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Abstract

In this thesis, we numerically simulate two-phase flow in unsaturated porous
media using the method of lines (MOL). The main goal of the whole research
is to reproduce by means of rigorous mathematical analysis the dynamic phe-
nomena known as infiltration overshoot that occurred during the experimen-
tal measurements of saturation, described by David DiCarlo. Specifically,
such saturation profiles can be modeled using the non-equilibrium Richards'
equation, which includes dynamic capillary pressure effects, essential in pro-
ducing non-monotone wave solutions.
The numerical simulation procedure of MOL is split in two steps. Firstly,
the spatial discretization is performed leaving the time variable continuous
and secondly, a proper initial value numerical scheme is applied. The central
difference scheme has been used to numerically approximate the first and
second order space derivatives as part of the first step, while combination
of Euler Forward and Euler Backward numerical schemes (IMEX) was in-
troduced as part of the second step. Furthermore, in order to remove the
negative effects of the original boundary conditions on the numerical solution
of two-phase flow in unsaturated porous media in terms of David DiCarlo's
experiments, we extend our model by including the effects of hysteresis in
computation of capillary pressure function.
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Chapter 1

Introduction

The whole research conducted in this thesis was motivated by experiments
carried out by David DiCarlo, who in 2004 published a scientific paper [4]
describing the results of experimental measurements of the saturation over-
shoot during infiltration. The idea behind the experiments was firstly to find
out what kind of behavior exhibits the two-phase fluid flow in confined uni-
form porous medium at different constant-flux water injections and secondly
if the obtained experimental results are consistent with classical description
of the fluid flow in porous media.
From the definition we know, that porous medium is the substance consisting
of solid parts and voids, through which any kind of reactions take place. In
order to perform his experiments, DiCarlo took initially a dry sand column
and started to inject water into it. By using various experimental techniques
(i.e. light transmission, etc.), he was able to see the amount of water present
in various locations along the column. During the infiltration experiments,
the column was vertically placed, therefore the water flow created so called
infiltration profiles, which were moving downward due to the gravitational
forces. Obviously, at locations where the injection took place, there was
more water than anywhere else in the column, making it possible to observe
certain kind of saturation profiles. According to traditional theory on fluid
flow, these saturation profiles are expected to demonstrate the monotonic
behavior.
DiCarlo did his experiments with certain flow rates and initial water satu-
rations. Initially he started with small injection rates, but then he started
to pour water into the sand column harder and harder, significantly increas-
ing the injection rates. Based on the experimental results, DiCarlo was able
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to observe the fact that constant-flux infiltrations into the porous medium
were found to produce the saturation overshoots. But these experimentally
obtained saturation overshoots were conflicting with the traditional mathe-
matical approaches used to characterize the flow of fluid in the porous media.

Figure 1.1: (left) Sketch of volumetric water saturation profile versus vertical
distance (depth) for six different injection rates (q) obtained by DiCarlo
during experimental measurements on infiltration [4]. (right) Animation of
a preferential flow and corresponding saturation profile within the flow path.
Saturation overshoot occurs when saturation before wetting front (tip) is
greater than saturation behind the wetting front (tail).

The results of DiCarlo's experiments are illustrated in Figure 1.1, where
the snapshots of measured volumetric water saturation profiles into dry sand
at six different injection rates (q) are plotted over depth. At the lowest in-
jection rate (q = 7.9 ∗ 10−4cm/min) and the highest one (q = 11.8cm/min)
monotone profiles without saturation overshoot are observed, while at all
the intermediate injection rates, saturation profiles are demonstrating non-
monotone or distinct plateau type behavior with saturation overshoot. More-
over, saturations at the wetting front (tip) significantly surpassing those lo-
cated behind the wetting front (tail). The slight oscillations (wiggles) at the
tail are likely to be experimental or measurement inaccuracies.
The main goal of our numerical investigation is to reproduce by means of rig-
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orous mathematical analysis and the enhanced models including additional
terms describing non-monotone fluid flow in porous media, the dynamic phe-
nomena known as infiltration overshoot that occurred during the experimen-
tal measurements of DiCarlo described above.
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Chapter 2

Modeling of unsaturated flow
in porous media

2.1 Mathematical model setup

Initially we have a dry porous medium, which is filled with sand (as in exper-
iments conducted by David DiCarlo[4]). DiCarlo performed his experiments
vertically. Everything in the porous media is homogeneous (distribution of
grains is quite straightforward). There are two types of fluids running in this
column, which are called phases: wetting and non-wetting. The notion of
wetting and non-wetting phases is relative. Throughout out this paper we
refer to water as wetting phase and air as non-wetting phase. We assume
that the two phases are immiscible. In particular, if we take a small volume
of porous media, we would like to understand how much percentage is filled
by water and air respectively in the pores.
The key issue here is to know how much percentage of water and air is oc-
cupying a certain region in the porous media. Typical equations to describe
such kind of processes are called mass balance equations. Mass balance equa-
tions are stating that the mass is conserved in phase α. Mass conservation of
fluid across the porous medium describes the basic principle that mass flux
in minus mass flux out is equivalent to the the increase in amount stored by
a medium. This means that total mass of the fluid is always conserved [5].
The partial differential equation expressing the mass conservation for both
fluid phases in dimensionless setting is therefore:

φ
∂Sα
∂t

+∇ · qα = 0, α ∈ {w, a} . (2.1)
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Here the subscript α refers to either air or water phase respectively, qα is
Darcy's velocity for each of the phases and φ is porosity, which takes the
values:

0 ≤ φ ≤ 1.

According to generalized Darcy's law:

qα = −Kα(Sα)

µα
· ∇(pα − ραgz). (2.2)

Here Kα stands for unsaturated hydraulic conductivity of the phase α, which
depends on its saturation Sα. Constant g is the gravitational acceleration, pα
is phase pressure, µα is dynamic viscosity of phase α and ρα is phase density.
Here z is vertical spatial variable which is oriented positively upwards and
oppositely to the direction of gravity. Darcy's law states that velocity is
proportional to pressure gradient and proportionality factor is represented by
a function. The negative sign in the equation (2.2) mathematically allows the
fluid flow move in the right direction, meaning from high hydraulic head to
low hydraulic head. If flow moves in the positive direction and the gradient is
negative, the relation needs to have a negative sign. Darcy's law application
allows hydraulic conductivity to be determined, therefore Kα can be written
as:

Kα = K · krα(Sα), (2.3)

where K denotes the intrinsic permeability of the porous medium and krα
stands for the relative permeability of the given phase α, which takes values
between 0 and 1, i.e:

0 ≤ krα(Sα) ≤ 1.

Substituting the expression (2.3) into (2.2) results in:

qα = −Kkrα(Sα)

µα
· ∇(pα − ραgz). (2.4)

By using the relation for mobility phase α:

λα =
krα
µα

, (2.5)

generalized Darcy's law (2.4) can be reduced to the following form:

qα = −Kλα(Sα) · ∇(pα − ραgz). (2.6)

10



Combining the mass balance equation and Darcy's law for each of the phases
results in:

φ
∂Sα
∂t

= ∇
[
K
krα(Sα)

µα
· ∇ (pα − ραgz)

]
, (2.7)

pα = P (Sα), (2.8)

where function P denotes the equilibrium pressure or so called static pressure.
Now we have four unknowns (two phase pressures and two phase saturations)
and only two equations. If we add the amount of air in one location, the
percentage occupied by air and the percentage occupied by water together
fill the whole space of the pores. Since the two fluids occupy the whole pore
space, so we receive the additional algebraic relation:

Sa + Sw = 1. (2.9)

Engineers are able to measure the pressures into the both phases, i.e they are
able to establish differences between two phases by relating to the amount of
water saturation. Because of the existence of interfacial tension, the pressure
of non-wetting phase is higher than the pressure in wetting one:

po − pw = Pc(S). (2.10)

Here Pc denotes the capillary pressure in two-phase flow. Capillary pressure
relationship represents a function of saturation, which depends on the direc-
tion of saturation change. It is a monotonic function, which can be measured
experimentally and it is always positive. Relationship (2.10) holds only un-
der equilibrium conditions and is called static capillary pressure. Therefore
such a mathematical model is called an equilibrium model.

2.2 The Richards’ equation

As the starting point in simulation of infiltration experiments performed by
DiCarlo in [4], we consider the Richards' equation (Richards, 1931; Bear,
1972; Kutilek & Nielsen, 1994), which is usually used for modeling of unsat-
urated fluid flow in porous media.
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Using relation (2.9), and assuming that total flow q = qw + qa we arrive in
1D at:

∂

∂z
q =

∂

∂z
(qw + qo) = 0 =⇒ q = 0.

Using this observation and the relations mentioned above, we introduce the
diffusivity function D (S) = f (S) |P ′c(S)|. This allows us to reduce the two-
phase model (2.7) to one equation in terms of only water saturation. Such
equation is called the Richards' equation:

φ
∂S

∂t
+

∂

∂z
(qf(S) +Kλa(S)f(S)(ρw − ρa)g) +

+
∂

∂z

(
λaf(S)

∂

∂z
|P ′c |

)
= 0. (2.11)

Since we do not want our model to be ill-posed, it is required that the diffu-
sivity term in (2.11) is always non-negative. Therefore we impose a modules
sign on P

′
c(S). Here we assume that the following inequality is satisfied:

0 ≤ P
′

c(S) <∞.

