
Type-Changing Program Transformations with
Pattern Matching

Joeri van Eekelen

July 9, 2013

1 Introduction

When writing code, occasionally the need comes up to change the data representation
or underlying data structures. For example because a different structure is more ef-
ficient, or because another library is better maintained. Manually replacing instances
of the old datatype to the new datatype is tedious and error-prone, so this is a good
candidate for automation.

In this thesis, we will investigate a type system-based transformation system for rewrit-
ing expressions to make use of different datatypes. Specifically, we deal with the issues
presented by pattern matching and custom datatype definitions. In this, we build on
previous work done by Leather et al.[5].

To achieve this, we take the following steps:

1. Give a formal description of the object language and its type system

2. Introduce transformations for the expression language

3. Introduce transformations for the pattern language

4. Introduce transformations for datatype declarations

5. Give a notation and formal interpretation for these transformations

The rest of the thesis is structured as follows: In Section 2, we describe the object
language and the structure of the transformation system, together with transformation
rules for the expression language. Sections 3 describes the changes in the transforma-
tion system necessary to handle transformations of patterns, and Section 4 shows a way
to use pattern transformations to deal with abstract datatypes, whose constructors are
not exposed. In Section 5, we will go further into datatype transformations, and con-
structor transformations. Section 6 considers new object language features that can be
found in Haskell, specifically extensions to our relatively simplistic pattern language.
We then look at the consequences these features have on the pattern transformation
system. Section 7 describes the implementation, and in what ways it is different from
the declarative specification in the earlier sections. As new constructs of the transfor-
mation system are gradually being introduced to the system described in Section 2, an
overview of the full system is included in Appendix A.

1

2 Basic system

In this section, we will first describe the object language and its type system. Then we
introduce a set of type-based inference rules that make up a transformation system for
expressions in our object language. An example transformation that is possible within
this system, is rewriting the following piece of code to use Set Int instead of Int:

f :: [Int]→ [Int]
f xs ys = 1 : xs ++ ys

This will then look like:

f ′ :: Set Int→Set Int
f ′ xs ys = insert 1 (∪ xs ys)

Similarly, we can rewrite the reverse function to make use of Hughes’ lists [3]:

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

can be transformed into

type DL a = [a]→ [a]
reverse′ :: [a]→DL a
reverse′ [] = id
reverse′ (x : xs) = reverse′ xs ◦ ([x] ++)

2.1 Object language and type system

A program P consists of zero or more datatype declarations, followed by a single main=

expression. The expression syntax is the lambda calculus, extended with case. Addi-
tionally, integer and string literals are interpreted as constructors C. Of note is that the
patterns used in a case expression cannot be nested. A pattern is either a single pattern
variable, or a constructor followed by variables.

The syntax of datatype declarations is similar to that of Haskell. Datatypes are defined
with a list of constructors, each of which have zero or more fields of a specified type.
The main difference is that type variables in datatype declarations need to have a kind
annotation, which is not allowed in Haskell programs1. The sole purpose of this is
simplicity: we could infer the kinds of datatypes and set the kind of uninferrable type
variables to ? as Haskell does, but this would distract from the type system. On the
other hand, we cannot leave out the kinds entirely, as they prevent a class of errors con-
cerning parameterized datatypes. An example of such an error occurs in the following
Haskell code:

1GHC allows kind annotations on datatype declarations when the KindSignatures language extension is
enabled.

2

P F D; main = e program
D F data T α : κ=C | datatype declaration
C F C τ
κ F ? kind of types of terms

| κ→ κ kind of type constructors
t F α type variable

| T type constructor
τ F t type name

| τ→τ function type
| τ τ type application

σ F ∀ α : κ.τ type scheme
e F ν term name

| e e term application
| λx→ e lambda abstraction
| let x = e in e let binding
| fix e fixpoint operator
| case e of { p→ e;} case

ν F x term variable
| C data constructor

p F x pattern variable
| C x constructor pattern

Figure 1: Object language syntax

extract :: f a→a
data Weird a = Weird (a Int)
break = extract (Weird [1])

A formal definition of the object language syntax is given in Figure 1.

Some examples will use syntactic sugar that is not valid according to the syntax. These
deviations include Haskell-style list syntax such as [1,2,3], infix operators, and the
circumfix list type [a]. All of these can be easily desugared into valid syntax, at the
cost of some clarity. Specifically, [1,2,3] desugars into (:) 1 ((:) 2 ((:) 3 [])), an infix
application a ++ b desugars into (++) a b, and the list type [a] desugars into [] a.

The type system for expressions as seen in Figure 2 is similar to the let-polymorphic
lambda calculus. Type judgements are of the form Γ,K ` e : τ. In these judgements, Γ

is the type environment, which is a mapping from term names to type schemes ν :σ. K
is the kind environment, which is a mapping from type names to kinds t : κ. Finally, e
is the expression and τ is its type.

Generalisation happens explicitly in the TLet-rule by putting type variables in scope of
the definition and requiring that they are not free in the type environment Γ. Instantia-
tion of type schemes happens in the TVar rule, where the quantified type variables are
substituted by types with matching kinds.

Type checking case-expressions requires a second type of judgement: that of pattern
typing. These judgements are of the form Γ,K p̀at p : τ⇒ Γ′. Γ and K are the type and
kind environment, as before. p is the pattern to check, and τ is its type. Γ′ is a new
type environment, which contains types for the pattern variables in p. This extra type

3

TVar
x :∀ α : κ.τ ∈ Γ τ′= [τi /αi] τ {K ` τi : κi }

Γ,K ` x :τ′

TApp

Γ,K ` e1 :τ2→τ
Γ,K ` e2 :τ2

Γ,K ` e1 e2 :τ

TAbs

K ` τ1 :?
Γ ∪ {x :τ1 },K ` e :τ

Γ,K ` λx→ e :τ1→τ

TLet

Γ,K ∪ α : κ ` e1 :τ1
Γ ∪ {x :∀ α : κ.τ1 },K ` e2 :τ2

α * FV (Γ)

Γ,K ` let x = e1 in e2 :τ2

TFix
Γ,K ` e :τ→τ

Γ,K ` fix e :τ

TCase

Γ,K ` e :τ1
{Γ p̀at pi :τ1⇒ Γi Γ ∪ Γi,K ` ei :τ2 }

Γ,K ` case e of {pi→ ei;} :τ2

Figure 2: Typing for our expression language

PatVar
K ` τ :?

Γ,K p̀at x :τ⇒ {x :τ}

PatCon
Γ,K ` C :τi→ τ

Γ,K p̀at C xi :τ⇒ {xi :τi }

Figure 3: Typing rules for patterns

environment is used in the TCase rule to typecheck the body of each pattern-matching
clause.

The typing rules for patterns can be seen in Figure 3.

Datatype declarations do not require type checking directly, but they will add tothe type
and kind environments. Furthermore, the fields of the constructors of the datatypes
must all have a type of kind ?. Their typing can be seen in the TData and TCon rules
of Figure 4. The judgement for datatype declarations produces a new type environment
Γ′ as well as a new kind environment K′. The kind environment will contain only the
kind of the type constructor, while the type environment will have the types of the
constructors.

The TProg rule brings the new type and data constructors in scope of the main expres-
sion, which wraps up the type checking.

4

TData

K′= {T : κi→ ?}
{K ∪ K′ ∪ α : κ ` Ci⇒ Γ′i }

K ` data T α : κ=C |⇒
⋃

Γ′i ,K
′

TCon
{K ` τi :?}

K ` C τ⇒ {C :τ→ T α}

TProg

{K ` Di⇒ Γi,Ki }

Γ ∪
⋃

Γi,K ∪
⋃

Ki ` e :τ

Γ,K ` D; main = e :τ

Figure 4: Typing rules for datatype declarations and programs

KVar
t : κ ∈ K

K ` t : κ

KArrow

K ` τ1 :?
K ` τ2 :?

K ` τ1→τ2 :?

KApp

K ` τ1 : κ1→ κ2
K ` τ2 : κ1

K ` τ1 τ2 : κ2

Figure 5: Kind checking rules

2.2 Transformation system

Now that we have a complete description of the object language and its typing rules,
we will take a look at the type of transformations we would like to be able to per-
form.

First, we will take a look at transforming expressions. The following short program,
which consists only of a main expression and no datatype declarations, shows several
changes we want to be able to perform:

-- Original program
main1 =λx→ insert x [1,2,3]

-- Preferred translation
main2 =λx→Data.Set.insert x (to [1,2,3])

Given the type and kind environments Γ and K as shown in Figure 6, we can assign the
types Int→ [Int] and Int→Set Int to the two respective expressions.

Going from main1 to main2, two transformations have occurred. insert has been
changed to Data.Set.insert, and [1,2,3] has been changed to to [1,2,3]. In Section

5

Γ = { insert : ∀ a :?.a→ [a]→ [a]
, Data.Set.insert : ∀ a :?.a→Set a→Set a
, to : ∀ a :?.[a]→Set a
, (:) : ∀ a :?.a→ [a]→ [a]
, [] : ∀ a :?.[a]
}

K = { Int : ?
, [] : ?→?
}

Figure 6: Type and kind environment for the example

2.3 about the transformation syntax, we will see how these two are instances of two
important types of transformations.

