)) = CB({q ∈ S∆(M) | q ∪ Φ(x) is consistent}).

Then they claim (without proof) that R∆(Φ(x)) = min(R∆(Φ′(x)) | Φ′(x) ⊆ Φ(x) finite).
However, the following example, which is based on the example provided in [11], seems to
dispute this.

Our language consists of a single binary relation symbol R(x, y). Our theory will contain
for all natural numbers n, k the axiom

∃y0, ..., yn, z0, ..., zk∀x

∧
i<n

∧
j≤k

(R(x, yi+1)→ R(x, yi) ∧R(zj , yi) ∧ ¬R(zj , yi+1)))


Now using the compactness theorem, there is some sequence (ai)i∈ω such that R(M, ai+1) ⊆
R(M, ai) for every i ∈ ω, and such that for every i ∈ ω there is an infinite set of elements b
such that |= R(b, ai) ∧ ¬R(b, ai+1). Now we consider the set of formulas Φ(x) = {R(x, ai)}.
If ∆ = {R(x, y), x = y}, then we find that the space of types consistent with Φ(x) consists
of realized types (note that these always have rank 0) and one type which is not realized,
and hence R∆(Φ(x)) = 1. Now suppose Φ′(x) ⊆ Φ(x) is finite, then we note that there is
some i ∈ ω such that R∆(Φ′(x)) = R∆({R(x, ai)}). Now we note that this is consistent with
{R(x, aj) | j ≤ k} ∪ {¬R(x, aj) | j > k} for all k ≥ i. And since for every k ≥ i this set of
formulas is consistent iwth an infinite number of types, one of which is not realized, we see
that it is consistent with an infinite number of types with rank 1. So R∆(Φ′(x)) = 2. This
contradicts the statement that there should be some finite Φ′(x) ⊆ Φ(x) with R∆(Φ(x)) =
R∆(Φ′(x)).

We will now give a treatment of the ∆-rank based on the definition provided in [11].

Definition 3.16. Let φ(x) be a formula, and let ∆ be a finite set of formulas. Then the
∆-rank of φ, denoted by R∆(φ), is defined by

R∆(φ) = CB({q(x) ∈ S∆(M) | q(x) ∪ {φ(x)} is consistent}).

Now if Φ(x) is a set of formulas, we define the ∆-rank of Φ as follows:

R∆(Φ(x)) = min

R∆

 ∧
φ∈Φ′

φ(x)

 | Φ′ ⊆ Φ finite

 .

From the definition of CB-rank and using Lemma 3.15, we see that if ∆ is a set of stable
formulas, then R∆(Φ(x)) is finite for any set of formulas Φ(x). Using known properties of the
CB-rank, we can now prove certain other properties of the ∆-rank, which will turn out to
have a clear connection to forking, an important notion that we shall encounter in the next
chapter.
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Lemma 3.17. Let Φ(x) and Ψ(x) be sets of formulas over small sets of parameters A and
B respectively, and let φ(x) and ψ(x) be formulas. Then we have:

1. (monotonicity) If Ψ(x) |= Φ(x), then R∆(Ψ) ≤ R∆(Φ).

2. R∆(φ(x) ∨ ψ(x)) = max(R∆(φ(x)), R∆(ψ(x))).

3. R∆ is invariant under automorphisms of M.

4. Let φ(x) be a ∆-formula and {φi(x) | i ∈ ω} a pairwise contradictory set of ∆-formulas
such that φi(x) |= φ(x) for every i ∈ ω and R∆(φi(x)) ≥ n for all i ∈ ω and some
n ∈ ω. Then R∆(φ(x)) ≥ n+ 1.

Proof. 1. Suppose R∆(Φ(x)) = α, then there is some finite subset Φ′ ⊆ Φ such that
φ(x) =

∧
φ′∈Φ′ φ

′(x) and such that R∆(φ(x)) = α. Now we see that there is some finite
Ψ′ ⊆ Ψ such that Ψ′(x) |= φ(x). Now let ψ′(x) be the conjunction over the formulas in
Ψ′, then we see that if p ∈ S∆(M) and p∪ {ψ′(x)} is consistent, then p∪ {φ′(x)} is also
consistent. Hence we see that

{p ∈ S∆(M) | p ∪ {ψ′} is consistent} ⊆ {p ∈ S∆(M) | p ∪ {φ′} is consistent},

and by monotonicity of Cantor-Bendixson rank, we see that R∆(ψ′) ≤ R∆(φ′) = α.
And hence we conclude that R∆(Ψ) ≤ R∆(Φ).

2. We notice that

{q(x) ∈ S∆(M) | q(x) ∪ {φ(x) ∨ ψ(x)} is consistent} =

{q(x) ∈ S∆(M) | q(x) ∪ {φ(x)} is consistent}∪
{q(x) ∈ S∆(M) | q(x) ∪ {ψ(x)} is consistent},

so the result immediately follows from Corollary 3.7.

3. We will prove this for formulas only, notice that the result immediately follows for sets
of formulas. We will only prove that R∆(φ(x)) ≤ R∆(φ(f(x))) for all f ∈ Aut(M),
notice that the other direction follows, because if f ∈ Aut(M), then f−1 ∈ Aut(M).
So now suppose p ∈ S∆(M) and p ∪ {φ(x)} is consistent. Then for every finite subset
p′ ⊆ p, there is some a ∈M such that |= p′(a)∪{φ(a)}. Now if f ∈ Aut(M), we see that
|= p′(a) ∪ {φ(f(a))}, and hence we see that p(x) ∪ {φ(f(x))} is consistent. And hence
we see that

{p ∈ S∆(M) | p(x)∪{φ(x)} is consistent} ⊆ {p ∈ S∆(M) | p(x)∪{φ(f(x))} is consistent}

And hence by monotonicity of the Cantor-Bendixson rank, we conclude that R∆(φ(x)) ≤
R∆(φ(f(x))).

4. For every i ∈ ω there is a type qi such that CB(qi) ≥ n and qi ∪ φi(x) is consistent. It
follows that there is an infinite number of different types (because the φi are pairwise
contradictory) which are consistent with φ(x) and have CB-rank at least n. It follows
that R∆(φ) ≥ n+ 1.

The very first (historically speaking) notion of a rank in model theory is actually a special
case of the ∆-rank, and is called the Morley rank . This is the same as the ∆-rank, but now
with ∆ being the set of all formulas. This also induces the concept of Morley degree, as well
as a natural analogue to Lemma 3.17.
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3.2 Shelah’s local rank and stability

Another notion of rank that is historically rather old is Shelah’s local rank. Like most ranks,
it has an inductive definition. The material in this section is taken from [5] and [17]. However,
the proof of Theorem 3.20 was incomplete in [5], and finishing it is our own work.

Definition 3.18. Let ∆ be a set of formulas, p(x) a partial type and α ≥ 2 a cardinal. Then
we define Shelah’s local α-rank of p(x), denoted Rα(p,∆) as follows:

• Rα(p(x),∆) ≥ 0 if and only if p(x) is consistent.

• For any ordinal β, Rα(p(x),∆) ≥ β+ 1 if and only if for every finite r ⊆ p there is a set
of partial ∆-types {qi | i ∈ α} such that:

1. For all i ∈ α we have that Rα(r ∪ qi,∆) ≥ β.

2. For all i, j ∈ α such that i 6= j we have that qi ∪ qj |=⊥.

• For any limit ordinal λ, Rα(p(x),∆) ≥ λ if and only if Rα(p(x),∆) ≥ β for every β < λ.

If ∆ = {φ} for some formula φ, we will just write Rα(p(x), φ) for this rank. And if
p(x) = {ψ(x)} for some formula ψ, we will write Rα(ψ(x),∆) for this rank.

Exercise 14. Let p(x), q(x) be two partial types such that p(x) |= q(x), let ∆ be some set
of formulas and let α be a cardinal.

a Prove that if r ⊆ q is finite, then there is some finite r′ ⊆ p such that r′ |= r.

b Prove that Rα(p(x),∆) ≤ Rα(q(x),∆).

It follows from this exercise that if p(x) is some partial type, then
Rα(p(x),∆) ≤ Rα(x = x,∆).

Note that for all partial types p and for all cardinals α ≤ β such that α ≥ 2 we have that
Rβ(p(x),∆) ≤ Rα(p(x),∆). This follows directly from the definition, since a set {qi | i ∈ β}
can be restricted to a set {qi | i ∈ α}. Note that it follows that for all cardinals α ≥ 2 and
for all partial types p(x) and sets of formulas ∆ we have that Rα(p(x),∆) ≤ R2(p(x),∆).
It turns out that Shelah’s local 2-rank, being an upper bound for every α-rank, is our main
point of interest, for it will give us an alternative characterization of stable formulas.

We note first that the case of R2 is somewhat more easy then the general definition
in the following sense: If p ∈ S∆ is finite then R2(p(x),∆) ≥ α + 1 for some ordinal α
if and only if there is some formula φ(x, a) ∈ ∆ such that R2(p(x) ∪ {φ(x, a)},∆) ≥ α and
R2(p(x)∪{¬φ(x, a)},∆) ≥ α. For the first direction: if R2(p(x),∆) ≥ α+1, then there are two
different partial ∆-types q and q′ such that R2(p(x)∪q(x),∆) ≥ α and R2(p(x)∪q′(x),∆) ≥ α.
This means that there must be some ∆-formula φ(x, a) such that φ(x, a) ∈ q and ¬φ(x, a) ∈ q′
and by monotonicity we see that R2(p(x)∪{φ(x, a)},∆) ≥ α and R2(p(x)∪{¬φ(x, a)},∆) ≥ α.
For the other direction, note that formulas are in particular partial types.

Lemma 3.19. A formula φ(x, y) is stable if and only if R2(x = x, φ) < ω.
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Proof. First suppose φ(x, y) is unstable, hence it has the k-order property for every k ∈ ω.
Now we extend our language with a set of constants {ci | i ∈ [0, 1]} ∪ {di | i ∈ [0, 1]} and
we extend our theory with axioms φ(ci, dj) for every pair (i, j) ∈ [0, 1]2 such that i < j, and
¬φ(ci, dj) for every pair (i, j) ∈ [0, 1]2 such that i ≥ j. Notice that we obtain a consistent
theory by the compactness theorem, the fact that every finite subtheory is consistent easily
follows from unstability of φ. Now let {ai | i ∈ [0, 1]} be the interpretation of {ci | i ∈ [0, 1]}
and let {bi | i ∈ [0, 1]} be the interpretation of {di | i ∈ [0, 1]}. Now we see that φ(x, b 1

2
) and

¬φ(x, b 1
2
) are both consistent. We also see that φ(x, b 1

2
) is consistent with φ(x, b 1

4
) and with

¬φ(x, b 1
4
). And ¬φ(x, b 1

2
) is consistent with φ(x, b 3

4
) and with ¬φ(x, b 3

4
). We can continue in

this fashion to find that R2(x = x, φ) ≥ n for every n ∈ ω, hence R2(x = x, φ) ≥ ω.
Now suppose that R2(x = x, φ) ≥ ω. We extend our language with a set of constants

C = {cs | s ∈ 2<ω}, and with a set of constants D = {df | f ∈ 2ω}. Notice that for every
s : n + 1 → 2 with n ∈ ω, the formula

∧n
i=0 φ

s(i)(x, cs|i), where φ1 is just φ and φ0 is ¬φ
is consistent, because R2(x = x, φ) ≥ k for every suitable k ∈ ω. Now we add sentences
φf(i)(df , cf |i) for every f ∈ 2ω and i ∈ ω. By compactness, we obtain a consistent theory.
And hence we see that every element df has a different φ-type over C, with |C| = |2<ω| = ℵ0.
It follows that |Sφ(C)| > |C|, and hence by Theorem 2.7 the formula φ(x, y) is unstable.

Exercise 15. Prove that if p,∆1,∆2 are sets of formulas, p is finite and R2(p,∆1 ∪∆2) ≥ ω,
then R2(p,∆1) ≥ ω or R2(p,∆2) ≥ ω. Conclude that for every finite set of formulas ∆, we
have that R2(x = x,∆) < ω if and only if R2(x = x, φ) < ω for every φ ∈ ∆.

In fact we can do much more than this. Shelah’s local 2-rank allows us to prove the
following useful theorem.

Theorem 3.20. Let φ(x, y) be a formula. Then the following are equivalent:

1. φ(x, y) is stable.

2. Every φ-type is definable.

3. For every κ ≥ |L| and M |= T with |M | = κ, |Sφ(M)| ≤ κ.

4. There is some κ such that for every M |= T with |M | = κ, we have |Sφ(M)| < ded(κ).

Proof. We will leave (1)⇒(2) for last, because it turns out to be the hardest to prove. For
(2)⇒(3) we see that if |L| ≤ κ and |M | = κ, then there are at most κ many L(M)-formulas,
and since every type in Sφ(M) is definable, this means that |Sφ(M)| ≤ κ. For (3)⇒(4) we
see that this is a direct result from Lemma 1.16. (4)⇒(1) follows directly from the proof of
Theorem 2.6.

Now we will prove (1)⇒(2). So suppose φ(x, y) is stable, then by Lemma 3.19 we see that
R2(x = x, φ) < ω. Let A be some set of parameters and let p ∈ Sφ(A). Now let p′ ⊆ p be
a subtype over a set A′ ⊆ A. We say that p′ is one-element minimal if R2(p′, φ) = R2(q, φ)
for every q such that p′ ⊆ q ⊆ p and such that q is a type over A′ ∪ {a} for some a ∈ A.
We now claim that for any p ∈ Sφ(A), there is some one-element minimal p′ ⊆ p such
that | dom(p′)| ≤ R2(x = x, φ). We can prove this claim by constructing p′ as follows:
Start with p0 = ∅, and given pi, let pi+1 be any one-element extension of pi such that
R2(pi+1, φ) < R2(pi, φ), if such an extension exists. If it doesn’t, then clearly we have found a
one-element minimal subtype of p. And since R2(x = x, φ) < ω, we know that this process will
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terminate. So now we can fix for any type p ∈ Sφ(A) a one-element minimal subtype p′ such
that | dom(p′)| ≤ R2(x = x, φ). Now we claim that for any a ∈ A, we have that φ(x, a) ∈ p
if and only if R2(p′(x) ∧ φ(x, a), φ) = R2(p′(x), φ). To see this, note that if φ(x, a) ∈ p, then
R2(p′(x) ∧ φ(x, a), φ) = R2(p′(x), φ) since p′ is one-element minimal. And if φ(x, a) 6∈ p,
then ¬φ(x, a) ∈ p, and hence R2(p′(x)∧¬φ(x, a), φ) = R2(p′(x), φ). So now if we would have
R2(p′(x)∧φ(x, a), φ) = R2(p′(x), φ), then we have found a contradiction from the definition of
this rank. This is because by definition, if R2(p′(x)∧¬φ(x, a), φ) = R2(p′(x)∧φ(x, a), φ) = α
for some α, then R2(p′(x), φ) ≥ α + 1. So we see that we are done if we can express the
following into a formula where y is the only variable:

R2(p′(x) ∧ φ(x, y), φ) = R2(p′(x), φ).

We notice that this rank is bounded from above by R2(x = x, φ), which is some finite number.
So suppose R2(x = x, φ) = n. Then we see that we can express the equality above as:

n∨
i=0

R2(p′(x) ∧ φ(x, y), φ) = R2(p′(x), φ) = i.

This can be expressed as follows:

n∨
i=0

(R2(p′(x) ∧ φ(x, y), φ) ≥ n ∧ ¬(R2(p′(x) ∧ φ(x, y), φ) ≥ i+ 1)

∧R2(p′(x), φ) ≥ n ∧ ¬(R2(p′(x), φ) ≥ i+ 1)).

So all that remains to be done is prove that for any φ-type q(x, y) with finite domain A and
any n ∈ ω, we can express R2(q(x, y), φ) ≥ n in a formula where y is the only variable (note
that this would imply that we can express R2(q(x), φ) ≥ n in a sentence). We do this by
induction on n. For n = 0, we let A = A1 ∪ A2 where we have that a ∈ A1 ⇒ φ(x, y, a) ∈ q
and a ∈ A2 ⇒ φ(x, y, a) 6∈ q. Now we simply take the formula

∃z(
∧
a∈A1

φ(x, y, a) ∧
∧
a∈A2

¬φ(x, y, a).

We notice that this is indeed a formula, since q has finite domain, so the conjunctions are
finite. Now suppose that we have such a formula for every type and every natural number at
most n. Then we see that R2(q(x, y), φ) ≥ n+ 1 can be expressed in the formula

∃z(R2(q(x, y) ∧ φ(x, z), φ) ≥ n ∧R2(q(x) ∧ ¬φ(x, z), φ) ≥ n).

And hence we know that there is some formula ψ(y) such that φ(x, a) ∈ p if and only if
|= ψ(a). So p is indeed definable.



Chapter 4

Forking

4.1 Ideals and dividing

A key notion in Stability Theory is the notion of forking. In this chapter, we will investigate
this notion, and show its connection to the notions of stability and ranks that we have seen
before. There are of course different equivalent ways of introducing forking, but our definition
will be that a formula forks over a set of parameters if it belongs to some ideal. Hence we
will first take a closer look at ideals. The material in this section is taken from [5] and [9]

Definition 4.1. Let Φ(x) be an ideal over a set of parameters A, and let κ be a cardinal. We
say that Φ(x) is κ-prime if for any family (φi)i<κ of L(A)-formulas such that φi ∧ φj ∈ Φ(x)
for all i < j < κ, there is some i < κ such that φi ∈ Φ(x). We say that Φ(x) is generically
prime if it is κ-prime for some κ.

Notice that an ideal Φ(x) is 2-prime iff for all formulas φ(x) and ψ(x), if φ(x)∧ψ(x) ∈ Φ(x),
then φ(x) ∈ Φ(x) or ψ(x) ∈ Φ(x). Ideals with this property are usually just called prime.

Lemma 4.2. Let Φ(x) be an A-invariant ideal of L(M)-formulas, with A some set of param-
eters. Then the following are equivalent:

1. Φ(x) is generically prime.

2. If (bi)i∈ω is an A-indiscernible sequence, φ(x, y) is an L(A)-formula and φ(x, b0) 6∈ Φ(x)
then φ(x, b0) ∧ φ(x, b1) 6∈ Φ(x).