In equation (2.11), S = Sw and after Brooks and Corey, 1964 [20], f repre-
sents the fraction flow function:

f(S) =
λw

λw + λa
, (2.12)

where λw is the water mobility, which reads as:

λw =
K

µw
krw, (2.13)

and λa is the air mobility, which reads as:

λa =
K

µa
kra. (2.14)

Since the relative water permeability krw equals to:

krw = S
2+3λ
λ , (2.15)
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and the relative air permeability kra is equal to:

kra = (1− S)2(1− S
2+λ
λ ). (2.16)

The fractional flow function (2.12) is written as:

f(S) =
S

2+3λ
λ

S
2+3λ
λ +M(1− S)2(1− S 2+λ

λ )
, (2.17)

where M denotes the mobility ratio of two given phases:

M =
µw
µa
. (2.18)

2.3 The non-equilibrium Richards’ equation

In the previous section we assumed that equilibrium conditions are being held
while modeling the two-phase flow in unsaturated porous media. Essentially,
the fluids pressure difference relation (2.10) holds only when both fluids are
at rest. Otherwise, the capillary pressure function depends on the rate of
change of saturation and relation (2.10) obviously does not hold anymore.
That is the reason why we call the equation (2.11) the equilibrium Richards'
equation or simply equilibrium model. Standard equilibrium models can only
produce monotone wave profiles. From infiltration experiments described by
DiCarlo, we know that he injected water in the sand porous medium at dif-
ferent flux rates and made his measurements while the processes occurred.
This means that at relatively high injection rates, the processes within the
column were taking place much faster compared to the ones performed at
relatively low fluxes. Therefore we need to include non-equilibrium assump-
tions in terms of the dynamical effects on capillary pressure function[6, 9].
To account for the dynamics into the processes, a non-equilibrium approach
was proposed by S.M. Hassanizadeh and W.Gray in [5] where dynamic cap-
illary pressure may take the following form:

po − pw = Pc(S) + τ
∂S

∂t
. (2.19)

Here τ is the dimensionless damping coefficient, which is always positive.
Essentially non-equilibrium assumption is the reason why time dependency
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is added in relation (2.19). Now using again the definition of the diffusivity
function D (S) = f (S) |P ′c(S)| and non-equilibrium relation (2.19), we re-
write the equilibrium Richards' equation (2.11) in its non-equilibrium form:

φ
∂S

∂t
+

∂

∂z

[
qf(S)

]
+

∂

∂z

[
λσf(S)g∆ρ

]
=

=
∂

∂z

[
λσf(S)|P ′c(S)|∂S

∂z

]
+ τ

∂

∂z

[
λαf(S)

∂2S

∂z∂t

]
. (2.20)

The governing equation (2.20) represents the full form of the non-equilibrium
Richards' equation, which we will use to numerically approximate the satu-
ration overshoots observed in infiltration experimental measurements of Di-
Carlo.
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Chapter 3

Numerical simulation of
two-phase flow in porous media

This chapter introduces the numerical approximation technique called the
method of lines (MOL) applied to approximate two-phase flow governing
equation in porous media. In particular we will focus our attention on the
numerical method used as part of MOL implementation, which is called
Implicit-Explicit (IMEX). Here we will discuss the reason why a combination
of Euler-Forward and Euler-Backward numerical schemes is more advanta-
geous compared to separately applied explicit or implicit scheme. Firstly
we will apply the method of lines in combination with IMEX to simplified
a model in order to make it more easy to analyze the behavior and conver-
gence of obtained solutions and then we apply the same technique to the full
model, which is determined by a specific choice of constant parameters and
functions suitable for experiments.

3.1 Method of lines

Let's consider the following partial differential equation:

∂S

∂t
= d

∂2S

∂z2
+
∂f(S)

∂z
+ τ

∂3S

∂t∂z2
, z ∈ [zl, zr], t ∈ [0, T ], (3.1)

with boundary conditions:

S(zl, t) = S− and S(zr, t) = S+, (0 ≤ S− < S+ ≤ 1) , (3.2)
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and initial conditions:

S (z, 0) = S− +
1

2
(S+ − S−) (1 + tanh (R (z − z0))) . (3.3)

One way of solving such a time-dependent PDE numerically is to use the
method of lines (MOL). The idea behind this technique is that the spatial
(in space) and temporal (in time) discretizations (approximations) are done
in two separate steps. At first step, we leave the time variable continuous
and only discretize the spatial derivatives.{

Ṡi = dSi+1−2Si+Si−1

(∆z)2
+

S2
i+1−S2

i−1

4∆z
+ τ Ṡi+1−2Ṡi+Ṡi−1

(∆z)2
,

i = 2, . . . , I − 1,
(3.4)

where

Ṡ1 = 0, S1(0) = S−, ṠI = 0 and SI(0) = S+,

and initial function{
Si (0) = S− + 1

2
(S+ − S−) (1− tanh (R (zi − z0))) ,
i = 2, . . . , I − 1.

Here the dot above S, denotes its time derivative. At this point, approxima-
tion of the exact solution at grid point zi for all time is given by:

Si(t) ≈ S(zi, t), t > 0.

The spatial step ∆z = 1.4
I−1

and each spatial grid point is given as zi = i−1
I−1
·1.4,

where i ∈ {i, . . . , I}, with I being the number of spatial grid points.
After this step we end up with the dynamical system of time dependent
ordinary differential equations (ODEs).{

M ~̇S = D~S + ~g(~S),
~S (0) = ~S1,

where

~S1 =



S−
S2(0)
S3(0)

...
SI−1(0)
S+


, ~S =



S−
S2(t)
S3(t)

...
SI−1(t)
S+


and ~g(~S) =



0
S2
3−S2

1

4∆z
S2
4−S2

2

4∆z
...

S2
I−S

2
I−2

4∆z

0


.
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Here M and D are the tridiagonal matrices which have the following struc-
ture:

M =



1 0 0 0 · · · 0
−τ

(∆z)2
1 + 2τ

(∆z)2
−τ

(∆z)2
0 · · · 0

0 −τ
(∆z)2

1 + 2τ
(∆z)2

−τ
(∆z)2

· · · 0

0 0
. . . . . . . . . 0

0 0 0 −τ
(∆z)2

1 + 2τ
(∆z)2

−τ
(∆z)2

0 0 0 0 0 1


,

D =



0 0 0 0 · · · 0
d

(∆z)2
−2d

(∆z)2
d

(∆z)2
0 · · · 0

0 d
(∆z)2

−2d
(∆z)2

d
(∆z)2

· · · 0

0 0
. . . . . . . . . 0

0 0 0 d
(∆z)2

−2d
(∆z)2

d
(∆z)2

0 0 0 0 0 0


At the second step of MOL, a proper initial value numerical scheme is applied
to solve the system of time dependent ODEs. Here we are going to use an
Implicit – Explicit method, which we will discuss in the next section.

3.2 Implicit - Explicit method (IMEX)

Equation (3.1) contains both stiff and nonlinear terms. Here stiff term is
presented by a diffusion expression. Implicit schemes are considered to be
more suitable for solving PDEs with stiff terms rather then implicit schemes
as they give a possibility to use a large time-step. Explicit schemes require
the use of impractically small time step in order to produce the stable nu-
merical solution at a cost of long computation time. Oppositely, if we treat
nonlinear term with an implicit scheme, it will require solving a nonlinear
system of equations during each time step, which is very time consuming and
practically inefficient.
An appropriate mix of implicit and explicit schemes may help to avoid down-
sides of both schemes making an IMEX scheme to be an advantageous choice.
In the implementation of IMEX, the diffusion term is computed by an implicit
scheme avoiding requirement to use a small time step, while the nonlinear
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term is calculated using an explicit scheme without need to solve a nonlinear
system of equations at every time step.
Taking into account the previous arguments we now can apply a combi-
nation of implicit and explicit finite difference methods to the system of
time-dependent ODEs we received in the previous steps. Consequently at
the second step of method of lines we apply the IMEX method:{

M
~Sn+1−~Sn

∆t
= D~Sn+1 + ~g

(
~Sn
)
,

~S1 given,
(3.10)

⇒

{
(M −∆tD) ~Sn+1 = M~Sn + ∆t~g

(
~Sn
)
,

~S1 given,

⇒

{
~Sn+1 = (M −∆tD)−1

(
M~Sn + ∆t~g

(
~Sn
))

,

~S1 given.

In the numerical computing environment Matlab, the calculation of a matrix
inverse is executed by using the matrix division operator \ [19].

