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Chapter 1

Introduction to Majorana fermions

A Majorana fermion is a theoretically hypothesised particle that has no anti-matter coun-
terpart; instead, it is its own anti-particle. This original idea comes from the field of high
energy physics where it still inspires theoretical work on neutrino physics, dark matter and
supersymmetry. Nowadays, thanks to theoretical proposals of condensed matter physics and
experimental achievements in nano-materials, several systems rise as candidates for the phys-
ical realisation of Majorana fermions. Majorana fermions in condensed matter systems show
an exotic particle statistics behaviour which classifies them as non-Abelian anyons. The imple-
mentation of a quantum device able to accommodate such exotic particles envisages of fault
tolerant quantum computation.

1.1 The original hypothesis

In 1928 Paul Dirac published his seminal work "The Quantum Theory of the Electron" [1],
suggesting a governing equation of motion for the free relativistic electron. Until that time,
the Klein-Gordon equation was understood as the governing one for relativistic particles, even
though it posed problems to physics since it led to negative probability densities.

Driven by a desire to liberate quantum theory from the negative probability densities of the
Klein-Gordon equation, Dirac suggested an equation linear in its time derivative ∂t , while it
remained Lorentz invariant. Setting those two requirements ab initio, the equation uncovered
had an unexpectedly enriching influence to physics. At once, the quantum number of spin 1/2
- naturally incorporated in Dirac’s equation - was explained, while the existence of anti-matter
was proposed. Dirac interpreted the negative energy solutions of an electron as positive energy
solutions of an opposite charged particle, the positron. The explanative power of physics for
our material world faced the rise of anti-matter!

Apart from the poetic metaphors, Dirac’s equation does bear aesthetic beauty due to its
mathematical elegance. It allows solutions that are complex valued; given that electrons are
charged particles. This is a desirable consequence since a spinor ψ describing an electron,
will have a counterpart conjugate spinor ψc =Cψ∗, that describes its anti-particle, the positron.
Pause; what if there is a solution of Dirac’s equation involving a purely real valued spinor field
φ = φc? Wouldn’t this mean that the particle described would on the same time be it’s own
anti-particle? Deliberately, the answer is "Yes!" and the particle described by such a field is
nowadays called a Majorana Fermion.

1
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Ettore Majorana, in his 1937 paper [2], suggested a purely imaginary representation for the
Dirac γ−matrices, which in terms of Pauli matrices σi, check app.A, reads as

γ0 = σ2⊗σ1 , γ1 = iσ1⊗ 1̂2, γ2 = iσ3⊗ 1̂2, γ3 = iσ2⊗ σ2. (1.1)

The representation is such that the anti-commutation relation of the Clifford algebra is pre-
served, namely

{γµ,γν}= γµγν + γνγµ = 2ηµν (1.2)

is satisfied, where ηµν is Minkowski’s metric with signature (+,−,−,−, ). But now Dirac’s equa-
tion

(iγµ
∂µ−m)φ = 0, (1.3)

has a real valued solution φ; note how the term iγµ has been turned real in Majorana’s repre-
sentation! The field φ has preserved its spin 1/2 nature while describing a fermion which is at
the same time an anti-particle. As Hermann Weyl refined Dirac’s work for massless particles in
1929 [3], showing how in that case helicity coincides with chirality, Ettore Majorana distilled an
equation that makes particles and anti-particles coincide.

Since his original publication several attempts for the physical realisation of Majorana’s the-
oretical proposal have been done mainly in high energy physics. The neutrino is among the
most promising particles that could be described as a Majorana fermion while contemporary
candidates include supersymmetric partinos and dark matter.

1.2 Under the kaleidoscope of Condensed Matter

Another candidate, for the physical realisation of Majorana’s idea comes from a tradition-
ally "down to Earth" physics area, condensed matter physics. The picture in this discipline is
different than the one expected, since condensed matter systems lack Lorentz invariance while
their constituents - no matter how exotic a material could be - are electrons, ions and photons
as interaction’s mediators.

Firstly, the requirement for a non-Lorentz invariant theory drives physics away from Dirac’s
equation and make Majorana’s mathematically elegant theory of the imaginary representation
of γ-matrices and the real valued scalar field φ, literally dull. There nevertheless still is room for
Majorana’s idea in solid state physics; just recall a bit of theory about superconductivity. The
basic constituent - the Cooper pairs - responsible for superconductivity, are bound states of two
electrons which violate Pauli’s exclusion principle forming a Bose-Einstein condensate. Under
this superconducting phase there are fermionic states which couple electrons with holes of the
Fermi sea.

In second quantization language, an operator c†
k,σ creates an electron of momentum k above

the Fermi level and spin σ, while it’s Hermitian conjugate operator ck,σ annihilates it or it cre-
ates a physically distinct state, a hole, which behaves like the anti-particle of the corresponding
valence electron. A parti-hole excitation above the ground state is mathematically represented
by linear combinations of the form dk = ac†

k,↑+ b∗ c−k,↓, in the so-called Bogoliubov-Valatin for-
malism. Now, what if there were states that turned to themselves by Hermitian conjugation?
Wouldn’t this mean that the contrast of particles and anti-particles has been evaporated, as
Majorana suggested?

Obviously, the Hermitian conjugate of a parti-hole excitation in the form of the above-
mentioned one, namely d†

k = a∗ c†
k,↑+ bc−k,↓, is distinct as spin ruins our dream for a Majorana
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particle even for the case of |a| = |b| and k = 0. On the other hand, it sheds light to a plau-
sible suggestion; spinless superconductivity could "do the trick". A superconducting material
where Cooper pairing is done in a p-wave fashion is effectively spinless and quasiparticle ex-
citations of the special form fk = f †

k = ac† + a∗ c are identical to their conjugates. This p-wave
superconductor is a promising playground for Majorana’s exotic particles and has revamped
contemporary theoretical research about his old idea.

1.3 Praying for mathematical formalism

Under the promise of p-wave superconductivity, through a heuristic approach we can for-
mally define Majorana operators γa as

γ2i−1 = c†
i + ci , (1.4a)

γ2i = i(c†
i − ci) , (1.4b)

in terms of ordinary creation/annihilation operators c†
i /ci for spinless fermions. Those satisfy

the canonical anti-commutation relations

{ci,c j}= {c†
i ,c†

j}= 0 & {ci,c
†
j}= δi j , (1.5)

where the indices i, j ∈Z serve as labels of the fermions, e.g. in an optical lattice, those indices
label the sites. Afterwards, we are able to confirm that the Majorana operators γk satisfy the
relation

γa = γ
†
a , (1.6)

while obeying the anti-commutation relation of the Clifford algebra

{γa,γb}= 2δab⇔ γaγb + γbγa = 2δab , (1.7)

where a,b ∈Z. Inverting eq.(1.4) shows that our proposal may be interpreted as the “splitting”
of a fermion into a real and an imaginary part; the fermionic creation/annihilation operators
c†

i /ci are written as

c†
i =

1
2
(γ2i−1− iγ2i) , (1.8a)

ci =
1
2
(γ2i−1 + iγ2i) , (1.8b)

while the Pauli principle does not apply for the Majorana operators, since

γaγ
†
a = γ

2
a = 1 (1.9)

according to the anti-commutaton relation of the Clifford algebra suggested in eq.(1.7). Recall
that for ordinary fermions c2

i = (c†
i )

2 = 0, whereas for Majorana γ-operators we encounter an
opposite situation; acting twice on a state takes us back to the same state! Consequently, there
can be no occupancy number operator defined for Majorana fermions; given the usual definition
ni = c†

i ci =
1
2 (1+ iγ2i−1γ2i) while using the same definition for Majorana operators, i.e. ma = γ†

aγa,
always results in an occupancy number equal to 1, since γ†

aγa = 1.



CHAPTER 1. INTRODUCTION TO MAJORANA FERMIONS 4

1.4 A dialogue on the character of Majoranas

− Just a moment! We are going too far... As long as there is no Pauli exclusion principle we
cannot call our Majoranas "fermions"...

− Sure! Maybe the term “fermion” is a little abusive but my operators do satisfy an anti-
commutation rule which is fermionic, look at eq.(1.7)! I don’t even have a commutator for
them that resembles to bosons...

− Then we should investigate the exchange statistics in order to deliver a clear verdict about
their nature...

− Fair... Let us assume a quasi-fermion state |Ψ0〉 able to be turn into a ground state while
it accommodates a Majorana γa, e.g. in the form γa|Ψ0〉. Acting on it with the another
Majorana operator γb, creates the state γb γa|Ψ0〉=−γa γb|Ψ0〉while returning to the ground
state means γb γb γa|Ψ0〉= γ2

b γa|Ψ0〉= γa|Ψ0〉. Both properties are consistent for fermions.

See... Using the commutation relations and properties for the Majorana operators given,
plus an arbitrary state accommodative of Majoranas γa|Ψ0〉, we confirm that Majoranas are
fermions! Or if you prefer... anyons, whose phase factor is π. Every time you exchange
two of them they pick a multiplication factor eiπ = −1.

− Hmmm... What if the ground state is not unique. Assume a degeneracy on it... Then an
exchange may transform one ground state |Ψ0〉 into a different one |Ψ1〉. The exchange
should be represented by a unitary matrix, such that a transformation from one ground
state to another consists of a set of consecutive exchanges. This results in a product of
unitary matrices. But matrix products are non-commutative, hence...

− Εὕρηκα! Εὕρηκα! The Majoranas are non-Abelian anyons!

1.5 A promising qubit?

For non-Abelian statistics the existence of a degenerate ground state separated from all other
excited states is of major importance, as we have discussed in the previous paragraph. Letting
the degeneracy be two-fold, we represent the ground states as |0〉 and |1〉 in Dirac’s bracket
notation. In the meanwhile - under a surrealist’s inspiration - we become reminiscent of the
basic unit of computing, the so-called binary digit or bit which has also a two-fold nature. For
systems with degenerate states, I call |0〉 and |1〉 qubits - quantum binary digits - and dream of
quantum processes that represent the act of computation.

The main obstacle for a quantum computation lies in the heart of quantum mechanics. Dur-
ing a quantum process our qubit states may couple with other excited states of the system caus-
ing decoherence and practically ruining any information that could be encoded in the qubits.
So, given a sufficient separation between the qubit states and the excited states, in energy, allows
us to preserve the state of a qubit for a time interval that is sufficient for a quantum computation.

Given such an energy gap the effective Schrödinger equation for a qubit state |a〉 is

d
dt
|a〉= −iHqubit |a〉. (1.10)
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This enables us to approximate the time interval ∆t allowed for calculations to take place. Or
dream of a vanishing qubit hamiltonian, Hqubit = 0, which will give us the privilege of an infinite
time interval, ∆t→ ∞.

In the subsequent chapters, we will see how the non-Abelian character of Majorana fermions
arrises and how their existence require a sufficient energy gap of a two-fold degenerate ground
state. Surprisingly we will show that this ground state - where Majorana fermions are present -
lies at the zero-point of the energy spectrum suggesting them as ideal candidates for encoding
quantum information.

1.6 Setting goals

In the upcoming chapters our purpose is to convince the reader that Majorana’s idea is alive,
in a way that there is promising ground for implementation in condensed matter systems. We
will show how a 1D lattice of spinless fermions can host Majorana fermions which are spatially
separated while they correspond to a degenerate zero-energy mode of the spectrum. The host
is known in the literature as Kitaev’s chain and it is a tight-binding model of a p-wave super-
conductor.

Starting from Schrödinger’s equation of first quantisation we will sketch the passage to sec-
ond quantization, which “talks” about condensed matter systems intuitively. Posing justifiable
restrictions to generality will lead us to the Hamiltonian of Kitaev’s model, which is in a sec-
ond quantised form. Then calculating the bulk spectrum’s dispersion relations will be the next
step which will show two different regimes for the superconducting model, a trivial one and
topological.

This topological superconductor that Kitaev’s model encompasses, is of special interest since
the Majorana fermions exist within that phase. They appear spatially separated, at the edges
of the 1D chain for zero-energy cost and create the degenerate ground state that non-Abelian
statistics require. The reader will be guided through the calculation of this ground state, firstly
for a 2-site lattice and later for the general case of the N-site one.

Having established an understanding for the properties of Kitaev’s chain and set the limits
within Majorana fermions appear, we will turn to what the title of this thesis suggests. The
conductivity of Kitaev’s chain is a physical quantity of particular interest since it could serve as
an experimental signature among the different phases of the system. No simpler setting than
coupling the system to heat baths of fermions with different chemical potentials µL/R; this will
induce a current though the 1D lattice. But, since a current is a non-equilibrium quantity there
is no other choice to our method than using non-equilibrium statistical physics.

The heat baths or fermionic reservoirs will be justifiably treated as sources of noise for Ki-
taev’s chain and we will mount on Langevin dynamics. Then using non-equlibrium Green’s
functions we will show the zero-temperature spectral function and finally the conductivity of
the Kitaev’s chain in the trivial and the topological phase.