In order to decide whether an expression e can be transformed into an expression e′, we
introduce a type and transform system, or a TTS in short. A TTS is a set of inference
rules, similar to the typing rules, with judgements of the form Γ,K ` e e′ : τ. These
state exactly what we want: Under a type environment Γ and a kind environment K,
we can transform an expression e to expression e′, where e′ has type τ.

A condition that must always hold, is that a TTS must be consistent with the type
system. That is, a TTS must give the same type to the result term as the type system
would.

Γ,K ` e e′ :τ =⇒ Γ,K ` e′ :τ (1)

We do not care about the typeability of the source term, however, if there is no τ such
that Γ,K ` e :τ, then there may not be any valid transformations either. Otherwise, there
is always at least one valid result term, as we will see shortly.

Γ,K ` e :τ =⇒ ∃e′, τ′ such that Γ,K ` e e′ :τ′ (2)

Type and transform systems consist of two parts: a set of inference rules that depend
only on the type system and the object language on which it operates, and a set of
rules that are specific to the actual transformation under consideration. The first set of
rules, shown in Figure 7 and known as the propagation system, are based on the typing
rules. They are syntax-driven, and are itself a TTS capable of transforming every input
program. While it cannot be used to perform any non-trivial transformations, 1 holds,
and it is enough to prove 2:

There is only one possible inference rule per syntactic construct, and by induction
on the syntax tree, it can be shown that the identity transformation is always valid.
Formally: Γ,K ` e : τ implies Γ,K ` e e : τ. Since any TTS must always at least
include the rules of the propagation system, it is always possible to derive the identity
transformation for any well-typed term.

To understand how the rules of the propagation system work, it helps to compare them
to the typing rules.

6

PVar
x :∀ α : κ.τ ∈ Γ τ′= [τi /αi] τ {K ` τi : κi }

Γ,K ` x x :τ′

PApp

Γ,K ` e1 e′1 :τ2→τ
Γ,K ` e2 e′2 :τ2

Γ,K ` e1 e2 e′1 e′2 :τ

PAbs

K ` τ1 :?
Γ ∪ {x :τ1 },K ` e e′ :τ

Γ,K ` λx→ e e′ :τ1→τ

PLet

Γ,K ∪ α : κ ` e1 e′1 :τ1
Γ ∪ {x :∀ α : κ.τ1 },K ` e2 e′2 :τ2

α * FV (Γ)

Γ,K ` let x = e1 in e2 let x = e′1 in e′2 :τ2

PFix
Γ,K ` e e′ :τ→τ

Γ,K ` fix e fix e′ :τ

PCase

Γ,K ` e e′ :τ1
{Γ,K p̀at pi :τ1⇒ Γi Γ ∪ Γi,K ` ei e′i :τ2 }

Γ,K ` case e of {pi→ ei;} case e′ of {pi→ e′i ;} :τ2

Figure 7: Propagation system for the let-polymorphic lambda calculus

PVar

x :∀ α : κ.τ ∈ Γ

τ′= [τi /αi] τ
{K ` τi : κi }

Γ,K ` x x :τ′
TVar

x :∀ α : κ.τ ∈ Γ

τ′= [τi /αi] τ
{K ` τi : κi }

Γ,K ` x :τ′

PApp

Γ,K ` e1 e′1 :τ2→τ
Γ,K ` e2 e′2 :τ2

Γ,K ` e1 e2 e′1 e′2 :τ
TApp

Γ,K ` e1 :τ2→τ
Γ,K ` e2 :τ2

Γ,K ` e1 e2 :τ

The above suggests that the propagation rules can be formed from the typing rules just
by changing the typing judgements to propagation judgements, and this is indeed the
case. This makes 1 hold by construction, though it must still be proved for every rule
specific to the transformation.

Now we return to the example earlier in this section. In it, there were two specific
transformations: insert has changed to Data.Set.insert, and [1,2,3] has changed to
to [1,2,3]. These can be described with the following rules:

7

Replace− insert
Γ,K ` Data.Set.insert :τ→Set τ→Set τ

Γ,K ` insert Data.Set.insert :τ→Set τ→Set τ

Intro− to
Γ,K ` e e′ : [τ] Γ,K ` to : [τ]→Set τ

Γ,K ` e to e′ : Set τ

The first rule describes how insert can transform to Data.Set.insert. The premises state
that the insert function must be in scope with the expected type. This rule is obviously
consistent with the type system, since the typeability of the result term is part of the
premises.

The second rule states that if it is possible to transform a term e to a term e′ with a list
type, it is possible to apply to to it to get a term with a Set type. To see if this rule is
consistent with the type system, we look at the result type. It is a function application,
so TApp must hold. This means that the argument type of to must match the type of e′.
As this is implied by the premises, we know that the rule is consistent.

Earlier, we stated that for a well-type source type, there will always be at least one
transformation, we have not mentioned how many transformations there will be, or if
there is an upper bound. Indeed, Γ,K ` λx→insert x [1,2,3] λx→to (insert x [1,2,3]):
Set a holds as well. In general, there is no upper bound to the amount of valid transfor-
mations:

Intro− from
Γ,K ` e e′ : Set τ Γ,K ` from : Set τ→ [τ]

Γ,K ` e from e′ : [τ]

Adding a rule like Intro− from, it becomes possible to derive arbitrarily long sequences
of from (to (. . .)). In the theoretical framework which only states that a certain trans-
formation is valid, this is not a problem. However, we will need to handle this in the
implementation.

2.3 Transformation syntax

The current way of introducing new rules is rather clunky. We need to write a com-
pletely new inference rule, and then prove its consistency with the type system. These
are the two most important reasons why we have devised a special syntax for transfor-
mations.

The two transformations of the previous section can be written, using this syntax,
as:

1. insert Data.Set.insert

2. M to M

Transformations in the syntax follow the form π π. Both πs are expressions that can
contain metavariables, which are differentiated from normal variables by writing them
as a single uppercase character. The π on the left-hand sign of the arrow is the pattern

8

TRF F π π Metavariable rule
π F π π Rewrite pattern

| e
| M

Figure 8: Transformation syntax

of the transformation, and the π on the right-hand side is the substitute. Figure 8 shows
the syntax of π.

There are some additional restrictions on the use of metavariables in the transformation
syntax. Specifically:

1. Metavariables used on the right-hand side must also occur on the left-hand side.

2. Metavariables used on the left-hand side may only appear there once.

To use rules described in this syntax in transformations, we need to interpret them as
inference rules. Figure 9 shows how this is done.

When transforming an expression using a rule described by this syntax, the expression
is first matched against the pattern on the left-hand side, producing an environment Σ,
which maps metavariables to typed expressions. Pattern matching happens by induc-
tion on the structure of the pattern.

A pattern of the form π π only matches expressions of the form e e, in which case the
resulting environment is the union of the environments obtained by matching the two
subexpressions against the subpatterns. When a pattern is of the form e, it matches the
exact expression e, up to alpha-equivalence, and the resulting environment is empty.

Metavariable patterns require more attention. Not only do they add a mapping for
the metavariable to the environment, but they also transform the expression they’re
matching using rules either from the propagation system, or from other rules that follow
from the syntax. It corresponds to the first premise in the Intro− to rule, which only has
one metavariable. The resulting environment maps the metavariable to the transformed
expression and its type.

Transformations resulting from the syntax are automatically consistent with the type
system, due to the rules in Figure 9. To prove this, we start with induction on the
substitute. In the case of an expression, there is a premise that states exactly the typa-
bility of the resulting expression. For function application, the typing rule is built-in,
assuming that the individual subexpressions are well-typed. For the metavariable rule,
it is necessary to prove that if M 7→ e′ : τ ∈ Σ, then Γ,K ` e′ : τ. The only rule in the m̀at

relation that adds to Σ is MMeta, which has Γ,K ` e e′ :τ as a premise. By induction,
this means that Γ,K ` e′ :τ, as required.

3 Pattern transformations

The system described in the previous section can already be used to describe many
useful transformations, but, especially with pattern matching, the results may not be as
effective as hoped. Consider the following example:

9

TrfRule

π1 π2 is a rule
Γ,K m̀at π1@e⇒ Σ

Γ,K,Σ s̀ubst π2 = e′ :τ′

Γ,K ` e e′ :τ′

MApp

Γ,K m̀at π1@e1⇒ Σ1
Γ,K m̀at π2@e2⇒ Σ2

Γ,K m̀at π1 π2@e1 e2⇒ Σ1 ∪ Σ2

MExp
Γ,K m̀at e@e⇒ ε

MMeta
Γ,K ` e e′ :τ

Γ,K m̀at M@e⇒ {M 7→ e′ :τ}

SApp

Γ,K,Σ s̀ubst π1 = e′1 :τ→τ1
Γ,K,Σ s̀ubst π2 = e′2 :τ

Γ,K,Σ s̀ubst π1 π2 = e′1 e′2 :τ1

SExp
Γ,K ` e :τ

Γ,K,Σ s̀ubst e = e :τ

SMeta
Σ (M) = e′ :τ′

Γ,K,Σ s̀ubst M = e′ :τ′

Figure 9: Transformation relation

data IntList = IntNil | IntCons Int IntList
data CharList = CharNil | CharCons Char CharList
main = let map =λg→fix (λf→λl→

case l of
IntNil→ IntNil
IntCons x xs→ IntCons (g x) (f xs))

in map

In this code, we want to replace IntLists by CharLists, and use a TTS to transform the
definition of map to something of type (Char→Char)→CharList→CharList.