3.3 Stability of the IMEX method

There are many IMEX methods available. In our numerical approximations
we are going to consider Euler Forward-Euler Backward as the chosen IMEX
method [17].
Lets consider the following PDE:

∂s

∂t
= H(s(t), t) +G(s(t), t). (3.11)

Here H represents a nonstiff term suitable for applying the explicit scheme
(Euler Forward), while G represents a stiff term suitable for applying the
implicit scheme (Euler Backward).
The splitting method or the IMEX scheme is given by:

sn+1 = sn + ∆tH(sn, tn) + (1− θ)∆tG(sn, tn) + θ∆tG(sn+1, tn+1), (3.12)

where ∆t is the uniform temporal step size and sn are numerical approxima-
tions, sn ≈ s(tn) at the time step levels tn = n∆t.
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In order to be able to analyze the stability of the applied IMEX scheme, lets
consider the following complex scalar test equation:

ds

dt
= λHs(t) + λGs(t), (3.13)

where λ′s are the eigenvalues of H and G after linearization. Combining the
test function (3.13) with (3.12) results in:

sn+1 = sn + ∆tλhs
n + (1− θ)∆tλGsn + θ∆tλGs

n+1. (3.14)

After bringing the terms containing sn+1 to the left hand side of the equa-
tion and bringing the other terms to the right hand side gives the following
expression:

(1− θ∆tλG)sn+1 = (1 + ∆tλH + (1− θ)∆tλG)sn, (3.15)

or equivalently:

sn+1 =
(1 + ∆tλH + (1− θ)∆tλG)

(1− θ∆tλG)
sn. (3.16)

Therefore, the stability of IMEX-θ scheme requires:∣∣∣∣(1 + ∆tλH + (1− θ)∆tλG)

(1− θ∆tλG)

∣∣∣∣ ≤ 1. (3.17)

From now on, we are going to apply the IMEX method with θ = 1. In this
case the stability requirement of the applied IMEX scheme is fulfilled if the
following two conditions are satisfied:

|1−∆tλG| ≥ 1 and |1 + ∆tλH | ≤ 1. (3.18)

In other words, the stability conditions (3.18) imply that the IMEX scheme
with θ = 1 is stable if the explicit part satisfies the stability requirement
of the Euler Forward (Explicit method) and the implicit part satisfies the
stability requirement for the Euler backward (Implicit method). Recall, that
the stability requirement of Euler Forward is satisfied when |1+∆tλ| ≤ 1, i.e.
eigenvalues should have real part negative Re(λ) < 0 or equivalently, eigen-
values must stay inside of the circle in the left half plane while the stability
condition of Euler Backward condition requires | 1

1−∆tλ
| < 1, i.e. eigenvalues

must stay out of the circle in right half plane.
In general, the stability conditions (3.18) are not true for θ 6= 1. Considera-
tion of stability analysis for case θ 6= 1 is not in the scope of this thesis. For
detailed analysis on stability requirements we refer to [17].
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3.4 Method of lines applied to the non-equilibrium

Richards’ equation

In this section we are going to demonstrate the application of the Method of
Lines in combination with the IMEX scheme to the non-equilibrium Richards'
equation, used to approximate the experiments of the two-phase flow in
porous media with distinguishing features observed by DiCarlo. In the previ-
ous chapter we have specified, that the full governing nonlinear PDE, which
we are going to approximate, is given by:

φ
∂S

∂t
+

∂

∂z

[
qf(S)

]
+

∂

∂z

[
λσf(S)g∆ρ

]
=

=
∂

∂z

[
λσf(S)|P ′c(S)|∂S

∂z

]
+ τ

∂

∂z

[
λαf(S)

∂2S

∂z∂t

]
.

For simplicity, we will put all the terms containing spatial and mixed deriva-
tives on the right-hand side of the equation, while keeping the term contain-
ing temporal derivative on the left-hand side and re-write equation (2.20) in
general form as:

φ
∂S

∂t
=

∂

∂z

(
D(S)

∂S

∂z

)
+ τ

(
∂

∂z

(
M (S)

∂2S

∂z∂t

))
− q∂f(S)

∂z
− ∂

∂z
(G (S)) .

(3.19)

Furthermore, as the third and fourth terms on the right-hand side, which are
represented by the fractional flow function and gravity terms respectively,
contain both first-order derivatives, we can combine them in one expression
and equivalently rewrite equation (3.19) as:

φ
∂S

∂t
= − ∂

∂z
g(S) +

∂

∂z

(
D(S)

∂S

∂z

)
+ τ

(
∂

∂z

(
M(S)

∂2S

∂z∂t

))
, (3.20)

where introduced the function g(S) = −(qf(S) +G(S)).
As the first step of MOL, we start by discretizing the spatial derivatives.
This means we approximate the exact solution only at spatial grid points zi,
keeping the time continuous and we do so by choosing an appropriate finite
difference scheme from many discretization options available.
At the second step, we apply the IMEX-θ integration scheme with θ = 1.
The first term g(s) on the right hand side of (3.20) is nonlinear, therefore
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is suitable for explicit time integration. The other two terms, D(S)∂
2S
θz2

and

M(S) ∂3S
∂z2∂t

, are stiff and hence suitable for implicit integration.
It is important to recognize that the second and third term on the right
hand side of (3.20) are both dependent on the saturation S. This means
that applying the IMEX method directly to the system of time dependent
ODEs, which we receive from the first step, would mean to solve the system
of nonlinear equations at each time step. In order to avoid it, we compute
both terms at step tn instead of time step tn+1.
The left-hand side term of equation (3.20) which contains time derivative, is
approximated by:

∂S

∂t

∣∣∣∣n
i

≈ (Sn+1
i )− (Sni )

∆t

In order to discretize the first-order derivatives of the first term on the right
hand-side of equation (3.20), we use a second-order central finite difference
approximation and then we apply explicit time integration (Euler-Forward):
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The second term on the right-hand side of equation (3.20) represents the
nonlinear diffusion term. Again we apply the central spatial discretization
to approximate the second order derivatives:
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where D(S) =
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Hence the full discretization of diffusion term D(S) is the following:
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Finally, the third term on the right-hand side contains the mixed deriva-
tives of higher terms. We can approximate it in the same manner as we
approximate the diffusion term, but now we also need to take into account
the time derivative. The time derivatives will be approximated at two differ-
ent time steps: tn and tn+1 the following way:
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For the full discretization of the τ -term, we will follow the same procedure
as we did for the diffusion term. Full application of IMEX method to the
system of time dependent ODEs, gives rise to the system of equations in
similar form as in (3.10).
The Table 3.1 contains the list of the parameter values, their symbols and
units, used during numerical approximation of non equilibrium Richards’
equation (2.20).
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Parameter Symbol Value Units

porosity φ 0.35 [ – ]
conductivity κ 0.0025 [ m s−1 ]
(total) flux q input [ m s−1 ]
gravity acceleration g 0.35 [ m s−2 ]
water density ρw 998.21 [ kg m−3 ]
air density ρo 1.2754 [ kg m−3 ]
water viscosity µw 1.002 10−3 [ kg m−1 s−1 ]
air viscosity µo 1.82 10−5 [ kg m−1 s−1 ]
mobility ratio M = µw

µo
55.1 [ – ]

permeability K 2.558 10−10 [ m2 ]
effective water saturation S [ – ]
volumetric water saturation θ φS [ – ]
residual saturation θr 0.016 [ – ]
Brooks - Corey parameter λ 5.5 [ – ]
entry pressure hd 8.66 10−2 [ m ]
drainage Pd = ρwghd 848 [ kg m−1 s−2 ]
imbibition Pd 490 [ kg m−1 s−2 ]

diffusion coefficient d = pwghd
λ

152.25 [ kg m−1 s−2 ]

relative water permeability Krw S
2+3λ
λ [ – ]

relative air permeability Krρ (S − 1)2
(

1− S 2+λ
λ

)
[ – ]

water mobility λw
K
µw
Krw [ – ]

air mobility λo
K
µo
Kro [ – ]

Table 3.1: Parameter values, their symbols and units
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Chapter 4

Analysis of traveling waves

Traveling waves represent particular type of solutions to PDE model (3.1)
and (3.20). Essentially, we are assuming that a traveling wave solution has
a certain form. We want to find the solution in the form S(z, t) = φ(z + ct),
where c is wave velocity. Moving to traveling wave coordinates is an effective
way to solve PDEs, because by using traveling wave transformation we can
reduce given PDE to ODE, which is easier solvable.
When looking for a traveling wave solution we need to indicate which values
(states) we want to connect. Therefore, we assume that we have a left value
in the saturation, which is called left state (inflow state) and we also have
a right state (initial state). We want to connect both states through the
traveling wave that moves in time. This feature is shown in experiments of
DiCarlo, where there is a sand column through which profile moves in time.
When waiting long enough, except from the beginning, you will see that ac-
tually you get something like a wave moving constantly in time. Therefore
the natural question that arises, is whether it is possible by means of mathe-
matical analysis to reproduce an infiltration profile that moves constantly in
time. Are the waves we receive monotonic or do they exhibit some overshoots
or oscillations? These are all valid questions one can think of. Analysis of
traveling wave solutions explains the occurrence of such type of phenomena.
For the case when dynamic capillarity coefficient τ = 0 the analysis is very
straightforward. According to Evans [21], for viscous Burgers' equation, it
is possible to compute the traveling waves explicitly for c = 0. Following
the phase plane analysis, traveling wave solutions are possible if left state is
larger than the right state, i.e S+ > S−. In this paper we are considering the
case when τ > 0 [1].
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4.1 Phase plane analysis

To discuss the effect of different parameters on the saturation profile struc-
ture, we will apply the phase plane analysis technique to the PDE equation
(3.1). We firstly introduce the traveling wave coordinate ξ, which is defined
as:

ξ = z + ct.

