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Abstract

The battle simulator RoboCode is a competitive Java programming challenge,
wherein one can program a competitive battle tank. By exploring the possibili-
ties of using machine learning, especially reinforcement learning, a learning battle
tank is designed. to design a learning battle tank. A short survey of reinforcement
learning in general is made and an in depth analysis of the RoboCode environment
is performed. Finally the design is implemented and tested.
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Introduction

How does one learn to perform a certain task? A question that appears simple
at first, but proves to be quite a challange to answer even for the most arbitrary
situations. Imagine a robot controller or an agent (as it is most commonly referred
to by computer sciences) which is expected to perform a certain task. But then
imagine simultaneously that the agent as no prior knowledge of the task or of any
effect his actions will have. As example, take balancing a pole stick. The agent can
influence the environment via it’s output-actuators, e.g. move the pole x degrees to
the right or left. It can observe the environment via input-sensors, a camera able to
register angle of the pole. It receives a reward that resembles a performance measure
on the task at hand. How should the agent use this feedback? How do we combine
these four elements (input, output, action and reward) into a system that improves
or learns over time? The study that explores solutions to this problem, and many
others, is referred to as artificial intelligence.

In this thesis, I take the battle simulator of RoboCode as an environment to ex-
plore ways to implement machine learning in a somewhat more complex environment
then that of (mere) pole stick balancing. In my study of artificial intelligence I fre-
quently have gazed upon implementations of machine learning, but never really had
a chance to build an implementation from the ground up. The goal is to design and
implement a simulated robot tank that can be set against other tanks in a one on
one fight. The robot should improve over time by trial-and-error interaction with
the enemy tank, though I do not expect a simple design to beat the currently best
ranking robot tank fighters.

Due to limitations on time and the structure of rewards in the battle simulator
RoboCode, I have selected reinforcement learning as the machine learning category
to base the design on. Reinforcement learning is a very broad term, but the the
framework of learning presented by the literature is very dynamic and can be easily
adapted. I expect it to be interesting to explore the problems that emerge while
scaling a known reinforcement learning algorithm to a (more complex) practical im-
plementation.

My thesis is divided into two parts. The first part concerns a short survey of rein-
forcement learning and RoboCode, the second part concerns the actual development
of a robot. The development consists of the general software development phases;
(1) analysis, (2) design and (3) implementation.

I hope you will enjoy reading the rest.
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Chapter 1

Reinforcement Learning

In this chapter a short introduction to reinforcement learning is given, along with
some notation conventions used in later sections. Sources for this section are Re-
inforcement learning: A survey (Kaelbling et al., 1996), Artificial Intelligence - A
Modern Approach (Russell and Norvig, 2003) and Reinforcement learning: An Itro-
duction (Sutton and Barto, 1999).

1.1 The Idea Behind Reinforcement Learning

Reinforcement learning is not directly defined by what it does but rather by what it
solves (the reinforcement problem). Imagine an agent set in an environment, in this
environment he can and does certain actions. The environment, influenced by the
chosen action, gives feedback to the agent. Usually along the lines of a performance
measure constructed as reward or reinforcement. The goal of the agent is to get as
much reinforcement or reward as possible. Hence the name reinforcement learning.
The reinforcement learning problem can be described as the problem the agent faces
when trying to learn a behaviour that maximises his reward. Generally the agent has
no knowledge of how its actions will influence the environment and its future ability
to choose actions1. It must learn this information by trial-and-error interaction with
the environment. Since an single action can only be used to either explore or exploit
the environment, a choice between the two must be made. Further on in this section
we will return to this exploration-exploitation conflict.

A great property that reinforcement learning agents have, is that you only need
to tell the agent his performance on a given task. That is, you only need to spec-
ify what needs to be done instead of explicitly detailing how it needs to be done.
This sometimes leads to an agent surprising the designers by showing behaviour they
would never have thought of.

The current field of reinforcement learning stems from three different threads that
1Prior knowledge varies. Some reinforcement learning algorithms integrate large quantities of

knowledge into the agent before learning starts.
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were pursued in the past (late 1950’s). The first thread concerns learning by trial-
and-error, this started from the psychology of animal learning. Usually the field of
psychologist and biologists. The second thread comes from the problem of optimal
control and finding its solution using value functions and dynamic programming. A
field mainly occupied by computer scientists and mathematicians. The second thread
lacked the learning approach the first thread was so keen on researching. A third
thread, although smaller, concerns the use of temporal-difference learning. All three
threads intertwined in the late 1980’s to produce the modern field of reinforcement
learning as presented in Russell and Norvig (2003).

The research for a solution for the reinforcement problem can be generally divided
into two categories. The first is to search the space of behaviours in order to find one
that performs well in the environment. Genetic algorithms and genetic programming
are examples of this. The second is to use statistical techniques and dynamic pro-
gramming methods to estimate the utility of taking actions when the environment is
in a certain state. The main emphasis of this thesis will be on the latter rather then
the former category.

1.2 The Framework Constructed

Time is usually a sequence of discrete time steps, t = 0, 1, 2, 3, . . .. The interaction
between the environment and the agent is best described by signals. As depicted
in figure 1.1, the agent sends an action signal (at) containing a chosen action. The
environment then sends two signals to inform the agent of the consequences of his
action: a state signal (st+1) to show the changes the environment has undergone and
a reward signal to inform the agent of its performance. The reward (rt+1) is usually
∈ R As the agent is usually part of the environment it can be difficult to see where

Agent

Environment
rt+1

st+1

rewardstate
st rt

action
at

Figure 1.1: The agent-evironment interaction in reinforcement learning (Sutton and
Barto, 1999)

the agent stops and the environment starts. The boundary is usually set at where
the agent no longer has absolute control. It cannot declare what reward it should
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receive nor can it directly influence the state change, therefore the reward and state
signals are part of the environment.

This framework can be used to reduce the reinforcement problem to the problem
of learning an mapping from a state s in the set of possible states (S) to an action a
in the set of possible actions (A);

S ⇒ A
This (sort of) mapping is called a policy (π). As a convention the policy doesn’t have
an action as output, but rather the probability that an action will be selected given
a state. This results in a joint probability distribution2 over the actions.

πt(a, s)⇒ Pr(a|s)3

Since π can (or should) change over time the time-index t is added. A policy π
can then be used to map a state s to a single action a by setting Pr(a|s) = 1 and
Pr(x and x 6= a|s) = 0. By using this convention the framework allows for reinforce-
ment learning to cope with probability distributions.

The goal of the agent can now be formalised as to find an optimal policy (π∗),
optimal in the sense that it maximises the cumulative reward over the long run. The
simplest way to calculate the cumulative reward R (from time step t onwards) is as
follows:

Rt = rt+2 + rt+2 + rt+3 + . . .+ rT

This is fine for agents that are only learning for a finite amount of time, with T being
finite in episodic tasks. But if T = ∞, as in continuing tasks, the expected reward
Rt could easily become infinite and the agent can no longer compare these. To cope
with this, discounting is introduced. With discounting, the expected rewards received
later on are considered to be of lesser importance.

Rt = rt+2 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1

With γ being the discount rate with values: (0 ≤ γ ≥ 1). If γ < 1, the result of the
infinite sum is finite as long as the reward sequence {rk} is bounded. If γ = 0, the
agent only looks one step ahead. With γ getting closer to 1 the agent becomes more
farsighted. Note that actually using γ = 1 would result in the expected cumulative
reward discussed earlier.

The formalised goal now, is for the reinforcement agent to find an optimal pol-
icy (π∗)4 that maximises the expected discounted cumulative reward on the
long run.

2A joint probability distribution means that the sum of all distributed probabilities in a set equals
1.

3Pr(A|B) = Probability of A given the fact B
4There can be more then one optimal policy, each having the same expected discounted cumulative

reward
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1.3 Ah, Optimality. . .

Most reinforcement learning algorithms using a statistical approach make use of a
state value function to calculate the utility of a state: V (s). That is, the expected
discounted cumulative reward that is to be gained from being in an environment hav-
ing the property of being in state s. This utility is not only dependent on the next
reward the agent is going to receive but also on all the successor states, rewards and
actions of that state. The influence that successors are going to have is determined
by the policy the agent is going to use from state s onward. Please note that the
policy (π) was defined as a probability distribution.

The relation between the utility of state s and its possible successor states s′ is
best described by the Bellman equation5 for state values:

V π(st) =
∑
a∈A

π(st, a)
∑
s′∈S

Pr(s′ = st+1|s, a)
[
Ra
ss′ + V π(s′)

]
Ra
ss′ the expected next reward, when performing action a in state s resulting in

state s′.

Pr(s′ = st+1|s, a) the transition probability of doing a in state s resulting in s′

being the next state.6

The equation weighs the V π(s′) via their probability of occurring after state s. This
is much like a tree structure, with a few premises, the number of branches keep mul-
tiplying exponentially until leaves are reached, i.e. the final state sT is reached. A
similar relation and equation can be formulated for the action-state value function
Qπ(a, s) for the utility of performing action a in state s.

Let us return to the goal of the reinforcement agent, finding an optimal policy. The
optimal policy π∗ produces V ∗, the optimal state value function. This is the true
utility value of a state. Because V ∗ is the value function for a policy, it satisfies
the Bellman equation stated above but can be reformulated7 to form the Bellman
optimality equation for state values:

V ∗(st) = maxa∈A
∑
s′∈S

Pr(s′ = st+1|s, a)
[
Ra
ss′ + V ∗(s′)

]
As you will notice, the Bellman optimality equation is no longer dependent on the
policy being followed. If the dynamics of the environment are known – i.e. transistion

5Named after Richard Ernest Bellman, an U.S. mathematician
6Most environments in reinforcement learning are considered to be stochastic in a static way.

