
A Framework for Describing
Communication Exercises in a

Serious Game
An analysis, comparison and implementation.

Frank Wijmans

A thesis presented for the degree of
Master of Science

Department of Information and Computing Sciences
University Utrecht

Utrecht
Netherlands

February 25, 2014

Abstract

This thesis investigates how we can simulate conversation and generate feed-
back for a serious game using a software framework, such that a player is given
options and a non-playing character can react accordingly. An analysis of a com-
munication training, given at the department of Pharmacy of Utrecht University,
results in the functional requirements for software frameworks to simulate con-
versation. We describe conversations between two actors, interacting in various
ways. We implement an example scenario such that we can compare frameworks
based on dialog trees, belief, desire and intention models and domain reasoners on
complexity, readability, usability, maintainability, and possibilities of generating
feedback. The domain reasoner proves to be the best choice for defining exercises
in communication training. We define an exercise in the IDEAS framework to
see how we can best utilize the framework in the communication domain. While
developing an exercise, we describe different ways of using rules and strategies.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

2 Analysing Pharmacy’s Communication Training 4
2.1 Theory . 5

2.1.1 Models . 6
2.1.2 Skills . 6

2.2 Practice . 8
2.2.1 Cases . 8
2.2.2 Conversation . 10

2.3 Discussion . 12
2.4 Goals of Communication Training 12
2.5 Requirements for Defining Exercises 13

3 Comparing Frameworks for Communication 15
3.1 Preliminaries . 15

3.1.1 Haskell . 16
3.2 Technical Requirements for Software Frameworks 16

3.2.1 Control . 16
3.2.2 Usability . 17
3.2.3 Maintainability and Adaptability 17
3.2.4 Generating Feedback . 17
3.2.5 Concise Implementation 18

3.3 Interactions of an Example Scenario 18
3.3.1 Example: Miss Darcy Fetches Her Metformin 500mg . . . 19

3.4 Dialog trees . 20
3.4.1 Trees . 21
3.4.2 Root . 22
3.4.3 Edges . 23
3.4.4 Branches . 23
3.4.5 Overview . 24

3.5 Belief, Desires, and Intentions model 26
3.5.1 Events . 26
3.5.2 Beliefs . 26
3.5.3 Desires . 27
3.5.4 Intentions . 28
3.5.5 Agents . 29

i

3.5.6 Conversation . 31
3.5.7 Overview . 31

3.6 Domain reasoners . 32
3.6.1 State . 33
3.6.2 Rules . 34
3.6.3 Strategy . 34
3.6.4 Overview . 36

3.7 Comparison . 36
3.7.1 Control . 37
3.7.2 Usability . 37
3.7.3 Maintainability and Adaptability 38
3.7.4 Generating Feedback . 38
3.7.5 Concise Implementation 38

3.8 Conclusion . 40

4 Designing Artificial Intelligence for ’Communicate!’ 41
4.1 IDEAS framework . 41

4.1.1 Existing applications of IDEAS 41
4.1.2 Paradigm . 42

4.2 Implementation . 43
4.2.1 Communication Exercises 43
4.2.2 Conversation . 44
4.2.3 Sentences . 47
4.2.4 Strategies . 49

4.3 Design Choices . 51
4.3.1 Usage of the Strategy language 51
4.3.2 Defining Sentences . 52
4.3.3 State Safety . 53

5 Conclusion and Future Work 55
5.1 Conclusion . 55
5.2 Future Work . 56

5.2.1 Context–dependent Rules 56
5.2.2 Extended guards and Modifiers 57
5.2.3 Introducing Knowledge System 58
5.2.4 Analysis of Similar Communication Domains 59
5.2.5 Exercise editor . 59
5.2.6 Validation . 60

ii

List of Tables

2.1 Finding out how a client has used their medication. An example
of closed questions in a conversation. 7

3.1 Comparison of three frameworks on control, usability, maintain-
ability & adaptability and feedback generation. 37

3.2 Counts of data types and their constructors, and the number
of helper functions and constructors used to define the example
scenario. 39

iii

List of Figures

2.1 Example of an case description card, used by a student to play
the client’s role. 9

3.1 Data type definition of interactions. 19
3.2 The first four options in the example scenario, defined using the

Interaction constructor. 21
3.3 The structure of a dialog tree. 21
3.4 The core data types for describing conversation using a DialogTree. 22
3.5 The first option for a pharmacist is encoded in the root of the tree. 23
3.6 Encoding of the four options of the first choice for the pharmacist. 23
3.7 Encoding Branches for the players’ second choice. 24
3.8 End–states for our example scenario in a dialog tree 24
3.9 A map of connected terms, from desires to events. 26
3.10 Definition of Event data type definition. 27
3.11 Belief defined as a logical language. 27
3.12 Desire data type definition and an example desire. 28
3.13 Function for building a weighted list, which encodes how strongly

a desire is believed to be a goal. 28
3.14 The BDI definition of an agent. 29
3.15 Defining the example conversation for one of the agents in BDI

framework. 30
3.16 Adding an option to the pharmacist’s desires. 30
3.17 Definition of Conversation for a BDI framework between a player

and a NPC . 31
3.18 domain reasoners definition of state. 33
3.19 Some example state values. 34
3.20 Definition of a rule that wraps an interaction. 34
3.21 The first interactions of the example scenario. 35
3.22 Basic strategy data type definition for combining rules. 35
3.23 Defining a scenario strategy for the example. 35
3.24 Adapting a domain reasoner: adding part of conversation to the

strategy. 36

4.1 An example domain reasoner in the IDEAS framework. 43
4.2 Example definition of a single exercise. 44
4.3 Definitions of the (data) types for the client parameters, learning

goals and conversation knowledge. 44
4.4 Generalized State definition . 45

iv

4.5 Type definitions of the functions toTerm and fromTerm as part
of the IsTerm class. 45

4.6 The Conversation data type as the term of the communications
domain for pharmacy. 46

4.7 Helper–functions for guarding and modifying the Conversational
Knowledge. 46

4.8 A helper–function that can modify the client’s satisfaction param-
eter. 46

4.9 Type definition and constructor functions for Sentences. 47
4.10 Definition of an example sentence; an interaction for a pharmacist. 48
4.11 Definition of labelRule to append a Rule’s identifier. 49
4.12 Defining the strategy in a phase of a conversation using interleaving. 50
4.13 Defining a strategy in phases. 50
4.14 Defining the strategy in a tree like manner. 51
4.15 Code of an example strategy, in action–reaction pairs. 52
4.16 An example strategy of interleaved, agent–specific sub–strategies. 52
4.17 A first definition of rules and strategy. 53
4.18 Specific constructors for Interactions allow to differentiate inter-

actions on the intention of a sentence. 53
4.19 An illustration of an easily made mistake, when using Strings as

keys, in a GHCI session. 54
4.20 Example of a Map with type–checked key values. 54

5.1 Context–specific definitions of two similar interaction. 56
5.2 Defining a Context for client information enables the context–

dependent definition of interactions. 57
5.3 Example modifier for making contact by addressing the client by

name. 58

v

Preface

After finishing the courses for the Computing Science master at Utrecht Univer-
sity, I had difficulty deciding on the subject of my research subject. Luckily after
a few talks with Doaitse Swierstra, Atze Dijkstra and Johan Jeuring, I found
a subject that suited me. At that moment I was thrilled to start my master
research! During my project I’ve learned that I truly am a programmer. I like to
understand problems, think in solutions and let a computer solve problems using
my algorithms. This project not only challenged me to implement a piece of
software, i analysed a real–world situation and transfer that to a programming
challenge. I worked together with professors of Utrecht University, but I was
on my own to plan and manage a prolonged project. Another thing I noticed
were the pitfalls of doing research alone. Let’s say there have been more and
less productive periods, and that I have learned that a good planning is key to
progress. Now, the project is finished and I’m happy with the results.

First of all, I would like to thank Johan Jeuring and Bastiaan Heeren for
the support and many talks about the IDEAS framework. Secondly, I thank
Majanne Wolters for discussing the training and developing the example scenar-
ios that formed the basis for the exercises. I would like to thank the members
of “Communicate!” and students in the project group “Sprout”. They kept me
motivated by working towards a shared goal, the communication game. Thanks
to study–association Sticky for lots of coffee, an occasional beer and mental
support. And lastly, my parents and friends supporting me and listening to my
day–to–day struggles.

I want to thank everyone for their time and effort during my Master research
project.

Frank.

vi

Chapter 1

Introduction

1.1 Motivation
The motivation for this thesis originates from the need for research on developing
a serious game which assists and trains students to communicate with a patient or
client. Utrecht University started a project called ’Communicate!’, for developing
a game in 2013 and following years. Students and teachers work together to
develop a communication game.

The investment of universities in serious games is not unexpected. Stapleton
[1] identified the higher education sector to offer the greatest potential for the
development and implementation of serious games. He argues that academics are
likely to contribute to development and have the capability to build products for
themselves. Another reason that Utrecht University invests in digital learning
environments is financial. The current recession encourages faculties to explore
new ways of education. Cutting on the costs of education can often be achieved
by an IT–solution.

Doctors, psychologists and pharmacists rely heavily on communication with
patients or clients. For this reason, many of the bachelor and master programs
train their students soft skills. Students train their communication by doing
time–consuming exercises. A student from pharmacy for example, has conver-
sations with other students or actors. Given a computer game that simulates a
conversation partner, students can practice more efficiently. A serious game can
save money spent on actors.

The goals of most serious games are to facilitate gamers learning higher order
thinking skills.[2] The ’Communicate!’ project aims to develop computer game
that allows a player to train communication skills. Susi et al[3] have investigated
the use of serious games and expect that the education and training market will
see an increase in the use of serious games.

Learning by playing a game has some advantages over alternative ways
of education. Serious gaming allows learners to experience situations that are
expensive in money or time, in real–life. Secondly, some skills can only be taught
by doing, but putting a student in a real situation can be risky or harmful to the
student and bystanders. Utilizing games for learning provides a safe situation
at a lower price. Lastly, the flexibility of education increases. Digital tools allow
a student to do exercises at any place and time.

1

1.2 Goals
This research is aimed at the analysis of communication training and implemen-
tation of a framework for a serious game. We want to simulate communicating
with human–like actors without the real–life limitations.

We think a serious game depends on the software that generates exercises
and feedback. Developing a serious game, like any piece of software, is usually
a process of incremental refinement. Some design choices are best investigated
before starting development. In this thesis we compare alternatives to generating
exercises for a communication game.

Feedback is an important factor for learning because it shows how good the
learner did, and points out how the learner can improve. Our system gives
feedback, such that it resembles the communication training, and that it can
be calculated efficiently in the data model. According to Erev et al[4] different
kinds of feedback lead to different results. Feedback is defined by the input from
a teacher. The teacher should not be restricted to choose from the possible ways
of feedback.

Heeren et al. have created a framework for giving feedback on specific do-
mains. [5] [6] The framework was initially developed for serving and generating
feedback on mathematical exercises. Later on, domains like logical formulae [7]
and a functional programming tutor, Ask-Elle[8] were introduced. The frame-
work generates feedback on how a student is solving an exercise. IDEAS checks
a student’s actions, proposes rules and recognizes a student’s error. Exercises
adhere to the abstract structure that consist of a problem and rules that ma-
nipulate the problem. For example, a mathematical formulae and rewrite rules.
Communication might seem a different problem from solving a mathematical
equation and part of this research is to find the problem and rewrite rules in the
domain of communication training.

In this thesis, we aim to analyse communication training and compare pos-
sible solutions to support a serious game. This thesis works towards an im-
plementation of a framework, in which we can employ different scenarios for
training communicative skills, and which allows to automatically analyse and
give feedback on the student’s actions. Accordingly, we will answer the following
questions:

• What are the identifiable concepts of training communication?

• What are the functional requirements for simulating a human–like actor
for communication training?

• What requirements can we use to compare software frameworks?

• What modelling paradigm should we use to base our framework on?

• What do we have to change to an existing framework to allow its use for
communication training?

• What problems and choices do we encounter when designing a framework
for a serious communications game?

We divide these questions in three chapters. We start by analysing the con-
versations at the communication training of Pharmacy at Utrecht University.

2

Chapter 2, featuring the training analysis, answers questions one and two. Sec-
ondly, we compare the different frameworks that could be selected, based on
the functional requirements. We give the requirements for a software framework
for simulating conversations similar to training. We answer the third till fifth
questions in chapter 3. In chapter 4, we implement a specially developed scenario
in the IDEAS framework. Moreover, we discuss the choices for implementing
such a scenario. In chapter 5 we conclude and discuss future work and related
ideas.

3

Chapter 2

Analysing Pharmacy’s
Communication Training

In this chapter we look at how the learner is currently taught how to communi-
cate. I attended communication training sessions that are part of a Pharmaceu-
tical Sciences master course at Utrecht University. The sessions are focused on
the conversation between a pharmacist and a client that fetches his medication.
Students learn how to talk to clients about the effects, side effects and proper use
of their medicine. An good conversation with a client improves the effectiveness
of the use of medication. The better a client is informed, the higher the chance
that no complications arise and the medication works as it was supposed to. I
sat with the students during their training to analyse the specific concepts of
communication for a pharmacist.

The training is split up in three different sessions. In the first and second
sessions, the theory of communicating with a client is discussed. Those sessions
introduce real–life conversations with clients, common to a pharmacist. In all
sessions, students spend some time practising conversation based on cases that
stay close to real conversations behind the counter. The third session revolves
around how to deal with difficult clients. Difficult clients are clients that don’t
want to cooperate with the pharmacist. A professional actor is hired to play the
role of difficult clients in the third session. From now on, whenever we mention
an actor, we mean either a student playing a client or a professional actor. When
we talk about the student, we mean the student that plays the pharmacist’s role.
Every conversation ends with a round of discussion to give feedback.

Interesting for this study is how we can translate the communication training
to exercises for a serious game. Before we can define exercises, we need to identify
every aspects of training in the course. Next we look for the parts of the training
that we want to offer digitally to the students. We then set requirements for a
framework which accommodates that part of the training.

While breaking down what we want to analyse, we set ourselves a couple of
questions:

1. How is the theory presented to the student?

2. What information is input for students to practice conversation?

4

3. How do students and the teacher give feedback to the actors in the con-
versation?

4. Which concepts can we identify that should be defined in a software
framework?

The following chapter is structured as follows. First, in section 2.1 we
look at the presentation of theory. Section 2.2 explains how students practice
communicating. In section 2.3 we explain how feedback is given. We list what
a student should be able to do after completing the training in section 2.4.
Concluding in section 2.5, where we explain the requirements that we could
identify.

2.1 Theory
A pharmacist communicates with clients about the client’s situation and medi-
cation. The client comes to the pharmacy with a specific goal. These goals differ
but can be sorted in three groups. Within a group, a pharmacist has a specific
role. Blom et al.[9] divide conversations in a pharmacy in three groups, namely:

1. First prescription contact. A client’s goal is to fetch medication which
the doctor has specified as part of the treatment. The client might not
be known with the medication. During the conversation the pharmacist
explains how to use the medication correctly. Problems might show up
when the proper use of medication is explained. For example taking eye
drops for a client with Parkinson’s disease, or drowsiness for a taxi driver.

2. Second prescription contact. In this case, the client has used medication
once before and has come to fetch more medication. The pharmacist
checks how the client experienced the use of medicine. The client can have
a range of goals, from completing the treatment, to stopping it. Problems
can arise, and have to be dealt with.

3. Self–care. Clients can come without prescription of a general practitioner.
The client’s goal is to explain the symptoms and raise concerns to the
pharmacist, often to see if there’s a medication that could relieve the
symptoms. The role of the pharmacist is to identify whether the pharmacist
can diagnose the client or has to refer the client to his general practitioner.
If applicable, the pharmacist can suggest drugs that alleviate symptoms.

Part of the training is to learn how to communicate with the purpose of the
pharmacist in mind. Identifying what group a conversation with a client is in, is
the first step for the pharmacist. The first question of the pharmacist is often:
“How can I help you?”. From that point, the structure of the conversation is
typical to the goal of the client. Most students easily identify for which of the
three goals the client has come to the pharmacy. The difficult part for students is
often keeping a conversation structured and concise without interrupting a client.
To keep track of the group–specific role of the pharmacist, the training presents
models. Models give the student a high level description of a conversation.

The training doesn’t merely cover the high level structure of a conversation.
It also teaches how low–level communication skills aid the pharmacist. Skills

5

are the tools that the pharmacist uses to communicate effectively. For example,
making contact with the client ensures that the client is interested to listen.
When the client listens to and focusses on what the pharmacist has to say,
the instructions on using medication and information about (side–) effects are
received better by the client.

2.1.1 Models
Earlier we identified three different groups of clients with similar goals. The
students learn an set of models specific for each of the three kinds of conversations.
A model structures a conversation by defining phases.

For example, in the self–care conversations students use the “WHAM” model.
The use of “WHAM” is described in “Standaarden voor Zelfzorg”[10], which
loosely translates to “Standards for Self–Care”. It is published by the KNMP,
which is a Dutch organisation that represents the interests of pharmacists.
“WHAM” stands for four questions that need to be answered, to asses what
a pharmacist’s next actions should be. In some cases, a client can be treated
by the pharmacist. A pharmacist can advise on self-care products. A phar-
macist sometimes will refer a client to the general practitioner when necessary.
Translated from Dutch, “WHAM” stands for:

• Who is the advice for?

