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1 Introduction

Before we can state the problem at hand, we will need the following definitions

Definition A step set is any S ⊂ Z2 \ {(0, 0)}.

Definition Given a step set S, an allowed step function is any A : Z2 → P(S).

We call the value A(i, j) the allowed step set at (i, j).

Definition Given a step set S and allowed step function A. We define a (re-

stricted) lattice walk starting at (x, y) to be any sequence {ak}k≤n, such that

a0 ∈ A(x, y) and for i > 0 we have ai ∈ A(
∑i−1
k=0 ai). The number n is called

the length and the point
∑n
k=0 ak is called the endpoint.

So, a restricted lattice walk can be seen as a sequence of steps, where each

step ai is taken from the allowed step set at the current position. An example

of restricted lattice walks are positive lattice walks. Positive lattice walks are

lattice walks which are confined to the positive quadrant. The main interest of

this thesis will lie in this type of walks, in particular with the so called Gessel

walks.

Definition A positive lattice walk is a lattice walk with allowed step function

A(i, j) = {(n,m) ∈ S | (i, j) + (n,m) ∈ Z2
≥0}

Definition Gessel walks are positive lattice walks with step set S = {(1, 1), (1, 0), (−1, 1), (−1, 0)}.

Figure 1: Here one can see a visualization of the step set of Gessel walks. Note

that since it is a positive walk, there are restrictions when you are at the axis.
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A common problem in combinatorics concerning lattice walks is the question of

how many walks there are of a given length. For this type of question we need

the following definitions.

Definition Given a step set and allowed step function, we define

q(i, j;n) = #{lattice walks of length n starting at (0, 0) and ending at (i, j)}

and the generating function

Q(x, y; z) =
∑

i,j,n≥0

q(i, j;n)xiyjzn (1)

Gessel walks have been puzzling the combinatorics community since 2001. One

problem was to determine whether or not the generating function of Gessel

walks (1) was algebraic. This was first obtained by Bostan and Kauers [2],

using computer algebra techniques. Later Bostan, Kurkova and Raschel gave

the first readable prove in [3]. This last paper was the inspiration for this thesis.

Our goal will be to prove the algebraicity of (1) inspired by the method given

in [3].

2 Difficulties surrounding Gessel walks

In order to understand why Gessel walks are an interesting case, we will first

present a brief history of the difficulties they gave. This will be a brief summary

of the introduction in [3].

After 2001, many approaches to treat walks in the quarter plane appeared.

This can mostly be credited to Mishna and Bousquet-Mélou who studied pos-

itive walks with small steps (where the steps are a subset of the eight nearest

neighbors). Mishna [8] first considered the case of step sets of cardinality three

and presented a complete classification of the generation functions with respect

to the classes algebraic, transcendental holonomic and non-holonomic. After

this Mishna and Bousquet-Mélou [4] considered all 79 inherently different small

step sets (by first reducing the problem for the in total 28 = 256 small step
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sets). This eventually led to the study of a group of birational transformations

of C2 resulting from a functional equation. In 23 cases this group turns out

to be finite, and the corresponding functional equation were solved in 22 out

of these 23 cases. The remaining case were Gessel walks. In 2010, Bostan and

Kauers showed, using heavy computer algebra techniques, that the generating

function of this last case was algebraic [2]. The first human readable proof was

finally presented in [3].

3 The functional equation and the approach

From now on, Q(x, y; z) will denote the generating function for Gessel walks.

Proposition 3.1. Q(x, y; z) converges for z ∈]0, 1/4[, |x| < 1 and |y| < 1

Proof. This follows immediately from the bound q(i, j;n) ≤ 4n, which is the

number of walks of length n for an unbounded lattice walk.

For this reason we will for now fix z ∈]0, 1/4[. Next we will state the func-

tional equation obtained by Bousquet-Mélou and Mishna which is valid for any

(x, y; z) with |x| < 1 and |y| < 1. This is a special case of Lemma 4 in [4].

Lemma 3.2. The generating function Q(x, y; z) is characterized by the follow-

ing functional equation:

K(x, y; z)xyQ(x, y; z) = zQ(x, 0; z) + z(1 + y)Q(0, y; z)− zQ(0, 0; z)− xy (2)

where,

K(x, y; z) = 1− z
∑

(i,j)∈S

xiyj = 1− z
(
xy + x+

1

xy
+

1

x

)
(3)

is called the kernel of the walk.

Our goal is to prove the algebraicity of Q(x, y; z). In order to do so we

will first prove the algebraicity of Q(x, 0; z) and Q(0, y; z) in their respective

variables. From this and (2) the final result follows. In order to do this we
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will start by studying the curve K(x, y; z) = 0. This will be useful, since on

this curve the left side of (2) will vanish. This allows us to study Q(0, y; z) and

Q(x, 0; z) respectively, while still being able to use the functional equation.

4 The curve K(x, y; z) = 0

Let’s define the affine curve Tz by

Tz = {(x, y) ∈ (C×)2 |K(x, y; z) = 0}. (4)

This affine curve can be completed by adding the points where either x ∈ {0,∞}

or y ∈ {0,∞}. We do this by looking at the parametrization of K(x, y; z) around

these points.

Proposition 4.1. Tz can be completed by adding the points (0,∞), (0,−1),

(∞,−1) and (∞, 0).

Proof. When x is close to 0 we can use x as a local coordinate and by expanding

the solutions for y we find

(x, y) = (x,−1/x2 +O(1/x)) = (0,∞)

and

(x, y) = (x,−1 +O(x)) = (0, −1).

When x is close to ∞ we use t = 1/x as local coordinate and find

(x, y) = (1/t,−t2 +O(t3)) = (∞, 0)

and

(x, y) = (1/t,−1 +O(t)) = (∞, −1).

This concludes the completion of Tz.