To do this, we have the following transformation rules:

• M il2cl M

• M cl2il M

• M i2c M

• M c2i M

• IntNil CharNil

• IntCons CharCons

10

Where il2cl : IntList→CharList and cl2il : CharList→ IntList are inverses. Similarly,
i2c : Int→Char and c2i : Char→ Int are also inverses. Because the case rule uses
the same patterns in the target expression as in the source, we find that the result of
applying these rules that comes closest to a direct implementation of map for CharLists
is:

main = let map =λg→fix (λf→λl→
case cl2il l of

IntNil→CharNil
IntCons x xs→CharCons (g (i2c x)) (f (il2cl xs)))

in map

It has the right type, but there is still conversion between IntList and CharList. In
the ideal case, we’d prefer not to have to use any embedding/projection functions,
though there may be functions outside the transformation scope that have no suitable
replacement.

As a second example, consider transforming values of type Maybe a to values of type
Either String a. Both types are often used for error-handling in pure code. The main
difference is that Nothing simply encodes an error, while Left e can provide some extra
details.

The rules we have are few:

• Just Right

• Nothing Left "Nothing"

• M maybeToEither M

• M eitherToMaybe M

Here maybeToEither : Maybe a→ Either String a and eitherToMaybe : Either e a→
Maybe a are an embedding/projection pair, though eitherToMaybe loses the informa-
tion of the Left constructor. The choice of String is arbitrary, any choice of e works, but
a value of that type needs to be provided in the transformation rule for Nothing.

The first two transformations work very well for transforming the actual error-reporting
code itself, but when transforming a handler for Maybe a values to a handler for
Either String a values, we have to resort to conversion back to Maybe a:

main =λx→ case x of
Nothing→"Error!"
Just i→"No error: " ++ showInt i

main′=λx→ case eitherToMaybe x of
Nothing→"Error!"
Just i→"No error: " ++ showInt i

From these examples, it becomes apparent that pattern-matching ties us down to use
the type of the patterns in the source program. In the expressions above, the fact that
we match on Maybe a patterns forces the scrutinee to be of type Maybe a as well. To
combat this, we will introduce pattern transformations later in this section, which will
allow us to turn the above examples into:

11

PatVar
K ` τ :?

Γ,K p̀at x x :τ⇒ {x :τ}

PatCon
Γ,K ` C :τ1→ . . .→τn→τ

Γ,K p̀at C x1 . . . xn C x1 . . . xn :τ⇒ {xi :τi }

Figure 10: Identity transformation for patterns

main = let map =λg→fix (λf→λl→
case l of

CharNil→CharNil
CharCons x xs→CharCons (g x) (f xs))

in map

and

main′=λx→ case x of
Left e→"Error!"
Right i→"No error: " ++ showInt i

respectively.

In the rest of this section, we will introduce transformation inference rules for patterns,
and alter the existing propagation rules to make use of them. Finally, we introduce
another specialized syntax to accurately denote such pattern transformations.

3.1 Inference rules

Like the transformation system for expressions, we will define a similar system for
patterns. However, since our object language does not allow for nested patterns, there
are no pattern transformation premises for the pattern rules. Only a single pattern rule
will be used per pattern.

Similar to the transformation judgement for expressions, the transformation judge-
ments for patterns will look like typing rules:

Typing: Γ,K p̀at p :τ⇒ Γ′

Transformation: Γ,K p̀at p1 p2 :τ⇒ Γ′

Judgements of this form mean that, with type and kind environments Γ and K, pattern
p1 can be transformed to pattern p2 with type τ. Moreover, pattern p2 produces a type
environment Γ′ containing the variables bound in the pattern.

As a parallel to the propagation system, there are transformation rules that are based
on the typing rule for patterns. These rules are listed in Figure 10.

To use these inference rules, we need to combine them with the rules for expressions.
We will modify the propagation rule for case expressions to transform patterns, and

12

PCase

Γ,K ` e e′ :τ1
{Γ,K p̀at pi p′i :τ1⇒ Γi Γ ∪ Γi,K p̀at ei e′i :τ2 }

Γ,K p̀ro case e of {pi→ ei;} case e′ of {p′i → e′i ;} :τ2

Figure 11: Modified case propagation rule

use the transformed pattern in the resulting expression. The modifications of the case
rule are minor. Instead of premises {Γ,K p̀at pi :τ⇒ Γi }, we have premises {Γ,K p̀at pi

p′i : τ⇒ Γi }. In the conclusion, the clauses of the case expression are {p′i → e′i ;} instead
of {pi→ e′i ;}. The new case rule can be seen in Figure 11.

For patterns, we have a similar consistency constraint as we had for expressions:

Γ,K p̀at p p′ :τ⇒ Γ′ =⇒ Γ,K p̀at p′ :τ⇒ Γ′ (3)

This consistency constraint holds by definition for the transformation rules in Figure
10, and from it follows that the consistency constraint for expressions holds for the new
case rule. Secondly, we have the guarantee that, if the source pattern has a valid type,
then there is at least one possible pattern transformation. As with expressions, this is
the identity transformation.

Γ,K p̀at p :τ⇒ Γ′ =⇒ ∃p′, τ′,Γ′′ such that Γ,K p̀at p p′ :τ′⇒ Γ′′ (4)

Now we return to the IntList example. The pattern rule for transforming IntNil to
CharNil is fairly straightforward. There are no bound variables, so we only need to
make sure that the rule is consistent with the type system. For transforming IntCons to
CharCons, we need to make sure that the resulting type environment contains the right
pattern variables, with the correct types.

Pattern− IntNil
Γ,K ` CharNil : CharList

Γ,K p̀at IntNil CharNil : CharList⇒ ε

Pattern− IntCons
Γ,K ` CharCons : Char→CharList→CharList

Γ,K p̀at IntCons x y CharCons x y : CharList⇒ {x : Char,y : CharList }

To prove that the consistency constraint holds, we look at the typing rule for construc-
tor patterns. Because CharNil has no arguments, the pattern does not have any bound
variables, and the produced type environment is empty. CharCons has two arguments,
one of type Char, and one of type CharList. The result pattern has two bound variables,
and the produced type environment maps these variables to the types as specified by
the type of CharCons. This is precisely what the typing rule states, so these transfor-
mations are consistent.

The transformations for the Maybe example look as follows:

13

TRF F C M C M Pattern transformation

Figure 12: Pattern transformation syntax

Pattern−Nothing
Γ,K ` Left :τ′→Either τ′ τ

Γ,K p̀at Nothing Left e : Either τ′ τ⇒ {e :τ′ }

Pattern− Just
Γ,K ` Right :τ→Either τ′ τ

Γ,K p̀at Just x Right x : Either τ′ τ⇒ {x :τ}

Although Nothing has no pattern variables, Left e does, so we need to include it in
the type environment of bound variables. While the source program has no way of
using this fresh variable, its inclusion in the type environment is necessary to remain
consistent with the type system. The proof that the consistency constraint holds for
these two transformations is similar to the proof for the transformations of the IntList
example.

3.2 Pattern transformation syntax

As with expressions, giving inference rules is a verbose way of specifying transforma-
tions, and the consistency with the type system is not guaranteed. To counter these two
issues, we introduce special syntax for pattern transformations.

The transformations of the previous section can be written, using this syntas, as:

1. IntNil CharNil

2. IntCons M1 M2 CharCons M1 M2

3. Nothing Left M

4. Just M Right M

As shown in Figure 12, a pattern transformation written in the syntax looks like C M
C M. On left-hand side of the arrow is the pattern of the transformation. It takes the
shape of a constructor followed by an amount of metavariables equal to the arity of the
constructor. The right-hand side is the substitute.

The intuition is that the transformation pattern matches against a constructor pattern
with the same constructor, and a substitution environment Σ is built, mapping metavari-
ables to pattern variables. The resulting pattern consists of the constructor in the sub-
stitute and the pattern variables that are bound to the metavariables in the substitute.
The type of the resulting pattern and the types of the pattern variables in the type envi-
ronment are based on the type of constructor C′.

Figure 13 shows the formalized interpretation of the pattern transformation syntax. Of
note are the judgements of the form Σ ` M 7→ x. These are similar to a simple lookup
Σ (M), except that the result is a fresh pattern variable if M is not bound in Σ. This
occurs when there are metavariables on the right-hand side that are not present on the
left-hand side of the transformation, as in the Nothing Left M example.

14

PatRule

C M1 . . .Mn C′ N1 . . .Nm is a rule
Γ,K ` C′ :τ1→ . . .→τm→τ

Σ= {Mi 7→ xi }

{Σ ` Ni 7→ yi Γi = {yi :τi }}

Γ,K p̀at C x1 . . . xn C′ y1 . . . ym :τ⇒
⋃

Γi

M ∈ Σ

Σ ` M 7→ Σ (M)

M < Σ x fresh

Σ 7→ M 7→ x

Figure 13: Interpretation of pattern transformation syntax

This interpretation makes transformations specified by the pattern transformation syn-
tax automatically consistent with the type system. The sole premise of the PatCon rule,
Γ,K `C :τi→ τ is also a premise of PatRule. It is written as Γ,K `C′ :τ1→ . . .→τm→τ
to make clear that there must be as many metavariables on the right-hand side as the
arity of the constructor.

4 View types

With the pattern transformations of the previous section, we can transform the scrutinee
of case expressions to an expression of a different type. However, the constructors of
this different type must be exposed, otherwise it is not possible to match on them. In
this section, we will describe a technique to still do pattern matching on abstract types,
which do not expose their constructors, without converting the entire expression back
to its original type.