That is, performing an action a in state st will result in the environment being in state st+1 by a
fixed probability.

7See for details: (Sutton and Barto, 1999)
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probabilities and Ra
ss′ – and the state set S and action set (A) are finite, the Bellman

optimality equation results in a set of equations. This equation set can be solved
using any one of a variety of methods for solving sets of non-linear equations. This
provides an omniscient agent with a V ∗. The same could be done for Q∗(s, a).

Constructing an optimal policy if value functions V ∗ or Q∗ are known becomes
trivial. If inn state s select the action a with that has the highest Q∗(s, a). Un-
fortunately, the more practical applications of reinforcement learning cannot provide
optimal value functions this easily and are generally left to approximate them as best
they can.

1.4 The Real World Is Harsh

The Bellman optimality equation, when some premises are met, results in a set of
non-linear equations. One of the premises is omniscient of the dynamics of the en-
vironment but this is generally not the case. The practical applied reinforcement
learning agent is faced with the problem of not knowing what the exact consequences
his actions will have and not knowing what rewards it is going to receive. Lack of
omniscience is not the only thing real world agents tend to lack. Some real world
reinforcement problems also have to cope with continuous state and action spaces
instead of finite spaces. The agent has no choice but to approximate these value as
best it can. Different approaches are taken in the field of reinforcement learning to
do this, some which are discussed below.

Some methods approximate the value functions via a model. The model is set to
simulate the dynamics of the environment and is made more accurate by trial-and-
error. They do so in the hope that, given enough time, it will result in a perfect
model. They then solve the linear-equations produced by the Bellman optimality
equation. Methods that do this are generally named dynamic programming (DP)
methods.

Other methods forgo working towards a perfect model, mostly due to the excep-
tional computational expenses that comes with building the perfect. Monte Carlo
(MC) methods solve the reinforcement learning problem by averaging over the feed-
back provided by the environment through experience. They usually process local
probability transactions instead of the complete set of probability transactions, re-
sulting in far less computation.

The temporal-difference (TD) learning type of methods drop the usage of a
model altogether. When an agent is using TD learning and finds the environment in
state st+1 it uses the reward signal of the environment to update its estimate of the
preceding state’s value (V ∗(st)) by the following the very general equation:

NewEstimate← OldEstimate+ α [Target−OldEstimate]

The [Target−OldEstimate] can be considered the error of the OldEstimate. The
update makes the estimate take a step towards the real optimal value with a step
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size of α. How the exact update equation is calculated depends on which of TD
learning methods is being used.

TD, MC and DP methods are not different methods of approximation per se, they
can be combined resulting in hybrid methods. Usually it is even useful and desirable
to use different types at the same time. For example, one could use one method for
on-line computation while performing the task and another for off-line learning be-
tween the tasks. Reinforcement learning methods are mainly compared by the speed
and guarantee of convergence towards an optimal policy.

1.5 Exploration Versus Exploitation

What in most real world applications of reinforcement learning holds is that, while
the agent is trying to approximate the optimal value functions, the agents policy
is already having an influence on the cumulative reward the robot is set to receive
at the end of its task. Exploring every action in every state may ensure a speedy
convergence toward the optimal value function but at the expense of the rewards it
could be receiving by exploiting the knowledge it already has. The agent needs to
find the delicate balance between exploring and exploiting the environment.

To do this a random factor can be introduced to the action selection system. With
an ε-greedy approach the agent always selects the best action (to its knowledge) but
with a chance of ε it picks another action at random. This approach works but results
in the second best action having the same probability of being selected as the worse
action. In situations where the worse action might have devastating consequences,
this is something that should be avoided.

One would like to have a probability distribution over the actions that takes into
account the different values they are perceived to have. The softmax approach does
this by using a Boltzmann distribution8 in state s:

eQ(a1,s)/τ∑n
b=1 e

Q(ab,s)/τ

Where τ is called the temperature. If the temperature is set very high the actions
are selected almost equiprobable. Set to a low temperature the probability is more
dependant on the action value. When τ → 0 the softmax approach becomes near
greedy selecting only the actions with the highest value.

A Boltzmann distribution as action selection system synergies nicely with the as a
probability distribution defined policy. Convergence of the value function can still be
guaranteed, even when using a random factor for exploration. Namely by greedy in
the limit of infinite exploration; if the agent is given enough time, the value functions
will still converge.

8Named after Ludwig Eduard Boltzmann, an Austrian physicist
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This concludes the survey of reinforcement learning framework, conventions and
methods. The following section is dedicated to analysing the task environment of
the RoboCode battle simulation.
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Chapter 2

RoboCode Battle Simulator

In this section the RoboCode battle simulator is shortly introduced. A by a survey
of previous projects follows, wherein robots are being designed and implented using
some form of machine learning.

2.1 An Introduction

RoboCode1 is an environment in which robots battle each other. It has been devel-
oped by Matthew A. Nelson at the end of 2000 as a personal gimmick. After Nelson
accepted a position at IBM, RoboCode temporary had a official status under the
department of IBM AlphaWorks. In 2005 it was released as an open source project
at SourceForge2. It has seen a lot of input from the community and is currently being
updated and maintained by Flemming N. Larsen.

RoboCode is an abbreviation of ‘robot code’. The robots simulate small tanks,
which can be programmed using the programming language of Java. The program-
mers can construct the code robots use to perform actions but, in general, have no
direct influence on an ongoing battle. Robots can compete in a team or deathmatch
battles. Building a team brings more types of robots to the playground, but this
paper will focus on single robot teams. The basic RoboCode package comes with a
standard set of robots. The robots that have the prefix sample. are part of this
standard set.

Apart from sporadic organising competitions the community also has an up-to-date
ranking of the programmed robots. This RobotRumble has multiple divisions deter-
mined by the codesize of the robot and the type of battle. (e.i. MicroBot, MacroBot
and MegaBot & one-on-one, ten-on-ten or teambattles) There also exists an online
robot repository3 that contains all uploaded robots. The RobotRumble and the Rob-
Code repository can be used to find able adversaries for robots. They also provide

1http://robocode.sourceforge.net/
2http://sourceforge.net/
3http://robocoderepository.com/
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an extensive source of ‘hand coded’ algorithms that can be used as an inspiration for
home build robots. The robots that are referred to later on in this thesis, can all be
found and downloaded from the repository.

The RoboCode environment is governed by game rules and a physics system abiding
to simple formulas. If the reader is not familiar with these, it is recommended to
read appendix A (Gameplay and physics) on page 46 for a clear understanding of the
basic principles governing robots in RoboCode.

2.2 Other Work

The RoboCode battle simulation is used as an educational tool on many different
parts of the globe. It does not come as a surprise that there are several other projects
wherein artificial intelligence (AI) methods are being implemented to design adaptive
robots. The RoboCode repository and RobotRumble mainly consist of undocumented
implementations. In this section an overview of some of the documented projects is
presented. The goal is to get a broad idea about the projects, for the details and
exact methodology of every algorithm the interested reader is referred to the original
paper.

Genetic Algorithms And Programming

Eisenstein (2003) explores how genetic programming (GP)4 can best be applied to
produce controllers based on subsumption and behaviour oriented languages such as
REX. Developing a variation on REX, TableRex, RoboCode was used as a test case.
The robots were evolved against the sample robots as well as against the more ad-
vanced robot SquigBot. Four training scenarios were constructed using the variables:
Number of adversaries (one or more) and starting position (fixed or random). In
the simplest setup, one adversary and fixed starting location, robots emerged that
could easily defeat the sample and advanced robots. Using random staring positions,
the robots required more time to be evolved into controllers of the same performence.

When using multiple adversaries and a fixed starting position, robots failed to evolve
efficient movement strategies. With multiple adversaries and a random staring posi-
tion the robots would take an exponentially long time to evolve in anything that could
beat but the easiest sample robots. Eisenstein noticed that robots were rarely evolved
to take advantage of their gun. One explanation given by Eisenstein was the fact
that firing only costs Health and without good targeting using the gun had virtually
no benefit for the robots. Eisenstein has the following to say about targeting:

4Genetic algorithms and genetic programming are inspired by the natural evolution of organisms,
but instead tries to evolve robot controllers. By using a large populations of controllers, genetic
programming simulates evolution by letting the highest scoring members of that population combine
to produce the next generation. By allowing random permutation of the controllers the population
ideally produces an optimum controller.
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“Targeting is a difficult problem, even for the hand-coded robots. Bul-
lets move at a top speed of 20 units per tick, and tanks can move as fast as
8 units per tick. Thus, the velocity of the target tank must be taken into
account. In addition, the time required to rotate the gun turret must also
be factored in. Even if the movement of the target is totally predictable,
accurate targeting requires some complex mathematics. To make matters
worse, the simulator will tell a robot whether its shot hit or missed, but
it provides no information about how close the shot came.”

It can be concluded that the targeting issue could be a subject for improvement.
One could, for example, use an artificial neural network (ANN)5 to train a targeting
controller.

In Shichel et al. (2005) the designers undertook a first attempt to introduce evolu-
tionarily designed robots into an international RoboCode competition. The purpose
was to see how these genetic evolved robots would hold against human made ‘hard
coded’ robots. As an extra challenge they chose the division of one-on-one HaikuBot
challenge, where their code is limited to four instances of a semicolon (four lines).
Evolving the robots against the top players of past HaikuBot challenges resulted in
a individual robot. The robot took third place out of 27 entrees. Showing that GP
can be used to evolve adequate controllers. The question remains though, whether
GP can be used to produce robots to compete in competitions that allow robots with
a larger codesize.