We denote the completion of Tz by Tz.
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Lemma 4.2. The curve Tz is birationally equivalent to T ′z, where

T ′z = {(r, s) ∈ (C×)2 | s2 = 4r3 − g2r − g3} (5)

with

g2 =
1

12

(
16 +

1

z4
− 16

z2

)
, g3 = −1− 24z2 + 120z4 + 64z6

216z6
(6)

Proof. The method of this proof was inspired by [5] section 3.3. Let (x, y) ∈ Tz.

Then xy 6= 0 and thus by looking at the polynomial

xy

z
K(x, y; z) =

xy

z
− (1 + y + x2y + x2y2) = 0 (7)

it follows from the quadratic formula, that(
−2(y2 + y)x+

y

z

)2

= (y/z)2 − 4(y2 + y)(y + 1). (8)

So, by the substituting s = 2(y2 + y)x− y
z and r = 1

12z2 −
2
3 − y this becomes

s2 = 4r3 − 1

12

(
16 +

1

z4
− 16

z2

)
r +

1− 24z2 + 120z4 + 64z6

216z6
(9)

This shows that Tz is birationally equivalent to T ′z, where the resulting map

becomes

ψ : Tz → T ′z; (x, y) 7→
(

1

12z2
− 2

3
− y, 2x(y2 + y)− y

z

)
. (10)

To show how ψ extends between Tz and T ′z we use Lemma 4.1

ψ(0,∞) = ψ(x,−1/x2 +O(1/x)) = (1/x2 +O(1/x),−2/x3 +O(1/x2))

= (∞,∞),

ψ(0,−1) = ψ(x,−1 +O(x)) =

(
4z2 + 1

12z2
+O(x),

1

z
+O(x)

)
=

(
4z2 + 1

12z2
,

1

z

)
ψ(∞, 0) = ψ(1/t,−t2 +O(t3)) =

(
1− 8z2

12z2
+O(t2),−2t+O(t2)

)
,

=

(
1− 8z2

12z2
, 0

)
ψ(∞,−1) = ψ(1/t,−1 +O(t)) =

(
4z2 + 1

12z2
+O(t),−1

z
+O(t)

)
,

=

(
4z2 + 1

12z2
,−1

z

)
.
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The form of (5) is commonly known as the Weierstrass normal form and

is parameterized by the Weierstrass elliptic function ℘ and its derivative ℘′ as

(r(t), s(t)) = (℘(t), ℘′(t)). The function ℘ is an elliptic function with periods w1

and w2. These periods follow from the values of g2 and g3. For some common

definitions and theorems for elliptic functions we refer to the appendix. If one

is not familiar with this subject it is advised to first take a look at these. We

will use the results from the appendix the remainder of this section. From now

we denote R = R ∪ {∞}.

Lemma 4.3. We have w1 ∈ R and w2 ∈ iR and

℘(t) ∈ R⇐⇒ t = iq +
n

2
w1 ∨ t = q +

n

2
w2, q ∈ R, n ∈ Z. (11)

Furthermore, ℘ is strictly decreasing on ]0, 1/2w1[ and strictly increasing on

]1/2w1, w1[.

Proof. From (6) it follows that g3
2−27g2

3 = 1
z4 −

16
z2 > 0. The result then follows

from Theorem 10.7 in the Appendix.

Next, we define p : t 7→ ψ−1(℘(t), ℘′(t)). This map then defines a parameter-

ization of Tz. In particular, the map [t] 7→ p(t) defines an isomorphism between

C/Λ and Tz. Here Λ denotes the lattice generated by w1 and w2. We conclude

this section with the following Lemma that will be crucial for the next section.

Let’s first define Π℘ = {αw1 + βw2 | 0 ≤ α, β < 1}.

Lemma 4.4. We have that p(0) = (0,∞), p(1/2w1) = (∞, 0), p(3w1/4) =

(0,−1) and p(w1/4) = (∞, 0).

Proof. First of all we clearly have p(0) = ψ−1(℘(0), ℘′(0)) = ψ−1(∞,∞) =

(0,∞). Next we have p(w1/2) = ψ−1(℘(w1/2), ℘′(w1/2)) = ψ−1(e1, 0), where

e1 is a zero of (5). Because g2 and g3 satisfy the condition in Theorem 10.7, it

follows from Lemma 10.8 that e1 is in fact its largest zero. All zeros of (5) are

given by

1− 8z2

12z2
,
−z2 + 8z4 + 3

√
z4 − 16z6

24z4
,
−z2 + 8z4 − 3

√
z4 − 16z6

24z4
(12)
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so, since z ∈]0, 1/4[, we have e1 = 1−8z2

12z2 and thus p(w1/2) = (∞, 0).

For the last part, take t0 ∈ Π℘ with p(t0) = (0,−1). Then (℘(t0), ℘′(t0)) =

ψ(0,−1) =
(

4z2+1
12z2 ,

1
z

)
. Since we have 4z2+1

12z2 > 1−8z2

12z2 = e1 and ℘′(t0) > 0

it follows from Lemma 10.8 and Lemma 4.3 that t0 ∈]w1/2, w1[. Finally,

we can use the duplication formula for the Weierstrass function to show that

(℘(2t0), ℘′(2t0)) =
(

1−8z2

12z2 , 0
)

. We thus conclude that t0 = 3w1/4. Similar we

find that p(w1/4) = (∞, 0).

Note here that in this section we have made a different approach than most

other material surrounding this subject (like [3] and [5]). In these the choice

was always made to look at (7) as a polynomial in y instead of x. We hope to

show here that our approach is (as expected) also possible and in some parts

maybe even preferable, but we leave this up for the reader to decide.