• For how long has that person had the symptoms?

• What has that person tried to alleviate the problem?

• Does the person use any medication?

Every conversation starts with an introduction phase to identify the client.
The pharmacist concludes the conversation with summing up the important
aspects and asks if the client has questions..

The model for self–care is a mnemonic that sums up the four phases for
that specific type of conversation. With this mnemonic, a pharmacist can check
if every phase of the is handled correctly. Sometimes a client influences the
conversation and skips a phase. Even though the pharmacist loses control
over the order of the phases, the model offers a way of keeping in mind which
phases have been discussed. If used correctly, the models bring structure to the
conversation and guide a pharmacist to follow the preferred order of phases. At
any given moment in a conversation, the pharmacist can think of mnemonic to
remember what has been, or what should be discussed.

2.1.2 Skills
Students are taught basic skills to conduct effective communication. A client
and pharmacist should both get the opportunity to speak and should listen to
each other. That is the only way to share information and prevent problems.

For example, making contact should always be at the start of a conversation.
There are a couple of ways to make contact and one is not always better than
the other. Relating to the conversation partner is key to a good conversation.

When the pharmacist has established contact with the client, the models
come into play. As he works through each phase of the model, he should

6

take pauses to reconnect. The pharmacist cannot assume that the client stays
focussed while he is talking through the effect, use and possible side–effects of
a drug. It is good to keep the attention of the client to ensure the client is
focussing on the conversation.

The pharmacist needs to understand the client to give personal advice on the
use of medication, for example. To understand the client and its situation, the
pharmacist can ask questions. Sometimes it is good to ask a directed question,
but often an open question is the better option. Students are taught that they
should pick the words they personally prefer, but that some questions won’t find
the answer they are looking for.

The use of open questions is easily illustrated. Closed questions assume
certain shared knowledge, which is often not the case. In Table 2.1, you see that
the pharmacist assumes the client knows the correct way of using medication.

Pharmacist: Did you use the medication as prescribed?
Client: Yes, I did.

Pharmacist: Did you use it twice a day?
Client: Yes, i took two pills each day

Pharmacist: Did you use one in the morning and one in the evening?
Client: Ohh, no, i took both in the evening.

Is that a problem?
Pharmacist: Well, perhaps that is the cause of the side effects.

Table 2.1: Finding out how a client has used their medication. An example of
closed questions in a conversation.

Luckily, they find out shortly after that this assumption was not justified.
It is only by the follow-up question that they find out that the pills were not
taken correctly. Although the pharmacist found out how the client has taken
the medication, there is danger in assuming that the client remembered how to
take medication. An alternative opening question would have been: “How did
you take the medication? ”

The right questions and careful listening to a client reveals the experiences of
the client. It is important to understand the client. Understanding the client is a
must for giving advice tailored to the situation and needs of the client. Two other
skills presented are paraphrasing and summarizing. These two give the client the
idea that he is heard by the pharmacist. When used correctly, good questions,
listening, paraphrasing and summarizing create mutual understanding.

Mutual understanding of the situation allows problems to be found and
discussed. When there is discussion between the pharmacist, who knows all
about the medication’s use, effect and possible side–effect, and the client, who
needs to find a way to use the medication correctly in his daily life, the best
working solution is found. Also problems with the clients lifestyle and use of
medication can be found, before the treatment is started. For example, a drug
that makes the user sleepy is not advised for a airline pilot. Giving and taking
advice is more effective when the client and pharmacist have discussed the
situation.

Furthermore the students are pointed to cues. Cues are (non-) verbal signals
that can show the concerns and emotions of a client. For example they often

7

show if the client is paying attention, listening, and trying to actively take part
in the conversation, or that the client is distracted. Students are advised to
address cues by naming what they see, and ask the client to explain. Since cues
are often subject to interpretation, it is important not to assume, but to verify
with the client. All these skills are tools in conversation to efficiently inform
clients how they should use their medication.

2.2 Practice
After the theory has been discussed the students form pairs. The students either
play the pharmacist or client roles in a counter conversation. The specific details
are described in a case. The pharmacist takes place behind a counter. The
client enters the pharmacy and walks towards the counter, and the conversation
begins. While the client’s main goal is to receive the medicine and take it home,
the pharmacist wants to be sure that the client knows how to use the medicine
and increase the probability that the client uses the medication.

Paired students play a case twice, allowing both students to practice as the
pharmacist. After each play the students are encouraged to discus how the
pharmacist fulfilled its role. The students use the theory to substantiate peer–
reviews for each other. Even though some students don’t play the role of client
very realistically, the two students together often find points of improvement for
the student in the role of the pharmacist.

Being able to handle any client in a conversation is the goal of the training.
The course is completed when the students can identify problems and inform the
client in a test. During the test, the client is played by a professional actor which
ensures a realistic setting and a constant level of quality. Both the feedback in
discussion and scoring on the practical test are based on the theory.

2.2.1 Cases
The cases are the starting point for the conversation, and hold information for a
client to play its role. A case supplies information about these three aspects of
the conversation: context, client and scoring. Cases used for the test often are
variation of other cases. A different context or client can make a big difference,
and require for different questions in the conversation.

The initial subject of conversation is often the proper use of medication. The
context for the training is the specifics of some drug and the description of the
client’s lifestyle. The student’s knowledge about the domain is assumed to be
sufficient and is not tested by the final exam of the course.

Figure 2.1 shows an example case description that is given to the students
to train with. First the medication is specified and it states the dose for this
client. Secondly the name and address of the client is given. And lastly, the
situation of the client is explained in a few items. These last pointers on the
client’s situation make the case interesting for students to train.

Domain specific information gives the conversation a sense of realism. A
conversation that is not based on a realistic subject is hard to play out. In
the pharmaceutical domain, the specific characteristics of medication define
the problems that clients could face. Furthermore, specific details are given to

8

Alendronic acid 70mg, 12 pcs Second prescription - case 11 round b
S 1 x per week 1

J. Pietersen
Stadhuisplein 70

Situation of the client:

1. Took second capsule a day later, is that bad?

2. Struggles to remember to take the medicine.

Figure 2.1: Example of an case description card, used by a student to play the
client’s role.

explain more of the problem at hand. For example, that the client works as a
pilot or that a woman on birth control has had sexual intercourse.

Even though the dialogue knows two active actors, other actors can be of
influence to the current situation. A client’s general practitioner and the phar-
macist’s colleagues might be part of the context. For example, the general
practitioner might have informed the client in some way, and indirectly is con-
tributing to the conversation. Another example, in a second prescription contact
setting, a pharmacist might be accused for something that a colleague did. And
lastly, in self–care conversation for example, a mother can come to the pharmacy
to get medication and advice on how to help her son get rid of pin–worms, and
prevent her family getting infected by her son.

The client is described such that the student or actor playing the role of the
client can do so realistically. The case defines the character of a client, specific
behaviour and specific conversational directions.

The character of a client allows the actor to choose specific wordings and to
give subtle cues. A character description gives a background for the conversation.
For example, the actor might look away often, which shows that the client is
not focussed.

A case description might state that a patient desires a short conversation.
An example would be that when the client is waiting, he gets agitated. If the
conversation takes too long, he might cut off the conversation and leave the
pharmacy.

Sometimes a client has specific concerns. The case can describe specific
topics about which the client has questions. Sometimes the case gives directions
to steer the conversation a particular direction. A client’s reaction can give a
clue to the pharmacist to investigate further. To guide the conversation during
the test, answers to the pharmacists possible questions are noted for the actor
to use.

The case gives pointers on scoring the performance of a pharmacist. Goals
are stated such that feedback can be based on them. A goal could be: find
out that the client is a pilot, and that he should not use medication that has
sleepiness as a common side–effect.

9

Furthermore pointers for feedback that are specific for this case are given. A
case exposes a set of conversational aspects. For example from the examiners
perspective, scoring a pharmacist for interrupting a client that is not talkative
seems difficult. In this example a pointer could be to make contact in such a
way that the client trusts the pharmacist and is willing to speak freely.

2.2.2 Conversation
The practice during training sessions can be described as conversations between
two agents. The students only play clients because the pharmacists needs
someone to speak with. A conversation has one active agent and a simulated
agent.

There are some drawbacks from students practising together. Even though
there is no prior knowledge for the pharmacist, students often react as if they
feel it is not real. It is of course a play, but these students know each other
better as fellow students. Some students find it hard to play the roles con-
vincingly, and break character easily. For example, in a case about a woman
using contraception medication, students find out that there is a situation where
the woman might be pregnant due to incorrect use. An unwanted pregnancy
is of course an extreme case. Few students can act professionally when such
extreme situation occurs. Sometimes, another effect of students practising on
each other is immediate feedback. When the pharmacist makes a mistake, some
clients break character and give directions. A client tries to address a subject
again because the pharmacist did not catch the problem at hand. For example,
the pharmacist asks if the client has used the medicine correctly and the client
confirms. The underlying problem is that the client does not know that he uses
it incorrectly. The pharmacist might think that client uses it correctly, but in
fact the client didn’t.

The client resembles an intelligent agent. Simulating the client could be
achieved by defining an intelligent agent. Woolridge[11] defines a weak and
strong notion for agents in artificial intelligence. The weak definition would
describe requirements for simulation of a communicating agent. The participants
of communication would at least have the four properties of agents: autonomy,
social ability, reactivity and pro-activeness. A simulated agent is able to select
its interaction, by either reacting to another agent or computing it pro-actively.

Even though the students have all freedom over what they say, the practice
conversations are only a couple of minutes, which means the number of inter-
actions is limited. Even with a client that is very talkative the conversation
shouldn’t go on to long. The goal of a conversation with a client who for example,
excessively makes small talk, is to interrupt in a good fashion, such that the
contact between client and pharmacist stays intact.

Being straight to the point and giving concise advice is a must for pharmacists.
A duo gets five minutes to practice a case and a conversation ends when the
time is up. It is a goal to end a conversation within these five minutes. Students
often experience that they have too little time to finish the conversation.

Due to the time limit a conversation sometimes ends abruptly. Students who
try to focus on the time limit, sometimes don’t find the problems of the client.
In the example of the pregnant woman, the pharmacist advised the client to
proceed with the medication. What she didn’t know was that her advice could

10

have caused serious issues to the unborn child. That some conversations end
unnaturally doesn’t mean further discussion is less of value.

Interactions

We define an interaction as the actions in a conversation. Interactions consist of
utterances, but they also convey non-verbal communication. Interactions affect
the conversation and the actors of a conversation. The effect on actors can differ
due to the interpretation of a utterance or non-verbal act. Another effect of
using an interaction is that the conversations proceeds. And lastly, interactions
are not always applicable, there is a time for every instance of an interaction.

Van den Bosch et al.[12] distinguish three types of interaction: Tell, Ask
and Acknowledge. Ask and acknowledge are equal to question and answer,
respectively. In our definition, we distinguish two ways of telling something.
Answering to a question is different from outing a concern or informing someone.
Also, they do not distinguish interrupting someone as a type of communication.

When looking merely at a verbal interaction we distinguish varying goals.
We can define different five types of interactions, namely: questions, answers,
concerns, informs and interruptions.

1. Question. When an participant finds a certain variable interesting it is
polled. For example, the pharmacists asks if there were any problems with
taking the medication.

2. Answer. After a question, an answer is expected, and naturally the pharma-
cist will wait for the client to answer. Questions and answers are connected
to each other.

3. Concern. A concerns show how a client thinks about his situation. A
client wants to let the pharmacist know what is troubling him. Raising a
concern different from reacting to a question. A concern is the desire of
the client to state something.

4. Inform. Similarly as a concern, an informing interaction does not answer
to a question. The pharmacist wants to explain something even though
the client did not ask a question.

5. Interruption. In communication, there is a flow of interactions. Inter-
rupting a speaker can break this flow, and allows another participant to
become speaker. In natural speech interruptions are needed if there is not
set pace for listening and speaking. When there is moment in which you
get the option to speak, interruptions are not necessary.

Furthermore Van den Bosch et al. developed building blocks to describe
interactions. They developed: fact, interpretation, opinion, wish, importance,
argumentation and illustration to define dialogue. These blocks are used to label
interactions. Building blocks together with the types of interaction, describe an
interaction such that a computer can use it.

Using building blocks limits the writer to define interaction in his own words.
We can use strings to label interaction with extra information, allowing us to give
specific names to interactions. We refrain from using predefined building blocks
to define interaction. Labelled sentences better convey what an interaction
means.

11

2.3 Discussion
In the discussion after playing a case, the students give feedback for the phar-
macist. The two subjects of feedback are the client’s situation, and how the
pharmacist did.

Often students discussed the validity of their advice. They are wondering
if they were a good pharmacist in the conversation. Many first questions for
example, were similar to: “Was my advice the correct one?”. Other questions on
the clients situation where about the correct use of the medication, or alternative
medications to solve certain problems. In the example of the drug–induced sleepy
pilot, a simple solution was to give alternative medication. These questions are
not about communication, but about pharmaceutical knowledge.

Even though the subject of the training is to teach the students to com-
municate, they are focussed on their field of study. It is unclear if feedback
should be given on the pharmaceutical knowledge. Students might desire that a
conversation is correct according to the pharmaceutical context. On the other
hand, the training focusses more on domain specific communication then on a
student’s knowledge of the pharmaceutical domain.

Luckily students often recognize communicational problems in a conversation.
Because both the actors in the play are students, they both can reflect on
performance of the pharmacist. The mistakes they identified are often the subject
of the discussion. For example, a student did not find out that the woman had
sexual intercourse while not taking birth control pills, because he lets the client
talk about the weather. These mistakes are simple, but more hidden problematic
situations are found when relating to the theory. The problem of the pilot was
not found because the pharmacist did not ask if the client understood how the
medication is to be used. When asked, the pilot might have said something like:
“The problem is that I cannot be sleepy while working.” Which would make it
easy for the pharmacist to follow through with a solution.

2.4 Goals of Communication Training
The communication training course concludes with an exam, where an actor
plays the role of a client. Students perform similar conversations to those of the
training. The actor is instructed to not break character, and is not allowed to
give hints to the student. Moreover, the final exam tests the student’s capability
to have an effective conversation by meeting the goals. During the exam, teachers
score the student on five items.

• Understanding the client. By listening and having an open, inviting atti-
tude, the client can speak freely. The student must be capable of analysing
a question and decide how to address the situation.

• Informing clearly. The student knows how to inform a patient unambigu-
ously and in portions that the client can understand. The student checks
if a client has understood the information.

• Patient alignment. The student makes contact to the client, such that the
client is approachable and willing to listen. The student can reach the
solution in the clients specific situation. The style of communicating fits
with the client’s needs.

12

• Professionalism. The student can take the lead in the conversation without
upsetting the client. Furthermore, the student takes responsibility for the
conversation, but respects the autonomy and personal responsibility of the
client.

• Pharmaceutical therapy. The student apply the conversation models, gives
the essential information on characteristics of the medication. In the case
that a client is in a hurry, the student is capable of selecting the important
aspects to tell to the client. A student must be able to select a correct
treatment, in the case that a client comes for help without a prescription.
Lastly, a student should be able to incorporate the use of medication and
side–effects to identify, and seek for solutions to medicine related problems.

Schaafstal [13] presents three layers for diagnosing skill. The three layers
concern fulfilled tasks during execution, the knowledge of relevant local strategies
and the underlying domain knowledge. The communication training covers
both first and second layers. The tasks that students fulfil, relate to passing
the phases of a model. The class would discuss whether a student reached
all the goals accompanying the various phases, or that a student should have
been more thorough. For example, when a student should have asked more
about experienced side–effects. Local strategies relate to the ways of directing
communication and structuring a conversation correctly. When the conversation
deviates from the subject, the pharmacist should direct the conversation without
being rude to the client.

In gaming, some learning goals are more easily assessed than others. For
example, it is possible to assess a students professionalism throughout the con-
versation. We can define which interactions are generally unprofessional, and
accompany that interaction with a negative score on professionalism. More diffi-
cult it might be to assess if a student is listening such that a client feels invited
to speak freely. Listening is more of a passive attitude than a activity. What
we can assess, is whether the actions that follow after a clients interaction show
that the student has been listening and understands the client. We think that
a large portion of the learning goals can be trained and assessed in a serious
game.

2.5 Requirements for Defining Exercises
The translation from the training to a simulation require the definition of exer-
cises, which come with a couple of requirements. To be able to define exercises
similar to the practice during training, we incorporate the information from the
case description and medicine. A client can be simulated by defining answers to
questions and concerns. Another possibility would be to define agents that can
react intelligently based on the information of the client’s case.

The conversation can be built up by interactions. We require the following
information concerning a single interaction:

1. Utterance. We need a way to show interactions to the student. An
interaction’s utterance can be text or audio–clip. Perhaps accompanied
by an piece of film or human avatar to create an natural environment.

13

2. Time. If we have a conversation of a couple of interactions, we need to
know the ordering between them. We want to know which interaction is
valid at what time. This could imply a higher structure that defines when
an interaction is applicable.

3. Effect. Lastly, an interaction has (implicit) effect such that the conver-
sation will progresses further. The effect should be noticeable for the
participating agents, such that a next round of simulation results in new
interaction, and a student would know how to react to the new situation.

We will want to describe how a client reacts to questions, and raise its
concerns. The training simulation will hold information about the pharmacist
and client’s possible actions. Using these requirements, we can select models to
implement a scenario for training a pharmacy student.

