
Utrecht University

Thesis

Object Sensitive

Type Analysis for PHP

Henk Erik van der Hoek

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

Supervisors:
Utrecht University Dr. Jurriaan Hage
Utrecht University M.Sc. Ruud Koot

May 1, 2014

Contents

1 Introduction 1

2 Related work 2

2.1 Type inference for dynamic languages 2

2.1.1 Javascript . 2

2.1.2 Python . 2

2.1.3 PHP . 2

2.2 Object sensitivity . 3

3 The PHP Programming Language 4

3.1 History . 4

3.2 Language features . 4

3.2.1 Type system . 4

3.2.2 First-class functions . 4

3.2.3 Class-based object-oriented programming model 5

3.2.4 Type hinting . 5

3.2.5 References (Variable Aliases) 5

4 Data Flow Analysis 8

4.1 Basic Definitions . 9

4.2 Monotone Frameworks . 10

4.3 The Worklist Algorithm . 11

4.4 Interprocedural Analysis . 13

4.4.1 Call site sensitivity . 14

4.4.2 Object sensitivity . 14

4.5 Extended Monotone Frameworks . 15

4.6 The Worklist Algorithm for the Extended Monotone Framework . . . 18

5 Control Flow Graphs for PHP 21

5.1 Representations . 21

5.2 Core Intermediate Representation . 22

5.2.1 Abstract Grammar . 22

5.2.2 Functions . 23

6 Type Analysis 25

6.1 The Analysis Lattice . 26

6.2 The Analysis . 33

6.2.1 The Extremal Value . 33

6.2.2 The Transfer Function . 34

i

6.2.3 The Phi Function . 36

6.2.4 The Next Function . 37

7 Additional Language Features 39

7.1 Resources, String, Doubles and Arrays 39

7.2 Native Constants, Functions and Classes 39

7.3 Exceptions . 41

7.4 Abstract Garbage Collection . 41

8 Analysis Variations 42

8.1 Full-Object Sensitivity . 42

8.2 Plain-Object Sensitivity . 43

8.3 Type Sensitivity . 44

8.3.1 Choice of type . 44

9 Experimental Evaluation 46

9.1 Setting . 46

9.1.1 Implementation . 46

9.1.2 Test suite . 46

9.2 Result . 47

9.2.1 Soundness . 47

9.2.2 Comparing plain and full-object sensitivity 48

9.2.3 Comparing type sensitivity and object sensitivity 50

9.2.4 Abstract Garbage Collection 52

10 Conclusion 53

11 Future Work 54

Appendices 59

A List of Unsupported Features 59

B Control Flow of Example Program 60

C Iteration steps of the worklist algorithm 61

ii

1 Introduction

In dynamically typed languages type checking is performed at run-time. Imple-
mentations keep track of a value’s type by associating each value with a tag.
Because type checking is deferred until run-time a type error like multiplying
two Boolean values, is only discovered at run-time. At this point an implemen-
tation has two options: (1) it may silently coerce the value into a value of a
suitable type, e.g. converting Boolean truth values into integer values or (2) it
may throw a run-time exception. Most dynamically typed languages opt for the
first option. PHP for example silently coerces any value into a value of a suit-
able type when needed, only resources like file handlers or database connections
being an exception. This defeats the common good programming practice that
errors should be caught as early in the development process as possible.

Statically typed languages on the other hand perform type checking at compile
time, allowing type errors to be caught at the earliest possible stage. Static
typing enables compilers to perform optimizations and ensures the absence of
(certain classes of) type errors. However imposing a type system on a language
has disadvantages as well. First the type checker runs at compile-time and to
do so it must be conservative and reject programs that may execute correctly.
Second, programming in a language with explicit type checking is sometimes
perceived as more difficult.

We shall try to overcome the problems of dynamically typed languages and
gain the advantages of static typing by performing type inference at compile
time. Ongoing research in this field led to a broad range of algorithms for
many dynamically typed languages [17, 12, 6]. In this thesis we contribute the
following to this field of research:

• We shall introduce the notion of an Extended Monotone Framework to
cope with dynamically discovered call graph edges in a data flow analysis
(see Section 4.5).

• We shall specify a type analysis for PHP as an instance of the Extended
Monotone Framework (see Section 6.2).

• Based on work by Smaragdakis et al. [27], we shall list several object
sensitive analysis variations (see Section 8).

• We shall implement a prototype of the type analysis and experimentally
evaluate its precision and performance for different analysis variations (see
Section 9). Additionally, we shall compare the statically inferred types
of our algorithm with the types observed at run-time to establish the
soundness of our type analysis (see Section 9.2.1).

The result of our work may be beneficial to both IDE and compiler developers.
Traditionally IDE’s for PHP lack extensive support for features like on-the-fly
auto-completion, documentation hits and type related error detection because
type information is not available. In addition, type information may enable
compiler engineers to perform various optimisation schemes. For example, type
analysis plays an important role in HipHop, a PHP compiler developed by Face-
book [30].

1

2 Related work

2.1 Type inference for dynamic languages

2.1.1 Javascript

Jensen, Møller and Thiemann [17] present a static program analysis to infer de-
tailed and sound type information for Javascript programs by means of abstract
interpretation. Their analysis is both flow and context sensitive and supports
the full language, as defined in the ECMAScript standard, including its proto-
typical object model, exceptions and first-class functions. The analysis results
are used to detect programming errors and to produce type information for
program comprehension.

The algorithm is implemented as a monotone framework instance with an elabo-
rate lattice structure to model the heap. The analysis lattice is a tuple consisting
of the computed call graph and an abstract state for each program point. The
presence of first-class functions implies that the flow of abstract state infor-
mation and the call graph are mutually dependent. Because of this, the call
graph is constructed on the fly during fix point iteration. The necessary points-
to information to construct call graph edges is computed as part of the type
analysis.

The precision of the analysis is improved by employing a technique called re-
cency abstraction. An analysis which uses recency abstraction keeps track of
two abstractions for each allocation site: one for the most recently allocated
object and another summary for all older objects. The most recent abstraction
represents exactly one concrete object at run-time. This enables the analysis
to perform strong updates on this object, keeping the abstraction as precise as
possible.

2.1.2 Python

Fritz [12] presents a static program analysis to infer type information for Python
programs. Fritz focuses on balancing precision and cost with the aim to find
an analysis which is both fast and precise enough to be used within interac-
tive tools. The proposed analysis is based on data flow and is both flow and
context sensitive. The analysis is capable of dealing with first class functions
and Python’s dynamic class system by adding control flow edges during the fix
point iteration. The precision of the analysis is controlled by the parameters to
the widening operator which control (1) the maximum size of a union type, (2)
the maximum number of attributes of a class or instance and (3) the maximum
nesting depth.

2.1.3 PHP

Camphuijsen [6] presents a typing analysis for PHP as part of a tool to detect
suspicious code. The analysis is flow and context sensitive and the type system
is based on union types and polymorphic types for functions. The algorithm is
implemented as a monotone framework instance. During the execution of each

2

transfer function constraints for the PHP expression at hand are generated, and
the type of an expression is found by resolving these constraints. A widening
operator is used to force termination in the presence of infinitely nested array
structures. The type system supports polymorphic types for functions. How-
ever polymorphic type signatures are not inferred by the analysis but should
instead be supplied by the end user. First-class functions and object-oriented
programming constructs are not supported by the analysis.

Zhao et al. [30] present the design, implementation and evaluation of a PHP
compiler used by Facebook. Their experiments demonstrate that their PHP
compiler is about 5.5 × faster than the standard, interpreted PHP engine. Static
type analysis plays a central role to achieve this: if more types can be statically
inferred, the fewer checks are needed at run-time. The type inference employed
is an adaptation of the Damas-Hindley-Milner [9] algorithm. Unfortunately, the
description of the algorithm lacks detail. In our understanding the type analysis
is only performed locally: on one function body at the time. The interaction
between functions is not taken into account.

2.2 Object sensitivity

Smaragdakis, Bravenboer and Lhoták [27] describe a framework in which it is
possible to describe different variations of object sensitivity (see Section 4.4.2).
Their abstract semantics are parametrized by two functions which manipulate
contexts:

record : Label × Context→ HContext

merge : Label × HContext × Context→ Context

Every time an object is allocated, the record function is used to create a heap
context. The heap context is stored and used as an abstraction of the allocated
object. The merge function is used on every method invocation. The call site
label, the heap context of the receiver object and the current context are merged
to obtain the context in which the invoked method will be executed. The authors
show that it is possible to specify all past implementations of context sensitivity
by choosing different record and merge functions. For example the original
definition of an n-object sensitive analysis by Milanova et al [23]. is given by:

Context = Labeln

HContext = Labeln

record(l, δ) = cons(l, firstn−1(δ))

merge(l, γ, δ) = γ

Smaragdakis et al. [27] also introduce the concept of type sensitivity as an
approximation of object sensitivity. A type sensitive analysis is similar to an
object sensitive analysis but instead of allocation site labels types are used as
context elements. Their work shows that type sensitivity preserves much of the
precision of object sensitivity at considerably lower cost.

3

3 The PHP Programming Language

PHP [1] is an open source general-purpose imperative object-oriented scripting
language primarily aimed at developing dynamic web pages. The language
became popular in the late 90’s and is still widely used today.

3.1 History

The first version of PHP was written by Rasmus Lerdorf in 1994. Initially
PHP started as a set of Perl scripts to develop dynamic websites. During the
next three years the language evolved and new features like built-in support for
databases, cookies, and user defined functions where added. Around May 1998
PHP was installed on nearly 60.000 domains, which equated to approximately
1% of all Internet domains at that time. In 1998 the PHP interpreter was
completely rewritten by Andi Gutmas and Seev Suraski. Their work added
support for object-oriented programming to the language [1].

3.2 Language features

This section gives an overview of the PHP programming language and in par-
ticular those features that are relevant for type analysis.

3.2.1 Type system

PHP does not require programmers to explicitly annotate a variable with a type
declaration. Instead the type of a variable is determined by the context in which
a variable is used. If a Boolean truth value is assigned to a variable $a, the type
of $a simply becomes a Boolean. If the next statement assigns an integer value
to $a, the type of $a becomes an integer. PHP will silently coerce any value
into a value of a suitable type when needed, only resources like file handlers and
database connections being an exception.

3.2.2 First-class functions

PHP supports first-class functions since version 5.3. PHP supports the passing
of functions as parameters to other functions or methods, returning functions
as values and assigning functions to variables.

1 $greet = function($name)
2 {
3 printf("Hello %s\r\n", $name);
4 };
5

6 $greet(’World’);

4

3.2.3 Class-based object-oriented programming model

PHP supports class-based object-oriented programming since version 3. PHP 5
introduced support for private and protected members and methods, abstract
classes and methods, interfaces and exception handling. Every method call is
resolved at run-time according to the actual type of the receiver object.

1 abstract class Vehicle {
2 abstract public function drive ();
3 }
4

5 class Car extends Vehicle {
6 protected var $colour;
7

8 function __construct ($colour)
9 {

10 $this ->colour = $colour;
11 }
12

13 public function drive () {
14 echo "Drive the " . $this ->colour . " car";
15 }
16 }
17

18 $x = new Car ("Red");
19 $x->drive ();

3.2.4 Type hinting

PHP supports type hinting since version 5. Type hinting allows formal param-
eters of functions and methods to be annotated with a type. The interpreter
will force actual parameters to be instances of the declared type, otherwise a
run-time exception is thrown.

1 class Car extends Vehicle {
2 protected var $engine;
3 protected var $colour;
4

5 function __construct (Engine $engine , $colour) {
6 $this ->engine = $engine;
7 $this ->colour = $colour;
8 }
9 }

3.2.5 References (Variable Aliases)

PHP offers two different ways to assign variables. First, by default variables are
assigned by value. The entire value of the source expression is copied into the
destination variable. As a consequence of these so called copy-on-assignment
semantics the source and destination variables are independent. Changing one
of these variables will have no effect on the other. Second, PHP also allows

5

the developer to assign values by reference. The destination variable becomes
an alias for the source variable. Changing the destination variable modifies the
source variable and vice versa. To implement this behaviour the PHP interpreter
maintains a symbol table linking variable names to values 1. The unset function
is a special PHP function which removes a variable from the symbol table. The
associated value is only cleaned up if the removed symbol was the last incoming
pointer. To this end each value keeps track of its reference count. We shall
illustrate the references by means of a small example:

Listing 1: An example to illustrate references

1 $a = 10;
2 $b = $a;
3 $c = &$b;
4 unset($b);

At the end of the program in Listing 1 the symbols and values related according
to the schema in Figure 1

Symbols Values Objects

$a

$c

10

10

Figure 1: Schematic dipiction of symbols, values and objects for Listing 1

One should not confuse these variable aliases with a reference to heap allocated
objects2, these are two distinct concepts. To illustrate how references work in
relation to heap allocated objects consider the example given in Listing 2:

Listing 2: References in relation to heap allocated objects

1 class X {
2 public $a = 1;
3 public $b = 2;
4 }
5

6 $x = new X ();
7 $y = &$x;
8 $r = &$x->b;

1In the PHP interpreter these values are known ZVals.
2By means of the new keyword

6

Symbols Values Objects

$x

$y

$r

#
$a 1

$b 2

Figure 2: Schematic dipiction of symbols, values and object for Listing 2

7

4 Data Flow Analysis

Static program analysis offers compile-time techniques for predicting safe and
computable approximations to the set of values that objects of a program may
assume during its execution [25]. Because of the Halting problem precise an-
swers are not computable and in the general case it is only possible to give
approximate answers. Different approaches to program analysis are described
in literature [8, 18, 24]. The type analysis described in this thesis is based on
an approach called data flow analysis [18]. Section 4 till Section 4.4.1 are based
on the work of Nielsen, Nielsen and Hankin [25]. In these sections we shall
give an introduction to data flow analysis by repeating standard definitions and
algorithms. Section 4.4.2 gives an introduction to object sensitivity based on
previous work by Smaragdakis et al. [27].