4.1 From [a] to Seq a

Many of Haskell’s more efficient data structures, such as Map for finite maps, Text
as an alternative to String, or Seq for finite sequences, have no exposed constructors.
Doing so would allow the programmer to break important invariants which cause these
data structures to be efficient in the first place. The unavailability of constructors is
therefore a good thing. On the other hand, we would still like to transform code from
using an inefficient datatype to code using these better alternatives, including programs
in which we use pattern matching. As an example, consider the following safeTail
function with type [a]→ [a], which we would like to transform to a function of type
Seq a→Seq a:

main =λl→ case l of
[] → []
(x : xs)→ xs

We also have the following expression transformations:

15

1. M Data.Sequence.toList M2

2. M Data.Sequence.fromList M

3. [] Data.Sequence.ε

4. (:) (Data.Sequence. C)

Without any other transformations, we arrive at the following expression:

main =λl→ case Data.Sequence.toList l of
[] →Data.Sequence.ε
(x : xs)→Data.Sequence.fromList xs

It has the right type Seq a→ Seq a, but it requires a conversion to lists, and another
conversion back to Seq. Data.Sequence.fromList is strict in the spine of its argument,
which forces a full evaluation of toList. This means that this implementation of safeTail
runs in linear time instead of constant time.

Luckily, the Data.Sequence module exports the ViewL type and accompanying viewl
function:

data ViewL (a :?) = EmptyL
| a :< (Seq a)

viewl : Seq a→ViewL a

Instead of converting a Seq a to a [a], we can use viewl to convert it to the ViewL a type
of which the constructors are exposed, and then pattern match on them:

main =λl→ case Data.Sequence.viewl l of
EmptyL→Data.Sequence.ε
(x :< xs)→ xs

The viewl function runs in constant time, so this implementation of safeTail has the de-
sired complexity. For this transformation, we need the following extra transformation
rules:

1. M Data.Sequence.viewl M

2. [] EmptyL

3. (M : N) (M :<N)

The last two are pattern transformations that transform list patterns to patterns for the
ViewL a type. We do not introduce a transformation that converts a ViewL a back to a
Seq a, because we intend to use ViewL a for pattern matching only.

2In reality, Data.Sequence does not have a toList function, but recommends using the Foldable type-
class. Since our system does not support typeclasses, we pretend toList : Seq a→ [a] is exported by the
Data.Sequence module.

16

4.2 From concrete to abstract types

When transforming expressions from type τ1 to type τ2, there are two straightforward
methods of dealing with pattern matches: transform the scrutinee back to type τ1, or
transform the patterns to patterns for type τ2. As seen in the previous section, trans-
forming patterns to type τ2 is not always possible, and transforming the scrutinee to τ1
is not always desirable.

In the previous section, we used the ViewL a type provided by Data.Sequence, which is
sufficiently list-like to pattern match on as if it actually is a list, but does not require a
full conversion from Seq a. In the general case of transforming expressions of concrete
type C to expressions of abstract type A, we will refer to a type that is similarly “in-
between” C and A as a view type A@C.

Next to the view type A@C, we also need a general version of viewl. We will refer to
this function as a view function view, which has type A→A@C. View types and view
functions are introduced by Wadler in [6]

To transform programs, we need transformation rules. The transformation rule for
expressions is simple: M view M. However, we will see that the definition of view
will have to behave according to some specific rules. Finally, the transformation rules
for patterns depend on the structure of both C and A@C.

4.2.1 Structure of A@C

Because the patterns in the target program will be patterns for A@C, we need to know
its constructors. To successfully transform all patterns for C that the source program
has, we need a pattern transformation that turns a pattern for a constructor of C into a
pattern for a constructor of A@C. It follows that A@C must have as many constructors
as C has.

Additionally, for a constructor Ci of C, every field must map to a field of the corre-
sponding constructor C′i of A@C. This means that patterns for A@C will differ from
patterns for C only in constructor names. The difference between C and A@C will be
at the recursive positions. Where a constructor of C has a field of type C, the corre-
sponding constructor of A@C will have a field of type A.

When this definition is applied, the type Seq@List will look like:

data Seq@List (a :?) = SeqNil′

| SeqCons′ a (Seq a)

This is isomorphic to the ViewL datatype. However, we can go one step further. There
is nothing Seq-specific about the above datatype definition. In fact, the type Set@List
looks like:

data Set@List (a :?) = SetNil′

| SetCons′ a (Set a)

This suggests defining the view type as A@C = @C A, where @C is the base functor
of C. It takes an extra type parameter, which is used wherever the original datatype is
used recursively. Now we have:

17

data C α : κ= Con τ |

data@C α : κ (ρ :?) = Con′ τ′ |

τ′i, j | τi, j ≡ C α =ρ

| otherwise =τi, j

Figure 14: Construction of @C

data@List (a :?) (b :?) = Nil′

| Cons′ a b
type Set@List (a :?) = @List a (Set a)
type Seq@List (a :?) = @List a (Seq a)

A schematic formulation of the construction of the view type can be found in Figure
14. In this figure, the type variables α are those that are part of the original datatype,
such as the a in [a]. For every constructor Con of C, there is a constructor Con′ of
@C.

For every constructor, the amount of fields stays the same. However, if a field τi, j is
recursive, the corresponding field in @C will have type ρ, which is the type parameter
that will be instantiated by the type we wish to view as C.

4.2.2 Definition of view

While any definition of view : A→A@C would do, we want it to behave sensibly in
combination with to : A→C and from : C→A. First, we want from ◦ to : A→A to be
the identity. The other way, to ◦ from : C→C is nice to have, but not necessary. For
example, for Set, toList ◦ fromList may not preserve the element order.

Next we look at the view type, specifically at C@C. As per the previous section, this
is equal to @C C, the type that is the same as C, except at the recursive positions,
where it has the type of its parameter. In this case, it is C, so @C C is isomorphic to
C. This isomorphism is given by out : C→C@C and in : C@C→C. We require that
out ◦ in : C@C→C@C and in ◦ out : C→C are the identity. Finally, let fmap@C :
(a→ b)→@C a→@C b. This function can be automatically generated based on the
structure of @C a. For fmap@C, we require that the functor laws hold: fmap@C f ◦
fmap@C g = fmap@C (f ◦ g), and fmap@C id = id.

The relations between these functions and view are displayed in Figure 15. Keep in
mind that to ◦ from is not necessarily the identity, and thus neither is fmap@C to ◦
fmap@C from.

For the diagram to commute, view should be equivalent to fmap@C from ◦ out ◦ to. As a
motivation for this equivalence, we look back at the safeTail function from section 4.1,
modified to use toList′ = out ◦ toList, which has type Seq a→@List a [a], instead of
toList for the transformation without view. Furthermore, we consider the type @List a b
to be defined as:

18

C
out -�
in

@C C

A

to

6

fr
om

? view - @C A

fm
ap

@
C

to

6

fm
ap

@
C

fr
om

?

Figure 15: Diagram for view

data@List (a :?) (b :?) = EmptyL | (a :<b)

Since @List α [a] is isomorphic to [a], and @List a (Seq a) is isomorphic to the
original ViewL α datatype, these modifications do not influence the type of the pro-
gram.

-- Original code. main : [α]→ [α]
main =λl→ case l of

[] → []
(x : xs)→ xs

-- Transformation without viewl. main′ : Seq a→Seq a
main′=λl→ case toList′ l of

EmptyL → ε
(x :< xs) → fromList xs

-- Transformation with viewl. main′′ : Seq a→Seq a
main′′=λl→ case viewl l of

EmptyL→ ε
(x :< xs)→ xs

We want both transformation results, main′ and main′′, to be the same function. Note
in the transformation without viewl, fromList gets applied to the variable bound to the
recursive field of (:<). This is exactly what fmap@List fromList accomplishes. This
makes the resulting code of the transformation without viewl equivalent to:

main′′′=λl→ case fmap@List fromList (toList′ l) of
EmptyL→ ε
(x :< xs)→ xs

From this, we find that viewl l should be equivalent to fmap@List fromList (toList′ l),
i.e., that viewl should be equivalent to fmap@List fromList ◦ out ◦ toList, exactly what
the diagram suggests.

4.2.3 Pattern transformations

The previous section covered the view function used in the expression transformation
rule M view M. We still need to define the pattern transformations.

19

The pattern transformations will need to transform patterns for C into patterns for
A@C. In the example that transforms lists to Seq, we need the rules [] EmptyL
and (M :N) (M :<N). In the transformation rule for patterns with the (:) constructor,
metavariables appear that have a different type on the left-hand side and the right-hand
side. It corresponds to the following inference rule:

Γ,K ` (:<) :α→Seq α→@List α (Seq α)

Γ,K p̀at (x : y) (x :< y) : @List α (Seq α)⇒ {x :α,y : Seq α}

It turns out that the construction of A@C and the corresponding view function allow
for a relatively simple construction of the pattern transformation rule. Since A@C has
a constructor for every constructor of C, and every field of constructor Con′ of A@C
corresponds to a field of constructor Con of C, the transformation rules will be of the
form: Con M Con′ M.