Hybrid Systems

From the Department of Computer Science, at the University of Aalborg, several
documented implementations of artificial intelligence (AI) have been found. During
the DAT3 seminar, two notable projects produced AI related robots. Both of these
use a hybrid system, i.g. multiple AI algorithms.

In Gade et al. (2003) a modular hybrid agent architecture is developed, selecting
the right type of machine learning (AI algoritm) for each of the main properties of
RoboCode. The goal was to develop a robot (named Aalbot) that performed well
in a melee battle6. The architecture framework used is generally referred to as fine
grained subsumption. This hybrid architecture is an architecture that is neither pure
reactive nor pure deliberative; taking advantage of both extremes.

The architecture consists of three components, i.g. a world state, subsumption layers
5An artificial neural networks consist of interconnected artificial nerve cell. Used in artificial

intelligence to solve certain problems, it is used by cognitive modelling to test theories of the brain.
It has been shown to excel in recognising patterns. Consisting of an input, hidden and output layer
of nodes it trained by using examples of desired input/output.

6A melee battle is where multiple robots fight in the same battlefield. In this case, four; Aalbot,
Peryton, SquigBot and sample.Walls
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and an arbitrator component. The subsumption layers are each designed to tackle a
certain controlproblem of RoboCode, using a set of modules contained within each
module. As example the problems Targeting and Target Selection are two different
layers. The layers can all add whishes to a list, i.e. ‘Kill robot A’. This wish list,
after been edited by every layer, is then presented to the arbitrator compontent. The
arbitor translates it into command the RoboCode robot framework can parse. The
world state represents a fading memory accessible for all layers, making information
readily available.

For some of the modules hard coded strategies are being used, due to their efficiency.
Other modules use AI algorithms;

An artificial neural network (ANN) module for targeting and shooting the gun.

A reinforcement learning (RF) module for target selection.7

A genetic algorithm (GA) was used for the movement and radar control mod-
ules.

It should be noted that testing adaptive hybrid systems can be difficult. Showing
proof that part of the system improves over time is best done by eliminating influ-
ence from all the other subsystems. For example, the targeting system using the
ANN can be implemented and can then be trained against an array of (only) moving
robots. Showing an increasing frequency of bullet impacts can suffice to show that
the ANN is learning. But testing target selection is far to depend on the performance
of other subsystems to implement this kind of testing. Gade et al. showed that the
implemented RF module (using the other adaptive subsystems) improved towards
the convictions they had about optimal targeting. This made using the RF module
obsolete as they could have hand coded their convictions of optimal targeting into
the robot.

When testing the ANN they found that the gun performed 7 to 8 times against
the robot SpinBot. Relative to firing at a random angle. Further testing of the
RF module was mainly meant to approximate the balance between exploration and
exploitation. Gade et al. concluded on a variable for the probability distribution for
action selection. The GA module did not show the steady increase in the average
fitness of individual as the designers optimistically expected. It is unclear what the
exact reasons for the lack of efficient evolution is. As stated in the report, one of the
possible reasons for this are the choices the designers made for the set of terminals
and functions. Considering the success of GA in Eisenstein (2003) and Shichel et al.
(2005) this could very well be the case. This shows that special care should be taken
when selecting the input and output for an algorithm. After training Aalbot with
generally poor performing robots, it performed adequately against the more advanced
robots, ranking second in the earlier mentioned melee battle.

7Specifically Q-learning with a variable probabilistic approach for choosing actions
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Another documented implementation from the university of Aalborg comes from
Frøjhær et al. (2004). Yet another hybrid hierarchical architecture is used to imple-
ment a variety of AI methods. One aspect that differs from Aalbot is that the robot
from Frøkjær et al. was designed so that it could work within a team of robots. The
robot was designed to use each machine learning method on the hierarchical level
the method was best suited for. In figure 2.1 on page13, the outline is depicted.
The model has three overall layers, namely General Strategy, Strategy Modules and
Interaction Modules.

The General Strategy uses a Bayesian network (BN)8 to choose between an of-
fensive or a defensive strategy. It does so by feedback from the Strategy Modules
(Retreat, Attack, Acquire target) which tell the Bayesian network the probability of
certain factors. Lastly, the actual behaviour is determined by the interaction modules
for each of the actuators (Radar, Gun, Move(body) and Team).
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Figure 2.1: An outline of the module design in (Frøjhær et al., 2004)
8A Bayesian network is a probabilistic graphical model that represents a set of random variables

and their conditional independencies via a graph (i.e. the nodes resemble variables and the edges the
(in)dependencies. Given certain conditions the network can be used to compute the probabilities of
events.
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A neural network (ANN) is trained for shooting/firing the Gun, a genetic algo-
rithm (GA) for Move(body) and a separate BN is used for target selection. For the
Radar a hand code strategy is being used. This project is very detailed on giving
background information on the used algorithms and is very thorough for the select-
ing procedure for the best input for the algorithms from the sensor data RoboCode
offers. I will discuss some of the selection criteria and segmentation techniques in
a later section. Due to the limited time on behave of Frøkæ et al. only the move-
ment (GA) and shooting (ANN) modules were implemented and tested with succes.
Both showed improvement over time. The implementation of the target and strategy
selection module (BN) was never completed and therefore never tested.

Considerations

Gade et al. (2003) make the following observation about machine learning and RoboCode:

“Although some variations of the pattern matching methods have been
implemented, the interest in applying advanced ML to Robocode is not
overwhelming. One explanation could be that the simulation environment
in Robocode is not too difcult for humans to fully understand (the only
obstacles are the walls, there is a limited number of actuators and little
nondeterminism etc.), making the explicit expression of behaviour code
possible. Consequently many traditional ‘hand coded’ techniques have
proven very effective, and in addition require less development time to
achieve good results.”

Many machine learning algorithms also suffer from a large set of variables that
need to be tuned extensively to produce effective learning. But these variables often
have (sometimes unexpected) relations to each other. Setting one variable might
cause another variable to change in its former optimal value. This makes applying
machine learning challenging, especially in hybrid architectures with multiple AI
algorithms running at the same time. Each with its own set of variables.
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Chapter 3

Analysis

The analysis section is meant to provide information to base design decisions on.
After a short survey of the battle simulator, to view the limitations of the RoboCode
engine, some observations are made on the game rules and physics.

3.1 Battle Simulator

The RoboCode battle simulator uses Java threads to run the battles. Apart from
the main thread, the battle manager, every robot has its own thread. It receives
input from the battle manager thread via an event queue. Each robot is given its
own event queue. Events generated are listed in appendix ??, but one should think
of events like RobotScannedEvent or HitByRobotEvent. The logical code, i.e. the
non-reactive behaviour, is specified in the run method, an integrated method part of
a thread.

Some different types of classes can be extended to create a new robot. The most
commonly used is AdvancedRobot as it allows queueing actions, custom events and
interaction with the file system.

Access to the file system by the robot threads is limited through the Java security
manager1 that the RoboCode engine utilises. The robot thread is only allowed to
read and write to any files located in a unique directory, but the combined size of
all files in that directory can never exceed 200,000 bytes. If it does exceed the limit,
the robot is automatically killed. These restrictions have been set to prevent robots
from ‘hacking’ their way to victory, either by using large files that can crash the file
system or by using malicious memory injection. At the beginning of every round the
robot threads are reset and any objects, that are not defined to be static, are lost.
To store information between battles the robot can only use the limited storage in
its data directory.

During the rounds and at every turn the robot threads are woken up. The main
thread then waits for the robot to finish its turn. That is, until the robot performs a
blocking action call (e.g. execute()) or a set amount of computational time is used.

1The security manager is part of the Java virtual machine and can be disable for testing purposes.
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In the latter case, the robot’s turn is terminated immediately, this is called ‘skipping
a turn’.

The exact loop the engine goes through during runtime is as follows;

1. Battle graphics are (re)painted

2. All robots execute their code until they take action (and then paused)

3. Time is updated (time = time + 1)

4. All bullets move and check for collisions

5. All robots move (heading, acceleration, velocity, distance, in that order)

6. All robots perform scans

7. All robots are resumed to take new action

8. Each robot is processing its event queue

The next section details observations on the game rules and physics of the battle
simulator.
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3.2 Observations On The Rules And Physics

Just detailing the rules and phyics of the RoboCode environment (as in appendix
A on 46) doesn’t give true insight on how these affect battles or the programming
of controllers for these robots. When designing artificial intelligence one looks at
recurrence of certain episodes. These are an indication of when an performance
measure can be made. How often can a robot fire a bullet? How many ticks does a
bullet take to travel the entire battlefield? How long does one radar sweep take? In
this section a few observations and calculations are performed to estimate the length
of these episodes.

Normally every part of the robot turns along with the part it is mounted on,
i.e. radar → gun → body. But this can be disabled, so that every part moves
independently.

Rounds And Battles

The default duration of a battle is ten rounds. After a battle is fought the scoring
of every robot is calculated. After every round the robots are once again placed on
the battlefield with renewed energy. The number of turns in a single round can differ
greatly and depends on the robots. Two evenly matched robots can last more then
4500 turns in a single round. The duration of an round is never infinite. If none of
the robots hit each other (by way of a bullet or collision) for 450 consecutive turns,
they start losing 1

10 energy every turn. (450 turn is the default setting and can be
customised). Since firing always costs energy and the energy returned from hitting an
enemy robot is always lower then this, no round can last for ever. Winning a battle
is therefor an episodic task. The maximum duration is dependent on the number of
robots, .i.e. the cumulative amount of energy around.