In data flow analysis a program is viewed as a graph where nodes represent
elementary blocks and where edges indicate how control might pass between
elementary blocks. The flow graph for the gcd program is shown in Figure 3.

while [k 6= m]1 do if [k > m]2 then [k = k −m]3 else [m = m− k]4

An analysis is specified by a set of data flow equations. For each elementary
block a pair of equations is defined. One equation in each pair specifies which
information is true on the entry to a block, the second equation specifies which
information is true at the exit of a block. A forward analysis propagates in-
formation in the direction of the control flow edges and a backwards analysis
propagates information in the reverse direction.

[k 6= m]1

[k > m]2

[k = k −m]3 [m = m− k]4

yes
no

Figure 3: Flow graph for the greatest common divider program.

Throughout this document we will use P∗ to denote the program which is cur-
rently being analyzed. init : Program → Label returns the initial label of
a program, final : Program → P(Label) returns the set of final labels of a
program, labels : Program → P(Label) returns the set of labels occurring in
a program, flow : Program→ P(Label×Label) returns the intraprocedural
flow of a program.

8

4.1 Basic Definitions

A partially ordered set generalizes the concept of ordering the elements of a set.
A partially ordered set (L,v) is a set L with a partial ordering v that indicates
that one of the elements precedes the other for certain pairs of elements in the
set. The relation v is partial to reflect the fact that there is no precedence
relation between every pair of elements. In other words, it may be that for
some pairs neither of the elements precedes the other.

Definition 1. A partially ordered set (L,v) is a set L with a partial ordering
v: L× L → {true, false}. A partial ordering is a relation on a set L which is
reflexive (∀l : l v l), anti-symmetric (∀l1, l2 : l1 v l2 ∧ l2 v l1 =⇒ l1 = l2) and
transitive (∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 =⇒ l1 v l3).

Example: The power set P(L) is the set of all subsets of L, including the
empty set ∅ and L itself. A partial ordering on P(L) is for example given by
set inclusion. Formally: for every pair of subsets S1, S2 ∈ P(L):

S1 v S2 iff S1 ⊆ S2

A Hasse diagram is typically used to visualize a partially ordered set. For a
partially order set (L,v) each element of L is represented as a vertex and an
edge is drawn between x and y if x covers y. x covers y iff x @ y and there is
no z such that x @ z @ y, where l @ l′ = l v l′ ∧ l 6= l′.

Example: The Hasse diagram of (P({x, y, z}),⊆) is shown in Figure 4

{x, y, z}

{y, z} {x, z} {x, y}

{z} {y} {x}

∅

Figure 4: Hasse diagram of (P({x, y, z}),⊆).

An element l ∈ L is an upper bound of a subset Y of L if ∀l′ ∈ Y : l′ v l. The
unique least upper bound l of Y is an upper bound of Y for which holds that
l v l0 for each other upper bound l0 of Y . The least upper bound is denoted
by the join operator

⊔
: P(L) → L and often l1 t l2 is written as a shorthand

for
⊔
{l1, l2}.

9

An element l ∈ L is a lower bound of a subset Y of L if ∀l′ : l′ w l. The greatest
lower bound (denoted by the meet operator

d
) is defined analogously to the

least upper bound.

Definition 2. A complete lattice (L,v,t,u,>,⊥) is a partially ordered set
such that all subsets have least upper bounds and greatest lower bounds.

Example: Consider the power set P(L) with a partial ordering given by set
inclusion (as in Figure 4). The least and greatest elements in P(L) are given by
⊥ = ∅ and > = L and the join and meet operators are given by:

S1 t S2 = S1 ∪ S2

S1 u S2 = S1 ∩ S2

So, the complete lattice in this example is given by (P(L),⊆,∪,∩, L, ∅).
A lattice L satisfies the ascending chain condition (ACC) if each ascending chain
(l1 v l2 v l3 v ...) eventually stabilizes: ∃n : ln = ln+1. If a lattice has a finite
height it satisfies the ascending chain condition.

4.2 Monotone Frameworks

A data flow analysis is specified by a set of equations. Each elementary block
will give rise to a pair of equations: one equation will specify which information
is true on the entry of the block and one equation will specify which information
is true on the exit of a block:

Analysis◦(l) =
⊔
{Analysis•(l′) | (l′, l) ∈ F} t ιlE

where ιlE =

{
ι if l ∈ E
⊥ if l /∈ E

Analysis•(l) =fl(Analysis◦(l))

(1)

A transfer function fl : L→ L for each l ∈ labels(P∗) describes how information
will flow from the entry to the exit of an elementary block. Increasing the
information available at the entry of a block should naturally only increase (and
not decrease) the information available at the exit of a block. Formally we will
say the transfer functions are monotone, i.e. l v l′ =⇒ fl(l) v fl(l′).
Instead of specifying the equations directly, we will introduce a framework which
abstracts the commonalities and parametrizes the differences between different
analyses. Identifying a framework makes it possible to design generic algorithms
for equations solving, as we will show in Section 4.3. An instance of the frame-

10

work specifies a concrete analysis.

Definition 3. An instance of a Monotone Framework (L,F , F, E, ι, fl) consists
of:

• A complete lattice L which satisfies the ascending chain condition.

• A set F of monotone transfer functions from L to L that contains the
identity functions and that is closed under function composition.

• The finite flow F

• The finite set of extremal labels E

• The extremal value ι ∈ L

• A mapping fl from labels to transfer functions in F

A monotone framework instance gives rise to Equation 1. The analysis results
are obtained by solving these equations.

4.3 The Worklist Algorithm

In Algorithm 1 we present a generic algorithm to compute the least solution to
the data flow equations (see [25], Chapter 2.4).

The algorithm uses a worklist W to store a list consisting of tuples of program
labels. We shall denote the first and the second component of a tuple of the
worklist by l and l′ respectively. The first component l of each tuple signifies
a program label for which the data flow information has changed at its entry
(in case of a forward analysis). We shall process the tuple in the worklist by
propagating this change through the flow graph. First the transfer function is
applied to the changed value. If the effect value is more informative than the
entry value of l′ the effect value is propagated in two steps: (1) the array A is
updated and (2) the worklist W is updated by appending the outgoing edges
of the node with program label l. Finally the analysis result is obtained by
applying the transfer functions to the values in the array A.

The worklist algorithm will terminate if the following two sufficient conditions
hold. First, the transfer functions are monotone and second, the lattice satisfies
the ascending chain condition. It is possible to relax the last condition by
employing a technique called widening [7]. However, widening is out of the
scope of this thesis and we shall not rely on widening to guarantee termination.

11

Algorithm 1 Worklist Algorithm

Input: A Monotone Framework instance (L,F , F, E, ι, fl)
Output: MFP◦, MFP•

Step 1: Initialization

1 W ← nil
2 for (l, l′) ∈ F do
3 W ← cons ((l, l′),W)

4 for l ∈ F do
5 if l ∈ E then
6 A[l] ← ι
7 else
8 A[l] ← ⊥L

Step 2: Iteration

1 while W 6= nil do
2 (l, l′) ← head (W)
3 W ← tail (W)
4 if fl (A[l]) 6v A[l′] then
5 A[l′] ← A[l′] t fl (A[l])
6 for (l′, l′′) ∈ F do
7 W ← cons ((l′, l′′),W)

Step 3: Presenting the results

1 for all l do
2 MFP◦(l) ← A[l]
3 MFP•(l) ← fl (A[l])

12

4.4 Interprocedural Analysis

Almost any modern programming languages supports procedures or functions
in some form. However, naively applying intraprocedural data flow techniques
may harm the precision of the obtained results. If one procedure may be called
from a dozen different locations the following questions arise: should one join
the data flow information calculated for each calling location? And should one
propagate a single result to each calling location at the end of a procedure?

is1

[return x]2

end3

[a = call id (0)]45

[b = call id (1)]67

Figure 5: Flow graph for the example program.

We will illustrate by means of a small example that applying the intraprocedural
data flow techniques naively leads to poisoning of the analysis result. Consider
for example the example program shown below and its flow graph shown in
Figure 5.

function id (x) is1

[return x]2

end3

[a = call id (0)]45

[b = call id (1)]67

To avoid poisoning, information should only flow along valid paths. A valid
path starts at an extremal node and all procedure exits match the procedure
entries, although it is possible that some procedures are only entered, and not
yet exited. For example [4, 1, 2, 3, 5] is a valid path while [4, 1, 2, 3, 7] is not a
valid path. Consider an analysis which determines the sign of every variable.
The infinite domain of integers Z will be represented by P({-,0,+}). Clearly
the abstract value for 0 and 1 are {0} and {+}. If information is allowed to flow
only along valid paths, the analysis will conclude that the signs of a and b are
indeed {0} and {+} respectively. However, if information is also propagated
along invalid paths the analysis result will be imprecise and conclude that the
signs of a and b are both equal to {0,+}.
The precision of an analysis is improved by separating data flow information
depending on the calling context. The possibly infinite set of calling contexts
is abstracted to a finite set of abstract contexts ∆. For each abstract context

13

δ ∈ ∆ we may have a different value for the original lattice L. So the complete
lattice L̂ becomes:

L̂ = ∆→ L

The transfer functions associated with a procedure call and a procedure return
handle the flow of information between different abstracts contexts in such a
way that the information will flow along valid paths. So in a sense a context
sensitive analysis simulates the behaviour of a call stack.

Choosing different context elements δ ∈ ∆ yields different context sensitive
analyses. It is important to choose our abstract context wisely. Intuitively two
opposing forces are at work if we increase the number of context elements. If
we increase the depth of an analysis poisoning of the analysis results may be
avoided. However, if poisoning does occur anyway, a deeper analysis will be-
come less scalable since poisoning of the analysis results may quickly lead a
combinatorial explosion of data flow facts being propagated. Intuitively, con-
text partitions the data flow facts in different bins, if we increase the number
of bins the redundancy should be minimal and the data flow facts should be
separated in evenly distributed partitions. Hence, context elements should be
as little correlated as possible for an analysis with high precision [27]. We will
describe two different flavours of context sensitivity, namely call-site sensitivity
and object sensitivity.

4.4.1 Call site sensitivity

Employing call strings is the most common approach to context sensitivity. Call
strings abstract the calling context into a list of procedure call labels seen during
execution without seeing the corresponding return statement:

∆ = Label∗

During fixed point iteration new call strings are generated on-the-fly as call
labels are added to the front of the list.

Example Consider a call to procedure f made from label 7 from a context [2].
The procedure f will be analyzed in the context [7, 2].

Call strings may become infinitely long for recursive programs. As a consequence
the lattice ∆ → L fails to satisfy the ascending chain condition (ACC) even
though the lattice L might satisfy the ACC. Restricting the length of call strings
to ≤ k is one way to enforce the ACC. Hence, by employing bounded call string
we guarantee termination of the analysis at the price of lost precision.

Example: Let k = 2 and consider a call procedure f made from label 7 from
a context [7, 2]. The procedure f will be analyzed under the context [7, 7].

4.4.2 Object sensitivity

An object sensitive analysis uses object allocation site labels3, instead of call site
labels, as context elements. When a method is called the inferred facts are sepa-

3That is labels associated with the new statement

14

rated depending on the allocation site of the receiver object. For object-oriented
programs this approach gives a better precision compare to its costs [27].

1 class A {
2 function foo (Object $o) { ... }
3 }
4

5 class Client {
6 function bar(A $a1 , A $a2) {
7 ...
8 $a1 ->foo($someobj1);
9 ...

10 $a2 ->foo($someobj2);
11 ...
12 }
13 }

In this example [27] an 1-object sensitive analysis will analyze foo separately
depending on the allocation sites of the objects that $a1 and $a2 point to. It
is not clear where the objects pointed to by $a1 and $a2 are allocated, so in
this example it is not clear whether all calls to foo are handled under the same
context or separately under different contexts.

Object sensitivity is particularly well suited context abstraction for analysing
object-oriented programs. However, a object sensitive analysis has many degrees
of freedom relating to which context elements are selected upon each method
invocation or object allocation [27]. So, in this thesis we shall build upon a
framework by Smaragdakis et al. [27] to describe various forms of object sensi-
tivity. Their framework offers a clean model to design and reason about different
analysis variations. A analysis variations is given by defining the two context
manipulation functions:

record : Label × Context→ HContext

merge : Label × HContext × Context→ Context

Every time an object is allocated, the record function is used to create a heap
context. The heap context is stored and used as an abstraction of the allocated
object. The merge function is used on every method invocation. The call site
label, the heap context of the receiver object and the current context are merged
to obtain the context in which the invoked method will be executed. The type
analysis which we shall described in Section 6 uses these two context manip-
ulation functions while different implementation, and hence different forms of
object sensitivity, are given in Section 8.

4.5 Extended Monotone Frameworks

We will extend the notion of a Monotone Framework by taking context into
account. Our definition of an Extended Monotone Framework is a generalization
of an Embellished Monotone Framework as described by Nielson et al. [25] which
enables us to add control flow edges dynamically. Dynamically discovered call
graphs [29, 12] have been described before, but we present a novel framework.

15

Our framework will abstract the commonalities and parametrize the differences
between context sensitive analyses. On one side the framework is general enough
to allow dynamic control flow edges. But on the other side the framework is
restrictive and forces us to implement a flow and context sensitive analysis.