5 The automorphisms η and ξ

We define the functions η and ξ on (C×)2 by

η(x, y) =

(
1

xy
, y

)
, ξ(x, y) =

(
x,

1

x2y

)
. (13)

Lemma 5.1. The functions η and ξ define automorphisms on Tz.

Proof. We will start by showing that η and ξ map Tz to itself and are injective.

Suppose we have a (x, y) ∈ Tz. It then follows from (3) that

K

(
1

xy
, y; z

)
= 1− z

(
1

x
+

1

xy
+ x+ xy

)
= K(x, y; z) = 0. (14)

K

(
x,

1

x2y
; z

)
= 1− z

(
1

xy
+ x+ xy +

1

x

)
= K(x, y; z) = 0, (15)

This shows that η(x, y) ∈ Tz and ξ(x, y) ∈ Tz.

Now suppose we have (x, y), (x′, y′) ∈ Tz with η(x, y) = η(x′, y′). From the

definition of η we immediately get that x = x′ and then it also follows that

y = y′. A similar argument holds for ξ. Since both η and ξ are rational, we

conclude that they are indeed automorphisms.
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We will also need the following lemma

Lemma 5.2. Both η and ξ have at least one fixed point.

Proof. Using the quadratic formula, it is easy to check that K(x, 1/x; z) and

K(1/y, y2; z) both have solutions in C×. Let x0 resp. y0 be such a solution.

Then it follows immediately that ξ(x0, 1/x0) = (x0, 1/x0) and η(1/y0, y
2
0) =

(1/y0, y
2
0).

In order to extend η and ξ to the completion Tz we will look at the behavior

near the completion points.

Proposition 5.3. We have for the points (0,∞), (∞, 0), (0,−1) and (∞,−1):

(0,∞)

η

η

(∞,−1)

(0,−1) (∞, 0)

η

ξ ξ

Proof. We use the results from Lemma 4.1 to show that

ξ(0,∞) = ξ(x,−1/x2 +O(1/x)) =

(
x,

1

−1 +O(x)

)
= (x,−1 +O(x)) = (0,−1)

ξ(0,−1) = ξ(x,−1 +O(x)) =

(
x,

1

−x2 +O(x3)

)
= (x,−1/x2 +O(1/x)) = (0,∞)

ξ(∞,−1) = ξ(1/t,−1 +O(t)) =

(
1/t,

1

−1/t+O(1)

)
= (1/t,−t+O(t2)) = (∞, 0)

ξ(∞, 0) = ξ(1/t,−t2 +O(t3)) =

(
1/t,

1

−1 +O(t)

)
= (1/t,−1 +O(t)) = (∞,−1)
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η(0,∞) = η
(
x,−1/x2 +O(1/x)

)
=

(
1

−1/x+O(1)
,−1/x2 +O(1/x)

)
= (−x+O(x2),−1/x2 +O(1/x)) = (0,∞)

η(0,−1) = η(x,−1 +O(x)) =

(
1

−x+O(x2)
,−1 +O(x)

)
= (−1/x+O(1),−1 +O(x)) = (∞,−1)

η(∞,−1) = η(1/t,−1 +O(t)) =

(
1

−1/t+O(1)
,−1 +O(t)

)
= (−t+O(t2),−1 +O(t)) = (0,−1)

η(∞, 0) = η(1/t,−t2 +O(t3)) =

(
1

−t+O(t2)
,−t2 +O(t3)

)
= (−1/t+O(1),−t2 +O(t3)) = (∞, 0)

.

from which Proposition 5.3 follows.

Corollary 5.4. The automorphisms η and ξ can be extended to automorphisms

on Tz.

Next we will look at the group generated by η and ξ.

Proposition 5.5. The functions η and ξ generate a group of order 8 under

composition, which is isomorphic to D4, the symmetry group of the square.

Proof. We will show that ξ and ξ ◦ η satisfy the relations of D4

D4 = 〈s, r | r4 = s2 = e, srs−1 = r−1〉 (16)

with ξ ↔ s and ξ ◦ η ↔ r. We start with

(ξ ◦ ξ) : (x, y)
ξ7−→
(
x,

1

x2y

)
ξ7−→ (x, y). (17)

So we conclude that ξ2 = id and thus that ξ−1 = ξ. Secondly, we have

ξ ◦ η : (x, y)
η7−→
(

1

xy
, y

)
ξ7−→
(

1

xy
, x2y

)
. (18)

Using this, we can show that

(ξ ◦ η)4 : (x, y)
ξ◦η7−→

(
1

xy
, x2y

)
ξ◦η7−→

(
1

x
,

1

y

)
ξ◦η7−→

(
xy,

1

x2y

)
ξ◦η7−→ (x, y). (19)
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So we have verified that (ξ ◦ η)4 = id and we can see that

(ξ ◦ η)−1 : (x, y) 7→
(
xy,

1

x2y

)
. (20)

The last thing to check is

ξ ◦ (ξ ◦ η) ◦ ξ−1 = ξ2 ◦ η ◦ ξ = η ◦ ξ : (x, y)
ξ7−→
(
x,

1

x2y

)
η7−→
(
xy,

1

x2y

)
. (21)

So indeed we have ξ ◦ (ξ ◦ η) ◦ ξ−1 = (ξ ◦ η)−1.

We would now like to lift these automorphisms to C. In order to do so, we

first recall that the map [t] 7→ p(t) defines an isomorphism between C/Λ and

Tz. Thus we can speak of the automorphisms η̃ and ξ̃ on C/Λ. Next we state

the following theorem regarding holomorphic maps C/Λ→ C/Λ.

Theorem 5.6. Given a holomorphic function φ : C/Λ→ C/Λ. Then there exist

a lift f : C→ C of the form f : t 7→ at+ b where a ∈ C and b ∈ φ(0) ∩Π℘.

Proof. The proof of this theorem is largely taken from the proof of Theorem 4.1

in [9].

