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Abstract 
Drug resistance against targeted inhibitors is a complex problem that prevents efficient treatment of 

many tumors. Drug resistance can occur on multiple levels, requiring the acquisition and integration 

of system-wide data. We review the pitfalls of data integration across different layers of biology 

together with possible approaches to integrate the data. Additionally, we propose a model that 

enables the identification of mechanisms that underlie drug resistance through the integration of 

different layers of biological data.  
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Introduction 
Developing treatment strategies against various cancers using drugs that inhibit specific proteins is of 

great clinical interest, because conventional treatment, such as chemotherapy and irradiation of the 

tumor, are harmful to surrounding tissue [1]. However, drug resistance can occur within the patients 

through complex mechanisms that have not been fully elucidated [2]. Drug resistance can be 

mediated by changes in protein abundance and protein structure [3, 4]. These changes can be caused 

by processes on the level of DNA, RNA, protein and metabolism [3, 4]. Therefore, investigating 

mechanisms of drug resistance requires the acquisition of data at a large scale and on different 

biological levels. Recent developments enabled the application of large scale data acquisition 

overcoming some of the challenges in creating complex models. For instance, modeling of a 

complete cellular system in mycoplasma using many large scale datasets allowed the prediction of 

phenotype from genotype [5]. To create this model genomic, transcriptomic, proteomic, metabolic 

and other factors such as mass and time were unified in a single model. However, unifying different 

layers of data in a system-wide manner, also known as integration, remains complex, especially for 

multicellular organisms with large genomes [6]. In this review potential integration approaches are 

evaluated for their applicability in identifying and predicting resistance to targeted inhibitors. These 

approaches will integrate genomics, transcriptomics and proteomics data to identify pathways 

involved in drug resistance but will be limited by our understanding of biology and the currently 

available methods to acquire data.  

Resistance to targeted treatment 
Vemurafenib is a drug commonly used in melanoma treatment. Vemurafenib targets mutant BRAF* 

which is mutated at position 600 (BRAF(V600E)). BRAF is part of the MAPK† pathway that is involved 

in processes such as survival and proliferation. An activating BRAF mutation occurs in 50 to 70% of all 

melanomas and 90% of these mutations constitute BRAF(V600E) mutants [7]. The MAPK pathway 

consists of receptor tyrosine kinases (RTKs) that activate NRAS‡. NRAS activates BRAF, which 

phosphorylates MEK§ leading to the phosphorylation of ERK** [8].  

Therapies using vemurafenib are highly effective in melanomas but have shown little effect 

combined with quick relapse in BRAF(V600E) colon tumors [9]. Although treatment is initially highly 

effective in melanoma the duration of the effective treatment is six months on average [9]. Resistant 

tumors expand and invariably lead to a fatal outcome [10]. Recently, combination treatment has 

been identified as a viable strategy to extend the lifespan of patients [11]. Unfortunately, this 

strategy was not effective for all tumors as drug resistance can occur through several mechanisms 

involving multiple pathways. As a result, combination treatment can be ineffective in a 

subpopulation of patients. Lack of treatment response in patients requires the detection of 

mechanisms involved in drug resistance and adaption of treatment on a patient to patient basis 

(personalized treatment).  

Personalized treatment requires the understanding of mechanisms involved in drug resistance. Drug 

resistance can occur through reactivation of the inhibited pathway or activation of an alternative 

                                                           
* v-raf murine sarcoma viral oncogene homolog B 
† mitogen-activated protein kinase 
‡ neuroblastoma RAS viral (v-ras) oncogene homolog 
§ mitogen-activated protein kinase kinase 
**extracellular-signal-regulated kinase 
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pathway [12] (Figure 1). For instance, activating mutations in NRAS can reactivate the MAPK 

pathway, but also upregulation of C-MET and downstream factors were found to confer resistance 

[13, 14]. This “rerouting” of pathways eventually stimulates proliferation and survival capacities of 

the cell. It has been proposed that cells with increased proliferation rate and survival capacity have a 

growth advantage over cells that remain affected by the drug, resulting in exponential expansion of 

resistant cells [2]. However, there is some debate on whether alterations stimulating growth 

advantage are present in a subpopulation before treatment or if cells acquire alterations upon or 

after treatment. For instance, Strausmann et al. showed that a resistant subclone is formed by a 

subpopulation with higher abundance of C-MET receptors before treatment, called innate resistance 

[15]. Conversely, Sun et al. showed that expression of EGFR, normally not expressed in melanoma 

cells, was acquired in drug resistant subclones, called acquired resistance [2].  

  

Identification of the alterations that cause the reactivation of pathways remains difficult. One major 

complicating factor is tumor heterogeneity, meaning that not every cell within the tumor contains 

the same alterations. By gathering data from entire tumors, heterogeneity may cause alterations 

within a subgroup of cells to be missed because phenotypes are averaged over the entire tumor [16]. 

Additionally, malignant cells are thought to contain an instable genome with a higher rate of 

mutations compared to healthy cells, which can lead to a large number of mutations [17]. Many 

mutations will not contribute to drug resistance (passenger mutations) compared to a few mutations 

that do (driver mutations). The increase in the total amount of mutations impedes the detection of 

driver mutations, since the amount of noise caused by passenger mutations is increased [2].  