Here, the constant c is the traveling wave speed and ξ is the traveling wave
variable. Secondly, the traveling wave ansatz for velocity S(x, t) reads:

S(z, t) = φ(z + ct) = φ(ξ),

where φ(ξ) is the wave profile and ξ ∈ [−∞,+∞]. Then

∂

∂t
S(z, t) = c

∂

∂ξ
φ(ξ) = cφ′, (4.1)

∂

∂t
S(z, t) =

∂

∂ξ
φ(ξ) = φ′, (4.2)

and

∂

∂z2
S(z, t) =

∂2

∂ξ2
φ(ξ) = φ′′. (4.3)

Substitution of (4.1), (4.2) and (4.3) into (3.1) yields:

c
d

∂ξ
φ(ξ) = d

d2

∂ξ2
φ(ξ) +

d

∂ξ
f(φ) + cτ

d

∂ξ

(
d2

∂ξ2
φ(ξ)

)
, (4.4)

or in simplified notation:

cφ′ = (dφ′)′ + (f(φ))′ + cτ(φ′′)′. (4.5)

Equation (4.5) is written in traveling wave form and is completed with the
following asymptotic boundary conditions:
φ(−∞) = S−, φ(+∞) = S+, 0 < S− < S+ < 1,
φ′(−∞) = φ′(+∞) = 0, φ′′(−∞) = φ′′(+∞) = 0.

26



Here S− stands for the right boundary condition and S+ stands for the
left one. This implies that S+ represents the saturation behind wetting the
front (tail), while S− is the saturation before the wetting front (tip).
We shall look for a steady profile moving with a constant velocity c, i.e. a
traveling wave S = φ(ξ) as depicted in Figure 4.1.

Figure 4.1: Sketch of a traveling wave with positive constant c

Here velocity c is given as:

c =
f(S+)− f(S−)

S+ − S−
.
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Following [21], we integrate once the equation (4.4):∫ ξ

−∞

(
c
d

∂ξ
φ(ξ)

)
dξ

=

∫ ξ

−∞

{
d
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⇐⇒ cφ(ξ)− cφ(−∞) = d
d

∂ξ
φ(ξ)

⇐⇒ d
d

∂ξ
φ(−∞) + f(φ)− f(−∞) + cτ

d2

∂ξ2
φ(ξ)− cτ d

2

∂ξ2
φ(−∞)

Taking into account the boundary conditions of the traveling wave, gives us:

c (φ(ξ)− S−) = d
d

∂ξ
φ(ξ) + f(φ)− f(S−) + cτ

d2

∂ξ2
φ(ξ). (4.6)

Using a short notation, we can rewrite (4.6) as:

c(φ− S−) = dφ′ + f(φ)− f(S−) + cτφ′′,

which corresponds to a second order ordinary differential equation (ODE)
and we can transform it into a system of two first order ODEs by introducing
a new variable ψ = φ′.
Then we have in the coordinates (φ, ψ):{

φ′ = ψ,

ψ′ = c(φ−S−)−dψ−f(φ)+f(S−)
cτ

.
(4.7)

If, for example, we assume that f(S) = S2, we can rewrite (4.7) as:{
φ′ = ψ,

ψ′ = c(φ−S−)−dψ−φ2+S2

cτ
.

(4.8)

The system (4.8) has two stationary states, in other words two critical points,
namely (φ, ψ) = (S−, 0) and (φ, ψ) = (S+, 0).
In order to specify the nature of the critical points, we firstly compute the
Jacobian matrix of system (4.8) and then we determine its eigenvalues, which
will allow us to investigate the type and stability of stationary states.
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J =

 ∂φ′

∂φ
∂φ′

∂ψ

∂ψ′

∂φ
∂ψ′

∂ψ

 =

[
0 1

c−2φ′

cτ
− d
cτ

]
.

At the critical points the Jacobian matrix reads:

J =

[
0 1

c−2u±
cτ

− d
cτ

]
.

Applied to the critical points, we get:

J(S−, 0) =

[
0 1

c−2S−
cτ

− d
cτ

]
.

Since det (J) = − c+2S−
cτ

< 0, it follows that critical point (S−, 0) is always a
saddle point for all τ > 0.
Next,

J(S+, 0) =

[
0 1

c−2S+

cτ
− d
cτ

]
.

For point (S+, 0) we receive the following eigenvalues:

λ = − d

2cτ
±
√

d2

4c2τ 2
+
c− 2S+

cτ
.

If, for example, we fix S− = 0, τ = 3 ·10−4 and c = 0.6, then at critical point
(S+, 0) we obtain the following:

1. d > d∗ ≈ 0.0041
In this case both eigenvalues are real and negative. This means that at
critical point (S+, 0) we have a stable node. This case corresponds to
weak damping i.e. monotonic decay.

2. 0 < d < d∗ ≈ 0.0041
In this case eigenvalues are complex conjugate with negative real part.
Therefore at critical point (S+, 0) we have a stable focus. This case
corresponds to strong damping or a so called oscillating front.
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4.2 Numerical results

In this section we present the graphical representation of numerical solutions,
which were obtained by applying the method of lines and IMEX integration
scheme in approximation of the PDE model (3.1) from hydrology discussed
in previous chapter. The chosen function f(S) = S2, can be interpreted
as fraction flow function, which has a convex-shaped profile. The initial
condition (initial saturation) is given by the following function:

S(z, 0) = S− +
1

2
(S+ − S−) (1 + tanh(R(z − z0))) , (4.13)

with fixed parameter values: S− = 0, S+ = 0.6, R = 50 and z0 = 1.2.
The graphical behavior of the numerical solutions is illustrated on the next
pages in Figures 4.2 - 4.5, and can be explained by relating them to the trav-
eling wave analysis we discussed in the previous section. Recall, that in the
phase plane analysis we received only two critical points. This means that
both states, S+ and S−, are connected directly through a traveling wave.
Throughout the whole simulation we change only the value of the diffusion
(viscosity) coefficient d, while keeping fixed the non-equilibrium capillary co-
efficient τ , the right (S−) and left (S+) boundary values, the width of spatial
and temporal time steps: τ = 3 · 10−4, S− = 0, S+ = 0.6, ∆t = 0.001 and
∆x = 0.01. Figure 4.2 displays the non-monotone water saturation profile
with many oscillations behind the wetting front corresponding to the case
when the second critical point (S+, 0) represents focus in the phase plane.
This means that the orbits spiral around the critical point, that is why we
observe oscillations. Figures 4.3 and 4.4 show the non-monotone saturation
profile with three and one oscillations, respectively. Here we consider the
case when critical point (S+, 0) is a stable node. Figure 4.5 shows the mono-
tonically decreasing saturation profile corresponding to the case when in the
phase plane the orbits go directly to the second critical point (S+, 0), which
is again a stable node.
The fractional flow function that we will use in the full model, for approxima-
tion of the DiCarlo infiltration experiments, has instead a convex-concaved
profile. In terms of traveling wave analysis, this would mean that there will
be three critical points. In other words, the traveling wave which connects
left boundary value with the right one, goes through intermediate value [8].
This results in plateau-type saturation profiles. For detailed traveling wave
analysis of convex-concave case, we are referring to [9, 23].
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Figure 4.2: Non-monotone water saturation profile corresponding to the case
when the second critical point is a stable focus in the phase plane. One phase
flow with ∆x = 0.01, ∆t = 0.001, τ = 3 · 10−4 and d = 0.001.

Figure 4.3: Non-monotone water saturation profile corresponding to the case
when the second critical point is a stable node in the phase plane. One phase
flow with ∆x = 0.01, ∆t = 0.001, τ = 3 · 10−4 and d = 0.005.
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Figure 4.4: Non-monotone water saturation profile corresponding to the case
when the second critical point is a stable node in the phase plane. One phase
flow with ∆x = 0.01, ∆t = 0.001, τ = 3 · 10−4 and d = 0.01.

Figure 4.5: Monotone water saturation profile corresponding to the case when
the second critical point is a stable node in the phase plane. One phase flow
with ∆x = 0.01, ∆t = 0.001, τ = 3 · 10−4 and d = 0.1.
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Chapter 5

Numerical simulation vs
experimental measurements

In this chapter, we present the results of several numerical experiments con-
ducted for one-dimensional non-equilibrium two-phase flow model in porous
media, both with and without inclusion of the hysteretic effects in calculation
of capillary pressure function Pc(S). All simulations were done on uniformly
distributed fixed mesh.