5 Datatype transformations

In the previous sections, we discussed the changes to the transformation system on
the expression level, and through case expressions also the pattern level. However, the
introduction of datatype declarations in addition to a main brings additional complexity.
Consider the following program, in which a datatype Bingo is defined that contains a
list of numbers drawn in a game of Bingo. The defined main function checks if all
numbers of a given list are drawn during a given game. It has type [Int]→Bingo→
Bool.

data Bingo = Bingo [Int]
main =λnums bingo→

case bingo of
Bingo bingo′→

foldr (λn b→ elem n bingo′ ∧ b) True nums

We would like to change this code to use Set Int instead of [Int]. We will use the
following transformation rules:3

• M fromList M

• M toList M

• foldr Data.Set.foldr

• elem member

Here, fromList :: [Int]→Set Int, toList ::Set a→ [a], Data.Set.foldr :: (a→b→b)→b→
Set a→b, and member :: Int→Set Int→Bool.

The following main functions are both valid transformations of the original func-
tion:

3Since Set has an Ord constraint, and our language does not support typeclasses, I’ve specialized the
types to Set Int

20

data Bingo = Bingo [Int]
main =λnums bingo→

case bingo of
Bingo bingo′→

Data.Set.foldr (λn b→member n (fromList bingo′) ∧ b) True nums
main′=λnums bingo→

case bingo of
Bingo bingo′→

Data.Set.foldr (λn b→ elem n bingo′ ∧ b) True nums

These are not the only ones, but all valid transformations have one thing in common:
bingo′ has type [Int]. This results in using either fromList or elem, both linear in the
length of the list, while member is only logarithmic.

The reason we cannot change the type of bingo′ is because it is bound by a pat-
tern match on the Bingo constructor, which has type [Int]→Bingo. Defining a sec-
ond datatype data Bingo′ = Bingo′ (Set Int) and a pattern transformation Bingo M
Bingo′ M solves the problem, but if every transformation of a datatype requires the
definition of an auxiliary datatype, that can get quite verbose. Instead, we will intro-
duce yet another type of transformation: constructor transformations. These are used
to transform the datatype definitions directly.

Apart from changing field types, there are other transformations for datatypes that are
desirable, like adding or removing fields from a constructor. As usual, we will first
show the inference rules for this transformation and how to fit these into the exist-
ing system. Then we will introduce a syntax for constructor transformations and its
interpretation.

5.1 Constructor transformations

As before, the transformation judgements for constructors will be based on the typing
rules (recall Figure 4):

Typing: K ` C τ⇒ {C :τ→ T α}

Transformation: K ` C τ C τ′⇒ {C :τ′→ T α}

Having a judgement for constructor transformations necessitates a judgement for datatype
declaration transformations, as wel as an adapted program transformation judgement.
Figure 16 shows the required propagation rules that allow for both constructor and
program transformations.

Because they are propagation rules, they only specify the identity transformation. As
with expressions and patterns, actual transformations need to be specified separately.
For example, the constructor transformation rule for Bingo in the previous example
looks like the following:

21

PData

K′= {T : κi→ ?}
{K ∪ K′ ∪ α : κ ` Ci C

′
i ⇒ Γ′i }

K ` data T α : κ=C | data T α : κ=C′ |⇒
⋃

Γ′i ,K
′

PCon
{K ` τi :?}

K ` C τ C τ⇒ {C :τ→ T α}

PProg

{K ` Di D′i ⇒ Γi,Ki }

Γ ∪
⋃

Γi,K ∪
⋃

Ki ` e e′ :τ

Γ,K ` D; main = e D′; main = e′ :τ

Figure 16: Propagation rules for datatype declarations and programs

K ` Set Int :?

K ` Bingo [Int] Bingo (Set Int)⇒ {Bingo : Set Int→Bingo}

A single constructor transformation suffices for transformations that change the type of
the fields of a constructor. However, when adding, removing, or reordering fields, we
will need additional transformations on the pattern and expression level.

When removing a field, the corresponding variable in patterns is removed as well, and
is no longer in scope on the rhs of the pattern matching clause. Furthermore, any usage
of the constructor as a function on the expression level will have one argument too
many.

When adding a field, the pattern for the constructor will gain an extra pattern variable,
which is unused. This does not make the program incorrect, but manual changes to
actually make use of this variable are needed. However, when used as a function on
the expression level, there will be one fewer argument than needed. A suitable default
will need to be specified.

Reordering fields is not simply a retyping of the original fields. On the pattern level,
the variables will need to be reordered, and on the expression level, arguments to the
constructor need to be rearranged as well.

It is clear that constructor transformations have a lot of influence on the rest of the
code. In the following sections, we will look at the other transformations that arise
from a constructor transformation. First we will cover adding fields and reordering
fields. This introduces pattern transformations and expression transformations induced
by a constructor transformation. Then we will look at removing fields, which has the
additional difficulty of removing bound variables in pattern matches.

5.1.1 Adding and reordering fields

First we will look at our original Bingo datatype:

data Bingo = Bingo [Int]

22

Say we want to add a field of type Int that holds the size of the list, in order to avoid
recomputation. We want the new datatype to look like:

data Bingo = Bingo [Int] Int

A suitable constructor transformation would be:

K ` [Int] :? K ` Int :?

K ` Bingo [Int] Bingo [Int] Int⇒ {Bingo : [Int]→ Int→Bingo}

For the pattern transformation, we need to introduce a new pattern variable for the Int
field:

Γ,K ` Bingo : [Int]→ Int→Bingo

Γ,K p̀at Bingo x Bingo x y : Bingo⇒ {x : [Int], y : Int }

Here y needs to be a variable that does not occur in the rest of the program. In general,
an added field in the constructor must have a corresponding pattern variable.

If we later decide that the order of the fields is not right, and we would like the Int to
be first, the following two transformations (the first for the constructor, the second for
patterns) can be used:

K ` Int :? K ` [Int] :?

K ` Bingo [Int] Int Bingo Int [Int]⇒ {Bingo : Int→ [Int]→Bingo}

Γ,K ` Bingo : Int→ [Int]→Bingo

Γ,K p̀at Bingo x y Bingo y x : Bingo⇒ {x : [Int],y : Int }

Expression transformations are more difficult to define. We could try Bingo M
Bingo M (length M) and Bingo M N Bingo N M. However, these transformations
will not occur if Bingo appears partially applied. It is thus necessary to define a smart
constructor, and transform Bingo to that:

-- For adding the integer field.
-- Expression transformation: Bingo smart Bingo1

smart Bingo1 :: [Int]→Bingo
smart Bingo1 lst = Bingo lst (length lst)

-- For swapping the fields.
-- Expression transformation: Bingo smart Bingo2

smart Bingo2 :: [Int]→ Int→Bingo
smart Bingo2 lst int = Bingo int lst

In the above code, length lst is used because the intention of the Int field was to store
the length of the list. The definition of the smart constructor needs to be provided by

23

the user, and must be consistent with the actual constructor transformation. In general,
the smart constructor will take as many parameters as the original constructor, and it
will be an application of the new constructor to as many arguments as it has fields. The
pattern transformation must be specified separately, and must also be consistent. When
we introduce the syntax to specify constructor transformation rules in Section 5.2, we
will also show how the pattern transformation can be derived from the constructor
transformation.

5.1.2 Removing fields

When removing fields, we can still define a smart constructor as before. Suppose we
decide that storing the size of the list as a separate field is not worth it after all, and
we want to revert back to the version with just a plain list of Ints. The constructor
transformation and smart constructor will look as follows:

K ` [Int] :?

K ` Bingo Int [Int] Bingo [Int]⇒ {Bingo : [Int]→Bingo}

smart Bingo3 :: Int→String→Bingo
smart Bingo3 int lst = Bingo lst

The difficulty lies in pattern-matching. While the pattern transformation is easily de-
fined, we run into problems if the removed field is bound to a variable which is used in
the code:

data Bingo = Bingo Int [Int]
main =λbingo→ case bingo of

Bingo int lst→ int

Here we can not simply remove the Int field, as the variable int is bound to it. To
solve this, we add a set of substitutions to the pattern transformation judgment. These
substitutions list, for fields that get removed, what expression they must be replaced by.
This expression can make use of the other pattern variables. The rule for this pattern
transformation looks like:

Γ,K ` Bingo : [Int]→Bingo

Γ,K p̀at Bingo x y Bingo y : Bingo⇒ {y : [Int]}, {x length y}

The set of substitutions here is {x length y}. Since there is only one pattern variable
absent in the pattern on the right-hand side, there is only one substitution. In general,
the pattern transformation judgements now look like: Γ,K p̀at p p : τ⇒ Γ,∆. In this
judgement, ∆ is a mapping from pattern variables x to expressions e. Pattern variables
of the pattern on the left-hand side must either occur in the pattern on the right-hand
side, or have a corresponding mapping in ∆.

24

PCase

Γ,K ` e e′ :τ1
{Γ,K p̀at pi p′i :τ1⇒ Γi,∆i Γ ∪ Γi,K ` ∆i (ei) e′i :τ2 }

Γ,K ` case e of {pi→ ei;} case e′ of {p′i → e′i ;} :τ2

Figure 17: Modified case propagation rule

CONTRF F C M C M̂⇒ {M 7→ eM } constructor transformation
M̂ F M

| M :τ Metavariable with type annotation

Figure 18: Constructor transformation syntax

Changing the pattern transformation judgement means we have to change the identity
transformation for patterns, as well as the PCase inference rule. The new version of
the latter needs to take the set of substitutions into account (Figure 17)

The most important change is that we no longer have ei e′i , but ∆i (ei) e′i . This
performs the substitution of removed pattern variables, before propagating the trans-
formation. The substitution is a straightforward bottom-up scope-aware substitution,
replacing variables that occur in ∆ with their associated expression.