Figure 1. Mechanisms underlying resistance to vemurafenib  

Schematic depiction of the mechanisms underlying drug resistance to vemurafenib. A) Cells respond to 

treatment: MEK is not activated by BRAF. Bypassing inhibition by vemurafenib leads to disease progression 

(B-D). B) Drug resistance can occur by increased amounts of active BRAF (CNV) or by limited effectiveness 

of the drug (SNV or aberrant splicing) leading to more active MEK (larger arrow). C) The MAPK pathway can 

be activated downstream through upregulation of proteins that also regulate downstream factors such as 

MEK. D) Resistance can occur through upregulation of alternate pathway(s) that exhibit the same function 

as the inhibited pathway.  
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Cancer is a disease caused by mutations in the DNA, but it has been shown that resistance to 

targeted treatment can be caused by alterations on other levels as well [15, 18]. For example, 

alternative splicing of BRAF mRNA can confer drug resistance [18]. Increased C-MET signaling can 

occur through higher secretion of HGF followed by upregulation of proteins in the same pathway, an 

example of combined metabolic and protein level changes leading to drug resistance [15]. Using data 

across different levels, known as omics, is necessary to detect mechanisms behind drug resistance in 

individual patients.  

Integration of omics data 
Resistance occurring at multiple levels signifies the need of obtaining different types of omics data. 

Curtis et al. described the association of single nucleotide variation (SNV) and structural variation 

(SV) with expression changes. This study resulted in novel associations between SNVs and expression 

changes of genes involved in the immune response in addition to known oncogenes. Furthermore, 

the increase in expression of the identified genes was found to be part of the same network by using 

online databases such as KEGG, BioCarta, PANTHER and cancer cell map [19]. Balbin et al. described a 

method to integrate gene expression, protein abundance and abundance of phosphorylated proteins 

to reconstruct overexpressed networks in lung cancer. By using this approach three different 

networks were found [20]. 

Curtis et al. identified a network of functional categories, such as immune response, and the 

underlying cause in the DNA, but could not find the individual proteins driving the resistance. In 

addition, the network was based on existing databases containing interaction networks in healthy 

tissue where there is no rerouting of pathways [19]. Balbin et al. could distinguish which protein was 

important in the network but lacked information about the cause of the malignancy. This method 

also resulted in three networks with related subnetworks but did not distinguish which network was 

more significant in causing the phenotype [20].  

The study by Curtis et al. integrated genomic and transcriptomic data in breast cancer while the 

study by Balbin et al. integrated transcriptomic, proteomic and phopshoproteomic data in lung 

cancer [19, 20]. Both studies identified pathways that drive malignancy. However, the difference 

between the studies is that one study identified upregulated pathways whilst the other identified 

upregulated parts of pathways. Obtaining information about differentially regulated pathways is 

important but acquiring additional information about which protein to target is preferred over solely 

identifying the pathway that drives resistance. Therefore, finding the cause and significant pathways 

involved in resistance requires an integrative approach of genomic, transcriptomic and proteomic 

data. 

From genotype to phenotype: pitfalls in integration 
Integrating data using a linear dogma of transcription and translation (DNA -> RNA -> protein) that 

influences the phenotype has led to the discovery of many genotype-phenotype relations [21-23]. 

However, this linear dogma cannot be applied to every genotype-phenotype relation since the effect 

of mutations in DNA can be small in the eventual protein since not every mutation will result in 

structural changes in the protein [24]. Additionally, events on the RNA level can affect protein 

structure. Changes in protein structure can affect protein stability and interactions between proteins 

possibly leading to an altered phenotype [25].  
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Integration of data is not as straightforward as the central dogma suggests. For instance, the 

association between variation in DNA and gene expression was found to be approximately 40% [19]. 

The correlation between RNA expression and protein abundance was also found to be relatively low 

(40-50%) [6, 26]. Processes that hamper integration occur at DNA level, RNA level and protein level, 

eventually leading to changes at protein level. Events can be broadly classified in two types: 

processes that eventually influence structure and function of proteins and processes that eventually 

influence the abundance of proteins.  

Processes involved in altering protein structure  

Tumor cells contain many single base pair deletions, insertions (InDels) and substitutions (SNV). 

These changes can alter protein structure and change either protein stability or interactions with 

other proteins. Other forms of variation can influence large stretches of the genome (SVs), such as 

entire chromosome arms, by causing translocations, inversions and deletions. Both SNVs and SVs can 

result in no change in amino acid (synonymous), a substitution of amino acids (missense), or 

termination of translation (nonsense). Synonymous variations generally have a less direct effect on 

the eventual protein structure compared to missense mutations while nonsense mutations often 

lead to non-functional proteins [24]. It is possible to predict the effect of missense mutations on 

protein structure to some extend by using tools such as SIFT and PolyPhen2 [24, 27, 28].  

 

Predictive tools can estimate the eventual effect of mutations but do not correct for processes 

occurring at RNA level. For instance, bases in the RNA can be edited by an editosome leading to a 

different amino acid sequence [29]. RNA editing is relatively rare, but can lead to structural changes 

by introducing more SNVs. Other, more common, events such as alternative splicing can also 

influence protein structure. Splicing is a process that mainly cuts out introns, but also exons, from a 

coding region. Alternative splicing can lead to translation of a protein with different functionality or 

degradation of RNA molecules [30]. Another event that influences the effect of mutations is caused 

by the presence of multiple copies of the same gene. The mutations in the separate copies can cause 

a bias in transcription leading to mutant alleles being overexpressed [31]. 

Detecting events such as SNVs, SVs, RNA editing, splicing and allelic biases from DNA and RNA 

sequencing data is feasible. A major limitation is predicting how these changes affect protein 

interaction, stability and function. This can be predicted using homology modeling and fold 

prediction, however the accuracy of these predictions is low [32, 33]. Besides lack of accuracy, 

protein stability and interaction after structural changes cannot be robustly predicted because of the 

low amount of available crystal structures and docking studies to validate predicted changes [34]. 

Finally, there are post-translational modifications (PTMs), such as phosphorylation and 

ubiquitination, which can affect the structure, activity, localization and interactions of proteins [35]. 

