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Abstract

Option valuation models specifying the dynamics of the stock price directly always face the

problem of calibration to the volatility surface, which shows to be a troublesome procedure.

Market models take the option price surface as an input of the model and are hence perfectly

calibrated to the market. Market models try to specify the dynamics of the option prices, rather

than the stock price itself. Due to no-arbitrage constraints, specifying the dynamics of the

option prices becomes unworkable quickly. Therefore, the idea is to find a one-to-one param-

eterization of the option price surface. We then specify dynamics for this parameterization to

equivalently have the evolution of the option prices. The dynamics of the parameterization are

subject to no-arbitrage conditions, which are either complicated or restricted to a single strike

or maturity. Johannes Wissel recently came with a model that works for option prices on a fixed

grid of strikes and maturities, without invoking complicated restraints. Based on this option

valuation model, we analyze the way such a model works in practice. We find ways to calibrate

the dynamics of the parameterization and apply the model to the valuation of exotic derivatives

that potentially benefit from this approach, such as forward start options, forward start variance

swaps and structured products.

Keywords: � Arbitrage-free call price smoothing � Exotic option valuation � Stochastic

differential equations � Local implied volatility � Market model � Monte Carlo





Acknowledgements

This research would not have been possible without the valuable guidance of several people

along my path.

First of all, the project’s supervisor dr. Martijn Pistorius (University of Amsterdam) has been

a great help for the moments I got stuck. The time he took to catch up with me and the

discussions that reached topics beyond mathematics are highly appreciated. Also, I encourage

his new course in stochastic volatility, which helped me abundantly to get a wider view of option

modeling.

Second, I am grateful to dr. Peter Spreij (University of Amsterdam) for teaching measure theory,

the building block of the Master program Stochastics and Financial Mathematics. He also gave

me the first steps towards stochastic volatility by recommending the right books to give me a

solid background knowledge of the area I was entering.

Third, I would like to thank dr. Tobias Müller for his position as my supervisor from Utrecht

University and dr. Karma Dajani (Utrecht University) for her position as additional reader.

Special thanks go to my fellow student and ex-neighbor Stefan Radnev. We have gone through

most courses of our Master together. His way of thinking highly complemented mine, leaving

us with many insights we could not have obtained elsewhere. Not only have we helped each

other out tremendously through courses and the final project, but also in our social life. In my

opinion he boosted our overall performance.

Finally, my team consisting of Cédric van der Haert and Tom Groothaert at Credit Suisse are

thanked for the opportunity they gave me to get valuable practical experience and knowledge

on the trading floor. With this practical background a lot more insights have been obtained,

steepening the learning curve I’ve gone through during this project.





Contents

1 Introduction 1

2 Preliminary results 6
2.1 Stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Stock price dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Local volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Static arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Static hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Model setup 15
3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Absence of dynamic arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Implementation 22
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Arbitrage-free smoothing of the price surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Calibration 28
5.1 Constant local implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Realized volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Pricing 38
6.1 Forward start options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Structured products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Variance swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4 Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 45

A Appendix 49
A.1 Inverting Black & Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2 Arbitrage-free smoothing of the call price surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.3 Local implied volatility and price level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.5 Term sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72





1 Introduction

After Bachelier introduced the option in his thesis ”Théorie de la Spéculation” in 1900, it took 73 years for the

valuation of options to become standardized by Black & Scholes [Bla73]. In their framework the stock price moves

according to the stochastic differential equation (SDE)

dSt
St

= µdt+ σdWt, S0 = s, (1.1)

where St denotes the stock price in consideration at time t, µ ∈ R a constant drift term, σ > 0 the stock’s volatility

and Wt a P-Brownian motion. Black & Scholes’ main contribution was in fact not model (1.1) itself, which was due

to Samuelson [Sam65], but the fundamental idea that any contingent claim H(ST ) for a sufficiently well-behaving

function H can be perfectly replicated by continuous trading in the stock and bonds. This means that there is no

risk in selling such a contingent claim H. Let Φ denote the cumulative distribution function of a standard normal

distributed random variable, r be the risk-free rate and d the anticipated dividend yield, then the Black & Scholes

(BS) price of a European call option is given by the famous formula

CBSt (St,K, T, r, d, σ) := Ste
−dτΦ(d+)−Ke−rτΦ(d−), (1.2)

where

d± :=
ln(St/K) + (r − d± σ2

2 )τ
σ
√
τ

,

τ := T − t.