We shall first redefine the notion of a program flow and introduce the concept of
an interprocedural flow. The program flow F defines how information flows be-
tween program points. A program point is a tuple (l, δ) consisting of a program
label and a context element:

(l, δ) ∈ Point = Label × Context

Hence the program flow states how information flows between elementary blocks
and how information flows from one context to the other:

F ∈ Flow = P(Point × Point)

The interprocedural flow relates the program points of a procedure call to the
corresponding program points of a procedure definition:

IF ∈ InterFlow = P(Point × Point × Point × Point)

We shall label the four individual components of interprocedural flow call, entry,
exit and return:

((lc, δc), (ln, δn), (lx, δx), (lr, δr)) ∈ IF

We will use the interprocedural flow to let information flow only along valid
paths. In general we shall enforce the following two constraints on the interpro-
cedural flow:

Invariant 1. ∀ ((lc, δc), (ln, δn), (lx, δx), (lr, δr)) ∈ IF : (δc = δr ∧ δn = δx)

Invariant 2. ∀ ((lc, δc), (ln, δn), (lx, δx), (lr, δr)), ((l
′
c, δ
′
c), (l

′
n, δ
′
n), (l′x, δ

′
x), (l′r, δ

′
r)) ∈

IF : (lc = l′c ⇐⇒ lr = l′r)

The first invariant states that the data flow information shall flow back to the
original context after analyzing the callee and that the callee shall propagate
the information from the entry to the exit under the same context. The sec-
ond invariant states that there is a one-to-one relationship between a call label
and its accompanying return label. The second invariant also allows us to see
the interprocedural flow as a function from return label to call label: IF (lr)
returns the corresponding call label. For convenience we shall also introduce
the returnPoints function, which simply selects the fourth component of the
interprocedural flow:

returnPoints(IF) = { (lr, δr) | ((lc, δc), (ln, δn), (lx, δx), (lr, δr)) ∈ IF }

16

Definition 4. An instance of an Extended Monotone Framework is a 7-tuple
(L,F , E, ι, fl,δ, φl,δ, nextl,δ) and consists of:

• A complete lattice L which satisfies the ascending chain condition.

• A set F of monotone transfer functions from L to L that contains the
identity function and that is closed under function composition.

• The finite set of extremal labels E

• The extremal value ι ∈ L

• A mapping fl,δ from labels and context elements to transfer functions in
F

• A mapping φl,δ from labels and context elements to dynamic interprocedu-
ral flow creation functions in L to InterF low.

• A mapping nextl,δ from labels and context elements to dynamic flow cre-
ation functions in InterF low to Flow.

Notice that an instance of the Extended Monotone Framework does not require
the complete program flow up front. Instead, an instance supplies the initial
labels and a propagation function nextl,δ. In the equations and the explanation
below we shall concentrate on the case of a forward analysis. In case of a forward
analysis, an instance of the Extended Monotone Framework gives rise to five
data flow Equations (2) - (6):

A◦(l, δ) =
⊔
{ A•(l′, δ′) | ((l′, δ′), (l, δ)) ∈ F } t ιl,δE

where ιl,δE =

{
ι if l ∈ E ∧ δ = Λ

⊥ otherwise

for all (l, δ) in F

(2)

Equation (2) specifies how information flows between program points. A pro-
gram point is a tuple (l, δ) consisting of a program label and a context element.
Hence, the first equation not only specifies how information flows between ele-
mentary blocks but also how information flows from one context to the other.
The program flow F depends on Equation (5). This enables the analysis to add
control flow edges dynamically.

A•(l, δ) = fl,δ (A◦(l, δ))

for all (l, δ) in F except all (l, δ) ∈ returnPoints (IF)
(3)

Equation (3) specifies how information flows from the entry to the exit of an
elementary block. The transfer function fl,δ : L → L acts on the input based
on the program label and the current analysis context. Access to the current
analysis context is necessary in order to perform an object sensitive analysis:
the transfer function for an object allocation makes a call to the record function
which expects the current analysis context as one of its arguments.

A•(lr, δr) = flc,lr (A◦(lc, δc), A◦(lr, δr))

for all (lr, δr) ∈ returnPoints (IF)
(4)

17

Equation (4) specifies how information flows back from a procedure exit to the
caller. The binary transfer function flc,lr : L× L→ L accepts two parameters.
The first parameter describes the data flow information at the entry of a call
and the second parameter describes the data flow information at the exit of
the callee. The flc,lr function combines both lattice elements depending on the
semantics of the language.

F =
⋃

({ nexte,Λ (∅) | e ∈ E} ∪ { nextl′,δ′ (IF) | ((l, δ), (l′, δ′)) ∈ F }) (5)

Equation (5) specifies how the program flow is given by first calculating the ini-
tial edges and expanding the flow graph by means of the nextl,δ : InterFlow→
Flow function until a fix point is reached.

IF = φl,δ(A•(l, δ)) ∪ IF
for all (l, δ) in F

(6)

Equation 6 specifies how the φl,δ : L → InterFlow function adds elements to
the inter procedural flow. The Equations (2) to (6) show that the program
flow F , the inter procedural flow IF and the data flow information (A◦ and
A•) are mutually dependent. The program flow F depends on the interproce-
dural flow IF (Equation 5), the interprocedural flow IF depends on the effect
values A• (Equation 6), the effect values A• depend on the context values A◦
(Equation 3 and 4 while the context values depend on the program flow F
(Equation 2). Hence the five equations are mutually dependent.

4.6 The Worklist Algorithm for the Extended Monotone
Framework

In this section we shall present an iterative worklist algorithm for the Extended
Monotone Framework. Given an instance of the Extended Monotone Framework
Algorithm 2 computes the least fixed point solution.

The algorithm uses a worklist W to store a list consisting of tuples of program
points 4. We shall denote the first and the second component of a tuple of the
worklist by (l, δ) and (l′, δ′) respectively. The first component (l, δ) of each tuple
signifies a program point for which the data flow information has changed at its
entry (in case of a forward analysis). We shall process the tuple in the worklist
by propagating this change through the flow graph. First the transfer function
is applied to the changed value. The unary transfer function is applied in all
cases except if the program point (l, δ) corresponds to a method return block
in which case the binary transfer function is applied. If the effect value is more
informative than the entry value of (l′, δ′) the effect value is propagated in three
steps: (1) the array A is updated, (2) the intraprocedural flow IF is updated
by taking the union of the previously known intraprocedural flow and the result
of the call φl′,δ′(A[(l′, δ′)]) and (3) the worklist W is updated by appending
the result of the call nextl′,δ′(IF). Finally, the analysis result is obtained by
applying the transfer functions to the context values in the array A.

4The algorithm for the Extended Monotone Framework employs a worklist consisting of
tuples of program points, in contrast to the original worklist algorithm which employs a
worklist of program labels

18

Algorithm 2 Worklist Algorithm for the Extended Monotone Framework

Input: An Extended Monotone Framework instance
(L,F , E, ι, fl,δ, φl,δ, nextl,δ)
Output: MFP◦, MFP•

Step 1: Initialization

1 IF ← ∅
2 W ← nil
3 for l ∈ E do
4 A[l,Λ] ← ι
5 for ((l, δ), (l′, δ′)) ∈ nextl,Λ(∅) do
6 W ← cons (((l, δ), (l′, δ′)),W)

Step 2: Iteration

1 while W 6= nil do
2 ((l, δ), (l′, δ′)) ← head (W)
3 W ← tail (W)
4

5 if (l, δ) ∈ returnPoints (IF) then
6 lc ← IF (lr)
7 Effect ← flc,lr (A[lc, δ],A[l, δ])
8 else
9 Effect ← fl,δ (A[l, δ])

10

11 if Effect 6v A[l′, δ′] then
12 A[l′, δ′] ← A[l′, δ′] t Effect
13 IF ← φl′,δ′ (A[l′, δ′]) ∪ IF
14 for ((l′, δ′), (l′′, δ′′)) ∈ nextl′,δ′ (IF) do
15 W ← cons (((l′, δ′), (l′′, δ′′),W)

Step 3: Presenting the results

1 for all l and δ do
2 MFP◦(l, δ) ← A[l, δ]
3 if (l, δ) ∈ returnPoints (IF) then
4 lc ← IF (lr)
5 MFP•(l, δ) ← flc,lr (A[lc, δ],A[l, δ])
6 else
7 MFP•(l, δ) ← fl,δ (A[l, δ])

19

Note that Algorithm 2 is slightly different in case of a backwards analysis. A
binary transfer function will be used to merge two lattice elements at each
program point signifying a procedure call (not a procedure return)

20

5 Control Flow Graphs for PHP

5.1 Representations

We shall specify the type analysis over an intermediate representation (IR). The
intermediate representation captures the key operations which are necessary to
perform an object sensitive typing analysis. For example, various looping con-
structs are rewritten to an equivalent while loop and composite expressions
are lowered to a sequence of simple statements. Furthermore, since class and
function identifiers are case insensitive in PHP all class and function identifiers
are rewritten to their lowercase form. Except rewriting, the translation to the
intermediate representation also takes care of including files5. However these
simplifications do not change the expressiveness of the language. A subset of
the IR which we shall call the core IR will be specified in a formal manner in
Section 5.2. The core IR includes language features like class definitions, object
allocation, method invocation and field reads and writes. A formal description
of our type analysis on the core IR is given in Section 6 while additional language
feature like native functions, exceptions and arrays are explained in Section 7.
Figure 6 displays the relationship between PHP and the two intermediate rep-
resentations.

PHP

IR

Core
IR

Figure 6: Relationship between PHP and the two intermediate representations.

5Only if it is possible to statically determine the file name of the included file, dynamically
included files are not supported.

21

5.2 Core Intermediate Representation

5.2.1 Abstract Grammar

Grammar 1 describes the core representation. In the core representation each
elementary block is annotated with a distinct label.

n ∈ Num Integers
x, y ∈ Var Variables
c ∈ ClassName Class names
f ∈ FieldName Field names
m ∈MethodName Method names
op ∈ Operators Binary operators

P ::= C S

C ::= class c M | class c extends c M | C C

M ::= [function m (~p)]lnlx S | M M

S ::= [v = C]l

| [v = v]l

| [v = v op v]l

| S1 ; S2

| [skip]l

| if [v]l then S1 else S2

| while (true) S
| [break]l

| [continue]l

| [new c]l

| [v.f = v]l

| [v = v.f]l

| [v = v.m (~p)]lclr
| [return v]l

C ::= true | false | null | n

Grammar 1: The core IR grammar

22

5.2.2 Functions

By structural induction we shall describe several functions which operate on the
program under analysis, where the program is represented using the Core IR:

I init : Program→ P(Label)
The init function returns the initial labels of a program. For a forward analysis,
the initial labels corresponds to the elementary block in which the execution of
a program will start.

I flow : Program→ Flow
The flow function returns the intraprocedural flow of a program. Due to dy-
namic dispatch the interprocedural flow shall not be part of the flow returned
by this function. Instead the interprocedural flow will be obtained on the fly
during fixed point iteration.

I entry : Program×Method→ Label
The entry function returns the entry label ln of a method. A method is a
tuple consisting of a class name and a method name, or formally: Method =
ClassName × MethodName.

I exit : Program×Method→ Label
The exit function returns the exit label lx of a method.

I return : Program× Label→ Label
The return function returns the return label lr corresponding to a given call
label lc.

I resolve : Program×Method→Method
The resolve function resolves a dynamic method call by traversing the inheri-
tance hierarchy. We shall explain this function by means of an example. Con-
sider the PHP program given in 3 where the type analysis has determined that
the variable x on line 15 refers to an object of type Child. A call will be made to
the resolve function with as a first parameter the program under analysis and
as a second parameter the tuple (Child, foo). By traversing the inheritance hi-
erarchy the resolve will establish that the method being called is (Parent, foo).

Listing 3: Resolving method calls

1 abstract class Parent {
2 public function foo () {
3 ...
4 }
5 }
6

7 class Child extends Parent {}
8

9 $x = new Child ();
10 $x->foo ();

I className : Program× Label→ ClassName
The className function returns the class name of the allocated object given
an allocation site label.

Throughout this document we shall denote the program under analysis as P∗. As
a notational shortcut we may omit the first parameter of the functions described

23

above by annotating the function name with a star. For example, init∗ simply
returns the initial label of the current program under analysis.

24

6 Type Analysis

In this section we shall explain the type analysis operating on the core interme-
diate representation (see Section 5.2). The Type Analysis will determine:

For each program point, which types may a variable assume at the exit
from the point.

Before giving a formal specification of the analysis, lets look at an example. The
PHP program in Listing 4 constructs and evaluates an arithmetic expression
using a simple grammar consisting only of the terminal symbol Number and
the non-terminal symbol Multiply.

Listing 4: PHP program of an expression evaluator lowered to the core IR

1 class Value {
2 function evaluate () {
3 $v = $this ->v;
4 return $v;
5 }
6 }
7

8 class Multiply {
9 function evaluate () {

10 $l = $this ->l;
11 $x = $l->evaluate ();
12

13 $r = $this ->r;
14 $y = $r->evaluate ();
15

16 $z = $x * $y;
17 return $z;
18 }
19 }
20

21 $x = new Value ();
22 $v = 10;
23 $x->v = $v;
24

25 $y = new Value ();
26 $v = false;
27 $y->v = $v;
28

29 $z = new Multiply ();
30 $z->l = $x;
31 $z->r = $y;
32

33 $r = $z->evaluate ();

The type analysis should for example determine that the variable $l on line 10
is an object of type Value and that the variable $x on line 11 is an integer
while variable $y on line 14 is a Boolean. Note that in order to determine the
receiver method of the method call on line 11, line 14 and line 33 the type of the
receiver object has to be known. This behaviour, known as dynamic method

25

dispatching, results in a mutual dependency between the control flow and the
propagated type information.