Radar Observations

How long does one radar sweep take? How much can one sweep scan? The radar
mounted on top of the gun can only scan in the direction the radar is pointing and
has a maximum distance of 1200 pixels. In a small battlefield this means that you
scan every robot in the direction the radar is pointed in. When two enemy robots
are standing directly behind each other, the first one does not prevent scanning of
the second. There is no limitation on the numbers of robots that can be scanned in
one sweep. During one tick the radar can be rotated to scan a cone shaped area of
the battlefield.

The radar can rotated at a maximum of 45◦

turn . If the parts are not set to move
independent, the maximum rotation of the highest mounted part of the robot is
dependent on maximum rotation of the lower parts, i.e. the gun (20◦) and body(10◦).
The maximum rotation speed of the radar is 75◦ = 45◦+ 20◦+ 10◦ and the minimum
rotation speed is 15◦ = 45◦ − 20◦ − 10◦. At a maximum rotation speed it takes⌈

360
75

⌉
= 5 turns to scan the entire battlefield and at a minimum rotation speed it
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takes
⌈

360
15

⌉
= 24 turns.

The radar can get the following information from scanning a robot: distance,
energy, heading, bearing, name and velocity. Note that it cannot directly get the
exact location, but this can be easily calculated using the bearing and distance. Also
see the event list in appendix B on page 51

Gun And Bullet Observations

Firstly, it should be noted that bullets cannot be seen. They can not be scanned
while in flight and the only way a robot can know of a fired bullet, is by detecting a
slight drop in the energy of the enemy between two radar scans.

Secondly, the speed, generated gun heat and damage of a bullet depend on the
firepower2, see the equations on page 49. When firing, the gun generates heat and
has to be cooled down before it can be fired again. RoboCode lowers the gun heat
by 0.1 each tick, but the amount can be altered.

To get a general idea about how the firepower influences the travel time of the
bullet and the fire frequency see tables 3.1 and 3.2 below. For easy and relative com-
parison, the numbers of pixels a robot can travel during the episode are displayed.

What follows from this, is that for firing at a moving target that is far away, a

Table 3.1: Traveltime of a diagonal shot bullet on a 800x800 battlefield

Firepower ∼Traveltime (ticks) Displacement of target (pixels)
0.1(min) 58 464
1 66 528
1.5 73 584
3.0(max) 103 824

Table 3.2: Minimal delay between firing using default gun heat drop (0.1)

Firepower Delay (ticks) Displacement of target (pixels)
0.1(min) 2 16
1 4 32
1.5 5 40
3.0(max) 8 64

firepower of ∼ 0.1 gives the target far less time to evade then firing with ∼ 3.0. So
when designing a firing strategy, a low firepower might be efficient when firing from

2(0.1 < Firepower < 3.0)
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a certain distance.

Thirdly, as stated before, the damage a bullet impact does to a target is also deter-
mined by firepower. See equations on page 49 for the exact formula. The relation
between gained/cost energy and damage to the target is best displayed using a graph
(figure 3.1). Please note, that although a bullet shot with a low firepower deals less
damage then one shot with a high firepower it can be fired more frequently. For
good comparison the y-axis shows the energy/tick instead of the raw energy gain or
loss calculating in the frequency of the bullets.

If the robot can be reasonably certain it can predict the target’s future location,
it is effective to use at least firepower > 1, as this does extra damage. The graph
shows that, if every bullet hits, firing at maximum firepower will bring the targets
energy down faster. But if the target is very versatile and evades a lot, the robot
loses more energy the stronger the utilised firepower is.

1 2 30
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Firepower
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T
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Bullet Damage

Energy Gained

Energy Lost

Figure 3.1: Energy gained and energy losses per tick set against firepower, using
default gun heat drop of (0.1)

Movement Observations

How long does it take to cross a battlefield? As stated on 48, the maximum movement
speed is 8 pixel

turn . With the maximum acceleration it takes 8 turns to accelerate to a
velocity of 8 pixel

turn moving 36 pixels while accelerating. It takes 4 turns to decelerate
when moving at maximum velocity, moving 20 pixels while doing so.

If the distance is smaller then 56 pixels the equation for the number of turns(t)
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it takes to move distance (d) of pixels is:

t = (8 + 4) +
d− (36 + 20)

8
(3.1)

What this means for the travel time across a battlefield can be seen in table 3.3.

Battlefieldsize (pixels) Traveltime (turns)
400x400min 55
800x800 105
5000x5000max 630

Table 3.3: Turns for moving along one side of the battlefield

Observation Summary

Concluding on the earlier observations, the following can be observed for events on
a battlefield of 800 x 800 pixels. A robot takes;

∼100 turns to move from one side to the next

∼60 turns to shoot a bullet with firepower = 0.1 across the battefield

∼100 turns if fired with firepower = 3.0

∼50 shots in 100 turns with firepower = 0.1 dealing 20 damage while gaining 15
Energy

∼13 shots in 100 turns with firepower = 3.0 dealing 28 damage while gaining 117
Energy

Usually the environment is classified by properties as defined by Russell and Norvig
(2003). The task environment properties that hold for RoboCode are as follows;

Partially Observable the robot sensors provide limited information

Strategic the environment is deterministic except for the actions of other robots

Sequential current actions reflect upon the cumulative reward

Semidynamic the game pauses while the robot has limited time to select an action

Continuous for example, the state of the environment contains angles n where
n ∈ R

Multiagent a battle can be fought between an unlimited number of robots

These values and properties will be used to provide information for the following
design chapter. Especially machine learning methods that need to evaluate the system
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after certain events can use this information to determine the length of certain events.
The observations made in this chapter can also be used to develop and evaluate
strategies already available via the community.
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Chapter 4

Design

This chapter is meant to provide details on the design and the design choices before
I commence the implementation and testing. First the overall design is explained.
Then, because the design is based on the reinforcement learning framework provided
in part I, the reinforcement signal designs are explored. Detailing the update equation
will be at the near finish of this chapter.

Overall design

Several projects already exist that implement some form of machine learning into a
robot, see section 2.2 on page 10. Some of the projects use a single machine learning
algorithm to map the raw events of RoboCode onto the most basic level of actuators.
That is, for example, turning the gun or moving the robot forward.

This gives a highly adaptive robot, but one that is very slow in the adapting.
If given enough time the robot controller using it can learn to counter any robot it
faces. The drawback is that it loses precious time before it shows any sign of even
the simplest effective strategy. When facing a single opponent and the only goal is
to win, eventually, this does not pose a problem. But when facing an unfamiliar
robot the trained controller generally loses really quick and requires a large amount
of training before it can perform adequately again.

Drawing inspiration from the many effective hand coded strategies that exist in
ranked RoboCode robots and the conclusions of the reports from other projects, I
suggest a high-level machine learning design. Others use machine learning to learn via
the interpretation of the low level sensors input and control of the low level actuators.
By using tested behavioural strategies as actuators (output) and highly pre-processed
sensor data for input the resulting robot controller could adapt its behaviour through
trial-and-error. Reinforcement learning is presumed to be adequately suited for this.

Instead of selecting a certain action every turn, the robot controller will select one
behavioural strategy to govern a part of the robot for a certain amount of turns. After
which it will evaluate its selection and re-select (new) strategies. Since the robot’s
anatomy consists of three parts: the radar, the gun and the body, the strategies will
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be divided among these three categories. A choice for an action will in fact be a
composition of strategies into a triplet. Not all behaviour of the robot is provided by
the selected strategy. Some behaviour is designed to be deliberately omitted or hard
coded into the robot, like firepower, these are listed later on in this chapter.

This high level design has several benefits as well as some drawbacks.

Benefits

A benefit from the design is that the robot controller will not require a lot of train-
ing before it can battle adequately. Right from the start it will be able to function,
although not completely effective. Ideally, the robot controller will quickly find the
strategy that works best against the enemy’s strategy and learns to use a possible
counter strategy. By using pre-processed sensor data the possible number of states
can be reduced considerably. This allows for less computations and quicker conver-
gence of a value function to its optimal value.

Drawbacks

The robot will require a set of strategies and these will have to be composed by
human insight. This is, as with anything really, subjected to human error. Selecting
the wrong or to few elements for the set might cripple the adaptive powers of the
controller. In general I think the adaptive power of the robot is speed up by this
design, but by a manner that limits its adaptive flexibility. Some of the strategies,
if not all, might require constant updates from the environment, this comes with
an extra computational cost. The strategy selection procedure should try and avoid
this. Design choices will also have to be made in respect to the pre-processing of the
sensor data. This is also subject to human error.

4.1 The Reinforcement Learning Framework

Action Signal

As mentioned in the earlier section, a single action equals a strategy triplet, one
category for each part of the robot. Ideally the complete set of strategies consists of
strategies that have a counter-strategy relationship to each other.

If the enemy can counter gun strategy gun-A, we would like to have a strategy
gun-B that will always work when strategy gun-A is being countered. This should
also hold the other way around. That is, if gun strategy gun-B is being countered,
gun strategy gun-A should still be effective. The general idea is, that there should
not exist a counter strategy that counters all available strategies of the robot any
given time.

The source of the strategies will be (if not explicitly provided for) either the
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robowiki1 or the higher ranking robots from the RoboCode repository2. For conve-
nience and due to limited resources, the numbers of strategies is limited to twelve,
that is four for each of the three categories. A default strategy is added to each
of the categories to provide a passive strategy for the controller. Using this passive
strategy might not make much sense for the radar behaviour, but for the gun and
body it might be useful. Movement of the body can disrupt the aiming accuracy for
the gun. Not firing the gun might be useful in a situation where the enemy can easily
be rammed to death, since this gives bones points.