Plot DiCarlo
injection
rate

Numercial
injection
rate

q[ cm
min

] q[ m
sec

]

Plot 6 11.8 0.002
Plot 5 7.9 1.32 · 10−3

Plot 4 0.79 1.32 · 10−4

Plot 3 0.079 1.32 · 10−5

Plot 2 0.0079 1.32 · 10−6

Plot 1 7.9 · 10−4 1.32 · 10−7

Figure 5.1: (Left) Snapshot of the experimental measurements on infiltration
performed by DiCarlo. (Right) Table summarizing the number of plots and
their corresponding injection rates.
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For the sake of clarity in Figure 5.1, we present the snapshot of six plots
produced during DiCarlo’s experiments, together with the summary of the
injection rate values taken from experimental measurements and the corre-
sponding values of injection rates used during numerical experiments. Note
that DiCarlo in his experiments measures injection rates (q) in cm/min,
while we use injection rates in m/s.
Recall that in chapter 4 we initially developed the numerical approximation
scheme based on the method of lines (MOL) and IMEX integration technique
assuming that flow in porous medium depends only on its saturation. Firstly
we apply this scheme to approximate the non-equilibrium Richards' equation
(2.11). Throughout the whole simulation we keep the damping parameter τ ,
the right boundary value S−, the Brooks-Corey capillary pressure parameter
Pd, the number of spatial and temporal grid points fixed, unless otherwise
stated: τ = 30, S− = 0.001, Pd = 850 , I = 201 and N = 1201.
The initial condition (initial saturation) is given by the following function:

S(z, 0) = S− +
1

2
(S+ − S−) (1 + tanh(R(z − z0))) ,

with fixed parameter values: S− = 0.001, R = 50 and z0 = 0.1.
Figure 5.2 illustrates the graphical results of numerical approximation corre-
sponding to the six plots produced by DiCarlo at different values of the final
time T .
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Figure 5.2: Numerical simulation results of DiCarlo's experiments with
method of lines in combination with IMEX.
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Based on the experimental outcome, we can conclude that the method
of lines in combination with IMEX works well. The monotone behavior de-
picted in plot 1 is almost identical in comparison with plot 1 from the original
experiments of D. DiCarlo. The non-monotone saturation profile in plot 3 is
consistent with the original experiments as well. In particular plot 4 clearly
reproduces the desired infiltration overshoot in terms of the plateau type
saturation profile.
Table 5.1 gives an overview of all variable parameters, which were used to
produce the six plots illustrated in Figure 5.2. Here, for simplicity, the param-
eters are presented in dimensionless settings. The corresponding dimensions
are listed in Table 3.1.

Parameter Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6

τ 1500 1200 290 210 60 45
S+ 0.15 0.20 0.40 0.52 0.78 0.97
q 1.32 · 10−7 1.32 · 10−6 1.32 · 10−5 1.32 · 10−4 1.32 · 10−3 0.002
ε 0 0 0 0 2 · 10−6 5 · 10−6

λ 5.5 5.5 5.5 5.5 5.5 5.5

Table 5.1: Overview of parameters used by numerically approximate DiCarlo
experiments.

Figure 5.3 shows the numerical approximation of plateau-type profile at
incrementally decreasing values of temporal step sizes ∆t = 0.2, 0.1, 0.05, 0.025, 0.0125
and 0.000625. It can be seen that profiles tend to overlap as ∆t decreases,
suggesting the convergence of numerical scheme.

36



Figure 5.3: On the left the convergence of numerical approximation for
plateau-type saturation profile (plot 4) at decreasing temporal step sizes
∆t = 0.2, 0.1, 0.05, 0.025, 0.00125 and 0.000625. On the right the saturation
profile (plot 4) zoom in at the region around the wetting front (tip).

Figure 5.4: Experimental measurements of DiCarlo (left) versus numerical
approximation (right).

37



Finally, in Figure 5.4 we combined all the plots to illustrate the compari-
son between the experimental measurements of DiCarlo versus the numerical
simulation. As can be seen, the main shortcoming of the applied numerical
scheme is the clear discrepancy between some of the left boundary values
S+ used to reproduce the experimental measurements numerically and those
being used in original experiments. To allow for more accuracy of numer-
ical solution, we extend in the next chapter the already existing numerical
approximation scheme by introducing the effects of hysteresis in calculation
of capillary pressure function Pc(S). In other words, we are taking into con-
sideration that fluid flow in porous media does not only depend on its satu-
ration, but also has memory of flow displacements, i.e. the switch between
imbibition and drainage phases.
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Chapter 6

Hysteresis, drainage and
imbibition

6.1 Overview

In chapter 5, we have seen that numerical approximation technique MOL in
combination with Euler-Forward and Euler-Backward can produce conver-
gent approximation of 1D vertical infiltration experiments performed by Di-
Carlo. The numerical results are particularly accurate for saturation profiles
at sufficiently low water injection rates in porous media. The main short-
coming of obtained results, is obvious inconsistency between some of the left
boundary values S+ (left states) used to reproduce DiCarlo's experiments
numerically and those being used in the original experiments by DiCarlo.
In particular, we can observe that for saturation profiles which demonstrate
monotonic behavior at the lower flux values, i.e. q = 7.9 · 10−4[cm/min]
and q = 0.0079[cm/min] and the highest flux rate at q = 11.8[cm/min],
the mismatch at the left boundary values is small. However, at intermediate
fluxes, such as q = 0.079[cm/min] and q = 0.79[cm/min] where we obtain
saturation profiles exhibiting non-monotonic behavior, we observe significant
divergence between the values at the left boundary used to produce the pro-
files numerically versus those profiles produced experimentally.
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Figure 6.1 gives the clear illustration of what happens with the graph-
ical image if we apply the numerical approximation scheme to the fourth
plot (Figure 5.1), using the left boundary value which fits our numerical
experiments, S+ = 0.52, versus the numerical approximation scheme with
the original left boundary value used by DiCarlo, S+ = 0.34, given that all
other parameters are equal. As left boundary value (left state) S+ decays,
the plateau-type saturation profile vanishes and the approximated solution
transforms into an oscillatory front.

Figure 6.1: The green line shows the numerical solution using the left bound-
ary value which fits our numerical experiments S+ = 0.52. The pink line
shows the numerical solution using the left boundary value S+ = 0.34, which
is taken from experimental measurements performed by DiCarlo.
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In the next table, we summarize the above-mentioned results by specifying
the exact values taken at the left boundary for six plots produced originally
by DiCarlo versus the corresponding six plots produced by the numerical
approximation scheme (from lowest to the highest injection rate).

Plot Left boundary
values S+ in
experiments
of DiCarlo

Left boundary
value S+ in
numerical ap-
proximation
scheme

Difference
between nu-
merical S+

and original
S+

DiCarlo injec-
tion rate q[ cm

min
]

Plot 1 0.12 0.15 0.03 7.9 · 10−4

Plot 2 0.12 0.20 0.08 0.0079
Plot 3 0.23 0.40 0.17 0.079

Plot 4 0.34 0.52 0.18 0.79

Plot 5 0.74 0.78 0.04 7.9
Plot 6 0.97 0.97 0 11.8

Table 6.1: Comparison between left boundary values used in the constant
flux infiltration experiments of DiCarlo versus left boundary values used to
re-produce experiments of DiCarlo numerically.

One of the reasons, why we observe these discrepancies at the left bound-
ary is because up till now we neglected so called hysteretic effects in modeling
of capillary pressure function. Numerically approximating the two-phase flow
model in porous media, so far, we only considered the influence of dynamic
effects on the saturation profiles. In this chapter, we will discuss the notion
of imbibition and drainage and we will extend the results obtained previously
by including the effects of hysteresis to already existing model.

6.2 Measurement of capillary pressure

In this section we are presenting a summary on the measurement of capillary
pressure-saturation curves in laboratory conditions from [6], [9] and [10].
The soil sample is placed in the pressure plate apparatus, which contains
two reservoirs: non-wetting reservoir and wetting reservoir. These reservoirs
contact with the soil sample. Initially if two pressures are equal and one of
the reservoirs is filled with wetting phase (water) nothing will happen be-
cause it is in equilibrium modus. Therefore we can plot pressure difference
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curve po − pw = Pc(S). In this way, the first point is obtained. The process
is repeated, by increasing the pressure incrementally and so forth. Nothing
will happen until the threshold value is surpassed. At this point some water
goes out and some non-wetting phase gets in. Only after the equilibrium
is reached again (i.e. there is no any movement of phases at all), another
measurement can be done. By plotting again the new pressure difference
against the saturation, another point is obtained. This measurement process
is repeated several times and in the end we get a drying curve or so called
drainage curve. We can now reverse the process, either by putting water back
in by increasing water pressure or reducing the non-wetting phase pressure.
However, we do not get the same curve. Instead we get a different curve. Here
data points fell on the different curve, which is significantly different. And
this is called the wetting curve or so called imbibition curve. If the reversal of
phases happens on the half way from drying curve to wetting curve and vice
versa, we get other curves, so called scanning curves: scanning wetting curve
or scanning drying curve. Therefore there is not just a single curve. More-
over, not the actual pressures are measured inside but the pressure outside
of the soil sample is measured. In order to get the set of above-mentioned
curves sometimes it can take more than a week. Here we are considering
that very slow processes are taking place. The static algebraic relationship
of capillary pressure holds only if the equilibrium is reached. But very often
the same curves, which were obtained in static experiments, as described
above, are used for processes that are taking place much faster.
In the past, experiments were performed to see what happens if measure-
ments of pressure inside soil are made as the process occur, meaning without
reaching equilibrium state. In these kinds of experiments, pressure transduc-
ers are added: hydrophobic and hydrophilic. One measures water pressure
and the other one measures air (oil) pressure. The measurements of the
pressure were performed as the flow occurred. These kinds of experiment are
dynamic experiments. It means pressure is increased to a large value and
the processes within the experiment occur very quickly. The pressure differ-
ence curves that were obtained during the dynamic experiment, compared to
those obtained in static experiments, were significantly different.
These experiments proved that standard theory does not model non-monotonic
distribution of saturation during the infiltration as well as that capillary pres-
sure function Pc(S) is not presented only by one curve.
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6.3 Hysteresis