Proof. First we will prove (1) ⇒ (2). So suppose that (ai)i∈ω is an A-indiscernible sequence
such that φ(x, a0) 6∈ Φ(x) and φ(x, a0) ∧ φ(x, a1) ∈ Φ(x). Now let κ be any cardinal number.
We will show that Φ(x) is not κ-prime, thus showing that Φ(x) is not generically prime. We
will use the compactness theorem for this, so we add to our language a set of constants (bi)i∈κ
and to our theory a set of axioms telling us that φ(x, bi) 6∈ Φ(x) for all i ∈ κ, so for example an
axiom ∃x(φ(x, bi) ∧ ¬ψ(x, bi)) for every i ∈ κ and every ψ(x, a) ∈ Φ(x), and (using the same
strategy on the complement of Φ) axioms telling us that φ(x, bi) ∧ φ(x, bj) ∈ Φ(x) for every
i, j ∈ κ with i 6= j. Since we know that φ(x, ai) 6∈ Φ(x) by indiscernibility of (ai)i∈ω, invariance
of Φ(x) and the fact that φ(x, a0) 6∈ Φ(x), and the fact that φ(x, ai) ∧ φ(x, aj) ∈ Φ(x) for all
i, j ∈ ω such that i 6= j (using the same argument), we see that the theory we obtain is in
fact consistent. Hence we find that Φ(x) is not κ-prime.

40
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Now we will prove (2) ⇒ (1). Suppose that Φ(x) is not generically prime, so there is
no cardinal κ such that it is κ-prime. This means that for every cardinal κ we can find
some sequence of definable sets (φi(x, ai))i∈κ such that φi(x, ai) 6∈ Φ(x) for any i ∈ κ and
φ(x, ai) ∧ φ(x, aj) ∈ Φ(x) for any i, j ∈ κ with i 6= j. So by taking κ large enough (at least
larger than the number of formulas in our language), we can find a sequence (φ(x, ai))i∈λ
with these properties, so with the formula fixed, for every cardinal λ. Now it follows using
Theorem 2.23 that we can find an indiscernible sequence with the desired properties.

Now that some background concerning ideals is clear, we can move on to dividing and
forking.

Definition 4.3. Let B be a set of parameters and φ(x, a) some formula. We say that φ(x, a)
divides over B if there is some B-indiscernible sequence (ai)i∈ω such that a0 = a and such
that {φ(x, ai) | i ∈ ω} is inconsistent. We say that a (partial) type p divides over B if p
implies a formula which divides over B.

Note that φ(x, a) is in general not an L(B)-formula. In fact we have the following:

Exercise 16. Let φ(x, a) be a consistent L(B)-formula. Show that φ(x, a) does not divide
over B.

In many sources, one will not find the above definition, but in fact a definition in which
{φ(x, ai) | i ∈ ω} is k-inconsistent for some k ∈ ω, instead of inconsistent. We say that
{φ(x, ai) | i ∈ ω} is k-inconsistent if for every i1, ..., ik ∈ ω we have |= ¬∃x

∧
1≤j≤k φ(x, aij ),

so any set of k of these formulas is inconsistent. We note that if there is some k ∈ ω such
that {φ(x, ai) | i ∈ ω} is k-inconsistent, then obviously {φ(x, ai) | i ∈ ω} is inconsistent.
If the sequence (ai)i∈ω is indiscernible, the converse also holds. This is the case because
if {φ(x, ai) | i ∈ ω} is inconsistent, then by compactness there is some k ∈ ω and some
i1, ..., ik ∈ ω such that |= ¬∃x

∧
1≤j≤k φ(x, aij ), and hence by indiscernibility of (ai)i∈ω, every

k-long sequence of elements in (ai)i∈ω satisfies this formula, and hence {φ(x, ai) | i ∈ ω} is
k-inconsistent.

Exercise 17. Suppose φ(x, a) divides over A and a ≡A b. Prove that φ(x, b) also divides
over A.

We can find the following equivalence of dividing:

Theorem 4.4. Let a and b be two parameters, and A a set of parameters. Then the following
are equivalent:

1. tp(a/Ab) does not divide over A.

2. If I is some infinite linearly ordered index set and (bi)i∈I is an A-indiscernible sequence
such that b = bi for some i ∈ I, then there is some a′ such that a′ ≡Ab a and such that
(bi)i∈I is Aa′-indiscernible.

3. If I is some infinite linearly ordered index set and (bi)i∈I is an A-indiscernible sequence
such that b = bi for some i ∈ I, then there is some linearly ordered index set J and
Aa-indiscernible sequence (bj)j∈J such that (bi)i∈I ≡Ab (bj)j∈J .
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Proof. We will save the most difficult proof for last, so we start with (2)⇒ (3). Let f be an
automorphism of M fixing Ab and such that f(a) = a′. Let J = I and consider the sequence
(f(bi))i∈I . We see that (f(bi))i∈I ≡Ab (bi)i∈I , and this sequence is Aa-indiscernible.

We now prove (3) ⇒ (1) by contraposition. So suppose that tp(a/Ab) does divide over
A, then there is some L(A)-formula φ(x, y) such that |= φ(a, b) and some A-indiscernible
sequence (bi)i∈ω with b0 = b such that {φ(x, bi) | i ∈ ω} is inconsistent. However, it is not
possible that there is a sequence (ci)i∈ω such that (ci)i∈ω ≡Ab (bi)i∈ω and such that (ci)i∈ω is
Aa-indiscernible, because in this case we would have that |= φ(a, ci) for every i ∈ ω, because
c0 = b and the sequence is Aa-indiscernible. This means that |= ∃x

∧
i<n φ(x, ci) for all n ∈ ω,

which means that |= ∃x
∧
i<n φ(x, bi) for each n ∈ ω, since (bi)i∈ω ≡Ab (ci)i∈ω. But this means

that {φ(x, bi) | i ∈ ω} is consistent, which is not the case. So we find that there is no such
sequence (ci)i∈ω, hence the statement is proven.

We now prove (1)⇒ (2).
Let (bi)i∈I be an A-indiscernible sequence such that there is some i ∈ I with b = bi,

say w.l.o.g. b = b0. We denote tp(a/Ab) by p(x). Now we let Φ(x,A, (bi)i∈I) be a set of
formulas expressing that the sequence (bi)i∈I is indiscernible over A∪ {x}. Now consider the
set p(x) ∪ Φ(x,A, (bi)i∈I). If this set of formulas is consistent, then it is realized by some a′,
since the monster model is κ-saturated for sufficiently large κ. We notice that we will then
have that a′ ≡Ab a and (bi)i∈I is Aa′-indiscernible. In order to do this, we first consider the
set of formulas q(x) =

⋃
i∈I p(x, bi), where p(x, bi) is the type p(x), but with the parameter

b replaced everywhere by bi. We will prove that q(x) is consistent. For suppose that q(x)
would be inconsistent, then by compactness there would be some finite set of formulas in q(x)
which is inconsistent. So let’s denote this set by {φ0(x, bi0), ..., φn(x, bin)}. Now consider the
formula

∧
j≤n φj(x, b). Notice that this is an element of p(x), let us call this formula ψ(x, b).

We now see that
∧
j≤n ψ(x, bij ) |=

∧
j≤n φj(x, bij ), and since

∧
j≤n φj(x, bij ) is inconsistent,

so is
∧
j≤n ψ(x, bij ). So now we see that ψ(x, b) is a formula in p(x) and we have some A-

indiscernible sequence (bi)i∈ω telling us that p(x) divides over A, which we assumed was not
the case. And hence we find that q(x) is consistent.

So let c be an element realizing q(x). We will prove using compactness that q(x) ∪
Φ(x,A, (bi)i∈I) is consistent, from which it immediately follows that p(x) ∪Φ(x,A, (bi)i∈I) is
consistent. So let Ψ(x,A, (bi)i∈I) be some finite subset of Φ(x,A, (bi)i∈I). Notice that there
is only a finite number of elements of our sequence (bi)i∈I involved in Ψ, so from now on we
can w.l.o.g. assume that I = ω.
Claim: There is an order-preserving function f : ω → ω such that |= Ψ(c, A, (bf(i))i∈ω).
Proof of claim: We will use Ramsey’s theorem to prove this claim. First observe that
Φ(c, A, (bi)i∈ω) consists of a formula φ(x, bi0 , ..., bin) ↔ φ(x, bj0 , ..., bjn) for every L(A ∪ {c})-
formula φ and tuples i0 < ... < in and j0 < ... < jn. It follows that Ψ consists of k formula’s
of this form. So we will denote this set by{

φj

(
x, b

ij0
, ..., b

ijnj

)
↔ φj

(
x, b

lj0
, ..., b

ljnj

)
| j < k

}
.

Now consider the formulas in Ψ containing the longest tuple bi0 , ..., bir , and say that there are
s formulas like this, say φ1, ..., φs. Now we will colour each tuple containing r + 1 elements
of ω in a colour, our colours will be the elements of the set 2s. Specifically, if we denote the
truth value of a sentence φ by ‖φ‖ (where the truth value of a sentence is 0 if it is false and
1 if it is true), then we give {i0, ..., in−1} the colour

(‖φ1(c, bi0 , ..., bin−1)‖, ..., ‖φs(c, bi0 , ..., bin−1)‖).
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Now by Ramsey’s theorem there is an infinite subset In ⊆ ω such that all n-tuples of elements
in In have the same colour. Now we will repeat this process within In, but for the formulas
where the tuples have length n − 1. By continuing this way we obtain an infinite I1 ⊆ ω

such that for all formulas φ ∈ Ψ and for all tuples
−→
b1 ,
−→
b2 with indices in I1, we have that

|= φ(c,
−→
b1) ↔ φ(c,

−→
b2) as long as

−→
b1 ,
−→
b2 are in the same order. Now we write I1 = {i0, i1, ...},

and we let f : ω → ω be given by f(r) = ir. Then this f suffices, and the claim is proven.
Now we take an automorphism σ of the monster model such that σ(bf(i)) = bi for every

i. It follows that |= q(σ(c)) ∪Ψ(σ(c), A, (bi)i∈I). Hence this set of formulas is consistent and
the proof is complete.

The following corollary to Theorem 4.4 is often called the left transitivity lemma, or the
pairs lemma:

Corollary 4.5. Let a, b and c be three parameters, and let A be a set of parameters. If
tp(a/Ab) does not divide over A and tp(c/Aab) does not divide over Aa, then tp(ac/Ab) does
not divide over A.

Proof. Since tp(a/Ab) does not divide over A, if I is some infinite index set and (bi)i∈I is an
A-indiscernible sequence with b = bi for some i ∈ I, then there is some index set J and some
Aa-indiscernible sequence (bj)j∈J such that (bj)j∈J ≡Ab (bi)i∈I . Since b = bi for some i ∈ I
and (bj)j∈J ≡Ab (bi)i∈I , we know that b = bj for some j ∈ J . Now since tp(c/Aab) does not
divide over Aa, it follows that there is some index set K and some Aac-indiscernible sequence
(ak)k∈K such that (ak)k∈K ≡Aab (bj)j∈J . And hence we find that tp(ac/Ab) does not divide
over A.

Definition 4.6. Let F(B) be the ideal in the set ofM-definable sets generated by the formulas
dividing over B. We say that a formula φ(x, a) forks over B if φ(x, a) ∈ F(B). We say that
a (partial) type p forks over B if it implies a formula which forks over B.

Note that it follows that φ(x, a) forks over B iff there is a finite set of formulas
{ψi(x, bi) | i < n} such that each ψi(x, bi) divides over B, and |= ∀x(φ(x, a)→

∨
i<n ψi(x, bi)).

Lemma 4.7. Let A and B ⊆ C be sets of parameters and let p ∈ S(B) be a type such that
p does not fork over A. Then there is some q ∈ S(C) such that q does not fork over A and
q|B = p.

Proof. Consider the set of formulas Γ given by

Γ = {¬ψ(x, c) | c ∈ C, ψ(x, c) forks over A}.

We will use compactness to prove that p∪Γ is consistent. For suppose it would be inconsistent,
then there is a finite set {¬ψi(x, ci) | i < n} ⊆ Γ such that p ∪ {¬ψi(x, ci) | i < n} is
inconsistent. This means that p(x) |=

∨
i<n ψi(x, ci), but each of the ψi forks over A. This

means that each of these formulas implies a finite disjunction of formulas, all of which divide
over A. But this means in particular that this formula itself implies a finite disjunction of
formulas, all of which divide over A. So

∨
i<n ψi(x, ci) forks over A, and hence p forks over

A. This is a contradiction, so we find that p ∪ Γ is consistent.
Now we expand p∪Γ to a complete type q ∈ S(C). If q would fork over A then it implies

a formula φ(x, c) with c ∈ C such that φ(x, c) forks over A. But this means that ¬φ(x, c) ∈ Γ,
hence ¬φ(x, c) ∧ φ(x, c) ∈ q. So we have found a contradiction, and conclude that q does not
fork over A.
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Exercise 18. Let T be DLO, and let a ∈ M. Show that the formula a < x does not divide
over ∅, but a < x < b does divide over ∅. Does the formula a < x fork over ∅?

Lemma 4.8. Let Φ(x) be a generically prime B-invariant ideal. Then F(B) ⊂ Φ(x).

Proof. Let φ(x, a) be some formula dividing over B (so φ(x, a) is a generator of the ideal
F (B)). It is enough to show that φ(x, a) ∈ Φ(x). Since the formula φ(x, a) divides overB there
is some B-indiscernible sequence (ai)i∈ω such that a0 = a and {φ(x, ai) | i ∈ ω} is inconsistent.
If φ(x, a0) ∈ Φ(x) we are done, so suppose φ(x, a0) 6∈ Φ(x), then by Lemma 4.2 we must also
have that φ(x, a0) ∧ φ(x, a1) 6∈ Φ(x). Now since (ai)i∈ω is a B-indiscernible sequence, we see
that (a2ia2i+1)i∈ω is also a B-indiscernible sequence. And since φ(x, a0) ∧ φ(x, a1) 6∈ Φ(x), it
follows that we also have that

∧
i<4 φ(x, ai) 6∈ Φ(x). By repeating this procedure inductively,

we find that for all k ∈ ω, we have that∧
i<2k

φ(x, ai) 6∈ Φ(x).

Since Φ(x) is an ideal, we know that ∅ ∈ Φ(x), and it follows that the set {φ(x, ai) | i < 2k}
is consistent for every k ∈ ω. By compactness if follows that {φ(x, ai) | i ∈ ω} is consistent,
which is a contradiction. Hence we find that φ(x, a) ∈ Φ(x), so F(B) ⊆ Φ(x).

Definition 4.9. Let p ∈ S(M) be a type and A a small set of parameters. We say that p is
A-invariant if for every a, b ∈ M with a ≡A b and for every L-formula φ(x, y) we have that
φ(x, a) ∈ p iff φ(x, b) ∈ p.

Exercise 19. Let p ∈ S(M) be a global type and A a small set of parameters. Show that
the following are equivalent:

1. p is A-invariant.

2. For every f ∈ Aut(M/A) and for every formula φ(x, y) and b ∈ M, we have φ(x, b) ∈ p
if and only if φ(x, f(b)) ∈ p.

3. Let f ∈ Aut(M/A). Then f(p) = p, meaning that if B is some definable set, then B ∈ p
if and only if f(B) ∈ p.

Exercise 20. Let q ∈ S(M) be an A-invariant global type. Show that q doesn’t fork over A.

4.2 Heirs and coheirs

Let p be a type over a set of parameters A. Then if A ⊆ B, it is always possible to extend p
to a complete type over B. In this section we consider some extensions of types with special
properties, called heirs and coheirs. The material in this section was taken from [5].

Definition 4.10. Suppose A ⊆ B are sets of parameters and q ∈ S(B). Let p = q|A ∈ S(A)
be the complete type q restricted to the set of parameters A. We say that q is an heir of p
if for every L(A)-formula φ(x, y), if there is some b ∈ B such that φ(x, b) ∈ q, then there is
some a ∈ A such that φ(x, a) ∈ p.

Exercise 21. Let A ⊆ B be sets of parameters such that A is a model of T . Show that if
q ∈ S(B) is definable over A, then it is an heir of q|A.
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Definition 4.11. Let A ⊆ B be sets of parameters and q ∈ S(B) be a complete type over
B. We say that q is a coheir over A (or: a coheir of q|A) if for any φ(x, b) ∈ q there is some
a ∈ A such that |= φ(a, b).

Exercise 22. Suppose A ⊆ B are sets of parameters. Let q ∈ S(B) be a coheir over A, and let
b, b′ ∈ B be such that b ≡A b′. Show that for every L(A)-formula φ(x, y) we have φ(x, b) ∈ q
iff φ(x, b′) ∈ q (we also say that q splits over A if it satisfies this property). Conclude that if
B = M, then q is A-invariant. Show that this is also the case if q is not a coheir over A, but
q is definable over A.

Exercise 23. Let M be a small model. Show that tp(a/Mc) is an heir of tp(a/M) iff
tp(c/Ma) is a coheir over M .

Exercise 24. Consider M = (Q, <) as a small model of DLO. Let the type p(x) ∈ S(M) be
given by p(x) = {a < x | a ∈ M}. Now consider two global extensions q and r of p, defined
as follows:

• q(x) = {a < x | a ∈M}.

• r(x) = p(x) ∪ {x < b | b ∈M, m < b for all m ∈M}.

Show that q(x) is an heir of p(x), but not necessarily a coheir over M . Also show that r(x)
is not an heir of p(x), but that it is a coheir over M .

One could now ask the question whether every type p ∈ S(A) with A some set of pa-
rameters always has a global heir (that is, an heir q ∈ S(M)) or a global coheir (that is, a
coheir q ∈ S(M)). And in fact it turns out that this is the case, if we assume that the set of
parameters is itself a small model:

Theorem 4.12. Let M be a small model, and let p(x) ∈ S(M) be given. Then p(x) has both
a global heir and a global coheir.

Proof. First we will prove that p(x) has a global coheir. Since p(x) defines a filter on P(M),
we can extend it to an ultrafilter U on P(M). Now we use this ultrafilter U to define the
global type qU by φ(x) ∈ qU iff {a ∈M | |= φ(a)} ∈ U , for every L(M)-formula φ. Note that
every formula in qU can be realized (since ∅ 6∈ U), and also note that since U is an ultrafilter,
we know that {a ∈M | |= φ(a)} ∈ U or {a ∈M | |= φ(a)}c ∈ U for every L(M)-formula φ.
This means that {a ∈M | |= φ(a)} ∈ U or {a ∈M | |= ¬φ(a)} ∈ U for every L(M)-formula
φ, so qU is indeed a complete type. We also notice that if φ(x) ∈ qU , then there is some
a ∈M such that |= φ(a) (since ∅ 6∈ U), so qU is indeed a global coheir over M .