Changes in phosphorylation levels are relevant for modeling drug resistance, since the MAPK 

pathway is a kinase cascade and the activity of the pathway can be estimated through 

phosphorylation levels.  

Processes involved in altering protein abundance 

Processes influencing total protein abundance occur on multiple levels similarly to events influencing 

protein structure. On the genomic level there are genome duplication events that cause genes to be 

more abundant and generally lead to higher expression. Genes can also be lost by loss of 

chromosome arms during cell division. These changes in gene copies are often named copy number 
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variants (CNVs) [36]. Next to the amount of copies of a gene there are DNA sequences influencing 

transcription. Variations outside coding regions such as enhancer elements influence the expression 

of genes. The understanding of transcriptional regulation by enhancer elements is very limited. 

Recently, techniques such as 4C and 5C were developed to obtain data on genomic structure in order 

to investigate which enhancer influences which gene [37]. However, most physical interactions have 

not been mapped at this time [37]. Other factors complicating the determination of transcription 

efficiency are both epigenetic marks and chromatin on the DNA. To investigate the effect of both 

epigenetics and chromatin techniques such as bisulfite sequencing and DNAse sequencing need to be 

used. However, even with the addition of this data, our knowledge of both chromatin and epigenetic 

marks on expression is limited [38, 39].  

Several other processes influence mRNA abundance after transcription; microRNAs (miRNA) can 

decrease the expression of genes by binding to the mRNA molecule. miRNAs have been found to be 

informative in classifying malignancy in tumors and may play a significant role in drug resistance as 

well [40]. In addition to the efficiency in transcription, turnover of mRNA named nonsense-mediated 

decay (NMD) can lower the abundance of proteins. NMD can be caused by nonsense mutations, 

structural variation or premature splicing [41].  

Metabolic processes also play a role in protein abundance. Degradation and translocation of proteins 

lowers the amount of active proteins in a network, eventually influencing the phenotype. 

Metabolomics is modeled using the quantities of metabolites in the system [42]. However, the 

amount of metabolites changes significantly over time complicating the prediction of phenotypes. 

One way to model this is using flux models that predict the variability of the amount of metabolites 

in the system [43].  

The influence of amino acid substitutions on the eventual protein function and the quantification of 

the amount of DNA that is transcribed into RNA are significant pitfalls in integration (Figure 2). 

However, all cellular processes occur over time and omics data is usually taken from one transient 

state [44]. This is a substantial pitfall as acquiring large datasets over longer periods of time is very 

costly. In addition, it is often not feasible to acquire the necessary amounts of (tumor) material. 
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Creation of an integrated model 
Modeling the biological complexity of drug resistance requires the development of an integration 

method for processes involved in conferring resistance. Modeling the entire complexity is not 

feasible and necessary at this time, therefore a selection of processes that is possible to integrate 

using current available data should be made. Predominantly, the approach should detect pertubated 

networks that cause resistance, for instance upregulation of C-MET and downstream factors [14, 15].  

Whole cell models such as the model presented for mycoplasma divide processes into parts 

(modules) to create structure [5]. These modules can be integrated to form a weighted module that 

predicts the perturbation and eventually the phenotype [5, 45]. As shown by Zhang et al. a matrix of 

copy number variation and somatic mutations at every position can be integrated into a module 

based on multiple modules (cluster) of DNA level changes [45]. By using a matrix of expression data a 

cluster was created at the RNA level. The DNA level and RNA level clusters were integrated into a 

single network [45]. By using this method a subnetwork was identified, independent of known 

protein interactions, which could potentially drive malignancy in glioblastoma multiforme (GBM) 

[45]. The identified pathway was involved in regulation of the cell cycle, which is important in 

proliferation and could lead to a growth advantage [45]. Using more modules to infer a more 

accurate network is possible: in mycoplasma 28 modules were integrated to accurately predict a 

phenotype [5].  

Figure 2. Biological complexity influencing data integration  

Novel insights continue to increase the complexity of the central dogma (gray backdrop). Processes and 

variation influencing the abundance of proteins are shown on the left, those influencing protein 

structure (and subsequent interactions) are shown on the right. Red boxes are processes occurring on 

DNA level, green boxes are processes occurring on RNA level and blue boxes are processes occurring on 

protein level. On the far left and right side are different omics data types that influence the central 

dogma with the proposed technique to acquire the data. Techniques shown in bold are integrated in the 

model. 
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Networks  

Modules need to be connected in a network to enable the integration of data across different layers. 

By connecting modules subnetworks, relevant in causing drug resistance, can be detected and 

defined. There are several methods to combine modules into networks of which the five most 

relevant models are briefly discussed here:  

I Seed- and extend methods detect relevant subnetworks by the density of interactions 

between data. For instance, proteins that act in the same complex have many shared 

interactions. Therefore this method is usually deployed to detect protein complexes [46].  

II Frequency-based methods utilize known data to find subnetworks that are present in 

multiple datasets. For instance, subnetworks around p53 are found to be important for many 

cancer types. These methods are usually deployed to find common pathways in a large set of 

samples [47].  

III Hierarchical clustering is based on the similarity of two datapoints. For instance, genes that 

exhibit the same expression changes under the same condition cluster together. Similarly, 

proteins can be clustered based on the similarity of interaction partners [48]. This method is 

more relevant for our question but can only detect pathways based on one layer of data at a 

time. Therefore, this method is not the best choice for data integration from different layers 

of omics data.  

 

IV Optimization based methods use algorithms to reconstruct pathways based on 

significantly changing datapoints and attempts to reconstruct networks which use the same 

amount or less connections as networks found in the background population [49]. This 

method was optimized for creation of subnetworks based on the influence of mutations. 

However, this method requires complex algorithms that are not fully developed and tested at 

this point [50].  