Some testing occurred before selecting the strategies, the general gun and body
strategies each differ greatly in the community. However, the strategy for controlling
the robot’s radar (in an one on one fight) is always the same. A perfect lock can
easily be achieved and is the best way to use the radar. Given this fact the choice
is made to let the controller always use perfect radar lock strategy. In table 4.1, all
strategies that have been considered for the radar are listed. In the tables 4.2 and
4.3 the chosen gun and body strategies are listed.

Table 4.1: Scanning Strategies
Infinity Scan Just spin the radar around as fast as you can,

scanning every part of the battlefield as fast as
possible

Perfect Scan Find the enemy robot. Then turn the radar
along with the targets movements

Gun heat Scan Locks onto a target if the gun has low gun heat,
but spins it around like Infinity Scan otherwise

Disabled Radar Do not use the radar at all

State signal

The design will eventually introduce some kind of value function to let the robot
learn via reinforcement learning. If no function approximation is being used, the
most logical way to represent a function would be a look-up-table, or a map. The
idea is to have the robot controller remember the learned information from the last
match and utilise this in the next one. This means that the information needs to be
stored in the limited storage space for the robot. This implies a limit on the table
entries and therefore on the number of states and state-action pairs.

RoboCode has a lot of variables that are continuous in value. For example the
Cartesian co-ordinates on the battlefield or the heading angle of the robot. When
the state space is not finite, the mapping cannot be either.

This can be counter by discarding all the information and input the robot does
not need to decide on a strategy and use segmentation on the the remaining sensor

1http://robowiki.net/
2http://robocoderepository.com/
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Table 4.2: Targeting Strategies (Gun)
Head-On Targeting Using the radar’s information to fire at the en-

emy’s last known location.
Circular Targeting Using the radar’s information to predict the fu-

ture position of the target. It uses turn rate,
speed and direction of the enemy.

GuessFactor Targeting A more advanced type of targeting. If a target is
scanned, it can only move for a certain distance
given the speed of a bullet and the distance of
the enemy (maximum escape angle). By con-
structing a guess factor the robot aims some-
where in this region. Also see appendix C on
page 53 for more information.

Disabled Gun Do not use the gun at all.

Table 4.3: Movement Strategies (Body)
Random Movement Moves the robot perpendicular to the enemy, os-

cillating at a random frequency and slowly closer
to the enemy.

Ram Movement Move towards the target at full speed and ram
into him. Move back and repeat previous action.

WaveSurfing Movement A more advanced movement strategy. By esti-
mating when a enemy’s bullet would reach the
robot it reacts accordingly. It estimates by way
of waves radiating from the location the enemy
robot shot from, hence the name. Also see ap-
pendix C on page 53 for more information.

Disabled Body Do not move the body at all.

26



input. The latter entrails dividing the infinite value range of a sensor into a finite
number of value intervals. Because the robot is designed to function on a higher level
I think it is possible to segment the values to a high extend without losing a large
part of its learning capacity.

After the segmentation the state space should have some properties that are
useful when learning. For example, using the exact co-ordinates of the robots would
be very inefficient. When using the co-ordinates the robot would differentiate between
states that are alike except for the fact that one of the states has a clockwise turned
battlefield, as seen in Figure 4.1. The state parameters in table 4.4 are suggested

Figure 4.1: Two situations the robot should not differentiate between

to be used in the state representation. The distance between the robots and the
general location is meant to provide the useful information that could otherwise be
deduced from the exact Cartesian co-ordinates or the robots. The energy of both
robots should suffice to provide the knowledge of how the battle has progressed, e.g.
if one robot has the upper hand and how both robots have been performing until the
current state.

Now that the sensor input variables have been determined, the segmentation of
these have to be considered. It is assumed that the lower the maximum number
of possible states, while still retaining all the relative data, the better the robot
controller will be able to learn. Skipping ahead to the implementation, it should be
noted that there is also a limit on the storage capacity of each robot for between
battles, namely 200,000 bytes. If we store the values from the value function as a
float Java type integer (32 bits) we can store up to 50,000 different values. Also see
Table Storage on page 35.

This is the upper limit, it is presumed we can do with far less. In the rest of this
section the parameters and their segments are elaborated.

Distance Segmentation (3 Segments)

The distance between two robots is divided into three ranges: CLOSE, MEDIUM
and FAR. Conform the following distribution:
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Table 4.4: Suggested state parameters, practical range on a 800 by 800 battlefield

State Parameter Practical Range Suggested Segmentation
Distance To Target [0↔ 1130] [0 ↔ 200↔ 600→∞]
Energy Target [0↔ 100] [0↔ 10↔ 25↔ 45↔ 100]
Energy Robot ⇑ ⇑
Locatio nTarget [0↔ 800, 0↔ 800] {EDGE, CORNER, CENTRE}
Location Robot ⇑ ⇑

Distance(p)


CLOSE if p ≤ 200

MEDIUM if 200 < p ≤ 400
FAR if 400 < p

With p being the real distance between the robots. If the robots have more than half
of the battlefield’s width between them, they are considered to be FAR apart.

Energy Segmentation (4 Segments)

The philosophy for the energy segmentation is that as the energy levels get lower,
the importance of the difference between energy levels increases. The energy level
spectrum has more bins as the energy gets lower. The energy of a robot is divided
into 4 ranges conform the following distribution:

Energy(e)


I if e ≤ 10

II if 10 < e ≤ 25
III if 25 < e ≤ 45
VI if 45 < e ≤ 100

With e being the real energy of the robot. Or shown in a more graphical way:

MIN MAX

General Location Segmentation (3 Segments)

The philosophy behind the general location segmentation is that when a robot is
near the edge or in a corner on the battlefield, it has less flexibility in its movement.
This gives the robot a disadvantage and should be taken into account in the state
parameter. Together with the distance the robot can tell whether it stands in the
same corner as the enemy. The segmented areas are as follows:

When a robot drives directly at the wall at maximum speed, it must start turning
it’s body at around 150 distance from the wall in order to evade it at maximum speed.

28



This will be the limit of when the robot will in the EDGE area. If it comes within
212 (≈

√
1502 + 1502) distance of a corner it is considered to be in a CORNER

area. Everything else is considered CENTER . These areas are shown in figure 4.2.
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Figure 4.2: General Location Segmentation

Storage capacity

With the above number of bins for each state parameter, the total size of the state
space becomes:

3× 4× 4× 3× 3 = 432

This is an excellent size considering the maximum of 50,000 determined earlier.
But in reinforcement learning we usually work with tuples of actions and states.
Omitting the radar strategy, there are 16 possible strategy tuples (42). The number
of possible action state tuples reaches 7,000 (432 × 16 = 6912), still well below the
maximum.

Next is the design of the reward signal.

Reward signal

The reward signal is provided to the robot via the RoboCode engine itself. After the
match, the engine constructs the score of the robots based on the scoring rules3 of
RoboCode. But does so only at the end of every battle. The total score of the battle
consists of the sum of the score perceived every round. Since the end of the round

3See page 46 in appendix A
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is the only way to accurately calculate the performance, due to survival bonus, the
reward signal is set to give a numerical reward based on the scoring at the end of
every round.

No other performance measure is used in the reward signal in order to prevent
sub-optimal behaviour due to not learning with the actual reward. For example, if
the robot would receive extra reward for firing as few bullets as possible, it might
stop shooting altogether.

4.2 Action Selection

How often the robot has to choose an action is very important to establish a learning
scheme. If set too often, the controller takes forever to learn the consequences of its
actions on the long run. But if it only has a choice once every battle, the controller’s
choice will not have any influence at all. Since very little happens in a single turn,
choosing an action every turn would result in the former. Then what is the optimal
frequency?

In theory, the frequency of choosing an action should synchronise with the fre-
quency on which the strategies can be evaluated or said to have any result. When
evaluating a gun strategy, the strategy should have the time to fire a set of bullets
and see if these hit or not. The same goes for a body strategy evaluation. That is, a
duration long enough so that bullets can reach the controller in order for the strategy
to show how well it can dodge them and evade walls at doing so.

Following the observations made in analysis of the game physics in section 3.2, it
takes 100 turns to fire a bullet diagonal across the battlefield with the highest fire-
power (slowest bullet). Taken into account that none of the smart robots will keep
standing in the corners for long, it can be estimated that firing a bullet and having
it travel across a reasonable distance will take approximately 80 turns. A gun can
fire at a minimum frequency of once every 8 turns, that is at maximum firepower. If
3 bullets are allowed to be fired, the strategy can best be evaluated after 104 turns
(= 80 + (3 × 8)). To be on the safe side, the frequency of choosing a strategy is set
to once in every 105 turns.

Actions will be selected using the Boltzmann probability distribution mentioned ear-
lier on page 7:

Probability of selecting action a1 given state s =
eQ(a1,s)/τ∑n
b=1 e

Q(ab,s)/τ

With Q being the state-action value function, discussed later on. The parameter τ
that controls the amount of exploration that needs to be set. For early rounds it
can be a considered a good idea to let the controller explore all its actions. But
when reaching the last rounds of the battle it should exploit more. This can be done
by slowly lowering the temperature. The exact value will have to be tested in the
implementation chapter.
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After having discussed the design of the reinforcement learning framework the
next section continues designing how the robot could actually learn using the frame-
work.

4.3 Update Equations

Using a policy independent temporal-difference (TD) update equation, the robot
controller will learn to map state-action tuples to the estimated utility. The above
mentioned action selection will select actions by a probability mostly determined to
this state-action value.