The identity transformation remains largely the same, except that it needs to produce
a set of substitutions. Since there are no removed pattern variables, this set will be
empty.

Lastly, due to the inclusion of the mapping ∆, the pattern transformation syntax must
provide a way for that, too. Pattern transformations are written as. C M C M ⇒
{M 7→ eM }. When interpreting the syntax, the metavariables in {M 7→ eM } get instan-
tiated to object variables to form the mapping ∆. For a formal specification, see the
Appendix A.

5.2 Constructor transformation syntax

In order to reduce the verbosity of the inference rules, we also introduce a special
syntax for constructor transformations. Additionally, the syntax allows us to derive a
pattern transformation that corresponds to the constructor transformation.

The syntax, described in Figure 18, is almost the same as the syntax for pattern trans-
formations. The difference is that any new metavariables on the right-hand side need
a type annotation for use in the constructor definition. In case of type-changing fields,
metavariables on the right-hand side that also appear on the left-hand side need a type
annotation as well. For example, the first transformation described in this chapter,
changing a field of type [Int] to a field of type Set Int, is described as Bingo M
Bingo (M : Set Int)⇒ { }.

The derivation of a pattern transformation from a constructor transformation is done
by simply untagging the metavariables on the right-hand side:

25

ConRule

C M C′ N̂⇒ ∆ is a constructor transformation
Σ= {Mi 7→ τi }

{Σ ` N̂i 7→ τ′i K ` τ′i :?}

K ` C τ C′ τ′⇒ {C′ :τ→ T α}

Σ ` M :τ 7→ τ

M ∈ Σ

Σ ` M 7→ Σ (M)

Figure 19: Interpretation of constructor transformation syntax

C M C′ N̂⇒ ∆ is a constructor transformation
{M′i = untag (Mi)}

C M′ C′ N⇒ ∆ is a pattern transformation

untag (M) = M
untag (M :τ) = M

The interpretation of the constructor transformation syntax is described in Figure 19.
The metavariables on the left-hand side are mapped to the types in the constructor
to result in a mapping Σ. Next, the metavariables on the right-hand side are looked
up. However, when the metavariable has a type annotation, that annotation will be the
result type, not even if Σ maps it to a different type.

6 Object language extensions

Now that we have explored the types of transformations applicable to our minimal lan-
guage, we will look at some advanced features found in Haskell, that may change the
way our transformations work. Specifically, we will lift the restriction that patterns can-
not be nested, and look at two attempts at solving the problems that result from lifting
this restriction. However, both attempts introduce complexities of their own.

6.1 Nested patterns

In the object language described in this thesis, patterns can not be nested: a constructor
pattern can only contain pattern variables, not more constructor patterns. This keeps
the language and transformations simple, but with it, we lose some expressive power.
For example, the following piece of code will become more verbose, and require either
code duplication or defining an auxiliary function to minimize the duplication to a
function call:

-- with nested patterns
main =λx→ case x of

26

p F x pattern variable
| C p constructor pattern

PatVar
K ` τ :?

Γ,K p̀at x :τ⇒ {x :τ}

K ` τ :?

Γ,K p̀at x x :τ⇒ {x :τ}, ε

PatCon

Γ,K ` C :τ1→ . . .→τn→τ
{Γ,K p̀at pi :τi⇒ Γi }

Γ,K p̀at C p1 . . .pn :τ⇒
⋃

Γi

Γ,K ` C :τ1→ . . .→τn→τ
{Γ,K p̀at pi p′i :τi⇒ Γi,∆i }

Γ,K p̀at C p1 . . .pn C p′1 . . .p
′
n :τ⇒⋃

Γi,
⋃

∆i

Figure 20: Nested patterns. Syntax, typing, and propagation.

(y : [])→"One element"
t →"Not one element"

-- without nested patterns, duplication
main =λx→ case x of

(x : xs)→ case xs of
[]→"One element"
t →"Not one element"

t →"Not one element"

To allow nested patterns, the syntax, typing, and propagation subtly change, compare
Figure 20 to Figure 3 and Figure 10. Typing a constructor pattern first recursively
types the sub-patterns, and then checks those types against the types of the fields of the
constructor. For propagation, the sub-patterns are first transformed independently, and
then typechecked against the constructor.

With the appropriate transformation rules, we can now perform the following List to
Seq transformation:

main =λe→ case e of
(1 : xs)→ xs
x → []

main′=λe→ case viewl e of
(1 :< xs)→ xs
x → ε

However, the following will still fail:

main =λe→ case e of
(1 : 2 : xs)→ xs
x → []

main′=λe→ case viewl e of
(1 :< . . .)→ . . .
x → ε

The pattern on the . . . needs to be a pattern for Seq Int, which is abstract. In this
particular case, we could write a two-layer view function:

27

view2 e = case viewl e of
EmptyL→Nothing
(x :< xs)→ Just (x,viewl xs)

This function would allow us to transform the program into:

main′=λe→ case view2 e of
Just (1,2 :< xs)→ xs
x → ε

However, this would mean that we have to define a different view function and view
type for every used nesting of patterns. This becomes very cumbersome: we can go
down the spine of the list as often as we want, and we could have lists of a more
structured datatype than Int, and pattern match on those values. If we want to allow
nested patterns, and also allow abstract datatypes, we need a better way than view
functions to cover arbitrary nesting.

6.2 Guards

A feature in Haskell that is closely related to pattern matching is guards. A guard allows
you to annotate a pattern with an expression of type Bool, possibly making use of the
variables bound by the pattern, followed by the result. If the pattern matches and the
boolean expression is True, the result of the case-expression is the body of the clause.
If the boolean expression is False, the next clause is tried. For example4:

main =λe→ case e of
(x : xs) | odd x →"odd head"

(x : xs) | otherwise→"even head"
[] →"no head"

Guards introduce expressions to the pattern language, which complicates the transfor-
mations. When we specify a transformation for an unguarded pattern, we want this
transformation to work on guarded patterns as well. Transforming the above code from
List to Seq should turn it into:

main =λe→ case viewl e of
(x :< xs) | odd x →"odd head"

(x :< xs) | otherwise→"even head"
EmptyL →"no head"

Furthermore, if any of the pattern variables changes type, any guards that use this
variable must transform as well, otherwise the entire transformation fails. We want the
following transformation to be valid:

main =λe→ case e of
(x : xs) | odd (length xs)→"odd tail"

4In Haskell, multiple guards can be attached to one pattern. Having multiple guards on one pattern has
the same semantics as repeating the pattern multiple times, with just one guard per copy.

28

(x : xs) | otherwise →"even tail"

[] →"no tail"

main =λe→ case viewl e of
(x :< xs) | odd (Seq.length xs)→"odd tail"
(x :< xs) | otherwise →"even tail"

[] →"no tail"

Thirdly, it should be possible to transform unguarded patterns to guarded patterns. This
will help pattern matching on abstract datatypes, as we split the pattern into a guard that
checks for an equivalent of the constructor being matched, and projection functions to
get at the equivalent of the fields of the constructor. For example, as an alternative to
using viewl, the following could be a valid transformation:

main =λe→ case e of
(x : xs)→ Just (x,xs)
[] →Nothing

main =λe→ case e of
s | ¬ (Seq.null s)→ Just (Seq.index s 0,Seq.drop 1 s)
s | Seq.null s →Nothing

And finally, this should also work for patterns that have guards already:

main =λe→ case e of
(x : xs) | odd x→ Just xs
l →Nothing

main =λe→ case e of
s | ¬ (Seq.null s) ∧ odd (Seq.index s 0)→ Just (Seq.drop 1 s)
l →Nothing

To define these transformations, we first extend our object language:

gp F p pattern
| p | e guarded pattern

e F ...
| case e of {gp→ e;} case expression for patterns with guards

To allow all of the earlier mentioned transformations, we split up pattern transformation
judgements in two similar judgement types. First there are judgements for transforma-
tions from guarded pattern to guarded pattern: Γ,K g̀pat gp gp :τ⇒ Γ,∆. The propa-
gation rule for case expressions will use rules with that shape for its patterns.

The pattern transformations themselves look like Γ,K p̀at p gp : τ⇒ Γ,∆. Note the
guarded pattern on the right-hand side, instead of an unguarded pattern. Figure 21
shows the propagation rules for case expressions with guarded patterns.

The UnguardPat and GuardPat rules are used to convert pattern transformations (with
p̀at) into guarded pattern transformations (with g̀pat). UnguardPat states that a pattern

29

UnguardPat
Γ,K p̀at p gp′ :τ⇒ Γ′,∆

Γ,K g̀pat p gp′ :τ⇒ Γ′,∆

GuardPat

Γ,K p̀at p gp′ :τ⇒ Γ′,∆
Γ ∪ Γ′,K ` ∆ (e) e′ : Bool

Γ,K g̀pat p | e gp′& e′ :τ⇒ Γ′,∆

PCase

Γ,K ` e e′ :τ1
{Γ,K g̀pat gpi gp′i :τ1⇒ Γi,∆i Γ ∪ Γi,K ` ∆i (ei) e′i :τ2 }

Γ,K ` case e of {gpi→ ei;} case e′ of {gp′i → e′i ;} :τ2

PatVar
K ` τ :?