 

V Statistical methods use probabilities to test which subnetwork has a high chance of being 

regulated differently from the rest of the network. An example is Bayesian inference, a 

statistical method to update probabilities after addition of evidence (data) [51]. This can be 

used to form a Bayesian network of factors influencing the final probability [52]. In resistance 

modeling the probability that a subnetwork is driving the resistance is the intended result 

and the acquired omics data the evidence.  

Based on these characteristics a Bayesian network is the most likely choice to integrate the data and 

to find subnetworks driving resistance. Finding subnetworks that drive resistance by using only DNA 

mutational data is possible as was shown by a program named VarWalker. Yet, the consensus 

pathways that were reached contained a very broad spectrum of mutations and it was impossible to 

distinguish the driver mutations from the passenger mutations [53]. The paper by Zhang et al., which 

used copy number variation and expression data in addition to mutational data, reached a smaller 

number of consensus pathways which were more accurate [45]. Therefore, modules can be added to 

decrease the rate of false positives in the final prediction [52].  
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Addition of modules can alter the probabilities of clusters as well. For instance, the existence of a 

perfect correlation between RNA levels and protein abundance for a specific gene decreases the 

likelihood that miRNA signatures are an important process in driving the resistance [40, 52]. Bayesian 

networks allow for integration of multiple types of data, correction of the interaction between 

modules and prediction of functional pathways. Therefore, Bayesian inference is the method of 

choice to integrate the data and detect resistance mechanisms. 

Modules to integrate changes in protein structure 

Mutations can have different consequences on the eventual protein structure (see “Processes 

involved in altering protein structure”) and can be used to model the probability that structural 

changes play a role in conferring resistance [24]. Variations such as InDels can cause translation to 

occur in another reading frame (frameshift mutation) that causes changes in all consecutive amino 

acids. As such, frameshift mutations have a larger effect on the structure compared to substitutions 

[54]. SVs usually underlie a deregulation in large stretches of a protein and can result in truncated 

proteins [55]. Together these variations can be used to assign a severity score to mutations since 

mutations with a more pronounced effect will be more important in protein structure, stability and 

interactions.  

Structural changes caused by alterations on RNA level can be detected fairly well due to recent 

advances in RNA sequencing technology [56]. Discrepancies between DNA and RNA data can be 

viewed as RNA editing events, although errors in transcription by RNA polymerase can also cause 

changes in sequence [29]. Other RNA events require more effort to detect. For instance, allelic bias 

can be examined by ligating adapters to the primers on each orientation. This allows for the 

detection of increased expression of one allele [57]. Splicing variants can be identified by tools, such 

as DEXseq, that use statistical modeling to predict the occurrence of splice events based on 

sequencing data [58]. Alternatively, reads can be mapped to the spliced exome, enabling detection of 

splice events since spliced out exons will have a decreased number of reads. Splicing and SVs can 

cause genes to be transcribed directly after other genes leading to a protein that has an amino acid 

sequence derived from two genes. This is also known as gene fusion and can be detected using the 

same methods as aberrant splicing. Together, events on RNA level can be qualified similarly to DNA 

events.   

Creating a structure from an amino acid sequence remains a major pitfall in integrating structural 

variation. Possible approaches to classify amino acid substitutions are based on position; amino acid 

substitutions in the proximity of an interaction domain or phosphorylation site generally have a 

larger effect [34, 59]. Taken together, currently the only possible way to integrate processes involved 

in protein structure is by classifying predictions on protein function alterations (Table 1) [25].  
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Module Type Probability based on 

SNV Qualitative Position/effect aa substitution on structure and interaction 
SV Qualitative Gene fusions / Truncations / InDels 
Frameshift Qualitative Amount of affected codons/ early stop codons  
Allelic bias Qualitative Strength bias towards mutated allele 
Aberrant splicing Qualitative Physicochemistry/function alternative protein 
RNA editing Qualitative Position/effect aa substitution on structure and interaction 
Phosphorylation Quantitative Increase/ decrease phosphorylation levels 
Structural change Qualitative Folding / Physicochemistry / Accessibility functional sites 
Interaction change Qualitative Changes in interaction partners 

 

Modules to integrate changes in protein abundance 

Integration of alterations on the DNA level and expression is a major challenge in integration. For 

instance, epigenetic marks and chromatin have been shown to substantially influence expression [38, 

39]. In addition, most of the variation underlying expression changes lie in noncoding regions. The 

effect of noncoding events is mostly unknown as our understanding on this type of variation is 

limited [60]. One approach to predict which variant underlies expression changes is using expression 

quantitative trait loci (eQTL). eQTL studies associate noncoding variance with expression changes in 

nearby genes. By using known eQTL studies such as the study performed by Westra et al. variance 

within noncoding regions can be associated with gene expression [61]. Variants associated with a 

disease can be positively scored in the model. CNVs, however, correlate well with expression changes 

as was shown before in breast cancer cell lines. In cell lines a positive correlation of 64% was found 

between copy number gain and expression [62]. Therefore, copy number gain or loss can be modeled 

by adding positive scores for copy number gains and negative scores for copy number losses.  

Gene expression data obtained from the RNA sequencing data can be scored using the same method 

as CNVs [63]. Yet, CNVs have a low correlation with the actual protein abundance [64]. This could be 

largely explained by the weak correlation between expression and protein abundance [6, 26]. Finally, 

the observed protein abundance using proteomics can be put in another module comparing the 

observed abundance with a wild-type situation and giving positive scores to increases and negative 

scores to decreases. The different modules affecting abundance and their effect on the abundance 

are shown in Table 2. 