Now we will prove that p(x) has a global heir. For this we only have to prove that the
following collection of formulas is in fact consistent:

s(x) = p(x) ∪ {φ(x, c) | φ(x, y) an L(M)-formula, c ∈M, ∀m ∈M(φ(x,m) ∈ p(x))}

For if s(x) is consistent, we can extend it to a complete type r(x), and this r(x) will be an
heir of p(x). For if φ(x, c) ∈ r(x) but for every m ∈ M we have that φ(x,m) 6∈ p(x), then
since p(x) is a complete type we know that ¬φ(x,m) ∈ p(x) for every m ∈ M , and hence
¬φ(x, c) ∈ r(x) by definition. So we find that φ(x, c) ∧ ¬φ(x, c) ∈ r(x), a contradiction since
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r(x) is a type. So if s(x) is consistent then p(x) indeed has a global heir.
To prove that s(x) is consistent, we first note that the collection of formulas

{φ(x, c) | φ(x, y) an L(M)-formula , c ∈M, ∀m ∈M(φ(x,m) ∈ p(x))}

is closed under taking conjunctions, since p(x) is a complete type. By compactness it follows
that if s(x) would be inconsistent, there would be a formula φ(x, c) ∈ p(x) and ψ(x, d) ∈
s(x)\p(x) such that |= ¬(φ(x, c) ∧ ψ(x, d)). So from this we find that |= φ(x, c) → ¬ψ(x, d),
and hence

|= ∃y∀x(φ(x, c)→ ¬ψ(x, y)).

From this we find that M |= ∃y∀x(φ(x, c) → ¬ψ(x, y)), and hence since φ(x, c) ∈ p(x) we
find that ∃y¬ψ(x, y) ∈ p(x). But since ψ(x, d) ∈ s(x) and we know that ψ(x, d) 6∈ p(x), it
follows that ψ(x,m) ∈ p(x) for every m ∈M , by definition of s(x). But this means that p(x)
is inconsistent, a contradiction. So we find that s(x) is consistent, as desired.

Note that it follows that if M ⊆ A, then p(x) also has an heir and a coheir in S(A).
Because we see that the restrictions of the global heir and coheir suffice. We could now ask
whether we have some information about heirs and coheirs of types for which we have some
additional information. It turns out that this is indeed the case.

Theorem 4.13. Let M be a small model and p ∈ S(M) a complete type which is definable.
If M ⊆ A, then the heir of p in S(A) is unique and definable over M .

Proof. First we will prove that p has an M -definable extension in S(A). Note that since
p is definable, for every L-formula φ(x, y) there is some L(M)-formula dpφ(y) such that
φ(x, a) ∈ p(x) iff |= dpφ(a) for all a ∈M . Now consider the following collection of formulas:

q(x) = {φ(x, a) | φ(x, y) an L-formula, a ∈ A, |= dpφ(a)}.

We will use compactness to prove that this collection of formulas is in fact consistent. For if
it is not, then is has some finite inconsistent subset. So there must be some n ∈ ω such that
there are L-formula φi(x, y) and constants ai ∈ A for all i < n such that |= dpφi(ai) for all
i < n but |= ∀x(¬

∧
i<n φi(x, ai)). So we find:

|= ∃y0, ..., yn−1∀x

(
¬
∧
i<n

φi(x, yi) ∧
∧
i<n

dpφi(yi)

)
.

And hence this must also be true in M , which means that there are m0, ...,mn−1 in M such
that

M |= ∀x(¬
∧
i<n

φi(x,mi) ∧
∧
i<n

dpφi(mi)).

So since we have M |=
∧
i<n dpφi(mi), it follows by definition of the dpφi and the fact that

M is an elementary substructure of M that φ(x,mi) ∈ p for all i < n, and since we have
M |= ∀x¬

∧
i<n φi(x,mi), we obtain a contradiction. So q(x) is indeed consistent.

This means that q(x) is a partial A-type extending p(x). We also notice that q(x) is
complete, for if φ(x, a) is some L(A)-formula, then we know that |= dpφ(a) or |= ¬dpφ(a),
and from this it follows that either φ(x, a) ∈ q(x) or ¬φ(x, a) ∈ q(x). Hence q(x) is indeed
complete. We also see by definition that q(x) is M -definable, and hence by Exercise 21 it is
an heir of p.
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Now suppose that q′ 6= q is another A-type extending p, then we will show that is is not
an heir of p. Since q′ 6= q there must be some formula φ(x, b) ∈ q′ such that ¬φ(x, b) ∈ q, and
hence |= ¬dpφ(b). It follows that φ(x, b) ∧ ¬dpφ(b) ∈ q′, but there is no m ∈ M such that
φ(x,m) ∧ ¬dpφ(m) ∈ p, so q′ is not an heir of p.

4.3 Simple theories and Morley sequences

In this section we will investigate the notion of a simple theory, which is a class of theories
containing the stable theories (we will prove this later in this chapter). It turns out that this
class of theories satisfies some nice properties, specifically, that forking and dividing coincide.
Hence we will be able to conclude this chapter with the result that forking and dividing
coincide in stable theories. The material in this section was taken from [9].

Definition 4.14. A theory T is simple if for every set of parameters A and every p ∈ S(A),
there is some A0 ⊆ A with |A0| ≤ |T | such that p does not fork over A0.

In order to prove some properties of simple theories, we will need the notion of a Morley
sequence.

Definition 4.15. Let A ⊆ B be two sets of parameters and let p(x) ∈ S(B). Let I be some
infinite linearly ordered set, and let a = (ai)i∈I be a sequence. Then a is called a Morley
sequence for p over A if the following properties are satisfied:

1. a is A-indiscernible.

2. For every i ∈ I we have |= p(ai).

3. For every i ∈ I, the type tp(ai/B ∪ {aj | j < i}) does not divide over A.

If A = B, then we simply say that a is a Morley sequence for p.

Exercise 25. Let A be a set of parameters, let p ∈ S(A) and let a = (ai)i∈I be a Morley
sequence for p. Prove that if f is an automorphism of M fixing A pointwise, then f(a) =
(f(ai))i∈I is also a Morley sequence for p.

If a = (ai)i∈I is some sequence and J ⊆ I, then we use aJ to denote the set {aj | j ∈ J}.

Exercise 26. Suppose A ⊆ B are sets of parameters and p ∈ S(B). If a = (ai)i∈I is a Morley
sequence for p over A, and X,Y ⊂ I are such that for every x ∈ X and y ∈ Y we have x < y,
then tp(aY /B ∪ aX) does not divide over A.

One could wonder, does every type always have a Morley sequence? It turns out that this
is not the case. For example, if p is a global type which is not realized, then it can never have
a Morley sequence. An example of such a type is {a < x | a ∈ M} where M is a monster
model for DLO. Clearly every finite subset of this is consistent, hence it is a type, but any
realizer of this set would be an endpoint, which doesn’t exist. However, there are several
situations in which we can ensure the existence of Morley sequences.
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Lemma 4.16. Let I be a linear order, and let (aj)j∈β be a sequence, where β is the ordinal
i(2|T |)+. Then there is some indiscernible sequence (bi)i∈I such that for every natural number
n and i0 < ... < in ∈ I there are ordinals j0 < ... < jn such that

tp(bi0 , ..., bin/∅) = tp(aj0 , ..., ajn/∅).

Proof. Let n ≥ 1 be a natural number, and define

Γn = {p(x1, ..., xn) ∈ S(∅) | ∃j1 < ... < jn ∈ i(2|T |)+ (|= p(aj1 , ..., ajn))}.

We will use the compactness theorem to find a sequence (bi)i∈I with the desired properties.
So we add a sequence of constants (ci)i∈I to our language. Now we will construct for every
natural number n ≥ 1 a type pn(x1, ..., xn) ∈ Γn such that the set
{pn(ci1 , ..., cin) | n ∈ ω, i1 < ... < in ∈ I} is consistent with T . If these types exist, then we
let (bi)i∈I be the interpretation of (ci)i∈I in the monster model. Now if there is some sequence
i1 < ... < in ∈ I, then |= pn(bi1 , ..., bin), and since pn ∈ Γn, there are also j1 < ... < jn ∈
i(2|T |)+ Such that |= p(aj1 , ..., ajn). And hence we see that tp(bi1 , ..., bin/∅) = tp(aj0 , ..., ajn/∅).

In order to find these types, we will build the following by induction on n:

• A set {Fn | n ∈ ω} of cofinal subsets of (2|T |)+.

• A set {Xα,n | α ∈ Fn, n ∈ ω} of subsets of i(2|T |)+ .

• A set {pn(x1, ..., xn) | n ∈ ω, pn ∈ Γn} of complete types.

We want to build these sets and types in such a way that the following properties are satisfied:

1. For every n ∈ ω, we have Fn+1 ⊆ Fn.

2. For every n ∈ ω, if γ is the order-type of Fn with bijection f : γ → Fn, then for every
δ ∈ γ, we have |Xf(δ),n| > iδ(2|T |).

3. For every n ∈ ω, if i1 < ... < in ∈ Xα,n, then |= pn(ai1 , ..., ain).

Note that if we construct the pn satisfying these properties, then we are done. Because with
compactness, we only have to consider some finite part of I, and there is a maximal number
k ∈ ω that we have to consider. And Xα,k will be large enough to incorporate this.

So let us give the construction. For n = 0, we take F0 = (2|T |)+, which is clearly cofinal
in itself, and for every α ∈ F0, we let Xα,0 = i(2|T |)+ . We indeed see that i(2|T |)+ > iλ(2|T |)

if λ ∈ (2|T |)+.
Now suppose that for some natural number n, the sets Xα,n and Fn have been defined for

every α ∈ Fn. Let β be the order type of Fn, and let g : β → Fn be the order-isomorphism.
Define Gn = {g(λ + n) | λ ∈ β}, and notice that since Fn is cofinal in (2|T |)+, Gn also
has this property. Now suppose α = g(λ + n), then we know that |Xα,n| > iλ+n(2|T |).
Now we define for every α ∈ Fn a map σα : {(ai1 , ..., ain) | i1, ..., in ∈ Xα,n} → Sn(∅)
by mapping the tuple (ai1 , ..., ain) to the type tp(ai1 , ..., ain/∅). Since there are at most
2|T | many complete types over ∅ (for every complete type p and for every L-formula φ(x)
we know that either φ(x) ∈ p or ¬φ(x) ∈ p), this induces a partition of [Xα,n]n in 2|T |

many classes. And since |Xα,n| > iλ+n(2|T |) = in(iλ(2|T |)), we see using the Erdőś-Rado
theorem that there is some subset Xα,n+1 ⊆ Xα,n such that if i1, ..., in, j1, ..., jn ∈ Xα,n+1
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then tp(ai1 , ..., ain/∅) = tp(aj1 , ..., ajn/∅), and such that |Xα,n+1| > iλ(2|T |). So let us for
every α ∈ Gn define the type pα,n+1 = tp(ai1 , ..., ain/∅) where i1, ..., in ∈ Xα,n+1. Now since
there are only 2|T | many complete types over ∅ and Gn is cofinal in (2|T |)+, we see that there
must be some Fn+1 ⊆ Gn which is cofinal in Gn and such that for every α, γ ∈ Fn+1 we have
that pα,n+1 = pγ,n+1. So now we have found the desired Xα,n+1, Fn+1 and pn, concluding the
construction.

Now we can prove the following.

Lemma 4.17. Let A ⊆ B be two small sets of parameters, and let p ∈ S(B) be such that p
does not fork over A. Then for every linear order I there is a Morley sequence for p over A,
indexed by I.

Proof. First note that we can view T as an L(B)-theory, and use the same monster model.
We will do this throughout this proof, so if we write |T | we mean the cardinality of T viewed
as an L(B)-theory.

First we will construct a sequence {aj | j ∈ i(2|T |)+} such that for every j ∈ i(2|T |)+ we
have that |= p(aj) and tp(aj/B ∪ {ak | k < j}) does not fork over A. First we let a0 be any
element realizing p. Then tp(a0/B) = p, which indeed does not fork over A. Now suppose
that for some j ∈ i(2|T |)+ we have constructed {ak | k < j}. Then we note that by Lemma
4.7, there is some type q ∈ S(B ∪ {ak | k < j}) such that q|B = p and such that q does not
fork over a. Let aj be any element realizing q (which exists because B is small).

Now we use Lemma 4.16 to see that there is some B-indiscernible sequence (since B is part
of our language now) b = (bi)i∈I such that for every i0, ..., in ∈ I there are j0, ..., jn ∈ i(2|T |)+

such that tp(aj0 , ..., ajn/B) = tp(bi0 , ..., bin/B). We claim that b is a Morley sequence for p
over A. In fact, since b is B-indiscernible, it is also A-indiscernible. And since a0 |= p we see
that bi |= p for every i ∈ I. So suppose i ∈ I and tp(bi/B∪{bk | k < i}) divides over A. Then
there is some formula φ(x, bi, bk0 , ..., bkn) in this type which divides over A, where b ∈ B and
k0 < ... < kn < i. Now by construction of b there are j0 < ... < jn < j ∈ i(2|T |)+ such that

tp(bi, bk0 , ..., bkn/B) = tp(aj , aj0 , ..., ajn/B).

Now it follows from Exercise 17 that φ(x, aj , aj0 , ..., ajn) divides over A. From this it follows
that tp(aj/B ∪ {ak | k < j}) divides over A, and hence it forks over A. This is impossible,
and hence we find that b is indeed a Morley sequence for p over A.

Note that if p = tp(b/B), then since b0 |= p, we have b ≡B b0. So we can choose some
f ∈ Aut(M/B) such that f(b0) = b, and by Exercise 25 the sequence (f(bi))i∈I will also be a
Morley sequence for p over A, starting with b. So we can choose our Morley sequence such
that b0 = b. We can apply this lemma to global invariant types.

Corollary 4.18. Let A ⊆ B ⊆ C ⊆M be sets of parameters, and let p ∈ S(M) be A-invariant.
Then there is a Morley sequence for p|C over B.

Proof. Since p is A-invariant, it follows from Exercise 20 that p does not fork over A. Now
we see that if p forks over B, then it would divide over B, by the definition of forking and
the fact that p is a global type. But by the definition of dividing, if p would divide over B,
it would also divide over A. And since this is not the case, we see that p does not fork over
B. It follows that p|C also doesn’t fork over B, for if it would, it would contain a formula
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that forks over B, and hence this formula would also be an element of p. And hence p|C does
not fork over B. So from Lemma 4.17 it follows that there is a Morley sequence for p|C over
B.

Exercise 27. Let T be a simple theory. Prove that if A is a set of parameters and p ∈ S(A),
then p does not fork over A. Also show that there exists a Morley sequence for p over A.

Now we will prove a famous characterization of dividing in simple theories.

Lemma 4.19. Let T be a simple theory. Then the following are equivalent:

1. φ(x, b) divides over A.

2. If (ai)i∈I is a Morley sequence for tp(b/A), then {φ(x, ai) | i ∈ I} is inconsistent.

3. For some Morley sequence (ai)i∈I for tp(b/A), the set {φ(x, ai) | i ∈ I} is inconsistent.

Proof. We see that (2)⇒(3) follows from Lemma 4.17 and exercise 27. And (3)⇒(1) follows
immediately from the definition of dividing. So we prove (1)⇒(2).

Claim: If a = (ai)i∈I is a Morley sequence for tp(b/A) and J ⊆ I is such that inf(J)
exists and i ∈ I is such that i < inf(J), then φ(x, ai) divides over A ∪ {aj | j ∈ J}.
Proof of claim: Let q(x, y) = tp(ai, aJ/A). We know that φ(x, b) divides over A, and we
know that b ≡A ai. So there is some automorphism f of M interchanging b and ai and leaving
A fixed. And since φ(x, b) divides over A, we can conclude that φ(x, ai) divides over A. So let
c = (ck)k∈ω be a sequence witnessing this. Now we consider q(ai, y). Notice that from Exer-
cise 26 it follows that q(ai, y) does not divide over A. Now from Theorem 4.4 it follows that
there is some a′ such that a′ ≡Aai aJ and such that c is Aa′-indiscernible. Hence it follows
that there is an automorphism g of the monster model leaving Aai fixed and interchanging a′

and aJ . Now we can quickly see that the sequence (f(ck))k∈ω witnesses that φ(x, ai) divides
over AaJ . So the claim is proven.

So now we can prove the lemma. So let a = (ai)i∈I be a Morley sequence for tp(b/A),
and suppose that {φ(x, ai) | i ∈ I} would be consistent. Since T is a simple theory, we know
that for every type p ∈ S(B) there is some subset B0 ⊆ B of size at most |T | such that p
does not fork over B0. So let κ ≤ |T | be minimal such that for every type p ∈ S(B) there
is such a set of size at most κ. Now let (J,<J) be a linear order with J = (κ + ℵ0)+ such
that α <J β if and only if α > β. So we just take the reverse order on (κ + ℵ0)+. Now
using Lemma 4.16 (and the same reasoning as in the proof of Lemma 4.17), we see that there
is an A-indiscernible sequence c = (cj)j∈J such that if we have a finite tuple in c indexed
by an increasing sequence in J , then there is some increasing sequence in I such that the
corresponding tuple in a realizes the same complete A-type as the one in c. Using the same
reasoning as in the proof of Lemma 4.17, we see that c is actually a Morley sequence for
tp(b/A). Now using compactness and the assumption that {φ(x, ai) | i ∈ I} is consistent,
we can show that {φ(x, cj) | j ∈ J} is consistent. This involves adding constants for every
element in A and every cj , and an additional constant c. We also add every Ac-sentence which
is true in M and has the parameters from Ac replaced by the corresponding constants. And
we add φ(c, cj) for every j ∈ J . Now the consistency of {φ(x, cj) | j ∈ J} indeed follows from
the consistency of {φ(x, ai) | i ∈ I}. Now let m be an element realizing {φ(x, cj) | j ∈ J}.
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Now since T is simple there are A′ ⊆ A and J ′ ⊆ J such that |A′J ′| ≤ κ and such that
tp(m/AJ) does not fork over A′cJ ′ . Now choose i ∈ J such that i < j for every j ∈ J ′.
This is possible since |J ′| ≤ κ and |J | ≥ κ+. Now the claim tells us that φ(x, ci) divides
over Ac. But since m realizes this formula we see that φ(x, ci) ∈ tp(m/Ac). This means that
tp(m/Ac) divides over Ac, but not over A′cJ ′ ⊆ Ac. This is impossible, so we have found a
contradiction. We conclude that {φ(x, ai) | i ∈ I} must be inconsistent.