In order to fullfill these requirements the type analysis shall extend the notion
of a points-to analysis. A points-to analysis computes a static approximation
of all the heap objects that a pointer variable can reference during run-time.
PHP lacks a syntactic difference between pointer variables, which point to heap
allocated objects, and regular variables. Not knowing whether a variable may be
a pointer variable our type analysis computes a static approximation of all the
values that a variable may point to during run-time. This approach is similar
to the approach taken by Jensen, Møller and Thiemann [17] to perform a type
analysis on Javascript programs.

In Section 6.1 we shall describe how an abstraction of a run-time value will
be represented using a lattice. The presence of dynamic method dispatching
in PHP implies that the flow of abstract state information and call graph in-
formation are mutually dependent. Our Extended Monotone Framework (see
Section 4.5) captures this behaviour intuitively. In Section 6.2 we shall formulate
the type analysis as an instance of the Extended Monotone Framework.

6.1 The Analysis Lattice

We shall model an abstract value by a tuple. Each component of the tuple
contains an abstraction for a specific type: integers, Booleans, objects, etc. One
may view our type analysis as an extension of a points-to analysis since one of
the tuple components contains the points-to information.

Abstract Signs. The abstract representation of integer values is given by
its sign set. Formally a numeric value is abstracted to an element of the set
P(Sign) where Sign is given by:

sign ∈ Sign

sign ::= - | 0 | +

The elements in the power set P(Sign) form a lattice by inclusion. For conve-
nience, we shall define a function, lift, which accepts a non deterministic binary
operator and lifts it to accept sets of values as it arguments:

lift : (α × β → P(γ)) → (P(α) × P(β) → P(γ))

lift(op) = λas→ λbs→
⋃
{ op(a, b) | a ∈ as, b ∈ bs }

26

We shall use this function to extend the notion of the usual arithmetic operators
to the domain of signs. For example the addition operator on signs is defined
by:

+̂ : P(Sign) × P(Sign) → P(Sign)

+̂ =let f(+ , +) = {+}
f(+ , 0) = {+}
f(+ , -) = {-, 0, +}
f(0 , +) = {+}
f(0 , 0) = {0}
f(0 , -) = {-}
f(- , +) = {-, 0, +}
f(- , 0) = {-}
f(- , -) = {-}

in lift (f)

Finally we define a function to obtain a sign given a concrete numeric value:

fromInteger : N→ Sign

fromInteger(n) =

- if n < 0

0 if n = 0

+ if n > 0

Abstract Booleans. The abstract Booleans are elements of the set P(Bool)
where Bool is given by:

b ∈ Bool

b ::= true | false

Once again, the elements in the power set P(Bool) form a lattice by inclusion.
Similarly to arithmetic operators, we shall lift the logical operators to the ab-
stract domain of Boolean sets. For example the lifted xor operator is defined
as:

x̂or : P(Bool) × P(Bool) → P(Bool)

x̂or = lift(λa→ λb→ {a xor b})

Abstract Addresses. A variable may refer to heap allocated data. Every time
an object is allocated, the record function is used to create a heap context (see
Section 4.4.2). The analysis will keep track of an abstract object for each heap
context. So we shall use heap context elements as abstract addresses. Formally,
abstract addresses are elements of the set P(HContext) where HContext
depends on the chosen analysis variation (see Section 8). The elements in the
power set P(HContext) form a lattice by inclusion.

The definition of HContext depends on the chosen analysis variations but
we shall require the existence of a complete function label : HContext →
Label from heap context to allocation site label. In theory, this additional
constraint reduces the degrees of freedom one may have in choosing the record

27

and merge functions. However, in practice this constraint does not prevent us
from specifying all of the common analysis variations.

Abstract Values. An abstract value is represented using a tuple where each
component describes a different type of value. We will define Null to be equal
to {>,⊥}. Formally the abstract value lattice is the Cartesian product of its
components:

v ∈ Value = P(HContext) × P(Bool) × P(Sign) × Null

Example. Assume that allocation site labels are used as a heap context el-
ements. An abstract value of ({[7]},⊥,⊥,>) then signifies that the concrete
value may either be an abstract object with a heap context of [7] or the null
value.

We define an auxiliary function which injects individual components, like a sign
set, into the abstract value lattice.

injectP(HContext) : P(HContext)→ Value

injectP(HContext) (l) = (l,⊥,⊥,⊥)

injectP(Bool) : P(Bool)→ Value

injectP(Bool) (l) = (⊥, l,⊥,⊥)

injectP(Sign) : P(Sign)→ Value

injectP(Sign) (l) = (⊥,⊥, l,⊥)

injectNull : Null→ Value

injectNull (l) = (⊥,⊥,⊥, l)

PHP silently coerces any value into a value of a suitable type when needed. The
type analysis needs to mimic this behaviour. Therefore we shall define a coerce
function. The coerce function takes an abstract value and coerces it into a value
of one of its components:

coerceP(HContext) : Value→ P(HContext)

coerceP(HContext) (γs, bs, ss, n) = γs

coerceP(Bool) : Value→ P(Bool)

coerceP(Bool) (γs, bs, ss, n) =

let signToBool (-) = true
signToBool (0) = false
signToBool (+) = true

nullToBool (>) = {false}
nullToBool (⊥) = ∅

in { true | γ ∈ γs } ∪ bs ∪ { signToBool(s) | s ∈ ss } ∪ nullToBool(u)

28

coerceP(Sign) : Value→ P(Sign)

coerceP(Sign) (γs, bs, ss, n) =

let boolToSign (true) = +
boolToSign (false) = 0

nullToSign (>) = {0}
nullToSign (⊥) = ∅

in { + | γ ∈ γs } ∪ { boolToSign (b) | b ∈ bs} ∪ ss ∪ nullTosign(u)

coerceNull : Value→ Null

coerceNull (γs, bs, ss, n) = n

Example Consider the abstract value v = (⊥,⊥, {+},⊥) which signifies a pos-
itive integer value. The coerceP(Bool) function coerces this abstract value into
an abstract Boolean set, i.e. coerceP(Bool)(v) equals {true}.

Using the inject and coerce functions we are able to lift operators like +̂ and
x̂or to abstract values. The typical pattern is to coerce the arguments, apply
the unlifted operator and inject the result back into an abstract value. For
example, the lifted +̃ and x̃or operators are defined by:

+̃ : Value×Value→ Value

a +̃ b = injectP(Sign) (coerceP(Sign) (a) +̂ coerceP(Sign) (b))

x̃or : Value×Value→ Value

a x̃or b = injectP(Bool) (coerceP(Bool) (a) x̂or coerceP(Bool) (b))

In the end a type analysis should infer a type set for each variable, not an
abstract value. However it is straight forward to obtain a type set given an
abstract value. We shall view a type to be the set of class names augmented
with primitive types. Formally we shall write:

τ ∈ Type = ClassName∗ + { Integer, Boolean, Null }

Now we are ready to define a function from an abstract value to a type set. Note
that due to the dynamic nature of PHP it is not always possible to infer a single
type. Consequently, the type function results a type set and not a single type.
The className∗ and label functions are used to translate a heap context to a
class name. The className∗ function is given in Section 5.2.2 and the label

29

function depends on the chosen analysis variation and is given in Section 8.

type : Value→ P(Type)

type (γs, bs, ss, n) =

let typeAddress (γs) = { className∗(label(γ)) | γ ∈ γs }
typeBoolean (bs) = { Boolean | b ∈ bs }
typeSign (ss) = { Integer | s ∈ ss }
typeNull (>) = { Null }
typeNull (⊥) = ∅

in
⋃
{ typeAddress(γs), typeBoolean(bs), typeSign(ss), typeNull(n) }

Example Consider the abstract value v = (⊥, {true}, {+},⊥) which signifies
that the corresponding concrete value is either a positive integer or a Boolean
true value. Applying the type function to this value results in a union type:
{ Boolean, Integer }.
Abstract states. The analysis will operate on abstract states consisting of an
abstract stack component and an abstract heap component. The abstract stack
maps identifiers to abstract values while the abstract heap maps a tuple of a
heap context and a field name to abstract values. Note that mapping identifiers
directly to abstract values lacks the expressiveness to model references. Instead,
analyzing references is listed as future work in Section 11.

First we shall define the abstract stack. An identifier may be an ordinary vari-
able, a method parameter or one of the two special identifiers. The two special
identifiers (R, T) are used to signify the return value of a method invocation
and the this variable which references the receiver object.

z ∈ Ident = Var∗ + Z + {R,T}

The parameter identifiers are modelled by Z. On each method invocation the
actual parameters are translated to numeric parameter identifiers based on their
position in the source code. Subsequently on each method entry the numeric
parameter identifiers are translated to formal parameters. Since Var∗ is finite
and the number of parameters in a method call is finite it is clear that Ident is
always finite. Now we can view the abstract stack as an element of:

S ∈ Stack = Ident 7→ Value

S ::= [] | S[z 7→ v]

Formally, S is a list but we will treat the abstract stack as a finite mapping.
Thus, we write dom(S) for {z | S contains[z 7→ ...]}. If z ∈ dom(S) we shall
write S(z) = v for the rightmost occurrence of z in S.

The other component of the abstract state is the abstract heap H. The abstract
heap specifies a set of links between a heap context and an abstract value.
Multiple links are distinguished by a field name.

H ∈ Heap = (HContext × FieldName∗) 7→ Value

H ::= [] | H[(γ, f) 7→ v]

30

Again, we shall assume the usual notational shortcuts and view H(γ, f) = v
as the rightmost occurrence of (γ, f) in H. We call a tuple consisting of an
abstract stack and an abstract heap the abstract state. Formally we write:

σ ∈ State = Stack × Heap

We shall extend the State with a least element ⊥ to capture the case that
an elementary block is not reachable, for which we write State⊥. The partial
ordering v on State⊥ is defined by:

∀σ ∈ State⊥ : ⊥ v σ

The transfer functions shall operate on abstract states using nine state manip-
ulation functions which act as an interface. The first five (empty, read, write,
readF ield and writeF ield) are used for the intraprocedural fragment of the
transfer function while the last four (toParameters, toV ariables, clearStack
and clearHeap) are used for the interprocedural fragment of the transfer func-
tion. The empty function simply returns a state consisting of an empty stack
and an empty heap:

empty : State

empty = ([], [])

The read function reads an abstract value from the abstract stack given an
identifier. If the identifier is not in the domain of the abstract stack, we shall
return an abstract null value instead.

read : Ident × State → Value

read (z, (S,H)) =

{
S(z) if z ∈ dom(S)

injectNull (>) otherwise

The write function takes an identifier and an abstract value and creates a bind-
ing on the abstract stack:

write : Ident × Value × State → State

write (z, v, (S,H)) = (S[z 7→ v], H)

The readF ield function returns an abstract value given an identifier and a field
name. First an abstract value is read from the stack, given the identifier. This
abstract value may refer to multiple heap context elements. For each heap
context element an abstract value is read from the heap using the auxiliary
function readHeap. The return value of the readF ield function is obtained by
joining these abstract values:

readF ield : Ident × FieldName × State → Value

readF ield (z, f, (S,H)) =

let γs = coerceP(HContext) (read (z, (S,H)))

in

{⊔
{ readHeap (γ, f,H) | γ ∈ γs} if γs 6= ∅

injectNull (>) otherwise

31

The readHeap function reads an abstract value from the heap given a heap
context, γ, and a field name, f . If the tuple (γ, f) is not in the domain of the
abstract heap, the abstract null value is returned instead:

readHeap : HContext × FieldName × Heap → Value

readHeap (γ, f,H) =

{
H((γ, f)) if (γ, f) ∈ dom(H)

injectNull (>) otherwise

The writeF ield function updates the abstract state to reflect a field assignment.
First the abstract value corresponding to the identifier z is read from the stack.
This abstract value may refer to multiple heap context elements. For each heap
context element the abstract heap is updated:

writeF ield : Ident × FieldName × Value × State → State

writeF ield (z, f, v, (S,H)) =

let γs = coerceP(HContext) (read (z, (S,H)))
H ′ =

⊔
{writeHeap(γ, f, v,H) | γ ∈ γs})

in (S,H ′)

The auxiliary writeHeap writes an abstract value to the heap. If the heap
already contains a value for the given pair (γ, f) the previous and the new value
are joined together:

writeHeap : HContext × FieldName × Value × Heap → Heap

writeHeap (γ, f, v,H) =

{
H[(γ, f) 7→ H((γ, f)) t v] if (γ, f) ∈ dom(H)

H[(γ, f) 7→ v] otherwise

The next four functions are used to implement the interprocedural fragment
of the transfer function. Parameter passing is implemented by means of the
toParameters and toV ariables functions and the clearStack and clearHeap
function are used to implement the return of a procedure call.