 

 

 

 

 

Table 1. Modules involved in protein structure  

Modules are divided in categories: Quantitative (based on the amount of events) and Qualitative (based on 

classification). Modules greyed out are not included in the model but can eventually be added. 
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Module Type Protein abundance increase Protein abundance decrease 

CNV Quantitative Copy number gain Copy number loss 
eQTL Association Increased expression Decreased expression 
Epigenetics Qualitative Stimulating marks Repressive marks 
Chromatin Qualitative TF binding sites accessible TF binding sites inaccessible 
Expression Quantitative Increased mRNA Decreased mRNA  
miRNA profiles Quantitative Decreased presence signature Increased presence signature 
NMD Quantitative Decreased turnover Increase turnover 
Metabolic flux Quantitative Decreased turnover Increase turnover 
Abundance Quantitative Increase protein levels Decreased protein levels 

 

Protein interaction networks and genetic interaction networks 

Different modules were formulated as probabilities influencing resistance. Subsequently, these 

modules need to be integrated in a model that can predict pathways that drive resistance.  

Omics data is commonly used to infer protein interaction networks and genetic interaction networks 

[24]. Protein interaction networks are generally used to predict the function of a protein based on 

protein interaction. Protein interaction networks are based on ‘guilt-by-association’: a protein with 

an unknown function interacts with other proteins creating a complex or pathway that provides clues 

about the function of the protein of interest. However, a network using protein-protein interactions 

only provides information on which proteins interact but what kind of interaction is unknown in such 

a network [65].  

Genetic interaction networks are generally used to predict function and interaction between genes 

(epistasis) [24]. Genetic interaction networks depict whether genes increase or decrease the 

expression of a gene and can be used to infer pathways. However, genetic networks commonly 

depict mutations as loss of function mutations only resulting in genes being removed from the 

interaction network. It is possible that gain of function mutations or changes in function occur, 

melanoma being no exception [66]. Therefore, mutations can change the eventual network by 

inhibiting other proteins, increased stimulation of other proteins or by different functionality. 

Genetic interaction networks are traditionally used to connect sequence variation with function [24]. 

However, we need to connect changes in all layers with function, since it is possible that not all 

resistance mechanisms have underlying mutations. Therefore, a model will be proposed based on 

modules influencing protein abundance and protein function (Figure 3).  

Table 2. Modules involved in protein abundance 
Modules are divided in categories: Quantitative (based on the amount of events), Qualitative (based on 

classification) and association (based on effect on other level). Since both increase and decrease in 

abundance can lead to progression the events that lead to either an increase or decrease in abundance are 

shown. Modules greyed out are not included in the model but can eventually be added. 
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The model based on protein abundance and protein structure has modules representing probabilities 

that proteins are differentially regulated. The integrated network is created based on the assumption 

that the resulting pathways have multiple proteins that are differentially regulated. The integrated 

network eliminates the need to treat structure and abundance data differently since positive 

influences on interactions are weighted as heavy as negative influences on interactions. The afore 

mentioned model integrates data based on clusters derived from processes at omics level. These six 

clusters are integrated to infer two integrated networks that influence either protein abundance or 

protein structure, and are subsequently used to detect processes that drive resistance. 

Inferring networks from modules  

The model shown in Figure 3 assumes that the contribution of every module is equal. However, in 

practice modules such as protein abundance have a larger effect on the eventual network compared 

to for instance the presence of CNVs. Normally, model training has to be performed to apply weights 

to input modules but can also be inferred using Bayesian methods [67]. Bayesian methods have three 

functions: inferring unknown variables, parameter learning and structure learning [68, 69]. Inferring 

unknown variables in resistance modeling consists of determining differentially regulated protein 

abundance or protein structure based on changes on DNA, RNA and protein levels. This can be 

performed directly from the probabilities found in the modules. Parameter learning is a method to 

estimate missing values in a dataset. For instance, when taking expression data over time some 

timepoints may be missing. In the simplest form these values are calculated based on the mean and 

Figure 3. Integration based on protein abundance and protein structure 

Integration using six clusters derived from processes that either influence protein structure or protein 

abundance at different levels. Nodes (cyan) represent clusters influenced by the separate modules or other 

clusters. Influences are shown as lines (edges) between the nodes. Modules influencing protein structure 

are shown in red and modules influencing protein abundance are shown in blue. Modules that can be 

integrated by addition of other techniques (Figure 2) are transparent. 
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variance of the rest of the data. The use of parameter estimation can be limited by generating data 

for all layers of integration and therefore the reliability can also be improved [69, 70]. Structure 

learning is less feasible to limit without using computation. 

Modeling interactions between modules 

Structure learning is a machine learning method to apply weights and direction to interactions 

between modules. Processes influencing abundance (shown in blue in Figure 3) are related, for 

instance methylation marks were shown to mark active promoters and likely increase gene 

expression [71]. Similar relations exist for processes involved in structural changes (shown in red in 

Figure 3), for instance mutations can cause aberrant splicing by forming a splice site [72]. In addition, 

there are processes that influence abundance affecting structure and vice versa, for instance 

aberrant splicing causing NMD [73].  

 

Applying weights and direction between modules in a model is difficult to perform without complex 

algorithms since the interactions between modules are generally unknown. For instance, the 

correlation between expression and protein abundance is about 40-50% [26]. This correlation 

between expression and protein abundance can differ between classes of proteins further 

complicating interactions. For example, Low et al. found that proteins involved in the cytoskeleton 

had a better correlation between expression and protein abundance than membrane proteins [6].  

 

Applying correlations between modules can be performed by using weight matrixes. Kim et al. 

described a method to integrate the interaction of CNVs, miRNA profiles, methylation profiles and 

gene expression data. The integration of two modules (similar as in Figure 3) was supplemented with 

a weight matrix containing the correlation between the two data types creating a submodule 

between modules influencing expression. This model resulted in a more accurate prediction than an 

integrated model which used every layer separately [74]. However, these weight matrixes were 

based on known data from the TCGA atlas and cannot be applied directly in a personalized setting 

[74].  