Note that the call price is independent of the drift term µ. The impact of their work has been tremendous. Markets

trading in financial derivatives expanded rapidly, resulting in a massive growth of the amount of traded assets,

liquidity and demand for more exotic securities. A large extent of derivative pricing is based on their idea of repli-

cating the pay-off function H. With the increased liquidity nowadays, there is no need to theoretically price the

basic European options anymore; the price of these so-called vanillas are now driven by the market. The search

is now after the pricing of (possibly not replicable) contingent claims H .

In the BS framework there is a one-to-one correspondence between the theoretical European option price and the

volatility parameter σ. Let Ĉt denote the observed market price of a standard European call option with strike K

and maturity T . The volatility matching Ĉt is termed the implied volatility σ̂, i.e. σ̂ is such that

Ĉt(K,T ) = CBSt
(
St,K, T, r, d, σ̂

)
,

at t ∈ [0, T ]. We can construct a surface of implied volatilities across strike and maturity. Specifying the implied

volatility surface at any given date is equivalent to specifying the prices of all vanillas at that date, without losing

information. Market data shows that σ̂ = σ̂t(K,T ), i.e. the implied volatility depends on time, strike and maturity,

the latter usually being referred to as the term structure. Typical examples of implied volatility surfaces can be seen

in Figure 1.1 below.
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Figure 1.1: Typical volatility surfaces observed in equity markets. Taken from the S&P500 Index.

Looking at the surface as a function of strike, we see that the surface reveals a skewed smile pattern. In equity

markets the surface commonly shows to have pure skew or a skewed smile, whereas it can be even increasing in

commodities markets and purely smiling in FX markets. Even within the same asset class the surface can have

different shapes: The Japanese Nikkei 225 Index generally shows little to no skew. A skewed volatility surface was

barely observed in equity markets before the financial crisis in 1987 where equity indices lost more than 20% of its

value. There are several explanations that cover for the skew’s reason of being. A theoretical explanation is given

by the fact that the BS framework assumes the light tailed lognormal distribution of returns of the underlying asset,

where empirically it’s found that the distribution shows to be heavy tailed. From a more practical trader’s perspec-

tive the reason is primarily due to the general fear of massive losses. Since the option price is strictly increasing

in σ, traders tend to increase σ̂, i.e. overprice, low strike options to cover for eventual losses in an unbalanced

portfolio occurring when the asset gaps. This risk is clearly larger for almost maturing options, which explains the

surface being more pronounced for small maturities.

We see that we violate one of the main assumptions made in the BS framework, being that σ̂ remains constant

over time. While this is a crucial violation, there are other fairly unrealistic assumptions including a constant risk-

free interest rate r, no transaction costs and that the underlying S does not pay dividends during the lifetime of the

contract. Although there are some assets that are not subject to dividends, e.g. performance funds or indices like

the German DAX Index, it has a substantial influence on the performance of the underlying and should hence be

incorporated into stock modeling.

Due to these nonrealistic assumptions, the valuation and risk management of more exotic options in the BS frame-

work is not accurate. To model derivatives more accurately, stochastic volatility (SV) models came to existence.