One of the most useful properties of simple theories is that in simple theories, forking and
dividing are equivalent. Of course, if a formula divides over a set of parameters A, then it
also forks over A. So we only have to prove the other direction.

Lemma 4.20. Let T be a simple theory and φ(x, b) some formula. If φ(x, b) forks over a set
of parameters A, then it also divides over A.

Proof. By the definition of forking, we know that there is some natural number n and formulas
φi(x, ai) such that each φi(x, ai) divides over A and such that |= ∀x(φ(x, b)→

∨
i≤n φi(x, ai)).

Now let a = (a0, ..., an). Because of Exercise 27 there is a Morley sequence for tp(ab/A),
which we will denote by (cidi)i∈ω, where cidi = (ci0, ..., c

i
n, di). Because of Exercise 25, we

can assume that (c0
0, ..., c

0
n, d0) = (a0, ..., an, b). Since (cidi)i∈ω is A-indiscernible, we see that

(di)i∈ω is also A-indiscernible. So it suffices to show that {φ(x, di) | i ∈ ω} is inconsistent.
So suppose that this set would be consistent, then it is a partial type over a countable set of
parameters, which means that is is realized by some element e. Now since we know that for
all i ∈ ω we have that tp(ab/A) = tp(cidi/A), we see that for all i ∈ ω:

|= ∀x

φ(x, di)→
∨
j≤n

φj(x, c
i
j)

 .

And since we know that |= φ(e, di) for all i ∈ ω, we see that |=
∨
j≤n φj(e, c

i
j) for all i ∈ ω.

This means that using the pigeonhole principle, there is some infinite set S ⊆ ω such that for
some j ≤ n and for all i ∈ S we have |= φj(e, c

i
j). Now we notice that (aij)i∈S is a Morley

sequence for tp(aj/A), and from the above it follows that {φj(x, aij) | i ∈ S} is consistent. So
now it follows from Lemma 4.19 that φj(x, aj) does not divide over A. This is a contradiction,
and hence we conclude that φ(x, b) divides over A.

Lemma 4.19 and the equivalence of forking and dividing allows us to prove that forking
is symmetric in simple theories.

Lemma 4.21. Let T be a simple theory, and let A be a set of parameters and let a, b be two
parameters. Then tp(a/Ab) forks over A if and only if tp(b/Aa) forks over A.

Proof. We only prove one direction, one can see that the other direction can be proved in the
same way. So we assume that tp(a/Ab) forks over A. So let φ(x, c, b) ∈ tp(a/Ab), where c ∈ A,
and we have chosen this formula such that φ(x, c, b) forks over A. Then the equivalence of
forking and dividing tells us that φ(x, c, b) divides over A. Now suppose that tp(b/Aa) does
not fork over A. Then it follows from Lemma 4.17 that there exists a Morley sequence
b = (bi)i∈ω for tp(b/Aa) over A such that b0 = b.

Now we know that |= φ(a, c, b), and hence we know that |= φ(a, c, bi) for every i ∈ ω.
Hence the set {φ(x, c, bi) | i ∈ ω} is consistent. Now notice that (cbi)i∈ω is a Morley sequence
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for tp(cb/A) over A, all the properties are easily checked using that b is a Morley sequence.
But now it follows from Lemma 4.19 that {φ(x, c, bi) | i ∈ ω} is inconsistent. So we have
found a contradiction, from which it follows that tp(b/Aa) forks over A.

Corollary 4.22. Let T be a simple theory, and let φ(x, b) be some formula. Then φ(x, b)
forks over a set of parameters A if and only if it divides over A.

4.4 Stable theories are simple

In this section, we will prove that stable theories are simple. This means that we can use all
the properties of simple theories (most notably the equivalence between forking and dividing)
for stable theories. But in order to do this, we will have to capture the notion of simplicity
in terms of a certain rank function being bounded. This will require a detailed study of this
specific rank function. The material in this section was taken from [9]. We will start with the
definition of what we shall call the D-rank.

Definition 4.23. Let p(x) be a set of formulas, ∆ a set of formulas and k ∈ ω. The D-rank
of p with respect to ∆ and k, denoted D(p,∆, k), is inductively defined as follows:

• D(p,∆, k) ≥ 0 if p is consistent.

• For any ordinal α, D(p,∆, k) ≥ α+ 1 if for every finite r ⊆ p there is some φ(x, y) ∈ ∆
and a set of elements {ai | i ∈ ω} such that D(r ∪ {φ(x, ai)},∆, k) ≥ α for every
i ∈ ω, and such that {φ(x, ai) | i ∈ ω} is k-contradictory. This means that for any
i0, ..., ik−1 ∈ ω, we have

∧
j<k φ(x, aij ) |=⊥.

• If λ is a limit ordinal, then D(p,∆, k) ≥ λ if D(p,∆, k) ≥ β for every β < λ.

For any ordinal α, we say that D(p,∆, k) = α if D(p,∆, k) ≥ α but D(p,∆, k) � α + 1. We
say that D(p,∆, k) is undefined if D(p,∆, k) ≥ α for every ordinal α.

Exercise 28. a Suppose p1 |= p2, ∆1 ⊆ ∆2 and k1 ≤ k2. Then D(p1,∆1, k1) ≤
D(p2,∆2, k2). (This is called monotonicity).

b Show that for every p, ∆ and k, there is some finite r ⊆ p such that D(p,∆, k) =
D(r,∆, k). (This is called finite character).

c Show that if f : M→M is an automorphism, then D(p,∆, k) = D(f(p),∆, k).

The following property of the D-rank is called the ultrametric property.

Lemma 4.24. Let p,∆ be sets of formulas, and let k, n ∈ ω. If {φl(x, al) | l < n} is a set of
formulas, then

D

(
p ∪

{∨
l<n

φl(x, al)

}
,∆, k

)
= max

l<n
D(p ∪ {φl(x, al)},∆, k).
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Proof. The fact that

max
l<n

D(p ∪ {φl(x, al)},∆, k) ≤ D

(
p ∪

{∨
l<n

φl(x, al)

}
,∆, k

)

follows directly from monotonicity. For the other direction, we will prove by induction
on the ordinal α that for every set of formulas p, if D(p ∪ {

∨
l<n φl(x, al)},∆, k) ≥ α,

then maxl<nD(p ∪ {φl(x, al)},∆, k) ≥ α. For the base case we simply note that if p ∪
{
∨
l<n φl(x, al)} is consistent, then for some l < n we see that p ∪ {φl(x, al)} is consistent.

The case where α is a limit ordinal follows directly from the induction hypothesis and the
definition of the D-rank.

So now suppose that D(p ∪ {
∨
l<n φl(x, al)},∆, k) ≥ α + 1, but for every l < n we have

that D(p ∪ {φ(x, al)},∆, k) ≤ α. Then we can choose (using finite character) for every l < n
a finite subset rl ⊆ p such that D(rl ∪{φ(x, al)},∆, k) ≤ α. Now we let r =

⋃
l<n rl, and note

that r is a finite union over finite sets, meaning that it is finite. Now since
D(p ∪ {

∨
l<n φl(x, al)},∆, k) ≥ α+ 1, it follows that there is some φ(x, y) ∈ ∆ and

{bi | i ∈ ω} such that {φ(x, bi) | i ∈ ω} is k-contradictory and for every i ∈ ω we have:
D(r∪{

∨
l<n φl(x, al)}∪{φ(x, bi)},∆, k) ≥ α. Now using the induction hypothesis we see that

maxl<nD(r ∪ {φl(x, al)} ∪ {φ(x, bi)},∆, k) ≥ α for every i ∈ ω. So for every i ∈ ω there is
some li < n such that D(r∪{φli(x, ali)}∪{φ(x, bi)},∆, k) ≥ α. With the pigeonhole principle
there is some l′ < n such that for some infinite S ⊆ ω we have that for all i ∈ S:

D(r ∪ {φl′(x, al′)} ∪ {φ(x, bi)},∆, k) ≥ α.

It now follows that D(r ∪ {φl′(x, al′)},∆, k) ≥ α + 1, and since r |= rl′ it follows with
monotonicity that D(rl′ ∪ {φl′(x, al′)},∆, k) ≥ α + 1. This is a contradiction, and hence we
conclude that maxl<nD(p ∪ {φl(x, al)},∆, k) ≥ α+ 1. This completes the induction.

Lemma 4.25. Let p be a partial type, let ∆ and Φ be sets of formulas, and let k ∈ ω. Then
for every set of parameters B there is some q ∈ SΦ(B) such that D(p,∆, k) = D(p∪ q,∆, k).

Proof. First note that complete types are closed under conjunction, which means that we can
assume that Φ is closed under conjunction. Now consider:

Γ = {¬φ(x, b) | b ∈ B, φ(x, y) ∈ Φ, D(p ∪ {φ(x, b)},∆, k) < D(p,∆, k)}.

We claim that p∪Γ is consistent. For if it is not consistent, then by the compactness theorem
there is some finite Γ′ = {¬φi(x, bi) | i < n} ⊆ Γ such that p ∪ Γ′ is inconsistent. This means
that p |=

∨
i<n φi(x, bi). Now with monotonicity and the ultrametric property (Lemma 4.24),

we see:

D(p,∆, k) ≤ D

(
p ∪

{∨
i<n

φi(x, bi)

}
,∆, k

)
= max

i<n
D(p ∪ {φi(x, bi)},∆, k).

But now we have found a contradiction with the definition of Γ. Now we let q ∈ SΦ(B) extend
Γ. If D(p ∪ q,∆, k) < D(p,∆, k), then using finite character and the fact that Φ is closed
under conjunction there is some φ(x, b) ∈ q such that D(p ∪ {φ(x, b)},∆, k) < D(p,∆, k).
This means that ¬φ(x, b) ∈ Γ ⊆ q, so φ(x, b)∧¬φ(x, b) ∈ q. This is impossible, and hence we
conclude that D(p ∪ q,∆, k) = D(p,∆, k).
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Lemma 4.26. Let A be a set of parameters, p ∈ S(A) and suppose D(p,∆, k) is defined for
every finite ∆ and every k ∈ ω. If φ(x, a) is a formula which forks over A, then there is some
finite ∆0 and some k0 ∈ ω such that for all finite ∆ ⊇ ∆0 and k ≥ k0:

D(p ∪ {φ(x, a)},∆, k) < D(p,∆, k).

Proof. First suppose that φ(x, a) divides over A. Then there exists an A-indiscernible se-
quence (ai)i∈ω and some k0 ∈ ω such that a0 = a and {φ(x, ai) | i ∈ ω} is k-contradictory.
Now let ∆0 = {φ(x, y)}. Suppose ∆ ⊇ ∆0 is finite and k ≥ k0, and suppose that
D(p ∪ {φ(x, a)},∆, k) ≥ D(p,∆, k). Then it follows from monotonicity that in fact
D(p∪{φ(x, a)},∆, k) = D(p,∆, k). Now using finite character we see that there is some finite
r ⊆ p such that D(r,∆, k) = D(p,∆, k), say D(r,∆, k) = α. It follows from monotonicity that
D(r ∪ {φ(x, a)},∆, k) = α. We know that for every i ∈ ω there exists some fi ∈ Aut(M/A)
interchanging a and ai. Now since the D-rank is invariant under automorphisms it follows
that D(fi(r) ∪ {φ(x, fi(a))},∆, k) = α for every i ∈ ω. And since r ⊆ p ∈ S(A), it follows
that D(r ∪ {φ(x, ai)},∆, k) = α for every i ∈ ω. However, we know that φ(x, y) ∈ ∆ and we
know that {φ(x, ai) | i ∈ ω} is k-contradictory, since it is k0-contradictory, and k ≥ k0. So
from this it follows that D(r,∆, k) ≥ α + 1, which we know is not true. So we have found a
contradiction, concluding that the lemma must be true if φ(x, a) divides over A.

So now suppose that φ(x, a) does not divide over A. Since we know that it does fork
over A, we know that there are some n ∈ ω and formulas φi(x, bi) for every i < n such that
φ(x, a) |=

∨
i<n φi(x, bi) and such that every φi(x, bi) divides over A. Using the argument

above, we see that for every formula φi(x, bi), there are some finite ∆i and some ki ∈ ω such
that for every finite ∆ ⊇ ∆i and for every k ≥ ki we have D(p∪{φi(x, bi)},∆, k) < D(p,∆, k).
We take ∆′ =

⋃
i<n ∆i and k′ = maxi<n ki. Now suppose that ∆ ⊇ ∆′ is finite and k ≥ k′.

Then we see using monotonicity and the ultrametric property (Lemma 4.24):

D(p ∪ {φ(x, a)},∆, k) ≤ D

(
p ∪

{∨
i<n

φi(x, bi)

}
,∆, k

)
= max

i<n
D(p ∪ {φi(x, bi)},∆, k)

< D(p,∆, k).

Lemma 4.27. Suppose D(x = x,∆, k) is defined for every finite ∆ and every k ∈ ω. Then
T is simple.

Proof. Suppose A is a set of parameters, and p(x) ∈ S(A). Since p(x) |= x = x we see that
D(p,∆, k) is defined for every finite ∆ and k ∈ ω. Using finite character, for every finite ∆
and k ∈ ω there is some finite r∆,k ⊆ p such that D(r∆,k,∆, k) = D(p,∆, k). Now we let
q be the union over all these r∆,k, and we let B be the domain of q. Since B is bounded
from above by the number of finite sets of formulas, we see that |B| ≤ |T |. We also see that
D(p,∆, k) = D(q,∆, k) for every finite ∆ and every k ∈ ω. We will now show that p does
not fork over B, from which it would follow from the definition of simple theories that T is
in fact simple.

So suppose p forks over B. Then by definition there is some φ(x, a) ∈ p such that φ(x, a)
forks over B. By monotonicity we see:

D(p,∆, k) ≤ D(q ∪ {φ(x, a)},∆, k) ≤ D(q,∆, k).
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And hence we conclude that D(q ∪ {φ(x, a)},∆, k) = D(q,∆, k) for every finite ∆ and k ∈ ω.
However, this contradicts Lemma 4.26, and hence we conclude that p forks over B.

Theorem 4.28. If T is stable, then T is simple.

Proof. If T is stable, then every formula is stable, and hence R2(x = x, φ) < ω for every
formula φ. This means that Rω(x = x,∆) < ω for every finite set of formulas ∆. So if we
can prove that D(x = x,∆, k) ≤ Rω(x = x,∆) for every finite set of formulas ∆ and every
k ∈ ω, then we are done by Lemma 4.27. So now we will use induction on α to show for
every type p that if D(p,∆, k) ≥ α, then Rω(p,∆) ≥ α. Note that the base case and the
limit case are trivial, because these two ranks are defined in the same way for these cases. So
suppose α is some ordinal and D(p,∆, k) ≥ α+ 1. Let r ⊆ p be finite, then there is some set
A = {ai | i ∈ ω} and some φ(x, y) ∈ ∆ such that {φ(x, ai) | i ∈ ω} is k-contradictory and
D(r ∪ {φ(x, ai)},∆, k) ≥ α for all i ∈ ω. It follows from Lemma 4.25 that for every i ∈ ω
there is some qi ∈ S∆(A) such that

D(r ∪ {φ(x, ai)} ∪ qi,∆, k) = D(r ∪ {φ(x, ai)},∆, k) ≥ α.

Now it follows from the induction hypothesis that Rω(r ∪ {φ(x, ai)} ∪ qi,∆) ≥ α. Since
φ(x, ai) ∈ qi for every i ∈ ω (since otherwise ¬φ(x, ai) ∈ qi, which would mean that qi ∪
{φ(x, ai)} is inconsistent and therefore does not have rank at least 0), we can omit the
{φ(x, ai)} from this. We now use that {φ(x, ai) | i ∈ ω} is k-contradictory to see that every
k-element subset of {qi | i ∈ ω} contains two types which are contradictory. Now one can
prove by induction on k that there is an infinite subset S ⊆ ω such that for every i, j ∈ S
with i 6= j we have that qi and qj are contradictory. Hence it follows that Rω(r ∪ qi,∆) ≥ α
for every i ∈ S, and hence Rω(r,∆) ≥ α+ 1. And since this is the case for every finite r ⊆ p,
we find that Rω(p,∆) ≥ α+ 1. This concludes the induction.

At first sight, it might seem that the proof of Theorem 4.28 is a little overkill. We only
require D(x = x,∆, k) to be defined for every finite ∆, but we prove that it is finite. However,
it follows from the compactness theorem that if D(p,∆, k) is defined for finite ∆, then it is
finite. It suffices to prove this for finite p (by finite character), but the proof is still very
tedious, and hence we omit it.



Chapter 5

The classification picture

5.1 Simple theories are NSOP

We have already seen a few possible properties that first-order theories can have. They can
be stable, simple, NSOP or NIP, and we have already seen some implications between these
properties. Specifically, we know that stable theories are simple and that stable theories are
the intersection between the NSOP theories and the NIP theories. However, we currently
have no knowledge of these other properties in relation to each other. So in this section, we
will prove some implications and show that they are strict, to obtain what is sometimes called
the classification picture. Note that we will only obtain a small part of the picture, since many
more properties of first-order theories can be defined, and the relations between all of these
properties have been studied extensively. A much larger version of the classification picture
can be found online, including some open problems which could provide interesting topics for
future research. The material in this section was taken from [9].

Let us start with the first implication we are going to consider: we will prove that simple
theories do not obey the strict order property (they are NSOP). We will do this by proving
that theories that have the strict order property also satisfy what is called the tree property,
and that theories which satisfy the tree property are not simple.

Definition 5.1. A theory T has the tree property if there is a formula φ(x, y) and a set of
parameters {ar | r ∈ ω<ω} such that:

1. For every f ∈ ωω, the set {φ(x, af |l) | l ∈ ω} is consistent.

2. There is some k ∈ ω such that for every r ∈ ω<ω, the set {φ(x, ar∧l) | l ∈ ω} is
k-contradictory.

Note that the term ’tree property’ is suggestive of the idea of this formula and set of
parameters. The formulas φ(x, ar) indeed form a tree, and the two properties in the definition
tell us that any path downward through the tree is consistent, and that if we take k formulas
on the same level, they are inconsistent. This intuition will be important for understanding
the proof of the next lemma.

Lemma 5.2. Let T be a theory with the strict order property. Then T also has the tree
property.