 

Integrating data from the 12 modules described before requires the knowledge of interactions 

between data. However, a single SNV can have an effect on multiple modules (Figure 4). It is possible 

to annotate the correlations between data (weights) by hand and determine the interaction based on 

literature. Drawing an interaction network without computation is difficult since the direction of 

interactions, weighting of interactions and indirect interactions need to be applied. The structure of 

Bayesian networks is traditionally shown in directed acyclic graphs (DAGs). DAGs are networks that 

show interactions between modules in a single direction. At the end of the network lies a single 

module that is the intended result. In resistance modeling the final module would be the probability 

that a protein is involved in resistance and the modules underlying it would be the omics data [75, 

76]. 
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Using machine learning algorithms such as Markov Chain Monte Carlo (MCMC) is another possibility 

to apply interactions to a model. MCMC approaches create integrals based on modules that exist in a 

multi-dimensional space. The distance between modules can be calculated with “walkers”, abstract 

entities that move randomly through the multi-dimensional space. Every step the “walker” makes is 

scored and saved until it hits another module. The closer the modules are the less steps it costs and 

the more the two modules are related [77].  

 

 

 

Discussion of the model 
The proposed model uses a Bayesian approach to integrate three layers of biological data formulated 

as matrixes of probabilities to identify subnetworks that potentially drive resistance. It is likely that 

this approach is able to identify proteins involved in resistance since this was shown with a similar 

approach which integrated three modules [45]. The question is whether this method will be 

sufficient to reliably identify all the resistance mechanisms active after treatment.  

In Figure 3 the modules influencing protein structure and protein abundance are shown. Most of the 

processes influencing structure can be integrated by using only DNA and RNA sequencing techniques 

to generate data. However, the data is qualitative since the eventual interaction after amino acid 

substitution cannot be quantified. Most processes influencing abundance can be measured 

quantitatively except for processes underlying transcription regulation that are not well understood. 

Therefore, achieving a fully integrated model requires structural changes to be quantified and 

improved understanding of transcription regulation.  

 

Figure 4. Biological complexity resulting from SNVs  

An SNV (shown as a red star) can influence multiple processes that have an effect on transcription, 

protein interaction and stability. Arrows show interactions between processes, double arrows show 

feedback mechanisms. DNA is shown in red, RNA is shown in green, proteins are shown in blue, 

chromatin is shown in gray, transcription machinery is shown as “TF” and protein interaction 

partners are shown in yellow. 
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Using a fully integrated approach to find the driving cause of drug resistance may not be necessary. 

The majority of validated resistance mechanisms is based on upregulation of proteins in either the 

MAPK pathway or an alternative pathway and can be detected using quantitative measurements [2]. 

Identifying underlying mutations is not as important as protein abundance to define which protein to 

target in an upregulated pathway using targeted treatment. Therefore, the lack of understanding on 

integration of transcriptional efficiency will probably not decrease the feasibility of predicting 

relevant subnetworks. Detection of structural variants, such as an aberrant spliced form of BRAF, 

could be of greater importance since there is a possibility that novel splice forms of BRAF or 

downstream factors exist [18]. Conversely, secondary mutations in BRAF that prevent inhibition by 

vemurafenib were found in cell lines but not in patients indicating a smaller role of mutations in 

causing a resistant phenotype [2, 78]. 

Lack of phosphoproteomics data is likely a strong limiting factor at this point since one of the general 

mechanisms of resistance is downstream reactivation of the MAPK pathway. BRAF and downstream 

targets, MEK and ERK are kinases suggesting that phosphorylation status is more significant than 

abundance [8]. Vemurafenib prevents the phosphorylation of MEK and therefore does not result in 

lower abundance of MEK. However, vemurafenib does lead to lower abundance of phosphorylated 

MEK (p-MEK) illustrating that phosphoproteomics is an important layer in this network [79].  

Relief of feedback inhibition is a process involved in drug resistance by causing an increase of 

upstream protein abundance. For instance, p-MEK or p-ERK normally inhibit NRAS implying that 

inhibition of p-MEK or p-ERK results in stimulated NRAS [80]. Eventually, this can accelerate drug 

resistance by upregulation of pathways that bypass BRAF. Relief of feedback inhibition can only be 

detected using a combination of proteomics and phosphoproteomics data since both 

phosphorylation and protein abundance are involved. 

Future improvements of the model 

Several techniques were considered that could be integrated to improve the chance of identifying 

pathways and causes underlying drug resistance. In the model five extra modules (transparent in 

Figure 3) can be included in the network, provided that the data is available. Phosphoproteomics has 

been discussed in the previous paragraph and can be integrated by quantifying the amount of 

phosphorylated proteins.  

Modules such as chromatin organization and epigenetic marks are harder to integrate than 

phosphoproteomics data. The function of many epigenetic marks and DNA elements on transcription 

regulation are unknown. The ENCODE project was founded to identify DNA elements involved in 

transcription regulation but is not complete yet [81]. The ENCODE project found both stimulating and 

inhibiting methyl marks and chromatin structure at protein binding sites to be associated with 

increased expression [71, 81]. However, there may be other non-coding DNA elements involved in 

transcription regulation since the majority of DNA is non-coding [60]. 
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Metabolic processes and miRNA signatures can be integrated fairly well to determine RNA 

abundance. miRNA signatures can be detected by using bead-based flow cytometric miRNA 

expression profiling to quantify the effect of miRNA abundance. These signatures can be quantified in 

different types of cancer and was also performed for melanoma [40]. Other processes involved in 

reducing abundance can be profiled using metabolomics. The turnover of RNA molecules by NMD 

and turnover of proteins can be measured and integrated in the model to explain the lack in 

correlation between RNA and protein level [82]. 