These models, pioneered by Hull [Hul00], Stein & Stein [Ste91] and most popular models Heston [Hes93] and

SABR [Hag02], assume that the nature of the instantaneous volatility is in fact stochastic and is thus modeled

directly as a random variable. To understand the dynamics of such a model, we look at the Heston model more

closely, in which the stock price is described according to the SDE

dSt
St

= µdt+
√
ν(t)dW 1

t , S0 = s.
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The volatility is said to be of the Cox-Ingersoll-Ross [Cox85] type

dνt = κ(θ − ν(t))dt+ σ
√
ν(t)dW 2

t ,

which is mean reverting, a commonly observed future of volatility in market data. The parameters of this model are

given by κ, θ, ν0, σ, and ρ, where κ controls the speed of mean reversion, θ the level of mean reversion,
√
ν0 the

short volatility (in contrast to
√
θ being the long volatility), σ the volatility of volatility (”volvol”) and ρ the correlation

between the P-Brownian motions W 1,W 2. A negative correlation gives rise to earlier discussed downward skew.

The popularity of this model lies within the fact that European options can be priced using a semi-closed form

Fourier transformation, easing the calibration to market data. This in contrast to many other SV models; most of

these models do not have a closed form or direct way to price European options and hence calibration can be

cumbersome. Since SV models have one extra source of randomness generated by Brownian motion W 2, we

encounter a risk exposure to volatility. Delta hedging becomes insufficient to eliminate risk and a market with the

underlying asset and a risk-free money account becomes incomplete. An incomplete market leads to non-unique

prices for most contingent claims. From this we see that every additional source of randomness in the model

requires an additional tradable instrument to eliminate the additional risk. Trading in volatility derivatives such as

variance swaps becomes more and more liquid these days, easing the hedging of volatility risk. However, we will

see later that the valuation of these derivatives is far from standardized.

Moving away from the stochastic nature of volatility, the smile can also fitted by the less computationally complex

local volatility (LV) models. Dupire [Dup94] (in continuous time) and Derman & Kani [Der94] (in discrete time) noted

the existence of a unique diffusion process consistent with the risk-neutral density obtained from market prices of

vanilla options. In contrast to the SV models, Dupire’s main drive was to keep the market complete. The volatility

is denoted as the state and time dependent diffusion coefficient σLV = σ(St, t), given by

σ2
LV (St, t) = 2

∂TCt + (rT − qT )K∂KCt + qTCt
K2∂KKCt

, (1.3)

where rT and qT denote the risk-free rate and dividend yield corresponding to maturity T . This is said to be

Dupire’s formula, but was in fact derived by Derman & Kani using Dupire’s method.

Since there is no additional randomness involved, delta-hedging is enough to eliminate risk and the market is

complete. However, the LV approach relies upon the continuity of Ct and its derivatives with respect to strike K

and maturity T . Since the option price will usually not be an analytical function and only observed on discrete

data points, we will have to obtain a continuum of option prices across all strikes and maturities by interpolation

or smoothing. These prices are then constrained to guarantee that the option price is decreasing and convex in

K and increasing in T , to avoid complex local volatilities. The restriction ∂TCt can be very unreasonable in the

presence of dividends. We will have to estimate these derivatives, inducing errors. Consider the denumerator of

(1.3) for far out-of-the-money and far in-the-money strikes, in particular close to maturity. The derivative in the

denominator will be very small and small errors in the approximation will multiplied with a squared strike, blowing

up the absolute error.

At each calibration of the LV surface, the LV surface is a deterministic function of St and t, but over time this surface

shows to have stochastic dynamics. LV models thus predict wrong dynamics for the stock’s volatility and is hence

not suitable for pricing and hedging exotic derivatives, especially those derivatives that are exposed to volatility. It

has been shown that BS hedging performs even better (e.g. an empirical study by Dumas et al. [Dum98] on the

S&P500 Index).
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By far the most literature is focused on the above approaches. There is vast literature available trying to use a

Lévy process to describe the stock price, see for example [Con03]. These processes are of the form

St = S0e
Xt , S0 = s,

where Xt has to satisfy certain integrability conditions. Xt usually contains a drift, a Poisson component to account

for jumps in the process and a Gaussian component to account for fluctuations. Note that the BS model is a spe-

cial case of the Lévy approach with Xt being a drift plus Brownian motion. The main advantage of these models

comes down to the calibration and fit of the model to short maturities. Most Lévy processes have an expression

for the option price in terms of a characteristic function φXt(u) := E[eiuXt ] which can be used to calibrate against

market data. Often this is the only tool to use, as the distribution function of a Lévy process is generally not pos-

sible to find. Lévy processes also allow for jumps, which covers the tail problem in the distribution discussed above.