Let φ : C/Λ → C/Λ be holomorphic. Since C is simply connected we can lift

φ to a holomorphic map f : C → C with [f(0)] = φ(0) so that the following

diagram commutes:

C C

C/Λ C/Λ

f

φ

and thus

f(t+ w) ≡ f(t) mod Λ, for all w ∈ Λ, t ∈ C. (22)

Using the discreteness of Λ we can conclude that the difference f(t+w)− f(t)

is constant. Differentiating, we find that

f ′(t+ w) = f ′(t), for all w ∈ Λ, t ∈ C. (23)
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We thus conclude that f ′ is a holomorphic elliptic function. As a consequence

of Liouville’s theorem it follows that f ′ must be constant. Thus f : t 7→ at + b

for some a, b ∈ C. From [f(0)] = φ(0) it follows that b ∈ φ(0), so we can choose

b = φ(0) ∩Π℘.

Corollary 5.7. Given a holomorphic function φ : C/Λ→ C/Λ, such that φ 6= id

and φ2 = id. Moreover, assume φ has a fixed point [t0]. Then there exist a lift

f : C→ C of the form f : t 7→ −t+ b, with b ∈ φ(0) ∩Π℘.

Proof. From Theorem 5.6 it follows that there exists a lift f : t 7→ at + b of φ.

From φ2 = id it follows then that f2(t) ≡ t mod Λ, and thus that a = ±1. If

a = 1 we find for the fixed point [t0] that f(t0) = t0 + b ≡ t0 mod Λ. But then

b ∈ Λ and thus φ([t]) = [f(t)] = [t]. So we must have a = −1.

We will use Corollary 5.7 in order to prove the following

Theorem 5.8. The maps defined by

η∗ : t 7→ −t, ξ∗ : t 7→ −t+ 3w1/4 (24)

are lifts of the automorphisms η and ξ to C.

Proof. We know from Lemma 4.4 that p(0) = (0,∞). Combined with the fact

that η(0,∞) = (0,∞) we conclude that η̃(0) = 0. So by applying Corollary 5.7,

we thus have a lift η∗ : t 7→ −t.

Next, we know that ξ(0,∞) = (0,−1) so, using Lemma 4.4 we conclude that

ξ̃(0) = [3/4w1]. So by applying Corollary 5.7, we thus have a lift η∗ : t 7→

−t+ 3w1/4.

6 The regions where |x| < 1 and |y| < 1

We define x(t) and y(t) to be the coordinate functions of Tz, i.e. p(t) =

(x(t), y(t)). We have the following

Lemma 6.1. The functions x(t) and y(t) are elliptic with periods w1 and w2

and are both of order two. Moreover, y(t) has a double pole at 0 and double zero
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at 1/2w1 and x(t) has two simple poles at w1/4 and w1/2 and two simple zeros

at 0 and 3w1/4.

Proof. From the definition of ψ (and thus p) both are rational function in ℘

and ℘′ and are thus elliptic. Secondly, given any x (or y), there are at most two

solution to K(x, y; z) = 0, from which we can conclude that both must be of

order two. From Lemma 4.1 we conclude that in Π℘, y(t) only has one pole/zero

(and they are thus double) and x(t) has two simple poles/zeros. The last part

then follows from Lemma 4.4.

Lemma 6.2. We have

x(−t+ 3w1/4) = x(t), x(−t) =
1

x(t)y(t)

y(−t+ 3w1/4) =
1

x(t)2y(t)
, y(−t) = y(t)

Proof. This follows immediately by noting that

(p ◦ η∗)(t) = (η ◦ p)(t) = η(x(t), y(t)) =

(
1

x(t)y(t)
, x(t)

)
(p ◦ ξ∗)(t) = (ξ ◦ p)(t) = ξ(x(t), y(t)) =

(
x(t),

1

x(t)2y(t)

)
and the definition of η∗ and ξ∗.

The first thing we will look at is where x(t), y(t) ∈ R.

Lemma 6.3. We have

x(t) ∈ R⇐⇒ t = iq +

(
n

2
+

3

8

)
w1 ∨ t = q +

n

2
w2, q ∈ R, n ∈ Z.

and

y(t) ∈ R⇐⇒ t = iq +
n

2
w1 ∨ t = q +

n

2
w2, q ∈ R, n ∈ Z.

Proof. First of all, from ψ it follows that y(t) ∈ R ⇔ ℘(t) ∈ R. Next, define

v : t 7→ t+ 3/8w1. We then get that

(x ◦ v)(t) = (x ◦ ξ∗ ◦ v)(t) = x(−t+ 3/8w1) = (x ◦ v)(−t) (25)
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Thus (x ◦ v)(t) is even. It has two simple poles, one at w1/8 and one at −w1/8

and two simple zeros, one at 3w1/8 and one at −3w1/8. A common result from

the theory of elliptic function now state that

(x ◦ v)(t) = C
℘(t)− ℘(3w1/8)

℘(t)− ℘(w1/8)
, C ∈ C. (26)

Furthermore, from ψ and Lemma 4.3 we find t ∈ R ⇔ ℘(t) ∈ R ⇔ y(t) ∈ R ⇒

x(t) ∈ R ⇒ C ∈ R. We thus conclude (x ◦ v)(t) ∈ R ⇔ ℘(t) ∈ R. The results

then follow from Lemma 4.3.

The next thing we will show is where |x(t)| = 1 and |y(t)| = 1. For this we

first need

Proposition 6.4. We have

|x(t)| = 1 ∧ x(t) 6∈ R⇐⇒ x(−t) ∈ R ∧ y(−t) 6∈ R

and

|y(t)| = 1 ∧ y(t) 6∈ R⇐⇒ y(−t+ 3w1/4) ∈ R ∧ x(−t+ 3w1/4) 6∈ R

Proof. It this proof we will frequently use lemma 6.2 without explicit reference.