Chapter 2

A host for Majorana’s Fermions

In 2001, Alexei Kitaev proposed a toy model of this nature and showed how a 1D quantum
nanowire is able to accommodate Majorana modes, [4]. The Hamiltonian of the lattice model
corresponds to an 1D tight-binding lattice of spinless fermions, which under second quantiza-
tion’s language reads as

H = −µ
Ns

∑
i=1

ni−
Ns−1

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
−∆

(
cici+1 + c†

i+1c†
i

)]
, (2.1)

where c†
i /ci is a fermionic operator creating/annihilating an electron at site “ i ” and ni = c†

i ci

is the corresponding occupation number operator, µ is the chemical potential, t > 0 the hop-
ping amplitude and ∆ > 0 the p-wave pairing amplitude1. Obviously Ns in the number of sites
available within the limits of the lattice, setting the upper bound for the number electrons to
N 6 Ns.

The first term is interpreted as a constant shift of the energy over all fermions, while their
hopping from site i to a neighbouring site i±1 is allowed for the price of a quantum of energy
t, according to the second term. The last term - responsible for the p-wave pairing - shows the
superconducting amplitude for the creation/annihilation of Cooper pairs from neighbouring
fermions.

2.1 The “Intermezzo” of quantization schemes

A system introduced in second quantization’s language, like the above-mentioned, does
miss the underlying information of the single-particle Hamiltonian, which shows the funda-
mental degrees of freedom defined by the physical processes at microscopic level. The per-
formance stage for a second quantized Hamiltonian, like the one of eq.(2.1), is the Fock space
built from the blocks of the single-particle Hibert space. But, let me be a bit more precise and
scientific about it...

1Note that the original Hamiltonian given by Kitaev [4] considers ∆ ∈ C, introducing a superconducting phase φ in

the Hamiltonian such that it reads H = −µ
Ns
∑

i=1
ni−

Ns−1
∑

i=1

(
tc†

i ci+1−|∆|eiφcici+1 + h.c.
)

. Having set φ = 0 corresponds to

performing a unitary transformation on H such that no generality is lost.

6
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2.1.1 Introduction to Fock space

“Once upon a time, there was a spinless particle of mass “m” living in an 1D world coordinated
by “x” and dictated by its Hamiltonian “H”. The particle was always accompanied by its fellow wave-
function ψ(x, t) = ψ(x)e−

i
h̄ Et that belonged to a Hilbert space of functions, usually named as H 1...”

Erwin Schrödinger taught us that a system like the above-mentioned satisfies his homonymous
time-independent equation

H ψ(x) =

(
− h̄2

2m

(
∂

∂x

)2

+Vex(x)

)
ψ(x) = Eψ(x) , (2.2)

where h̄ is the reduced Planck’s constant, namely called Dirac’s constant and Vex(x) is a potential
imposed by the particle’s environment. Once the explicit form of the potential Vex(x) allows
analytical solutions to eq.(2.2), we discover a set of energy eigenvalues En and eigenstates or
eigenfunctions ψn(x) which form an orthogonal and complete basis for H 1.

Introducing more than one non-interacting particle in the 1D world proposed, suggests the
grand-canonical Hamiltonian of an 1D system of N identical particles, namely

H1D =
N

∑
i=1

(
− h̄2

∇2

2m
−µ+Vex(xi)

)
, (2.3)

where xi is the position of the i-th particle out of the N particles and µ is the chemical potential.
Inevitably, the many-particle Schrödinger equation corresponding to our system is

ih̄
∂

∂t
Ψ(x1, ...,xN , t) =

N

∑
i=1

(
− h̄2

2m

(
∂

∂xi

)2

−µ+Vex(xi)

)
Ψ(x1, ...,xN , t) , (2.4)

where Ψ(x1, ...,xN , t) is the wave-function of the N-particle system belonging in the tensor prod-

uct space H N =
N⊗

n=1
H 1 = H 1⊗H 1⊗ . . .⊗H 1︸ ︷︷ ︸

N times

. Mathematically, it corresponds to a Slater deter-

minant (fermions) or permanent (bosons) of a set of N single-particle wave-functions ψ(xi, t) =
ψ(xi)e−

i
h̄ Eit that belong to the single-particle Hilbert space H 1.

In the last paragraph we characterised the Hamiltonian given by eq.(2.3) as grand-canonical
since a chemical potential term was introduced, although eq.(2.4) does require the number of
particles to be specified, such that the dimensionality of the Hilbert space H N is set and a solu-
tion Ψ(x1, ...,xN , t) can be found. Recalling that the grand-canonical scheme requires the number
of particles to be unspecified, we need to amount on Fock space; this is the direct sum of tensor
product copies of the single-particle Hilbert space H 1, mathematically represented as

F =
+∞⊕

N=0

H N = H 0⊕H 1⊕
(
H 1⊗H 1)︸ ︷︷ ︸

H 2

⊕ . . .⊕
(
H 1⊗H 1⊗ . . .⊗H 1)︸ ︷︷ ︸

H N

⊕ . . . , (2.5)

where H 0 = C|0〉 representing the vacuum.
Working in the grand-canonical ensemble requires the introduction of creation/annihilation

field operators c†(x)/c(x) that act in F and satisfy the (anti-)commutation relations of the Clif-
ford algebra respective to the nature of the system. This is defined by the following fermionic
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anti-commutation relations

{c(x), c(x′)}= {c†(x), c†(x′)}= 0 & {c(x), c†(x′)}= δ(x− x′) (2.6)

or bosonic commutation relations

[c(x), c(x′)] = [c†(x), c†(x′)] = 0 & [c(x), c†(x′)] = δ(x− x′). (2.7)

Their operation is physically interpreted as the addition/substraction of particles the ensemble.
Subsequently, an arbitrary state of N particles |Ψ(t)〉N ∈H N takes the form

|Ψ(t)〉N =
1√
N!

(
N

∏
i=1

∫
dxi

)
Ψ(x1, ...,xN , t)c†(x1)c†(x2) . . .c†(xN)|0〉 , (2.8)

if particles are labeled by subscript i, while the Hamiltonian dresses up in its second quantiza-
tion’s garment

H =
∫

dx c†(x)

(
− h̄2

2m

(
∂

∂xi

)2

−µ+Vex(x)

)
c(x) , (2.9)

satisfying the second quantized Schrödinger’s equation H|Ψ(t)〉N = −ih̄∂t |Ψ(t)〉N 2 if eq.(2.4) is
satisfied.

2.1.2 The tight-binding model

Proceeding, allow us to pose restrictions on the previous system introduced by the second
quantized Hamiltonian for non-interacting particles, eq.(2.9) to discover a well-known structure
of solid state physics. The story continues as...

“One day, the spinless particle’s 1D world was populated by more of his own kind, named as "fermions"
while a periodic potential Vex(xi) = Vex(xi + lα), l ∈Z & α ∈R rose as the ruler, bringing order.”

Clearly, the creation/annihilation operators obey the anti-commutation relations of eq.(2.6)
while the periodic potential Vex(xi) = Vex(xi + lα) makes an 1D lattice structure form, with α

being the lattice site spacing of Ns sites able to host N fermions as Ns > N.
According to Bloch’s Theorem, the periodicity of our system requires a specific type of so-

lution for the single-particle wave-function ψ(x). The wave-function describes a fermion delo-
calised across the lattice which satisfies eq.(2.2) while it has the form

ψ(x) = ψn,k(x) = eikxun,k(x) , (2.10)

where the function un,k(x) is periodic. Its periodicity is in accordance to the lattice structure, such
that un,k(x) = un,k(x+ lα). The index n refers to the n-th energy band and k is the wavenumber
of the fermion’s momentum. A complementary single-particle basis of states is the complete
and orthonormal set of Wannier functions wn(x−αi) which describe a fermion being localised
around lattice points αi with its wave-function being expressed as

ψn,k(x) =
1√
Ns

Ns

∑
i=1

eikαiwn(x−αi) , (2.11)

2In case the reader would like to establish the equivalence between first and second quantization in detail - regarding
calculations - please refer to textbooks such as [5],[6],[7],[8],[9].
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where n is the same band index of the Bloch states and i is the site index.
At this point, let me introduce operators c†

n,i/cn,i that create/annihilate fermions in band n at
a lattice site i in the Wannier state wn(x−αi). Expressing the fermionic field operators c†(x)/c(x)
in terms of the newly introduced c†

n,i/cn,i

c†(x) = ∑
n

w∗n(x−αi)c†
n,i & c(x) = ∑

n
wn(x−αi)cn,i , (2.12)

which, once inserted in the Hamiltonian of eq.(2.9), results in

H = ∑
m,n

(
−µ

Ns

∑
i=1

δmnc†
m,icn,i−

Ns

∑
i, j=1

tmn
i j c†

m,icn, j

)
, (2.13)

where the hopping amplitude tmn
i j among different sites i, j corresponds to

tmn
i j =

∫
dx

(
w∗m(x−αi)

(
− h̄2

2m

(
∂

∂x

)2

+Vex(x)

)
wn(x−α j)

)
. (2.14)

Those Wannier states form a reasonable choice within the tight-binding limit. According
to the tight-binding approach, the lattice structure consists of tightly bound fermions around
equilibrium points αi which are assumed minima of the periodic potential Vex(x+ lα). Therefore,
it allows us to approximate the potential around each fermion by a harmonic oscillator potential

Vex(x) =����Vex(αi)+((((
(((V ′ex(αi)(x−αi)+

1
2

V ′′ex(αi)(x−αi)
2 + ... (2.15)

for (x−αi)� α; as Vex(αi) = const, so it can be omitted and V ′ex(αi) = 0 as the minima of the
potential are situated at x = αi.

Consequently, the Wannier states correspond to the well known harmonic oscillator wave-
functions. Defining

mω
2 = V ′′ex(αi) =

d2Vex(x)
dx2

∣∣∣∣
x=αi

, (2.16)

gives us

wn(x−αi) =
1√
2nn!

(mω

πh̄

)1/4
e−

mω(x−αi)
2

2h̄ Hn

(√
mω

h̄
(x−αi)

)
, (2.17)

where Hn(x) is the n-th Hermite polynomial given by the expression

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
. (2.18)

Therefore, the single-particle state corresponding to our tight-binding lattice of fermions is

ψn,k(x) =
1√
Ns

Ns

∑
i=1

eikαi

(mω

πh̄

)1/4

√
2nn!

e−
mω(x−αi)

2

2h̄ Hn

(√
mω

h̄
(x−αi)

)
, (2.19)

which forms a complete basis on H 1. Of course the many-particle wave-function Ψ(x1, ...,xN , t)∈
H N is no other than the Slater determinant of the orthogonal and complete set of ψn,k(xi), where
i = 1,2, . . . ,N.
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Further more, since the tight-binding limit is considered, as long as the kinetic energy of
fermions due to temperature T is significantly smaller that their potential term, specifically if

kBT � h̄
m2

√
d2Vex(ai)

dx2 , a single-band approximation is sufficient. Secondly, only nearest neighbour
hopping is considered, simplifying eq.(2.13) to

H = −µ
Ns

∑
i=1

c†
i ci− t

Ns

∑
i=1

(
c†

i ci+1 + c†
i+1ci

)
, (2.20)

which is obviously equal to eq.(2.1) for ∆ = 0.

2.1.3 The superconducting gap ∆

Establishing a connection with Kitaev’s Hamiltonian, eq.(2.1), addresses a question about
the microscopic processes disguised as ∆. So in the upcoming section I will sketch an explana-
tion, trying to give an insight into it.

We start with the addition of a two-body interaction term among fermions to the many-
particle Hamiltonian of eq.(2.3)

1
2

N

∑
i, j=1

V (xi− x j) , (2.21)

where i 6= j, which subsequently leads to the addition of the following term in the second quan-
tized version of the Hamiltonian given by eq.(2.9)

Hint =
1
2

∫
dx

∫
dyc†(x)c†(y)V (x− y)c(x)c(y). (2.22)

Approximating the interaction as a mean-field suggests that

Hint ∝
〈
c†(x)V (x− y)c†(y)

〉
c(x)c(y)+ c†(x)c†(y)

〈
c(x)V (x− y)c(y)

〉
, (2.23)

where the braces
〈
. . .
〉

denote averaging, or

Hint ≈
∫

dx
∫

dy
(

∆†(x,y)c(x)c(y)+∆(x,y)c†(x)c†(y)
)

, (2.24)

where obviously ∆(x,y) =
〈
c(x)V (x− y)c(y)

〉
. This is called the superconducting gap and it

corresponds physically to a correlation function among different fermions, weighted by their
interaction.