56
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Proof. Since T has the strict order property, there is some formula φ(x, y) and some set of
parameters (bi)i∈ω such that φ(M, bi) ( φ(M, bi+1) for every i ∈ ω. Note that this means that
¬φ(M, bi) ) ¬φ(M, bi+1) for every i ∈ ω. Now let φ(M, bi) = Bi for every i ∈ ω, and define
the formula ψ(x, yz) by ψ(x, yz) := ¬φ(x, y) ∧ φ(x, z). So we have

B0 ( B1 ( B2 ( B3 ( ...

We will prove that T has the tree property with this formula ψ and with k = 2. We will
do this by using the compactness theorem, so we add a constant ar for every r ∈ ω<ω to
our language, and we add formulas telling us that we have a tree. This means that we add
∃x
∧
i≤l ψ(x, af |ni ) for every f ∈ ωω and for every n1, ..., nl ∈ ω with l ∈ ω (downward paths

are consistent). And we also add ¬ψ(x, ar)∨¬ψ(x, ar′) for every distinct r, r′ of equal length
(sets of formulas at the same level are 2-inconsistent). We now see that in order to prove that
this theory is consistent, we need to be able to build any finite tree, and the result would
follow from compactness. Note that ψ(M, bibj) = Bc

i ∩ Bj for every i, j ∈ ω. The idea of
building finite trees is as follows. We first assume that we have a connected tree (so a tree
with a single root), if we can make this we can also make a finite number of these. Now look
at how deep the tree has to be (formally the length of the longest path containing the root
as one of its endpoints), and expand the tree to make sure that every node in the tree is
part of such a path. We can also look at the node with the highest degree, and expand the
tree to make sure that every node has this degree. So we now have a tree which is n nodes
deep and every node splits into m new nodes. We will first work out a few small cases. If
n = 1 we only have one node, so we just take Bc

0 ∩B1. If n = 2 we let the root be Bc
0 ∩Bm,

and the m nodes below will be Bc
0 ∩ B1, B

c
1 ∩ B2, ..., B

c
m−1 ∩ Bm. Note that this indeed

meets the requirements. So in this case we interpret a0 as b0bm and a0i as bibi+1 for every
i ∈ {0, ...,m−1}. If n = 3 we let the root be Bc

0∩Bm2 , and the m nodes underneath the root
will be Bc

0 ∩ Bm, Bc
m ∩ B2m, ...., B

c
(m−1)m ∩ Bm2 . And under the node Bc

i·m ∩ B(i+1)·m with

i ∈ {0, ...,m− 1}, we have the nodes Bc
i·m ∩Bi·m+1, B

c
i·m+1 ∩Bi·m+2, ..., B

c
i·m+m−1 ∩B(i+1)k.

We now notice that in full generality, if l ∈ {1, ..., n} and i1, ..., il ∈ ω, then we can interpret
ai1...il as follows:

ai1...il = bi1·mn+...+il·mn+1−lbi1·mn+...+il−1·mn+2−l+(il+1)·mn+1−l .

It follows from compactness that T indeed has the tree property.

Now all we need to do is prove that any theory which has the tree property is not simple.
We will do this by proving the following lemma.

Lemma 5.3. Let T be a theory with the tree property, and let κ be some infinite cardinal.
Then there is a type p which forks over all subsets of cardinality κ of its domain.

Proof. Since T has the tree property, there is some formula φ(x, y) and some k ∈ ω witnessing
this. Now let κ be given, and let λ be strictly larger then the number of complete types over
a subset of size κ can be, so λ ≥ (2κ+|T |)+. Now using compactness and the tree property we
quickly see that there is a set of parameters {af | f ∈ λ<κ

+} such that:

1. For every g ∈ λκ+ , the set {φ(x, ag|α) | α ∈ κ+} is consistent.

2. For every f ∈ λ<κ+ , the set {φ(x, af∧β) | β ∈ λ} is k-inconsistent.
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Now suppose α < κ+, meaning that the cardinality of α is at most κ. If f : α → λ is
a function, then we can consider the set A = {ah | h = f |β, β ∈ α}, and notice that A
has at most cardinality κ. Now since |{af∧β | β ∈ λ}| = λ and |A| ≤ κ, we notice by the
pigeonhole principle that there must be countably many elements of the form af∧β with the
same complete type over A. So using the compactness theorem we find that there is a set of
parameters {bf | f ∈ ω<κ

+} such that:

1. For every g ∈ ωκ+ , the set {φ(x, bg|α) | α ∈ κ+} is consistent.

2. For every f ∈ ω<κ+ , the set {φ(x, bf∧β) | β ∈ ω} is k-inconsistent.

3. For every f ∈ ω<κ+ and for every n ∈ ω, we have tp(bf∧0/{ah | h = f |β, β ∈ dom(f)}) =
tp(bf∧n/{ah | h = f |β, β ∈ dom(f)}).

So now let g ∈ ωκ+ and consider the set p = {φ(x, bf |α) | α ∈ κ+}, which is consistent (by
the first item in the above enumeration), and therefore a partial type. If A is a subset of the
domain of p of cardinality κ, then p|A ⊆ {φ(x, bf |β ) | β ∈ α} for some α ∈ κ+. We now see
by the second and third item in the above enumeration that p divides over A.

Corollary 5.4. Let T be a simple theory. Then T does not have the strict order property.

5.2 NSOP and NIP are incomparable

We already know that the class of stable theories is exactly the class of theories which do not
have the independence property, and do not have the strict order property, so
STAB=NIP∩NSOP. However, we do not yet know whether the inclusions STAB⊆NIP and
STAB⊆NSOP are strict. We will see in this section that in fact both of these inclusions
are strict. We will do this by giving two examples of theories, one in SOP∩NIP and one in
NSOP∩IP. The material in this section was taken from [17]. For the first example, we will
need the following lemma:

Lemma 5.5. Let φ(x, y) be a formula with the independence property. Then there is some
indiscernible sequence (ci)i∈ω and some b ∈M such that |= φ(b, ci) if and only if i is even.

Proof. Since φ(x, y) has the independence property, there are (as)s⊆ω and (bi)i∈ω such that
for all i ∈ ω and s ⊆ ω we have |= φ(as, bi) if and only if i ∈ s. Now let (ci)i∈ω be an
indiscernible sequence based on (bi)i∈ω, which exists by Theorem 2.23. Now we will add a
constant b to the language, and we add φ(b, ci) for every even i and ¬φ(b, ci) for every odd i.
So suppose we have some finite subset of these axioms. Then we need to prove that this finite
set is consistent, but this follows from the fact that (ci)i∈ω is based on (bi)i∈ω, and from the
fact that

|= ∃x

∧
i∈I

φ(x, bi) ∧
∧
j∈J
¬φ(x, bj)

 .

for every two finite disjoint subsets I, J ⊂ ω, since aI is a witness to this statement. So the
existence of such b and ci now follows from compactness.

Lemma 5.6. The theory DLO has the strict order property but not the independence property.
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Proof. It is easy to see that DLO has the strict order property, by considering an increas-
ing sequence of parameters a0 < a1 < a2.... Because if φ(x, y) is the formula x < y, then
φ(M, a0) ( φ(M, a1) ( φ(M, a2) ( .... Now suppose that DLO has the independence prop-
erty, then there is some formula which has the independence property, and since DLO has
elimination of quantifiers, there is some quantifier-free formula which has the independence
property. This means that there is some Boolean combination φ(x, y) of formulas of the form
v < w which has the independence property. However, that means that for this formula, there
is some indiscernible sequence (ci)i∈ω and some b ∈ M such that |= φ(b, ci) if and only if i is
even. However, since in DLO any indiscernible sequence is strictly increasing, strictly decreas-
ing or constant, we see that this is impossible. Hence DLO does not have the independence
property.

Now we need to prove that there is a theory which has the independence property but not
the strict order property. Unfortunately, the examples of such theories are far less natural
and well-known then DLO.

Lemma 5.7. There is a theory which has the independence property but not the strict order
property.

Proof. We will define the theory Tind in the language Lind = {P,E}, where P is a predicate
symbol and E a binary relation symbol. The axioms are:

1. ∀xy(xEy → ¬P (x) ∧ P (y)).

2. ∃x1...xn(
∧
i 6=j xi 6= xj).

3. ∀x1...xny1...yn

(∧
k,l≤n(xk 6= yl ∧ P (xk) ∧ P (yl))→ ∃z

∧
k≤n(zExk ∧ ¬zEyk)

)
.

4. ∀x1...xny1...yn

(∧
k,l≤n(xk 6= yl ∧ ¬P (xk) ∧ ¬P (yl))→ ∃z

∧
k≤n(xkEz ∧ ¬ykEz)

)
.

Here the last three axioms are actually axiom schemes, so these axioms are in our theory for
every natural number n ≥ 1. First we need to prove that this theory is consistent. We do
this by building a model for it. The underlying set of this model will be 2×ω2. The elements
satisfying P will be exactly the elements of the form (1, a, b) with a, b ∈ ω. Now we will use
that the set of finite subsets of ω is countable. So for every finite subset B ⊂ ω, we choose
an element a0 ∈ ω and let (0, 0, a0)E(1, n, b) if and only if n = 0 and b ∈ B. Now we also
choose an element a1 ∈ ω such that (0, n, b)E(1, 1, a1) if and only if n = 0 and b ∈ B. Now
we choose an element a2 ∈ ω such that (0, 1, a2)E(1, n, b) if and only if n = 1 and b ∈ B.
We can continue in this fashion to find a model which clearly satisfies the first axiom and is
infinite, and also satisfies the last two axiom schemes.

Now we take the theory of this model to be our new theory T ∗ind, so T ∗ind is consistent and
complete. We will prove that it has quantifier elimination using Lemma 1.5. So suppose that
M,N are two models of T ∗ind and f : A → N is a local isomorphism from some finite subset
A of M to N . Now let m ∈M be some other element, say w.l.o.g. that M |= P (m). Now we
can split the finite set A into three pairwise disjoint subsets A1, A2, A3 such that A1 = {a ∈
A | M |= P (a)}, A2 = {a ∈ A | M |= aEm} and A3 = {a ∈ A | M |= ¬aEm ∧ ¬P (a)}. Now
we consider the set of elements f(A) ⊂ N . We know from the axioms of Tind that there is
some b ∈ N such that N |= aEb for every a ∈ f(A2) and N |= ¬a′Eb for every a′ ∈ f(A3). So
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if we define f(m) = b then we have extended f to a local isomorphism from A ∪ {m} to N .
And hence any such local isomorphism can be extended, so it follows from Lemma 1.5 that
T ∗ind has quantifier elimination.

We can use quantifier elimination of T ∗ind to show that this theory does not have the strict
order property. For suppose it does, then there is some quantifier-free formula with the strict
order property. However, this formula should be a Boolean combination of formulas of the
form x = y, xEy and P (x), since these are the only atomic formulas. And we clearly see that
such a formula does not have the strict order property. On the other hand, we can show that
the formula xEy has the independence property. For let (bi)i∈ω be a set of constants added
to the language with axioms P (bi) also added. Now we also add constants cs for every s ∈ ω
and axioms csEbi for every i ∈ s and ¬csEbi for every i 6∈ s. We let (bi)i∈ω be interpreted
by an arbitrary sequence of elements. Now suppose we have a finite subset of these axioms.
Then there is some finite subset A ⊂ ω such that if bi occurs in one of these axioms, then
i ∈ A. Now for every cs occurring in these axioms, consider s ∩ A. We know that there is
some element as such that asEbi for every i ∈ s∩A, and ¬asEbi for every i ∈ A\s. So we let
as be the interpretation of cs. So we see that this finite subset of formulas is consistent, and
hence by compactness the entire theory is consistent. And hence we see that xEy indeed has
the independence property.



Chapter 6

More on Forking

6.1 Automorphisms of the monster model

In this section we will prove some properties of automorphisms of the monster model which
will be useful later on. This is taken from [5].

Lemma 6.1. Let A,B ⊂M be small, and let C be a B-definable set. Then C is A-definable
if and only if every f ∈ Aut(M/A) fixes C setwise.

Proof. Suppose C is A-definable, so C = {c | |= ψ(c, a)}, where ψ is an L-formula and a ∈ A.
Then because f is an automorphism we notice:

c ∈ C ⇔ |= ψ(c, a)

⇔ |= ψ(f(c), f(a))

⇔ |= ψ(f(c), a)

⇔ f(c) ∈ C.

Now we will prove the other direction. Since C isB-definable, we can write C = {c | |= φ(c, b)}
with φ an L-formula and b ∈ B. Let p(y) = tp(b/A). We will prove the following:

p(y) |= ∀x(φ(x, y)↔ φ(x, b)).

So let b′ be such that |= p(b′). Then since p(y) = tp(b/A) we see that tp(b/A) = tp(b′/A).
This means that there is some f ∈ Aut(M/A) such that f(b) = b′, and we have assumed that
this f fixes C setwise. We now see for any element m ∈M:

|= φ(m, b) ⇔ m ∈ C
⇔ f−1(m) ∈ C
⇔ |= φ(f−1(m), b)

⇔ |= φ(m, b′).

And hence we indeed find: p(y) |= ∀x(φ(x, y) ↔ φ(x, b)). It follows from the Compactness
theorem that there must be a formula ψ(y) ∈ p(y) such that:

ψ(y) |= ∀x(φ(x, y)↔ φ(x, b)).

61
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Now define the formula θ(x) as ∃y(ψ(y) ∧ φ(x, y)). Since φ(x, y) is an L-formula and ψ(y)
is an L(A) formula, we see that θ(x) is an L(A) formula. So we just have to prove that
C = {c | |= θ(c)}. Notice that if c ∈ C, then |= φ(c, b), and we always have |= ψ(b), since
ψ ∈ tp(b/A). So |= θ(c). Now suppose |= θ(c) for some c. Then |= ψ(a) ∧ φ(c, a) for some a.
This means that |= ∀x(φ(x, a)↔ φ(x, b)), and hence |= φ(c, b). So c ∈ C. This concludes our
proof.

A nice application of this lemma is the following:

Theorem 6.2. Let A be a small set of parameters and let p(x) ∈ S(M) be a global A-invariant
type. If p is definable, then it is definable over A.

Proof. Let φ(x, y) be an L-formula, and let dpφ(y) be the formula defining it. Consider the
set B = {a ∈ M | |= dpφ(a)}. If f is an M-automorphism fixing A pointwise, then we see
using Exercise 19:

a ∈ B iff |= dpφ(a)

iff φ(x, a) ∈ p(x)

iff φ(x, f(a)) ∈ p(x)

iff |= dpφ(f(a))

iff f(a) ∈ B.

So a ∈ B iff f(a) ∈ B. So as a set, B is invariant under these automorphisms. It follows from
Lemma 6.1 that B is A-definable, and hence p is A-definable.

Note that by taking C to be a singleton set, we can use Lemma 6.1 to prove that for any
set of parameters A and any b ∈M, b ∈ dcl(A) if and only if f(b) = b for every f ∈ Aut(M/A).
We could wonder if we also have a generalization which is suited for the algebraic closure of
A, instead of the definable closure. And indeed there is.

Lemma 6.3. Let C ⊆ M be definable, and let A ⊆ M be a set of parameters. Then the
following are equivalent:

1. There is an A-formula E(x, y) which defines an equivalence relation with finitely many
classes on M, such that C is a union of E-classes (we call C almost A-definable in this
case).

2. The set {f(C) | f ∈ Aut(M/A)} is finite.

3. The set {f(C) | f ∈ Aut(M/A)} is small.

Proof. For (1)⇒(2), note that if f ∈ Aut(M/A), then |= E(a, b) if and only if |= E(f(a), f(b)),
since E is an L(A)-formula. So a and b are equivalent if and only if f(a) and f(b) are
equivalent, which means that any f ∈ Aut(M/A) permutes the classes of E. Since E has only
finitely many classes and C is a union of these classes, we see that {f(C) | f ∈ Aut(M/A)}
is indeed finite.

(2)⇒(3) is trivial, any finite set is small. So now we will prove (3)⇒(1). So suppose
C = φ(M, b) with b ∈ M and φ(x, y) ∈ L, and let p = tp(b/A). Now we note that if
f ∈ Aut(M/A), then f(C) = φ(M, f(b)), and hence we see that there is some small set
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of parameters B with b ∈ B such that |= p(b′) for every b′ ∈ B, and such that for every
f ∈ Aut(M/A) there is some b′ ∈ B such that f(C) = φ(M, b′). As before, we see that if
|= p(c) for some element c, then there is some f ∈ Aut(M/A) such that f(b) = c, and hence
f(C) = φ(M, c), so we see that p(y) ∪ {¬∀x(φ(x, y) ↔ φ(x, b′)) | b′ ∈ B} is inconsistent
(because A∪B is small, and any partial type over a small set should be realized in M). So by
the compactness theorem there is some formula ψ(y) ∈ p and some b0, ..., bk ∈ B with b0 = b
such that ψ(y) |=

∨
i≤k ∀x(φ(x, y) ↔ φ(x, bi)). Now we define E(x1, x2) to be the following

formula:
∀y(ψ(y)→ (φ(x1, y)↔ φ(x2, y))).

Note that this is in fact an L(A)-formula. We also note that it defines an equivalence relation
onM, and we will show that this equivalence relation has finitely many classes. If |= E(a1, a2),
then |= ∀y(ψ(y) → (φ(a1, y) ↔ φ(a2, y))), and since we know that |= ψ(bi) for every i ≤ k,
we see that |= φ(a1, bi) ↔ φ(a2, bi) for every i ≤ k. Now suppose that |= ¬E(a1, a2). Then
we have

|= ∃y(ψ(y) ∧ ¬(φ(a1, y)↔ φ(a2, y))),

so let m be a witness to this. Then we have |= ψ(m), and hence there must be some i ≤ k
such that |= ∀x(φ(x,m) ↔ φ(x, bi)). However, we also have |= ¬(φ(a1,m) ↔ φ(a2,m)), and
hence we find |= ¬(φ(a1, bi)↔ φ(a2, bi)). So two elements a1, a2 ∈M are in the same E-class
if and only if they agree on φ(x, bi) for every i ≤ k, which means that this equivalence relation
has exactly 2k+1 many equivalence classes.

Now we note that if a1 ∈ C = φ(M, b0), then we see that if |= E(a1, a2), then the elements
a1 and a2 must agree on φ(x, b0), and hence |= φ(a2, b0), so a2 ∈ C. This means that if
some element of M is in C, then the entire E-class of this element is in C, so C is a union of
E-classes.