We start with the first claim. Suppose |x(t)| = 1 and x(t) 6∈ R. Then we must

have 1/x(t) + x(t) ∈ (−2, 2) and thus from (3) it follows that

x(t)y(t) +
1

x(t)y(t)
=

1

z
− 1

x(t)
− x(t) > 2. (27)

We thus conclude that x(−t) = 1
x(t)y(t) ∈ R. Since x(t) 6∈ R we conclude that

y(−t) = y(t) 6∈ R.

Now suppose 1
x(t)y(t) = x(−t) ∈ R and y(t) = y(−t) 6∈ R. Then we have

x(t) 6∈ R. From (3) it follows that 1/x(t) + x(t) ∈ R and thus we conclude

|x(t)| = 1.

For the second claim we use that from (3) it follows that(
1

x(t)
√
y(t)

+ x(t)
√
y(t)

)(
1
√
y

+
√
y

)
=

1

z
> 4. (28)
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Assume that |y(t)| = 1 and y(t) 6∈ R. Then we also have that |
√
y(t)| = 1 and√

y(t) 6∈ R. From this it follows that 1/
√
y +
√
y ∈ (−2, 2) and thus from (28)

that 1

x(t)
√
y(t)

+x(t)
√
y(t) ∈ (−∞,−2)∪(2,∞). We conclude that 1

x(t)
√
y(t)
∈ R

and thus y(−t+ 3w1/4) = 1
x(t)2y(t) ∈ R and x(−t+ 3w1/4) = x(t) 6∈ R.

Finally, assume that 1
x(t)2y(t) = y(−t+ 3w1/4) ∈ R and x(t) = x(−t+ 3w1/4) 6∈

R. Suppose that x(t)
√
y(t) ∈ iR. Then it follows from (28) that we must also

have
√
y(t) ∈ iR. But then x(t) ∈ R. Thus x(t)

√
y(t) ∈ R. Then we must have√

y(t) 6∈ R. Also, combined with (28) we deduce that 1/
√
y(t) +

√
y(t) ∈ R 6=0

and thus |√y| = 1 while
√
y 6= ±i. We thus conclude that |y(t)| = 1 and

y(t) 6∈ R.

Corollary 6.5. We have

|x(t)| = 1⇐⇒ t = iq +

(
n

2
− 3

8

)
w1, t ∈ R, n ∈ Z.

and

|y(t)| = 1⇐⇒ t = iq +

(
n

2
+

1

4

)
w1, t ∈ R, n ∈ Z.

Proof. This follows by combining Proposition 6.4 with Lemma 6.3. Looking at

the region Π℘ and the fact that x and y are of order two it follows that there

can be at most four points t ∈ Π℘ such that x(t) = ±1 (resp. y(t) = ±1).

Combined with the fact that {t ∈ C , |x(t)| = 1} and {t ∈ C , |y(t)| = 1} are

closed in C the result follows.

Corollary 6.6. We have

|x(t)| < 1⇐⇒ <(t)/w1 ∈ (5/8, 9/8)(mod Z)

and

|y(t)| < 1⇐⇒ <(t)/w1 ∈ (1/4, 3/4)(mod Z)

Proof. Not that {t ∈ C , |x(t)| = 1} and {t ∈ C , |y(t)| = 1} divide C in regions

where |x(t)| > 1 and |x(t)| < 1, resp. |y(t)| > 1 and |y(t)| < 1 . The result then

follows from Corollary 6.5, using that x(0) = 0 and y(w1/2) = 0 and the fact

that x(t) and y(t) are elliptic.
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The following image gives a short insight in the results from this last result.

w1

w2

Figure 2: In the above image one can visually see the result of Corollary 6.6.

The red stripes are the regions where |y(t)| < 1, the blue stripes are the regions

where |x(t)| < 1 and the purple stripes are the regions where both |y(t)| < 1

and |x(t)| < 1.

7 Visualizing η∗ and ξ∗

In this section we will try to get a better visualization of the results from the

previous section. This section will be less formal and is included to get a better

understanding of the behavior of the automorphisms discussed and also help to

get a better intuitive feeling why some of the results were found. It is therefore

possible to skip this section, without missing any crucial results.

First, since we are working with elliptic functions, we reduce our interests to

the fundamental parallelogram Π℘. This can be done explicitly by taking the

quotient C/Λ. This parallelogram can then be made into a torus by identifying

the opposite sides and we can then embed it in R3. We will then look at

the result from the automorphisms η and ξ on this torus. By doing so one

can actually show that the resulting maps become (x, y, z) 7→ (x,−y,−z) and

(x, y, z) 7→ (−y,−x,−z). These clearly correspond with regular rotations in R3.

In particular, we have the following image:
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η

ξ

Figure 3: By creating a torus from C/Λ and looking at the resulting maps of η

and ξ, we have a more intuitive look at the nature of these automorphisms. For

instance that the group they generate is isomorphic to D4.

From this it also becomes a lot more intuitive that the generated group is

isomorphic toD4. We can go even further by marking the lines where x(t), y(t) ∈

R and the lines |x(t)| = 1 and |y(t)| = 1. This results in the following image:

η

ξ

Figure 4: By marking the results from the previous section we get a better

insight how specific points are mapped to others by η and ξ.

16



Finally we can look at the regions where |x(t)| < 1 and |y(t)| < 1. By

keeping track of (0,∞) and (∞, 0) this results in the following top-view of these

regions on the torus.