Finally, inserting eq.(2.12) in the single-band approximation and considering only nearest
neighbour coupling, transforms the above-mentioned term to

Hint =
Ns−1

∑
i=1

(
∆∗ cici+1 +∆c†

i+1c†
i

)
. (2.25)

2.2 Bulk properties & dispersion relations

In the the previous section we investigated the tight-binding lattice model building bridges
between the first and second quantization schemes. Even though we showed the explicit form
of single-particle eigenfunctions, we understand that the exact form of the Wannier states is
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Figure 2.1: The dispersion relation of an 1D spinless p-wave superconductor. In the bottom
row we encounter the trivially superconducting gapped phase, |µ|> 2t and in the first row the
topological one, |µ| < 2t. The middle row shows the transitional regime of µ = ±2t. The first
column corresponds to ∆ = t while the second to ∆ 6= t.

indifferent to us; as long as they form a complete basis of states allowing us to write expansions
for the field operators, like in eq.(2.12).

A useful property of the Wannier states is that they are orthogonal by definition and related
to the Bloch states through a discrete Fourier transformation, eq.(2.11). The same transformation
applied to the creation/annihilation operators gives us their representation in momentum k-
space. Later on, it will allow us to uncover the dispersion relation for the system. So, the
Fourier transformated expansion of the operators is

c†
i =

1√
Ns

∑
k

e−ikαic†
k , ci =

1√
Ns

∑
k

eikαick , (2.26)
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where 0≤ k ≤ 2πm
αNs

and m = 0,1, ..,Ns. Applying eq.(2.26) to Kitaev’s Hamiltonian (2.1) results in
its Fourier transformed version

H = ∑
k

(
−µ−2 t

(
1− 1

Ns

)
cos (kα)

)
c†

kck

+∆
(

1− 1
Ns

)
∑
k

(
eikαc−kck + e−ikαc†

kc†
−k

)
, (2.27)

of the Kitaev’s lattice; for the explicit calculation please check Appendix B.
The term (1− 1/Ns) is a consequence of the open boundary condition imposed in Kitaev’s

model. Imposing a periodic boundary condition on the lattice - actually wrapping the lattice
around its ends such that Ns + 1 = 1 - makes (1− 1/Ns)→ 1 and is equivalent to the case of
considering an lattice of infinite length, so letting Ns → +∞. In other words, uncovering the
bulk properties of Kitaev’s model is equivalent to writing the Hamiltonian as

H = ∑
k

εkc†
kck +∆∑

k

(
eikαc−kck + e−ikαc†

kc†
−k

)
, (2.28)

where εk =−µ−2t cos(kα). Please note that εk is a dispersion relation of a non-superconductive
(∆ = 0) tight-binding lattice, dictating the well known electronic band structure of metals.

Proceeding, we employ the Bogoliubov - de Gennes form for the above-mentioned bulk
Hamiltonian, eq.(2.28). Introducing the 2-component operator (c†

k ,c−k), makes us express it in
the form

H =
1
2 ∑

k

(
c†

k c−k

)(
εk ∆k
∆∗k −εk

)(
ck

c†
−k

)
, (2.29)

where now 0 ≤ k ≤ 2π and ∆k = −2i∆ sin(kα). Consecutively, diagonalizing H brings it to the
form

H = ∑
k

E(k)c̃†
k c̃k. (2.30)

Here it is expressed in terms of the quasi-fermion operators

c̃k = ukck +υkc†
−k , (2.31)

where

uk =
∆k

|∆k|

√
E(k)+ εk

2E(k)
and υk =

E(k)− εk

∆k
. (2.32)

The diagonalized form of eq.2.30 delivers an intuitively transparent dispersion relation E(k) for
the positive/negative energy modes of the bulk spectrum, namely

E(k) = ±
√

ε2
k + |∆k|2 = ±

√
(µ+ 2t cos(kα))2 +(2∆ sin(kα))2. (2.33)

Once the dispersion relation is plotted, see fig.2.1, it shows that the spectrum is gapped unless
the chemical potential is tuned at µ = ±2t.

According to J. Alicea’s review paper [10], the two gapped phases of |µ| > 2t and |µ| < 2t
correspond to different Couper-pairing regimes. If we examine the quasi-fermions ground state
|g.s.〉, which satisfies the defining relation c̃k|g.s.〉= 0, we find out that

|g.s.〉 ∝ ∏
0<k<π

(
1+φc.p.(k)c

†
−kc†

k

)
|0〉, (2.34)
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with |0〉 being the vacuum for fermions created by c†
k and φc.p.(k) = υk/uk. The former ratio,

φc.p.(k), can be interpreted as the wave-function of a Cooper pair formed by two fermions with
opposite momentum k. It’s Fourier transform, φc.p.(x), in the real space shows that for large x

φc.p.(x) =
∫

φc.p.(x)eikx dk x�0
=⇒ |φc.p.(x)| ∼ e−|x|/ζ, ζ ∈R. (2.35)

It has been shown by N. Read and D. Green in [11] that if |µ|> 2t “two fermions bound in real space
over a length scale ζ” refering to a strong-pairing coupling while in the weak-pairing regime,
|µ| < 2t, the length scale becomes infinite, ζ→ ∞ and φc.p.(x) ∼ const. The strong versus the
weak-pairing regimes are characterised as trivial and topological respectively. In fig.2.1 we plot
the dispersion relation for the trivial and the topological regimes, which are gapped, but also
the gapless spectrum at the boundary µ = ±2t.

2.3 Split the fermions, Majoranas rise!

At this point, after having a well-defined system under the Kitaev Hamiltonian being in-
vestigated about it’s bulk spectrum properties, it’s time to start performing the magic spells of
Majorana. Already in section 1.3 we proposed that a fermion can be “split” into its real and
imaginary part; applying such an suggestion in Kitaev’s Hamilitonian, eq.(2.1), means

H = −µ
Ns

∑
i=1

ni−
Ns−1

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
−∆

(
cici+1 + c†

i+1c†
i

)]
~w�eq.(1.8)

H = −µ
Ns

∑
i=1

1
2
(1+ iγ2i−1γ2i)−

i
2

Ns−1

∑
i=1

[(t−∆)γ2i−1γ2i+2− (t +∆)γ2iγ2i+1] , (2.36)

where we can see how µ, t and ∆ couple the Majorana operators.
In order to understand the physics of the system transparently, we suggest treating Kitaev’s

Hamiltonian, eq.(2.36), for two simplified cases which will show how that coupling induced
among the Majoranas results in different phases. Kitaev suggests in [4] that the strong (µ >

2t) and weak-pairing regimes (µ < 2t) corresponding to the trivial and the topological phases
respectively, are conjectured with those two simpified cases. Namely, the cases for the coupling
between the Majoranas are:

(a)µ 6= 0, t = ∆ = 0 : The Hamiltonian H = −µ
Ns
∑

i=1

1
2 (1+ iγ2i−1γ2i) = −µ

Ns
∑

i=1
ni shows that Majo-

ranas from the same i-th site couple forming fermions of a trivial 1D lattice structure,
where the addition or subtraction of an ordinary fermion involves an energy exchange of
µ.

(b)µ = 0, t = ∆ 6= 0 : In this special case only the last term of the above-mentioned eq.(2.36)
will survive, such that the Hamiltonian

H = it
Ns−1

∑
i=1

γ2iγ2i+1 (2.37)

shows how the Majorana operators combine in a non-trivial way; specifically between
neighbouring sites i and i+ 1 as you can also observe in the lower part of fig.2.3.
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Figure 2.2: The couplings of Majorana operators in Kitaev’s lattice model. The upper lattice
corresponds to the trivial coupling of case (a) conjectured with the strong-pairing regime. The
bottom line corresponds to the non-trivial case of (b) conjectured with the weak-pairing regime
which shows a topological phase.

As case (a) suggests, using a non-zero chemical potential, µ 6= 0, is equivalent to a constant
shift of the energy spectrum by µ. So, setting µ = 0 in case (b) was only for the sake of clarity on
the demonstration of the non-trivial coupling. Keeping our attention focused on that, let me try
a mathematical trick on the Hamiltonian given by eq.(2.37) and by the end, I will show a little
piece of jewellery that is on the table and asking for attention. So if

H = it
Ns−1

∑
i=1

γ2iγ2i+1 = t
Ns−1

∑
i=1

1
2
(1+ 2iγ2iγ2i+1 + 1−2) (2.38)

according to the Clifford algebra suggested in section 1.3 I am allowed to consider γi
2 = 1 and

claim that

H = t
Ns−1

∑
i=1

1
2

(
γ2iγ2i− iγ2i+1γ2i + iγ2iγ2i+1 + γ2(i+1),1γ2(i+1)−2

)
. (2.39)

Rewriting the above expression as

H = 2t
Ns−1

∑
i=1

[(
γ2i + iγ2i+1

2

)†(
γ2i + iγ2i+1

2

)
− 1

2

]
, (2.40)

suggests the following combinations of Majorana operators

c̃i =
1
2
(γ2i + iγ2i+1) , c̃†

i =
1
2
(γ2i− iγ2i+1) , (2.41)

which are fermionic, while the Hamiltonian becomes

H = 2t
Ns−1

∑
i=1

(
ñi−

1
2

)
, (2.42)

proposing a trivial 1D lattice structure! The addition or subtraction of a quasi-fermion involves
an energy exchange of 2t, since ñi = c̃†

i c̃i while the ground state is at E = −t. Let me say that I
managed to "majoranate" the original Hamiltonian in eq.(2.37) and "refermioned" it in eq.(2.42).
But since case (b) is conjectured with the topological phase of the bulk lattice, as explained
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in section 2.2, our qualitative conclusions hold if the chemical potential lies within the weak-
pairing regime, |µ|< 2t. This motivates us to focus on the case of µ = 0 for the rest of this chapter
and discard case (a).

Alright, so far all is mathematically coherent and nicely reformulated, so it’s time to pose
meaningful questions. Where are the Majorana’s? Is the form of the the Hamiltonian in eq.(2.37)
revealing them? It only looks as the result of an intermediate step of a mathematical trick
through which we diagonalized the original Hamiltonian, eq.(2.1) and "along the way" the oper-
ators introduced by eq.(1.4), happened to qualify for Majorana fermion’s creation/ annihilation
operators! But... a rigorous look at the diagonalized Hamiltonian of eq.(2.37), shows that the
Majorana operators γ1 and γNs are missing! These are the Majorana fermions that we are seek-
ing, as these non neighbouring site operators - both are localised at the ends of our lattice - do
give rise to physically realisable Majorana fermions. The emerging Majoranas can be expressed
as the non-local quasi-fermionic state

c̃†
M =

γNs − iγ1

2
(2.43)

of zero-energy cost, since they are not included in the Hamiltonian! Then, equipping ourselves
with a ground state |0〉 that satisfies the condition c̃M|0〉= 0 will inevitably give us a counterpart
ground state |1〉= c̃†

M|0〉 that doubles the degeneracy and makes non-Abelian statistics rise! The
zero-energy cost at which this ground state non-local fermion exists makes it the ideal candidate
for a qubit!

2.4 Uncovering the ground state

In the last two sections, the Hamiltonian of the Kitaev model (2.1) has been manipulated by
transformations in such a way that we uncovered a dispersion relation in 2.2 and diagonalized
it for the case of µ = 0, t = ∆ in section 2.3, by introducing quasi-fermions c̃i. By the end of
section 2.3 it was discovered that there is a quasifermionic non-local state created by c̃†

M at zero-
energy. The question that naturally rises is whether a ground state exists on which the state c̃M

or c̃†
M is superposed at the expense of no energy. May our dream for a degenerate state at E = 0

come true; then non-Abelian statistics rise, as we wished for since the introduction. Trying to
shed light on the above-mentioned questions, on this section we seek for the eigenstates of the
Kitaev model in the occupation number representation.

2.4.1 The 2-site lattice for µ = 0, t = ∆

Starting easy, we are going to treat a 2-site lattice for the special case of µ= 0, t = ∆ of Kitaev’s
Hamiltonian which reads as

H = −t(c†
1c2 + c†

2c1− c1c2− c†
2c†

1). (2.44)

Accompanied by the vacuum state |00〉 - representing the total absence of electrons - makes us
easily form the set of states

|00〉, |10〉= c†
1|00〉, |01〉= c†

2|00〉 & |11〉= c†
1c†

2|00〉 (2.45)
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and calculate its occupation number representation matrix form

H =


〈00|H|00〉 〈00|H|10〉 〈00|H|01〉 〈00|H|11〉
〈10|H|00〉 〈10|H|10〉 〈10|H|01〉 〈10|H|11〉
〈01|H|00〉 〈01|H|10〉 〈01|H|01〉 〈01|H|11〉
〈11|H|00〉 〈11|H|10〉 〈11|H|01〉 〈11|H|11〉

 , (2.46)

namely being

H =


0 0 0 −t
0 0 −t 0
0 −t 0 0
−t 0 0 0

 . (2.47)

Subsequently, diagonalizing the matrix form of the Hamiltonian above, shows that

H =
1√
2


1 0 −1 0
0 1 0 −1
0 1 0 1
1 0 1 0

 .