The one-step Q-Learning as introduced by Watkins (1989) and modified by Sutton
and Barto (1999) will be used to improve the mapping toward the optimal value
function.

The Q-Learning update equation is defined by:

new value︷ ︸︸ ︷
Qt+1(st, at)← Qt(st, at)︸ ︷︷ ︸

old value

+α

error︷ ︸︸ ︷
[ rt+1︸︷︷︸
reward

+maxa(Qt(st+1, at))︸ ︷︷ ︸
max future value

−Qt(st, at)︸ ︷︷ ︸
old value

]

Before implementing one-step Q-Learning, the framework is tested. To see if the
obviously good states have, relative to the obviously bad ones, a high value and vice
versa. This testing of the framework is done by using the TD(0) update equation,
which is as follows

Vt+1(st)← Vt(st) + α [rt+1 + Vt(st+1)− Vt(st)]

The variable that needs to be tested for both the update equations is the α or the
step-size variable. This determines the amount with which the old estimated value
is to be updated given the newly received reward, this is generally referred to as the
error. If set it to αk(a) = 1

k , that is the kth selection of action a, there is absolute
certainty the value function will converge to the optimal value function. But only by
the laws of great numbers, which means (almost always) very very slow. In practice
a constant value for α is used. This does not ensure exact convergence since it can
lead to constant overshooting the targeted optimal value function, but in practical
implementations this is not a real issue. The tested values will be around 0.1 as the
value has proven itself in other practical implementations.

To summarise, the values of τ and α need to be adjusted and tested to see what
the best values are.

Hard Coded Behaviour

The firepower of the fired bullets is designed to be beyond the control of the robot
controller. As observed in section 3.2 the firepower can best be low if the target is
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far away and set to maximum if the target is very close. In synergy with the distance
segmentation the firepower will be calculated as follows:

firepower(distance) =


3.0 if target is CLOSE (< 200)
1.9 if target is MEDIUM (> 200 and < 400)
0.1 if target is FAR (> 400)

This is the only aspect of behaviour the robot controller has no direct influence
on.
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Chapter 5

Implementation of the design in
Qbot

In this final chapter the design is implemented in the robot named Qbot. The first
section is to layout the details of the robot controller, followed by some preliminary
testing of the state value function. After that, testing of the complete robot is done
followed by a conclusion and discussion.

5.1 The Java Program

Since Qbot is implemented in Java, an object orientated programming language, a
object orientated approach has been chosen. A simplified overview can be seen in
figure 5.1.

The first object in the overview is Qbot which extends AdvancedRobot, the stan-
dard advanced robot class. This is the actual robot.

Because RoboCode is event driven and the robot has no access to the RoboCode
engine itself, every object that requires to be updated needs to receive them via
Qbot. A distributor, InformationDistributor is implemented to distribute all the
information and events received by Qbot. Via the distributor the Learner constructs
a Scoring and a WorldView which in sequence produce a reward and a state from
the environment.

The Learner gives feedback to Qbot in the form of a triplet of strategies. The
strategies are stored and managed in the StrategyCollection,. Each strategy has
a link to Qbot. Via this link a strategy can issue commands to the robot, but does
this only if the strategy control status is set to active.

When setting up a new battle the ValueFunction object is constructed and the
look-up table is loaded from the file system. At the end of a battle the ValueFunction
writes the look-up table back to the file system.

An approximation of the program flow can be seen in table 5.1 on page 35.
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Figure 5.1: Overview of the Java objects
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Table 5.1: Program flow

1. The battle is set up, all objects are constructed via Config.java:

(a) All objects are linked to the InformationDistributor.

(b) The ValueFunction imports the value function.

(c) The Leaner initialises the start state and selects its starting
strategies.

2. During every round:

(a) Every turn the selected strategies are allowed to send control
commands to the robot.

(b) At a set interval and at the end of the round the Learner re-
quests the score and a state from Scoring and WorldView. It
then re-evaluates via ValueFunction and selects new strategies.

(c) At the start of the round Scoring and WorldView are reset.

3. At the end of the battle the ValueFunction exports the value func-
tion’s look-up table.

Table Storage

The storage of the look-up table is somewhat more advanced and deserves to be
elaborated. For preliminary testing, state values need to be stored. As data structure
an hash map is chosen, only the used array is stored.

When the Learner requests a state value by providing a State, the index of its
value in the array is calculated by a hash index function. To understand how the
index hash function works, imagine having a set of digits ({a, b, . . . , y, z}) which all
have a different value range. The hash index function that maps a set of these values
to to an unique value between 0 and the maximum possible values minus one (e.g.
an effective array index) is as follows:

hash index = a+ Θ(a)[b+ Θ(b)[· · · [y + Θ(y)z]]

With Θ(a) being the number of possible values that a can have. In the normal decimal
system this would be 10 (range: 0↔ 9). If trying to map two decimal integers x and
y to an index of 0↔ 99, the hash index function would be x+ 10y.

A State is a container for 5 state parameters, 3 of which have 3 different segments
(distance and locations) and 2 of the parameters have 4 different segements (energy).
The hash index function for a State with distance: d, enemy’s energy: eenemy, Qbot’s
energy: eQbot, enemy’s location: lenemy and Qbot’s location: lQbot would become:

hash index = d+ 3(eenemy + 4(eQbot + 4(lenemy + 3lQbot)))
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By using this (perfect) index hash function, storing any state information becomes
obsolete and we can get away with only storing the values. I believe this is the most
efficient way of saving the value function. Since the values are being stored as a
float (32 bits) and the maximum storage capacity is 200,000 bytes. Excluding any
overhead generated by the array, the robot can store a maximum of

200, 000× 8
32

= 50, 000

entries. Given the segments for each parameter, there is a maximum of 432 possible
states. The preliminary testing should not face any storage problems.
For final testing, storage of action-state pairs is required. With the radar strategy:
sRADAR, the gun strategy: sGUN and the body strategy: sBODY the hash index
function becomes:

sRADAR + 1(sGUN + 4(sBODY + 4(d+ 3(eenemy + 4(eQbot + 4(lenemy + 3lQbot))))))

Note that there are 4 different strategies available for the robot in the gun and body
strategy type categories (Qbot only uses one radar strategy). The total required
number of states to be stored then becomes: 432 × 4 × 4 = 6,912. Still well below
the calculated maximum of 50,000.

5.2 Testing

The first test is whether the state values are according to what we would expect from
the state’s situation or not. The second test is to see if the robot improves over time
and what the best settings are for the earlier mentioned temperature and step-size
variables. Testing was done using RoboCode version 1.7.1.2. In this version a minor
glitch was found during testing. The calculated bullet and ram damage bonus were
incorrect by a minor percentage. The percentages used by the Scoring system of
Qbot were adjusted to compensate. The glitch was reported and is being fixed in
version 1.7.1.3. It should not influence test results.

State Value Function Tested

Qbot is set up against sample.Walls, sample.Fire and RaikoMX 0.321 to get a
diversely trained state value function. Note that Qbot does not yet learn, it is set to
use only circular targeting for the gun and random movement for the body. When
using these strategies, Qbot generally wins from the sample robots and loses from the
more advanced one. Each opponent robot is set up against Qbot for 10,000 rounds.
Every round the two robots are placed at random on the battlefield. Apart from the
number of rounds in the battle, every other custom setting is left to the default value.

1A robot by Jamougha. When tinkering around with RaikoMX 0.32 it showed that it could easily
beat a simple strategy deploying Qbot.
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The values of the states are being learned/updated using the TD(0) update equation
with a step size of 0.1, see page 31.

The testing is done by looking at the parameter value in each state and correlate
this with what the value function produces when inputting the state. First I eval-
uate the relation between energy parameters and state values. Then the relation of
the state values and distance parameter is evaluated. Lastly the general location’s
relation with the state value is elaborated. It should be noted that the true value of
the state depends on the combination of all these factors. But looking at each of the
parameter as a single factor it can generally be determined whether the state value’s
abide to intuitions.
The expected relation of the energy levels with the state value is quite simple. It is
expected that the difference between the energy levels of the enemy and Qbot has a
correlation with the state value. If the enemy robot has a higher energy level than
Qbot, the state value should be lower then when Qbot has the superior energy level.
The graph in figure 5.2 on page 37 shows the real relation, as derived from the test
data. The graph shows the difference between the energy levels.

Note that the energy segments were fourfold: lowest(0), low(1), high(2) and
highest(3). The value on the horizontal axis equals energyQbot−energyenemy. Minus
3 stands for the worse possible value, with Qbot almost disabled at 10% energy left
and the enemy still standing strong with more than 45% energy. Positive 3 is the
best situation, with a reverse of previous told energy relation. As one can see, the
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Figure 5.2: Energy ratio plot against avarage state value

relation is the same as expected. It should be noted that there are fewer states in
the test data representing the negative spectrum than there were states for in the
positive spectrum. Making the calculated average less precise on the negative side.
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This is due to the way energy is uneven segmented, having a higher resolution at
lower energy levels comes with its price.