All previous models are free of arbitrage by the specification of a pricing measure P∗ ∼ P and are then calibrated

or hopefully consistent with the smile. Further knowledge of the joint dynamics of the stock and its options is not

ensured. If we are to use the stock together with a range of liquid reference options, a more natural approach

would be to model the evolution of these via a system of SDEs directly, arriving at the realm of market models.

Such a framework has the advantage that the options are an integral part of the model and that the model yields

hedging strategies directly in terms of the reference options.

In a market model one tries to parameterize the surface of reference options Ĉt(K,T ) or σ̂t(K,T ) using a one-

to-one function which translates the prices into the so-called code-book. Since the code-book is an one-to-one

translation of the call prices, we can specify a system of SDEs describing its dynamics and equivalently have the

call prices. We then get around the problem of calibration to the volatility surface, since price surface serves as the

input to our model. The SDEs specifying the price dynamics are however subject to no-arbitrage and integrability

conditions.

Market models have their roots in interest rate modeling, where normal short rate models have to be calibrated

against the yield curve and market models take the market’s yield curve as input. For equity modeling, market

models aimed to to use implied volatility as a code-book. This means that the one-to-one translation of the call

price is chosen to be the inverse of the BS pricing function CBS (1.1) with respect to the volatility parameter σ.

There are great advantages motivating the use of a model specified in terms of implied volatility. In difference to

quantities such as the previously discusses instantaneous volatility (SV), LV or Lévy models, a model based on

implied volatility is much easier to understand for the practitioner. They are familiar with the concept, encouraged

by relatively recent inceptions of volatility indices. Furthermore, the movements in the implied volatility surface

across K and T are highly correlated, hence their joint dynamics will be driven by only a few factors, resulting in

computational benefits.

The main problem in a market model approach comes from ensuring the absence of arbitrage, which can be divided

into static and dynamic arbitrage. Absence of static arbitrages constrains the call option surface (Ct(K,T ))K∈K,T∈T
for every fixed t in such way that we can not generate a risk-free profit by an one-off trading strategy. The absence

of static arbitrage means that when we define a code-book by SDEs, the first thing to check is whether the con-

straints on the price surface are not broken. The parameterization should be chosen such that the static arbitrage

restrictions do not result in complicated state space for quantities involved in the model. Usually the bounds are

implied by the absence of dynamic arbitrage. Dynamic arbitrage is absent under the existence of a local martin-
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gale measure P∗ ∼ P, usually ensured by a drift restriction on the system of SDEs. The drift restrictions will then

depend on the Gaussian component v of the SDEs, leaving those as the degree of freedom. When a particular

volatility structure v is chosen, it remains to show the existence of a solution to the SDE. This turns out to be a

cumbersome procedure due to the explicit dependence of the drift on volatility v.

The original interest rate market models choose forward rates as a parameterization and then need to satisfy cer-

tain drift restrictions established by Heath et al. [Hea92] to exclude arbitrage opportunities. This idea was extended

to equity markets by Schönbucher [Sch99] using both implied volatility and forward implied volatility as a param-

eterization. He manages to specify drift conditions to exclude dynamic arbitrage and ensures static no-arbitrage

conditions for K = {K}, T = (0,∞). Similar results were obtained by Jacod & Protter [Jac10] and Schweizer &

Wissel [Sch08b], where Schweizer & Wissel also cover the existence. The opposite case, K = (0,∞), T = {T},
is covered by Schweizer & Wissel [Sch08a] using local implied volatility. On the full surface necessary conditions

have been constructed for the dynamics by Brace et al. [Bra01], Ledoit et al. [Led02], but no sufficient conditions,

nor proof of existence have been given.