Γ,K p̀at x x :τ⇒ {x :τ}, ε

PatCon

Γ,K ` C′ :τ→ τr
{Γ,K p̀at pi p′i | gi :τi⇒ Γi,∆i }

Γ,K p̀at C p C′ p′& gi& :τr ⇒
⋃

Γ′,
⋃

∆′

Figure 21: Inference rules for patterns with guards

transformation can directly be used on a pattern without guard. GuardPat takes care
of the guard that may already be present. Like the body of the clause, the substitution
∆ is first applied to it, as it may contain variables that have been removed by the pat-
tern transformation. Then it is transformed according to the transformation rules for
expressions, to account for possible type changes in the variables that are still bound.
The resulting expression gets appended to the guarded pattern that is the result of the
transformation. & is a helper function that appends a guard to a guarded pattern, and
defined as follows:

(p | e1) & e2 = p | (e1 ∧ e2)
p & e = p | e

The order here matters. e2 may make use of projection functions that may not be total,
but truth of e1 may imply that these projection functions are safe to use. For example:
Just x | odd x may be transformed into y | isJust y ∧ odd (fromJust y). Here fromJust y
is undefined if isJust y is False.

PatVar and PatCon are the propagation rules for the patterns. Variable transformations
are straightforward. Transformations for constructor patterns need to take into account
that there are nested patterns that may be transformed to guarded patterns. When the
subpatterns are transformed, their guards are collected and appended to the transformed
pattern. If a transformed subpattern does not have a guard True is implied.

Having defined the propagation transformations, we will look at some list to Seq trans-
formations.

30

PatNil

y fresh Γ′= {y : Seq a}
Γ ∪ Γ′,K ` Seq.null y : Bool

Γ,K g̀pat [] y | Seq.null y : Seq a⇒ Γ′, ε

PatCons

Γ,K p̀at p1 x | e1⇒ Γ1,∆1
Γ,K p̀at p2 y | e2⇒ Γ2,∆2

y fresh Γ′= {z : Seq a}
∆= {x 7→ Seq.index z 0,y 7→ Seq.drop z 1}

Γ ∪ Γ′,K ` ¬ (Seq.null z) : Bool

Γ,K p̀at (p1 : p2) z | ¬ (Seq.null z) ∧ ∆ (e1) ∧ ∆ (e2) : Seq a⇒
F {z : Seq a},∆ ∪ ∆ (∆1) ∪ ∆ (∆2)

The PatNil rule rewrites a pattern for [] to a fresh variable of type Seq a, and adds a
guard that checks if the sequence is empty. PatCons is more involved. The substitution
environment ∆ is applied not only to the guards of the subpatterns e1 and e2, but also
to the substitution environments of the subpattern transformations ∆1 and ∆2, as they
may use x and y, which are bound by patterns p1 and p2.

These transformations can be used to handle subpatterns on the tail side of a list. The
transformation main main′ is valid:

main =λs→ case s of
(x : y : z) | odd y→5
x →6

main′=λs→ case s of
a | ¬ (Seq.null a)
∧ ¬ (Seq.null (Seq.drop 1 a))
∧ odd (Seq.index (Seq.drop 1 a) 0)→5

x →6

The result is code that not only looks ugly, but there is another downside: if either of the
transformed subpatterns is a constructor pattern, the transformation becomes invalid.
The PatCons rule relies on the subpatterns transforming into a variable pattern with
a guard, as it completely ignores Γ1 and Γ2. As long as the result of the subpattern
transformations are variables, they will be substituted away by ∆, and we do not need
their typing information.

A solution would be to transform every pattern to a combination of a guard and projec-
tion functions. However, the size of the resulting guard increases at least quadratically
in the amount of nestings of the pattern. Every pattern layer introduces another term
to the guard that corresponds to a check for the right constructor. Furthermore, an
additional projection function is inserted into all other terms. For example, the pat-
tern [Just x] is transformed into the guarded pattern z | ¬ (null z) ∧ isJust (head z) ∧
null (tail z), and the expression corresponding to x is fromJust (head z).

Not only is this code unpleasant to deal with for the programmer, we also lose any
exhaustiveness checks that we may have been able to do with actual patterns. While
guards certainly do have their place as alternative to nested if-then-else, but because
they are a different syntactic category than patterns, they are not really suitable as
replacement for patterns.

31

PatView

Γ,K ` e :τ1→τ2
Γ,K p̀at p :τ2⇒ Γ′

Γ,K p̀at (e→p) :τ1⇒ Γ′

Γ,K ` e e′ :τ1→τ2
Γ,K p̀at p p′ :τ2⇒ Γ′,∆′

Γ,K p̀at (e→p) (e′→p′) :τ1⇒ Γ′,∆′

PatCon

Γ,K ` C :τ1→ . . .→τn→τ
Γ0 =Γ

{Γi−1,K p̀at pi :τi⇒ Γ′i Γi =Γi−1 ∪ Γ′i }

Γ,K p̀at C p1 . . .pn :τ⇒
⋃

Γ′i

Γ,K ` C :τ1→ . . .→τn→τ
Γ0 =Γ ∆0 = ε

{Γi−1,K p̀at ∆i−1 (pi) p′i :τi⇒ Γ′i ,∆
′
i

Γi =Γi−1 ∪ Γ′i ∆i =∆i−1 ∪ ∆′i }

Γ,K p̀at C p1 . . .pn C p′1 . . .p
′
n :τ⇒

⋃
Γ′i ,
⋃

∆′i

Figure 22: Typing and propagation for view patterns

6.3 View patterns

Since version 6.10.1 [1] GHC has the ViewPatterns extension. View patterns are based
on the theory of views and view functions as introduced by Wadler in [6]. Instead of
applying a view function to the scrutinee of a case expression as we did in Section 4,
this language extension makes view functions part of the pattern language. As opposed
to guards, this extension directly adds another form of pattern, which allows it to be
nested. The new production is:

p F ...
| (e→p) view pattern

Here, e is a view function, such as viewl of Data.Sequence. When a scrutinee e1 is
matched against a pattern e2→ p, e2 e1 is matched against p. Typing and propagation
rules can be found in Figure 22. Because view functions can make use of variables
bound in “earlier” patterns, the PatCon rules have changed as well. A version of Γ

needs to be threaded through the patterns when typechecking. In the propagation rules,
∆ needs to be similarly threaded, and applied to subpatterns, as the view function may
make use of variables in earlier patterns that may have been removed.

The increase in expressivity comes from the fact that e→ p is itself a pattern, and can
thus be used inside a constructor pattern. Instead of writing a view function for looking
at the first element of a Seq a, and a different view function for looking at the first
two elements, we can use a view pattern in the recursive position. Continuing with the
example at the end of Section 6.1:

main =λe→ case e of
(viewl→ (1 :< (viewl→2 :< xs)))→ xs
x → ε

32

With the addition of view patterns, the techniques of Section 4 are more widely applica-
ble, because these can safely be nested. They also remove the need for expression trans-
formations like M view M that are meant to be used with the scrutinee. Instead, all
pattern transformations will result in a view pattern with said view function. Where pat-
tern transformations took on the form of Con M Con′M, with Con is a constructor of
the original datatype and Con′ the corresponding constructor of the view type, pattern
transformations that use view patterns will look like Con M (view→Con′ M). As an
example, the pattern transformations of lists to Seqs look like [] (viewl→EmptyL)
and (M : N) (viewl→ (M :<N)).

These two transformations are the only two needed to transform the code in Section 6.1
to the code shown above. The pattern [Just x], which resulted in barely readable code
when using guards and projection functions, will be transformed into viewl→ (Just x :<
(viewl→EmptyL)).

7 Algorithm

The previous sections dealt with the theoretical foundations of our type and transform
system. However, when putting it in practice, there is one glaring issue briefly men-
tioned at the end of Section 2.2. The combination of rules M fromList M and M
toList M allows for potentially infinite chains of fromList (toList (fromList. . .)).

We restrict the system by allowing only one transformation rule to be applied to an
expression. Rules are applied bottom-up. To enforce this, we split up the trans-
formation judgement Γ,K ` e e : τ into Γ,K p̀ro e e : τ, Γ,K t̀ra e e : τ, and
Γ,K r̀ule e e :τ.

Judgements using p̀ro are used for the propagation relation as described in Figure 7.
r̀ule judgements are the result of transformation rules as described in 2.3. t̀ra is the

result expression, after both propagating and applying a rule. It has only one inference
rule:

Γ,K p̀ro e e′ :τ
Γ,K r̀ule e′ e′′ :τ′

Γ,K t̀ra e e′′ :τ′

All premises of the propagation relation of shape Γ,K ` e e : τ are to be changed to
Γ,K t̀ra e e :τ, while those premises of the transformation rules, which correspond to
metavariables in the syntax, are removed entirely. The subexpressions they are about
have been transformed by the p̀ro premise of t̀ra.

As a result of this layering, and requiring that partially transformed expressions are
type-correct per p̀ro, transformation rules other than M π or x e become less
effective. To see why, consider the transformation rule (++) M N (./) M N in com-
bination with M toList M and M fromList M. Here, (++) :∀ α.[α]→ [α]→ [α] is
standard list concatenation, and (./) :∀ α.Seq α→Seq α→Seq α is sequence concate-
nation.