The notion of the hysteresis mode emerges as the result of flow displace-
ment between two phases: wetting (imbibition) and non-wetting (drainage).
Recall, that per definition imbibition occurs when a wetting fluid displaces
a non-wetting fluid, i.e. the wetting-phase saturation is increasing. Oppo-
sitely, drainage occurs when non-wetting phase displaces a wetting fluid, i.e.
if wetting-phase saturation is decreasing. Therefore hysteresis is the process
that keeps track of type and number of reversal events (from drainage to
imbibition or vice versa), which occur in the different saturation directions
[13].

In this section we extend the already developed numerical approximation
scheme described in detail in chapter 3, by assuming that capillary pressure
function Pc(S), which describes the relationship of saturation and capillary
pressure, has memory for previous events. In order to include hysteretic
effects in our numerical approximation scheme, we follow the procedure as
pointed in [2], [14], [15] and [18]. As before, we assume a 1D fluid flow.

Based on equation (3.20), the corresponding mathematical model for non-
equilibrium hysteretic two-phase flow (air-water) in porous medium can be
written down as:

φ
∂S

∂t
+Ω(S)

∂

∂z

[
gim(S)−Dim(S)

∂S

∂z
− τMim(S)

∂2S

∂z∂t

]
+[

1− Ω(S)

]
∂

∂z

[
gdr(S)−Ddr(S)

∂S

∂z
− τMdr(S)

∂2S

∂z∂t

]
= 0,

(6.1)

where left side limit Ω(S) can be expressed as:

Ω(S) = lim
η→0

Φ

(
∂S

∂t
(z, t− η)

)
, (6.2)

with the Heaviside step function Φ(S) satisfying the following condition re-
lation:

Φ(S) =

{
1, if ∂S

∂t
> 0

0, if ∂S
∂t
≤ 0

.
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From the two commonly used approaches known in literature as models
of Brooks-Corey and Van Genuchten, used to relate relative permeability to
saturation, we are going to use Brooks-Corey type relative permeability for
each phase [20]:

krwi = S
2+3λi
λi

i , (6.3)

krai = (1− Si)2(1− S
2+λi
λi ), (6.4)

where krw and kra stand for relative water and air permeabilities respectively.
Index i ∈ {im, dr}.
Previously, disregarding the hysteretic effects from the calculation of the
capillary pressure function Pc(S), we kept Brooks-Corey parameters λ = 5.5
and Pd = 850[kgm−1s−1] fixed throughout the whole computation, explicitly
assuming that we are always in drainage phase, i.e. ∂S

∂t
≤ 0.

Figure 6.2: Figure graphically illustrates two Brooks-Corey type capillary
pressure curves: the red curve corresponds to drainage case, while the blue
one corresponds to imbibition case.
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Figure 6.2 shows the snapshots of two ∂S
∂t

curves, corresponding to the
fourth plot of numerical approximation solution from chapter 3, with left
boundary value S+ = 0.52 on the left and S+ = 0.34 on the right. What we
can obviously see, is that ∂S

∂t
curves in both figures do not necessarily always

take negative or equal to 0 values. At some points in space direction, ∂S
∂t

curves also take positive values, i.e. ∂S
∂t
> 0. Therefore, our initial assumption

that capillary pressure function always corresponds to non-wetting phase, was
false.
As the result, approximating the mathematical model (6.1), we need now to
consider the two situations:{

∂S
∂t
≤ 0 ⇒drainage phase, λ = 5.5 and Pd = 850

∂S
∂t
> 0 ⇒imbibition phase, λ = 5 and Pd = 490

.

Finally, the expression describing hysteretic capillary pressure function Pc(S)
reads as follows:

Pci(S) = PdiS
− 1
λi ⇒

∣∣P ‘
ci

∣∣ =
Pdi
λi
S
λi+1

λi . (6.5)
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Figure 6.3: The blue line corresponds to Brooks-Corey imbibition curve for
case Pd = 490 and λ = 5. The red line corresponds to Brooks-Corey drainage
curve for case Pd = 850 and λ = 5.5
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6.4 Numerical results

We are going to focus our attention only on the numerical improvement of the
fourth plot with the injection rate q = 0.79 (Figure 5.4), as it has the biggest
inconsistency at the left boundary value from all of the six results. Figure 6.4
shows the difference between the implementation of the numerical scheme,
which takes into account only the dynamic capillary pressure effects versus
the numerical scheme, which considers dynamic capillary pressure effects as
well as hysteretic effects.

Figure 6.4: The red curve corresponds to numerical solution of plateau type
saturation profile (plot 4) excluding hysteretic effects. The blue curve cor-
responds to numerical solution of plateau type saturation profile (plot 4)
including hysteretic effects.

The plot clearly demonstrates the advantage of including the switch be-
tween the wetting and the non-wetting phases in the numerical simulation,
as now it is able to produce a plateau type solution with original value at
the left boundary condition.
Again, we check the convergence of enhanced numerical scheme by incremen-
tally decreasing values of temporal step sizes ∆t = 0.2, 0.1, 0.05, 0.025, 0.0125
and 0.000625 while keeping the value of ∆z fixed: ∆z = 0.0020. The results
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depicted in Figure 6.5 acknowledges the convergence of numerical approxi-
mation method.

Figure 6.5: (left) The convergence of numerical approximation scheme in-
cluding hysteretic effects for plateau-type saturation profile (plot 4) at tem-
poral step sizes ∆t = 0.2, 0.1, 0.05, 0.025, 0.00125 and 0.000625. (right) The
saturation profile (plot 4) zoom in at the region around the wetting front
(tip).
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Chapter 7

Conclusion

The main focus of this thesis was to reproduce, by means of advanced nu-
merical techniques, the experimental measurements of saturation overshoot
during infiltration that occur in the flow in porous media, as described by
DiCarlo. This was of the particular interest as such dynamic phenomenon as
saturation overshoots are not treated by standard mathematical models that
are conventionally used to describe flow in porous medium. Throughout this
paper, the theory of traveling wave analysis was tightly integrated with the
solutions of numerical approximation of the governing equation.
In this paper, we initially developed the non-equilibrium model with high-
order mixed derivative term for two phase flow (air-water) in porous media,
which accounted for the dynamic effects in the capillary pressure function,
to which we successfully applied the numerical approximation scheme based
on Method of Lines (MOL) in combination with an IMEX time integration
scheme. The outcome of the numerical result was highly influenced by the
chosen values, therefore the importance of specific choice of the constant
parameters and functions suitable for experiments was outlined throughout
the whole research. The effect of the damping parameter τ still needs more
profound investigation.
In summary, the chosen numerical approach produced a relatively accurate
numerical solution, while the graphical visualization indicated the conver-
gence of the numerical scheme. The obvious shortcoming of the numerical
approximation at the left boundary values, was improved by including the
effects of hysteresis to the already existing model.
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Appendix A

Matlab Code

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% D e f i n i t i o n o f parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% number o f s p a t i a l g r i d p o i n t s
I =201;
% number o f temporal g r i d p o i n t s
N=1201;
% non−e q u i l i b r i u m c a p i l l a r i t y c o e f f i c i e n t
tau =30;
% i n j e c t i o n r a t e
q=1.32∗10ˆ−4;
% l e f t boundary v a l u e
ub=0.52;
% f i n a l time
T=210;
% a r t i f i c i a l parameter
e p s i l o n =0;