The toParameters function translates the variables to parameter positions. For
each variable in ~p a new binding is created between the parameter position and
the value of pi in the abstract stack.

toParameters : P(Var∗) × State → State

toParameters (~p, (S,H)) = (
⊔
{ [i 7→ S(pi)] | pi ∈ ~p }, H)

The toV ariables function translates the parameter position to variables. For
each variable in ~p a new binding is created between the variable pi and the value
corresponding to the parameter position i in the abstract stack. Additionally,
the special this identifier T is propagated.

toV ariables : P(Var∗) × State → State

toV ariables (~p, (S,H)) = (
⊔
{ [pi 7→ S(i)] | pi ∈ ~p } t [T 7→ S(T)], H)

The clearStack and the clearHeap functions clear the stack and heap compo-

32

nents of the abstract state:

clearStack : State → State

clearStack ((S,H)) = (⊥, H)

clearHeap : State → State

clearHeap ((S,H)) = (S,⊥)

6.2 The Analysis

We shall specify the analysis as an instance of the Extended Monotone Frame-
work (State⊥,FState⊥ , init(P∗), ιTA, fTAl,δ , φTAl,δ , nextTAl,δ). This instance gives
rise to the following set of equations:

A◦(l, δ) =
⊔
{ A•(l′, δ′) | ((l′, δ′), (l, δ)) ∈ F } t ιl,δE

where ιl,δE =

{
ιTA if l ∈ E ∧ δ = Λ

⊥ otherwise

for all (l, δ) in F

A•(l, δ) = fTAl,δ (A◦(l, δ))

for all (l, δ) in F except all (lr, δr) in IF

A•(lr, δr) = fTAlc,lr (A◦(lc, δc), A◦(lr, δr))

for all (lr, δr) in IF

F =
⋃
{ nextTAe,Λ (∅) | e ∈ E} ∪ { nextTAl′,δ′ (IF) | ((l, δ), (l′, δ′)) ∈ F }

IF = φTAl,δ (A•(l, δ)) ∪ IF
for all (l, δ) in F

In the remainder of the section we shall explain the implementation of the
extremal value ιTA, the transfer functions fTAl,δ and fTAlc,lr , the dynamic flow

function nextTAl,δ and the dynamic interprocedural flow function φl,δ.

6.2.1 The Extremal Value ιTA

The extremal value ιTA specifies the initial analysis information. Initially, we
create an empty abstract state. This indicates that initially the extremal labels
are reachable.

ιTA : State⊥

ιTA = empty

33

6.2.2 The fTAl,δ Function

The intraprocedural fragment. The transfer function fTAl,δ : State⊥ →
State⊥ specifies how flow and context sensitive type information flows from
the entry to the exit of an elementary block. The behaviour of the transfer
function is conditional, the data flow information should only be propagated
if the elementary block is reachable. A elementary block is reachable if the
abstract state is unequal to the least element, hence:

fTAl,δ (σ) =

{
⊥ if σ = ⊥
ψl,δ (σ) otherwise

If the elementary block is reachable the transfer function delegates control to
the ψl,δ : State→ State function. The ψl,δ function is restricted to only accept
and return reachable states. Its implementation depends on the various forms
of elementary blocks which we shall discuss next.

Transfer function for [skip]l and [b]l. Boolean tests and skip nodes do
not modify the abstract state, hence we simply specify ψl,δ to be the identify
function.

ψl,δ (σ) = σ

Transfer function for [v = b]l where b is a Boolean value. Assigning a Boolean
value to a variable results in converting the Boolean value into an abstract value.
A binding between this abstract value and the identifier v is then created in the
abstract state, σ.

ψl,δ (σ) = let value = injectP(Bool) ({b})
in write (v, value, σ)

Transfer function for [v = n]l where n is an integer value. Assigning an
integer value to a variable results in converting the integer value into an abstract
value using the injectP(Sign) and fromInteger functions:

ψl,δ (σ) = let value = injectP(Sign) (fromInteger (n))

in write (v, value, σ)

Transfer function for [v = v′]l where v′ is a variable. An assignment will be
processed by reading the abstract value for the identifier v′ and writing it to v:

ψl,δ (σ) = let value = read (v′, σ)

in write (v, value, σ)

Transfer function for [v = v′ � v′′]l. The transfer function for a binary
operator first reads the arguments v′ and v′′ from the abstract state σ. The
resulting two abstract values are then applied to the lifted operator �̃. Finally,
the result is written back to the abstract state.

ψl,δ (σ) = let value = read (v′, σ) �̃ read (v′′, σ)

in write (v, value, σ)

34

Transfer function for [v = new C]l. The transfer function for an object
allocation uses the record function to create a new heap context, γ. The value
of γ depends on the allocation site label l and the current analysis context δ. We
can obtain different implementations of an object sensitive analysis by choosing
different record and merge functions. We will describe several variations in
Section 8.

ψl,δ (σ) = let γ = record (l, δ)
value = injectP(HContext) ({γ})

in write (v, value, σ)

Transfer function for [v.f = v′]l. A value is written to a field by reading the
abstract value corresponding to the identifier v′ from the abstract state σ. A
binding between this abstract value and the identifier v and selector f is then
created in the abstract state:

ψl,δ (σ) = let value = read(v′, σ)

in writeF ield (v, f, value, σ)

Transfer function for [v = v′.f]l. A value is read from a field by reading the
abstract value corresponding to v′.f and writing it to the identifier v:

ψl,δ (σ) = let value = readF ield(v′, f, σ)

in write (v, value, σ)

The interprocedural fragment. Only the intraprocedural transfer functions
remain to be specified. These transfer function specify how the abstract state
information flows between method calls.

Transfer function for [v = v′.method (~p)]lc . The transfer function for a
method call implements a part of the parameter passing semantics. The trans-
fer function for a method call translates the identifiers corresponding to actual
parameters to parameter position by means of the toParameters function. Sub-
sequently, the transfer function for a method entry translates the parameter po-
sitions to the formal parameter identifiers using the toV ariables function. The
special this identifier, T, is used to make the receiver object available in the
callee.

ψlc,δ (σ) = let value = read(v′, σ)
σ′ = toParameters (~p, σ)

in write(T, value, σ′)

Transfer function for [C.method(~p)]ln . The transfer function for a method
entry implements the second half of the parameter passing semantics by trans-
lating the parameter positions to the formal parameter identifiers using the
toV ariables function.

ψln,δ (σ) = toV ariables (~p, σ)

Transfer function for [return v]l. The transfer function for return statements
creates a binding between the special return identifier R and the abstract value

35

corresponding to the identifier v. The transfer function for a method return will
use the special return identifier again to retrieve the return value.

ψl,δ (σ) = let value = read(v, σ)

in write (R, value, σ)

Transfer function for [C.method(~p)]lx . A method exit does not modify the
abstract state, hence we specify fTAlx to be the identify function:

ψlx,δ (σ) = σ

Transfer function for [v = v′.method (~p)]lr . A binary transfer function is
used to propagate information to the exit of a method return block. The first
parameter of fTAlc,lr : State⊥ → State⊥ → State⊥ describes the data flow
information at the entry of the method call and the second parameter describes
the data flow information at the entry of the method return, which equals to
the information at the exit of the method body. Similarly to the unary transfer
function, we only wish to propagate the data flow information if both the method
call and the method return elementary blocks are reachable:

fTAlc,lr (σ, σ′) =

{
⊥ if σ = ⊥ or σ′ = ⊥
ψlc,lr (σ, σ′) otherwise

The ψlr,lr : State→ State→ State is a binary function operating on abstract
states. It propagates the stack information from the first parameter and the
heap information and the return value from the second parameter:

ψlc,lr (σ, σ′) = let value = read (R, σ′)
σ′′ = clearHeap (σ) t clearStack (σ′)

in write (v, value, σ′′)

6.2.3 The φTAl,δ Function

Dynamic interprocedural flow function for [v = v′.m (~p)]lc . Upon each
method call new edges may be added to the interprocedural flow, IF . Each
edge in the interprocedural flow signifies a possible method invocation which
may occur in the program under analysis. Each interprocedural flow edge is
specified by a tuple consisting of four program points which signify: the call
position of the caller, the entry of the callee, the exit of the callee and the
return position of the caller.

The φTAlc,δ function proceeds by retrieving the set of heap context elements to
which the identifier v′ may point. An edge will be added to the interprocedural
flow for each heap context element. Dynamic dispatch is resolved at run-time,
so depending on the heap context element different method definitions may be
called. The resolve∗ function is used to traverse the inheritance hierarchy and
locate the targeted method definition. The merge function combines the call
label lc, a heap context element γ and the current analysis context δ and returns

36

the context under which the callee will be analyzed:

φTAlc,δ (σ) = let γs = coerceP(HContext) (read (v′, σ))
edge(γ) = let δ′ = merge (lc, γ, δ)

τ = className∗ (label (γ))
mr = resolve∗ ((τ,m))
ln = entry∗ (mr)
lx = exit∗ (mr)
lr = return∗ (lc)

in ((lc, δ), (ln, δ
′), (lx, δ

′), (lr, δ))

in { edge (γ) | γ ∈ γs }

The edge function depends on a couple of previously defined functions. In
Section 6.1 we required the existence of a complete function label to map a
heap context to an allocation site label. The className∗, resolve∗, entry∗,
exit∗ and return∗ functions give information about the program under analysis
and are defined in Section 5.2.2.

Dynamic interprocedural flow function for any other elementary block.
Any other elementary block does not add interprocedural flow edges, hence we
simply specify φTAlδ to return the empty set.

φTAl,δ (σ) = ∅

6.2.4 The nextTAl,δ Function

The nextTAl,δ function enables the Extended Monotone Framework to incorporate
control flow edges which are due to the dynamically discovered call edges. The
nextTAl,δ function will behave differently depending on the elementary block that
corresponds to l. Three different cases are distinguished: (1) a method call, (2)
a method return and (3) any other elementary block.

Next function for [v = v′.method (~p)]lc . Information needs to propagate
from the caller to the entry of the callee. The interprocedural flow, IF , tells
us to which callee and to which context the data flow information needs to
propagate. Simultaneously, information needs to propagate back from the callee
to the caller:

nextlc,δ (IF) = {((lc, δ), (ln, δ′)) | ((lc, δ), (ln, δ′), (lx, δ′), (lr, δ)) ∈ IF }
∪ {((lx, δ′), (lr, δ)) | ((lc, δ), (ln, δ′), (lx, δ′), (lr, δ)) ∈ IF }

It is necessary to add the return edge immediately since the propagation from the
entry to the exit of the callee may hold if no new information becomes available.
We shall illustrate this by means of an example. Consider the program given
below:

function id (x) is1

[return x]2

end3

[a = call id (true)]45
[b = call id (true)]67

The id function is called twice with identical parameters. On the first call, the
data flow information will be propagated through the function body until the

37

end elementary block and back to the caller. However, on the second call no
new information becomes available and hence the data flow propagation will
hold and not flow back to the caller if the return edge is not added immediately.

Next function for [endlx]. Information needs to propagate back to the caller
at the end of a method body. To avoid poisoning information should only flow
back to the original context under which the caller was being analyzed:

nextlx,δ (IF) = { ((lx, δ), (lr, δ
′)) | ((lc, δ′), (ln, δ), (lx, δ), (lr, δ′)) ∈ IF }

Example Consider a method call [a = b.foo()]lclr , which is being analyzed under
context δa, resulting in the method X.foo being analyzed under δb. At the end
of the method body of X.foo the information will be propagated to lr under
the original context δa.

Next function for any other elementary block. If l corresponds to any
other elementary block the information will be propagated in the usual manner.
The information will flow to the adjacent elementary blocks as given by flow∗
under the same context:

nextl,δ (IF) = { ((l, δ), (l′, δ)) | (l, l′) ∈ flow∗ }

Note that the usage of flow∗, and not flowR∗ , implies that the type analysis is
a forward analysis.

38

7 Additional Language Features

In this section we shall briefly describe additional language features supported
by our type analysis. We implemented all the features described in this section.

7.1 Resources, String, Doubles and Arrays

In Section 6.1 we kept the definition on an abstract value deliberately incom-
plete. Space constraints prevented us from including other value types like
strings, doubles, resources and arrays. We shall briefly explain how these values
types are implemented. Strings are represented using a lattice which either ⊥,
some concrete value or >. The Hasse diagram is shown below:

>

”foo” ”bar”...

⊥

Figure 7: Hasse diagram of the string lattice

Doubles are represented using their sign set analogous to integer. Resources are
a value type specific for PHP. They are commonly used as a reference to a file
or a database connection. The set of distinct resource types is finite so it is a
natural choice to model resources as a power set lattice. Modelling arrays is
slightly more complicated. To this end the heap lattice is redefined as:

H ∈ Heap = (HContext × Index) 7→ Value

Where an index is either a field name or one of the two special index fields K
and V which represent the array key and value respectively:

Index = FieldName∗ + {K,V}

An advantage of this approach is the possibility to model infinite array struc-
tures. Furthermore, the coercion rules are extended to include these additional
value types.

7.2 Native Constants, Functions and Classes

The PHP programming language comes with a standard library of native func-
tion and classes. In addition, the PHP language lends its popularity to the
numerous extensions6 which allows a PHP developer to quickly glue various
software systems together. So, support for native functions and classes is neces-
sary to support any real world PHP application. Our type analysis deals with
native functions and classes by assigning a type signature to them. We shall
illustrate the semantics of our type signatures by means of an example. The

6http://www.php.net/manual/en/extensions.membership.php

39

fgetc function reads a single character from a file. A file resource is expected
as the first and only argument. The return value is either a string containing
the read character or the Boolean value false if the EOF 7 is encountered. The
type signature reflects this:

fgetc :: {resource(file)} → {string, false}

Furthermore, the type signatures are flexible enough to deal with parametric
polymorphism. The array search function for example returns the key for a
needle if it is found in the input array:

array search :: {β} → {array({α} ⇒ {β})} → {boolean}?→ {α, false}

In PHP an array key may either be an integer or a string. The type signature
of the array search function expects a needle of type β and an array with a
key of type α and a value of type β and returns the key of type α corresponding
to the needle if present in the array or false otherwise. The third parameter of
the array search function is optional. This is reflected in the type signature
by a question mark.

Native classes are handled by assigning a class signature to each native class. A
class signature consists of three sections to define constants, public and protected
fields and public and protected methods. We shall illustrate the semantics of a
class signature by means of an example

ziparchive = {
[constants]

OVERWRITE :: integer

CREATE :: integer

...

[fields]

status :: integer

comment :: string

...

[methods]

addfile :: {string} → {string}?→ {integer}?→ {integer}?→ {boolean}
close :: {boolean}
open :: {string} → {integer}?→ {integer, boolean}
...