14

Chapter 3

Comparing Frameworks for
Communication

Many developers of games with non playing characters encounter the same
problem of modelling conversation at some point in their development. The goal
is to create non-playing characters (NPC’s) that are interesting to talk with and
give realistic reactions to questions. To have a realistic conversation with an
NPC, he is required to react coherently and only utter sentences that add to
the conversation. Schwarz et al. [14] call these requirements the Rules of the
Communication Game. Many games feature conversations, but interacting with
NPC’s is not often the core of a game. In a game where conversations are a
side feature, it is desired that defining NPC’s requires little modelling and are
controllable in the sense that they say what you want them to say. We have
found three ways of modelling conversation and analyse the pros and cons of
each approach in the context of an educational game.

Section 3.1 explains the use of Haskell for code examples to follow. We
set the requirements for frameworks in section 3.2. Next, section 3.3 walks
through the example scenario. The sections 3.4, 3.5, 3.6 respectively discuss
frameworks using dialog trees, BDI models and domain reasoners in more detail.
We conclude our comparison in section 3.7

3.1 Preliminaries
To be able to make a comparison for software frameworks, we define them and
analyse them on a set of requirements. Comparing implementations require that
some variable aspects are set for all frameworks. We pick a single programming
language to implement the software in. Although arguable that some frame-
works might be easier to implement in some specific language. Using a language
that is specifically good in defining some kind of framework does not adhere to
the requirement that a framework should be easily readable. Secondly, compar-
ing implementations on their size would make less sense, if the programming
languages differ.

Another variable is the example exercise that we want to describe as a test–
case. We use a single example conversation for implementing every framework.
Every implementation describes the same scenario such that it does not affect

15

the comparison of the frameworks. We take a part of a scenario that was defined
by a teacher of the Pharmaceutical sciences master course as an example of an
exercise. It is a realistic prototype case that is written with education in mind.
The current example scenario uses multiple choice options for the pharmacist.
Our implementation does allow for alternative forms of assessment. Scalise et
al[15] identified ways of assessment. They define seven groups ranging from
true/false questions to giving a presentation. We could implement the two most
constrained types: multiple choice and selection/identification.

3.1.1 Haskell
To test alternative frameworks, we have programmed simple proof–of–concept
programs that show the implementation of a framework, and the definition of an
exercise in that framework. For these programs the language of choice is Haskell.
It is an advanced, general-purpose functional programming language. It has the
advantage that it can create concise software, which helps to show the concept
to the reader in code rather than its documentation. Furthermore functional
languages in general allow the programmer to create correct, type–safe software
due to the pure nature of functions.

Figures in the following sections contain source code. These examples use
conventional line numbering, which is reset for every section. Line numbering
should make it easy to differentiate the definition of one framework from the
other.

In the following sections, some code is excluded for brevity. Sometimes type
signatures are included to allow the reader to understand what the semantics of
a function is.

3.2 Technical Requirements for Software Frame-
works

As a result of the analysis of the training communication we describe our con-
versation as interactions between two virtual agents. One agent is our player
or, from an educational point, a learner. The player decides the actions of the
virtual agent for the pharmacist. The second agent is a non–playing character
(NPC). The computer decides or calculates the NPC’s actions.

Software quality is a well–debated issue.[16][17] The international organisa-
tion for standardization has a specific software quality standard named ISO/IEC
9126. The latest addition is the standard for defining a software quality, ISO/IEC
25030[18], which takes stakeholders into account. For comparing frameworks it
is at least required to have one or more measures from a quality model. The
following sections explain the concept which we use to compare the different
frameworks.

3.2.1 Control
To describe a simple conversation between our agents we need to identify the
actions and reactions of agents. In an educational game setting, a conversation
follows a scenario. That scenario is written by a scenario writer, such that it
allows the player to learn. For example, we want that a student could repeat

16

an exercise with the same reactions by the NPC. The NPC is required to act
unambiguous in multiple runs of an exercise. Having control over the NPC and
its actions is a technical requirement of a framework.[19]

3.2.2 Usability
Another technical requirement of software in general, is usability of the source
code. It concerns the ability to operate and learn about the framework. The user
of a software framework should be able to read the code, and understand what
it does without intensive study. Especially for a small system for conversation
the focus lies in creating a usable framework, rather then a framework that can
deal with every possible situation.

3.2.3 Maintainability and Adaptability
A framework should be maintainable and adaptable. In software quality main-
tainable means we can analyse the framework and proceed in correcting errors,
thus verifying the correct functionality. Adaptability is an important require-
ment since software in development often needs to change to new requirements.
For example, when the project is extended to other fields of conversation training.
If we want the framework to be adaptable to future definitions of conversation,
we need to use a maintainable and portable framework.

3.2.4 Generating Feedback
It is important that we can give feedback to the learner at any moment in or
after the conversation. During the conversation we collect or build up parameter
values that reflect the learners performance. To allow the computer to compute
feedback, the interaction chosen by the player modifies one or more parameters.
We define parameters and what it means to have a high or low value on that
parameter, to reflect how the player has done. For example, we could define
a contact–parameter to keep track of the learners ability to make and keep
contact throughout the conversation. If an interaction has a high value on the
contact–parameter, choosing that interaction means making or keeping contact
with the NPC. When scoring high on the contact–parameter, the system can
give feedback that the learner made contact with the NPC using a particular
interaction. The computer can show how the current option compares to other
options. For instance, if there is an earlier interaction in the conversation, which
makes contact, the learner will get feedback that it could have made contact
earlier. Furthermore, we can use the values on these parameters to create a
report. These reports allow comparison of conversations and discussion amongst
learners. An exercise that contains many interactions that modify the contact–
parameter trains the skills to make or keep contact with the other actor. If a
learner has difficulty in making contact, we can suggest an appropriate follow–
up task. Suggested tasks are a form of feedback that allows user–customized
learning.

17

3.2.5 Concise Implementation
A framework’s well–defined data structure uses concise Haskell data types and
functions to be expressive. We can compare the codes of the implementations
statically, by counting the number of data types defined that are needed to
implement a framework. Some frameworks use helper–functions to build up a
scenario in the framework, which can be compared by number and complexity.
Furthermore, we can analyse the number of constructors used when defining the
example scenario. By comparing these numbers, we compare the frameworks on
their structural complexity.

Creating a realistic and interesting conversation is the challenge of the writer
of a scenario. The writer provides the proper domain knowledge and context for
the conversation. It is preferable that the framework allows a clear and concise
definition of interactions to describe a scenario. Furthermore, the changeability
of the scenario should be taken in to consideration. An framework that allows
changeable scenario descriptions allows incremental development rather than
having to start over with development, every time an addition or change is issued.
The ease of use and adaptability of a framework is defined by the data structure,
and the functions that manipulate the data. Summarizing, we should compare
frameworks on: data structure, control over dialogue, amount of work to write
a scenario, adaptability of conversation and possibilities to encode feedback
parameters.

3.3 Interactions of an Example Scenario
We assume every conversation is built up from interactions and we use these
interactions as the starting point for every framework. Before we can define the
example conversation, we will have to define the interactions. Every framework
will use the same interactions. As seen in Figure 3.1, Interactions contain an
identifier and a sentence. The sentence can be used in a game to make the
interactions readable to the learner. For the sake of simplicity we define the
sentence as a String . In a serious game other media formats like film or an
animated avatar could be added. The identifier is a number in our case, but
for larger scenarios we use the identifier to encode more information. We use
the identifier to add hierarchical information about a rule. In the identifier, we
could specify:

1. The conversation. A conversation with a client without prescription, with
a sore throat can be described by "self-care-cough-syrup".

2. The phase of a conversation. For example: "introduction",
"explain–drug" and "conclusion".

3. An intention. I.e. "find-problem", "make-contact" or "summarize".

4. A particular skill that is used. Specific communication skills like
"open-question" and "reflect".

An interaction does not give enough information to calculate feedback for a
learner. We could extend each interaction with modifiers of certain parameters
which hold extra information about this specific interaction’s effect. To give

18

1 data Interaction = Interaction {
2 identifier :: Int ,
3 sentence :: String
4 -- parameterModifier :: SomeDatatype
5 } deriving (Show ,Eq)

Figure 3.1: Data type definition of interactions.

feedback on the performance of the player, we can use these parameter modifiers
to show the actual score.

3.3.1 Example: Miss Darcy Fetches Her Metformin 500mg
The interactions together form a piece of conversation between a pharmacist
and a client: Miss Darcy. Miss Darcy comes to get her "metformin 500mg".
The conversation starts with the first choice for the pharmacist. Each of these
options has an effect on some parameters, which can be excluded for brevity.
The first four options are:

1. This is your metformin 500mg.

2. Miss Darcy, here are your drugs.

3. Miss Darcy, what did your general practitioner tell you about metformin?

4. Is it correct that this is the first time you take metformin?

Every option results in a single return statement from the client. The iden-
tifiers for the client’s reactions are characters. The reactions to the first four
options are given the letters ‘a’ to ‘d’. If the pharmacist gives the metformin,
using the first interaction, the client reacts with ‘a’: "Yes, I assume so". The
pharmacist next has the option to answer with:

5. Miss Darcy, what did your general practitioner tell you about metformin?

6. Miss Darcy, is it correct that this is the first time you take metformin?

7. Did you know it was called like that?

8. I have the impression that you are absent-minded?

Defining a scenario with four unique sentences every option is infeasible
as a scenario is expected to have many interactions. If every option for the
pharmacist had four unique interactions, we would need four interactions per
option. And for each four actions of the pharmacist, we have a reaction by the
client. This results in a total number of specified interactions i of

i =
k∑

n=1
2 ∗ (4n)

19

where k equals the amount of choices for the pharmacist. A solution is to reuse
interactions in paths where they were not chosen before.

For example, when we choose the first option we are given the interactions
3 and 4 again. As option 5 is equivalent to option 3 and option 6 is similar to
option 4. Had the pharmacist chosen the second option, the client reacted with
‘b’: "Yes, thank you". The pharmacist could proceed with:

9. This is your metformin 500mg.

10. Miss Darcy, what did your general practitioner tell you about metformin?

11. Is it correct that this is the first time you take metformin?

12. I will tell you a bit more about the drug.

In the case of the third option in the first choice, the client would have said
‘c’: "Well, that I have to use this." Possible reactions of the pharmacist are:

13. Is it correct that this is the first time you take metformin?

14. Yes, that is correct, it is important for the diabetes.

15. Did he tell you how to use it?

16. So the general practitioner told you to use this. Did he also tell you why?

Lastly, if the pharmacist had chosen the fourth option, the client reacts with
‘d’: "Eh, yes.", and the next options are:

17. I have the impression that you are absent-minded?

18. I will tell you a bit more about the drug.

19. So the general practitioner told you to use this. Did he also tell you why?

20. So you haven’t used this before. Do you know why you are going to use
it?

Using the definition in figure 3.1, we define the interactions for the short
example scenario above as below. Figure 3.2 shows how the four possible opening
interactions of the pharmacist are encoded. The rest of the interactions are
excluded for brevity, but are defined in similar fashion. With the complete set
of interactions, we can start defining the conversation in the following sections.

Using the definition in figure 3.1, we define the interactions for the short
example scenario above as below. Figure 3.2 shows how the four possible opening
interactions of the pharmacist are encoded.

3.4 Dialog trees
In games, a dialog tree is often used to allow a player to direct the conversation
he is in[20]. The player reads dialogue and chooses their response from a limited
set of choices available to them[21]. Such conversation is scripted, like for a play
but with the difference that the player can choose on certain points what to say.
The player has control over the conversation, although the player is limited to

20

6 yourmetformin =
7 (Interaction 1
8 "This is your metformin 500mg.")
9 yourdrugs =

10 (Interaction 2
11 "Miss Darcy, here are your drugs.")
12 practitionertellyou =
13 (Interaction 3
14 ("Miss Darcy, what did your general "
15 ++ "practitioner tell you about metformin?"))
16 correctfirsttime =
17 (Interaction 4
18 ("Is it correct that this "
19 ++ " is the first time you take metformin?"))

Figure 3.2: The first four options in the example scenario, defined using the
Interaction constructor.

the predefined questions. A dialog tree is a branching description of questions
and answers.

We start by defining the data types to create a tree in Section 3.4.1. Section
3.4.2 defines the starting point of a scenario. In Section 3.4.3 we define the first
edges descending from the root. We define the branches in Section 3.4.4. In
Section 3.4.5 we conclude with an overview of the framework.

3.4.1 Trees
Figure 3.3 shows a visualization of a dialog tree. At the root, the first option for
the player, we can choose a direction in the tree. In the example we selected the
third option. Each of the four options has an interaction attached to it. The
edge that leads towards a new option, has an interaction by the NPC attached
to it.

Root

Option Option Option Option

Option Option Option Option

Figure 3.3: The structure of a dialog tree.

A tree consists of nodes which are connected by edges. Every node encodes
a (re)action by the NPC and every edge is an step, taken by the player. After

21

choosing an interaction, coupled to an edge in the tree, the NPC reacts with
the interaction as scripted in the next node. Dialog trees allow the player to
make decisions in a conversation and can lead to different outcomes. The dialog
tree has low computational cost, because at every point in the conversation the
player only has the option of the outgoing edges, and the reaction is directly
connected. As you can see in figure 3.4, the information is stored in nodes and
edges. The exception is the Leaf constructor of Node, which allows the scenario
to end in a reaction by the non-playing character. The actions of a player are
encoded in edges, and the reaction by the non playing character is encoded in the
nodes. When we encounter a Branch while traversing the tree, we can continue
with the conversation following the edges of that branch. While a Leaf denotes
the end of the current path and thus ends the conversation. Since our patient
reacts unambiguously to our pharmacists interaction, the Edge constructor only
links to a single Node. Our player needs to make a choice out of the list of edges
in a Branch. The linked nodes and edges together form a tree, using the Root
constructor. For simplicity, every conversation starts with a first action by the
pharmacist. The root of our tree is a set of options for the player. Finally we
can define a DialogTree type to be a tree of interactions for both the player and
non-playing characters.

1 data Edge a b = Edge b (Node a b) deriving Show

2 data Node a b = Branch a [Edge a b]
3 | Leaf deriving Show

4 data Tree a b = Root [Edge a b] deriving Show

5 type DialogTree = Tree Interaction Interaction

Figure 3.4: The core data types for describing conversation using a DialogTree.

A dialog tree’s scenario is fully scripted by the editor. The editor has full
control over the reactions by both the player and the NPC. Control over the
NPC’s personality is implicit, we merely describe the sequence of statements of
the agents.

To describe a conversation in a dialog tree, an editor has to give all the
nodes and edges. If you want to offer the player a real sense of choice, every
node should give multiple options, which would lead to an enormous number of
nodes and edges. Rosenfeld[22] stated that maintaining a dialog tree is difficult
because it may require transforming the entire tree as new interactions are
incorporated. Because each node connects to the following, the addition of a
new set of interaction to an existing tree, requires all connections involved in
that section of the tree to be changed. If we were to update a single Edge in
a choice between four, we change the parent–node to add the new and remove
the old Edge. Subsequently, the new Edge is given the link pointing to the
child–node.

3.4.2 Root
The root of the dialog tree is the unique starting point of the tree. Optionally a
conversation has a short introduction but we omit the introduction for brevity.

22

The starting point of our dialog tree is the first set of options for the player. In
Figure 3.5 we give a player the choice between four options.

6 scenario :: DialogTree
7 scenario = Root startingOptions
8 where startingOptions = [yourmetformin, yourdrugs,
9 practitionertellyou, correctfirsttime]

Figure 3.5: The first option for a pharmacist is encoded in the root of the tree.

From the definition of the scenario, we don’t get a lot of information about
the rest of the three. To know how broad or deep the tree is, we have to analyse
it in a tree traversal. A DialogTree is not very insightful from its definition, thus
lacking readability.

3.4.3 Edges
These four options are edges that make use of the interactions that we defined
earlier. For brevity, the import of the Interaction module is qualified as I . An
edge is nothing more than an Interaction and a pointer to the child–Node. This
translates to the action of the pharmacist and the following reaction of the
patient. In Figure 3.6 we see where each of the four options would lead the
conversation.

10 yourmetformin = Edge (I .yourmetformin) iassume
11 yourdrugs = Edge (I .yourdrugs) yesthanks
12 practitionertellyou = Edge (I .practitionertellyou) usemedication
13 correctfirsttime = Edge (I .correctfirsttime) yes

Figure 3.6: Encoding of the four options of the first choice for the pharmacist.

The edges in the first choice each link to one Branch or Leaf node. Branches
would encode an option for the pharmacist. In our example, the conversation
continues, so we define Branch nodes for the next interactions. Branch elements
encode an interaction and the next set of options from which the player can
choose.

3.4.4 Branches
At every turn for the pharmacist, we have a multiple choice of four options. A
Branch defines such an choice in the tree. A branch is defined by an interaction
of the client, combined with the four connected pharmacist interactions. In
Figure 3.7 we find the sixteen possible states that the player can reach, after
two choices. The large expansion of a dialog tree after only a few interactions is
evident.