Still, there is an obvious decrease in state value as the energy levels are less
advantageous for Qbot. In so far energy level parameters are concerned, TD(0)
learns the expected values for these states.
When looking at the distance between the robots, it is not directly clear what the
expected relation should be. Does Qbot generally win if the competitors are close
or when they are far apart? The state value is expected to be highly dependent on
what type of robot Qbot faces. One could say that when the enemy is far away,
the chance that it dodges a bullet from Qbot increases. And that it is therefore
less advantageous for Qbot. But this goes for Qbot as well; it has a better chance to
dodge an enemy bullet when the enemy fires from afar. The graph in figure 5.3 shows
the relation as derived from the test data. As one can see, there does not appear to
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Figure 5.3: Distance plot against average state value

be a single distance that stands out as the best nor is one that is obvious the worse.
It is believed that this is due to the state value’s high dependency on the strategy
used by the enemy robots. Due to this dependency it cannot be said yet whether the
distance parameter segmentation has been a bad choice for representing a situation
on the battlefield or not.
The expected state value relation, as far as the general location is concerned, is that
how closer the robot is to the wall, the less advantageous its position and therefore
state should be. Being in the corner would be the worse situation, since being there
increases the chance of a wall collision and decreases the dodge changes of enemy fire
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. The graph in figure 5.4 shows the location of the enemy robot and that of Qbot in a
state, plot against the state value. The enemy’s location graph shows that the value
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Figure 5.4: Location plot against average state value

function learns to expect a higher reward when the enemy is in a corner then when
it is at the centre or near an edge, as was expected. Qbot’s location shows that it is
not a very good situation when being in a corner, due to the nature of the random
movement (oscillation perpendicular to the enemy). Why the value function shows
that it is almost equal advantageous to be in the centre as it is to be near an edge is
not clear.

When looking at the enemy’s location it can be said that segmenting the general
location is successful.

This concludes preliminary testing. The state values are generally what I expected
them to be, it now remains to be seen if Qbot has the capability to learn from these
values and actually improve over time.

Variables α And τ Tested

The real update equation is that of one-step Q-Learning. See equation 4.3 on page 31.
The effectiveness of learning by way of an update equation and using a Boltzmann-
distribution action selection greatly depends on the step-size used for the equation
and the temperature used for the distribution (α and τ). Please remember that the
step-size’s value range was 0 < α ≥ 1 and the temperature’s value range was 0 < τ .

The step-size regulates how much weight the update equation hangs on newly
found state(-action) values. If set to 1 it replaces the old value completely and
turns into a look-ahead-one-step-at-a-time machine. The temperature regulates the
exploration of the robot, if set hot the controller explores extensively to find the
coldest refreshing beverage. If set close absolute zero point, the robot thinks there
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is a second ice age coming and stacks greedily on all survival supplies. In respect to
action selection, it will always select the action with the highest known state-action
value.

A variety of values for one variable cannot be tested correctly without setting
the other a constant value. Because it is generally the case that the value of an
effective temperature variable differs greatly between applications – sometimes with
a multitude of 100 – and a step-size of 0.1 seems to almost always work, I choose to
start varying the temperature first.

Testing was done by setting up a range of battles between Qbot and two selected
robots from the samples, sample.SittingDuck and sample.Fire. The first does
exactly what its name entails. It sits around doing pretty much nothing. The second
one moves for or backwards when hit by a bullet, turns its gun and radar and fires
when it scans an enemy. SittingDuck is used as a control, to see if the Qbot’s score
improves at all. Fire is used to see if it still does so against a somewhat more
dangerous opponent.

At start the two competing robots are placed on a 800× 800 battlefield on fixed
locations. By using fixed location the random factor of starting location, that might
influence learning, is taken out of the testing. The first robot is placed on co-ordinates
(150, 150) the second one on co-ordinates (650, 650). Both are facing the corner they
are set in. Each battle lasts 10 rounds and a total of 500 battles have been fought
each trial. All customisable battle settings are default. With a step-size of 0.1, trials
with a temperature of 20, 40 and 400 are run. The graph in figure 5.5 shows the
results. As should be quite clear, the trail with the lowest temperature scored best.
A temperature τ of 20 seems to perform better than a temperature of 40 or 400. To
test if further lowering the temperature had any benefits I ran another set of trials
with temperatures set to 10, 20 and 30. The results can be seen in figure 5.6 on
page 41. Using a temperature τ of 30 seems to lower the score, while using 10 does
not seem to be an enormous improvement when comparing it to the scoring gained
by using τ =20. It is therefore concluded that 20 is the best temperature for when
fighting against sample.Fire and sample.SittingDuck and this is generalised to all
opponents.

Now that an optimal temperature has been established under the assumption that
setting the step-size α to 0.1 is efficient, we should look at the step-size variation itself.
Setting the temperature to a somewhat exploring value of 40 I have run trials with
the step-size values of 0.1, 0.2, 0.5 and 1. In figure 5.7 on page 42 the results are
displayed. In the trials with sample.Fire, using step-size 0.1 quickly establishes the
highest score. In the trials with sample.SittingDuck it takes a while but ultimately
it shows higher adaptation compared to the rest of the step-sizes. As one might have
noticed, the step-size of 1 results in a strange scoring average. After performing some
more tests I found that setting the step-size to 1 produces some random stabilisation
on an initial score. At what value it would stabilise was depended on the randomly
chosen actions in early matches. See the graph on page 57 for example trials. Using
a step-size of 1 results in an unreliable scoring without any noticeable learning.

Trying runs with a step-size lower than 0.1 resulted in slower learning and the
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Figure 5.5: Trials of varying temperature with scoring of Qbot using Q-Learning with
a step-size α of 0.1
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same score at the end of the trial. It is therefore concluded that a step-size of 0.1 is
best. For reference; I added some test graphs for step-size 0.01 and some other test
trails, i.e. against more advanced robots, in appendix D on page 56.

5.3 Conclusion

After a short survey of reinforcement learning and RoboCode, a robot was designed
using this knowledge. By implementing Q-Learning and using higher-level states and
actions the robot has shown lot be effective at early stages of the game as to able
adapt itself rapidly to the enemy’s strategy. A step-size α of 0.1 and a temperature
τ of 20 resulted in the best learning against the simpler robots. Exhaustive training
against more sophisticated robots was omitted due to time restraints. It is expected
however, that with the right set of strategies and update equation, a robot can be
trained to beat the highest ranking robots. The results of a small test trial against
a former #1 top ranking robot can bee seen in appendix D on page 57. The score
of the design implementing robot Qbot slowly improves as the learning progresses.
Designing a robot that satisfies the goal, to show improvement against in an one on
one fight, is a success.

As a concluding remark I would like to point out that, even though hard coded
behaviour seems to work really well within RoboCode, there is always some incom-
plete knowledge or prediction power needed to control a robot tank in an intelligent
fashion. Many forms of machine learning exist that have been designed and tested on
prediction and incomplete knowledge problems. There is some still a lot of unexplored
possibilities for machine learning within the RoboCode world.

Build the best - destroy the rest!

Discussion and Further Work

Several discussion points arise in retrospect to the design. The different targeting
strategies are actually all variations of the same targeting strategy. Head-On target-
ing can be transformed into GuessFactor targeting using a guess factor of 0. Circular
targeting is almost the same as using a guess factor of 1. Learning what targeting to
use is actually learning what guess factor works best. Since its value is normalised be-
tween -1 and 1, I believe that an artificial neural network might be able in optimising
the guess factor then high level the implemented one-step Q-Learning.

By using high-level strategies, Qbot seemed severely crippled when facing more
advanced robots. The level on which the actions are chosen might need to be lowered.
By allowing the controller to move to a certain location or shoot at a certain area, it
might be possible to allow for more adaptive power.

Using an off-policy temporal-difference update equation, as used by one-step Q-
Learning, might not be the best way to let the robot controller update its estimation
of the value function. By keeping the temperature constant, instead of letting it
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decrease over time, the robot controller might be learning sub-optimal behaviour.
By gradually dropping the temperature or by implementing an on-policy update
equation the learning might be improved. Also, the current used update equation is
very simple, there exist far more complicated and presumed better ways to estimate
the value functions.
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Appendix A

The Rules Of The Game

Here follows a short introduction to the rules and physics that govern Robocode.
Most of this information has been gathered from the online robowiki1, from the
documentation on the application programming interface (A.P.I.)2 or from an online
article by Li (2002).

Game Rules

The robot that wins a battle is the one that has the highest score at the end of a
certain number of rounds. (default set at 10) Each robot starts at a random location
facing a random direction with a set number of Energy points, namely 100. At
expense of a small bit of Energy it can fire a bullet. At hitting another robot the said
bullet restores Energy. A successful hit by a bullet restores more then the cost of
firing it. Robots can move around, but hitting the wall or other robots will damage
robot. Scoring is done at the end of each round and is a combination of the following
factors:

Survival Score - Each robot that is still alive scores 50 points every time another
robot dies.

Last Survivor Bonus - The last robot alive scores 10 additional points for each
robot that died before it.

Bullet Damage - Robots score 1 point for each point of damage they do to enemies.

Bullet Damage Bonus - When a robot kills an enemy, it scores an additional 20%
of all the damage it did to that enemy.

Ram Damage - Robots score 2 points for each point of damage they cause by
ramming enemies.

1http://robowiki.net/
2http://robocode.sourceforge.net/docs/robocode/
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Ram Damage Bonus - When a robot kills an enemy by ramming, it scores an
additional 30% of all the damage it did to that enemy.

Robot and Battlefield Anatomy

The battlefield whereon the robots battle is free of any obstacles less the enemies.
It can best be described as a two-dimensional bounded plane. The size can be cus-
tomised with the minimum at 400 pixels and the maximum limit at 5000 pixels.
The default settings are 800 x 600 pixels. Location is determined by Cartesian co-
ordinates with the origin being (0, 0) at the lower left corner of the battlefield. The
co-ordinates can be fractional, i.e. a robot’s location can be between two whole pixels
co-ordinates.