In [Sch08a] it is argued that classical implied vols are an ill-suited code-book. To overcome this problem they

invoke the concept of local implied volatility and a price level. This concept is extended in Wissel’s dissertation

[Wis08] to a finite grid of strikes and maturities, coming with existence results inspired by their joint work. Although

not holding for strike and maturity, the no-arbitrage constraints are directly computed and the degree of freedom

is large. Similar work by Carmona & Nadtochiy [Car08] got published around the same time where they derive a

similar model, but their drift restrictions are not available in closed form: a PDE for the call price needs to be solved

at every simulation time t. Carmona & Nadtochiy do derive an existence result.

Wissel’s model has been the main motivation for this thesis. We use his framework and incorporate dividends,

which can be extended to stochastic. As a by-product we look at ways to smooth the call price surface in an

arbitrage-free way. We wish to analyze the efficiency and usability of a market model as opposed to the straight

forward single stock models. We will look at ways to calibrate the volatility structure and the possibilities for such

a model to price exotic derivatives. Preferably the model should have a parameterization that is easy to interpret,

such as implied volatility, the original motivator of equity market models. We would also like the parameters of the

model to have a clear influence on the forthcoming dynamics of both the options and the underlying. In particular

we are interested in the greater possibilities market models could bring compared to the single stock modeling

approach.

The rest of this thesis is organized as follows. Section 2 goes through the background in stochastic calculus

needed to comprehend the analysis throughout the thesis. We will introduce the concepts of forwards and show

how to disconnect the influence of interest rates and dividends from the stock price. We’ll have an in-depth look

on how local volatility is derived and go through the concept of static arbitrages and hedges. Section 3 builds

the theoretical background of the model we will use, mainly based on Wissel’s concept of local implied volatlity in

[Wis08]. We will then look at how such a model can be implemented together with the problems we find along the

way in section 4. The volatility structure will need calibration, which becomes an involved procedure explained in

section 5. We apply the model in section 6 to price exotic derivatives such as forward start options and (forward

start) variance swaps. We will also see how the model can be put to use in the pricing of structured products.

Section A discusses the code with its pitfalls after which we conclude our results in section 7.

5



2 Preliminary results

In this section we will discuss technical details which will serve as building blocks for the theory developed later on,

such as local martingales and Itô processes. A reader familiar with these advanced concepts in stochastic calculus

might want to go to section 2.2 immediately, where we start specifying the stock price dynamics. Following [Bue09],

we will build a stock price process that is purely exposed to volatility, leaving interest rates and dividend yields on

the side via an affine transformation. Section 2.3 derives the concept of Dupire’s local volatility by relying on the

Fokker-Planck equation. We will exploit the consequences of a statically arbitrage-free option model in section 2.4.

2.1 Stochastic calculus

We will model on a filtered probability space (Ω,F ,F,P), where F := (Ft)t∈[0,T ] the P-augmented filtration gener-

ated by a D-dimensional Brownian motion W = (W 1
t , . . . ,W

D
t )t∈[0,T ], T <∞ and D ∈ N. Write F = FT .

Let B(E) denote the σ-algebra generated by the set E ⊂ R and introduce the notations x+ := max(x, 0),

x ∨ y := max(x, y) and x ∧ y := min(x, y).

Definition 2.1.
A process (Xt)t∈[0,T ] defined on the filtered probability space (Ω,F ,F,P) is a local martingale under P if X is

adapted to its filtration F such that:

� there exists a sequence of stopping times (τk)k=1,2,... such that τk ≤ τk+1 P-a.s. for each k,

� limk→∞ τk =∞ P-a.s.,

� the stopped process

Xk
t := Xt∧τk

is a martingale under P for for each k and t ∈ [0, T ].

Recall the definition of a progressively measurable process.