Figure 5: This image shows the regions where |y(t)| < 1 and |x(t)| < 1 on torus,

using the same colors as figure 2. The other interesting points are also marked

using the same colors as figure 4

8 The functions ry and rx

We begin this section by defining the following regions

Definition Let ∆x ⊂ C denote the region where <(t) ∈ (5w1/8, 9w1/8) and

∆y ⊂ C denote the region where <(t) ∈ (w1/4, 3w1/4)
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w1

w2

Δy Δx

Figure 6: A visualization of ∆x and ∆y. Note that they are both one of the

stripes for |x(t)| < 1 and |y(t)| < 1 from figure 2.

From Lemma 6.6 it follows that |x(t)| < 1 on ∆x and |y(t)| < 1 on ∆y. Next,

we define the following important functions on these regions

rx(t) = zQ(x(t), 0; z), t ∈ ∆x

ry(t) = z(1 + y(t))Q(0, y(t); z), t ∈ ∆y.

Notice that we know from Proposition 3.1 that these functions are well-defined

on these regions. Note also that rx(t + w2) = rx(t) and ry(t + w2) = ry(t).

Furthermore, from (2) we can conclude that

rx(t) + ry(t)− zQ(0, 0)− x(t)y(t) = 0, t ∈ ∆x ∩∆y. (29)

Here we use that K(x(t), y(t)) = 0. This allows us to continue the functions

meromorphically on ∆x ∪∆y by

rx(t) = −ry(t) + zQ(0, 0; z) + x(t)y(t), t ∈ ∆y

ry(t) = −rx(t) + zQ(0, 0; z) + x(t)y(t), t ∈ ∆x.

Proposition 8.1. We have the following identity

rx(t+ 3w1/4)− rx(t) = fx(t), <(t) ∈ (w1/4, 3w1/8) (30)

where

fx(t) = y(t)[x(−t)− x(t)]. (31)
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Proof. Let’s take a point <(t0) ∈ (w1/4, 3w1/8). Then t0 ∈ ∆y, −t0 + w1 ∈

∆x ∩∆y and t0 + 3w1/4 ∈ ∆x. Using the definitions of rx and ry, we can then

deduce that

rx(t0 + 3w1/4)) = zQ(x(ξ∗(−t0)), 0; z) = zQ(x(−t0), 0; z)

= zQ(x(−t0 + w1), 0; z) = rx(−t0 + w1)

= −ry(−t0 + w1) + zQ(0, 0; z) + x(−t0 + w1)y(−t0 + w1)

= −ry(−t0 + w1) + zQ(0, 0; z) + x(−t0)y(t0)

rx(t0) = −ry(t0) + zQ(0, 0; z) + x(t0)y(t0)

= −z(1 + y(t0))Q(0, y(t0); z) + zQ(0, 0; z) + x(t0)y(t0)

= −z(1 + y(−t0))Q(0, y(−t0); z) + zQ(0, 0; z) + x(t0)y(t0)

= −z(1 + y(−t0 + w1))Q(0, y(−t0 + w1); z) + zQ(0, 0; z) + x(t0)y(t0)

= −ry(−t0 + w1) + zQ(0, 0; z) + x(t0)y(t0).

And thus

rx(t0 + 3w1/4)− rx(t0) = y(t0)[x(−t0)− x(t0)] = fx(t0). (32)

Which concludes the proof.

Using (32), we can continue rx meromorphically on the whole of C. We will

now show that this continuation is actually elliptic.

Proposition 8.2. The continuation of rx is elliptic with periods 3w1 and w2.

Proof. From the continuation of rx(t) it follows that the functional equation of

(32) holds for all t ∈ C. From this we can show that

r∗x(t+ 3w1) = r∗x(t+ 9w1/4) + fx(t+ 9w1/4)

= r∗x(t+ 6w1/4) + fx(t+ 6w1/4) + fx(t+ 9w1/4)

= r∗x(t+ 3w1/4) + fx(t+ 3w1/4) + fx(t+ 6w1/4) + fx(t+ 9w1/4)

= rx(t) + fx(t) + fx(t+ 3w1/4) + fx(t+ 6w1/4) + fx(t+ 9w1/4)

= rx(t) +

3∑
n=0

fx(t+ 3nw1/4).
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So now our goal is to show that
∑3
n=0 fx(t+ 3nw1/4) = 0. From the definition

of fx and Lemma 6.2 we get

fx(t) = y(t)[x(−t)− x(t)] =
1

x(t)
− x(t)y(t)

fx(t+ 3w1/4) =
1

x(t+ 3w1/4)
− x(t+ 3w1/4)y(t+ 3w1/4)

= x(t)y(t)− x(t)

fx(t+ 6w1/4) = x(t)− 1

x(t)y(t)

fx(t+ 9w1/4) =
1

x(t)y(t)
− 1

x(t)
.

From which it follows that
∑3
n=0 fx(t + 3nw1/4) = 0. So we conclude that

rx(t + 3w1) = rx(t). Since rx is w2 periodic on ∆x, its continuation will be

also. Since we continued rx meromorphically we thus conclude that it is indeed

elliptic with periods 3w1 and w2.

9 The algebraicity of Q(x, y; z)

As a start, we need information about the locations of the poles of rx in Π℘3,1 .

Lemma 9.1. Let Prx ⊂ Πrx denote the set of poles of rx in Πrx . Then Prx ⊂

{0, w1/4, ..., 10w1/4, 11w1/4}

Proof. To proof this lemma, we look at the location of its poles of rx in the

domain of its original definition and at the location of the poles of fx. From the

definition of rx and fx and by using (32) it follows that rx can only have a pole

whenever x(t) and/or y(t) has a pole or a zero. From Lemma 6.1 we know the

only possible locations and the result then follows.

Secondly, we show the following property of ℘

Lemma 9.2. For any t0 ∈ {0, w1/4, w1/2, 3w1/4} we have that ℘(t0) rational

in z.

Proof. This follows immediately from Lemma 4.4 and the values of ψ found in

the proof of Theorem 4.2.
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Next, we will need the following theorem. Here Λ(z) corresponds to the

lattice associated to g2(z) and g3(z).