% r i g h t boundary v a l u e
ua =0.001;
% p o r o s i t y
poros =0.35;
L=0.4 ;
% width o f each space s t e p
dx=L/( I−1) ;
% width o f each time s t e p
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dt= T/(N−1) ;
x0 =0.1;
% entry p r e s s u r e
h d = 8.66∗10ˆ−2;
% Brooks−Corey parameter
lambda =5.5 ;
mu=850/lambda ;
% water v i s c o s i t y
mu w=1.002∗10ˆ−3;
% a i r v i s c o s i t y
mu o=1.82∗10ˆ−5;
% m o b i l i t y r a t i o
A=mu w/mu o ;
u o ld ( 1 , : )=ub ;
u o ld ( I , : )=ua ;
% d e r i v a t i v e o f water s a t u r a t i o n
ds dt ( : , : )=zeros ;
% p r e a l l o c a t i o n o f v a r i a b l e f o r f a s t e r speed o f

c a l c u l a t i o n
u new (N, : )=zeros ;
% p r e a l l o c a t i o n o f v a r i a b l e f o r f a s t e r speed o f

c a l c u l a t i o n
x ( I , : )=zeros ;
% d e f i n i t i o n o f r e l a t i v e a i r p e r m e a b i l i t y
k ro ( I , : )=zeros ;
% d e f i n i t i o n o f a i r m o b i l i t y
lambda o ( I , : )=zeros ;
% d e f i n i t i o n o f f r a c t i o n a l f l o w f u n c t i o n
f ( I , : )=zeros ;

% d e n i t i o n o f the f i r s t e lement o f v e c t o r g
g ( 1 , : ) =0;
% d e n i t i o n o f the l a s t e lement o f v e c t o r g
g ( I , : ) =0;
% p r e a l l o c a t i o n o f v a r i a b l e f o r f a s t e r speed o f

c a l c u l a t i o n
g ( I , : )=zeros ;
% p e r m e a b i l i t y
K=2.558∗10ˆ−10;
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% g r a v i t a t i o n a l a c c e l e r a t i o n
g a c c e l =9.81;

% water d e n s i t y
ro w =998.21;
% a i r d e n s i t y
ro o =1.2754;
% d i f f e r e n c e between water and a i r d e n s i t i e s
d e l t a r o=ro w−ro o ;

% d e f i n i t i o n o f matrix D
D = zeros ( I ) ;
% d e f i n i t i o n o f matrix M
M = zeros ( I ) ;
% d e f i n i t i o n o f the f i r s t e lement o f matrix M
M(1 ,1 ) =1;
% d e f i n i t i o n o f the l a s t e lement o f matrix M
M( I , I ) =1;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% C a l c u l a t i o n o f s p a t i o n g r i d p o i n t x ( i )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i = 1 : I

x ( i )= ( i −1)∗L/( I−1) ;
end %f o r i = 1: I

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% C a l c u l a t i o n o f i n i t i a l c o n d i t i o n u o l d
% at each g r i d p o i n t i
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i = 2 : I−1

u o ld ( i )= ua + 0 .5∗ ( ub−ua )∗(1−tanh (50∗ ( x ( i )−x0 ) ) ) ;
end %f o r i = 2: I−1

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% F i r s t s t e p o f method o f l i n e s
% ( d i s c r e t i z a t i o n o f s p a t i a l d e r i v a t i v e s on ly )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i= 2 : I−1
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M( i , i −1)= −tau ∗ ( ( ( (K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i )
ˆ((2+lambda ) /lambda ) ) ∗( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda
) ) ∗ . . .

abs (mu∗( u o ld ( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i )
ˆ((2+3∗ lambda ) /lambda ) + . . .

A∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /lambda ) ) ) ) /(2∗
dx ˆ2) +(((K/mu o)∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i −1)ˆ((2+
lambda ) /lambda ) ) ∗ . . .

( u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda ) ) . . .
∗abs ( mu∗( u o ld ( i −1)ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i
−1)ˆ((2+3∗ lambda ) /lambda )+A∗(1−u o ld ( i −1) ) ˆ2∗(1−
u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) ) ) . . .

/(2∗dx ˆ2) ) ;
M( i , i )= ( poros+tau ∗ ( ( ( (K/mu o)∗(1−u o ld ( i +1) ) ˆ2∗(1−

u o ld ( i +1)ˆ ((2+lambda ) /lambda ) ) ∗( u o ld ( i +1)ˆ((2+3∗
lambda ) /lambda ) ) . . .

∗abs ( mu∗( u o ld ( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i
+1)ˆ((2+3∗ lambda ) /lambda ) + . . .

A∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld ( i +1)ˆ((2+lambda ) /lambda ) ) ) )
/(2∗dx ˆ2)+ ( ( (K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i )
ˆ((2+lambda ) /lambda ) ) . . .

∗( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda ) )∗abs (mu∗( u o ld ( i ) ˆ(−(
lambda+1)/lambda ) ) ) ) /( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda
) + . . .

A∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /lambda ) ) ) ) /( dx
ˆ2) +(((K/mu o)∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i −1)ˆ((2+
lambda ) /lambda ) ) . . .

∗( u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda ) )∗abs ( mu∗( u o ld ( i −1)
ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i −1)ˆ((2+3∗ lambda ) /
lambda ) + . . .

A∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) ) )
/(2∗dx ˆ2) ) ) ;

M( i , i +1)= −tau ∗ ( ( ( (K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i )
ˆ((2+lambda ) /lambda ) ) ∗( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda
) ) ∗ . . .

abs ( mu∗( u o ld ( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i )
ˆ((2+3∗ lambda ) /lambda ) + . . .
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A∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /lambda ) ) ) ) /(2∗
dx ˆ2) +(((K/mu o)∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld ( i +1)ˆ((2+
lambda ) /lambda ) ) ∗ . . .

( u o ld ( i +1)ˆ((2+3∗ lambda ) /lambda ) )∗abs ( mu∗( u o ld ( i +1)
ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i +1)ˆ((2+3∗ lambda ) /
lambda )+A∗(1−u o ld ( i +1) ) ˆ 2 ∗ . . .

(1−u o ld ( i +1)ˆ((2+lambda ) /lambda ) ) ) ) /(2∗dx ˆ2) ) ;
end % f o r i= 2: I−1

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% D i s c r e t i z a t i o n o f matrix D in space
% ( time i s cont inuous )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i= 2 : I−1
D( i , i −1)= ( ( (K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+

lambda ) /lambda ) ) ∗( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda ) )
∗ . . .

abs (mu∗( u o ld ( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i )
ˆ((2+3∗ lambda ) /lambda ) + . . .

A∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /lambda ) ) )+
e p s i l o n ) /(2∗dx ˆ2) +(((K/mu o) ∗ . . .

(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) ∗(
u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs (mu∗( u o ld ( i −1)ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i −1)
ˆ((2+3∗ lambda ) /lambda )+A∗(1−u o ld ( i −1) ) ˆ 2 ∗ . . .

(1−u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) ) +e p s i l o n ) /(2∗dx ˆ2) ;
D( i , i )= −((((K/mu o)∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld ( i +1)ˆ

((2+lambda ) /lambda ) ) ∗( u o ld ( i +1)ˆ((2+3∗ lambda ) /
lambda ) ) ∗ . . .

abs ( mu∗( u o ld ( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i
+1)ˆ((2+3∗ lambda ) /lambda )+ A∗(1−u o ld ( i +1) ) ˆ 2 ∗ . . .

(1−u o ld ( i +1)ˆ((2+lambda ) /lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2)+
( ( (K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /
lambda ) ) ∗ . . .

( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda ) )∗abs (mu∗( u o ld ( i ) ˆ(−(
lambda+1)/lambda ) ) ) ) /( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda
)+ A∗(1−u o ld ( i ) ) ˆ 2 ∗ . . .
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(1−u o ld ( i ) ˆ((2+lambda ) /lambda ) ) )+e p s i l o n ) /( dx ˆ2) +(((K/
mu o)∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i −1)ˆ((2+lambda ) /
lambda ) ) ∗ . . .

( u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda ) )∗abs ( mu∗( u o ld ( i −1)
ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i −1)ˆ((2+3∗ lambda ) /
lambda )+ A∗(1−u o ld ( i −1) ) ˆ 2 ∗ . . .

(1−u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2) ) ;
D( i , i +1)=(((K/mu o)∗(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+

lambda ) /lambda ) ) ∗( u o ld ( i ) ˆ((2+3∗ lambda ) /lambda ) )
∗ . . .

abs ( mu∗( u o ld ( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i )
ˆ((2+3∗ lambda ) /lambda )+ A∗ . . .

(1−u o ld ( i ) ) ˆ2∗(1− u o ld ( i ) ˆ((2+lambda ) /lambda ) ) )+
e p s i l o n ) /(2∗dx ˆ2) +(((K/mu o)∗(1−u o ld ( i +1) ) ˆ2∗(1−
u o ld ( i +1)ˆ((2+lambda ) /lambda ) ) . . .

∗( u o ld ( i +1)ˆ((2+3∗ lambda ) /lambda ) )∗abs ( mu∗( u o ld ( i +1)
ˆ(−( lambda+1)/lambda ) ) ) ) /( u o ld ( i +1)ˆ((2+3∗ lambda ) /
lambda )+A∗(1−u o ld ( i +1) ) ˆ 2 ∗ . . .

(1−u o ld ( i +1)ˆ((2+lambda ) /lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2) ;
end % f o r i= 2: I−1

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% D i s c r e t i z a t i o n o f f r a c t i o n a l f l o w f u n c t i o n in space
% ( time i s cont inuous )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i = 2 : I−1

a= q ∗ ( ( u o ld ( i +1)ˆ((2+3∗ lambda ) /lambda ) ) /( u o ld ( i +1)
ˆ((2+3∗ lambda ) /lambda )+A∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld ( i
+1)ˆ((2+lambda ) /lambda ) ) ) ) . . .