Although we could reuse edges from the first choice, we have to define the
edges in Figure 3.8 to define the whole example. In total we have to define
sixteen edges and branches to define two choices in our conversation. Reusing

23

14 iassume = Branch (I .iassume)
15 [practitionertellyou, personalcorrectfirsttime, didyouknow , absentminded]

16 yesthanks = Branch (I .yesthanks)
17 [yourmetformin, practitionertellyou, correctfirsttime, abitmore]

18 usemedication = Branch (I .usemedication)
19 [correctfirsttime, fordiabetes, howtouse, practitionertellwhy]

20 yes = Branch (I .yes)
21 [absentminded , abitmore, practitionertellwhy , havntusedwhy]

Figure 3.7: Encoding Branches for the players’ second choice.

edges decreases the work for a writer but reusing edges might make it hard for
a scenario writer to keep track of edges. Definitions used in some state might
be scattered since some are defined for this state, and others are reused.

22 personalcorrectfirsttime = Edge (I .personalcorrectfirsttime) yes
23 didyouknow = Edge (I .didyouknow) Leaf
24 absentminded = Edge (I .absentminded) Leaf
25 abitmore = Edge (I .abitmore) Leaf
26 fordiabetes = Edge (I .fordiabetes) Leaf
27 howtouse = Edge (I .howtouse) Leaf
28 practitionertellwhy = Edge (I .practitionertellwhy) Leaf
29 havntusedwhy = Edge (I .havntusedwhy) Leaf

Figure 3.8: End–states for our example scenario in a dialog tree

3.4.5 Overview
We can now use this example scenario to give possible options to the player, and
allow the computer to react to the player’s choice. The conversation is built up
from nodes and edges, for the player and the NPC respectively. It is a direct and
uncomplicated data structure that allows a reader of a tree definition to follow
the conversation. We can link edges and nodes together, and that is all there
is to it. The structure restricts the writer to alternate actions by the player,
and the NPC’s reactions. Still building the tree can be error prone because the
writer has to define the edges and nodes manually. The writer of a scenario
should avoid cycles. Cycles in human conversation make no sense, it is like both
agents forgot a piece of their conversation and use exact sentences again. As a
tree gets larger, it is more difficult to detect cycles by hand. Luckily, there are
algorithms that traverse a tree for detecting cycles. A depth–first traversal can
show the writer cycles while developing an exercise.

A scenario defined using a dialog tree is difficult to adapt because of the
datas tructure. Major changes to the scenario are problematic. For example, if
we would allow the client to react differently based on some variable, we need
to introduce a second option in the definition of edges. Changing the definition
of Edge results in having to change every usage of Edge.

24

All the interactions in the tree should be reachable from the root. Redefining
the flow of interactions requires tree transformations such as replacing a path
of interactions and correctly connect the path to the existing tree. Keeping
deprecated interactions used in an earlier version of the tree intact, is not an
option, because every edge and node in the tree is reachable from the root.
A disconnected sub–tree is unreachable from the root. A tree transformation
requires edges to child–nodes to be reset. Resetting them by hand is error prone
because a variable name is easily misspelled.

Say we were to change the reaction on the fourth option in the first choice.
This is where the pharmacist asks "Is it correct that this is the first time you take
metformin?" and the patient responds with "Eh, yes". If we were to redefine the
interaction for the patient to say "Yes, but I know all about it.", we replace the
old interaction by the new. The pharmacist will want to act differently to the
patient’s more confident reaction. For example, a new choice could be "Can you
explain how you would use the metformin?". After the patients reaction change,
the set of options for the pharmacist is reviewed to match the new reaction. We
have to redefine the Branch element, with the corrected set of options. The
reaction that we changed is reused elsewhere in our DialogTree. On all places
where it is reused, we have to check whether the conversation should change too,
or stay as it was. We might be able to reuse the adapted interaction, but we
might have to keep the old one intact.

Lastly, we need information to give feedback to the learner at the end of
the conversation. Outcome measures are values that show how good the goals
of a conversation are met. We can define how good every choice scores on the
outcome measures, and sum these at the end of a conversation. The tree encodes
all possible conversations. We need to keep track of the visited nodes in a tree,
to encode the current conversation. Detailed feedback information for the player
can be given to choice points or sub–trees. We compute the feedback by keeping
track of the visited nodes and collecting their feedback information.

The desire of detailed feedback causes interactions to be less applicable for
reuse. When we use an interaction more than once in the conversation, the effect
often differs. Similarly, an interaction at two different points in the conversation
will often have a different feedback information. At one of those places the
interaction is a more preferable option. If we want to have detailed feedback,
we are stuck with defining a large tree of unique interactions.

Concluding, defining a conversation in a framework using a DialogTree is
straight forward. Its data type definition is very readable, it is not complex
and allows analysis. A conversation is somewhat maintainable, but problems
can arise when interaction reuse is common. There is no real overview of the
reuse of interactions. Although we would want to reuse interactions where
possible as it minimizes the size of the tree, for maintainability reasons, we
would prefer minimal use of interactions at multiple positions. The amount
of work is increased when we want to have a high grade of maintainability.
Using a DialogTree requires to choose between a large amount of work and
maintainability, while it scores decently on the other requirements.

25

3.5 Belief, Desires, and Intentions model
A Belief, Desires, and Intentions model (BDI) is an intelligent agent model that
selects the interactions of agents on beliefs, desires and intentions[23]. It is a
well–developed model, used in many (multi–) agent–systems. In the setting of a
communication game, BDI has been used in a game for sales dialogues[24].

Solimando et al.[25] and Sulzmann et al.[26] have proposed designs for BDI
in Haskell. Both give suggestions to the definitions of agents, but don’t give a
complete and usable implementation.

Beliefs

Desires

Goal

Goal

Goal

Intention Event

Figure 3.9: A map of connected terms, from desires to events.

The BDI framework is based on agents that act according to their beliefs
and desires. An agent’s actions are called events in the framework. Figure 3.9
shows the process to compute an event for an agent.. Using the beliefs, we can
draft goals from desires. One of the goals becomes the current intention. The
intention leads to an action for the agent. Following sections will discuss these
concepts in more detail, as we define a working BDI framework to compare it
with other frameworks.

3.5.1 Events
Events are all the possible actions an agent can possibly execute. In a BDI frame-
work, the interactions of the client and pharmacist in a conversation translate
to events for our agents. An Event , as defined in 3.10, is a pair of an interaction
and a function that modifies our agents. When an agent acts out an event, the
sentence of the interaction is printed, and the modifier is applied to the agents
in the conversation. In theory, an agent should have sensors to detect events
and interpret those events to update itself. One could argue an agent should
manipulate itself according event, but in our case of conversing with two agents
we define the events as interpreted by the receiving agent. This definition gives
all freedom to the modifier to modify agents.

3.5.2 Beliefs
An agent has a collection of beliefs, which are facts and rules. A fact can
be seen as a variable which has the value true or false, and a rule can be a
logical implication. These facts and rules define what the agent thinks is true.
Furthermore, the collection of beliefs can change during the conversation.

26

1 data Event = Event {
2 interaction :: Interaction,
3 modifier :: Agent → Agent
4 }
5 -- instances of Show and Eq omitted

Figure 3.10: Definition of Event data type definition.

6 data Belief = Fact String
7 | Or Belief Belief
8 | And Belief Belief
9 | ¬Belief

10 | If Belief Belief
11 deriving (Show ,Eq)

12 memberBeliefs :: [Belief]→ Belief → Bool
13 memberBeliefs bs b = or $ Data.List .map (flip memberBelief b) (applyIfs bs)

14 applyIfs :: [Belief]→ [Belief]

15 -- belief checking
16 memberBelief :: Belief → Belief → Bool
17 memberBelief (Or x y) b = memberBelief x b ∨ memberBelief y b
18 memberBelief (And x y) b = memberBelief x b ∧ memberBelief y b
19 memberBelief (¬a ′) b = ¬ (memberBelief a ′ b)
20 memberBelief (Fact a) (Fact b) = a ≡ b
21 memberBelief (If a1 b1) (If a2 b2) = memberBelief a1 a2 ∧ memberBelief a2 b2
22 memberBelief a b = a ≡ b

Figure 3.11: Belief defined as a logical language.

Our definition of beliefs, in Figure 3.11, is minimal and could be extended
to have temporal operators like: necessarily and possibly. We can define facts
and rules using the Fact and If constructors respectively. We can negate beliefs
with ¬· and combine two beliefs using the Or and And constructors. Secondly,
we define membership of a certain belief in a collection of beliefs. Every agent
maintains a collection of its beliefs. Membership combines facts and implication
rules to deduce new beliefs, takes negation in account and respects the And and
Or operators, while checking an belief to be part of an agents beliefs.

3.5.3 Desires
A desires defines the connection between a belief and an event. An action should
only be selected for execution when the agent beliefs that doing so is is useful
and feasible. When an agent believes that a desire will have a positive outcome,
the desire will be selected as a goal.

Figure 3.12 shows the definition of the Desire data type and an example
desire. A Desire is the maps a Belief to an Event . The belief value of a Desire
is the requirement for the desire to be selected as a goal. In the example we
define when the event for the I .iassume interaction becomes a goal, by defining

27

23 data Desire = Desire Belief Event
24 deriving (Show ,Eq)

25 exDesire = Desire (And (And (Fact "client-wants-drug")
26 (Fact "pharmacist-give-drug"))
27 (¬(Fact "friendly-contact")))
28 (Event I .iassume (addFact "client-has-drug"))

Figure 3.12: Desire data type definition and an example desire.

the required belief.
Every time an agent is asked (or allowed) to interact, it will use the agent’s

desires to select goals. We can define a function that selects goals from desires.
A function allGoals would have the type [Desire]→ [Belief]→ [Desire]. The
function returns a list of applicable goals, but we want a single Event to be
executed.

3.5.4 Intentions
An agent’s intention is the event which is believed to have the best result.
Because the selection of goals often will not lead to a single event, we need to
define how to select the intention of an agent from a list of goals. When relating
to the agent that wanted to return home, it might have two reasons to go home.
It might believe that it can go home for recharging and think that at home it
would be safer. To see how which goal is most important for an agent to execute,
we build up a weighted list. The weight is equal to the number of memberships
of a belief in the agent’s beliefs. In Figure 3.13 we define how the weighted list
is created. If the Belief of a desire is member of the agent’s beliefs we add the
goal to the list, or if it is already in the list we increase the weight by one.

29 allGoals ′ :: [Desire]→ [Belief]→ [(Int ,Event)]→ [(Int ,Event)]
30 allGoals ′ [] acc = acc
31 allGoals ′ ((Desire b e) : ds) bss acc = allGoals ′ ds bss (
32 if memberBeliefs bss b
33 then (addNumList e acc)
34 else acc)
35 where addNumList :: Eq a ⇒ a → [(Int , a)]→ [(Int , a)]
36 addNumList x [] = [(0, x)]
37 addNumList x (z@(i , y) : ys) | x ≡ y = (i + 1, y) : ys
38 | otherwise = z : (addNumList x ys)

Figure 3.13: Function for building a weighted list, which encodes how strongly
a desire is believed to be a goal.

By sorting the returned list of allGoals ′ in descending order on the value of
its weight, the first equally weighted goals are most important. We remove all
the goals that have lower weight than the first item in the sorted list. If there
is one goal left, it is the selected intention. For example, if we have three goals

28

in front of the sorted list of the same weight, we could accept all of these as
intentions. If we accepted multiple goals in the resulting list, we can take an
arbitrary goal as intention. The agent can execute the event of the intention
that is selected.

3.5.5 Agents
Figure 3.14 shows a definition of agents. We define the agent’s beliefs as a list
of Belief items. The agent’s desires is a list of Desire values.

39 data Agent = Agent {
40 beliefs :: [Belief],
41 desires :: [Desire]
42 } deriving (Show ,Eq)

Figure 3.14: The BDI definition of an agent.

Specifying agents in a BDI framework requires an investment of effort because
besides defining interactions, it involves defining beliefs and desires for every
agent. The beliefs should enable desires to become goals, and the events of the
desires need to adapt beliefs and/or desires such that new interactions come in
to play. Effort is needed to have fine control over the conversation, because the
flow of changing beliefs should be restricted such that desires only become goals
when required. To keep the conversation going, we have to define the desires
such that the continuity is guaranteed. In the example code below, in figure 3.15,
we can see how lengthy it is to encode the first choice of the pharmacist. The
first four options are easily described with just And , ¬· and Fact constructors.
The helper functions addFact and remFact respectively add and remove values
from the agents’ beliefs. For brevity, I have excluded the second choice for the
pharmacist as well as the whole definition for the client.

We describe a single desire for every interaction in the conversation. The
Belief data type allows us to define two beliefs which lead to the same event,
using the Or operator. Furthermore, complex beliefs can be build with the And ,
which is used extensively in the example. Although the definition for a couple
of interactions might seem extensive, we don’t define more than the desires
and beliefs. When defining a large conversation, BDI might show efficient and
expressive.

Let’s apply a change in the options for the pharmacist. We want to give
the pharmacist the option to ask the client to focus on the conversation by saying:
"I have the impression that you are absent-minded?". Figure 3.16 shows
how we add a desire. Adding the desire to the pharmacist is easy, we take the
previous desires and use the constructor of lists to add another desire. Next,
we want to make sure that the desire is selected to be a goal, by setting the
"client-absent" fact. For this we define a function that finds a desire with
the right interaction, and adds the setting of a fact to the event of that desire.
Dynamically changing agents is possible, but the writer has to make sure a new
desire will become a goal. Moreover, every modification would require an change
for the reacting agent. After adding the new interaction, the client needs to
react to "ask-absent".

29

43 pharmacistDesires =
44 [(Desire (And (Fact "pharmacist-has-drug")
45 (¬(Fact "client-has-drug")))
46 (Event I .yourmetformin
47 (addFact "pharmacist-give-drug")))
48 , (Desire (And (Fact "pharmacist-has-drug")
49 (¬(Fact "client-has-drug")))
50 (Event I .yourdrugs
51 (addFact "pharmacist-give-drug"
52 ◦ addFact "friendly-contact")))
53 , (Desire (And (Fact "ask-medical-information")
54 (And (¬(Fact "client-has-drug"))
55 (¬(Fact "ask-generalpracticioner"))))
56 (Event I .practitionertellyou
57 (addFact "ask-generalpracticioner"
58 ◦ remFact "ask-medical-information")))
59 , (Desire (And (Fact "ask-medical-information")
60 (And (¬(Fact "client-has-drug"))
61 (¬(Fact "ask-firsttime"))))
62 (Event I .correctfirsttime
63 (addFact "ask-firsttime"
64 ◦ remFact "ask-medical-information")))]

65 pharmacistBeliefs = [(Fact "pharmacist-has-drug")
66 , (Fact "ask-medical-information")]

67 pharmacist = Agent pharmacistBeliefs pharmacistDesires

Figure 3.15: Defining the example conversation for one of the agents in BDI
framework.

68 pharmacistDesires ′ = newDesire : pharmacistDesires
69 where newDesire = Desire (Fact "client-absent")
70 (Event I .absentminded
71 (addFact "ask-absent"))

72 addFactDesire :: I .Interaction → String → [Desire]→ [Desire]
73 addFactDesire [] = []
74 addFactDesire i f (d@(Desire b e) : ds)
75 | (interaction e) ≡ i = d ′ : ds
76 | otherwise = d : (addFactDesire i f ds)
77 where d ′ = Desire b (Event i ((modifier e) ◦ addFact f))

78 pharmacistDesires ′′ = addFactDesire I .correctfirsttime
79 "client-absent"
80 pharmacistDesires ′

81 pharmacist ′ = Agent pharmacistBeliefs pharmacistDesires ′′

Figure 3.16: Adding an option to the pharmacist’s desires.

30

3.5.6 Conversation
To allow two agents to communicate, we use the Conversation data type as
defined in Figure 3.17, to distinguish the two actors. Furthermore we keep track
of the interactions executed in the conversation, in a list of executed events.
As a convention, we assume the first agent is active, and the second reactive.
When we want the conversation to proceed, we can take the intentions of the
active agent. If we swap the two agents after an event has happened, we can
recursively use this function to simulate a dialogue until an agent has no goals
to achieve or events to intend. Using the pharmacist definition given earlier and
the omitted defintion of the client, we define a conversation. In our conversation
the pharmacist starts the conversation. The list of events of this conversation is
empty, which translates to the situation where the agents do not know anything
about each other.

82 data Conversation = Conversation {
83 active :: Agent ,
84 reactive :: Agent ,
85 events :: [Event]
86 } deriving Show

87 swapAgent :: Conversation → Conversation
88 swapAgent c = c {active = reactive c
89 , reactive = active c}
90 conversation = Conversation pharmacist client []

Figure 3.17: Definition of Conversation for a BDI framework between a player
and a NPC

3.5.7 Overview
BDI allows the editor to enrich interactions with the effect that they have on
the agents. This possibility comes with the cost to define sometimes elaborate
logical statements as beliefs and modifier functions in events. For a single choice,
and a follow–up reaction we have defined more than ten different beliefs that are
then coupled with their respective events to create goals. The higher structure
between interactions is defined loosely in desires, which makes them less readable
compared to dialog trees. It requires more effort to define beliefs, desires and
intentions for a whole scenario than in a dialog tree, but a framework based on
a BDI model is better suited for the reuse of interactions.