From this lemma it follows that if A is some set of parameters and b ∈M, then b ∈ acl(A)
if and only if the orbit of b under the automorphism group Aut(M/A) is finite, if and only if
the orbit of b under the automorphism group Aut(M/A) is small. Using these observations,
we can also prove the following useful lemma.

Lemma 6.4. Let A ⊆M be small, then acl(A) =
⋂
{M ⊇ A | M ≺M}.

Proof. Suppose a ∈ acl(A) and M is an elementary substructure of M with A ⊆ M . Then
there is some L(A)-formula φ(x) such that |= φ(a), and for some natural number n, φ has only
n solutions in M. But since we can express in an L-sentence that φ has exactly n solutions,
and this sentence must be true in M, it must also be true in M . So all of these solutions must
lie in M , and therefore a ∈M . And hence a ∈

⋂
{M ⊇ A | M ≺M}.

Now suppose a 6∈ acl(A). Then the Aut(M/A)-orbit of a is not small. So suppose M ⊇ A
is a small model, then there is some f ∈ Aut(M/A) such that f(a) 6∈M . But this means that
f−1(M) is a small model of T which contains A but does not contain a. So
a 6∈

⋂
{M ⊇ A | M ≺M}.

6.2 Elimination of imaginaries

In this section, we will take a look at the concept of imaginaries. Elimination of imaginaries
is an assumption that we will have to make to prove certain results in the next section. The
material in this section is mostly taken from [16].



CHAPTER 6. MORE ON FORKING 64

It is sometimes useful to be able to assume that definable sets can be identified with
single elements. It turns out that this assumption can be safely made by assigning to every
theory T a theory T eq in a many-sorted language. This means that we have a set of sorts
{Si | i ∈ I} with I some index set, and any structure in our language will be partitioned into
sorts. For every sort we have a countably infinite number of variables of this sort. In addition,
every quantifier will specify in which sort the variable over which we quantify lives, and every
function symbol will have as domain a product of sorts, and as codomain a single sort. Also
every relation symbol will be a relation on specified sorts, and the constant symbols are also
given the sort in which they live. This distinction between sorts can be very useful, as the
following example will make clear.

Example 6.5. We will use many-sorted logic to give a language and theory for vector fields.
The language will consist of two sorts, a sort V for vectors and a sort S for scalars. Our
language consists of a constant 0 of sort V (the zero vector) and constants 0, 1 of sort S. Fur-
thermore, we have functions ·S and +S with domain S2 and codomain S (multiplication and
addition in the scalar field), and a function +V with domain V 2 and codomain V (addition
of vectors). We also have a function ·V with domain S × V and domain V (scalar multipli-
cation). We can now use these symbols to give all the axioms of a vector space, including
axioms telling us that the elements of sort S form a field. We will omit these details.

Now we will take a look at how many-sorted logic is going to help in our situation.
Suppose we have a language L, and an L-theory T with monster model M. Let E be the

set of L-formulas φ(x, y) such that in every model of T , the formula φ defines an equivalence
relation (note that the formula x = y is an example of such a formula). Then we define for
every φ ∈ E:

• A sort Sφ, and

• A function symbol fφ : S= → Sφ.

We use S= instead of Sx=y. Now we define the language Leq as the language having sorts
Sφ and functions symbols fφ for every formula φ ∈ E. Furthermore, every constant, function
symbol and relation symbol of L will be added to Leq, but now everything is living in the
sort S=. We define the theory T eq in the language Leq as follows:

• T eq contains all the sentences of T , but with everything living in S=.

• For every L-formula φ(x, y) ∈ E, we add the sentence
∀x, y ∈ S=(φ(x, y)↔ fφ(x) = fφ(y)).

• For every L-formula φ(x, y) ∈ E, we add the sentence saying that the map fφ : S= → Sφ
is surjective. So we add the sentence ∀x ∈ Sφ∃y ∈ S=(fφ(y) = x).

Given a model M of T , we can build a model M eq of T eq in the following way: S=(M eq)
is the underlying set of M , and every element of L will be interpreted in S=(M eq) as it was
in M . Now for every formula φ(x, y) ∈ E, we define Sφ(M eq) = M/φ(x, y). This means that
the sort Sφ is exactly the set of equivalence classes of the relation φ(x, y) on M . Now for
every formula φ(x, y) ∈ E, we define fφ(a) = [a]φ, where [a]φ is the equivalence class of the
element a ∈ M under the relation φ. Of course every element of M has its own class if our
equivalence relation is equality, so in this case we identify every element with its own class.
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Note that if we have a model M of T eq, then M = (S=(M))eq, meaning that every model
of T eq is of the form M eq for some model M of T . Also note that if M,N are isomorphic
models of T , then M eq and N eq are also isomorphic, because we can extend the isomorphism
between M and N .

Since we are only studying complete theories T , we should wonder whether T eq is complete.
In ?? and ?? it is stated without proof that T eq is complete. We will give a proof based on
the proof in ??, which uses the generalized continuum hypothesis.

Theorem 6.6. (GCH) The theory T eq is complete.

Proof. Suppose T eq is not complete. Then since any model of T eq is of the form M eq for
some model M of T , this means that there are models M,N of T and an Leq-sentence φ
such that M eq |= φ and N eq |= ¬φ. Let κ be large enough such that for every λ < κ, we
have λ|L| < κ. Now we know that there are models M ′eq � M eq and N ′eq � N eq such that
|M ′eq| = |N ′eq| = κ and such that M ′eq and N ′eq are saturated (this follows from Theorem
1.9. This means that we require κ to be a successor cardinal, but that is fine. Once we have
found a sufficiently large cardinal, we can just take the successor of that cardinal to be κ).
We now notice that by our choice of κ, the models M ′ and N ′ must also have cardinality κ.
Also notice that these models must be saturated, because M ′eq and N ′eq are, and hence it
follows from Theorem 1.6 that M ′ and N ′ are isomorphic. And hence it follows that M ′eq and
N ′eq must also be isomorphic, but this is impossible because of the sentence φ. We conclude
that T eq must be complete.

The following theorem will be the one telling us that given a theory T , we can safely
assume that we are working in the theory T eq.

Theorem 6.7. Let φ(x1, ..., xn) be an Leq-formula, with xi of sort Si. Then there is some
L-formula Sφ(y1, ..., yn) such that

T eq |= ∀y1, ..., yn ∈ S=(Sφ(y1, ..., yn)↔ φ(fS1(y1), ..., fSn(yn))).

Proof. For convenience of notation, we will assume that n = 1. Note that this does not affect
the proof.

We consider the restriction map π : SS=(∅) → S(∅), from the space of complete types
(in T eq) with variable in the sort S=, to the space of complete types (in T ). The author
apologizes for the inconvenience of this notation. Unfortunately, ”S” is standard notation
for both type spaces and sorts, it is best not to deviate from this. Now, The map π sends a
complete Leq-type p to its restriction to L. Now if φ(x) is some L-formula, then the inverse
image of [φ(x)] is [φ(x)] where in this case x is a variable of sort S=. So the inverse image of an
open is open, meaning that π is continuous. Since it can be seen that π is also bijective, it is a
homeomorphism (since any continuous bijective map from a compact space into a Hausdorff
space is a homeomorphism).

Now suppose we have some Leq-formula φ(x), with x of sort S. Note that if y is a variable
of sort S=, then π([φ(fS(y))]) is the image of a clopen set under a homeomorphism, and
therefore clopen. This means that it is a union of basic clopens, and by compactness (we have
a closed space in a compact space, so this is compact with the induced topology) this means
that it is a finite union of clopens. So there are L-formulas φ1(x), ..., φn(x) such that

π([φ(fS(y))]) = [φ1(y)] ∪ ... ∪ [φn(y)] = [φ1(y) ∨ ... ∨ φn(y)].

So now we take Sφ(y) = φ1(y) ∨ ... ∨ φn(y), and the result follows.
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Now suppose that X is some definable subset of M, so X = φ(M, b). Consider the
equivalence relation E(y1, y2) defined by ∀x(φ(x, y1)↔ φ(x, y2)). Note that [b]E is an element
of the sort SE . Note that X is [b]E-definable via the formula ∃y(fE(y) = [b]E ∧φ(x, y)). And
in fact [b]E is the only element of sort SE such that X is defined via this formula. We call
[b]E a code for X in Meq.

Definition 6.8. A theory T has elimination of imaginaries if for every definable set X ⊆M
there is some formula φ(x, y) and some element a ∈M (the code of X) such that X = φ(M, a)
and if X = φ(M, a′) then a = a′.

Now the strength of working in T eq is summarized in the following exercise:

Exercise 29. Show that for any theory T , the theory T eq has elimination of imaginaries.

In the following section, we will assume elimination of imaginaries whenever we need it.

6.3 Forking in stable theories

In this section, we will investigate the notion of forking under the assumption of stability. We
will also use this opportunity to define the notion of forking independence. The material in
this section was taken from [5].

Lemma 6.9. Let T be a stable theory, M a small model of T , and let p ∈ S(M) be a global
type which does not divide over M . Then p is M -definable.

Proof. We will show that p is an heir of p|M . Note that this will be enough, since T is stable,
and hence we can invoke Theorem 3.20 to see that p|M is in fact a definable type, so with
Theorem 4.13 it will follow that p is definable over M .

In order to show that p is an heir of p|M , we need to show that if φ(x, y) is an L(M)-
formula and a ∈M such that φ(x, a) ∈ p, then there is some a′ ∈M such that φ(x, a′) ∈ p|M .
In order to do this, consider the type tp(a/M), which we will call q. Now let q′ be a global
coheir of q, which exists because of Theorem 4.12. We notice that q′ is M -invariant because
of Exercise 22, and hence it does not fork over M because of Exercise 20. Hence we see by
Lemma 4.17 that there is a Morley sequence (ai)i∈ω for q′ over M , and we know that we can
choose this sequence such that a0 = a.

Now we let b |= p|Ma, and note that p|Ma does not divide over M , since p does not. So
now we use Theorem 4.4 to see that there is some b′ such that b′ ≡Ma b and such that (ai)i∈ω
is Mb′-indiscernible. So since tp(b/Ma) = tp(b′/Ma), we can assume that we chose b such
that (ai)i∈ω is Mb-indiscernible. Now since φ(x, a) ∈ p is an L(Ma)-formula, it follows that
|= φ(b, a), and since a0 = a and φ(b, y) is an L(Mb)-formula, we see that |= φ(b, ai) for every
i ∈ ω.

Now we consider the type r = tp(b/M(ai)i∈ω). It follows from Theorem 3.20 that this
type is definable. So for every L(M(ai)i∈ω)-formula ψ(x, y) there is some L(M(ai)i∈ω)-formula
drψ(y) such that for all c ∈M(ai)i∈ω we have ψ(x, c) ∈ r if and only if |= drψ(c). Now let n be
a natural number such that all the parameters of drφ(y) are contained in M ∪ {a0, ..., an−1}.
Note that |= φ(b, ai) for every i ∈ ω, and hence φ(x, ai) ∈ r for every i ∈ ω, so |= drφ(ai) for
every i ∈ ω. We also notice that |= q′(an), and hence tp(an/Ma<n) = q′|Ma<n . And we know
that q′ is a global coheir of q, and hence tp(an/Ma<n) is also a coheir of q. But this together
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means that there must be some a′ ∈M such that |= drφ(a′). But this means that |= φ(b, a′),
and hence φ(x, a′) ∈ tp(b/M) = p|M . So we indeed see that p is an heir of p|M .

Theorem 6.10. Let T be a stable theory, M a small model, p ∈ S(M) and A ⊇M a small set
of parameters. Then if q ∈ S(A) is an extension of p, the following properties are equivalent:

1. q does not divide over M .

2. q does not fork over M .

3. q is definable over M .

4. q is an heir of p.

5. q is a coheir of p.

Furthermore, p has a unique extension q with these properties.

Proof. The equivalence of (1). and (2). follows from the fact that stable theories are always
simple, and hence forking and dividing are equivalent. For (2).⇒(3). we use Lemma 4.7 to
see that we can extend q to a global type r such that r does not fork over M . Now we use
Lemma 6.9 to see that r is definable over M , and hence q is definable over M . (3).⇒(4).
follows from Exercise 21. (4).⇒(1). follows from Theorem 4.13, since q is the unique heir
of p in S(A), and hence it must be the restriction of the global heir of p. This global heir
is M -definable by Theorem 4.13, and hence it is M -invariant by Exercise 22, and hence it
doesn’t fork over M by Exercise 20. And since this global heir does not fork, we see that any
restriction of it also doesn’t fork. So now we only have to prove that (5). is equivalent to the
others. For this we will write q = tp(a/Mb) (where Mb = A and a is an element realizing q),
and we use the equivalences of (1). up to (4). together with Exercise 23 and the symmetry of
forking (Lemma 4.21) to note the following: tp(a/Mb) is an heir of tp(a/M) if and only if it
does not fork over M , which is the case if and only if tp(b/Ma) does not fork over M , which
is true if and only if tp(b/Ma) is an heir of tp(a/M), which holds if and only if tp(a/Mb) is
a coheir of tp(a/M).

Notice that the first 4 of these statements are also equivalent to each other if the set of
parameters A is not small. Only the equivalence with the fifth statement requires that every
type over A is realized, which we can only ensure for types over small sets of parameters.

A natural question to ask at this point is what we know about forking if the set of
parameters is not itself a model. We will investigate this notion further in this section.

Definition 6.11. Let p ∈ S(M) be a global type. Then a set of parameters A is called a
canonical base of p if for any f ∈ Aut(M), f(p) = p if and only if f |A is the identity function
on A.

Exercise 30. Let p be a global type and let A and B be canonical bases of p. Prove that A
and B have the same definable closure, and that this is also a canonical base of p.

The exercise above shows that if a global type p has a canonical base, then it has a unique
definably closed canonical base, which we will denote by cb(p).

Lemma 6.12. If T has elimination of imaginaries, then any definable global type p has a
canonical base, and cb(p) is the smallest set over which p is defined which is definably closed.
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Proof. Let φ(x, y) be an L-formula, and let dpφ(y) be the formula defining it. Consider
dpφ(M), which is a definable set, and hence by elimination of imaginaries it has a code, which
we will denote by cφ. Now let C = {cφ | φ(x, y) ∈ L}. Now we notice that f(p) = p if and
only if for all L-formulas φ(x, y) and for all a ∈ M we have: φ(x, a) ∈ p ⇔ φ(x, f(a)) ∈ p,
which is the case if and only if |= dpφ(a) ⇔|= dpφ(f(a)). This is the case if and only if for
all L-formulas φ(x, y) we have f(dpφ(M)) = dpφ(M) setwise, which is the case if and only if
cφ = f(cφ) for all such φ, which is the case if and only if f(C) = C pointwise. So we see that
C is a canonical base of p. So dcl(C) = cb(p).

Now we have to show that cb(p) is the smallest definably closed set over which p is
definable. So first we have to show that p is in fact definable over cb(p). Using Theorem 6.2
we see that it is enough to show that p is dcl(C)-invariant. So suppose f ∈ Aut(M/ dcl(C)),
then we know that f(C) = C pointwise, because C ⊆ dcl(C), which means that f(p) = p.
So for any formula φ and parameter a, we see that φ(x, a) ∈ p if and only if φ(x, f(a)) ∈ p,
and hence p is indeed dcl(C)-definable. Now suppose that B is a definably closed set and p is
B-definable. Then we see that for every L-formula φ(x, y) there is some L(B)-formula dpφ(y)
such that for all a ∈ M we have φ(x, a) ∈ p if and only if |= dpφ(a). Now let cφ be a code
for this element, so there is some L-formula ψ(x, y) such that cφ is the unique element such
that ψ(M, cφ) = dpφ(M). So we notice that cφ is the unique solution of the L(B)-formula
given by ∀x(ψ(x, y) ↔ dφ(x)). And hence we see that cφ ∈ dcl(B) = B, so C ⊆ B, and
hence cb(p) = dcl(C) ⊆ B. So cb(p) is indeed the smallest definable set over which p is
definable.

Definition 6.13. Let A be a small set of parameters and let p ∈ S(A) be a definable type
which is defined by the schema D = {dpφ(y) | φ(x, y) ∈ L}. Then we say that D is a large
schema if it defines a global type q ∈ S(M) extending p.

Exercise 31. Let D be a definition schema for a type p ∈ S(A), with A small. Show that D
is large if and only if it is a definition schema for some type q over a model M containing A.

Lemma 6.14. Suppose T is a stable theory, A ⊆ B are sets of parameters such that A is
small, and p ∈ S(B). Then p does not fork over A if and only if p has a large definition over
acleq(A).

Proof. Suppose that p does not fork over A. Then using Lemma 4.7 there is some global
extension p′ of p such that p′ does not fork over A. Now let M be some model containing
A, then p′ does not fork over M , and hence, by Theorem 6.10, it is definable over M . This
means that it is also definable over M eq, and since this is a definably closed set, we see that
cb(p′) ⊆M eq. And hence we see that

cb(p′) ⊆
⋂
M⊇A

M eq = acleq(A)

where the equality is due to Lemma 6.4. So we see that p′ is acleq(A)-definable, so it has a
definition schema D over acleq(A). This schema is automatically a definition schema for p,
and hence it is a large definition schema for p.

Now suppose p has a large definition schema over acleq(A). Then there is some global
extension p′ of p which is acleq(A)-definable. Hence using Exercises 22 and 20, we see that p′

does not fork over acleq(A), and hence p′ also doesn’t fork over A. And since p′ is an extension
of p, we see that p also doesn’t fork over A.
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Lemma 6.15. Let T be a stable theory and let p(x) and q(y) be global types. Now let φ(x, y) ∈
L be a formula such that there are definitions dpφ(y) and dqφ(x) for φ such that for all a, b ∈M
we have: |= dpφ(b) if and only if φ(x, b) ∈ p(x), and |= dqφ(a) if and only if φ(a, y) ∈ q(y).
Then dpφ(y) ∈ q if and only if dqφ(x) ∈ p.

Proof. First notice that since T is stable, there are small sets such that p and q don’t fork
over these sets. It follows from Theorem 6.10 that there are small models over which they
are definable. We can take the union of these to find a small set over which they are both
definable. So let A be some small set of parameters such that p and q are both definable over
A. We will build a sequence (ai, bi)i∈ω recursively. First we set b0 |= q|A and a0 |= p|Ab0 . We
can always choose such elements because the restrictions of p and q are types over small sets
of parameters, and hence these restrictions are realized by saturation. Now given (ai, bi)i<n,
we choose bn |= q|Aa0...an−1 and an |= p|Ab0...bn . Now suppose i < j, then we see:

|= φ(ai, bj) ⇔ φ(ai, y) ∈ q
⇔ |= dqφ(ai)

⇔ dqφ(x) ∈ p.