+g a c c e l ∗ d e l t a r o ∗ ( ( (K/mu o)∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld (
i +1)ˆ((2+lambda ) /lambda ) ) ∗ . . .

( u o ld ( i +1)ˆ((2+3∗ lambda ) /lambda ) ) ) /( u o ld ( i +1)ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u o ld ( i +1) ) ˆ2∗(1− u o ld ( i +1)
ˆ((2+lambda ) /lambda ) ) ) ) ;

b= q ∗ ( ( u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda ) ) /( u o ld ( i −1)
ˆ((2+3∗ lambda ) /lambda )+A∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i
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−1)ˆ((2+lambda ) /lambda ) ) ) ) + . . .
g a c c e l ∗ d e l t a r o ∗ ( ( (K/mu o)∗(1−u o ld ( i −1) ) ˆ2∗(1− u o ld ( i
−1)ˆ((2+lambda ) /lambda ) ) ∗( u o ld ( i −1)ˆ((2+3∗ lambda ) /
lambda ) ) ) / . . .

( u o ld ( i −1)ˆ((2+3∗ lambda ) /lambda )+ A∗(1−u o ld ( i −1) )
ˆ2∗(1− u o ld ( i −1)ˆ((2+lambda ) /lambda ) ) ) ) ;

% Centra l f i n i t e d i f f e r e n c e scheme
g ( i )= −((a−b) /(2∗dx ) ) ;
end % f o r i = 2: I−1

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Second s t e p o f MOL ( approximation in time )
% I n i t i a l i z a t i o n o f u
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
u=u o ld ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Implementation IMEX method
% ( Euler Forward−Euler Backward scheme )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for n=1:N

% C a l c u l a t i o n o f s a t u r a t i o n v e c t o r u at every time
s t e p

u new=(M−dt∗D) \(M∗u+dt∗g ) ;
% C a l c u l a t i o n o f s a t u r a t i o n d e r i v a t i v e

ds dt=(u new−u) /dt ;
u=u new ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Approximation o f f r a c t i o n a l f l o w f u n c t i o n
% in space and time
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
for i = 2 : I−1
c= q ∗ ( ( u( i +1)ˆ((2+3∗ lambda ) /lambda ) ) /(u( i +1)ˆ((2+3∗

lambda ) /lambda )+A∗(1−u( i +1) ) ˆ2∗(1−u ( i +1)ˆ((2+lambda
) /lambda ) ) ) )+g a c c e l ∗ d e l t a r o . . .
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∗ ( ( (K/mu o)∗(1−u( i +1) ) ˆ2∗(1−u ( i +1)ˆ((2+lambda ) /lambda )
) ∗(u ( i +1)ˆ((2+3∗ lambda ) /lambda ) ) ) /(u( i +1)ˆ((2+3∗
lambda ) /lambda ) + . . .

A∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda ) /lambda ) ) ) ) ;

d= q ∗ ( ( u( i −1)ˆ((2+3∗ lambda ) /lambda ) ) /(u( i −1)ˆ((2+3∗
lambda ) /lambda )+A∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda )
/lambda ) ) ) ) . . .

+g a c c e l ∗ d e l t a r o ∗ ( ( (K/mu o)∗(1−u( i −1) ) ˆ2∗(1−u ( i −1)
ˆ((2+lambda ) /lambda ) ) ∗ . . .

(u ( i −1)ˆ((2+3∗ lambda ) /lambda ) ) ) /(u( i −1)ˆ((2+3∗ lambda ) /
lambda ) . . .

+ A∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda ) /lambda ) ) ) ) ;

% Centra l f i n i t e d i f f e r e n c e scheme
g ( i )= −((c−d) /(2∗dx ) ) ;

%Approximation o f matrix M in space and time
% ( second s t e p in MOL)
M( i , i −1)= −tau ∗ ( ( ( (K/mu o)∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+

lambda ) /lambda ) ) ∗(u( i ) ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .
abs (mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u( i ) ˆ((2+3∗

lambda ) /lambda ) + . . .
A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /lambda ) ) ) ) /(2∗dx ˆ2)

+(((K/mu o)∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda ) /
lambda ) ) ∗ . . .

(u ( i −1)ˆ((2+3∗ lambda ) /lambda ) )∗abs ( mu∗(u( i −1)ˆ(−(
lambda+1)/lambda ) ) ) ) /(u( i −1)ˆ((2+3∗ lambda ) /lambda )+A
∗(1−u( i −1) ) ˆ 2 ∗ . . .

(1−u( i −1)ˆ((2+lambda ) /lambda ) ) ) ) /(2∗dx ˆ2) ) ;

M( i , i )= ( poros+tau ∗ ( ( ( (K/mu o)∗(1−u( i +1) ) ˆ2∗(1−u( i +1)
ˆ((2+lambda ) /lambda ) ) ∗(u( i +1)ˆ((2+3∗ lambda ) /lambda ) )
∗ . . .

abs ( mu∗(u( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i +1)ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i +1) ) ˆ 2 ∗ . . .

(1−u( i +1)ˆ((2+lambda ) /lambda ) ) ) ) /(2∗dx ˆ2) +(((K/mu o)
∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /lambda ) ) ∗(u( i )

56



ˆ((2+3∗ lambda ) /lambda ) ) . . .
∗abs (mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i ) ˆ((2+3∗

lambda ) /lambda )+A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /
lambda ) ) ) ) /( dx ˆ2) +(((K/mu o) . . .

∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda ) /lambda ) ) ∗(u( i −1)
ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i −1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i −1)ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda
) /lambda ) ) ) ) /(2∗dx ˆ2) ) ) ;

M( i , i +1)=−tau ∗ ( ( ( (K/mu o)∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda
) /lambda ) ) ∗(u( i ) ˆ((2+3∗ lambda ) /lambda ) ) . . .

∗abs ( mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i ) ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /
lambda ) ) ) ) /(2∗dx ˆ2) . . .

+(((K/mu o)∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda ) /lambda )
) ∗(u( i +1)ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i +1)ˆ((2+3∗
lambda ) /lambda )+A∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda )
/lambda ) ) ) ) /(2∗dx ˆ2) ) ;

%Approximation o f matrix M in space and time
% ( second s t e p in MOL)
D( i , i −1)= ( ( (K/mu o)∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /

lambda ) ) ∗(u( i ) ˆ((2+3∗ lambda ) /lambda ) )∗abs . . .
(mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /( u( i ) ˆ((2+3∗ lambda ) /

lambda )+ A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /lambda ) ) )+
e p s i l o n ) /(2∗dx ˆ2) + . . .

( ( (K/mu o)∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda ) /lambda ) )
∗(u( i −1)ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i −1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i −1)ˆ((2+3∗
lambda ) /lambda )+A∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda )
/lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2) ;

D( i , i )= −((((K/mu o)∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda )
/lambda ) ) ∗(u( i +1)ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i +1)ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda
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) /lambda ) ) ) . . .
+e p s i l o n ) /(2∗dx ˆ2) +(((K/mu o)∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+

lambda ) /lambda ) ) ∗(u( i ) ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .
abs (mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i ) ˆ((2+3∗ lambda

) /lambda )+A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /lambda ) ) )
+e p s i l o n ) /( dx ˆ2) . . .

+(((K/mu o)∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda ) /lambda ) )
∗(u( i −1)ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i −1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i −1)ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i −1) ) ˆ2∗(1−u( i −1)ˆ((2+lambda
) /lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2) ) ;

D( i , i +1)=(((K/mu o)∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /
lambda ) ) ∗(u( i ) ˆ((2+3∗ lambda ) /lambda ) ) ∗ . . .

abs ( mu∗(u( i ) ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i ) ˆ((2+3∗
lambda ) /lambda )+ A∗(1−u( i ) ) ˆ2∗(1−u( i ) ˆ((2+lambda ) /
lambda ) ) ) . . .

+e p s i l o n ) /(2∗dx ˆ2) +(((K/mu o)∗(1−u( i +1) ) ˆ2∗(1−u( i +1)
ˆ((2+lambda ) /lambda ) ) ∗(u( i +1)ˆ((2+3∗ lambda ) /lambda
) ) ∗ . . .

abs ( mu∗(u( i +1)ˆ(−( lambda+1)/lambda ) ) ) ) /(u( i +1)ˆ((2+3∗
lambda ) /lambda )+A∗(1−u( i +1) ) ˆ2∗(1−u( i +1)ˆ((2+lambda
) /lambda ) ) )+e p s i l o n ) /(2∗dx ˆ2) ;

end %f o r i = 2: I−1
end % f o r n=1:N

u p lo t0=u o ld ∗poros ;
u p l o t=u new∗poros ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Set output parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
set (gca , ’ Color ’ , [ 1 1 0 . 9 ] ) ;
plot (x , u p lot , ’−r ’ , ’ LineWidth ’ , 3 ) ;
axis ( [ 0 . 0 0 0 .4 −0.02 0 . 4 ] ) ;
grid on
clear
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