In some ways the framework is not optimal for our specific problem. We need
to define agents for the client and pharmacist, even though the pharmacist is not
simulated but is controlled by the player. We have no need for the selection of an
intention of the pharmacist, as we want the player to pick an intention from the
goals. Moreover, the framework does not restrict the agent for the NPC to have
at most one intention. The client agent needs to come up with a single intention,
while the pharmacist should return four goals to allow the player to choose from.
We have some restrictions to our problem that could make our problem easier
to deal with, but every time an agent is asked to interact, functions are used

31

to select goals and weigh them. We define desires for an agent, most of which
are only applicable in one or a few places of the conversation. Although, that
a desire is applicable in a specific phase, the desire will be checked for goal
selection throughout the conversation.

Modifying agents of a BDI model is quite challenging, every change in in-
teractions has to be implemented in the beliefs and desires. It is the editor’s
task to make sure that the weight of that goal is the highest at some point in
the conversation. All these changes involved in a single change of the scenario
make it error prone for an editor to redefine conversation in a BDI framework.
Maintaining and modifying existing agents is hard since all the information is
scattered over the agent’s beliefs and desires.

An agent possibly has multiple goals that weigh equally, in that case an
intention is chosen arbitrarily by the system. Because of this non-deterministic
uncertainty, we cannot predict how the feedback is built up. The problem with
giving feedback on a non–deterministic path of a conversation is that fine control
is lost. Since we cannot predict the outcome of a run of a conversation, we cannot
be sure what feedback is actually built up, or is not built up. If we want to give
good feedback in every possible outcome, we could give feedback on the beliefs
of the agent at the end of the exercise. Other ways to give localized feedback,
feedback that discusses a specific part of the conversation, could be to look at
the beliefs. Beliefs are often (re)used and changed extensively throughout the
conversation, which makes giving localized feedback difficult. We can connect
values on outcome measures to events and analyse what the scoring of the player
is, relative to the best and worse case scenario. Using list of events that have
happened, we can compute feedback, but for a comparison with the best and
worst case scenario we would have to compute all possible events. It is costly to
compute all possible alternative events, since it involves calculating the goals at
every agent’s event of the conversation. Overall the framework is effective to be
used in a serious game.

3.6 Domain reasoners
The domain reasoner framework is based on the mathematical view on problems.
A framework for domain reasoners specifies a problem, and rules that rewrite
the problem towards a solution[27]. The problem is described using a term. The
mathematical term is often an equation, for example. In communication we
should describe the current state of the conversation. In our scenario the client
and pharmacist try to reach their goals, while talking. The interactions between
client and pharmacist are the transformations on the conversation state.

Using a domain reasoner we develop interactions that affect the conversation.
Interactions in the domain of communications become rewrite rules[28], described
in a domain specific language.[29] Every rule has an effect on the conversation
state, thus a rule solves a part of the problem. The utterances of the player
and NPC are rules and rewrite the conversation state. The higher structure
of transformation rules is described in a strategy. Strategies can solve whole
problems, or in our communication domain can complete a whole conversation. A
visualization of the strategy structure might look like that of a dialog tree, except
that there is no limitation to how many edges a node must have. Furthermore,
the transformations on a state are similar to modifiers of agents in BDI.

32

First we define the state in Section 3.6.1. In Section 3.6.2 we define ruled,
which rewrite the state. Section 3.6.3 defines a strategy which uses the rewrite
rules. An overview and conclusion is given in Section 3.6.4

3.6.1 State
A domain reasoner applies rewrite rules to the matter of a problem. In mathe-
matics for instance, the problem matter is an equation. We need to define the
problem matter of a conversation, which we name as a state.

The knowledge of what is asked and answered is built up in our state. While
the player and NPC are interacting, knowledge is shared via utterances. A
communication state should capture the knowledge that is built up during a
conversation. Furthermore, we define parameters that describe the state of a
client, and the learners scoring on outcome measures. The state can contain all
information that is built up in a conversation. For example, we could define how
the player has affected the relation with the NPC in specific client parameters.
It is very possible that it is desirable to build up feedback information that can
be used at any time of an exercise to allow the learner to reflect on its choices.

1 data State = S
2 {knowledge :: Map String StateValue
3 -- , clientParameters :: SomeDatatype
4 -- , learnersGoals :: SomeDatatype
5 } deriving Show

6 data StateValue = Inactive
7 | Active
8 | Completed
9 deriving (Show ,Eq)

Figure 3.18: domain reasoners definition of state.

In Figure 3.18, we define a mapping from Strings to StateValue elements. The
state value elements contain pieces of knowledge from interactions. For simplicity,
we comment the suggested parameters that could give more detailed feedback.
The parameters allow for the comparison of rules on how they affect the client–
pharmacist relation and how a learner scores when using a rule. This definition
allows us to define the example scenario without feedback. The definition for
StateValue allows us to define three states of knowledge. An mapping to an
Inactive value means that a subject is not yet discussed. If the value is Active,
a question concerning the subject is asked. And lastly, Completed knowledge
mappings are recognized as a sub–problem that is solved. If there is no mapping
for a specific string, we say that it is the same as Inactive.

Figure 3.19 shows an state for an conversation. In the example the client
has been introduced to the pharmacist, but he did not receive the medicine yet.
Currently, the pharmacist is giving information on how to use the medcine. This
is just one definition of the state, a domain reasoner does not restrict us to use
a particular definition.

33

10 currentState = fromList [("told-name",Completed)
11 , ("received-medicine", Inactive)
12 , ("received-usage-info",Active)]

Figure 3.19: Some example state values.

3.6.2 Rules
Rules are used to modify the state values such that they reflect the conversation.
Figure 3.20 shows the Rule data type definition, and a helpful wrapper to lift the
rule constructor to the strategy data type. Rules are interactions with a guarding
and modifying function. A guarding function checks if a rule is applicable in
some version of the domain state. It is used to reduce the collection of all
interactions to those that are valid options for the pharmacist in the current
situation of the conversation. The modifier encodes the effect of the interaction
on the state.

13 data Rule = R {
14 interaction :: Interaction,
15 guard :: State → Bool ,
16 modifier :: State → State
17 }

Figure 3.20: Definition of a rule that wraps an interaction.

We can define Rules as in Figure 3.21. A modifier updates knowledge in the
state. These functions have the type State → State. A helper function such
as setActiveKnowledge activates a state value in the knowledge map. We can
chain functions that update the state, using the composition function (◦) from
the Haskell prelude. Similarly we can define guards using helper functions. We
encode all the knowledge needed to find a single rule in every possible state.
Given an extended state definition for feedback purposes, the rules require more
extended modifiers.

3.6.3 Strategy
In Figure 3.22, we define a small domain–specific, combinator language to de-
scribe the strategy. It is a subset of the language defined by Heeren et al.[30][31]
To create a strategy for the example conversation, we should be able to sequence
strategies, and allow choice between two strategies. We use them to implement
one interaction from the pharmacist followed by a reaction from the patient.
We can lift rules into the strategy language, by wrapping them in the Atomic
constructor.

Using the earlier defined rules, we can define some strategy of sequences or
choices of rules. We could sequence every path together and put choices where
the pharmacist is given a choice between interactions. This would result in a
tree–like structure, which is similar to a dialog tree. We improve on the tree–like

34

18 rYourmetformin = R I .yourmetformin
19 (λ .True)
20 (setActiveKnowledge "Give-Metformin")
21 rYourdrugs = R I .yourdrugs
22 (λ .True)
23 (setActiveKnowledge "Give-Drug")

24 rIassume = R I .iassume
25 (isActiveKnowledge "Give-Metformin")
26 ((completeKnowledge "Give-Metformin")
27 ◦ (setActiveKnowledge "Assume"))
28 rYesthanks = R I .yesthanks
29 (isActiveKnowledge "Give-Drug")
30 ((completeKnowledge "Give-Drug")
31 ◦ (setActiveKnowledge "Thanks"))

Figure 3.21: The first interactions of the example scenario.

32 data Strategy = Strategy :?: Strategy
33 | Strategy :|: Strategy
34 | Fail
35 | Succeed
36 | Atomic Rule
37 deriving Show

Figure 3.22: Basic strategy data type definition for combining rules.

structure by using the fact that an NPC has no choice to make. Figure 3.23
shows how we can define the scenario. We pair an interaction of the pharmacist
with an interaction of the client. Since between those two interactions, no choice
can be made, we can fuse their guards and modifiers as if it is one rule. With
foldChoice we can fold rules such that they are combined as a choice.

38 foldChoice :: [Strategy]→ Strategy
39 foldChoice = Prelude.foldr (:|:) Fail

40 strategy = foldChoice [(sCorrectfirsttime :?: sYes)
41 , (sYourmetformin :?: sIassume)
42 , (sYourdrugs :?: sYesthanks)
43 , (sPractitionertellyou :?: sUsemedication)]

Figure 3.23: Defining a scenario strategy for the example.

Heeren et al.[32] have discussed the need and the means to adapt a domain
reasoner in a mathematical setting. Fortunately, these means transfer to the
communication domain. To add an extra part of a dialogue, a strategy is easily
extended. To change an existing strategy, the ease of changing a scenario would
depend on if it is a change to the state or just the rules. While changing one rule

35

would have little impact on the rest of the strategy, changing many can be very
involved. Changing the state requires that the writer of the conversation reviews
all existing rules. Adding a new choice option to a conversation shouldn’t be
hard since a new rule does not affect the existing rules.

For example, we add a new interaction pair extending a choice option. We
can define two new rules, pair them and add them to the strategy without
conflicting with the original strategy. In Figure 3.24, we add a new pair to an
existing strategy. Since every rule is guarded and modifies the state in its own
way, we can easily add or remove options without interfering with other parts
of a conversation.

44 sSomeInteraction = Atomic $ R someInteraction (guardFunction) (modifiers)
45 sSomeReaction = Atomic $ R someReaction (guardFunction ′) (modifiers ′)

46 strategy ′ = foldChoice (sSomeInteraction :?: sSomeReaction) : strategy

Figure 3.24: Adapting a domain reasoner: adding part of conversation to the
strategy.

3.6.4 Overview
The amount of control is up to the writer of the exercise, because the definition
of the state and rules don’t limit the writer. The more control you want, the
more detailed the state will have to be and the rules that will modify the state
accordingly. Like in the framework based on a BDI model, the more effort
invested in developing the exercise, the more control the writer will have.

Defining feedback for a scenario in a domain reasoner is no problem. We
can attach values of outcome measures, like we would in a BDI framework.
Furthermore, we can take a strategy and use the, at some moment, applicable
rules to give feedback on that specific option. We could add custom feedback on
certain rules in the conversation for localized and detailed feedback. The editor
is given freedom to define the feedback that is desired.

A domain reasoner framework needs some investment in the definition of
the correct state variables, but once the state is defined the framework brings
efficiency and adaptability for rules. We define high and low level structure with
strategies and guards, respectively. Because of the well–structured exercises,
a domain reasoner’s feedback generation is best of the three frameworks. A
domain reasoner framework is readable, maintainable and changeable due to its
concise definition. Concluding, a framework based on a domain reasonermeets
the technical requirements.

3.7 Comparison
We have defined the three ways of describing conversation such that we can
compare them on the following aspects. In an educational conversation simu-
lation, we need to control which options are suggested to the learner and how
the NPC reacts. If we can control which options are suggested when, we define
that as fine control. We look for fine control over the conversation instead of

36

coarse because we want to define precise conversational exercises. The finest
control possible is where the writer can manipulate every choice at any time
in the conversation. Coarse control means that the writer directs the flow of
conversation by indirection, losing direct control. A framework that requires
many definitions to implement a scenario is less desirable than a framework that
allows concise definitions. If changing existing exercises, scenarios or interactions
require little work, it scores positively on the maintainability of the framework.
A highly maintainable framework has separate definitions of interactions, and
their structure. Lastly, we compare the frameworks on how we could compute
feedback. All frameworks require enriching interactions with extra information
to give feedback, but the way we are able to compute feedback is different.

Framework Control Usability Maint. & Adapt. Feedback
Dialog tree + + – ±
BDI ± – ± ±
Domain reasoner + ± + +

Table 3.1: Comparison of three frameworks on control, usability, maintainability
& adaptability and feedback generation.

Table 3.1 shows how the frameworks scored on the requirements. The symbols
show how frameworks compare to each other. A ± symbol indicates a framework
scored average, – and + indicate a lower and higher score, respectively.

3.7.1 Control
A dialog tree allows you to build a tree of node and edges, giving the editor full
control. The control of domain reasoners and BDI models require more elaborate
definitions to control the conversation. Both frameworks have a state data type
that is modified by functions that are combined with an interaction. The reason
that the domain reasoner scores higher is that the state of a domain reasoner
is a single entity, whereas the BDI defines a state per agent. Furthermore, a
domain reasoner finds applicable rules from the current strategy, based on the
state. The BDI model defines a state per agent, and requires us to define beliefs
and desires. From the beliefs and desires follows a list of goals, and one goal is
computed to be executed.

We defined our dialog tree such that the player always has a list of choices,
and the NPC precisely one. In a BDI model we have to put effort in ensuring that
the NPC always has precisely one goal. Domain reasoners puts no restrictions
on the amount of rules that are applicable, but we can define a strategy such
that the NPC’s reaction is coupled with the player’s.

3.7.2 Usability
Although all frameworks are not too elaborate to read, understand and use, we
consider a dialog tree to be most user–friendly. Interactions can be used without
extra effort in edges and nodes and the whole conversation is easily read from
the definitions. As said earlier, we invest extra effort per interaction by defining
beliefs or guards, and a modifier function for BDI models and domain reasoners,
respectively. The concepts that form a sequence of interactions require extra

37

information. In BDI models, we define a single collection of desires per agent.
We use a logical language to describe the sequence of interactions. Domain
reasoners allow us to define rules that are applicable to the state. The editor is
not restricted to a logical language when defining the state and guards. Moreover,
we can use strategies to define higher structures in the collection of rules. BDI
is less usable due to its use of logic, and lack of higher structure when compared
to the domain reasoner.

3.7.3 Maintainability and Adaptability
When adding new or updating erroneous interactions, we find that the dialog
tree and the BDI models are not easily adapted. Changing a single interaction
in a dialog tree is straight forward, but making changes in the sequence of
interactions involve more effort. As showed earlier, changing a desire in a BDI
model also involves the desire that lead to and from that desire to be updated.
When having a conversation with two agents, this involves the updating of desires
of both agents. The continuity of the conversation lies in desires, being selected
as goals, and allowing following desires to be selected. It is easier for an editor
to change a domain reasoner, because a strategy can be manipulated easily and
new (sets of) rules can be added without conflicting with others. Furthermore,
changing a guard or modifier only affects a single rule, thus allowing changes to
be made without concern to rest of the strategy.

3.7.4 Generating Feedback
Giving feedback using a dialog tree is difficult, since the framework’s scenario
description needs to be enriched with custom feedback on every path. We can
build up feedback for every option of the pharmacist. Frameworks based on
BDI models and domain reasoners allow the generation of feedback based on
the values of the agent and state, respectively. Comparing interactions on these
parameters, can be used to show localized feedback to the player. The paths
in a conversation are not set in a BDI model, we cannot give detailed feedback
based on a single path in the conversation. A domain reasoner combines the
possibilities of dialog trees and BDI models. It allows the editor to add feedback
parameters in the definition of the state, and compare interactions similar to a
BDI model. Furthermore, we can define feedback on (sub–) strategies, similar
to dialog trees. Adding extra information about the conversation is as simple
as enlarging the state, and allowing rules to modify that state accordingly. A
domain reasoner offers the most possibilities to generate feedback.

3.7.5 Concise Implementation
The amount of work that the editor would have to invest to describe a conver-
sation differs greatly. All frameworks require the editor to write the actions
of the players. When using a dialog tree, the editor has to map the actions
to nodes and edges to create the conversation. In BDI, the editor defines the
beliefs and desires, and defines how actions affect beliefs and desires of an agent.
Furthermore, effort is required for restricting the NPC in one goal, and making
sure the player can be presented an set of possible intentions. In a domain
reasoner, the editor defines the state parameters, and how actions modify these

38

parameters. Moreover, the editor enrich the actions with guarding functions
that define in what state an action is applicable. These enriched actions are
then combined into a strategy.

Framework Data. Const. Implementing a scenario
Functions Const. Combined

Dialog tree 3 4 0 17 17
BDI 5 9 7 125 132
Domain reasoner 5 9 55 1 * 56

Table 3.2: Counts of data types and their constructors, and the number of helper
functions and constructors used to define the example scenario.

Table 3.2 shows the counts of data types, constructors, helper functions and
constructors used for the three frameworks. For the size of the table, the headers
are shortened. The first row is the count of data types that define a framework,
with the header ’Data.’. Next under the name ’Const.’, we count the number
of constructors in the data types from the first row. Third from the left is the
number of functions that were used in defining the example scenario. Forth
states the number of constructors to define the scenario. Lastly, for ease of
comparing, the summed value of the third and forth values.

When we compare the number of data types and constructors needed to de-
fine the framework, a dialog tree is less complex than the other two. BDI models
and domain reasoners are equal in numbers which means they are similar in the
complexity of their data structures. The number of functions and constructors
used to define the example scenario differ greatly between the frameworks. The
lesser complex framework is again the dialog tree, the definition of edges and
nodes requires no helper functions and only seventeen constructors. The frame-
work using a BDI model is most complex, because it uses many constructors
to define the desires. A framework that delivers domain reasoners uses helper
functions extensively, but is less complex overall when compared to the BDI
framework.