Theorem 9.3. Given a lattice Λ(z). Let f be an elliptic function with this

period lattice with poles at a ∈ A. Assume that the coefficients of its Laurent

expansion around 0 are all rational in z. Let K be the field generated by C(z)

and ℘(a) for a ∈ A. Then f ∈ K(℘, ℘′).

Proof. We follow the proof of Theorem 2.6 of [6].

We divide the proof into three cases of increasing generality.

1. If f is an even function with poles contained in Λ(z), then f can be written

as a polynomial in ℘ with coefficients in K(z) in the following way. Use

the series expansion f(t) = a−2nt
−2n + ... and ℘(t) = t−2 + .. to see

that f − a−2n℘
n is an elliptic function with strictly smaller order than

f . Repeat this process until the order is zero. Since all an ∈ C(z) by

assumption, the result follows.

2. If f is an even function with arbitrary poles, then f can be written as a

rational function of ℘ with coefficients in K(z) in the following way. For

each pole tj 6∈ Λ(z), consider the map t 7→ f(t) (℘(t)− ℘(tj))
Nj , where Nj

is an integer large enough to remove the pole at tj . Doing this for each

pole tj 6∈ Λ(z) leads to an elliptic function whose poles are contained in

Λ(z), namely

f(t)
∏
j

(℘(t)− ℘(tj))
Nj . (33)

By applying part (1) to this new elliptic function and dividing by the

product gives the desired result.

3. If f is an arbitrary elliptic function, then it can be written as R(℘) +

℘′S(℘), where R and S are rational functions with coefficients in K(z) in

the following way. In general, any function C → C can be decomposed
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into its even and odd parts as

f(t) = feven(t) + fodd(t)

= 1/2(f(t) + f(−t)) + 1/2(f(t)− f(−t)).

So, we have feven = R(℘) by part (2). Since fodd and ℘′ are both odd

functions, their quotient is even and therefore we have fodd = ℘′S(℘).

Corollary 9.4. Let f be as in Theorem 10.2. If moreover all ℘(a) are rational

in z, then f is algebraic in z and ℘.

Proof. From the previous theorem it holds that f ∈ K(℘, ℘′). Combining (5)

and the fact that we have g2, g3 ∈ C(z) we can also deduce that ℘′ is algebraic in

℘ and z. We conclude that f is the solution to a polynomial where all coefficients

are algebraic in z and ℘.

Now we are ready to show that Q(x, y; z) is algebraic.

Theorem 9.5. The generating function Q(x, y; z) of Gessel walks is algebraic.

Proof. First we note that clearly rx(t) is a zero of the following polynomial

(X − rx(t))(X − rx(t+ w1))(X − rx(t+ 2w1)) = 0 (34)

Notice that the coefficients are elliptic with period w1 and w2. Also from Lemma

9.1 it follows that the location of their poles are a subset of {0, w1/4, w1/2, 3w1/4}.

Before we can deduce the final result however, we will present the following

lemma without proof. The statement of this lemma seems somewhat intuitive

correct, but turns out to be far from trivial.

Lemma 9.6. All coefficients of the Laurent expansion around 0 of the coeffi-

cients of (34) are rational in z.

Now we can combine the above with Corollary 9.4 and Lemma 9.2 to con-

clude that the coefficients of (34) are actually algebraic in z and ℘. Finally,

from the definition of ψ it follows that ℘ is algebraic in z and x(t). Thus rx is a

solution to a polynomial where the coefficients are algebraic in z and x(t). We
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can thus conclude that Q(x, 0; z) is algebraic in x and z.

The reasoning in these last parts can also be used to conclude that Q(0, y; z)

is algebraic in y and z. From the functional equation (2) it then follows that

Q(x, y; z) is algebraic in x, y and z.
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10 Appendix

Here we will state some useful properties of the elliptic functions. First we will

state some common definitions. These are mostly inspired by [1] and [7].

Definition Let w1, w2 ∈ C such that w1/w2 6∈ R. We define the lattice

Λ(w1, w2) generated by w1 and w2 as

Λ(w1, w2) = {mw1 + nw2 |m,n ∈ Z} (35)

and we define the fundamental region Π(w1, w2) as

Π(w1, w2) = {αw1 + βw2 | 0 ≤ α, β < 1}. (36)

If w1, w2 ∈ C are clear from context we will usually simply denote Λ ≡ Λ(w1, w2)

and Π ≡ Π(w1, w2).

Definition A real lattice is a lattice Λ such that

Λ = {w |w ∈ Λ} = Λ. (37)

Definition A lattice Λ is called real rectangular if Λ = Λ(w1, w2), w1 ∈ R and

w2 ∈ iR and real rhombic if Λ = Λ(w1, w2), w1 = w2.

Definition A function is called doubly periodic if it has two periods w1 and w2

such that w1/w2 6∈ R. A function is called elliptic if it is doubly periodic and

meromorphic.

Definition Given a lattice Λ, we define the Weierstrass elliptic function ℘ as

℘(t) =
1

t2
+
∑
w∈Λ
w 6=0

1

(t− w)2
− 1

w2
(38)

and for n ≥ 3 the Eisenstein series of order n as

Gn =
∑
w∈Λ
w 6=0

1

wn
. (39)

Definition We denote by e1, e2, e3 the values of ℘ at the half-periods,

e1 = ℘(w1/2), e2 = ℘(w2/2), e3 = ℘((w1 + w2)/2). (40)
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Definition A meromorphic function f(t) is called real if f(t) = f(t), z ∈ C

(here we interpret ∞ as ∞).

We refer to [1] for proofs about the convergence of ℘ and Gn. Next we state

some important theorems we will need

Theorem 10.1 ( [1],1.8). The number of zeros of an elliptic function in any

period parallelogram is equal to the number of poles, each counted with multi-

plicity.