33

Now, for an expression such as (++) [1,2,3] [4,5,6], we cannot derive the expected
(./) (fromList [1,2,3]) (fromList [4,5,6]) from the t̀ra rule and the transformation rules
listed above. The p̀ro premise of the t̀ra rule requires its result to be well-typed before it
the transformation rule is applied. While propagation causes [1,2,3] and [4,5,6] to be
transformed to fromList [1,2,3] and fromList [4,5,6], applying (++) to those results in
a type error. The only valid result of the propagation step is (++) [1,2,3] [4,5,6], after
which applying the transformation rule results in a type error.

8 Conclusion

In this thesis, we have extended the type and transform system of Leather et al. [5].
Before this project, the system could transform expressions from the lambda calculus
with let-bindings and a built-in fix operator. To that, we have added the following
functionality:

1. Handling object languages with pattern matching and case-expressions

2. Transformations of patterns

3. Handling object languages with datatype declarations

4. A syntax to succinctly describe transformations

Pattern matching with case expressions is a feature commonly seen in functional pro-
gramming languages such as Haskell or Scala. It allows breaking down of data while
providing better static guarantees about totality than projection functions and checks
for constructors.

While it is possible to transform the scrutinee of a case-expression to an expression
whose type matches the type of the patterns by using appropriate from and to func-
tions, we can sometimes improve on this by transforming the patterns themselves. This
can result in a faster runtime than with conversion functions around the scrutinee and
alternatives.

In functional programming languages, datatypes are used to model the part of the world
that is relevant to the program. This allows the programmer to define functions on
programmer-defined types (e.g. Students or Sets). Because datatypes are so essential
to functional programming languages it is important that transformations of functional
programs can handle them. Enabling programmer-defined datatypes in program trans-
formations is therefore one of the most important contributions of this research.

Transformations are normally described using inference rules that directly fit in with
the inference rules of the type and transform system. Because these are verbose, we
invented a shorter notation that, with an initial type environment, can be automatically
translated to these inference rules. The syntax has been kept minimal to minimize
type-incorrect transformations.

With these improvements on the original system, we can express transformations of
programs to use datatypes that are better suited to the algorithm, such as Seqs instead
of lists in Haskell.

34

8.1 Related work

In this section we compare some existing work on program transformation to our type
and transform systems.

Like type and transform systems, Strafunski [4] is based on rewrite rules, and has a
library of strategies for combining rewrite rules and traversing a datatype. However,
the transformations that are allowed either do not change types, or change all types
to one specified type, as opposed to the more controlled type changes of type and
transform systems.

Erwig and Ren’s update calculus [2] allows some form of type-changing transforma-
tions, but these type changes do not propagate through bound variables. On the other
hand, the update calculus has more flexibility in dealing with scope.

One of the shortcomings in the system described above is that there are no guarantees
of preservation of semantics. The intention is that the types that are transformed are in
some way related, and that there are conversion functions both ways that are inverses.
For every function that gets transformed, the target function should be “semantically
equivalent” to the source function, but our system does not enforce this. Leather et
al. [5] define a type and transform system that has such semantic guarantees.

References

[1] Ghc manual, section 7.3.5 http://www.haskell.org/ghc/docs/latest/
html/users_guide/syntax-extns.html#view-patterns.

[2] Martin Erwig and Deling Ren. An update calculus for expressing type-safe pro-
gram updates. Science of Computer Programming, 67(2-3):199–222, 2007.

[3] R J M Hughes. A novel representation of lists and its application to the function
”reverse”. Information Processing Letters, 22(3):141–144, 1986.

[4] Ralf Lämmel and Joost Visser. Typed combinators for generic traversal. In PADL
’02: Proceedings of the 4th International Symposium on Practical Aspects of
Declarative Languages, pages 137–154. Springer-Verlag, 2002.

[5] Sean Leather, Johan Jeuring, Andres Lh, and Bram Schuur. Type-and-transform
systems. Technical Report UU-CS-2012-004, Department of Information and
Computing Sciences, Utrecht University, 2012.

[6] P. Wadler. Views: a way for pattern matching to cohabit with data abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’87, pages 307–313, New York, NY, USA, 1987.
ACM.

35

http://www.haskell.org/ghc/docs/latest/html/users_guide/syntax-extns.html#view-patterns
http://www.haskell.org/ghc/docs/latest/html/users_guide/syntax-extns.html#view-patterns

A Complete type and transform system

A.1 Propagation rules

PVar
x :∀ α : κ.τ ∈ Γ τ′= [τi /αi] τ {K ` τi : κi }

Γ,K ` x x :τ′

PApp

Γ,K ` e1 e′1 :τ2→τ
Γ,K ` e2 e′2 :τ2

Γ,K ` e1 e2 e′1 e′2 :τ

PAbs

K ` τ1 :?
Γ ∪ {x :τ1 },K ` e e′ :τ

Γ,K ` λx→ e e′ :τ1→τ

PLet

Γ,K ∪ α : κ ` e1 e′1 :τ1
Γ ∪ {x :∀ α : κ.τ1 },K ` e2 e′2 :τ2

α * FV (Γ)

Γ,K ` let x = e1 in e2 let x = e′1 in e′2 :τ2

PFix
Γ,K ` e e′ :τ→τ

Γ,K ` fix e fix e′ :τ

PCase

Γ,K ` e e′ :τ1
{Γ,K p̀at pi p′i :τ1⇒ Γi,∆i Γ ∪ Γi,K ` ∆i (ei) e′i :τ2 }

Γ,K ` case e of {pi→ ei;} case e′ of {p′i → e′i ;} :τ2

Figure 23: Propagation system for the let-polymorphic lambda calculus

PatVar
K ` τ :?

Γ,K p̀at x x :τ⇒ {x :τ}, ε

PatCon
Γ,K ` C :τ1→ . . .→τn→τ

Γ,K p̀at C x1 . . . xn C x1 . . . xn :τ⇒ {xi :τi }, ε

Figure 24: Identity transformation for patterns

36

PData

K′= {T : κi→ ?}
{K ∪ K′ ∪ α : κ ` Ci C

′
i ⇒ Γ′i }

K ` data T α : κ=C | data T α : κ=C′ |⇒
⋃

Γ′i ,K
′

PCon
{K ` τi :?}

K ` C τ C τ⇒ {C :τ→ T α}

PProg

{K ` Di D′i ⇒ Γi,Ki }

Γ ∪
⋃

Γi,K ∪
⋃

Ki ` e e′ :τ

Γ,K ` D; main = e D′; main = e′ :τ

Figure 25: Propagation rules for datatype declarations and programs

37

A.2 Syntax interpretation

TrfRule

π1 π2 is a rule
Γ,K m̀at π1@e⇒ Σ

Γ,K,Σ s̀ubst π2 = e′ :τ′

Γ,K ` e e′ :τ′

MApp

Γ,K m̀at π1@e1⇒ Σ1
Γ,K m̀at π2@e2⇒ Σ2

Γ,K m̀at π1 π2@e1 e2⇒ Σ1 ∪ Σ2

MExp
Γ,K m̀at e@e⇒ ε

MMeta
Γ,K ` e e′ :τ

Γ,K m̀at M@e⇒ {M 7→ e′ :τ}

SApp

Γ,K,Σ s̀ubst π1 = e′1 :τ→τ1
Γ,K,Σ s̀ubst π2 = e′2 :τ

Γ,K,Σ s̀ubst π1 π2 = e′1 e′2 :τ1

SExp
Γ,K ` e :τ

Γ,K,Σ s̀ubst e = e :τ

SMeta
Σ (M) = e′ :τ′

Γ,K,Σ s̀ubst M = e′ :τ′

Figure 26: Interpretation of expression transformation syntax

38

PatRule

C M1 . . .Mn C′ N1 . . .Nm⇒ ∆ is a rule
Γ,K ` C′ :τ1→ . . .→τm→τ

Σ= {Mi 7→ xi }

{Σ ` Ni 7→ yi Γi = {yi :τi }}

Γ,K p̀at C x1 . . . xn C′ y1 . . . ym :τ⇒
⋃

Γi,Σ (∆)

M ∈ Σ

Σ ` M 7→ Σ (M)

M < Σ x fresh

Σ 7→ M 7→ x

Figure 27: Interpretation of pattern transformation syntax

ConRule

C M C′ N̂⇒ ∆ is a constructor transformation
Σ= {Mi 7→ τi }

{Σ ` N̂i 7→ τ′i K ` τ′i :?}

K ` C τ C′ τ′⇒ {C′ :τ→ T α}

Σ ` M :τ 7→ τ

M ∈ Σ

Σ ` M 7→ Σ (M)

Figure 28: Interpretation of constructor transformation syntax

C M C′ N̂⇒ ∆ is a constructor transformation
{M′i = untag (Mi)}

C M′ C′ N⇒ ∆ is a pattern transformation

untag (M) = M
untag (M :τ) = M

Figure 29: Induced pattern rule from constructor rule

39

	Introduction
	Basic system
	Object language and type system
	Transformation system
	Transformation syntax

	Pattern transformations
	Inference rules
	Pattern transformation syntax

	View types
	From [1.5mu a1.5mu] to Seqa
	From concrete to abstract types
	Structure of A@C
	Definition of view
	Pattern transformations

	Datatype transformations
	Constructor transformations
	Adding and reordering fields
	Removing fields

	Constructor transformation syntax

	Object language extensions
	Nested patterns
	Guards
	View patterns

	Algorithm
	Conclusion
	Related work

	Complete type and transform system
	Propagation rules
	Syntax interpretation