And if i ≥ j, then we see:

|= φ(ai, bj) ⇔ φ(x, bj) ∈ p
⇔ |= dpφ(bj)

⇔ dpφ(y) ∈ q.

Now since T is stable we know that φ is stable, so it cannot be the case that |= φ(ai, bj) if
and only if i < j. So suppose dpφ(y) ∈ q(y), then |= φ(ai, bj) for all i ≥ j. And by stability
this means that there must be some i < j such that |= φ(ai, bj), and hence we see that
dqφ(x) ∈ p(x). The other direction is analogous.

Definition 6.16. Let A be a set of parameters and p ∈ S(A). Then we say that p is stationary
if it has a unique global extension q such that q does not fork over A.

Lemma 6.17. Let T be a stable theory and let A ⊆M be small such that A = acleq(A). Then
every p ∈ S(A) is stationary.

Proof. Let p ∈ S(A) be such a type. In order to prove that p is stationary, we need to prove
existence and uniqueness of such a global non-forking extension. For existence, we notice that
since T is stable, it is simple, and hence there is some A0 ⊆ A such that p does not divide
over A0, and since dividing and forking are equivalent in these theories, we see that p does
not fork over A0. So according to Lemma 4.7 there is some global extension q of p such that
q does not fork over A0, and hence q does not fork over A.

To prove uniqueness, suppose p′, p′′ are two such types, let φ(x, b) ∈ L(M) be any for-
mula, and let q be a global non-forking extension of tp(b/A). Then by Lemma 6.14 and the
assumption that A = acleq(A) the types p′, p′′ and q are all definable over A. Then using
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Lemma 6.15 and the fact that dqφ(x) ∈ L(A) we now see:

φ(x, b) ∈ p′ ⇔ |= dp′φ(b)

⇔ dp′φ(y) ∈ q
⇔ dqφ(x) ∈ p′

⇔ dqφ(x) ∈ p
⇔ dqφ(x) ∈ p′′

⇔ dp′′φ(y) ∈ q
⇔ |= dp′′φ(b)

⇔ φ(x, b) ∈ p′′.

And hence we see that p′ = p′′.

In order to be able to use this lemma, we will in the rest of this section assume that T
has elimination of imaginaries.

Definition 6.18. We define the notion of forking independence, denoted by |̂ , as follows:
if a, b, c are small, then a |̂

c
b if tp(a/bc) does not fork over c.

The properties of forking independence depend on the theory that we are working in. So
we will start with the properties that are valid in any theory, and then take a look at the
more specialized cases of simple and stable theories.

Theorem 6.19. Let T be an arbitrary theory. Then forking independence satisfies the fol-
lowing properties:

1. (Invariance): If f ∈ Aut(M) then for any a, b, c, we have a |̂
c
b if and only if f(a) |̂

f(c)
f(b).

2. (Finite character): For any a, b, c, if a 6 |̂
c
b then there are some finite a′ ⊆ a and b′ ⊆ b

such that a′ 6 |̂
c
b′.

3. (Monotonicity): For any a, a′, b, b′, c if aa′ |̂
c
bb′, then a |̂

c
b.

4. (Base monotonicity): For any a, b, b′, c if a |̂
c
bb′, then a |̂

cb′
b.

5. (Right extension): For any a, b, c if a |̂
c
b then for every d there is some d′ ≡bc d such

that a |̂
c
bd′.

6. (Left transitivity): For any a, a′, b, c if a |̂
c
b and a′ |̂

ac
b, then aa′ |̂

c
b.

Proof. 1. Suppose a 6 |̂
c
b, so tp(a/bc) forks over c. Then there is some formula φ(x, b, c) ∈

tp(a/bc) such that φ forks over c. So there are ψ0(x, d0), ..., ψn(x, dn) all dividing over
c such that φ(x, b, c) |=

∨
i≤n ψi(x, di). So now we see that if f ∈ Aut(M) then |=

φ(f(a), f(b), f(c)) since |= φ(a, b, c). And we also see that
φ(x, f(b), f(c)) |=

∨
i≤n ψi(x, f(di)), and we know that the ψi(x, f(di)) all divide over

f(c). So we conclude that φ(x, f(b), f(c)) forks over f(c), so tp(f(a)/f(b)f(c)) forks over
f(c), and hence f(a) 6 |̂

f(c)
f(b). So this means that if f(a) |̂

f(c)
f(b), then a |̂

c
b. The

other direction is clear, because from the previous result we see that if f(a) 6 |̂
f(c)

f(b),

then by taking f−1 ∈ Aut(M) we have a 6 |̂
c
b. So we conclude that if a |̂

c
b, then
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f(a) |̂
f(c)

f(b). So we indeed have for any f ∈ Aut(M) that a |̂
c
b if and only if

f(a) |̂
f(c)

f(b).

2. Suppose a 6 |̂
c
b, then tp(a/bc) forks over c, so there is some formula in this type which

forks over c. Since a formula contains only a finite number of variables and parameters
we see that this means that there are some finite a′ ⊆ a and b′ ⊆ b such that there is
some φ(x, b′, c) ∈ tp(a/bc) such that |= φ(a′, b′, c) and such that φ(x, b′, c) forks over c.
So tp(a′/b′c) forks over c, and hence a′ 6 |̂

c
b′.

3. Suppose that a 6 |̂
c
b, so tp(a/bc) forks over c, then it contains some formula φ(x, b, c)

which forks over c. Now define the formula ψ(x, y, b, c) := φ(x, b, c), then we see that
ψ(x, y, b, c) ∈ tp(aa′/bb′c) and we clearly see that it forks over c. So we conclude that
tp(aa′/bb′c) forks over c, so aa′ 6 |̂

c
bb′. So we conclude that if aa′ |̂

c
bb′, then a |̂

c
b.

4. If a |̂
c
bb′, then tp(a/bb′c) does not fork over c, and hence it also does not fork over

cb′, and hence we see that a |̂
cb′
b.

5. Suppose a |̂
c
b, so tp(a/bc) does not fork over c. LetM be a small |cb|+-saturated model

containing cb. According to Lemma 4.7 there is some extension p ∈ S(M) of tp(a/bc)
which does not fork over c. Now let d be arbitrary, then because M is saturated enough,
we see that tp(d/bc) is realized by some d′ ∈M . Now since M is small we know that p is
realized by some a′ ∈M , so a′ ≡bc a and a′ |̂

c
M . So with monotonicity it follows that

a′ |̂
c
bd′. Now since a′ ≡bc a we can take some f ∈ Aut(M/bc) such that f(a′) = a.

With invariance it follows that a |̂
c
bf(d′). Since f(d′) ≡bc d′ ≡bc d, the desired result

follows.

6. First we define a |̂ d
c
b to mean that tp(a/bc) does not divide over c. Now suppose

a |̂ d
c
b and a′ |̂ d

ac
b. This means that tp(a/bc) does not divide over c and tp(a′/bac)

does not divide over ac. Now it follows from Corollary 4.5 that tp(aa′/bc) does not
divide over c, and hence aa′ |̂ d

c
b. So the result is valid if we replace |̂

c
by |̂ d

c
.

Now suppose M1 is a small model of T such that bc ⊆ M1 and such that M1 contains
every definable set which is defined by a formula forking over c. Now using Lemma 4.7,
there is a nonforking extension tp(a1/M1) of tp(a/bc), so a1 |̂ cM1. Now using invari-
ance and the fact that a1 ≡bc a, there is some f ∈ Aut(M/bc) such that a |̂

c
f(M1).

Now using right extension there is some M2 ≡abc f(M1) such that a′ |̂
ac
bM2, and

since b ∈ M2 we find that a′ |̂
ac
M2. Now since a |̂

c
f(M1) and f(M1) ≡abc M2 we

see with invariance that a |̂
c
M2. So we now have a |̂

c
M2 and a′ |̂

ac
M2. So it fol-

lows that a |̂ d
c
M2 and a′ |̂ d

ac
M2, and hence we see that aa′ |̂ d

c
M2. By our choice of

M1 (containing every set which forks over c) and the fact that M2 ≡c M1, we conclude
that aa′ |̂

c
M2, and hence we see that aa′ |̂

c
b.

We can of course specialize by making assumptions on our theory. For example, we can
prove a lot more if our theory is simple:

Exercise 32. Let T be a simple theory. Prove that |̂
c

satisfies the following properties:

1. Local character: For any a, b there is some c ⊆ b such that |c| ≤ |T | and such that
a |̂

c
b.



CHAPTER 6. MORE ON FORKING 72

2. Symmetry: For any a, b, c we have a |̂
c
b if and only if b |̂

c
a.

3. Left extension: For any a, b, c if a |̂
c
b then for every d there is some d′ ≡ac d such that

ad′ |̂
c
b.

4. Right transitivity: For any a, b, b′, c, if a |̂
c
b and a |̂

bc
b′, then a |̂

c
bb′.

We can specialize even further by assuming that our theory is stable.

Theorem 6.20. Let T be a stable theory. Then forking satisfies the following properties:

1. (Conjugacy): Let A be a small set of parameters and let p ∈ S(A). Then any two global
non-forking extensions of p are conjugate over A (this means that if p1, p2 are these
extensions, then there is some f ∈ Aut(M/A) such that f(p1) = p2.

2. (Boundedness): Let A be a small set of parameters and let p ∈ S(A). Then p has at
most 2|T | global non-forking extensions.

Proof. 1. Suppose p1 and p2 are two global non-forking extensions of p. Then we notice
that p1|acl(A) and p2|acl(A) are conjugate over A. So there is some f ∈ Aut(M/A)
such that f(p1|acl(A)) = p2|acl(A). However, we know from Lemma 6.17 that p1|acl(A)

and p2|acl(A) are both stationary, meaning that p1 and p2 are there unique global non-
forking extensions. However, we notice that f(p1) is a global non-forking extension of
p2|acl(A), meaning that f(p1) = p2. So p1 and p2 are conjugate over A.

2. Since T is stable, it is in particular simple. This means that their is some A0 ⊆ A with
|A0| ≤ |T | such that p does not fork over A0. Now consider a global extension p′ of p.
Then we see that p′ is in particular an extension of p|acl(A0), which is a stationary type.
So the number of global extensions of p is at most the number of extensions of p|A0

to acl(A0). Now since T is complete and |A0| ≤ |T |, we see that |L(acl(A0))| ≤ |T |,
and since the number of extensions is at most 2|L(acl(A0))|, we see that this number of
extensions is indeed at most 2|T |.

6.4 Forking and ranks

In this section, we will see how under the assumption of stability we can use the ∆-rank of
sets of formulas to determine when types are forking over algebraically closed sets. We will
also be able to conclude that we can use the Morley-rank to determine when types are forking
over arbitrary sets. The material in this section was taken from [15]. In order to prove our
main result, we first have to take another look at definability of types in stable theories. We
know from Theorem 3.20 that all types are definable in stable theories. However, we want to
know a little bit about the formulas defining them.

Lemma 6.21. Let T be a stable theory, and let M be a small model of T . Let p(x) ∈ S(M)
and let φ(x, y) be some L-formula. Then φ(x, y) has a defining formula dpφ(y) for p(x), which
is a positive Boolean combination of formulas of the form φ(c, y), with c ∈M .

Proof. Let c′ be an element realizing p(x). Note that if |= φ(c,m) for all m ∈ M , then
we take an empty conjunction as defining formula. We can take the empty disjunction if
|= ¬φ(c,m) for all m ∈ M . This means we may assume that there are d, e ∈ M such that
|= φ(c′, d) ∧ ¬φ(c′, e). Now we will define the following:
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• A sequence of elements (ci)i∈ω in M ;

• For every i ∈ ω ∪ {−1} two sets Ki, Li ⊆ P({0, ..., i});

• An element asi+1 in M for every i ∈ ω ∪ {−1} and s ∈ Ki;

• An element bti+1 in M for every i ∈ ω ∪ {−1} and t ∈ Li.

Here we have obviously added −1 to ω as an element with the property that −1 + 1 = 0. We
now make our construction as follows: first let c0 be arbitrary, and set K−1 = L−1 = {∅}.
Now suppose that for some n ∈ ω, the elements c0, ..., cn, the sets K−1, ...,Kn−1, the sets
L−1, ..., Ln−1, the elements asi (for all i ∈ {0, ..., n} and s ∈ Ki) and the elements bti (for all
i ∈ {0, ..., n} and t ∈ Li) have already been defined. We now proceed as follows:

• We define

Kn = {s ⊆ {0, ..., n} | ∃a ∈M∀j ∈ s ( |= φ(cj , a) ∧ ¬φ(c′, a))}.

• If s ∈ Kn, then we let asn+1 be an element such that for all j ∈ s, we have |= φ(cj , a
s
n+1)∧

¬φ(c′, asn+1). We let An = {asi+1 | i ≤ n, s ∈ Ki}.

• We define

Ln = {t ⊆ {0, ..., n} | ∃b ∈M∀j ∈ t ( |= ¬φ(cj , b) ∧ φ(c′, b))}.

• If t ∈ Ln, then we let btn+1 be an element such that for all j ∈ t, we have |= ¬φ(cj , b
t
n+1)∧

φ(c′, btn+1). We let Bn = {bti+1 | i ≤ n, t ∈ Li}.

Now we notice that An ∪Bn is a finite subset of M . We claim that there is some c ∈M such
that for all d ∈ An ∪Bn, we have |= φ(c, d) if and only if |= φ(c′, d). To see this, consider the
formula χ(x), defined by ∧

b∈Bn

φ(x, b) ∧
∧
a∈An

¬φ(x, a).

We know that |= χ(c′), and hence |= ∃xχ(x). So M |= ∃xχ(x), so there is some c ∈ M such
that |= χ(c). This c satisfies, so we choose cn+1 to be such an element in M .

We now claim that if we have natural numbers i0 < ... < in for some n ∈ ω, and there is
some a ∈M such that

|= φ(ci0 , a) ∧ ... ∧ φ(cin , a) ∧ ¬φ(c′, a),

then there are d0, ..., dn ∈ M such that for all j, r with 0 ≤ j, r ≤ n we have |= φ(cij , dr) if
and only if j < r.

To prove this claim, we let d0 = asi0 for some arbitrary s ∈ Ki0−1. Then we know that
if 0 ≤ j ≤ n, then |= ¬φ(cij , d0). Now suppose 0 ≤ k < n. We know by assumption
that the set s = {i0, ..., ik} ∈ Kik . Now we let dk+1 = asik+1. Then we notice that |=
φ(ci0 , dk+1)∧ ...∧φ(cik , dk+1) and |= ¬φ(cij , dk+1) if k+1 ≤ j ≤ n. And hence we have indeed
constructed the desired elements d0, ..., dn.

In the same way we can prove that if we have i0 < ... < in ∈ ω and for some b ∈ M we
have

|= ¬φ(ci0 , b) ∧ ... ∧ ¬φ(cin , b) ∧ φ(c′, b),
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then there are e0, ..., en ∈ M such that for all j, r with 0 ≤ j, r ≤ n we have |= ¬φ(cij , er) if
and only if j < r.

It follows from the first of these two observations that if a ∈ M and n ∈ ω, and s ⊂
{0, ..., 2n} with |s| = n, and we have |= φ(ci, a) for all i ∈ s, then |= φ(c′, a). And in the same
way (from the second observation) we see that if we have some b ∈M and some t ⊂ {0, ..., 2n}
with |t| = n, and we have |= ¬φ(ci, b) for all i ∈ t, then |= ¬φ(c′, b). Now we fix n ∈ ω to be
a natural number such that there are no sequences (ai)i≤n and (bi)i≤n such that |= φ(ai, bj)
if and only if i < j for all i, j ≤ n.

We find that for any a ∈M , the formula φ(x, a) is in p(x) if and only if

|=
∨{∧

{φ(ci, a) | i ∈ s} | s ⊂ {0, ..., 2n}, |s| = n
}
.

This gives us the desired formula dpφ.

Remark. In the case of global types, this can be strengthened a little. If p(x) ∈ S(M) and A
is a small set of parameters, then there is a sequence (ci)i∈ω such that for every i ∈ ω, the
element ci+1 realizes p|A∪{c0,...,ci}, and the formula dpφ(y) is a positive Boolean combination
of formulas of the form φ(ci, y). This can be done by being careful about what elements ci
are being picked, and by using saturation of the monster model.

Now we are ready to see how we can use the ∆-rank to determine forking.

Theorem 6.22. Let T be a stable theory, ∆ a finite set of formulas and A an algebraically
closed set. If A ⊆ B and p(x) ∈ S∆(B), the p(x) forks over A if and only if R∆(p(x)) <
R∆(p|A(x)).

Proof. Suppose p(x) does not fork over A. From the definition of the ∆-rank applied to
complete types, we see that there must be some formula φ(x, b) ∈ p(x) such that R∆(φ(x, b)) =
R∆(p(x)). And since p doesn’t fork over A, we know that φ doesn’t fork over A.

Now consider tp(b/A), which clearly doesn’t fork over A (since no type forks over its
domain). Now since A is algebraically closed, we see that this type has a large definition over
A, by Lemma 6.14. So let q(y) ∈ S(M) be an A-definable type over a small |A|+-saturated
model M ⊇ A extending tp(b/A). Clearly q(y) doesn’t fork over A. Consider the L(A)-
formula dqφ

∗(x), where φ∗(y, x) is φ(x, y). By Lemma 6.21 and its remark, there is some
A-indiscernible sequence (ci)i∈ω in M such that dqφ

∗(x) is a positive Boolean combination of
formulas of the form φ(x, ci).

Now we notice that by Lemma 4.7, the type p(x) can be extended to a type p′(x) ∈ S∆(M)
which doesn’t fork over A. Now we consider the formula dp′φ(y). Since this formula is a
positive Boolean combination of formulas of the form φ∗(di, y), and |= dp′φ

∗(b). We conclude
that dp′φ(y) ∈ q(y), and with Lemma 6.15, we see that dqφ

∗(x) ∈ p′(x). And since this is
an L(A)-formula, we see that dqφ

∗(x) ∈ p|A(x). So there is some formula in p|A(x) which is
equivalent to a positive Boolean combination of formulas of the form φ(x, ci), where every ci
has the same type over A as b. Now it follows from Lemma 3.17 that

R∆(p(x)) ≤ R∆(p|A(x)) ≤ R∆(dqφ
∗(x)) ≤ R∆(φ(x, b)) = R∆(p(x))

So we indeed conclude that R∆(p(x)) = R∆(p|A(x)).