−t 0 0 0
0 −t 0 0
0 0 t 0
0 0 0 t

 .
1√
2


1 0 0 1
0 1 1 0
−1 0 0 1
0 −1 1 0

 , (2.48)

uncovering a doubly degenerate spectrum of two energy eigenvalues, namely E = ∓t. The

0

-t

+t

0

+2t

Èes>Èos>

Èoa> Èea>

Figure 2.3: The 2-site lattice spectrum and it’s
excitations in occupation number base, ∆ = t.

corresponding eigenvectors are the following

|ea〉=
1√
2
(−|00〉+ |11〉) , E = +t, (2.49)

|oa〉=
1√
2
(−|10〉+ |01〉) , E = +t, (2.50)

|es〉=
1√
2
(|00〉+ |11〉) , E = −t, (2.51)

|os〉=
1√
2
(|10〉+ |01〉) , E = −t, (2.52)

which are also graphically depicted in
fig.(2.4.1). The blue lines represent the al-
lowed excitations from the two-fold degener-
ate ground state |e/os〉, while the red one rep-
resents the interchange between the ground

states. Please, note that the excitation |e/os〉 ↔ |e/oa〉 is not depicted. The reason is that when
we calculate the spectrum using the Nambu base, section 2.4.2, it will be found that it is not
allowed.

Clearly the ground state consists of the symmetric states |es〉 and |os〉 - so it is doubly de-
generate - with even/odd parity making the distinction. Parity corresponds to the even/odd

number of fermions in the states and is measured by the operator P =
Ns
∏

i=1
(−iγ2i−1γ2i), as sug-

gested by Kitaev [4]. In our 2-site lattice case, it reads P = −iγ1γ4. Then since

P|es〉= −iγ1γ4|es〉= (+1)|es〉 & P|os〉= −iγ1γ4|os〉= (−1)|os〉 , (2.53)

the name even/odd parity state for |es〉/|os〉 respectively, is justified.



CHAPTER 2. A HOST FOR MAJORANA’S FERMIONS 17

Now, further treatment of the occupation number eigenstates is needed, such that those
states are connected to the states of the "refermioned" diagonal Hamiltonian of eq.(2.42). Rewrit-
ing the occupation number operator for the quasi-fermions ñ1 in terms of fermions

ñ1 = c̃†
1c̃1 =

1
2
(1+ iγ2γ3) =

1
2
(1− c†

1c2− c†
2c1− c2c1− c†

1c†
2) (2.54)

and acting on the eigenstates gives us

ñ1|es〉= ñ1|os〉= 0, while ñ1|ea〉= |ea〉 & ñ1|oa〉= |oa〉. (2.55)

This shows that the symmetric ground states |es〉, |os〉 correspond to the vacuum of quasi-
fermions while the anti-symmetric excited states |ea〉, |oa〉 to the occupied states. Of course
acting with c̃†

1 on the quasi-fermion vacuum states, the symmetric states |e/os〉, results in the
occupied antisymmetric states |o/ea〉 respectively, as

c̃†
1|es〉= |oa〉 & c̃†

1|os〉= |ea〉. (2.56)

In other words, the operator c̃†
1 makes the quasi-fermion vacuum states populate and exchange

parity.
Secondly, using the table 2.1, we calculate the effect of the non-local zero-energy quasi-

fermionic creation/annihilation operator c̃†
M/c̃M on the energy eigenstates. We discover that

c̃†
M|es〉= 0, c̃M|es〉= +i|os〉 ,

c̃M|os〉= 0, c̃†
M|os〉= −i|es〉

and subsequently c̃†
M c̃M|es〉= |es〉. Therefore we should consider the odd ground state |os〉= |0〉,

where |0〉 is the qubit candidate state discussed by the end of section 2.3. Subsequently, the
counterpart state is recognised as |1〉= −i|es〉.

|es〉 |os〉 |ea〉 |oa〉
γ1 |os〉 |es〉 |oa〉 |ea〉
γ2 +i|os〉 −i|es〉 −i|oa〉 +i|ea〉
γ3 −|oa〉 −|ea〉 −|os〉 −|es〉
γ4 +i|os〉 −i|es〉 −i|oa〉 +i|ea〉

Table 2.1: Interchanges of energy states with
majorana operators γi acting on the states.

As a final part, let us investigate how the
action of γi operators affects the energy eigen-
states, making them switch from one to an-
other. Considering all possible combinations
γi|e/oa/s〉 we create table 2.1 shown on the
right.

2.4.2 The general case of a 2-site lattice for µ = 0, t 6= ∆

Dealing again with a 2-site lattice, but for the general case of µ = 0, t 6= ∆ > 0 the Hamiltonian
takes the explicit form

H = −t(c†
1c2 + c†

2c1)+∆(c1c2 + c†
2c†

1) , (2.57)

accompanied by the usual occupation number representation eigenstates |00〉, |10〉, |01〉 and
|11〉. Having those at hand as a basis, we calculate the matrix form of the Hamiltonian as before,
resulting in

H =


0 0 0 −∆
0 0 −t 0
0 −t 0 0
−∆ 0 0 0

 (2.58)
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and continue diagonalizing, such that

H =
1√
2


0 0 1 −1
1 −1 0 0
1 1 0 0
0 0 1 1

 .


−t 0 0 0
0 t 0 0
0 0 −∆ 0
0 0 0 ∆

 .
1√
2


0 1 1 0
0 −1 1 0
1 0 0 1
−1 0 0 1

 , (2.59)

uncovering us the spectrum of eigenvalues E = ∓t and E = ∓∆ and their corresponding

0

-D

+D

-t

+t

-t+D

+t+D

Figure 2.4: The 2-site lattice
spectrum and it’s excitations
in occupation number base,
∆ 6= t.

eigenvectors

|ea〉=
1√
2
(−|00〉+ |11〉) , E = +∆, (2.60)

|oa〉=
1√
2
(−|10〉+ |01〉) , E = +t (2.61)

|es〉=
1√
2
(|00〉+ |11〉) , E = −∆, (2.62)

|os〉=
1√
2
(|10〉+ |01〉) , E = −t. (2.63)

We can clearly see how setting ∆ = t will give us all the results of
the previous section 2.4.1. Please, note that now the degeneracy
of the ground state |e/os〉 has been lifted since the energy levels
of ±∆ are separated from those for ±t. This is clearly depicted
on fig.2.4.2 where now the red and blue arrows depict the exci-
tations from the ground state |es〉.

The Nambu base as an alternative one.

An alternative way of diagonalizing the 2-site lattice Hamiltonian, eq.(2.57), is by introduc-
ing the Nambu base Ψ = (c1, c2, c†

1, c†
2)

ᵀ. Then eq.(2.57) can be written as

H =
1
2

Ψ†HnΨ, (2.64)

with

Hn =


0 −t 0 ∆
−t 0 −∆ 0
0 −∆ 0 +t
∆ 0 +t 0

 . (2.65)
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Consecutively, diagonalizing it uncovers the eigenvalues E = ± (t±∆) and eigenvectors

ψ1 =
−1
2

(1, 1, 1,−1)ᵀ , E = −t−∆ , (2.66)

ψ2 =
1
2
(1, 1,−1, 1)ᵀ , E = −t +∆ , (2.67)

ψ3 =
1
2
(−1, 1, 1, 1)ᵀ , E = t−∆ , (2.68)

ψ4 =
1
2
(1,−1, 1, 1)ᵀ , E = t +∆ , (2.69)

respectively. In the case of tuning ∆ = t the eigenvalues spectrum shows a degeneracy at E = 0
while the eigenstates ψ1 and ψ4 seem to be separated in energy scale by 4t. If we diagonalize
eq.(2.65) once again, we discover that the eigenstates ψ2 and ψ3 have changed while ψ1 and ψ4
are the same. Namely, the spectrum is

ψ1 =
−1
2

(1, 1, 1,−1)ᵀ , E = −2t , (2.70)

ψ2 =
1√
2
(0, 1, 0, 1)ᵀ , E = 0, (2.71)

ψ3 =
1√
2
(−1, 0, 1, 0)ᵀ , E = 0, (2.72)

ψ4 =
1
2
(1,−1, 1, 1)ᵀ , E = +2t , (2.73)

showing that the degeneracy at E = 0 allows for a change in the form of the states ψ2 and ψ3 in
the Nambu base.

2.4.3 The 3-site lattice

As a second step, I follow the same procedure for a 3-site lattice again for the special case of
µ = 0, t = ∆ where the Hamiltonian is

H =− t(c†
1c2 + c†

2c1− c1c2− c†
2c†

1 + c†
2c3 + c†

3c2− c2c3− c†
3c†

2) (2.74)

and the accompanying occupation number representation eigenstates are

|000〉= Vacuum (ci|000〉= 0) ,

|100〉= c†
1|000〉, |010〉= c†

2|000〉, |001〉= c†
3|000〉,

|110〉= c†
1c†

2|000〉, |101〉= c†
1c†

3|000〉, |011〉= c†
2c†

3|000〉,

|111〉= c†
1c†

2c†
3|000〉.

The Hamiltonian’s matrix representation follows, as

H =



0 0 0 0 −t 0 −t 0
0 0 −t 0 0 0 0 −t
0 −t 0 −t 0 0 0 0
0 0 −t 0 0 0 0 −t
−t 0 0 0 0 −t 0 0
0 0 0 0 −t 0 −t 0
−t 0 0 0 0 −t 0 0
0 −t 0 −t 0 0 0 0


, (2.75)
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which we diagonalize. The results is the diagonalized Hamiltonian

H̃ =



−2t 0 0 0 0 0 0 0
0 −2t 0 0 0 0 0 0
0 0 2t 0 0 0 0 0
0 0 0 2t 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (2.76)

which uncovers the eigenvalue spectrum ∓2t,0 and the corresponding eigenvectors

|os〉= 1√
4
(|100〉+ |010〉+ |001〉+ |111〉) , E = −2t

|es〉= 1√
4
(|000〉+ |110〉+ |101〉+ |011〉) ,

|oa〉= 1√
4
(−|100〉+ |010〉− |001〉+ |111〉) , E = +2t

|ea〉= 1√
4
(−|000〉+ |110〉− |101〉+ |011〉) ,

|o1〉= 1√
2
(−|010〉+ |111〉) , |e2〉= 1√

2
(−|110〉+ |011〉) , E = 0

|e3〉= 1√
2
(−|000〉+ |101〉) , |o4〉= 1√

2
(−|100〉+ |001〉) .

For the the 3-site lattice case, the occupation number operator is

ñ = c̃†
1c̃1 + c̃†

2c̃2 =
1
2
(2− c†

1c2− c†
2c1− c2c1− c†

1c†
2− c†

2c3− c†
3c2− c3c2− c†

2c†
3). (2.77)

Since we need to recognize the vacuum versus the excited states of c̃, we confirm by calculation
that

ñ|es〉= ñ|os〉= 0 and ñ|ea〉= 2|ea〉 & ñ|oa〉= 2|oa〉 , (2.78)

concluding that the vacuum states for the c̃ operators are the symmetric states |e/os〉 while the
antisymmetric states |e/oa〉 are the excited.

Also, we can clearly see how the spectrum is doubly degenerate, split into an even parity
part and odd parity part since even and odd number fermion states do not mix. In order to
confirm our result, we just need to calculate how the operator P = −iγ1γ6 acts on the energy
states.

2.4.4 The general N-site lattice

Continuing to work on this scheme, so generalising for the N-site arbitrary case would mean
that we equip ourselves with the occupation number representation eigenstates, namely the set
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of 1+
N
∑

n=0

N!
n!(N−n)! = 2N eigenstates of the following table:

|0〉 1state
c†

i |0〉 1 < i < N N states
c†

i c†
j |0〉 1 < i < j < N N(N−1)

2! = N!
2!(N−2)! states

c†
i c†

jc
†
k |0〉 1 < i < j < k < N N(N−1)(N−2)

3! = N!
3!(N−3)! states

...
...

...

∏
m
in=1 c†

in |0〉 1 < i1 < .. . < im < N N(N−1)(N−2)...(N−(m+1))
m! = N!

m!(N−m)! states
...

...
...

∏
N−1
in=1 c†

in |0〉 1 < i1 < .. . < iN−1 < N N!
(N−1)!(N−(N−1))! = N states

∏
N
in=1 c†

in |0〉 1 < i1 < .. . < iN < N N!
N!(N−N)! = 1state

Those span the N-dimensional Fock space F N =
N⊕

n=0
H n, on which we find the matrix represen-

tation of the Hamiltonian (2.1) and diagonalize it. That way we can recognise the full spectrum
or eigenvalues and eigenvectors for the N-site lattice. But, as the matrix of the Hamiltonian is a
2N-dimensional matrix, tedious calculations build up.