}

Method signatures are similar to function signatures.

7End Of File

40

7.3 Exceptions

Exception analysis is mutually recursive with the points-to fragment of our
type analysis: handling exceptions causes exceptional control flow which makes
more code reachable while points to information determines which objects are
thrown at a throw statement. Different approaches to exception analysis are
described in literature. Some rely on a conservative approximation of exception
handling [21, 20] by modelling exception throwing as an assignment to one
single global variable for every thrown exception in the program. This special
variable is then subsequently read at each catch clause. Although sound this
approach is highly imprecise. Precise exception handling is implemented in
the DOOP framework [5]. The exception analysis logic fully models the Java
semantics for exceptions, Java being their language under analysis. In this
scheme imprecision is only introduced due to the static approximation of objects
in the underlining points-to analysis. However due to the precise representation
of exception objects this approach has a higher space and time cost. Exception
handling in our type analysis takes the same approach as the DOOP framework.

7.4 Abstract Garbage Collection

The idea of abstract garbage collection [22] is similar to its concrete counterpart.
Concrete garbage collection reallocates memory as fresh if a heap allocated
object is not referenced any longer, either by another object on the heap or
a variable on the stack. Abstract garbage collection however may work a bit
more aggressively by reallocating a heap allocated abstract object as fresh if it is
not referenced by another object on the heap or by a (stack) variable currently
in scope. It may seem counter intuitive to be more aggressive in the abstract
garbage collector. However, this is possible because the analysis maintains an
abstract representation of the heap for each program point where the program
at run-time only maintains one concrete heap.

Abstract garbage collection is performed by the transfer function responsible
for handling a method entry. So in contrast to concrete garbage collection,
which may happen at any point while executing the program, abstract garbage
collection is only performed at a specific point.

41

8 Analysis Variations

In Section 6 we have specified the type analysis but until now we have refrained
from specifying the record, merge and label functions. In this section we shall
define multiple definitions of the record, merge and label functions which char-
acterize different variations of an object sensitive analysis. This approach is
due to Smaragdakis et al. [27] and we shall use their terminology to discuss the
following kinds of sensitivity: full-object, plain-object and type sensitivity.

8.1 Full-Object Sensitivity

A full-object sensitive analysis will analyze every dispatched method under the
heap context associated with the receiver object. Since the heap context consists
of allocation site labels, these labels are effectually used to split the data flow
facts to differentiate between multiple method invocations. Milanova [23] was
the first to use allocation site labels for this purpose. We can specify a concrete
full-object sensitive analysis by defining the record, merge and label functions
as follow:

Context = Labeln

HContext = Labelm

record(l, δ) = firstm(cons(l, δ))

merge(l, γ, δ) = firstn(γ)

label(γ) = car(γ)

The context under which a method will be analyzed depends on the heap context
of the receiver object. The heap context of the receiver object depends on (1)
its allocation site label and (2) the context under which the receiver object was
allocated. So, the context under which a method is analyzed depends on:

• the allocation site label of the receiver,

• the allocation site label of the object that allocated the receiver,

• the allocation site label of the object that allocated the object that allo-
cated the receiver

• and so on.

In order to make the set of heap contexts finite we limit the number of allocation
site labels in a context element to a fixed number (in practice 2).

Naming conventions. We shall introduce an abbreviation for common anal-
ysis variations. For a full-object sensitive analysis with a regular context depth
of n and a heap context depth of m+ 1 we shall write nfull+mH. This off-by-
one notation may seem odd, but it is self-evident that at least one allocation
site label will be used to represent an abstraction of a heap object. Since only
context depths of two and lower are within bounds of present day technology
the following analysis variations are of particular interest: 1full, 1full+1H and
2full+1H.

42

The label function is not a context manipulation function but rather a necessary
artefact of our type analysis which requires the existence of a complete function
from heap context to allocation site label.

8.2 Plain-Object Sensitivity

An object sensitive analysis uses a heap context as an abstraction for an object.
In a full-object sensitive analysis the context under which a method will be
analyzed depends on the full heap context of the receiver object. In contrast,
a plain-object sensitive analysis combines both the heap context of the receiver
object and the regular context of the caller:

Context = Labeln

HContext = Labelm

record(l, δ) = firstm(cons(l, δ))

merge(l, γ, δ) = firstn(cons(car(γ), δ))

label(γ) = car(γ)

Both full-object and plain-object sensitive analysis store allocation site labels as
context elements using the record function. The distinction lies in the merge
function. The merge function decides which elements to keep when a method
is invoked: only keep the heap context elements of the receiver object (as in
full-object sensitivity) or merge the heap context of the receiver object with the
regular context of the caller (as in plain-object sensitivity). Paddle [20] is an
example of a framework which uses plain-object sensitivity.

Analysis. We shall compare a full-object with a plain-object sensitive analysis,
both of context depth two. On one hand a full-object sensitive analysis will
analyse each method using as a context the allocation site label of the receiver
object and the allocation site label of the receiver object allocator. On the
other hand a plain-object sensitive analysis will analyze each method using
as a context the allocation site label of the receiver object and the allocation
site label of the caller object. But which approach gives the best precision?
Theoretically one may argue that a full-object sensitive analysis will outperform
a plain-object sensitive analysis. To avoid poisoning context elements should
be as little correlated as possible. However when merging the allocation site
label of the receiver object with the allocation site label of the caller object
the two labels are likely to be correlated. For example the receiver and the
caller object are exactly the same if an object calls a method on itself. Based
on this observation we expect a full-object sensitive analysis to outperform a
plain-object sensitive analysis of the same context depth in terms of precision.

Naming conventions. For a plain-object sensitive analysis with a regular
context depth of n and a heap context depth of m+1 we shall write nplain+mH.
Note that 1plain and 1plain+1H coincides with respectively 1full and 1full+1H,
so we shall simply denote these analysis variations with 1obj and 1obj+1H.

43

8.3 Type Sensitivity

As stated in Section 4.4 the precision of an analysis is improved by separating
data flow information depending on the calling context. We abstracted the set
of possibly infinite calling contexts to a finite set of abstract contexts δ. As
specified above, the abstract contexts in an object sensitive analysis are lists
of allocation site labels. Since a typical program has many allocation sites this
quickly leads to a combinatorial explosion of abstract contexts. The idea behind
a type sensitive analysis is to improve scalability by using a coarser approxima-
tion of objects: instead of allocation site labels we approximate an object by its
type. Hence a type sensitive analysis is similar to an object sensitive analysis:
whereas an object sensitive analysis uses allocation site labels as context ele-
ments, a type sensitive analysis uses types as context elements. In the remainder
of the section we shall describe two variations on this theme.

A 2-type-sensitive analysis employs a regular context which consists of two types.
This reduces the number of possible context elements as the number of types in a
program is typically smaller than the number of allocation sites. For a 2type+1H
analysis we shall define the following context manipulation functions:

Context = ClassName2

HContext = Label×ClassName

record(l, δ = [C1, C2]) = [l, C1]

merge(l, γ = [l′, C], δ) = [T (l′), C]

label(γ = [l, C]) = l

One may notice that the merge function only uses the heap context of the re-
ceiver object and ignores the context of the caller object. In this sense the
2type+1H analysis is a variation of the 2full+1H analysis, and not of the
2plain+1H analysis. We shall refrain from specifying the auxiliary function
T : Label→ ClassName until the next section.

Another choice of context is to replace only one allocation site label with a type.
This leads to a 1type1obj+1H analysis:

Context = Label×ClassName

HContext = Label2

record(l, δ = [l′, C2]) = [l, l′]

merge(l, γ = [l1, l2], δ) = [l1, T (l2)]

label(γ = [l1, l2]) = l1

This choice of context is interesting, because we expect the number of context
elements to be smaller compared to number of context elements in a 2full+1H
analysis, but greater than the number of context elements in a 2type+1H anal-
ysis.

8.3.1 Choice of type

In Section 4.4 we explained, as a rule of thumb, that context elements should
be as little correlated as possible. In this section we shall discuss which type

44

will constitute a good choice with this rule in mind. Consider an allocation
statement [obj = new A]l inside a class C. Given the label l the function T
may return:

• The dynamic type A of the allocated object

• An upper bound C on the dynamic type of the allocator object. We can
only establish an upper bound on the dynamic type because a subclass
may choose not to override the method containing the allocation site.

We shall explain why returning the dynamic type A of the allocated object is
not a good design choice. For context to do its work well, the elements should
be as little correlated to each other as possible. One may view flow sensitivity
as an instance of context sensitivity where the analysis computes a result for
each program point (l, δ). Hence, to obtain a scalable analysis the elements of
the context δ should be as little correlated to the program label l. However, the
dynamic type A of the allocated object is closely related to the program label
l: the fact that we are analyzing a method, let say X :: foo, already gives us an
upper bound on the dynamic type of the receiver object: it should either be X
or any subclass which does not override the foo method.

So the function T should return the upper bound C on the dynamic type of the
allocator object. This type is less correlated to the program label l and hence
improves the scalability of our analysis.

45

9 Experimental Evaluation

9.1 Setting

We have implemented and evaluated several of the analysis variations, as de-
scribed in Section 8, up to a context depth of 2. In this Section we aim to
answer the following questions:

• Is our implementation sound with respect to the observed types during
sample runs of a test suite?

• Does full object sensitivity achieve a better precision than plain object
sensitivity for a context depth of 2?

• Does type sensitivity achieve a better performance than object sensitivity
while maintaining most of its precision?

• Does enabling abstract garbage collection result in a better performance?

The experiments were performed on a machine with a Intel Core 2 Duo 3.0Ghz
processor with 3.2GiB of internal memory running Ubuntu 12.04.

9.1.1 Implementation

The implementation consists of two distinct phases. In the first phase, an inter-
mediate representation is obtained by parsing the original PHP program using
PHC [3]. PHC is a framework to parse PHP programs to abstract syntax trees.
In a pipeline of sequential transformations the original AST is lowered to various
intermediate forms. We lower the original PHP program to an intermediate rep-
resentation called Higher Internal Representation (HIR). This is the last phase
in which the result of the transformation is still a valid PHP program. In the
second phase the HIR is read by the type inferencer which is written in Haskell
and the UU Attribute Grammar system. The source code is freely available on:
http://www.github.com/henkerik/objectsensitivetyping/

9.1.2 Test suite

The PHP programs in the test suite are shown in Table 1. It was necessary to
make small modifications to the original programs on some occasions due to the
use of unsupported language features. These modifications are documented in
a file called modifications.txt, which is present in the directory of each project.
A list of unsupported PHP features is given in Appendix A.

46

Project Description LoC
Ray Tracer A PHP implementation of a ray tracer. Ray tracing is a

technique to generate an image of a 3D scene by tracing
a ray of light through the image plane and simulating
the effects of each object it intersects.

915

Gaufrette Gaufrette is a file system abstraction layer, which al-
lows an application developer to develop an applica-
tion without knowing where the files are stored and
how. Gaufrette offers support for various file systems
like Amazon S3 and Dropbox.

2974

PHPGeo PHPGeo provides an abstraction to different geograph-
ical coordinate systems and allows an application de-
veloper to calculate distances between different coordi-
nates.

1634

MIME A MIME library which allows an application developer
to compose and send email messages according to the
MIME standard [4].

486

MVC A framework which implements the model-view-
controller pattern for web application.

2583

Dijkstra An implementation of Dijkstra’s algorithm [10] using
adjacency lists to represent a graph structure.

4854

Floyd An implementation of the Floyd-Warshall algorithm [11]
using an adjacency matrix to represent a graph struc-
ture.

5742

Interpreter An object-oriented implementation of a small expression
language, including a parser.

843

Table 1: List of projects in the test suite

9.2 Result

9.2.1 Soundness

Since there is no formal specification of PHP, the soundness of our implementa-
tion can only be established by comparing the inferred types of our type analysis
to the observed types while running the program. To cover all execution paths
a set of unit tests was written. The inferred type set is obtained by running the
type analysis and transforming the calculated abstract values to type sets using
the type function (see Section 6.1).

The run-time type sets are obtained by instrumenting the original source code
of the programs listed in Table 1. On each assignment the run-time type of the
assigned variable is obtained by means of the gettype function. If the resulting
type constitutes an object or a resource the type is further refined by means of
the get class and the get resource type functions respectively. This results
in a run-time type set since each assignment may be executed multiple times
with possibly different values, and hence different types, being assigned.

We compared the observed run-time types with the inferred type sets by our
implementation. On all assignments the observed type sets are a subset of the

47

inferred type set. In other words, the type analysis was able to infer all types
observed at run-time. Furthermore, we analyzed on how many occasions the
inferred type set precisely matches the observed type set. The results for this
experiment are shown in Table 2:

insensitive 1obj 1obj+1H 2plain+1H 2full+1H
raytracer 360 81 0 6 12
gaufrette 432 4 -4 0 0
phpgeo 518 20 0 0 0
mime 211 0 2 0 0
mvc 173 40 8 0 0
dijkstra 321 2 0 0 0
floyd 556 1 2 0 0
interpreter 265 2 0 0 0

Table 2: Number of precise matches for each analysis variations

9.2.2 Comparing plain and full-object sensitivity

We shall compare the precision of plain-object sensitivity to full-object sensitiv-
ity. Based upon our theoretical discussion of plain and full object sensitivity (see
Section 8.2) we expect that a full object sensitive analysis shall give a better
precision for the same context depth. We included the results of a context-
insensitive, a 1obj sensitive and a 1obj+1H sensitive analysis for comparison.
For each analysis variation we collected the following set of precision and per-
formance metrics:

• # of union types shows the number of assignments for which the type
analysis could not infer a single type. Note that due to the dynamic nature
of PHP it is not always possible to infer a single type.