Definition 2.2.
A process (Xt)t∈[0,T ] defined on the filtered probability space (Ω,F ,F,P) is said to be progressively measurable

or simply progressive if the map (s, ω)→ Xs(ω) from [0, T ]× Ω→ R is B[0, T ]⊗F measurable

We can now define the space Lploc(RD) as the space of all RD-valued progressively measurable, locally p-integrable

processes on [0, T ], with D, p ∈ N, i.e. if X ∈ Lploc, then X is a D-dimensional progressive process and there exists

a sequence of stopping times (τk)k=1,2,... such that τk ≤ τk+1 P-a.s. for each k, limk→∞ τk = ∞ P-a.s. and for

each k

E
[ ∣∣Xk

∣∣p ] <∞.
Recall that two measures P and P∗ are defined to be equivalent if they share the same sets of probability zero, i.e.

P(A) = 0 ⇐⇒ P∗(A) = 0, A ∈ F ,

which we denote by P ∼ P∗. We can now define the notion of a risk-neutral measure.

Definition 2.3.
A risk-neutral measure, also called an equivalent local martingale measure or a pricing measure, is a probability

measure P∗ on (Ω,F) such that P∗ ∼ P and the stock price S is a local martingale under P∗.
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The dynamics of a stochastic process can be described via Itô calculus. Consider the SDE

dXt = µt(Xt)dt+ σt(Xt)dWt, X0 = x0. (2.1)

The term µ has to be interpreted as a non-stochastic drift term and σ the Gaussian noise component. The larger

σ becomes, the more volatile the process behaves relative to the drift. Setting µ ≡ 0 yields X to be a martingale.

SDE (2.1) is said to have a strong solution if X is an Itô process.

Definition 2.4.
A process X is called an N -dimensional Itô process on (Ω,F ,F,P) driven by a D-dimensional Brownian motion

W if it is a P-a.s. continuous, F-adapted process X = (Xt)t∈[0,T ] satisfying P-a.s.

Xt = x0 +
∫ t

0

µs(Xu)ds+
D∑
d=1

∫ t

0

σds (Xs)dWs, t ∈ [0, T ], (2.2)

with

� (µt)t∈[0,T ] a N -dimensional, progressive process such that
∫ T
0
|µs| ds <∞ P-a.s.,

� (σdt )t∈[0,T ] a N -dimensional, progressive process such that
∫ T
0

(σds )2 ds <∞ P-a.s. for each d = 1, . . . , D,

� x0 is F0-measurable.

Throughout this thesis we will only consider the case where N = 1. One of our main concerns is whether there

exists a solution to SDE (2.1), which is the case when X defines an Itô process with its solution given as (2.2). To

this end, we need to introduce the concept of (local) Lipschitz continuity.

Definition 2.5.
Let f : R→ R. Then f is called Lipschitz continuous if there exists an L ∈ R such that for all x, y ∈ R we have

|f(x)− f(y)| ≤ L|x− y|,

where L is a constant, independent of x and y. L is also called the Lipschitz constant.

Moreover, f is called locally Lipschitz if for every N > 0 there exists an LN > 0 such that f is Lipschitz continuous

with Lipschitz constant Lε provided that |x|, |y| ≤ N .

The Lipschitz condition can be seen as a strong form of continuity. A Lipschitz function is limited in its growth, as

any two points in its domain have a slope between them limited by a real-valued Lipschitz constant. Using the

concept of local Lipschitz continuity, we obtain the following result.

Theorem 2.1.
Assume that for all t ∈ [0, T ] the functions µt(x) and σt(x) are Lipschitz continuous functions of x with Lipschitz

constant LN independent of t, x. Furthermore, assume that for all t ∈ [0, T ] the functions µt(x) and σt(x) satisfy

the linear growth condition

|µt(x)|+ |σt(x)| ≤ L(1 + |x|),

with L > 0. Then, for any F0-measurable square integrable random variable X0 the SDE (2.1) admits a strong

solution and is unique on [0, T ]. Moreover, if additionally E[X2
0 ] <∞ holds, we have

E
[

sup
t∈[0,T ]

|Xt|2
]
< LN,T ·

(
1 + E[X2

0 ]
)

for all t ∈ [0, T ], where the constant LN,T depends on LN and LT .
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Proof. See Theorem 2.2 in chapter 5 of Friedman [Fri75].