Instead will are going to follow a different route. If we could just know the ground state of
the Hamiltonian (2.1) and this happened to be the vacuum state for the c̃ operators, then the
whole spectrum for the "refermioned" diagonal Hamiltonian of eq.(2.42) could be constructed
by applying the c̃ operators successively. The 2-site and 3-sites problem have already shown
that the ground state is symmetric and degenerate concerning parity, so following that "scent"
we can guess that the ground state of even and odd parity respectively is

1√
2N

N

∑
n=0


n

∑
i1 6=i2 6=...
...6=in=1


n

∏
m=1

c†
im |0〉=

{
|es〉 f or N = Ne = 2n : n ∈N

|os〉 f or N = No = 2n+ 1 : n ∈N
, (2.79)

while Ne +No = Ns while still Ns is the number of sites.
Using eq.(2.42) we define the occupation number operator ñ for the quasi-fermions created

by the c̃† operators, as

ñ =
Ns−1

2
− 1

2

Ns−1

∑
i=1

(
c†

i ci+1 + c†
i+1ci− cici+1− c†

i+1c†
i

)
, (2.80)

since according to eq.(2.42)

H =2 t
Ns−1

∑
i=1

(
ñi−

1
2

)
= 2t

(
Ns−1

∑
i=1

ñi−
Ns−1

2

)
= 2t

(
ñ− Ns−1

2

)
(2.1)
=⇒

(2.1)
=⇒ ñ =

Ns−1
2
− 1

2

Ns−1

∑
i=1

(
c†

i ci+1 + c†
i+1ci− cici+1− c†

i+1c†
i

)
. (2.81)



CHAPTER 2. A HOST FOR MAJORANA’S FERMIONS 22

Applying it on the "scent" discovered ground state |e/os〉, we do confirm that ñ |e/os〉= 0, as

(
Ns−1

2
− 1

2

Ns−1

∑
i=1

(
c†

i ci+1 + c†
i+1ci− cici+1− c†

i+1c†
i

)) N

∑
n=1


n

∑
i1 6=i2 6=...
...6=in=1


n

∏
m=1

c†
im |0〉 ,

where we can see that the action of the term c†
i+1c†

i is compensated by the action of cici+1 and
this is happening for Ns−1 times due to the summation included in ñ. Equivalently, it happens
for the c†

i ci+1 and c†
i+1ci terms, leading to a zero result.



Chapter 3

Kitaev’s wire coupled to fermionic
baths

So far, we dealt with the 1D lattice of Kitaev’s Hamiltonian, introduced by eq.(2.1), but
haven’t showed nor calculated any of its thermodynamic properties except for the energy spec-
trum. The question that could naturally rise would be about the behaviour of Kitaev’s 1D lattice
model in interaction with the environment. Taking the 1D lattice out of isolation means bringing
it into contact with a bath of fermions in equilibrium, such that the 1D lattice microstates belong
to the grand-canonical ensemble. Subsequently, finding out the Green’s functions of the system
would enable us to understand the system’s response and calculate any of its thermodynamic
and non-equilibrium quantities.

ΜL

tk,L

c1 c2 c3 c4 c5

Γ1 Γ3 Γ5 Γ7 Γ9Γ2 Γ4 Γ6 Γ8 Γ10

cNs -1 cNs

Γ2 Ns -3 Γ2 Ns -1Γ2 Ns -2 Γ2 Ns

ΜR

tk,R

Figure 3.1: The Kitaev lattice model coupled to Fermi gas reservoirs of chemical potential µL/R.

Simply, we couple our 1D lattice to ideal leads, see fig.3, modelled as Fermi liquid reser-
voirs of different chemical potentials µL/R, one on each end of the lattice. The corresponding
Hamiltonian of the system is

Hs = HL +Hcpl
L +H +Hcpl

R +HR , (3.1)

consisting of the Hamiltonian for the Kitaev 1D lattice H, the ideal leads HL/R and the the cou-

23
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pling between them Hcpl = Hcpl
L +Hcpl

R . They are given by

H = −µ
Ns

∑
i=1

ni−
Ns−1

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
−∆

(
cici+1 + c†

i+1c†
i

)]
, (3.2)

HL/R = −µL/RNL/R +∑
k

εk,L/R c†
k,L/R ck,L/R , (3.3)

Hcpl = −tk,L

(
c†

1ck,L + c†
k,Lc1

)
− tk,R

(
c†

Ns
ck,R + c†

k,RcNs

)
, (3.4)

where NL/R is the number of particles in the left/right reservoir, tk,L/R is the hopping ampli-
tude of the coupling between the 1D lattice and the left/right reservoirs, c†

k,L/R/ck,L/R are the
creation/annihilation operators of particles with momentum k in the left/right reservoir and
εk,L/R are their energies.

3.1 A finite temperature path integral

We consider the system in equilibrium, so naturally we wish to write the partition func-
tion of the system as a path-integral of non-zero temperature in the grand-canonical ensemble.
Specifically, we are interested in the sum

Z = ∑
n
〈n|e−βHs |n〉 (3.5)

over the complete set of Fock states |n〉 of the total system. Since this is not a convenient basis,
we turn the representation of eq.(3.5) into the fermionic coherent states basis

Z =
∫

D[ψ†
i ,ψi,ψ

†
L,R,ψL,R]e−Ss[ψ

†
i ,ψi,ψ

†
L,R,ψL,R] , (3.6)

where h̄ = 1 and the action dependent on the field ψ = ψ(τ)1. Now, τ is the inverse temperature,
while the action Ss[ψ

†
i ,ψi,ψ

†
L,R,ψL,R] consists of the sum

Ss[ψ
†
i ,ψi,ψ

†
L,R,ψL,R] = S[ψ†

i ,ψi]+ Scpl [ψ
†
i ,ψi,ψ

†
L,R,ψL,R]+ SL,R[ψ

†
L,R,ψL,R]. (3.7)

The respective constituent actions are

S[ψ†
i ,ψi] =

∫
β

0
dτ

(
Ns

∑
i=1

ψ
†
i (∂τ−µ)ψi−

Ns−1

∑
i=1

[
t
(

ψ
†
i ψi+1 +ψ

†
i+1ψi

)
−∆

(
ψiψi+1 +ψ

†
i+1ψ

†
i

)])
, (3.8)

SL,R[ψ
†
L,R,ψL,R] =

∫
β

0
dτ

(
− 1

V ∑
k

ψ
†
k,L (∂τ + εk,L−µL)ψk,L +(L→ R)

)
, (3.9)

Scpl [ψ
†
i ,ψi,ψ

†
L,R,ψL,R] =

∫
β

0
dτ

(
∑
k

−tk,L√
V

(
ψ

†
1ψk,L +ψ

†
k,Lψ1

)
+

(
L→ R
1→ Ns

))
, (3.10)

where the index k signals the momentum dependence of the coupled leads, represented by
Fermi liquid reservoirs of volume V . Before plugging the action eq.(3.7) into the path integral of

1In the ongoing text the τ-dependance is suppressed from notation for convenience and restored where it is neces-
sary.
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eq.(3.6) and performing the calculation, I will complete the square of the action, such that using
shorthand notation

SL,R[ψ
†
L,R,ψL,R] =

∫
β

0
dτ

{
− 1

V ∑
k,k′

ψ
†
k,L ((∂τ + εk,L−µL)δk,k′)︸ ︷︷ ︸

G−1
k,k′ ,L

ψk′,L +(L→ R)

}
(3.11)

SL,R = −
(
ψL
∣∣G−1

L

∣∣ψL
)
−
(
ψR
∣∣G−1

R

∣∣ψR
)
, (3.12)

Scpl [ψ
†
i ,ψi,ψ

†
L,R,ψL,R] =

∫
β

0
dτ

{
− 1√

V ∑
k

tk,L

(
ψ

†
1ψk,L +ψ

†
k,Lψ1

)
+

(
L→ R
1→ Ns

)}
(3.13)

Scpl = −
(
ψ1tL

∣∣ψL
)
−
(
ψL
∣∣tLψ1

)
−
(
ψNstR

∣∣ψR
)
−
(
ψR
∣∣tRψNs

)
(3.14)

and their sum equals

SL,R + Scpl = −
(
ψL + tLψ1GL

∣∣G−1
L

∣∣ψL + tLGLψ1
)
+
(
ψ1|tL|2

∣∣GLψ1
)
+

(
L→ R
1→ Ns

)
. (3.15)

Integrating out the fields ψ
†
L/R,ψL/R in eq.(3.6) while taking into account eq.(3.15) results in

Z =
∫

D[ψ†
i ,ψi]e

−S[ψ†
i ,ψi]−

(
ψ1|tL|2

∣∣GLψ1

)
−
(

ψNs |tR|2
∣∣GRψNs

)
(3.16)

=
∫

D[ψ†
i ,ψi]e

−S[ψ†
i ,ψi]−

∫ β

0 dτ

(
ψ

†
1ψ1

1
V ∑

k
|tk,L|2Gk,L+ψ

†
Ns ψNs

1
V ∑

k
|tk,R|2Gk,R

)
(3.17)

showing an effective action expression

Se f f [ψ
†
i ,ψi] =

∫
β

0
dτ

{
Ns

∑
i=1

ψ
†
i (∂τ−µ)ψi−

Ns−1

∑
i=1

[
t
(

ψ
†
i ψi+1 +ψ

†
i+1ψi

)
−∆

(
ψiψi+1 +ψ

†
i+1ψ

†
i

)]
−ψ

†
1ψ1

1
V ∑

k
|tk,L|2Gk,L︸ ︷︷ ︸
−ΣL

−ψ
†
Ns

ψNs

1
V ∑

k
|tk,R|2Gk,R︸ ︷︷ ︸
−ΣR

}
. (3.18)

Defining the left/right reservoir self-energies as ΣL/R = 1
V ∑

k
|tk,L/R|2Gk,L/R allows us to recast it

in the form

Se f f [ψ
†
i ,ψi] =

Ns

∑
i, j=1

∫
β

0
dτ

(
ψ

†
i G−1

i j ψ j

)
, (3.19)

where the functions noted by G±1
i j represent Green’s functions and their inverses, obeying the

defining equation

G−1
ia ·Ga j = 1̂⇔∑

a

∫
dτ
′′G−1

ia (τ− τ
′′)Ga j(τ

′′− τ
′) = δi jδ(τ− τ

′). (3.20)

3.1.1 A reservoir’s self-energy

At this moment let us pause to investigate the expression of self-energy ΣL/R in an extensive
way. Since this is included in the inverse Green’s function of the the effective action Se f f [ψ

†
i ,ψi],
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eq.(3.19), we should have established a form for it. The reservoirs are homogenous fermi gas
containers of energy

εkL/R + εL/R =
kL/R

2

2m
+ εL/R ,

where εL/R is the ground state energy of each L/R reservoir respectively. Looking back at
SL/R[ψ

†
L/R,ψL/R] in eq.(3.11), we firstly strip it of the L/R indices such that SL/R[ψ

†
L/R,ψL/R] =

S[ψ†,ψ], specifically

S[ψ†,ψ] = − 1
V ∑

k

∫
β

0
dτ

(
ψ

†
k(τ) (∂τ + εk + ε−µ)ψk(τ)

)
(3.21)

and then we implement the Matsubara expansion for the fields

ψk(τ) =
1√
β

∑
n

ψk,ne−iωnτ for n =
(2n+ 1)π

β
. (3.22)

Performing the Fourier integrals and summations results in

S[ψ†,ψ] = − 1
βV ∑

n,k
ψ

†
k,n (−iωn + εk + ε−µ)︸ ︷︷ ︸

G−1
k (iωn)

ψk,n . (3.23)

In section 3.1, the final step to the effective action of eq.(3.18) was performing the integrals
over the fields ψ

†
L,R,ψL,R. There we concluded in self-energy expressions ΣL/R involving the

non-interacting Fermi gas Green’s function Gk,L/R which can now recognise as Gk,L/R(iωn) =

− (−iωn + εk + εL/R−µL/R)
−1, in accordance to [5], eq.(7.57). Subsequently, the self-energy ex-

pressions ΣL/R(iωn) are given by

ΣL/R(iωn) = −
1
V ∑

k
|tk,L/R|2Gk,L/R(iωn) =

1
V ∑

k

|tk,L/R|2

−iωn + εk + εL/R−µL/R
. (3.24)

In order to calculate the above-mentioned expression, the summations are represented by
D-dimensional integrals over momentum space. Therefore they could in general be infrared
or ultraviolet divergent depending on the form of tk,L/R and the dimension D, they require the
implementation of renormalisation techniques. In such a case we would prefer to perform the
following decomposition

ΣL/R(iωn) =
1
V

(
∑
k
|tk,L/R|2

( 1
−iωn + εk + εL/R−µL/R

− 1
εk + εL/R

)
+∑

k

|tk,L/R|2

εk + εL/R

)
(3.25)

and proceed to a suitable renormalisation scheme.
For our purposes, considering tk,L/R = tL/R = const and D = 3, such that εk ∝ k2 will require

the introduction of an ultraviolet cut-off Λ for eq.(3.24), such that it turns to the integral∫ Λ

0
dk

k2

−iωn + εL/R−µL/R + k2 =

(
Λ−

√
−iωn + εL/R−µL/R tan−1

(
Λ√

−iωn + εL/R−µL/R

))
. (3.26)

Subsequently, if we use equation eq.(3.25) in combination with eq.(3.26) and take the limit for

Λ→+∞ the renormalised self-energy Σr
L/R(iωn) =

(
ΣL/R(iωn)−∑

k

|tk,L/R|2
εk+εL/R

)
is

Σr
L/R(iωn) =

π

2V
|tL/R|2

(√
εL/R−

√
−iωn + εL/R−µL/R

)
. (3.27)
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3.2 The Green’s functions

Seeking the exact form for the Green’s functions for a superconducting system makes us
employ the 2Ns−dimensional Nambu space basis for the effective action given in eq.(3.19). The
coherent states basis vector in the 2Ns−dimensional Nambu space is

ψi =
(

ψ1, ψ2, ψ3, . . . ,ψNs−1, ψNs , ψ
†
1, ψ

†
2, ψ

†
3, . . . ,ψ†

Ns−1, ψ
†
Ns

)ᵀ
, (3.28)

such that the inverse Green’s function takes the block form

G−1
i j =

1
2

(
G−1

0 ∆

−∆ −
(
G−1

0

)†

)
i j

. (3.29)

The block constituent G−1
0 = G−1

0;i j where now i, j = 1,2 . . .Ns, is given by

G−1
0;i j =



(∂τ−µ)+ΣL −t 0 . . . . . . 0
−t (∂τ−µ) −t 0 . . . 0

0 −t
. . .