• # of union types collapsed shows the number of assignments for which
the type analysis could infer a single type after collapsing object types
with a common ancestor. Additionally, the Null type is ignored if the
remaining type set only contains class names.

• # of polymorphic call sites shows the number of method call sites for
which the type analysis could not infer a unique receiver method.

• # of call graph edges shows the number of call graph edges.

• average var points-to shows the average number of allocation sites to
which a variable can refer.

• execution time shows the average running time for 20 executions of the
implementation. We used Criterion 8 to obtain the execution time.

We shall illustrate the concept of collapsing types with a common ancestor.
Consider a program with two classes named Add and Minus with a common
parent class Expr. The following table shows various type sets and their col-
lapsed counter parts:

8http://hackage.haskell.org/package/criterion

48

insensitive 1obj 1obj+1H 2plain+1H 2full+1H
ra

y
tr

a
c
e
r # of union types 324 -84 0 -6 -12

of union types coll. 213 -28 0 -6 -12
of poly. call sites 26 -22 0 0 0
of callgraph edges 155 -28 0 0 0
average var points-to 11.24 1.47 1.47 1.47 1.47
execution time (s) 8.81 5.43 7.43 7.00 6.02

g
a
u

fr
e
tt

e # of union types 141 -12 4 0 0
of union types coll. 69 -7 4 0 0
of poly. call sites 8 -1 0 0 0
of callgraph edges 234 -1 0 0 0
average var points-to 3.43 2.36 2.36 2.36 2.36
execution time (s) 4.22 2.97 3.44 3.45 3.09

p
h

p
g
e
o

of union types 164 -22 0 0 0
of union types coll. 119 -25 0 0 0
of poly. call sites 52 -52 0 0 0
of callgraph edges 244 -108 0 0 0
average var points-to 14.60 1.69 1.69 1.69 1.69
execution time (s) 14.74 3.65 4.74 1.94 1.94

m
im

e

of union types 62 0 -5 0 0
of union types coll. 28 0 -5 0 0
of poly. call sites 2 0 0 0 0
of callgraph edges 49 0 0 0 0
average var points-to 2.47 1.12 1.07 1.07 1.07
execution time (s) 0.45 0.43 0.43 0.51 0.51

m
v
c

of union types 179 -47 1 0 0
of union types coll. 110 -57 0 0 0
of poly. call sites 36 -27 0 0 0
of callgraph edges 301 -143 0 0 0
average var points-to 8.16 1.44 1.09 1.09 1.09
execution time (s) 12.59 4.60 5.81 5.70 5.20

d
ij

k
st

ra

of union types 128 -1 -8 0 0
of union types coll. 61 -2 -36 0 0
of poly. call sites 3 0 -2 0 0
of callgraph edges 144 0 -12 0 0
average var points-to 3.74 2.05 1.31 1.31 1.31
execution time (s) 12.15 6.75 4.47 3.84 3.36

fl
o
y
d

of union types 150 1 -4 0 0
of union types coll. 42 0 -15 0 0
of poly. call sites 9 0 -2 0 0
of callgraph edges 176 0 -9 0 0
average var points-to 5.15 1.75 1.51 1.50 1.50
execution time (s) 18.87 13.17 13.73 12.90 11.80

in
te

rp
re

te
r # of union types 241 -12 0 0 0

of union types coll. 92 -2 0 0 0
of poly. call sites 59 0 0 0 0
of callgraph edges 495 0 0 0 0
average var points-to 5.05 3.90 3.90 3.90 3.90
execution time (s) 2.03 2.05 2.10 2.95 2.09

Table 3: Comparison of plain and full object sensitivity

49

Un-collapsed Types Collapsed Types
{ Boolean, Integer } { Boolean, Integer }
{ Boolean, Null } { Boolean, Null }
{ Add, Minus } { Expr }
{ Add, Null } { Add }

Table 4: Collapsing types

Table 3 shows the precision metrics for 2plain+1H and 2full+1H analysis vari-
ations for our test suite. All metrics are end-user (i.e. context-insensitive)
metrics. This means that the analysis result for different contexts are joined
together for the same program label. Further, the first four metrics are given
relative to the immediately preceding column, only the metrics in the insensitive
column are absolute numbers.

Discussion. In terms of precision, the 2plain+1H and 2full+1H analysis vari-
ations show exactly the same result for 7 out of the 8 test programs. Only for
the raytracer program the 2full+1H analysis achieves a better precision. So,
although the difference between both analysis variations is minimal, the only
difference which we observed confirms the theoretical merits of full object sen-
sitivity. The difference between the precision scores is minimal, we suspect that
this is due to the relative small size of the test programs.

In terms of performance, the 2full+1H analysis always either outperforms the
2plain+1H analysis or both analyses end up taking a similar amount of time.
Interestingly, increasing the context depth does not necessarily result in a per-
formance penalty. For example, the context insensitive analysis (which only uses
one context Λ) performs significantly worse than the more complicated 2full+1H
analysis for 6 of the 8 test programs. This is difference is most striking in the
case of the phpgeo test program where the context insensitive analysis is more
than 7 × slower than the 2full+1H analysis. These results clearly show that
there exists no trade-off between precision and performance. On the contrary,
the higher precision enables the analysis to exclude a broader range of target
methods while resolving a method call.

9.2.3 Comparing type sensitivity and object sensitivity

Next we compare the performance of type sensitivity to object sensitivity. Based
upon our theoretical discussion of type sensitivity we expect that type sensitivity
achieves a better performance than object sensitivity while maintaining most
of its precision (see Section 8.3). The results of our experiments are shown in
Table 5.

Discussion. In terms of performance, the 2type+1H analysis only outperforms
the 2full+1H analysis for 3 of the 8 test programs. Compared to the 2full+1H
analysis, the 1type1obj+1H analysis does not perform better for a single test
program. So in contradiction with our expectations the type sensitive analysis
often performs worse than a full object sensitive analysis of the same context
depth.

If we increase the context depth of an analysis, the execution time is influenced

50

1obj+1H 2type+1H 1type1obj+1H 2full+1H
ra

y
tr

a
c
e
r # of union types 240 56 -56 -18

of union types coll. 185 6 -6 -18
of poly. call sites 4 14 -14 0
of callgraph edges 127 14 -14 0
average var points-to 1.47 3.86 1.47 1.47
execution time (s) 7.43 7.29 7.65 6.02

g
a
u

fr
e
tt

e # of union types 133 4 -4 0
of union types coll. 66 0 0 0
of poly. call sites 7 0 0 0
of callgraph edges 233 0 0 0
average var points-to 2.36 2.84 2.36 2.36
execution time (s) 3.44 4.00 3.39 3.09

p
h

p
g
e
o

of union types 142 4 -4 0
of union types coll. 94 0 0 0
of poly. call sites 0 40 -40 0
of callgraph edges 136 96 -96 0
average var points-to 1.69 4.26 1.69 1.69
execution time (s) 4.74 4.56 2.22 1.94

m
im

e

of union types 57 0 0 0
of union types coll. 23 0 0 0
of poly. call sites 2 0 0 0
of callgraph edges 49 0 0 0
average var points-to 1.07 1.88 1.07 1.07
execution time (s) 0.43 0.45 0.52 0.51

m
v
c

of union types 133 27 -27 0
of union types coll. 53 25 -25 0
of poly. call sites 9 13 -13 0
of callgraph edges 158 26 -26 0
average var points-to 1.09 2.54 1.09 1.09
execution time (s) 5.81 4.06 5.49 5.20

d
ij

k
st

ra

of union types 119 0 0 0
of union types coll. 23 0 0 0
of poly. call sites 1 0 0 0
of callgraph edges 132 0 0 0
average var points-to 1.31 1.77 1.31 1.31
execution time (s) 4.47 4.82 4.45 3.36

fl
o
y
d

of union types 147 0 0 0
of union types coll. 27 0 0 0
of poly. call sites 7 0 0 0
of callgraph edges 167 0 0 0
average var points-to 1.51 4.31 1.51 1.50
execution time (s) 13.73 16.44 13.57 11.80

in
te

rp
re

te
r # of union types 229 0 0 0

of union types coll. 90 0 0 0
of poly. call sites 59 0 0 0
of callgraph edges 495 0 0 0
average var points-to 3.90 4.70 3.90 3.90
execution time (s) 2.10 1.90 2.10 2.09

Table 5: Comparison of type sensitivity and object sensitivity

51

by two opposing forces. On one hand a deeper context depth may result in each
data flow fact being analyzed more often, leading to an increase in the execution
time. On the other hand, a deeper context may avoid poisoning of the analysis
results. This prevents the propagation of data flow facts because the analysis
is able to infer statically that some program paths are impossible, leading to a
decrease in the execution time.

The relative strength of these two forces depends strongly on the specific imple-
mentation decisions. We suspect that our implementation differs in this regard
to the implementation used by Smaragdakis et al. [27], leading to different ex-
perimental observations. Consider for example the extreme case of an context
insensitive analysis, which employs only one context Λ. The context insensitive
analysis performs worse in terms of performance than the 2full+1H analysis for
6 out of the 8 test programs in our experiments. However, the context insensi-
tive analysis performs better in terms of performance than the 2full+1H analysis
for all test programs in the experiments done by Smaragdakis et al. [27] using
their implementation.

Since the number of contexts of a type sensitive analysis lies in between the
number of contexts of a context insensitive analysis (only one context) and
a 2full+1H analysis (theoretically O(n2) number of contexts, where n is the
number of allocation sites in a program) one may expect a performance increase
using the implementation of Smaragdakis et al. while a performance decrease
is expected using our implementation.

In terms of precision, the 2type+1H analysis performs worse than the 2full+1for
3 out of the 8 test programs. For the 1type1obj+1H analysis we observe identical
results for 7 out of the 8 test programs. Only for the raytracer test program
the 1type1obj+1H analysis performs worse in terms of precision.

9.2.4 Abstract Garbage Collection

Our experiments show that the type analysis only terminates within a reason-
able amount of time if abstract garbage collection (see Section 7.4) is enabled.
Abstract garbage collection prevents the propagation of abstract objects which
are known to be unreachable. Table 6 shows the execution time of the analysis
with and without abstract garbage collection. We ran this experiment only on
a subset of the test suite. Programs excluded for this experiment ran out of
memory when abstract garbage collection was disabled.

GC Enabled (s) GC Disabled (s)
mime 0.40 0.59
raytracer 6.48 13.56
interpreter 2.33 5.36

Table 6: Performance Metrics of Abstract Garbage Collection

52

10 Conclusion

In this thesis we described an object sensitive type analysis for PHP. The pres-
ence of dynamic method dispatching in PHP implies that control flow and data
flow information are mutually dependent: propagation of points-to information
may make additional methods reachable, which may in turn increase the propa-
gated points-to information. To this end we extended the notion of a Monotone
Framework. Our Extended Monotone Framework (Section 4.5) intuitively cap-
tures the notion of a dynamically discovered call graph and enables us to add
control flow edges on the fly. An instance of the Extended Monotone Framework
gives rise to a set of mutually recursive equations. These equations define the
propagated data flow information, the program flow and the interprocedural
flow in terms of each other. A worklist algorithm (see Section 4.6) was given to
compute the least fixed point solution.

We specified the type analysis as an extension of a points-to analysis expressed as
an instance of the Extended Monotone Framework (see Section 6). In addition,
we presented a novel method to capture the coercion rules of PHP by means
of the coerce and reject functions. The transfer functions rely on work by
Smaragdakis et al. [27] by employing the context manipulation functions record
and merge to capture the essence of object sensitivity. Multiple variations of
an object sensitive analysis are obtained by choosing different implementations
for these context manipulation functions. In Section 8 we discussed several
interesting choices.

Our experimental evaluation (see Section 9) aims to answer four questions.
First, is our implementation sound? Since PHP lacks a formal specification we
established the soundness of our analysis by comparing the inferred types to
the types observed at run-time. Second, does full-object sensitivity achieve a
better precision than plain-object sensitivity? Our experiments show similar
precision metrics for both plain and full-object sensitivity for most of the test
programs. However for the only program where a difference is observed, the
full-object sensitive analysis indeed achieved an increase in precision. Third,
does type sensitivity achieve a better performance than object sensitivity while
maintaining most of its precision? Our experiments show that type sensitivity
does not result in improve in performance, on the contrary: a the 2full+1H
analysis out performs the 2type+1H analysis on 5 of the 8 test programs, while
the 1type1obj+1H analysis is slower for all test programs. Four, does enabling
abstract garbage collection result in a better performance? Our experiments do
indeed clearly show an improvement in performance if abstract garbage collec-
tion is enabled.

53

11 Future Work

Our work leaves many open questions and future research areas. To start,
our implementation does not support all of PHP’s language features. A list of
unsupported PHP features is given in Appendix A. Adding features like first-
class functions and closures requires an even more elaborate lattice to model
the abstract state. Similar to dynamic dispatch first-class functions require on-
the-fly call graph creation. We expect than one may benefit from our Extended
Monotone Framework to cope with the additional dynamic flow edges.

Another interesting line of research is whether employing recency abstraction
improves the precision of the analysis. Balakrishnan and Reps [2] present an
abstraction for heap-allocated data called recency abstraction. The analysis
keeps track of two abstractions for each allocation site l. One abstraction keeps
track of the most recently allocated object at l and another abstraction keeps
track of all older objects allocated at l [15]. Hence, the most recent abstraction
represents precisely one concrete object at run-time. This enables the analysis
to perform strong updates to any updated properties of this object. Jensen,
Møller and Thiemann [17] describe a type analysis of Javascript programs and
they observed an improvement in precision due to recency abstraction.