Time 

One factor that cannot be modeled with the approach described here is how protein interactions 

vary over time. First of all there is a difference in the speed at which rewiring of pathways occurs in 

colon cancer cells compared to melanoma cells [9]. Detecting the mechanism behind this difference 

could be facilitated by a model based on protein production over time. For instance, a study by 

Nakakuki et al. gave various insights in mechanisms occurring transiently in resistance and processes 

occurring over longer periods of time [44]. They developed an approach that calculated the amount 

of c-fos expression, which is transcribed as a result of the MAPK pathway. Stimulated by epidermal 

growth factor (EGF) signalling the MAPK pathway affected c-fos expression transiently while 

Heregulin (HRG) signalling lead to sustained c-fos expression [44].  

Measuring or modeling the amount of metabolites over time (flux models) is another way to create a 

dynamic model [83, 84]. For instance, flux models can be used to model the amount of proteins or 

phosphorylation in a pathway. This was shown by the study of Lerman et al. which integrated 

metabolic flux and gene expression in a single model [85]. Integration of both expression and 

metabolic flux resulted in additional information on transcription efficiency and translation efficiency 

over time compared to modelling only metabolites. Additionally, the flux models could be used for 

prediction of growth rates that could facilitate the detection of subcolonies with a growth advantage. 

However, prediction of quantitative changes in a dynamic system showed significant discrepancies 

between the in silico analysis and in vivo data [85].  

Models such as described for c-fos expression illustrate that observed changes in expression or 

abundance can be transient. Nevertheless, applying such a model to multiple proteins requires more 

knowledge about protein dynamics [44]. Modelling the amount of metabolites using flux models has 

been well described for steady-state conditions, however tumors have a highly dynamic growth 

environment caused by the heterogeneity of a tumor and differences in supply of nutrients [83, 86]. 

Applying flux models to a dynamic system lowers the accuracy of predicting variations in metabolites 

[85]. Therefore, detecting the sustainability of rewired pathways in a dynamic system is one of the 

major limitations in creating models to predict resistance.  

Predicting clonal expansion 

The tumor is a heterogeneous structure with different mechanisms by which cells survive and 

proliferate. Cells within the tumor have different mechanisms by which drug resistance occurs as 

well. The difference in resistance mechanisms between cells makes prediction of cells that clonally 

expand and become resistant of great clinical interest. However, these predictions have not been 

extensively studied in tumors. 
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The prediction of drug resistance in human immunodeficiency virus (HIV) infection has been studied 

more extensively than in melanoma. The genotype of HIV can be determined and used to predict 

resistant phenotypes in the cell using linear regression models [87]. This has been performed for 

multiple types of drugs and integrative approaches are being developed that integrate genotype-

phenotype relations together with data from clinical output to develop treatment regimens [87, 88]. 

This approach of predicting drug sensitivity could also be beneficial for cancer patients. However, 

resistance to BRAF inhibition occurs on multiple levels and therefore sequencing only the DNA will 

not suffice as a biomarker. It is possible to discover biomarkers with an integrative approach such as 

alternative splicing and upregulation of proteins [15, 18]. Perhaps this will open more possibilities to 

predict which subclones might expand. 

 

Prediction of future alterations that cause cells to clonally expand is another method to predict drug 

sensitivity. For instance, evolutionary branching was found in tumors by multi-region sequencing. 

Evolutionary branching revealed that 69% of the mutations driving resistance did not occur 

throughout the entire tumor. Therefore, it was proposed that common branches in tumor should be 

used as biomarkers instead of mutations [16]. However, the effects of mutations in DNA seem to be 

limited in conferring resistance [2]. In addition, another paper described that Darwinian evolution 

does not play a substantial role in resistance but rather overexpression of proteins based on 

Lamarckian instruction drives resistance [89]. Lamarckian instruction is a model commonly used in 

predicting stem cell states and is based on cells expressing proteins “instructing” other cells to 

express the same proteins [89]. However, to observe processes such as Lamarckian instruction it is 

necessary to obtain proteomic data at single cell level, which is difficult to perform for entire 

subclones in the tumor [90].  

Obtaining tumor material  

Increasing the amount of tumor material in order to integrate time, more layers of omics, and spatial 

effects is an important step to improve the model. An obvious approach to increase the amount of 

tumor material is expanding the cells in a homogeneous culture. However, this approach cannot 

reproduce the heterogeneity in the tumor, which will lead to mechanisms such as increased HGF 

secretion by stroma to be undetectable [15]. In addition, the structure of the tumor is not 

reproduced which will lead to an equal distribution of growth factors and nutrients to the colonies. 

This change in distribution can cause the silencing of tumor suppressor genes such as PTEN and 

changes in clonal outgrowth [91]. Perhaps a 3D culturing method such as organoid culturing 

supplemented with fibroblasts can reproduce the heterogeneity to prevent changes in regulation 

[91]. Another approach is xenografting tumors derived from single cells in permissive mice as was 

described by Quintana et al. However, expanding the amount of tumor material was shown to be 

influenced by the host system since tumors that grew out were heterogeneous in gene expression 

[92].  

Single cell sequencing directly from tumor material does not change the phenotype of cells [93]. 