. . . 0
...

... 0
. . .

. . . −t 0
0 . . . 0 −t (∂τ−µ) −t
0 . . . . . . 0 −t (∂τ−µ)+ΣR


(3.30)

and happens to be equal to the Green’s function G−1
i j for the case of ∆ = 0; while the other block

Ns-dimensional constituent ∆=∆i j incorporates the superconducting behaviour of the system,
being

∆=∆i j =



0 ∆ 0 . . . . . . 0
−∆ 0 ∆ 0 . . . 0

0 −∆
. . .

. . . 0
...

... 0
. . .

. . . ∆ 0
0 . . . 0 −∆ 0 ∆
0 . . . . . . 0 −∆ 0


. (3.31)

A paradigm. The Green’s function for a 2-site lattice.

Having established a method for the calculation of the system’s equilibrium Green’s func-
tion Gi j and an expression for the self-energies ΣL/R, let us demonstrate their explicit form for
the 2-site lattice as an illustrative example. The inverse Green’s functions have the matrix form

G−1
i j =

1
2

(
G−1

0 ∆

−∆ −
(
G−1

0

)†

)
i j

, where G−1
0;i j =

(
(∂τ−µ)+ΣL −t

−t (∂τ−µ)+ΣR

)

or G−1
i j =

1
2


(∂τ−µ)+ΣL −t 0 ∆

−t (∂τ−µ)+ΣR −∆ 0
0 −∆ (∂τ + µ)−ΣL +t
∆ 0 +t (∂τ + µ)−ΣR

 , (3.32)
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while the Green’s functions are given by

G−1
ia ·Ga j = 1̂⇔∑

a

∫
dτ
′′G−1

ia (τ− τ
′′)Ga j(τ

′′− τ
′) = δi jδ(τ− τ

′). (3.33)

Expanding Ga j(τ′′− τ′) and ΣL/R(τ) over Matsubara fermionic frequencies2 ωn = (2n+1)π
β

, for
n ∈Z, results in the following equation

1
2

(
G−1

0 (iωn) ∆

−∆ −
(
G−1

0

)†
(iωn)

)
ia

·Ga j(iωn) = δi j , (3.34)

where

G−1
0 (iωn) =

(
iωn−µ+ΣL −t

−t iωn−µ+ΣR

)
(3.35)

and

−
(
G−1

0

)†
(iωn) =

(
iωn + µ−Σ†

L +t
+t iωn + µ−Σ†

R

)
. (3.36)

This is solved by

Gi j(τ) = ∑
n

e−iωnτ

2

((−iωn−µ+ΣL(iωn)) (−iωn−µ+ΣR(iωn))− t2 +∆2)2

(
G0 ∆

−∆ − (G0)
†

)
i j

, (3.37)

while G0 =

(
−iωn−µ+ΣR(iωn) t

t −iωn−µ+ΣL(iωn)

)
.

2Note that the expansion for the G−1
0 block component is

∫
dτ′′G−1

0 (τ− τ′′)G−1
0 (τ′′− τ′) = δi jδ(τ− τ′)⇒

⇒
∫

dτ
′′
(
(∂τ−µ)δ(τ− τ′′)+ΣL(τ− τ′′) −tδ(τ− τ′′)

−tδ(τ− τ′′) (∂τ−µ)δ(τ− τ′′)+ΣR(τ− τ′′)

)
∑
n

G0;a j(iωn)e−iωn(τ′′−τ′) = δi jδ(τ− τ
′)⇒

⇒
(
−iωn−µ+ΣL(iωn) −t

−t −iωn−µ+ΣR(iωn)

)
·G0;a j(iωn) = δi j

.



Chapter 4

Out of equilibrium considerations

Until this point all our methods were based on the assumption that the system had been
given enough time to relax to a "Thermodynamic Equilibrium" state, such that

The isolated system is characterised by a unique set of time-independant extensive and in-
tensive variables

or a "Stationary Thermodynamic Non-Equilibrium" state, under which

The system is characterised by a unique set of time-independant extensive and intensive
variables, under the condition that the environment remains unchanged.

The system setup introduced in chapter 3 includes an 1D lattice, while the environment con-
sists of Fermi liquid reservoirs coupled to it. In the previous section 3.2 we showed how the
reservoirs can be integrated out of the path integral and included in the equilibrium Green’s
functions as self-energy terms ΣL/R. In this chapter we treat the same setup, characterised by a
Hamiltonian like the one of eq.(3.1) but in a non-equilibrium way. We aim to calculate the con-
ductivity of Kitaev’s lattice model due to the chemical potential differences for the reservoirs.
But since a current flow J is a non-equilibrium quantity, we need to employ non-equilibrium
Green’s functions instead of the equilibrium ones of the previous chapter.

4.1 Langevin Equations

Motivated by the previous chapter’s equilibrium approach, where we calculated the Green’s
functions and showed how the reservoir’s effect is included as self-energies ΣL/R, we will mount
directly on the non-equilibrium approach starting from the equations of motion. The setup of
the system is given by a type of Hamiltonian like the one of eq.(3.1), but since the system is
no longer in equilibrium a path-integral over the inverse temperature τ = −iβ - like the one of
eq.(3.5) - cannot be written. So, let us just consider reservoirs that are large enough in compari-
son to the 1D lattice such that are in equilibrium while they produce and propagate noise within
the 1D lattice wire.

The system consists of a N-site 1D lattice having chemical potential µ, characterised by the
fermionic fields ψi(τ),ψ

†
i (τ)

1 and coupled with Fermi gas reservoirs in equilibrium, while these
1Please note that τ is no more the inverse temperature of the previous chapter but ordinary time. The Greek character

τ is used instead of the usual t since this was reserved for the hoping parameter.

29
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are identified by different chemical potentials µ1/2 = µL/R. The reservoirs are characterised by
and coupled to the lattice by means of self-energies Σ+

L/R(τ− τ′), Σ−L/R(τ
′− τ) - the retarded and

advanced respectively - while they are also responsible for noise in the system, characterised by
the functions ηL/R(τ), η

†
L/R(τ). Of course each of the retarded/advanced self-energies, in order

to justify its name, incorporates the Heaviside function Θ(±(τ−τ′)) respectively. The system is
dictated by the following Langevin equations(

ih̄
∂

∂τ
−µ
)

ψi(τ)−
+∞∫
−∞

dτ
′h̄S+i j (τ− τ

′)ψ j(τ
′) = ηi(τ), (4.1a)

(
−ih̄

∂

∂τ
−µ
)

ψ
†
i (τ)−

+∞∫
−∞

dτ
′
ψ

†
j(τ
′) h̄S−ji(τ

′− τ) = η
†
i (τ), (4.1b)

where repeated indices are summed over. Implementing the Nambu base for the fermion’s field

ψi(τ) =
(

ψ1(τ), . . . ,ψN−1(τ), ψN(τ), ψ
†
1(τ), . . . ,ψ†

N−1(τ), ψ
†
N(τ)

)ᵀ
(4.2)

and the noise field

ηi(τ) =
(

ηL(τ), 0, . . . ,0, ηR(τ), η
†
L(τ), 0, . . . ,0, η

†
R(τ)

)ᵀ
, (4.3)

results in

h̄S+i j (τ− τ
′) =

1
2

(
h̄S+0 (τ− τ′) ∆
−∆ −h̄S−0 (τ′− τ)

)
i j

. (4.4)

The matrix ∆ is given by eq.(3.31) like in section 3.2 and

h̄S+0;i j =



h̄Σ+
L (τ− τ′) −t δ (τ− τ′) 0 . . . . . . 0

−t δ (τ− τ′) 0 −t δ (τ− τ′) 0 . . . 0

0 −t δ (τ− τ′)
. . .

. . . 0
...

... 0
. . .

. . . −t δ (τ− τ′) 0
0 . . . 0 −t δ (τ− τ′) 0 −t δ (τ− τ′)
0 . . . . . . 0 −t δ (τ− τ′) h̄Σ+

R (τ− τ′)


,

while S+i j (τ− τ′) is symmetric and S+i j (τ− τ′) =
(

S−ji(τ
′− τ)

)†
.

4.2 The non-equilibrium Green’s functions

According to the definitions given for our system, we recognise the inverse retarded Green’s
function as

G+−1

i j (τ− τ
′) = −

1
h̄

((
ih̄

∂

∂τ
−µ
)

δi j δ(τ− τ
′)− h̄S+i j (τ− τ

′)

)
, (4.5)

which satisfies the usual defining relation

+∞∫
−∞

dτ
′′G+−1

ia (τ− τ
′′) ·G+

a j (τ
′′− τ

′) = δi j δ (τ− τ
′) , (4.6)
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while G+−1

ia (τ− τ′) =
(

G−
−1

ia (τ′− τ)
)†

.
As a first step we implement Fourier transformations, which will prove to be handy later

on, so by defining the transformation for the fields as

ψi(τ) =
∫ +∞

−∞

dE√
2πh̄

ψi(E)e−i E
h̄ τ , ψ

†
i (τ) =

∫ +∞

−∞

dE√
2πh̄

ψ
†
i (E)e

+i E
h̄ τ , (4.7)

consequently, the Fourier transform of self-energy terms is

S±i j (τ− τ
′) =

∫ +∞

−∞

dE
2πh̄

S±i j (E)e
∓i E

h̄ (τ−τ′), (4.8)

where we take advantage of the symmetry over the indices in S+i j (E) and we also recognise that

S+i j (E) =
(

S−ji(E)
)†

=
(

S−ji(E)
)∗

. Lastly, the noise terms transform as

ηi(τ) =
∫ +∞

−∞

dE√
2πh̄

ηi(E)e−i E
h̄ τ , η

†
i (τ) =

∫ +∞

−∞

dE√
2πh̄

η
†
i (E)e

+i E
h̄ τ. (4.9)

Now, plugging the above-mentioned expressions in the Langevin equations (4.1) and perform-
ing the Fourier integrals, results in the Fourier transformed equations(

(E−µ)δi j− h̄S+i j (E)
)
·ψ j(E) = −h̄G+−1

i j (E) ·ψ j(E) = ηi(E) , (4.10a)

ψ
†
j(E) ·

(
(E−µ)δ ji− h̄S−ji(E)

)
= ψ

†
j(E) ·

(
−h̄G−

−1

ji (E)
)
= η

†
i (E) , (4.10b)

for the 1D lattice.
Note that on eq.(4.10) I have silently introduced the inverse of the Fourier transform of

the retarded/advanced Green’s functions G±
−1

i j (E) which define the Green’s functions G±i j(E)
through the relation

G±
−1

ia (E) ·G±a j(E) = δi j⇒
(
(E−µ)δia− h̄S±ia(E)

)
−h̄

·G±a j(E) = δi j, (4.11)

where G±
−1

ia (E) = − 1
2h̄

(
G±

−1

0 (E) ∆

−∆ −G∓
−1

0 (−E)

)
ia

, while G±
−1

0;ia (E) is a Ns-dimensional matrix

given by

G±
−1

0;ia (E) = −
1
h̄



E−µ− h̄Σ±L (E) −t 0 . . . . . . 0
−t E−µ −t 0 . . . 0

0 −t
. . .

. . . 0
...

... 0
. . .

. . . −t 0
0 . . . 0 −t E−µ −t
0 . . . . . . 0 −t E−µ− h̄Σ±R (E)


. (4.12)

In order to calculate the Green’s function G±0;ia(E) it is handy to implement the block-wise matrix
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inversion technique 2 in order to arrive at

G±a j = 2h̄

 −
(

G±
−1

0 (E)−∆G∓0 (−E)∆
)−1

G±0 (E)∆
(
−G∓

−1

0 (−E)+∆G±0 (E)∆
)−1

G∓0 (−E)∆
(

G±
−1

0 (E)−∆G∓0 (−E)∆
)−1

−
(
−G∓

−1

0 (−E)+∆G±0 (E)∆
)−1


a j

.