Moreover, we can compare the complexity of the frameworks by looking at
the functions that allow us to use the scenario description in an application.
These are different from the helper functions to define scenario, since they allow
the scenario to be used in a client application, for example. For using a dialog
tree, we could make do with a common traversal function that follows the edges
to the leafs of the tree. Again the dialog tree is less complex compared to the
other two. The BDI model uses functions to find goals from the beliefs and
desires. On top of that, we need to facilitate the modification of an agent beliefs
and desires. Similar to functions in BDI, a domain reasoner requires functions
to guard a rule and modify the state. A domain reasoner requires functions to
be defined that handle guard– and modify–functions correctly. Concluding, a
framework using a dialog tree is least verbose, followed by a domain reasoner
and the BDI model is the most verbose.

39

3.8 Conclusion
Although the dialog tree allows a clear way of describing conversation, compared
to the other frameworks it is lacking. The simple structure and fine control do
not outweigh the high costs of effort for adapting and maintaining an exercise
defined in a dialog tree. Furthermore, the framework captures no additional
information that might assist the generation of feedback.

A framework that uses a BDI model allows an NPC to have an intelligent
way of computing its own actions. In a BDI model, each agent is uniquely
influenced by the current situation, which gives a sense of intelligence. In a
game that is purely revolving around conversation, the actions of the NPC are
limited to talking. In the setting of a player choosing from interactions, and an
NPC that has only one option, defining two intelligent agents and then limiting
them seems superfluous. Defining a detailed intelligent agent for the player and
NPC seems a lot of work for little profit. Feedback is an important factor of
learning, using a BDI model, extra effort is needed to give localized feedback.

A framework for domain reasoners is similar to a that of a BDI model to
the extent of enriching interactions with function that modify some state. The
BDI model requires the editor to let two agents manipulate each other during
the conversation, while a domain reasoner manages with one state. Because of
the single definition of a state data type, it is easier to define modify functions
for it when compared with BDI’s desires. Besides a state and rules, a domain
reasoner incorporates a high structure definition in strategies, similar to a dialog
tree. Lastly, the domain reasoner has the combined options of a BDI model and
a dialog tree to compute feedback. Furthermore, we can use the single state
to keep track of feedback, rather than having to analyse two agents, in BDI. A
domain reasoner is the best option for defining exercises in a communication
game between a player and a NPC.

40

Chapter 4

Designing Artificial
Intelligence for
’Communicate!’

Comparing alternative frameworks led to the choice to proceed with the IDEAS
framework that was developed for serving exercises and generating feedback. We
can define domain reasoners on top of the IDEAS framework. The framework
offers services that allow a client application to use exercises. In section 4.1, we
walk through the framework’s current usages and its accompanying paradigm.
We will look how we can translate the concepts of the earlier usages to the
domain of communication. Section 4.2 documents the implementation of the
communication domain and the choices during the implementation process.

4.1 IDEAS framework
IDEAS is a framework for developing domain reasoners that generate intelli-
gent feedback[33]. Rewrite strategies describe how an exercise can be solved
incrementally. The goal of the framework is providing detailed feedback. A
progression of steps from a strategy applied to a problem allows diagnosis of the
current state of a problem[30]. Diagnosis leads to the ability to give hints to
the player, and give a comparison of alternative applicable rules. That results
in feedback that is tailored to the learner’s way of trying to solve an exercise.

4.1.1 Existing applications of IDEAS
IDEAS has been used in a couple of applications so far. Domain reasoners
for many kinds of exercises have been developed. The IDEAS framework is
used in a learning tool for rewriting logical expressions to disjunctive normal
form. Furthermore, domain reasoners for solving exercises in linear, quadratic
and higher-degree equations and in-equations have been developed. They allow
simplifying and evaluating fractions, expressions using powers and square roots,
etcetera. Reasoners have been developed for linear algebra, including Gaussian
elimination and Gram–Schmidt, and solving systems of linear equations. After

41

developing reasoners for mathematical domains, a functional programming tutor
named Ask-Elle[34][8] was developed. Ask-Elle allows a learner to program
Haskell functions with the help of a domain reasoner.

4.1.2 Paradigm
The framework employs services for client–applications. Tools, tutors and game
applications can make service–calls to a variety of functions to accompany the
specific presentation of exercises. Using IDEAS does not limit developers and
designers of a client–application. The framework analyses the current problem,
it can produce the next possible steps or give a whole solution. Using the
framework, creators of a game can define what kind of steps are offered to the
player. Developers of a client–application can choose the way in which feedback
is given to the player[30].

The IDEAS package[35] is released on the on-line package repository Hack-
age. Besides basic services, the list of services includes those handling feedback
scripts. The basic services generally offer enough functionality to use an exercise.
Feedback in textual form can be gained by the feedback script services.

Some of the most important services offered by the framework are these basic
services1:

1. ready :: State a → Bool
Returns True if the current state of the problem is a solution.

2. allfirsts :: State a → Either String [(StepInfo a,State a)]
allfirst either returns all rules for the given State with their location,
environment and the resulting state, or an error message when there are
no first rules.

3. allapplications :: State a → [(Rule (Context a),Location,State a)]
Returns all currently applicable rules with their location, environment and
the resulting state. Other than allfirsts, the function uses guards to filter
out inapplicable rules.

4. apply :: Rule (Context a) → Location → Environment → State a →
Either String (State a)
Applies a rewrite rule to a state.

Using the basic services we can manipulate and apply rules to a state, but we
need more for a game to work. When the game starts off a conversation, we need
to select the exercise and request the possible options for a player. By using the
function exerciselist , we request the list of exercises which allows to select an
exercise. We can find possible options by using the functions allapplications and
allfirsts. To recognize the ending of a level in a game, we can use the function
ready to analyse if there are more possible steps. The services return identifiers
which can be connected to the sentences of rules and feedback.

1http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-BasicServices.
html

42

http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-BasicServices.html
http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-BasicServices.html

4.2 Implementation
The framework can be compiled to a web–service application, which can be
deployed as an CGI executable. The domain reasoner is used in many web–
services. In the next subsections we show the steps to define a domain reasoner
based on the example pharmacy domain. Some definitions are omitted for
brevity.

For a minimal definition we just need an exercise and the standard set of
services. Figure 4.1 shows how we define a minimal reasoner for the example
conversation in the pharmacy domain. The example exercise is imported as
part of the pharmacy package, under the qualified name Pharmacy . The most
interesting field of the DomainReasoner is exercises. In our case it is a list with
a single element since we define one exercise.

1 ideasPharmacy :: DomainReasoner
2 ideasPharmacy = (newDomainReasoner "ideas.pharmacy")
3 {exercises = [Some Pharmacy .exercise]
4 , services = metaServiceList ideasPharmacy ++ serviceList }

Figure 4.1: An example domain reasoner in the IDEAS framework.

The services are defined using standard services, using metaServiceList and
serviceList to build up basic and reflective services.2 The four other items: views,
aliases, scripts and testSuite are currently unused. These are not essential for
our purpose of showing the design of the domain reasoner.

An implementation of a domain reasoner using the framework requires the
definition of exercises. Exercises are problems concerning some notion of a
term which can be modified until it is solved. An example is an equation for a
mathematical domain. Furthermore we define rules that modify the state and
a strategy which is a combination of rules. The following sections explain the
implementation of the communication domain geared for educational exercises.

4.2.1 Communication Exercises
The exercises field in the DomainReasoner record contains exercises like the one
defined in Figure 4.2. The Exercise data type holds all necessary information
for exercises. We instantiate the polymorphic type a of Exercise with a State,
which will be explained later.

The exerciseId and status give information to find a specific exercise. The
identifier uniquely identifies every exercise such that it can be used in a service
call. The status is an indication of how far developed the exercise is. The parser
and prettyPrinter are needed to create a value of type a from a String , and a
String from a value of type a, respectively. Custom parsers and printers are
sometimes necessary, but for our rather straight forward domain we can use the
Haskell built–in derived classes Show and Read . The strategy value defines how
to solve the exercises and which rules it can use. Lastly, as an example exercise,

2http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-ServiceList.
html

43

http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-ServiceList.html
http://hackage.haskell.org/package/ideas-1.1/docs/Ideas-Service-ServiceList.html

5 exercise :: Exercise Conversation
6 exercise = makeExercise
7 {exerciseId = describe "Casus 1; Example exercise for pharmacy" $
8 newId "pharmacy.casus1"
9 , status = Stable

10 , parser = Right ◦ read
11 , prettyPrinter = show
12 , strategy = liftToContext strategy1
13 , examples = [(VeryEasy , emptyConversation)]
14 }

Figure 4.2: Example definition of a single exercise.

we give the emptyState, which holds no specific state information. We leave out
most of the values of the Exercise record because we don’t need them or we can
use the default implementations of makeExercise.

4.2.2 Conversation
In Figure 4.3 we define the three elements of the state. For conversation exercises,
the state is the a–term of the Exercise a. The state relates to an expression in
the mathematical domain, for example an equation that can be rewritten. A
term in the framework is the data that is rewritten by every step, and a rule
modifies the term.

15 -- The parameters of a client, which reflect the current state of the client.
16 data ClientParameters a = CP
17 {cpSatisfaction :: a
18 , cpTrust :: a
19 , cpInformation :: a
20 , cpAnxiety :: a
21 , cpAggression :: a
22 } deriving (Show ,Eq ,Read)

23 -- The learning goals reflect the score of the student.
24 data LearningGoals a = LG
25 { lgContact :: a
26 , lgProblem :: a
27 , lgDecision :: a
28 , lgSubjectmatter :: a
29 , lgClear :: a
30 , lgStructure :: a
31 } deriving (Show ,Eq ,Read)

32 type ConversationKnowledge a = M .Map String a

Figure 4.3: Definitions of the (data) types for the client parameters, learning
goals and conversation knowledge.

The client parameters hold a predefined set of values to describe the client.

44

Based on requirements of the specific conversations in the pharmacy, we have
chosen the values to be satisfaction, trust, information, anxiety and aggression.
As rules are applied to the state, they might increase or decrease the values
of the client parameters. Feedback on the relation between the client and
pharmacist can be generated using these parameters. Using a record notation
for the ClientParameters a allows modification of the parameters.

Like the ClientParameters, the LearningGoals data type is defined using
ecord notation. These values describe the effectiveness of the learner. While two
rules might achieve the same effect on the client, one might be more focused on
the problem and therapy and the other more on strict structure of a conversa-
tion. One is not better than the other per sé, but when looking at the whole
conversation, this might be the perfect place to follow the structure. Neglecting
one of the goals will result in a lower overall score.

The last of the three elements is the ConversationKnowledge. It is ’abstractly’
defined as a Map from string keys to integer values. It holds the information
of a conversation. For instance, we might start off with a client with the desire
to ask a question, and until that question is asked a client is not happy with
leaving. The most common use of the conversation knowledge is to describe
which questions are asked, so that the player and NPC can react to each other.
Although a mapping from String to a value of type a does not provide type–based
pre–compilation checks on the keys, it is a usable and readable solution.

33 -- State values
34 data GenState a = State
35 {cKnow :: ConversationKnowledge a
36 , cParam :: ClientParameters a
37 , lGoals :: LearningGoals a
38 } deriving (Show ,Eq ,Read)

Figure 4.4: Generalized State definition

Combining the ClientParameters, LearningGoals and ConversationKnowledge
leads to the definition of a generalized state in figure 4.4. The GenState a data
type can be reused for similar communication domains.

39 instance IsTerm a ⇒ IsTerm (GenState a)
40 toTerm :: IsTerm a ⇒ a → Term
41 fromTerm :: IsTerm a,MonadPlus m ⇒ Term → m a

Figure 4.5: Type definitions of the functions toTerm and fromTerm as part of
the IsTerm class.

Figure 4.5 shows the type definitions of the functions in the IsTerm class.
Terms are used to describe a state definition of any domain, uniformly. Every
value of a that is an instance of IsTerm turned into a Term and from Term
to a value using the functions toTerm and fromTerm respectively. A uniform
description of types is needed for the serialization of data types used in the
requests and replies for the web service.

45

We define a Conversation as the term for our communication exercises. We
instantiate the GenState with Int values. The definition in Figure 4.6 shows the
type name definition, and a function that creates an empty Conversation.

42 type Conversation = GenState Int

43 -- identity state
44 emptyConversation :: Conversation
45 emptyConversation = State (M .empty)
46 (idClientParameters)
47 (idLearningGoals)

Figure 4.6: The Conversation data type as the term of the communications
domain for pharmacy.

The Conversation is the subject of our guarding and modifying functions.
The writer of a scenario is aided by readable codes. We define helper–functions
for guarding and modifying Conversations. The aim is that the editor does not
need to worry about the implementation, but can focus on the semantics of the
rewrite rules. Figure 4.7 shows a modifing function and guard function that
work together. The function happens modifies the Conversation such that the
function happened can guard a rewrite rule on the same string.

48 -- Sets everything to 0, except for the new value.
49 happens :: String → Conversation → Conversation
50 happens σ c = c {cKnow = (M .insert σ 1) (cKnow c)}
51 -- Check if some thing has happened.
52 happened :: String → Conversation → Bool
53 happened σ c = checkValue σ 1 c

Figure 4.7: Helper–functions for guarding and modifying the Conversational
Knowledge.

The above functions address the ConversationKnowledge of a Conversation,
but more importantly we want to build up feedback parameters. Figure 4.8 shows
a modifying function that adds an integer to the client parameter satisfaction.
For every client parameter and learning goal we have defined these functions. We
can add or subtract a value by using positive or negative numbers, respectively.

54 -- Modifier function
55 satisfaction :: Int → Conversation → Conversation
56 satisfaction i gs =
57 gs {cParam = (cParam gs)
58 {cpSatisfaction = (cpSatisfaction (cParam gs)) + i }}

Figure 4.8: A helper–function that can modify the client’s satisfaction parameter.

46

Note that the guard functions can be composed by Haskell functions like
(∨) and (∧). Furthermore, we can compose modifier functions using Haskell’s
(◦). The function happens should only be used once in a modifying function.
Composing the happens function with another happens function will result in
the same, as just having the first. Using happens will set all values to 0 before
adding another value, and set it to 1. When applying two after each other, only
the latter persists in the mapping.

4.2.3 Sentences
Besides having readable and composable helper–functions that work with the
Conversation data type, we define the functions to create sentences as Rules
for transforming a Conversation. We apply syntactic sugar to the rewrite rules,
by defining a Sentence to be a Rule of Conversation. To create sentences, we
define smart constructors that hide the technical details for the editor.

59 type Sentence = Rule Conversation

60 makeSentenceExt :: String
61 → String
62 → (Conversation → Bool)
63 → (Conversation → Conversation)
64 → Sentence
65 makeSentenceExt identifier sentence guard modifier = describe sentence
66 $ makeRule identifier
67 (λx . if guard x
68 then Just (modifier x)
69 else Nothing)

70 makeSentence :: String
71 → (Conversation → Bool)
72 → (Conversation → Conversation)
73 → Sentence
74 makeSentence = makeSentenceExt ""

75 makeSentenceSucceed :: String → Sentence
76 makeSentenceSucceed σ = makeSentence σ true id

Figure 4.9: Type definition and constructor functions for Sentences.

Figure 4.9 shows the function that creates sentences. The main function
is makeSentenceExt , that allows to specify the identifier, along side with the
actual sentence string, guard and modifier. Often the identifier is not specified
by the editor of the scenario. The function makeSentence allows the editor to
write sentences without worrying about the identifier. Later on in the strategy,
we will have to make up for the ease of defining sentences, by traversing the
strategy and making sure that all sentences have a unique identifier. The last
definition, makeSentenceSucceed is the definition of an unguarded sentence that
has no effect to the conversation. These can be used when a sentence is always
applicable and has no effect on the Conversation.

The function uses describe and makeRule to define a rule with a sentence
coupled to the rule. This way a rule and a sentence are not tied together, but

47

the description is a label to a rule. The rule is built as a transformation with
the type MakeTrans a ⇒ a → f a.

Figure 4.10 shows an example rule for a pharmacist. The first argument in
the definition is the interaction’s sentence in textual form. In this case we ask
the client what she knows about a particular drug.

The second argument is the guarding function, which is required to be of type
(Conversation → Bool). In the example, we check if the event "hand over drug"
has happened. Notice that the string values of happens and happened have been
defined as string constants.

Lastly, we define a function that can manipulate the conversation knowledge,
client parameters and learning goals. The modifier function is a composition
of smaller functions. The first function modifies the conversation knowledge.
The rest of the functions update the client parameters and learning goals. The
client parameters and learning goals are modified such that they reflect the effect
of the single sentence. Since all functions that modify the conversations have
the type Conversation → Conversation, we can compose them together using
function composition.

77 -- string synonyms
78 keyHandOverDrug = "hand over drug"
79 keyPhysiscistTellYou = "physicist tell you?"

80 personalAskKnowledge2 :: Sentence
81 personalAskKnowledge2 = makeSentence
82 ("Miss Darcy, what did your general practitioner "
83 ++ "tell you about the metformin?")
84 (happened keyHandOverDrug)
85 ((happens keyPhysiscistTellYou)
86 ◦ (satisfaction 1)
87 ◦ (trust 1)
88 ◦ (contact 1)
89 ◦ (problem 1)
90 ◦ (structure 1)
91)

Figure 4.10: Definition of an example sentence; an interaction for a pharmacist.

A conversation consists of many interactions. Creating sentences using the
helper functions and a constructor function like makeSentence decreases the
amount of work to implement a conversation. Also the ease of creating modi-
fiers and guarding functions helps in developing a conversation. Moreover, the
readability of sentence declarations is increased.