Body
Gun

Radar

Figure A.1: The anatomy of a robot

Game Physics

The robots itself consists of three parts (as shown in Figure A.1 on 47) each resembles
a set of actions:

The radar can detect other robots and can be set to turn around. It is placed on
top of the gun.

The gun can fire bullets (with a variety of firepower) at the direction it’s currently
pointing and can be set to change it’s heading.

The body is whereupon the gun is mounted, it can be set to turn but also to
accelerate forward or backwards. It enables movement over the battlefield.

Every part can be set to change its heading, but the speed is dependent on the part
it is mounted on, e.g. if only the body is set to turn clockwise, the gun and radar
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also turn clockwise. This can be disabled though. Though this makes the robot
automatically rotate the gun and radar to compensate for body movement. This
might not be desirable as it takes away some control of the robot.

Units of time are represented as “ticks” in Robocode. Each of the robots receives
one turn every tick the round progresses. In this turn the robots determine which
actions to perform, these are then simulated by the battle-simulation.

Robot Movement

Acceleration(a) Robots accelerate at the rate of 1 pixel/turn
turn and decelerate at 2

pixel/turn
turn . It should be noted that the Robocode battlesimulation determines

what exact acceleration the robots has. The controller influence this directly.

Velocity(v) v = at. (t = turns) Velocity has a maximum of 8 pixels/turn. But
it can be negative, which means the body is moving backwards. ([−8.8])

When driving the heading of the robot is the direction in which it is moving and is
best described as a full circle ranging from 0◦ to 360◦. (As depict in Figure A.2)

0 deg

90 deg270 deg

180 deg

(0, b_heigth) (b_height, b_width)

(b_width, 0)(0, 0)

Figure A.2: Headings on the battlefield
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Robot Rotation

The robot turn 360◦ in a single tick. Instead there is a maximum on how many
degrees a part can move every turn.

The Radar 45 degree/turn

The Gun 20 degree/turn

The Body ’s maximum turn rate is dependent on its velocity:

(10− 0.75 ∗ |velocity|) degree/turn (A.1)

Robot bullets

Bullets can be fired with dynamic firepower, whereby 0.1 < firepower < 3.0. The
firepower has a direct influence on the speed and damage of the bullet. Setting the
firepower correctly determines wether a bullet is a successful hit or a failure miss.
The resulting Energy after firing a bullet is; Energy ← (Energy − firepower)

Damage the target receives is:

4 ∗ firepower + argmax(0, 2 ∗ (firepower − 1)) (A.2)

Velocity the bullet has:
20− 3 ∗ firepower (A.3)

Gun Heat prevents you from firing, drops 0.1 each tick by default, but can be set
to any value. It is generated as:

1 + firepower

5
(A.4)

Energy returned to the robot which fired the bullet is:

3 ∗ firepower (A.5)

Robot collisions

When a robot runs into a wall or another robot, it receives damage.

With a robot - each robot takes 0.6 damage

With a wall - the damage is argmax(0, (|velocity| ∗ 0.5− 1))
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Side Notes

Heading And Bearing

If the robot faces the exact north of the battlefield, it has a heading of 0◦. In
mathematics the convention stands that a heading of 0◦ corresponds to the east of
a union circle. This means that using normal trigonometry functions, e.g. sin(x),
cos(x) and tan(x), do not yield the expected result.

If one wants to convert from conventional degrees n into Robocode degrees r, the
following equation can be used.

r =
{

90− n if n < 90
450− n if n ≥ 90

Body Size

Even though the visual simulation might suggest otherwise, the body is for all pur-
poses processed as a 36x36 pixel square. The square does neither rotate nor tilt. Not
even when the robot turns around. This also means that the effective size of the
battlefield is 36 pixels shorter on all sides, e.g. a 800x800 sized battlefield has an
effective size of 764x764.
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Appendix B

Event List

The RoboCode battle simulator provides a set of events and methods to supply the
robots with information to base their actions on. In this appendix an extensive list
is presented.

Events

Table B.1: The events, including the information the event provides

Name Event Information
BulletHitEvent Your bullet impacts on

robot
Target’s name and re-
maining energy

BulletHitBulletEvent If two bullets collide Bullettable B.2 objects
BulletMissedEvent A Bullet impacts a wall Bullettable B.2 object
DeathEvent Your robot dies —
HitByBulletEvent A bullet impacts you Bullettable B.2 object
HitRobotEvent A robot collision Name and energy or

robot, fault
HitWallEvent A collision with the wall Bearing to wall
RobotDeathEvent An enemy robot dies Name
ScannedRobotEvent A radar detects enemy Distance, energy, veloc-

ity, heading, bearing
StatusEvent start of every turn RobotStatustable B.2 ob-

ject all relative informa-
tion of the robot itself

WinEvent the robot wins —
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Non-Event Sources

Table B.2: Sources of input that are not events

Object Information
Bullet object velocity, firepower, name of robot, head-

ing, co-ordinates bullets
RobotStatus
object

co-ordinates, energy, velocity, heading et
cetera
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Appendix C

Advanced Strategies

GuessFactor Targeting

Thought up by Paul Evans and first implemented in the robot SandboxLump this
targeting strategy is now the most commonly used by nearly all top ranking robots
on the RobotRumble one versus one main ranking list (on 06-21-2009).

It works as follows: when a target is scanned it has a maximum distance it can
travel before a bullet could possibly reach it. This can then be reformulated to an
angle from the firing robot to the target. This is called the maximum escape angle
(MEA) and defined by the robowiki as:

“Maximum Excape Angle (MEA) is the largest angle offset from zero
(i.e., Head-On Targeting) that could possibly hit an enemy bot, given the
game physics of RoboCode.”

Once the MEA is calculated the robot can produce a guess factor (GF) that us unique
for an enemy robot. That is, a normalisation over this angle. With a GF of 1.0 being
the largest angle the target can reach if it drives at maximum velocity and a GF of
-1.0 if it suddenly reverses its direction. (See figure C.1 on 54) The key is finding what
GF is best fired upon to give the highest chance of hitting the enemy. As Matthew
Reeder (known as the user ‘kawagi’) mentions in his short tutorial on GuessFactor
Targeting1:

“The philosophy and assumption we make for GuessFactor Targeting is
that our enemy is moving randomly in some way or another [...] The
direction we need to shoot is the sum of several random decisions made
by our enemy. One nice thing about sums of random values is that they
tend to show statistical trends. The trick to GuessFactor Targeting is to
find out which direction we should shoot each time we fire, and in the
future, we fire in the direction that was correct the most often.”

1See: http://robowiki.net/w/index.php?title=GuessFactor_Targeting_Tutorial
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Figure C.1: The GuessFactor

“The trick...” is usually by means of statistical approach or feedback via virtual
bullets (ghost bullets fired by your own robot) and keeping track of the results. The
difference between most high ranking robots is in the way they estimate the GF, and
how they use segmentation on the GF range to be influenced by statistical data.

In the design of the robot a simple form of GuessFactor Targeting will be imple-
mented, using the online tutorial mentioned earlier. It will use a virtual bullet, in
the form of a computational cheap wave to find the bearing it should have fired at.
It will very much be alike to FloodMini version 1.4 by Kawigi.

Wave Surfing Movement

One property enemy bullets have in RoboCode is that they are invisible for all robot.
This makes dodging them difficult to say the least. The Wave Surfing movement
strategy is a strategy that copes with the fact that the robot cannot detect these
bullets. By initiating a wave if an enemy fires a bullet it predict when the bullet will
close and posses a threat. The robot cannot directly detect the firing of a bullet,
but by monitoring the energy drops of the enemy it can estimated correctly when a
bullet is being fired.

A wave consists of a source location (of the firing robot), a velocity (generally
based on firing robot’s bullet power), the time the wave was created, and the bearing
to the target at fire time. You can imagine the wave as a circle that radiates out from
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the point from which it was fired. Every turn the waves are checked to see if they
have passed some boundary (usually a set distance from the robot) and then reacted
upon. (See figure C.2 on 55) Movement strategies based on waves are currently used

Wave 1

Wave 2

Figure C.2: An example of waves

by the number 1st, 2nd and 3rd ranking robots on the RobotRumble one versus
one main ranking list (on 06-21-2009). The implementations differ mainly in what
they do with the wave information. True surfer style robots re-evaluates forward
and backward movement while GoTo style robots try to find out what part of the
battlefield is the least dangerous and moves towards that point.

The designed implementation will be based on the true surfer style robots. Es-
pecially RaikuMX version 0.38 by Jamougha.
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Appendix D

Test Results

In this appendix some more of the test graphs, that are part of the testing phase, are
shown. Due to the number and their cluttering power, they are placed here. The first
graphs are of some extra testing against some more advanced robots. sample.Walls
seems a very simple robot at start, but can be quite a pain to defeat using simple
strategies. Qbot easily beats it. abc.Shadow v3.83 was a long standing #1 in
the RoboRumble General 1v1. Qbot shows some improvement over time, but will
probably never be able to defeat Shadow due to the limitations of the strategies.
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Figure D.1: Result of setting Qbot up against some more advanced robots. Using α
= 0.1 and τ = 20
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Figure D.2: Result of setting Qbot up against some more advanced robots. Using α
= 0.1 and τ = 20
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Figure D.3: Trials of Qbot versus sample.Fire. Using α = 1 and τ = 40
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Figure D.4: Trials of Qbot versus sample.SittingDuck. Using α = 1 and τ = 40
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Figure D.5: Trials of Qbot versus sample.Fire, in order to see if a step-size of 0.01
makes any difference. Using τ = 40.
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Figure D.6: Trials of Qbot versus sample.SittingDuck, in order to see if a step-size
of 0.01 made any difference. Using τ = 40
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