4.3 The lesser Green’s function

Solving eq.(4.10) for the Fourier transformed fields ψ
†
i (E), ψ j(E) we obtain

ψi(E) = G+
il (E) ·ηl(E) & ψ

†
j(E) = η

†
k(E) ·G

−
k j(E) (4.15)

and we are able to claim that the expectation value of the correlation function of the fields is〈
ψ

†
i (E

′)ψ j(E)
〉
= G−ki(E

′) ·
〈

η
†
k(E

′)ηl(E)
〉
·G+

jl (E). (4.16)

Equating the energies, E = E ′ and taking into account that the Green’s functions are symmetric,
such that G±i j(E) = G±ji(E), leads to the expectation value for the lesser Green’s function G<

i j(E)
3

as 〈
ψ

†
i (E)ψ j(E)

〉
= −iG<

i j(E) = G−ik(E) ·
〈

η
†
k(E)ηl(E)

〉
·G+

l j(E) . (4.17)

In order to evaluate eq.(4.17) we need to understand what the noise correlation function is.
Considering that the noise comes from the reservoirs in equilibrium, we adopt the following
ansatz for its correlation function〈

η
†
k(E)ηl(E)

〉
= 2πh̄

(
−1
πh̄

Im
[
h̄S+kl (E)

])
NFD(E− (µk−µ))4 (4.18)

and seek for its justification.

4.4 The fluctuation-dissipation theorem

The justification of the above-mentioned ansatz goes through the fluctuation-dissipation
theorem which establishes the connection between a non-equilibrium state and an equilibrium
one. Namely, it states that:

2An n+ n′ dimensional matrix M, composed by the block form M =

(
A B
C D

)
, where the blocks A, D are invertible

square matrices of n, n′ dimensions respectively and B, C are n×n′, n′×n dimensional matrices respectively, is invertible
and it’s inverse is given by the general formula

M−1 =

( (
A−BD−1C

)−1 −A−1B
(
D−CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D−CA−1B

)−1

)
(4.13)

which for C = −B and D = −A† becomes

M−1 =


(

A−B
(
A†)−1 B

)−1
−A−1B

(
−A† +BA−1B

)−1

−
(
A†)−1 B

(
A−B

(
A†)−1 B

)−1 (
−A† +BA−1B

)−1

 . (4.14)

3This is the Fourier transformation of the the original lesser Green’s function G<
i j (τ).

4Now, the repeated indices do not imply any summation.
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Theorem. Fluctuation - Dissipation (Langevin) Theorem: The equilibrium is brought about by a dissi-
pative interaction (“friction”) between the system and the reservoir. Whatever the dissipative mechanism,
it is the same process that produces the random, fluctuating behaviour of the system. Moreover, both pro-
cesses are uniquely determined by the statistical nature of the microscopic processes of the interaction.

In equilibrium, for our setup, the above is translated to a relation between the lesser Green’s
function and the spectral function, namely

G<
i j(E) = ρi j N(E) = − 1

πh̄
Im
[
G+

i j (E)
]

N(E) , (4.19)

where N(E) is the equilibrium distribution function - in our case the Fermi-Dirac distribution

N(E) = NFD(E) =
(

1+ eβ(E−µ)
)−1

. The relation of eq.(4.19) establishes an equilibrium initial
condition for the non-equilibrium lesser function G<

i j(E). In parallel, a useful ansatz has been
proposed; consider replacing the equilibrium distribution function N(E) by an unknown non-
equilibrium one.

Consider the situation of a single site coupled to a reservoir in equilibrium. According to
our results from the previous section 4.3 for 〈N(E)〉 at the first site we should have

2πh̄〈N(E)〉=
〈

ψ
†
1(E)ψ1(E)

〉
= −iG<

11(E) = G−1k(E) ·
〈

η
†
k(E)ηl(E)

〉
·G+

l1(E)
∣∣∣
k,l=1

⇒

〈N(E)〉= h̄
2π

〈
η

†
L(E)ηL(E)

〉
(
E−µ− h̄Σ−L (E)

)(
E−µ− h̄Σ+

L (E)
) . (4.20)

If we define Σ±L/R(E) = Re
[
Σ±L/R(E)

]
+ i Im

[
Σ±L/R(E)

]
= Σ

′+
L/R(E)± iΣ

′′+
L/R(E), since for the self-

energies it holds that Σ+
i j (E) =

(
Σ−i j(E)

)∗
, the expression for 〈N(E)〉 results in

〈N(E)〉= h̄
2π

〈
η

†
L(E)ηL(E)

〉
(

E−µ− h̄Σ
′+
L (E)

)2
+
(

h̄Σ
′′+
L (E)

)2 . (4.21)

Thanks to the fluctuation-dissipation theorem - in parallel - we know that the density func-
tion in equilibrium is connected to the spectral function ρ(E) as

〈N(E)〉= ρ11(E)NFD(E) = −
1

πh̄
Im
[
G+

11(E)
]

NFD(E) = −
1

πh̄
Im
[

h̄
E−µ− h̄Σ+

L (E)

]
NFD(E)⇒

〈N(E)〉= 1
π

−h̄Σ
′′+
L (E)NFD(E)(

E−µ− h̄Σ
′+
L (E)

)2
+
(

h̄Σ
′′+
L (E)

)2 , (4.22)

so by comparing the two expressions, eq.(4.22) and eq.(4.21), we conclude that〈
η

†
L(E)ηL(E)

〉
= −2Σ

′′+
L (E)NFD(E) (4.23)

in equilibrium. This is justifiably extended to the ansatz〈
η

†
L/R(E)ηL/R(E)

〉
= −2Σ

′′+
L/R(E)NFD(E− (µL/R−µ)), (4.24)

which is in accordance with eq.(4.18) for the correlation function of the noise.
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4.4.1 The real & complex part of a reservoir’s self-energy

A constituent that remains to be determined is the explicit equilibrium form of the self-
energy Σ+(E), where Σ

′+(E) = Re [Σ+(E)] and Σ
′′+(E) = Im [Σ+(E)]. In accordance to section

3.1.1 and eq.(3.24) we have

Σ+(E) = − t2

V ∑
k

Gk(E) = t2
∫ +∞

0

k2

(E + iε)+ k2

2me
−µ+Ek0

dk , (4.25)

where ε→ 0+. Following the Sokhotski-Plemelj theorem, see app.D, we have

Σ+(E) = me t2
(
−iπ

√
2me (E +Ek0 −µ)+P

∫ +∞

0

2k
k2 + 2me (E +Ek0 −µ)

dk
)

(4.26)

where P denotes the Cauchy principal value.

4.5 A non-equilibrium revision of the 2-site lattice

By the end of section 3.2 we calculated the explicit form of the equilibrium Green’s functions
for a 2-site lattice. Following that, in the current section we will calculate the non-equilibrium
Green’s functions. It serves as an illustrative example for the N-site case; these calculations
cannot be performed by hand and shown within the borderlines of a page. After showing the
non-equilibrium Green’s functions we will turn to the spectral function ρi j(E) and the conduc-
tivity σ.

4.5.1 The non-equilibrium Green’s functions

For the 2-site lattice, the expressions of the retarded/advanced inverse Green’s function are

G±
−1

a j (E) =
−1
2h̄


E−µ− h̄Σ±L (E) −t 0 ∆

−t E−µ− h̄Σ±R (E) −∆ 0
0 −∆ E + µ+ h̄Σ∓L (E) +t
∆ 0 +t E + µ+ h̄Σ∓R (E)

 ,

(4.27)

resulting in the retarded/advanced Green’s function

G±a j(E) = −2h̄


(

G±
−1

0 −∆G∓0 ∆
)−1

−G±0 ∆
(
−G∓

−1

0 +∆G±0 ∆
)−1

−G∓0 ∆
(

G±
−1

0 −∆G∓0 ∆
)−1 (

−G∓
−1

0 +∆G±0 ∆
)−1


a j

, (4.28)

where now G±
−1

0 = G±
−1

0 (E) =
(

E−µ− h̄Σ±L (E) −t
−t E−µ− h̄Σ±R (E)

)
and ∆ =

(
0 ∆
−∆ 0

)
, while

of course G∓
−1

0 = −G±
−1

0 (−E) as before. Tedious calculations result in

G±a j(E) =
1

Det
[
G±

−1

a j (E)
]


G̃±11(E) G̃±12(E) G̃±13(E) G̃±14(E)
G̃±21(E) G̃±22(E) G̃±23(E) G̃±24(E)
G̃±31(E) G̃±32(E) G̃±33(E) G̃±34(E)
G̃±31(E) G̃±42(E) G̃±43(E) G̃±44(E)

 , (4.29)
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where

G̃±11(E) =
1

8h̄3

((
E + µ+ h̄Σ∓R (E)

)[(
E−µ− h̄Σ±R (E)

)(
E + µ+ h̄Σ∓L (E)

)
+∆2

]
−t2 (E−µ− h̄Σ±R (E)

))
,

G̃±12(E) =G±21(E) =
t

8h̄3

(
t2−∆2−

(
E + µ+ h̄Σ∓L (E)

)(
E + µ+ h̄Σ∓R (E)

))
,

G̃±22(E) =
1

8h̄3

((
E + µ+ h̄Σ∓L (E)

)[(
E−µ− h̄Σ±L (E)

)(
E + µ+ h̄Σ∓R (E)

)
+∆2

]
−
(
E−µ− h̄Σ±L (E)

)
t2) ,

G̃±13(E) =G̃±31(E) = −
2 t ∆
8h̄3

(
E− i h̄ Im

[
Σ±R (E)

])
,

G̃±14(E) =G̃±41(E) =
∆

8h̄3

(
t2−∆2−

(
E−µ− h̄Σ±R (E)

)(
E + µ+ h̄Σ∓L (E)

))
,

G̃±23(E) =G̃±32(E) =
−∆
8h̄3

(
t2−∆2−

(
E−µ− h̄Σ±L (E)

)(
E + µ+ h̄Σ∓R (E)

))
,

G̃±24(E) =G̃±42(E) =
2 t ∆
8h̄3

(
E− i h̄ Im

[
Σ±L (E)

])
,

G̃±33(E) =
(
E + µ+ h̄Σ∓R (E)

)[
h̄Σ±L (E)

(
E−µ− h̄Σ±R (E)

)
+(E−µ)h̄Σ±R (E)− (E−µ+ t)(E−µ− t)

]
+∆2 (E−µ− h̄Σ±L (E)

)
,

G̃±34(E) =G̃±43(E) = t
(
∆2− t2 +(E−µ)2− h̄Σ±L (E)

(
E−µ− h̄Σ±R (E)

)
− (E−µ)h̄Σ±R (E)

)
,

G̃±44(E) =
(
E + µ+ h̄Σ∓L (E)

)[
h̄Σ±L (E)

(
E−µ− h̄Σ±R (E)

)
+(E−µ)h̄Σ±R (E)− (E−µ+ t)(E−µ− t)

]
+∆2 (E−µ− h̄Σ±R (E)

)
,

while

Det
[
G±

−1

a j (E)
]
=

1
16h̄4

((
t2−∆2)2−∆2 [(E−µ− h̄Σ±R (E)

)(
E + µ+ h̄Σ∓L (E)

)
+(L→ R)

]
−t2 [(E−µ− h̄Σ±L (E)

)(
E−µ− h̄Σ±R (E)

)
+
(
E + µ+ h̄Σ∓L (E)

)(
E + µ+ h̄Σ∓R (E)

)]
+
(
E−µ− h̄Σ±L (E)

)(
E−µ− h̄Σ±R (E)

)(
E + µ+ h̄Σ∓L (E)

)(
E + µ+ h̄Σ∓R (E)

))
.

4.5.2 The spectral function

Having the Green’s functions at hand enables us to calculate and plot all the quantities of
interest. The spectral function ρi j(E) is related to the advanced Green’s function via

ρi j(E) = −
1

πh̄
Im
[
G+

i j (E)
]

, (4.30)

which is a dimensionless quantity directly related to the single-particle density of states. In
section 2.4.2 we calculated the energy eigenvalues for the general case of t 6= ∆, so we should
now expect to see the maximums of the spectral function ρ11(E) or ρ22(E) to lie at those values.

Assuming the equilibrium case where the reservoir’s self-energies Σ±L (E) = Σ±R (E) = Σ±(E)
equate, since all chemical potentials should equate µR = µL = µ, we plot the spectral function
ρ11(E) = ρ22(E) with respect to the energy of the system E/t. The peaks of the spectral function
ρ11(E) or ρ22(E) are expected to be located at the eigenenergies of the system. Recalling section
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Figure 4.1: The spectral function ρi j(E), plotted for µ = 0 and Ek0 =−100 t. The blue line (∆ = 0)
shows two peaks, namely at E = ±t, as is expected for the absence of superconductivity while
for (∆ = t/2) we observe four peaks at E = ±(t±∆). Note that both axis are dimensionless.