Now for the other direction, suppose p(x) does fork over A. Let p′(x) ∈ S∆(M) extend
p such that p′ doesn’t fork over B. Then we know from the first part of this proof that
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R∆(p) = R∆(p′). We also note that p′ forks over A, since p does. This means that there is
some formula φ(x, b) ∈ p′(x) which divides over A. From the definition of dividing, this means
that the type p′ has infinitely many A-conjugates. Now we choose a pairwise inconsistent
set of formulas from these A-conjugates of p′, and conclude from Lemma 3.17 part 4 that
R∆(p′) > R∆(p|A).

If we are not considering local ranks but the Morley rank (so the ∆-rank but with ∆ being
the set of all formulas), then we get an even better result. For in this case, we don’t need
A to be algebraically closed. We can consider not the L(acl(A))-formula dqφ

∗(y), but the
A-definable formula defined as the disjunction of the finitely many A-conjugates of dqφ

∗(y).
This proof would not work in the case of local ranks, because this might no longer be an
element of p, since the elements in acl(A) might not be given by the solutions of formulas in
∆.



Chapter 7

Stable groups

Stability theory has proven its worth with some applications to algebraic geometry. An
application of model theory to algebra is via the concept of stable groups. This is currently
an active area of research. In this chapter, we will give a short introduction to this concept.

7.1 Chain conditions

In this section, we will define stable groups, and take a look at the interplay between groups
and model theory.

Definition 7.1. Let T be a stable theory and let G be a definable subset of M. Then we say
that G is a stable group if there is some definable operation · : G × G → G such that (G, ·)
satisfies the axioms of a group.

As an easy example, we have seen that the theory of algebraically closed fields of charac-
teristic 0 is a stable theory. Clearly, the entire monster model is a definable additive group,
so this is an example of a stable group.

Definition 7.2. Let G be a stable group. Then a uniformly defined family of subgroups of G
is a family of subgroups (Hi)i∈I (with I some index set) of G such that there is some L-formula
φ(x, y) and some family of parameters (ai)i∈I such that for every i ∈ I: Hi = φ(M, ai).

Lemma 7.3. Let G be a definable group in a theory which is in NSOP. If H0 ⊆ H1 ⊆ H2 ⊆ ...
is a chain of subgroups of G uniformly defined by the formula φ(x, y), then there is some n ∈ ω
such that Hn = Hn+1 = Hn+2 = ....

Proof. Otherwise, the formula φ(x, y) would clearly have the strict order property.

Lemma 7.4. Let G be a definable group in a theory which is in NIP. Then for every formula
φ(x, y) there is some natural number m such that if I is a finite index set and (Hi)i∈I is a
family of subgroups of G uniformly defined by φ(x, y), then there is some J ⊆ I such that
|J | ≤ m and such that

⋂
i∈I Hi =

⋂
j∈J Hj.

Proof. Suppose this is not the case. Then for every natural number m there is a family of
subgroups (Hi)i≤m and parameters (bi)i≤m such that for every i ≤ m we have Hi = φ(M, bi)

76
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and
⋂
j≤mHj (

⋂
j≤m, j 6=iHj . Now we can use the compactness theorem to show that from

this it follows that φ(x, y) has the independence property, which would yield a contradiction
since our theory is in NIP. So we add to our language constants (as)s⊆ω and (ci)i∈ω, and we
add axioms φ(as, ci) whenever i ∈ s and ¬φ(as, ci) whenever i 6∈ s. Now suppose that we
have a finite subtheory, so we only have a finite set of these axioms, say that we only use the
constants c0, ..., cm. Now notice that there is a family of subgroups (Hi)i≤m and parameters
(bi)i≤m such that for every i ≤ m we have Hi = φ(x, bi) and

⋂
j≤mHj (

⋂
j≤m, j 6=iHj . So

we interpret ci = bi for every i ≤ m. For every i ≤ m, there is some element hi ∈ G such
that hi ∈

⋂
j≤m, j 6=iHj but hi 6∈

⋂
j≤mHj . Now we interpret as =

∏
i 6∈s, i≤m hi, where the

product is the group-theoretic product. Now suppose that i ∈ s. Then we see that if j 6∈ s
and j ≤ m, then hj ∈ Hi, and hence we see that |= φ(hj , bi) for all of these elements hj . And
since φ(M, bi) is a group and is therefore closed under multiplication we see that as ∈ Hi.
So if i ∈ s, then |= φ(as, bi). Now suppose that i 6∈ s. Then we see that if as ∈ Hi, then∏
j 6∈s, j≤m hj ∈ Hi. We also know that hj ∈ Hi if i 6= j. This means that hi ∈ Hi, because the

product itself and all the other terms of the product are in Hi. But we know that hi 6∈ Hi,
and hence we conclude that as 6∈ Hi, so if i 6∈ s, then |= ¬φ(as, bi).

So with compactness we conclude that there are (as)s⊆ω and (ci)i∈ω such that |= φ(as, ci)
if and only if i ∈ s, hence we conclude that φ(x, y) has the independence property. Since we
assumed that T is in NIP, we conclude that there is some natural number m such that if I is
a finite index set and (Hi)i∈I is a family of subgroups of G uniformly defined by φ(x, y), then
there is some J ⊆ I such that |J | ≤ m and such that

⋂
i∈I Hi =

⋂
j∈J Hj .

Theorem 7.5. Let G be a stable group. Then for every formula φ(x, y) there is some natural
number k such that any descending chain of intersections of φ-definable groups has length at
most k.

Proof. Since G is a stable group and stable implies NIP, we can use Lemma 7.4. So consider
an element of such a descending chain, which is an intersection of φ-definable groups. By
Lemma 7.4, these have to be finite intersections, since there is some m ∈ ω such that all finite
intersections are at most m big. But if we have an infinite intersection which is not at most
m big, then we can also make arbitrarily large finite intersections. Now since all the elements
in this chain are at most m large intersections, they are themselves uniformly definable by an
m-large conjunction over formulas φ(x, y). Now it follows from Lemma 7.3 that such a chain
has bounded length.

This model-theoretic result about stable groups can be used to show a purely group-
theoretic result about stable groups, which is left as an exercise.

Exercise 33. Let G be a stable group and let A ⊆ G be a subset of G. Then there is some
finite B ⊆ A such that A and B have the same centralizer (so {g ∈ G | ∀a ∈ A(g ·a = a ·g)} =
{g ∈ G | ∀b ∈ B(g · b = b · g)}).

Theorem 7.6. Let G be a stable group and let H ≤ G be an Abelian subgroup of G. Then
there is some definable Abelian subgroup H ′ ≤ G such that H ≤ H ′.

Proof. Consider the centralizer of H:

CG(H) = {g ∈ G | ∀h ∈ H(g · h = h · g)}.
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Since H is an Abelian subgroup of G, we know that H ≤ CG(H). Now we let H ′ be the
center of CG(H), so

H ′ = Z(CG(H)) = {g ∈ CG(H) | ∀h ∈ CG(H)(g · h = h · g)}.

Suppose that we have some element g ∈ H, then g ∈ CG(H), and if h ∈ CG(H), then by
definition of CG(H) we see that g · h = h · g, and hence H is a subgroup of Z(CG(H)). We
also notice that Z(CG(H)) is an Abelian subgroup of G, so if we can prove that Z(CG(A)) is
definable, we are done. For this, we notice that by Exercise 33, there is some finite H0 ⊆ H
such that CG(H) = CG(H0). So we see that

Z(CG(H)) = Z(CG(H0))

= {g ∈ CG(H0) | ∀h ∈ CG(H0)(g · h = h · g)}
= {g ∈ G | g ∈ CG(H0) ∧ ∀h ∈ CG(H0)(g · h = h · g)}
= {g ∈ G | ∀a ∈ H0(g · a = a · g) ∧ ∀h(∀b ∈ H0(h · b = b · h)→ g · h = h · g)}

=

g ∈ G | ∧
a∈H0

g · a = a · g ∧ ∀h

 ∧
b∈H0

h · b = b · h

→ g · h = h · g

 .

7.2 Generics

Left- and right-genericity is a generalization of the notion of cosets. The goal of this section
is to learn a little more about this notion. We have used [5] as a source here.

Definition 7.7. Let G ⊆M be a stable group. A definable subset A ⊆M is called left-generic
if there is some n ∈ ω and there are some g0, ..., gn ∈ G such that G =

⋃
i≤n gi · (A ∩ G).

A is called right-generic if there is some n ∈ ω and there are some h0, ..., hn ∈ G such
that G =

⋃
i≤n(A ∩ G) · hi. A is called generic if there is some n ∈ ω and there are some

g0, ..., gn, h0, ..., hn ∈ G such that G =
⋃
i≤n gi · (A ∩G) · hi.

Exercise 34. Let A ⊆ M be generic and f ∈ Aut(M). Show that f(A) is also generic.
Conclude that this is also the case for left-generic and right-generic.

Lemma 7.8. Let G be a stable group and let A ⊆M be a definable set. Then either A is left
generic or Ac is right-generic.

Proof. Suppose that both is not the case. Since A is not left-generic, we have for every
g0, ..., gn ∈ G some g ∈ G such that g 6∈

⋃
i≤n g

−1
i ·(A∩G), and hence we see that gi ·g ∈ Ac∩G

for every i ≤ n. In much the same way, but using that Ac is not right-generic, we see that
for every h0, ..., hn ∈ G there is some h ∈ G such that h · hi ∈ A ∩ G for every i ≤ n.
Now we will inductively build a sequence (ai, bi)i∈ω of pairs of elements of G such that
bn · a0, ..., bn · an ∈ A ∩G for every n ∈ ω and b0 · an+1, ..., bn · an+1 ∈ Ac ∩G for every n ∈ ω.
First choose a0 arbitrarily and choose b0 such that b0 · a0 ∈ A ∩ G. Now suppose that we
already have (ai, bi)i≤n for some n ∈ ω. Now by the above considerations we see that we can
choose an+1 such that b0 · an+1, ..., bn · an+1 ∈ Ac ∩G, and bn+1 · a0, ..., bn+1 · an+1 ∈ A ∩G.
Now that we have these elements, we see that if i < j, then bi · aj 6∈ A. And if i ≥ j, then
bi · aj ∈ A. But this means that G is not stable, hence we have found a contradiction. We
conclude that either A is left-generic or Ac is right-generic.
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Lemma 7.9. Let G be a stable group, then the definable sets that are not generic form an
ideal in the family of definable sets.

Proof. Suppose B is definable but not generic and A ⊂ B is definable. If A would be
generic, then there is some n ∈ ω and there are g0, ..., gn, h0, ..., hn ∈ G such that G =⋃
i≤n gi · (A ∩G) · hi. But since A ⊆ B we notice that

G =
⋃
i≤n

gi · (A ∩G) · hi ⊆
⋃
i≤n

gi · (B ∩G) · hi ⊆ G

and hence we conclude that if A is generic then B is also generic. So since B is not generic,
we conclude that A is not generic.

Now suppose A and B are two definable sets such that A ∪ B is generic. We will prove
that either A is generic or B is generic. So suppose that

G =
⋃
i≤n

ai((A ∪B) ∩G)bi ⊆
⋃
i≤n

ai(A ∩G)bi ∪
⋃
i≤n

ai(B ∩G)bi.

We know from Lemma 7.8 that either
⋃
i≤n ai(A ∩ G)bi is left-generic or its complement is

right-generic. In the second case we see that
(⋃

i≤n ai(A ∩G)bi

)c
∩ G ⊆

⋃
i≤n ai(B ∩ G)bi,

and hence this set would also be right-generic. So we see that either
⋃
i≤n ai(A ∩ G)bi is

left-generic or
⋃
i≤n ai(B ∩ G)bi is right-generic. In the first case we see that there is some

k ∈ ω and there are some g0, ..., gk ∈ G such that

G =
⋃
j≤k

gj ·
⋃
i≤n

ai(A ∩G)bi ⊆
⋃
j≤k

⋃
i≤n

gj · ai(A ∩G)bi.

And hence we conclude from this that A is generic. In much the same way we conclude that
B is generic if

⋃
i≤n ai(B ∩ G)bi is right-generic. And hence we conclude that if A ∪ B is

generic, then either A is generic or B is generic.
Since the family of sets that are not generic is clearly non-empty (it contains the empty

set, which is definable), we conclude that it is indeed an ideal.

7.3 The Mordell-Lang conjecture

In this section, which is based on [2], we will quickly say something about one of the most
striking applications of stability theory. In 1996, Hrushovski gave a proof of the Mordell-
Lang conjecture for function fields in general characteristic, making heavy use of stable group
theory. This proof is very involved, and requires not only knowledge of stable group theory,
but also of algebraic geometry. Therefore, we shall not treat this proof, but we will state the
theorem. However, even for this we will need a number of definitions from algebraic geometry.
We advise the reader to take the appropriate time to let these definitions sink in.

Definition 7.10. Let F be a field, n ≥ 1 and let A ⊆ Fn. Then we say that A is Zariski
closed is there is a finite set of polynomials over F such that A is the intersection of the
zero-sets of these polynomials.

It turns out (using Hilbert’s basis theorem) that this notion of closed defines a topology,
which is called the Zariski topology .
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Definition 7.11. Let K be an algebraically closed field. Then an affine variety is a Zariski
closed subset of Kn, for some n ≥ 1.

Definition 7.12. If V ⊆ Kn and W ⊆ Km are affine varieties (with possibly n 6= m), then
a morphism f from V to W is a tuple of functions f = (f1, ..., fm) such that for every i ≤ m,
the function fi : V → K is an element of K[V ] = K[x1, ..., xn]/I(V ), where I(V ) is the
ideal generated by the polynomials which define V . If f is bijective and its inverse is also a
morphism, then f is an isomorphism.

Definition 7.13. A quasi-affine variety is a Zariski open subset of an affine variety.

Definition 7.14. A variety is a set V with a finite covering V =
⋃
i≤n Vi such that for every

i ≤ n there is some affine variety Ui and a bijection fi : Vi → Ui such that for all i, j ≤ n, we
have:

• The set Uij = fi(Vi∩Vj) is a Zariski open subset of Ui, hence it is a quasi-affine variety.

• fj ◦ f−1
i is an isomorphism between the quasi-affine varieties Uij and Uji.

Definition 7.15. If V,W are varieties, witnessed by (Vi, fi)i≤n and (Wj , gj)j≤m respectively,
then a map f : V →W is a morphism if it is continuous and for all i ≤ n and j ≤ m we have
gj ◦ f |f−1(Wj)∩Vi : f−1(Wj) ∩ Vi → gj(Wj) is a morphism of affine varieties.

Definition 7.16. A variety V is called complete if for every variety W the projection map
π1 : V ×W →W sends closed sets to closed sets.

Definition 7.17. An algebraic group is a variety V with morphisms µ : V × V → V and
ρ : V → V such that µ defines a group operation on V and for every x ∈ V , the element ρ(x)
is the inverse to x under this operation.

Definition 7.18. An Abelian variety is a connected algebraic group whose underlying variety
is complete.

Definition 7.19. Let A be an abelian variety with group operation µ, and let X be a
subvariety of A. Then we define the stabilizer of X as StabX = {a ∈ A | µ(a,X) ⊆ X}.

Definition 7.20. We say that a group G is of finite rank if there is a finitely generated
subgroup G0 ⊆ G such that for every g ∈ G there is some natural n such that gn ∈ G0.

Now we have all the definitions we need to state the Mordell-Lang conjecture.

Theorem 7.21. Let K ′  K be algebraically closed fields, let A be an Abelian variety defined
over K with group operation µ, and let X be an infinite subvariety of A, defined over K. Let
Γ be a subgroup of finite rank of A. Suppose X ∩Γ is dense in X (in the sense of the Zariski
topology) and the stabilizer of X in A is finite. Then the following exist:

• An Abelian subvariety B ⊆ A,

• An Abelian variety S defined over K ′,

• A subvariety X0 ⊂ S defined over K ′,

• A bijective morphism h : B → S, where S is viewed as a variety over K.
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And these are such that for some a0 ∈ A, we have X = µ(a0, h
−1(X0)).

This statement can be translated to a (partly) model-theoretic statement, using the fol-
lowing definition:

Definition 7.22. A stable theory T is called one-based if in T eq we have A |̂
A∩B B for all

algebraically closed sets A,B.

It turns out that the Mordell-Lang conjecture is equivalent to saying that for every Abelian
variety A and subgroup Γ of A of finite rank, Γ is a stable group and the theory of K is one-
based, or we can ‘descend’ to a smaller field, in the sense of the translation given in the
statement.



Conclusion

In this thesis, we have seen several equivalent definitions of stability. We have also studied
the concept of forking, and the connection between stability and a number of rank functions.
Finally, we have investigated a part of the classification picture and saw a short introduction
to stable groups. There are several topics that could be studied after this point.

There have been applications of stability theory to classical model theory. An example
of this is in [4], where a special case of Vaught’s conjecture is proven by using stable group
theory. Specifically, they consider theories T which satisfy the property that for any κ ≥ 2|T |,
if A is a set of parameters such that |A| ≤ κ, then |S(A)| ≤ κ. Such theories are called
superstable theories. The theorem they prove is that if a superstable theory has a finite rank
of a specific kind, and has strictly less than 2ℵ0 many countable models, then it only has
countably many countable models.

There are several links between model theory and category theory. One of these links is
studied in [12]. Here a certain class of commuting squares in a category C is called a stable
independence relation if it satisfies a number of properties. It turns out that if T is a stable
theory and C is the abstract elementary class of algebraically closed sets in T , then a stable
independence relation is induced by the relation A |̂ M

C
B, where |̂ M

C
denotes independence

over C inside the model M . Since the properties of a stable independence relation are de-
signed to resemble the properties of forking, this can be seen as a generalization of forking to
arbitrary categories.

The connection between stability theory and algebraic geometry can be studied by some-
one who has both read this thesis (or is familiar with this material in some other way) and
has a background in algebraic geometry. The strongest connection between these fields is of
course the proof of the Mordell-Lang conjecture. An explanation of this proof is given in [2].

We have only seen a small fragment of the classification picture, there are still many
more classes of first-order theories in existence, and the relation between all of these classes
has been studied intensively. A comprehensive overview of this can be found on [7]. A few
questions are still left open here (specifically, whether certain inclusions of classes are strict).
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