Theorem 10.2 ( [1],1.10). The function ℘ defined as above has periods w1 and

w2. It is analytic except for a double pole at each period w ∈ Λ. Moreover ℘(t)

is an even function of z.

Theorem 10.3 ( [1],1.12). The function ℘ satisfies the nonlinear differential

equation

[℘′(t)]2 = 4℘3(t)− g2℘(t)− g3 (41)

where

g2 = 60G4, g3 = 140G6. (42)

Theorem 10.4 ( [7],3.16.2). The following conditions are equivalent

(i) g2, g3 ∈ R;

(ii) ℘ is a real function;

(iii) Λ is a real lattice.

Theorem 10.5 ( [7],3.16.4). A lattice Λ is real if and only if it is real rectangular

or real rhombic.

Theorem 10.6 ( [1],2.9). Given two complex numbers a2 and a3 such that

a3
2 − 27a2

3 6= 0. Then there exist complex numbers w1 and w2 with w1/w2 6∈ R

such that

g2(w1, w2) = a2, g3(w1, w2) = a3. (43)

This last theorem is especially import, since it tells us that any elliptic curve

y = 4x3 − a2x− a3 with a3
2 − 27a2

3 6= 0 can be associated by a lattice Λ (this is
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often called the Uniformization Theorem for Elliptic Curves). We have now all

the tools available to prove the following deep result

Theorem 10.7. Let g2, g3 ∈ R and g3
2 − 27g2

3 > 0. Then the associated lattice

Λ is real rectangular and

℘(t) ∈ R ∪ {∞} ⇐⇒ z = iq +
n

2
w1 ∨ z = q +

n

2
w2, q ∈ R, n ∈ Z. (44)

Furthermore, ℘ is strictly decreasing on ]0, 1/2w1[ and strictly increasing on

]1/2w1, w1[.

Proof. From Theorem 10.4 we have that Λ is a real lattice and that ℘ is a real

function. From Theorem 10.5 that it is either real rectangular or rhombic. From

g3
2−27g2

3 > 0 it follows that the roots of 4y3−g2y−g3 = 0 are all real and distinct.

If Λ were rhombic we have e1 = ℘(w1/2) = ℘(1/2w2) = ℘(w2/2) = e2 = e2. So

Λ must be real rectangular.

Now, first suppose that q ∈ R and n ∈ Z. Then we have

℘(iq + n/2w1) = ℘(iq + n/2w1) = ℘(−iq + n/2w1)

= ℘(−iq + n/2w1 + nw1) = ℘(−iq − n/2w1) = ℘(iq + n/2w1).

(45)

Similar we find that

℘(q + n/2w2) = ℘(q + n/2w2) = ℘(q − n/2w2)

= ℘(q − n/2w2 + nw2) = ℘(q + n/2w2).
(46)

Now suppose ℘(t0) ∈ R ∪ {∞} for some t0 not satisfying the right condition

of (44). From the periodicity of ℘ we can take t0 ∈ Π. Suppose without

lose of generality that t0 = αw1 + βw2 with 0 < α, β < 1/2. Then we have

−t0 +w1 +w2 = (1−α)w1 + (1−β)w2 ∈ Π and t0 +w2 = αw1 + (1−β)w2 ∈ Π.

Because ℘ is even, real, periodic in w1 and w2 and ℘(t0) ∈ R ∪ {∞} it follows

that

℘(t0) = ℘(−t0 + w1 + w2) = ℘(t0 + w2). (47)

So we have that the elliptic function ℘(t) − ℘(t0), which has the same periods

as ℘, has at least three zeros in the period parallelogram Π. But from Theorem
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10.2 we know it has only one pole of order two in Π. Combined with Theorem

10.1 this contradicts the existence of at least three zeros in Π. We conclude that

such t0 can not exist.

Finally, we will look at ℘ restricted to ]0, w1[, where it is a real valued continuous

function. We then have limt→0+ ℘(t) = +∞. Since for the contrary, let’s assume

that limt→0+ ℘(t) = −∞. From the equation in Theorem 10.3 we would then

have
[℘′(t)]2

℘(t)
= 4℘(t)2 − g2 −

g3

℘(t)
(48)

which leads to a contradiction, since as t → 0+ the left side goes to −∞,

while the right side goes to +∞. From this we can show that ℘ is injective

on ]0, w1/2[ and similarly on ]w1/2, w1[. Suppose we have t0, t1 ∈]0, w1/2[ with

℘(t0) = ℘(t1). Then since ℘ is even and periodic it follows that w1 − t0, w1 −

t1 ∈]w1/2, w1[ are also zeros of the elliptic function ℘(t) − ℘(t0). But this

elliptic function can only have at most two roots, so we conclude that t0 = t1.

Since every injective continuous function f : I → R is strictly monotone and

limt→0+ ℘(t) = +∞ we can conclude that ℘ is strictly decreasing on ]0, w1/2[

and strictly increasing on ]w1/2, w1[.

Lemma 10.8. From the conditions of Theorem 10.7 it follows that if t ∈ Π

with ℘(t) ∈ R and ℘(t) > e1 then t ∈]0, w1[ and thus in particular e1 > e2 and

e1 > e3.

Proof. Suppose that we have ℘(t) > e1. Then from the intermediate value

theorem it follows that there is some t0 ∈]0, w1/2[ and t1 ∈]w1/2, w1[ such that

℘(t0) = ℘(t1) = ℘(t). So, since the elliptic function ℘(t) − ℘(t0) can have no

more than two zeros, these are the only zeros and thus t ∈]0, w1[. Since all

e1, e2, e3 are distinct combined with definition 10, the last part of the theorem

follows immediately from this.
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