2.4.2 where we solved the system in the Nambu base, reminds us that the energies for the
eigenstates of the system are E = ±(t±∆) and as we can see in fig.4.1 this is confirmed.

4.5.3 The zero-temperature conductivity

Turning our interest towards the conductivity of the 2-site lattice, we need to calculate the
current density per link j 1

2
(τ) which is〈

j 1
2
(τ)
〉
= − it

h̄

(
−iG<

12(τ)+ iG<†
12 (τ)

)
(4.31)

according to eq.(C.8) and eq.(4.17). Calculations for the average Fourier transformed current
density per link j 1

2
(E) result in the concise formula〈

j 1
2
(τ)
〉
=

∫ +∞

−∞

dE
2πh̄

8 t2 h̄2 Σ
′′
L(E)Σ

′′
R(E) (NFD (E− (µL−µ))−NFD (E− (µR−µ)))

Det
[
G+−1

a j (E)
]2 , (4.32)

which depends on the properties of the reservoirs. Expanding the current to linear order around
µR = µ and µL = µ results in

〈
j 1

2
(τ)
〉
=

∫ +∞

−∞

dE
πh̄

(
2 t h̄Σ

′′
(E)
)

2

Det
[
G+−1

a j (E)
]2

∂NFD(E)
∂E

∆µ , (4.33)
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Figure 4.2: The conductivity σ of Kitaev’s 2-site lattice at temperature T = 0, plotted for Ek0 =
−100 t. Maxima are observed at E =±(t±∆), while for ∆ = t which is the phase with Majoranas
are present we observe a single maximum which is significantly larger.

where ∆µ = µL− µR and Σ±L (E) = Σ±R (E) = Σ±(E). Now, the conductivity σ is transparently
shown as σ =

〈 j1/2(τ)〉
∆µ and it is only the integral that needs to be performed in order to get a

numerical result.
Taking the zero temperature limit, T → 0, forces the Fermi-Dirac distribution accommodated

in the noise correlation function, eq.(4.18), to become a Heaviside Θ−function and its derivative
to become a Dirac δ−function peaked at E = 0. Subsequently, the integral of eq.(4.33) is easily
performed delivering us the current

〈
j 1

2
(τ)
〉∣∣∣

T=0
=

2
h

(
2 t h̄Σ

′′
(0)
)

2

Det
[
G+−1

a j (0)
]2 ∆µ (4.34)

and the conductivity

σ =
2
h

4 t2 h̄2 Σ
′′
(0)

2(
(µ+ h̄Σ′(0))2 +∆2− t2

)2
+ 2
(
h̄Σ′′(0)

)2 (
(µ+ h̄Σ′(0))2 +∆2 + t2

)
+
(
h̄Σ′′(0)

)4 . (4.35)

Plotting the conductivity σ (µ) for several values of ∆, after setting Ek0 = −100 t gives us fig.4.2
which shows one maximum for |∆| > t and two maxima for |∆| < t. The maxima always lie
within the topological regime of the chemical potential, namely for |µ|< 2t. Of course the phase
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where Majorana fermions are present, for the 2-site lattice is expected for ∆ = t; there

σ =
2
h

(
2 t h̄Σ

′′
(0)
)2

((
µ+ h̄Σ′(0)

)2
+
(
h̄Σ′′(0)

)2
)2

+
(
2 t h̄Σ′′(0)

)2
(4.36)

and we observe a significantly larger maximum as fig.4.2 clearly shows. According to eq.(4.36)
the zero-bias conductivity is σ = 2/h. Restoring the electron’s charge and turning into a fre-
quency ω = E/h̄ representation for the current j 1

2
(ω), see eq.(4.33) results in a zero-bias electri-

cal conductance G= 2e2/h in agreement with [12]. As a final remark, please note that increasing
the superconducting gap ∆ in comparison to the hopping amplitude t, so for ∆� t, flattens the
profile of σ.



Chapter 5

Outlook & Conclusions

Arriving at the end of this thesis I hope the reader has already run into some conclusions
but is in parallel at the point of raising questions. First of all, I hope that I have convinced the
reader that there is plenty of room for Majorana fermions in condensed matter and that their
existence is of great importance thanks to their non-Abelian nature.

According to [13] there are specific requirements for non-Abelian state of matter to occur.
Firstly, there must be an energy gap separating the ground state from excited states. This is
fulfilled in our model by tuning the hopping amplitude t. As an explicit example, remember
that the ground state for the 2-site lattice is separated by the excited ones by 2 t. Secondly,
the ground state must be degenerate. This was shown for the general N-site Kitaev model
in section 2.4.4. Thirdly, this degeneracy must not be easily lifted by perturbations resulting
in a system that - ideally - will not decohere, so it may be used to a build quantum memory
(qubit). According to [10] the degeneracy is topologically protected as long as we are within the
topological phase (|µ|< t), as explained in section 2.2. Lastly, the exchange of Majoranas, should
depend on the quasi-particles trajectory. This makes the system topological and the exchange
statistics non-Abelian, since they are dictated by the braiding group instead of the permutations
one. May someone here claim that non-Abelian statistics are ill-defined in 1D systems and that
we need to be in a 2D setup, minimally. The answer to this fair concern is the use of T-junctions,
networks of 1D Kitaev modeled wires, see as it is suggested by [14].

In the second part of the thesis, we investigated the conductivity of Kitaev’s model trying to
find a signature for the appearance of Majorana fermions. The non-equilibrium methods used
proved to be reliable and made us conclude that the maximum of conductivity σ is significantly
larger under the presence of Majorana fermions. Our calculation was done for a 2-site lattice and
what still remains as a question, but also as a challenge, is to be reproduced for the general case
of an N-site lattice. At this point I would like to mention that our result for the conductivity σ is
in agrrement to the zero-bias electrical conductance G = 2e2/h calculated by Karsten Flensberg
in [12]. In the case of an N-site lattice, the method is identical but now the Green’s functions
can no more be treated with "pen & paper" and a the researcher should embark on computer
algorithms and numerical techniques.
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Appendix A

The Majorana representation

The usual Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

In Majorana’s representation, the γ-matrices of Dirac’s equation (iγµ∂µ−m)φ = 0 are given in
terms of the Pauli matrices via

γ0 = σ2⊗σ1 , γ1 = iσ1⊗ 1̂2, γ2 = iσ3⊗ 1̂2, γ3 = iσ2⊗ σ2 (A.2)

Applying the former definition in the latter relations gives

γ0 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

γ1 =


0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0

γ2 =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

γ3 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 (A.3)

showing us the explicit form of the γ-matrices.
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Appendix B

Fourier Transforming Kitaev’s
Hamiltonian

Kitaev’s Hamiltonian is by definition given for open boundary conditions since there is one
summation up to Ns and another up to Ns−1. Starting with

H = −µ
Ns

∑
i=1

ni−
Ns−1

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
−∆

(
cici+1 + c†

i+1c†
i

)]
(B.1)

and inserting c†
i =

1√
Ns

∑k e−ikαic†
k where 0≤ k ≤ 2πm

αNs
and m = 0,1, ..,Ns, gives us

H =
1
Ns

∑
k,k′

{
−µ

Ns

∑
i=1

ei(k−k′)αic†
kck′ −

Ns−1

∑
i=1

[
t
(

eikαie−ik′α(i+1)c†
kck′ + eikα(i+1)e−ik′αic†

kck′
)

−∆
(

eiα(k′i+k(i+1))ck′ck + e−iα(k(i+1)+k′i)c†
kc†

k′

)]}

= ∑
k,k′

{
−µ

(
1
Ns

Ns

∑
i=1

ei(k−k′)αi

)
c†

kck′ −
Ns−1

Ns

1
Ns−1

Ns−1

∑
i=1

[
tei(k−k′)αi

(
e−ik′α + eikα

)
c†

kck′

−∆
(

ei(k+k′)αieikαck′ck + e−i(k+k′)αie−ikαc†
kc†

k′

)]}

=

(
−µ∑

k,k′
c†

kck′ − t
Ns−1

Ns
∑
k,k′

c†
kck′
(

e−ik′α + eikα

))
δkk′ +∆

Ns−1
Ns

∑
k,k′

(
eikαck′ck + e−ikαc†

kc†
k′

)
δk,−k′

resulting in H = −∑
k

c†
kck

(
µ+ 2 t

(
1− 1

Ns

)
cos (kα)

)
+∆

(
1− 1

Ns

)
∑
k

(
eikαc−kck + e−ikαc†

kc†
−k

)
.

In case of closed boundary conditions, the Hamiltonian is

H = −µ
Ns

∑
i=1

ni−
Ns

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
−∆

(
cici+1 + c†

i+1c†
i

)]
(B.2)

including no different summations up to Ns and Ns− 1 within its terms. Fourier transforming
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proceeds the same way as before but now the term Ns−1
Ns

vanishes resulting in

H = −∑
k

c†
kck (µ+ 2 t cos (kα))+∆∑

k

(
eikαc−kck + e−ikαc†

kc†
−k

)
. (B.3)



Appendix C

The current operator for an 1D
tight-binding model

Considering the Green’s functions for a tight-binding wire given, like the one of eq.(3.30),

I am willing to calculate the expectation value for the current field J(τ) =
Ns+1

∑
i=1

ji− 1
2
(τ). The

term ji− 1
2
(τ) is the current field per link - a point between two sites - defined by satisfying the

continuity equation

i
dni(τ)

dτ
= −

(
ji+ 1

2
(τ)− ji− 1

2
(τ)
)

(C.1)

under the boundary conditions j 1
2
(τ) = j1+ 1

2
(τ) and jNs+

1
2
(τ) = jNs− 1

2
(τ). Here τ represents time

and we consider h̄ = 1.
The fermion density field per site ni(τ) is given by the Heisenberg equation

dni

dτ
= [H−µN,ni] (C.2)

=
[
H−µN,ψ†

i ψi

]
= ψ

†
i [H−µN,ψi]+

[
H−µN,ψ†

i

]
ψi

= ψ
†
i [H−µN,ψi]− [H−µN,ψi]

†
ψi (C.3)

while for Hamiltonians in the form H−µN =ψ
†
i G−1

i j ψ j we have [H−µN,ψi] =−
Ns
∑

k=1
G−1

ik ψk. Com-

bining the above-mentioned gives

dni

dτ
= −ψ

†
i

(
∑
k

G−1
ik ψk

)
+

(
∑
k

G−1
ik ψk

)†

ψi (C.4)

= −2i Im

[
ψ

†
i

(
∑
k

G−1
ik ψk

)]
. (C.5)
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This simplifies once we consider the inverse Green’s function G−1
0;ik. In this expression only

the nearest-neighboring sites interact, so the current is then given by

dni

dτ
= −ψ

†
i

(
�
��G−1
0;iiψi +G−1

0;ii+1ψi+1 +G−1
0;ii−1ψi−1

)
+
(
��
�G−1

0;iiψi +G−1
0;ii+1ψi+1 +G−1

0;ii−1ψi−1

)†
ψi (C.6)

= t
(

ψ
†
i ψi+1 +ψ

†
i ψi−1−ψ

†
i+1ψi−ψ

†
i−1ψi

)
. (C.7)

This shows that the current field per link is

ji± 1
2
(τ) = −i t

(
ψ

†
i ψi±1−ψ

†
i±1ψi

)
(C.8)

and consequently the current operator is

J(τ) = −i t
Ns+1

∑
i=1

(
ψ

†
i ψi−1−ψ

†
i−1ψi

)
. (C.9)

The electric current is derived when the electron charge e and the lattice spacing R are restored
such that

Jel(τ) = −|e|RJ(τ) (C.10)

while the corresponding electric current density per site is

jiel(τ) =
Jel(τ)

R
= −|e|J(τ). (C.11)



Appendix D

Sokhotski-Plemelj theorem

Theorem. Sokhotski-Plemelj Theorem: Given a complex-valued function f (x) which is defined and
continuous on the real line, while a and b are real constants with a 6 0 < b, it holds that

lim
ε→0+

∫ b

a

f (x)
x± iε

dx = ∓iπ f (0)dx+P
∫ b

a

f (x)
x

dx , (D.1)

where P denotes the Cauchy principal value.

In order to apply the theorem for the self-energy of a reservoir, section 4.4.1, we first write
eq.4.25 as

Σ+(E) = 2me t2
∫ +∞

0

k2

k2 + 2me(E−µ+Ek0)
dk = me t2

∫ +∞

0

k
k2 + 2me(E−µ+Ek0)

d(k2) , (D.2)

so if we define x = k2 and x0 = 2me(E−µ+Ek0), we have to apply the theorem on the integral∫ +∞

0

√
x

x+ x0 + iε
dx = iπ

√
x0 +P

∫ +∞

0

√
x

x− x0
dx . (D.3)

The result is

Σ+(E) = me t2
(
−iπ

√
2me(E−µ+Ek0)+P

∫ +∞

0

2k2

k2−2me(E−µ+Ek0)
dk
)

(D.4)

which corresponds to eq.4.26.
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