We allow scenario editors to create concise sentences. We want to hide some
of the technical details such as identifiers. By allowing the editor to create
rules without identifiers, we postpone setting the identifier of a rule. We define
a function that provides unidentifiable rules with an unique identifier. Figure
4.11 shows the definition of labelRule, which prepends a rule with a string and
provides a unique identifier to rules if necessary. Using the monad State, we
define a counter such that we can create identifiers. When a rule is not yet
identifiable, i.e. as a product of makeSentence, we use the number from the

48

counter to create a unique identifier.

92 labelRule :: String → Rule a → State Int (Rule a)
93 labelRule [] r | notEmptyId r = return r
94 labelRule pf r | notEmptyId r = return $ appId pf r
95 labelRule pf r | otherwise =
96 do i ← get
97 put (i + 1)
98 return $ appId pf $ appId (show i) r

99 appId :: String → Rule a → Rule a
100 appId i = changeId ((#) (newId i))

101 notEmptyId :: HasId a ⇒ a → Bool
102 notEmptyId r = ¬ $ isEmptyId (getId r)

Figure 4.11: Definition of labelRule to append a Rule’s identifier.

Note that chaining two labelRules functions will not cause the identifiers to
be overwritten. Furthermore, labelRules takes a String prefix, which is added to
the begin of the identifier. This way we can use the function to change the Ids of
a set of rules. For example, we can modify the Ids of rules of a specific actor or a
particular phase in the conversation. A disadvantage of using labelRules is that
it does not make sure whether the number is an unique identifier. Using numbers
for custom labels is discouraged, because they are more likely to interfere with
this way of computing identifiers.

4.2.4 Strategies
A conversation is built up from phases. Each phase resembles a theme that
is used in the training. A strategy for a single phase is a combination of the
interactions from a client and a pharmacist. There are many ways to define a
strategy for a single phase.

In Figure 4.12 we define a strategy, and two sub–strategies. The strategy
starts with an introduction strategy, named intro. The intro and rest of the
strategy are combined with the sequence combinator <?> . The strategy always
starts with the introduction, so we can use the guard of intro as a guard to
start the phase. The rest of the strategy is an interleaved combination of two
sub–strategies, using the <‖> combinator as defined by Heeren et al.[36] Using
interleave, we leave it up to the definition of the guards which part of a strategy
is applicable when.

For the two sub–strategies, we define a list of rules, and apply the exhaustive
function. The function exhaustive :: IsStrategy f ⇒ [f a] → Strategy a takes
a list of strategies, and return a strategy that accepts all sequences of rules,
as long these rules are applicable. Since we used guards to define when a rule
is applicable and exhaustive only allows applicable rules, we can control which
sequences are returned by exhaustive through guards. We define separate lists
of rules for the agents, named client and pharmacist . By separating the rules
per actor, we achieve an agent–like definition of rules.

Adding a new part of conversation is easily done by adding the new rules
to the lists of the right phase. The higher–level strategy remains unchanged.

49

103 pharmacist :: Strategy Conversation
104 pharmacist = labelRules "pharmacist"
105 $ exhaustive [firstGoal
106 , tellIntakeEffects
107 ,firstGoal2
108 , ...]

109 client :: Strategy Conversation
110 client = labelRules "client"
111 $ exhaustive [clientv
112 , clientt
113 , ...]

114 strategy :: LabeledStrategy Conversation
115 strategy = label "pharmacy.casus1.phase2"
116 $ labelRules "phase2"
117 $ intro <?> pharmacist <‖> client

Figure 4.12: Defining the strategy in a phase of a conversation using interleaving.

Adapting interactions of the conversation only requires a change in the rules.
Creating a similar client for the same pharmacist role is easy by reusing the
pharmacist’s strategy.

Figure 4.13 shows how to build up different phases of a conversation into the
strategy for a whole conversation. In the example case we have five phases. We
always start with the first phase, called F1 .strategy in the code. The first phase
can lead to the second or third, depending on the choices of the player. The
second phase can lead to either the third, fourth or fifth phase. The case has
three different endings to the conversations. Since the guarding of the phases
FEnd .strategyf4 and FEnd .strategyf5 require F2 .strategy to be passed, we chain
the FEnd .strategyf3 with FEnd .strategyf4 and FEnd .strategyf5 using the choice
combinator. Instead of using choice for the second and third phase, we define
the strategy by making the second phase optional and sequence it to the choice
of an ending phase.

118 strategy1 :: LabeledStrategy Conversation
119 strategy1 = label "pharmacy.casus1"
120 $ labelRules "pharmacy.casus1"
121 $ F1 .strategy
122 <?> option F2 .strategy
123 <?> FEnd .strategyf3
124 <|> FEnd .strategyf4
125 <|> FEnd .strategyf5

Figure 4.13: Defining a strategy in phases.

Adding a new phase of conversation to a strategy is as easy as extend-
ing the current strategy by combining a phase. A new strategy strategy2
can be combined with strategy1 with a new extension by writing strategy2 =

50

strategy1 <?> extension. Because the high–level definition of a strategy is
clear, changing an existing strategy is not difficult.

4.3 Design Choices
During the development of the communication exercises in the framework, we
had to make several design choices. Our implementation was based on a conver-
sations script by a communications lecturer of the department of Pharmaceutical
Sciences. Our goal was to find the least complex and most usable framework
that would still be able to fully describe the script. We can choose how to
implement the concepts of the term, the rules and strategy. When these three
elements are defined carefully, defining the exercise is straight forward.

The next subsections explain which alternatives we explored when trying
to implement a domain reasoner for communication in an educational setting.
Sometimes comparing the alternatives shows that some choices are preferences
instead of better solutions.

4.3.1 Usage of the Strategy language
We started from the point where a rule would consist of an utterance and
effect on the feedback parameters. We defined a strategy with sequences of and
choices between unguarded rules. Figure 4.14 shows pseudo–code for an example
strategy that structures rules by <?> and <|> . The progression of interactions
in a conversation is written out in full. Atomic strategies like askUsedBefore
and answerNotUsed are the action and reaction by pharmacist and client. This
approach doesn’t separate the pharmacist’s and client’s interactions. It is a way
of encoding a tree of interactions, similar to a dialog tree. With this approach,
we would have to define the whole tree.

126 simpleStrategy = (askUsedBefore <?> answerNotUsed <?> ...)
127 <|> (askTalkDoc <?> answerDocPrescribed <?> ...)
128 <|> ...

Figure 4.14: Defining the strategy in a tree like manner.

Improving on the verbose tree–like definition of a strategy, we theorized a
way of combining strategies cleverly such that it would decrease the size of the
complete strategy. Wanting to resemble actual conversation, we looked for ways
of combining strategies that resembled interactions for one actor. The first idea
was to define a new combinator, which we called the ’lock–step’ combinator.
Lock–stepping two strategies a and b is denoted by a <?> b. A lock-step
allows each sub–strategy to propose a step by taking turns. The problem with
lock–stepping is that two sub–strategies always take turns, making it impossible
for one of the two strategies to apply two rules. There was an example situation
in which the client keeps on talking, and the pharmacist is to cut off the client
at some point. We allow the client to proceed until the pharmacist decides to
take over control of the conversation. To allow the definition of such a strategy,
we need a more flexible way of allowing two strategies to take turns.

51

Using guards to control when a rule is applicable, is a flexible way of defining
strategies. Rules are extended with a guarding function such that we can
compute if a rule is applicable. Using the exhaustive combinator function, which
takes a list to execute rules until there is no–one that is applicable, we could
create concise strategies. An efficient alternative is to build a list of action–
reaction pairs, as shown in Figure 4.15. These action–reaction pairs use the
characteristic of our conversation that a client usually answers to a pharmacist.
This solution would lessen the amount of work on defining guards and modifiers,
since we can treat two rules as one. If all interactions are part of a pair, we
reduce the work on defining guards and modifying functions with fifty percent.

129 phase = exhaustive [askName <?> giveName
130 , cutToTheChase <?> walkAway
131 , giveMedicine <?> endConversation]

Figure 4.15: Code of an example strategy, in action–reaction pairs.

Because we can’t assume that an NPC only has one reaction to an action
of the player, we interleave two lists of guarded rules. For example, consider
a situation where a pharmacist explains a lot about the medicine. A client
might interrupt somewhere, to ask a question. In that case, we would want to
use more than one interaction to define the informative talk of the pharmacist.
Interleaving the strategies a and b, is denoted by a <‖> b. Interleaving two
strategies that use exhaustive allows us to separate rules towards actor–specific
sub–strategies. Figure 4.16 shows interleaving of the example used earlier to
demonstrate pairs of interactions.

132 phase = exhaustive [askName
133 , cutToTheChase
134 , giveMedicine] -- pharmacist
135 <‖> exhaustive [giveName
136 ,walkAway
137 , endConversation] -- client

Figure 4.16: An example strategy of interleaved, agent–specific sub–strategies.

This way we could work towards the definition of a pharmacist strategy that
could possibly communicate with any client it faces. As a consequence we have
to invest more work in defining the rules, since we need to guard and modify
the state for each rule. Compared to the list of pairs, interleaving sub–strategies
is more adaptable since we can easily add or remove rules. We could define a
strategy such that it uses reaction pairs where possible. Moreover, it allows for
an interleaved strategy for sub–strategies of agents.

4.3.2 Defining Sentences
Before using the IDEAS framework, we tried to recreate the core components
to see what would be desirable. We started with a definition of a rule that

52

only consisted of the utterance as a string, as in Figure 4.17. The constructor
had the type Rule :: String → Rule. A strategy like pharmacist in the example
controls when a rule was offered in an option for the player. With two strategy
definitions interleaved, it is possible to simulate conversation. A conversation
without options was not enough to serve as exercises for an educational game. We
needed more information to create multiple choice questions from the strategy.

138 qMedication = Rule "What do you know of metformin?"
139 aMedication = Rule "I was hoping you could tell me."

140 pharmacist = (qMedication <|> aMedication) <?> ...

Figure 4.17: A first definition of rules and strategy.

Next, we used different constructors for every rule to capture the basic inten-
tion of a sentence. The constructors in Figure 4.18 can be used for generating
feedback according to the type of an interaction. Giving feedback that states
that an answer should follow after a question is not so valuable.

141 data Interaction where Question,Answer ,Concern, Inform,
142 Action, Interrupt :: String → Interaction

Figure 4.18: Specific constructors for Interactions allow to differentiate interac-
tions on the intention of a sentence.

We need to generate specific feedback for an educational game. Giving
feedback on the added types was not specific enough. We improved the feedback
by decorating every rule with a function that builds up feedback parameters.
The modifiers on client parameters and learning goals was the result. Based
on the values of the parameters we can compare rules and paths of a scenario.
Secondly, we can add detailed feedback labels to specific sub–strategies. We give
detailed and localized feedback to the learner based on rule comparisons and
labels.

4.3.3 State Safety
Currently the conversation knowledge is a mapping from String to Int , but it is
possible to use any type as keys. It is pragmatic to use Strings because adding
a mapping is as easy as adding a pair of a String and an Int . The problem is
that using Strings for keys is error prone. Figure 4.19 shows that a mistake is
easily made when Strings are used to look up values. Using constant strings as
keys is considered a good programming practice, but still that is not the perfect
solution. If we have two different constants that have the same value, using
these constants as keys of a mapping will conflict when used differently.

What we would like, is that the keys are typed, like in Figure 4.20. The
compiler offers the security that every key used is actually an applicable key
in the mapping. We can use an enumeration, because of its small universe of
values. Using SafeKeys would mean that we can only map values to keys that

53

143 > import Data.Map
144 > let newMap = Data.Map.insert "some-string" 1 empty
145 >Data.Map.lookup "some_string" newMap
146 Nothing
147 >Data.Map.lookup "some-string" newMap
148 Just 1

Figure 4.19: An illustration of an easily made mistake, when using Strings as
keys, in a GHCI session.

reside in the enumeration. If we were to use a key in a lookup that was not
part of SafeKeys, the compiler returns an error, that such a data constructor
is not in scope. If we were to utilize the typed value as keys, the compiler
gives us the guarantee that all guarding–functions and conversational knowledge
modifiers are type–safe. Using SafeKeys has as disadvantage that the keys are
not extendible without changing the code. Using new keys, requires the data
type SafeKeys to be changed.

149 data SafeKeys = SomeKey
150 | AnotherKey
151 | AndSoOn
152 deriving (Show ,Eq ,Ord)

153 type SafeMap a = Map SafeKeys a

154 -- example usage of a SafeMap
155 exMap :: SafeMap Int
156 exMap = m
157 where m ′ = insert SomeKey 1 empty
158 m = insert AnotherKey 0 m ′

159 -- Data.Map.lookup SomeKey exMap => Just 1
160 -- Data.Map.lookup AndSoOn exMap => Nothing
161 -- Data.Map.lookup Unknown exMap => error

Figure 4.20: Example of a Map with type–checked key values.

Still, trying to lookup the value of a mapping that is not inserted will return
Nothing . It is unwanted to define a guard or modify function that uses a
lookup of a value that is not inserted. We could define an algorithm that checks
the required values in modify and guard functions and those that are inserted.
Although it is not possible for an algorithm to fix such an error, it could return
warning messages for a scenario editor. Warnings point to possibly erroneous
parts of a scenario.

A Conversation that consists of maps using type–safe keys can prevent some
errors by a scenario writer. Defining a type that can provide keys for the number
of values, required for the scenario will require extra effort by the scenario writer.
It is a trade–off between effort and potential errors.

54

Chapter 5

Conclusion and Future Work

5.1 Conclusion
The communication training of pharmacy students consists of conversation the-
ory and practice. The students are taught models to conduct conversations in
a structure manner. Models help structure a phases of a conversation in the
correct order. Furthermore, the course highlights conversation skills such as
asking open questions. During the practice, students perform a conversation
together and give feedback afterwards. The interactions are defined by their
utterance, place in conversation and the effect on the context.

According to the functional and technical requirements we compared three
software frameworks that describe conversation and generate feedback. We
found two frameworks that have been used to describe communication: a dialog
tree and BDI agents. Because domain reasoners have been used for describing
exercises, we developed a reasoner for the communications domain. The domain
reasoner scores best compared to the other two. The dialog tree is simple in
structure, but does not offer the feedback generating functionality of a BDI
model or a domain reasoner. The framework that builds a Domain reasoner
is less complex than a framework for BDI agents, and the extra expressiveness
that a BDI model offers, is not used in our specific case. We have no need for
two intelligent agents because our client always reacts the same to a pharmacist,
and a pharmacist agent should give options to let the player choose.

Using an implementation of rules that rewrite the state in the IDEAS frame-
work, allows us to define strategies that solve an exercise in the form of a
conversation. Strategies are combinations of rewrite rules such that the state
changes during the conversations. Rewrite rules are interactions with a guard
and function that modifies feedback parameters. We use the guarding function-
ality of rewrite rules to define when rules are applicable. The information of
the guards allows us to use the applicable rules as guidance within a phase. We
can define sequences of and alternative phases to create the high–level structure
of conversation. The functions that modify the feedback parameters build up
feedback during a conversation. These functions can be used to compare rules
and sub-strategies on the parameter values.

By using the IDEAS framework for developing a communication domain
reasoner, the framework shows its capabilities outside mathematical, logical and

55

programming domains. For now it is unclear what domains might be formalised
in the framework in the future, but we expect that the framework could be
applied to more domains in the future.

5.2 Future Work
The following sections discuss more expressive usages of the IDEAS framework.
Furthermore, we predict that different subjects of the conversations could po-
tentially lead to different functional requirements. Lastly, we argue that an
exercise editor aides writers of scenarios and would lead to less errors during the
development of a scenario.

5.2.1 Context–dependent Rules
Until now we have only used specific sentences for an interaction. Figure 5.1
shows how two ordinary Strings are used as sentences of interactions. These sen-
tences contain context information, like the names of the clients, "Miss Darcy"
and "Mister Bond". We see possibilities in increasing the expressiveness of a
rule by abstracting over the context information.

1 -- Specific
2 interaction, interaction2 :: String
3 interaction = "Miss Darcy, this is your medicine, Metformin 500."
4 interaction2 = "Mister Bond, this is your medicine, a Martini."

Figure 5.1: Context–specific definitions of two similar interaction.

Defining context–dependent rules hinges on the definition of a context. Figure
5.2 shows the definition of a simple data type that stores specific information.
In the example, we define the name of the client and the drug they are using.
In general we can store names of persons and items.

Instead of defining a rule using a single sentence, we define a sentence with
variables for the case–specific information of the specific situation. For example,
we can define two similar interactions in Figure 5.2. The regular rules, interaction
and interaction2 consist of a single String . The context-dependent definition
cfInteraction defines a function that builds a String when given extra information
from the context. The rule cfInteraction could be used in any strategy. The
functions name and drug return the correct values from a Context which can be
substituted to build the final interaction. We can define two specific interactions
based on one rule and the correct context.

Currently, rules are not created such that they are dependent on context
information. Even though it is always possible to abstract over a client’s name
for example, if you never need that abstraction, it seems to be no improvement
compared to specific rules. Another reason for not defining context–dependent
rules, is that it only proves to be more efficient when there are strategies with
different contexts that feature the same interaction. If there is no way of telling
which interaction can be reused in other strategies, how can we recognize a
potential context–dependent rule?