Kastrinis et al. [19] propose significant optimizations to the exception handling
mechanism. They observed that most client analyses do not care about the
specific exception objects, rather they care about the impact of exceptions on
the control flow of a program. This observation gave them the suggestion to
coarsen the representation of an exception in two different ways: (1) exception
objects are always handled in an context insensitive manner and (2) exception
objects are merged and represented as one abstract object per dynamic type.
Kastrinis et al. [19] show that the performance of an analysis is significantly
improved by coarsening the representation of exceptions objects. It would be
interesting to investigate whether our type analysis benefits from coarsening of
exception objects as well.

Our type analysis is path insensitive although there are strong reasons to believe
that adding path sensitivity may be a beneficial technique for improving the
precision of our type analysis. Path sensitivity answer the question question
whether a given path in the control flow edge is executable [14]. A common
approach in PHP is to accept parameters of a mixed type and apply conversions
on them:

1 <?php
2 function wrapper ($input)
3 {
4 if (! is_array ($input))
5 $input = array ($input);
6

7 return processArray ($input);
8 }
9 $x = wrapper (1);

10 $y = wrapper (array (2));
11 ?>

On line 7 a path sensitive analysis will conclude that the $input variable is

54

always an array of integers. However, a path insensitive analysis will falsely
conclude that the $input variable is either an integer or an array of integers.

Finally, work by Smaragdakis and Bravenboer [28] points to a further inter-
esting area of research. Their implementation of a points-to analysis is based
on a framework called DOOP [5]. DOOP uses Datalog to define analyses and
heavy optimizations are performed on a Datalog level. It would be interesting
to investigate if their declarative approach extends to our type analysis. For
example, it remains unclear to us if Datalog is expressive enough to describe
the coercion rules of PHP.

55

References

[1] Zend php, January 2014.

[2] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated stor-
age. Static Analysis, pages 221–239, 2006.

[3] Paul Biggar, Edsko de Vries, and David Gregg. A practical solution for
scripting language compilers. In Proceedings of the 2009 ACM symposium
on Applied Computing, SAC ’09, pages 1916–1923, New York, NY, USA,
2009. ACM.

[4] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Exten-
sions): Mechanisms for Specifying and Describing the Format of Internet
Message Bodies. RFC 1341 (Proposed Standard), June 1992. Obsoleted by
RFC 1521.

[5] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative speci-
fication of sophisticated points-to analyses. In ACM SIGPLAN Notices,
volume 44, pages 243–262. ACM, 2009.

[6] Patrick Camphuijsen. Soft typing and analyses on php programs, 2007.

[7] Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators
for abstract interpretation. Computer Languages, Systems & Structures,
37(1):24–42, 2011.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, California, 1977. ACM Press, New York, NY.

[9] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’82, pages 207–212, New
York, NY, USA, 1982. ACM.

[10] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[11] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–,
June 1962.

[12] Levin Fritz. Balancing cost and precision of approximate type inference in
python, 2011.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[14] Hari Hampapuram, Yue Yang, and Manuvir Das. Symbolic path simulation
in path-sensitive dataflow analysis. In ACM SIGSOFT Software Engineer-
ing Notes, volume 31, pages 52–58. ACM, 2005.

56

[15] P. Heidegger and P. Thiemann. Recency types for analyzing scripting lan-
guages. ECOOP 2010–Object-Oriented Programming, pages 200–224, 2010.

[16] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for java and gj. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 23(3):396–450, 2001.

[17] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium (SAS),
volume 5673 of LNCS. Springer-Verlag, August 2009.

[18] J.B. Kam and J.D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305–317, 1977.

[19] George Kastrinis and Yannis Smaragdakis. Efficient and effective handling
of exceptions in java points-to analysis. In Compiler Construction, pages
41–60. Springer, 2013.

[20] Ondrej Lhoták. Program analysis using binary decision diagrams. PhD
thesis, McGill University, 2006.

[21] Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis using
spark. In Compiler Construction, pages 153–169. Springer, 2003.

[22] Matthew Might and Olin Shivers. Improving flow analyses via γcfa: ab-
stract garbage collection and counting. ACM SIGPLAN Notices, 41(9):13–
25, 2006.

[23] A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sensitivity
for points-to analysis for java. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(1):1–41, 2005.

[24] F. Nielson and H. Nielson. Type and effect systems. Correct System Design,
pages 114–136, 1999.

[25] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

[26] Mooly Sagiv, Thomas Repst, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating, 1996.

[27] Yannis Smaragdakis and Martin Bravenboer. Pick your contexts well: Un-
derstanding object-sensitivity the making of a precise and scalable pointer
analysis.

[28] Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and
easy program analysis.

[29] John Whaley. Context-Sensitive Pointer Analysis using Binary Decision
Diagrams. PhD thesis, Stanford University, March 2007.

57

[30] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao,
Guilherme Ottoni, Andrew Paroski, Scott MacVicar, Jason Evans, and
Stephen Tu. The hiphop compiler for php. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’12, pages 575–586, New York, NY,
USA, 2012. ACM.

58

Appendices

A List of Unsupported Features

Our type analysis does not support the following PHP features:

• String coercion. The magic method toString is called if an object
is coerced to a string (for example by using the strval function.)

• Object cloning. An object copy is created by using the clone keyword.
When an object is cloned, a shallow copy will be created.

• Namespaces. Class definitions may be partitioned in different names-
paces.

• Array of characters. A string maybe treated as an array of characters.
Individual characters may be indexed using the ussual array indexing no-
tation.

• Anonymous functions. PHP allows the creation of anonymous function
which may be stored in variables, passed as arguments or used as the
return value of a function call.

• References. References (see Section 3.2.5) are meant to access a vari-
ables content by different names. References add an additional level of
indirection and should not be confused with a variable referencing heap
allocated data.

• SPL. The OO standard library of PHP is not fully supported. In particu-
lar the ArrayAccess, Clonable, and Iterator interfaces are not supported.

• Eval. The eval function is not supported by the type analysis.

• Object destruction. Destructors are not supported by the type analysis.

59

B Control Flow of Example Program

The flow diagram in Figure 8 shows the intraprocedural and interprocedural flow
of the example program in Listing 4 using normal and thick lines respectively.
The interprocedural flow is discovered on the fly while performing the type
analysis as shown in the iteration steps given in Appendix C.

[x = new Value()]1

[v = 10]2

[x→ v = v]3

[y = new Value()]4

[v = false]5

[y → v = v]6

[z = new Multiply()]7

[z → l = x]8

[z → r = y]9

[r = z → evaluate()]10
11

[entry evaluate()]12

[v = this→ v]13

[return v]14

[exit evaluate()]15

[entry evaluate()]16

[l = this→ l]17

[x = l→ evaluate()]18
19

[r = this→ r]20

[y = r → evaluate()]21
22

[z = x ∗ y]23

[return z]24

[exit evaluate()]25

Figure 8: Control flow of the example program in Listing 4.

60

C Iteration steps of the worklist algorithm

W IF A

1 [((1, Λ), (2, Λ))] ∅

A[1, Λ]= ([
v 7→ (⊥,⊥,⊥,>,⊥)

,x 7→ (⊥,⊥,⊥,>,⊥)
,y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [])

2 [((2, Λ), (3, Λ))] ∅

A[2, Λ]= ([
v 7→ (⊥,⊥,⊥,>,⊥)

,x 7→ ({[1]},⊥,⊥,⊥,⊥)
,y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [])

3 [((3, Λ), (4, Λ))] ∅

A[3, Λ]= ([
v 7→ (⊥,⊥, {+},⊥,⊥)

,x 7→ ({[1]},⊥,⊥,⊥,⊥)
,y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [])

4 [((4, Λ), (5, Λ))] ∅

A[4, Λ]= ([
v 7→ (⊥,⊥, {+},⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

])

5 [((5, Λ), (6, Λ))] ∅

A[5, Λ]= ([
v 7→ (⊥,⊥, {+},⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

])

6 [((6, Λ), (7, Λ))] ∅

A[6, Λ]= ([
v 7→ (⊥, {true},⊥,⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

])

7 [((7, Λ), (8, Λ))] ∅

A[7, Λ]= ([
v 7→ (⊥, {true},⊥,⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
])

8 [((8, Λ), (9, Λ))] ∅

A[8, Λ]= ([
v 7→ (⊥, {true},⊥,⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ ({[7]},⊥,⊥,⊥,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
])

9 [((9, Λ), (10, Λ))] ∅

A[9, Λ]= ([
v 7→ (⊥, {true},⊥,⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ ({[7]},⊥,⊥,⊥,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)

])

10
[((10, Λ), (16, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))}

A[10, Λ]=([
v 7→ (⊥, {true},⊥,⊥,⊥)

, x 7→ ({[1]},⊥,⊥,⊥,⊥)
, y 7→ ({[4]},⊥,⊥,⊥,⊥)
, z 7→ ({[7]},⊥,⊥,⊥,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

61

11
[((16, [7]), (17, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))}

A[16, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

12
[((17, [7]), (18, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))}

A[17, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ (⊥,⊥,⊥,>,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)
, x 7→ (⊥,⊥,⊥,>,⊥)
, y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

13
[((18, [7]), (12, [1]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[18, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)
, x 7→ (⊥,⊥,⊥,>,⊥)
, y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

14
[((12, [1]), (13, [1]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[12, [1]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

15
[((13, [1]), (14, [1]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[13, [1]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, v 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

16
[((14, [1]), (15, [1]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[14, [1]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, v 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

17
[((15, [1]), (19, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[15, [1]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, v 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

18
[((19, [7]), (20, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[19, [7]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, v 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

62

19
[((20, [7]), (21, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))}

A[20, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥,⊥)
, r 7→ (⊥,⊥,⊥,>,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

20

[((21, [7]), (12, [4]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[21, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥,⊥,⊥,>,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

21

[((12, [4]), (13, [4]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[12, [4]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥])

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

22

[((13, [4]), (14, [4]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[13, [4]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, v 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

23

[((14, [4]), (15, [4]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[14, [4]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, v 7→ (⊥, {true},⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

24

[((15, [4]), (22, [7]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[15, [4]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

,R 7→ (⊥, {true},⊥,⊥,⊥)
, v 7→ (⊥, {true},⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

25

[((22, [7]), (23, [7]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[22, [7]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

,R 7→ (⊥, {true},⊥,⊥,⊥)
, v 7→ (⊥, {true},⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

26

[((23, [7]), (24, [7]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[23, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥, {true},⊥,⊥,⊥)
, z 7→ (⊥,⊥,⊥,>,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

63

27

[((24, [7]), (25, [7]))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[24, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥,⊥,>,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥, {true},⊥,⊥,⊥)
, z 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

28

[((25, [7]), (11, Λ))
, ((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[25, [7]]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥, {true},⊥,⊥,⊥)
, z 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

29
[((15, [4]), (22, [7]))
, ((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[11, Λ]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥, {true},⊥,⊥,⊥)
, z 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

30
[((15, [1]), (19, [7]))
, ((25, [7]), (11, Λ))]

{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[22, [7]]=([
T 7→ ({[4]},⊥,⊥,⊥,⊥)

,R 7→ (⊥, {true},⊥,⊥,⊥)
, v 7→ (⊥, {true},⊥,⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

31 [((25, [7]), (11, Λ))]
{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[19, [7]]=([
T 7→ ({[1]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, v 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

32 []
{ ((10, Λ), (16, [7]), (25, [7]), (11, Λ))
, ((18, [7]), (12, [1]), (15, [1]), (19, [7]))
, ((21, [7]), (12, [4]), (15, [4]), (22, [7]))}

A[11, Λ]=([
T 7→ ({[7]},⊥,⊥,⊥,⊥)

,R 7→ (⊥,⊥, {+},⊥,⊥)
, l 7→ ({[1]},⊥,⊥,⊥,⊥)
, r 7→ ({[4]},⊥,⊥,⊥,⊥)
, x 7→ (⊥,⊥, {+},⊥,⊥)
, y 7→ (⊥, {true},⊥,⊥,⊥)
, z 7→ (⊥,⊥, {+},⊥,⊥)

] , [
([1],v) 7→ (⊥,⊥, {+},⊥,⊥)

, ([4],v) 7→ (⊥, {true},⊥,⊥,⊥)
, ([7],l) 7→ ({[1]},⊥,⊥,⊥,⊥)
, ([7],r) 7→ ({[4]},⊥,⊥,⊥,⊥)

])

64

	Introduction
	Related work
	Type inference for dynamic languages
	Javascript
	Python
	PHP

	Object sensitivity

	The PHP Programming Language
	History
	Language features
	Type system
	First-class functions
	Class-based object-oriented programming model
	Type hinting
	References (Variable Aliases)

	Data Flow Analysis
	Basic Definitions
	Monotone Frameworks
	The Worklist Algorithm
	Interprocedural Analysis
	Call site sensitivity
	Object sensitivity

	Extended Monotone Frameworks
	The Worklist Algorithm for the Extended Monotone Framework

	Control Flow Graphs for PHP
	Representations
	Core Intermediate Representation
	Abstract Grammar
	Functions

	Type Analysis
	The Analysis Lattice
	The Analysis
	The Extremal Value
	The Transfer Function
	The Phi Function
	The Next Function

	Additional Language Features
	Resources, String, Doubles and Arrays
	Native Constants, Functions and Classes
	Exceptions
	Abstract Garbage Collection

	Analysis Variations
	Full-Object Sensitivity
	Plain-Object Sensitivity
	Type Sensitivity
	Choice of type

	Experimental Evaluation
	Setting
	Implementation
	Test suite

	Result
	Soundness
	Comparing plain and full-object sensitivity
	Comparing type sensitivity and object sensitivity
	Abstract Garbage Collection

	Conclusion
	Future Work
	Appendices
	List of Unsupported Features
	Control Flow of Example Program
	Iteration steps of the worklist algorithm