Advances have been made towards single cell sequencing of both DNA and RNA and single cell 

proteomics. However, these techniques cannot be performed in the same cell [90, 94]. Sequencing 

single cells throughout entire tumors has shown that heterogeneity of tumors can be detected and 

clonal expansion can be predicted [95]. Nevertheless, tumors also contain other cell types that 

obstruct the analysis, such as blood vessels, stromal tissue, necrotic tissue and cells involved in the 

immune response. The presence of different cell types could lead to the detection of pathways not 
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involved in resistance but rather other responses such as immune responses and anti-apoptotic 

pathways. This effect is stimulated by vemurafenib, which has been shown to induce the immune 

response [96].  

Quality of acquired data  

The model described in this review assumes that the data obtained at different levels and between 

different samples is equal. Sensitivity of data acquisition influences the quality of the data and should 

be similar between datasets. However, in practice this cannot be assured and differences in quality 

of data acquisition will cause discrepancies in integration [97]. 

Obtaining enough data to generate an integrative model from a single cell is currently impossible [90, 

94]. Material derived from single cells needs to be amplified in order to perform sequencing, creating 

a bias in the abundance of fragments [93]. Additionally, single cell transcriptomics results in a noisy 

expression signature decreasing the quality of the data [98]. Therefore, it is not possible to generate 

perfectly accurate data from single cells at this moment.  

Integration of data needs to be performed over several cells since currently the quantity and quality 

of single cell data is not sufficient. However, acquiring data over regions in the tumor could cause 

differences in abundance between cells but can also change the correlations between layers of data. 

By analyzing the proteome of several human tissues it was found that protein abundance varies 

between cells of the same type [99]. Additionally, uncommon alterations that might cause drug 

resistance can be missed since the acquired data will be averaged over a colony of cells [100].  

Feasibility  

The size of the genomic, transcriptomic and proteomic data requires extensive analysis and 

expensive data acquisition raising the question whether modelling is feasible. For instance, 

sequencing an entire human genome currently costs more than $ 1000 [101]. To study resistance 

genomic, transcriptomic and proteomic data needs to be generated before and after resistance 

occurs. As a model system melanoma is not the most suitable since resistance occurs after six 

months introducing more variation. In colon cancer patients drug resistance occurs almost instantly 

[9]. Because of the quick response colon cancer samples can be used instead of melanoma samples 

to accelerate the detection of resistance mechanisms, making the experiment more reproducible. 

Using single biopsies for whole-genome sequencing from, for instance, 20 colon cancer patients 

would require approximately $ 40.000. Adding transcriptomics, proteomics and phosphoproteomics 

data would be even more expensive but remains feasible. However, integrating all 17 modules will 

not be feasible. Additionally, detecting new mechanisms will require more than 20 patients to be 

enrolled since more than 20 mechanisms of drug resistance have currently been identified [3, 4].  

Using single biopsies before and after treatment does not provide all the information to correct for 

heterogeneity of the tumor. The lack of quantity and quality of data used for integration indicates 

that creation of a model requires several biopsies to be taken from the tumor. Using this approach, 

data can be generated for multiple regions of a tumor and analyzed separately to acquire 

information about different mechanisms [16, 90]. However, protein interactions vary over time 

requiring a time series of biopsies as well. The amount of material obtained from several small 

biopsies is currently not sufficient to obtain genomics, transcriptomics and proteomics data [90, 94]. 

To expand the amount of material it is possible to culture tumor cells from patients in an organoid 

culture or xenografting cells into permissive mice [91, 92]. Hypothetically, if a serial biopsy is taken 
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from 20 patients at 10 different timepoints from 10 regions in the tumor this will result in 2000 

biopsies and cultures. In total this would require more than 2 million dollar for merely the genomic 

information and is therefore not feasible to perform for all processes described above.  

Clinical applications  

Integration of different layers of data in a tumor is an essential step in understanding cancer drug 

resistance. Novel mechanisms discovered through integrative approaches will lead to novel insights 

and treatment combinations. Alternatively, if applied on a greater scale it can be used to validate 

mechanisms that occur in patients since not all mechanisms were found to confer resistance in 

patients. For instance, it was proposed that secondary mutations in BRAF can confer resistance yet 

this mechanism has never been observed in patients [4]. Developing drugs against mechanisms that 

do not occur or occur rarely is costly and only provides treatment benefit for a small population of 

patients. An important addition to the model would be to include phosphoproteomics data to find 

which pathway is activated and in which pathways relief of feedback inhibition take place. This is of 

great clinical interest since temporary withdrawal of the drug (drug holiday) has been shown to make 

tumors regress and is most likely caused by reintroducing feedback inhibition [102].  

The use of the model will still be limited for diagnostics and treatment as it is uncertain how tumors 

develop spatially and over time. Acquiring the data necessary to investigate this is currently not 

feasible. It is possible to obtain data on processes occurring at a position in a tumor at a specific time. 

This data could be used to choose a treatment strategy that is effective for that position at that time. 

By integrating genomic, transcriptomic and proteomic data from individual subclones in the tumor or 

by obtaining omics data over time predictions about the cause of clonal expansion can be made. Yet, 

a significant limitation to this approach remains the lack of tumor material.  

Improving treatment strategies for individual patients, as was shown in HIV infection, can be 

achieved by using biomarkers. For HIV infection it is sufficient to sequence the virus in order to 

detect which drugs are effective [87]. For personalized treatment biomarkers can be used to find 

occurring resistance mechanisms in patients instead of integrating all layers of complexity. Using 

DNA as a biomarker is most likely not as effective as using expression and/or phosphoproteomics 

data. The integrative approach described here could detect which changes best predict treatment 

response by applying it to multiple patients.  

An integrative approach can provide more information that can be used for diagnostics and 

treatment. In theory, it is possible to integrate multiple layers of omics into a single model. However, 

technical advances need to be made to make data acquisition feasible. An integrative approach will 

not be enough to prevent the progression of tumors altogether, but it is likely to be invaluable in 

devising treatment strategies for individual patients in the future. 
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