56

5 data Context = C {
6 drug :: String ,
7 name :: String
8 }
9 msDarcy = C {name = "Miss Darcy", drug = "Metformin 500"}

10 mrBond = C {name = "Mister Bond", drug = "a Martini"}
11 -- Dependent
12 cfYourmedicine :: Context → String
13 cfYourmedicine c = ((name c) ++ ", this is your medicine, "
14 ++ (drug c) ++ ".")

Figure 5.2: Defining a Context for client information enables the context–
dependent definition of interactions.

Maybe the greatest advantage of context-dependent rules is the possibility
of achieving a single strategy for the pharmacist. If rules are not client specific,
we could define a strategy for the pharmacist, that could handle any client it
faces. Moreover, by combining strategies for different conversations, we achieve
a strategy for the pharmacist that can handle multiple patients. Since every
conversation starts with an introduction phase, in which the client is introduced,
we could build up the context information using the state modifiers. Ideally, we
could factor out the client’s specific details such that the specific information
could be provided by the client’s strategy. The usefulness of context–dependent
rules should be looked into. We see opportunities for context-dependent rules,
but they cannot replace, and should coexist with specific rules.

5.2.2 Extended guards and Modifiers
Also for future research, we imagine guards and modifier functions that have
different meanings during the strategy. We see possibilities for rules to be reused,
but with slightly different guarding and effect. The pragmatic solution is to say
that similar rules are all defined as distinct rules. But another approach is to
define one rule, that changes throughout the strategy.

For example, in our scenario we can choose to address a client with her name.
It is not strange to use a name once, but after a couple of times it becomes
awkward. The positive effect on the parameter of making contact decreases by
using interactions that address the client by name. We could define a set of rules
with similar interaction but different functions for guarding and modifying. A
rule’s modifier could use the number of times the name is used in interactions
to have different effect. The effect on the contact parameter can be calculated
depending on the specific situation.

Lets assume that the first time a pharmacist addresses the client by name,
the rewarded is higher than in following interactions. Furthermore, the effect
turns negative when the player uses the name too much. A modifying function
that changes on an integer value could be defined as in Figure 5.3. If we have
not used the name before the i value would be 0. The first time of using an
interaction with the contactWithName modifier would result in 2 points on the
scale of making contact. The following two times the modifier would result in 1

57

1 contactWithName :: Num a ⇒ Int → (LearningGoals a)
2 contactWithName i | i 6 0 = idLearningGoals {contact = 2}
3 | i > 3 = idLearningGoals {contact = − 1}
4 | otherwise = idLearningGoals {contact = 1}

Figure 5.3: Example modifier for making contact by addressing the client by
name.

point for making contact. After three times the effect drops to −1, resulting in
a decrease for the making contact.

In the example, the number of times the player could use an interaction with
a name is arbitrarily chosen. It is only to be expected that these numbers could
vary, depending on the client. If we were to have a Context , similar to the one
in the previous section, we would want to define a context-dependent variable
for these integer values.

The definition of a rule that depends on an integer is very straightforward.
Using such a rule requires the possibility to count the number of interactions
that have used the client’s name. The pragmatic way is to keep a counter in the
state and use a modifying function to update the counter accordingly. Another
way would be to analyse the conversation to calculate i . The framework keeps
track of the rules that have passed, called a prefix. Currently rules cannot access
the prefix. To allow rules access to the current visited path requires a change in
the framework.

Another example is a rule that is applicable when the client is agitated. If
the client is agitated, the pharmacist can address the client on its agitation.
Currently, we define when a client is agitated and if that is the case, we offer the
player the option to address that. If we guard a rule on the client parameters,
we could implement a strategy that reacts to client. We could define strategy
that can react to a client that got agitated before the conversation started. The
difficulty of an exercise could be changed by changing the client parameters.

It is interesting to see if the extended functionality can be used efficiently. It
is difficult to see how a scenario progresses, when you have both specific rules,
that follow after each other, and state– and context–dependent rules that change
during the conversation, or are dependent on the starting values. The readability
and maintainability of a scenario might be decreased when defined with regular
rules and state– and context–dependent rules. Using high–level rules allows the
writer to write more concise rules. We should look into the usefulness high–level
rules.

5.2.3 Introducing Knowledge System
During the project we struggled with the use of a domain specific knowledge in
the conversation. We wanted to give feedback and hints based on the clients
background and medication. A knowledge system for pharmaceutical knowledge
allows a computer to reason about health. For example, if the knowledge base
can deduct a side–effect of the given medicine for pregnant women, we can deduce
the applicability of questions towards pregnancy. Using information about the
client, like its gender and age, we would want to address the implications of

58

the medication and maybe even suggest alternatives. A knowledge base could
allow defining rules that depend on situational and domain specific knowledge.
Using the information gives a realistic background to exercises. The conversation
is tailored to the client’s specific situation Implementing such system to work
together with the framework would require a change in how the framework finds
rules. The framework should not only check the guarding functions, but also
use the knowledge base when finding applicable rules.

5.2.4 Analysis of Similar Communication Domains
In this research we have analysed communication training as it was used at
the department of Pharmacy of Utrecht University. Although we assume that
a similar structure is found when analysing other communication training for
masters, it has yet to be proven that training exercises of other courses, can
be defined by the current framework. The serious communication–training
game as a result of the project Communicate, will be prototyped by students
of the department of Pharmacy. The next steps in developing an all-round
communication game involve the analysis of different kind of conversations. We
expect that changes will be made to the client parameters and learning goals.
The mapping used for describing the conversation knowledge is probably flexible
enough to be used for other conversations

5.2.5 Exercise editor
An exercise editor can aid the writer of scenarios in a communication domain.
The conversation domain reasoner differs from the mathematical, programming
and algebra domain reasoners. There are three reasons why the communication
domain would benefit from an editor, that are not applicable to the previous
use cases of the IDEAS framework.

First of all, scenarios require a large number of rewrite rules. The framework
was developed with a mathematical definition of rules in mind. In mathematics,
there is often one, or maybe a few ways to solve a problem with a set of rewrite
rules. Mathematical exercises often reuse the same strategy to solve similar
exercises. In communication, every conversation requires its own interactions.
Although context-dependent rules can offer a higher level of reusing rules, we
will still need to define more rules than for some other domains. Compared to
the mathematical domain, we have a large set of rewrite rules in the conversation
domain. An exercise editor would help the writer to create a larger set of rules.

Secondly, one of the characteristics of mathematical rules is that once they
are defined, they are either correct or buggy. A buggy rule is used to describe
a common mistake, that allows the definition of detailed feedback. When the
definition of rules is not so strict, in communications for example, interactions
often need a process refinement to ensure its quality. The process of refinement
requires small adjustments while the scenarios are tested. While refining rules,
we need to update the framework. We could either define a function that allows
the recompilation of rules and strategies, or we could allow the exercise editor
to recompile the framework, and update the web–server accordingly.

Lastly, an editing application can create the pre–conditions in the state
and validate the scenario. Mathematical rules have a clear set of rewrite rules,
that transform one equation to another equation. Interactions in conversations

59

modify a state, which is not insightful like an equation. It consists of variables
and parameters. An editor would allow the writer of the scenario to focus on
the actual conversation and defining the right feedback, without worrying to
much about modify functions for variables and parameters.

5.2.6 Validation
Given a rule’s guarding function, we can validate that the rule is applicable at
some point in the strategy. Furthermore, we could validate modifier functions.
Modifier functions are only necessary when they rewrite the state, such that
they enable some paths in the strategy or lead to the generation of feedback.

Secondly, we could define functions that validates a strategy. Such a func-
tion can find sub–strategies that are never offered as an option to the player.
Duplicate rules can be detected automatically. Furthermore, we could check a
strategy for cycles.

Validations could be implemented as functions of a meta service1 of the
framework. Moreover, a scenario editing application could apply these functions
to give warnings to the writer. What all validation functions add to an editor, is
insight in the sometimes complex domains and their rewrite rules. It is difficult
for a scenario writer without programming knowledge, to keep overview of all
paths in the strategy when looking at the rules and strategy definitions. Adding
automated checks to a structured view on the exercise aid the development of
exercises.

1http://hackage.haskell.org/package/ideas-1.1/docs/src/
Ideas-Service-ServiceList.html#metaServiceList

60

http://hackage.haskell.org/package/ideas-1.1/docs/src/Ideas-Service-ServiceList.html#metaServiceList
http://hackage.haskell.org/package/ideas-1.1/docs/src/Ideas-Service-ServiceList.html#metaServiceList

Bibliography

[1] A. J. Stapleton, “Serious games: Serious opportunities,” in Australian Game
Developers’ Conference, Academic Summit, Melbourne, 2004.

[2] D. Charsky, “From edutainment to serious games: A change in the use of
game characteristics,” Games and Culture, vol. 5, no. 2, pp. 177–198, 2010.

[3] T. Susi, M. Johannesson, and P. Backlund, “Serious games: An overview,”
2007.

[4] I. Erev, A. Luria, and A. Erev, “On the effect of immediate feedback,” in Y.
Eshet-Alkalai, Y., Caspi, A. & Yair, Y.(Eds.), Learning in the Technological
Era. Proceedings of the Chais Conference, March, vol. 1, pp. 26–30, 2006.

[5] A. Gerdes, B. Heeren, J. Jeuring, and S. Stuurman, “Feedback services for
exercise assistants,” in The Proceedings of the 7th European Conference on
e-Learning, pp. 402–410, 2008.

[6] J. Jeuring, H. Passier, and S. Stuurman, “A generic framework for develop-
ing exercise assistants,” in Proceedings of the 8th International Conference
on Information Technology Based Higher Education and Training, ITHET,
2007.

[7] J. Lodder, J. Jeuring, and H. Passier, “An interactive tool for manipulat-
ing logical formulae,” in Proceedings of the Second International Congress
on Tools for Teaching Logic, Salamanca, Spain, September 26 - 30, 2006
(B. P. L. M. Manzano and A. Gil, eds.), 2006. Also available as Technical
report Utrecht University UU-CS-2006-040.

[8] J. Jeuring, A. Gerdes, and B. Heeren, “Ask-Elle: A Haskell tutor,” in 21st
Century Learning for 21st Century Skills (A. Ravenscroft, S. Lindstaedt,
C. Kloos, and D. HernÃąndez-Leo, eds.), vol. 7563 of Lecture Notes in
Computer Science, pp. 453–458, Springer Berlin Heidelberg, 2012.

[9] L. Blom, M. Wolters, M. ten Hoor-Suykerbuyk, J. van Paassen, and A. van
Oyen, “Pharmaceutical education in patient counseling: 20h spread over
6 years?,” Patient Education and Counseling, vol. 83, no. 3, pp. 465–471,
2011.

[10] A. Zande, “KNMP-standaarden voor zelfzorg,” Pharmaceutisch Weekblad,
vol. 130, no. 5, pp. 108–109, 1995.

61

[11] M. Wooldridge and N. Jennings, “Agent theories, architectures, and lan-
guages: A survey,” in Intelligent Agents (M. Wooldridge and N. Jennings,
eds.), vol. 890 of Lecture Notes in Computer Science, pp. 1–39, Springer
Berlin Heidelberg, 1995.

[12] K. Van den Bosch, A. Brandenburgh, T. J. Muller, and A. Heuvelink,
“Characters with personality!,” in Intelligent Virtual Agents, pp. 426–439,
Springer, 2012.

[13] A. Schaafstal, “Knowledge and strategies in diagnostic skill,” Ergonomics,
vol. 36, no. 11, pp. 1305–1316, 1993. PMID: 8262025.

[14] N. Schwarz, “Cognition and communication: Judgmental biases, research
methods, and the logic of conversation,” Ann Arbor, vol. 1001, pp. 48106–
1248, 1996.

[15] K. Scalise and B. Gifford, “Computer-based assessment in e-learning: A
framework for constructing “intermediate constraint” questions and tasks
for technology platforms,” The Journal of Technology, Learning, and As-
sessment, vol. 4, June 2006.

[16] P. Botella, X. Burgués, J. Carvallo, X. Franch, G. Grau, J. Marco, and
C. Quer, “ISO/IEC 9126 in practice: what do we need to know?,” in Pro-
ceedings of the 1st Software Measurement European Forum, 2004.

[17] N. Bevan, “Quality in use: Meeting user needs for quality,” Journal of
Systems and Software, vol. 49, no. 1, pp. 89 – 96, 1999.

[18] J. Bøegh, “A new standard for quality requirements.,” IEEE Software,
vol. 25, no. 2, pp. 57–63, 2008.

[19] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and
interpretations in ISO Standards,” Software Quality Journal, vol. 11, no. 4,
pp. 325–338, 2003.

[20] Wikipedia, “Dialog tree — Wikipedia, the free encyclopedia.” http://en.
wikipedia.org/w/index.php?title=Dialog_tree&oldid=553516989,
2013. [Online; accessed 29-November-2013].

[21] B. Ellison, “Defining dialogue systems.” http://www.gamasutra.com/
view/feature/132116/defining_dialogue_systems.php, 2008. [Online;
accessed 13-December-2013].

[22] R. Rosenfeld, D. Olsen, and A. Rudnicky, “Universal speech interfaces,”
interactions, vol. 8, pp. 34–44, Oct. 2001.

[23] A. S. Rao, M. P. Georgeff, et al., “BDI agents: From theory to practice.,”
in ICMAS, vol. 95, pp. 312–319, 1995.

[24] T. J. Muller, A. Heuvelink, K. van den Bosch, I. Swartjes, et al., “Glengarry
glen ross: Using BDI for sales game dialogues.,” in AIIDE, 2012.

[25] A. Solimando and R. Traverso, “Designing and implementing a framework
for BDI-style communicating agents in Haskell,” in Declarative Agent Lan-
guages and Technologies X, pp. 203–207, Springer, 2013.

62

http://en.wikipedia.org/w/index.php?title=Dialog_tree&oldid=553516989
http://en.wikipedia.org/w/index.php?title=Dialog_tree&oldid=553516989
http://www.gamasutra.com/view/feature/132116/defining_dialogue_systems.php
http://www.gamasutra.com/view/feature/132116/defining_dialogue_systems.php

[26] M. Sulzmann and E. S. Lam, “Specifying and controlling agents in Haskell,”

[27] B. Heeren, J. Jeuring, and A. Gerdes, “Specifying rewrite strategies for
interactive exercises,” Mathematics in Computer Science, vol. 3, no. 3,
pp. 349–370, 2010.

[28] P. Hudak et al., “Building domain-specific embedded languages,” ACM
computing surveys, vol. 28, no. 4es, p. 196, 1996.

[29] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, pp. 316–344, Dec.
2005.

[30] B. Heeren, J. Jeuring, A. Van Leeuwen, and A. Gerdes, “Specifying strate-
gies for exercises,” Intelligent Computer Mathematics, pp. 430–445, 2008.

[31] B. Heeren, J. Jeuring, and A. Gerdes, “Properties of exercise strategies,”
First International Workshop on Strategies in Rewriting, Proving, and Pro-
gramming, pp. 21–34, 2010.

[32] B. Heeren and J. Jeuring, “Adapting mathematical domain reasoners,” in
Intelligent Computer Mathematics (S. Autexier, J. Calmet, D. Delahaye,
P. Ion, L. Rideau, R. Rioboo, and A. Sexton, eds.), vol. 6167 of Lecture
Notes in Computer Science, pp. 315–330, Springer Berlin Heidelberg, 2010.

[33] J. Jeuring and B. Heeren, “Ideas: interactive domain reasoners,” 2010.

[34] A. Gerdes, Ask-Elle: a Haskell Tutor. PhD thesis, Open Universiteit Ned-
erland, 2012.

[35] B. Heeren, A. Gerdes, and J. Jeuring, “Hackage: ideas: Feedback services
for intelligent tutoring systems,” 2013.

[36] B. Heeren and J. Jeuring, “Interleaving strategies,” in Intelligent Computer
Mathematics, pp. 196–211, Springer, 2011.

63

	Introduction
	Motivation
	Goals

	Analysing Pharmacy's Communication Training
	Theory
	Models
	Skills

	Practice
	Cases
	Conversation

	Discussion
	Goals of Communication Training
	Requirements for Defining Exercises

	Comparing Frameworks for Communication
	Preliminaries
	Haskell

	Technical Requirements for Software Frameworks
	Control
	Usability
	Maintainability and Adaptability
	Generating Feedback
	Concise Implementation

	Interactions of an Example Scenario
	Example: Miss Darcy Fetches Her Metformin 500mg

	Dialog trees
	Trees
	Root
	Edges
	Branches
	Overview

	Belief, Desires, and Intentions model
	Events
	Beliefs
	Desires
	Intentions
	Agents
	Conversation
	Overview

	Domain reasoners
	State
	Rules
	Strategy
	Overview

	Comparison
	Control
	Usability
	Maintainability and Adaptability
	Generating Feedback
	Concise Implementation

	Conclusion

	Designing Artificial Intelligence for 'Communicate!'
	IDEAS framework
	Existing applications of IDEAS
	Paradigm

	Implementation
	Communication Exercises
	Conversation
	Sentences
	Strategies

	Design Choices
	Usage of the Strategy language
	Defining Sentences
	State Safety

	Conclusion and Future Work
	Conclusion
	Future Work
	Context–dependent Rules
	Extended guards and Modifiers
	Introducing Knowledge System
	Analysis of Similar Communication Domains
	Exercise editor
	Validation