The following definition holds in fact for all continuous semimartingales, a concept that lies beyond the scope of

this thesis. An Itô process is one of its most common examples and suffices for our purposes.

Definition 2.6.
Let X be an Itô process, P = {0 = t0 ≤ t1 ≤ . . . ≤ tI = t} and set |P | := max{ti − ti−1|i = 1, . . . , I}. The

Doléans-Dade exponential E(X) is defined by

Et(X) := exp
(
Xt −X0 −

1
2
〈X〉t

)
,

where 〈X〉t denotes the quadratic variation of X, i.e.

〈X〉t := lim
|P |→0

I∑
i=1

(Xti −Xti−1)2, P− a.s..

The Doléans-Dade exponential will become important later on when we want to switch between the measures P
and P∗. We will need the following theorem.

Theorem 2.2.
Let X be a continuous local martingale with X0 = 0. Then E(X), its Doléans-Dade exponent, is a local martingale.

Proof. Define f(Xt, 〈X〉t) := Et(X). Itô’s fomula gives

df = Et(X)dXt +
1
2
Et(X)d〈X〉t −

1
2
Et(X)d〈X〉t

= Et(X)dXt.

Using E0(X) = 1, we can solve this to

Et(X) = 1 +
∫ t

0

Es(X)Xsds, t ≥ 0,

which is a stochastic integral with respect to X. From results in stochastic integration such as in [Pro04] we know

that the local martingale property is preserved under stochastic integration, which concludes the proof.

2.2 Stock price dynamics

Stock prices are subject to interest rates and dividend payments. We will assume that the interest rates r =

(rt)t∈[0,T ] are deterministic. We assume that dividend payments can be considered in two separate classes; On

each dividend date 0 = τ0 < τ1 < τ2 . . . first a proportional dividend βk = 1 − e−dk and after which an absolute

cash dividend αk is paid. This means that at a dividend date τk the stock drops to a relative amount e−dk after

which αk is subtracted, i.e.

Sτk = Sτk−e
−dk − αk, (2.3)

where Sτk− denotes the stock price just before the payments of the dividend. Here we make the assumption that

the ex-dividend date, record date and payment date all coincide. In practice the share trades cum-dividend until

the ex dividend date, after investors acquiring the share will not be entitled to receive the dividend. Exchanges then

usually have a fixed amount of days until the record date, where the company looks in the shareholder register
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to allocate the payments. The amount of days between the ex dividend date and record date is at least the time

needed for the share trade to settle. The actual dividend payment can be days away from the record date. We can

now define the future price of S maturing at time T , arguing by replication. Buying n shares of stock equals to an

investment of nSt zero-coupon bonds at time t. We will have the stock which will give us dividends. Reinvesting all

proportional dividends leads to a long position of

n exp

 ∑
k:t<τk≤T

dk

 (2.4)

at time T . Reinvesting d leads to a cash dividend payment at time τk of

nαk exp

 ∑
j:t<τj≤τk

dj

 ,

which we use to pay back the debt obtained from buying the stocks. Then, at maturity T , we are short

nSt exp

(∫ T

t

rudu

)
− n

∑
k:t<τk≤T

αk exp

 ∑
j:t<τj≤τk

dj

 exp

(∫ T

τk

rudu

)

zero-coupon bonds. In (2.4) we see that in order to reproduce exactly one share, we should buy n = e
−

P
k:t<τk≤T

dk

shares of stock at time t, whence the future price F should be

Ft(T ) = St exp

∫ T

t

rudu−
∑

k:t<τk≤T

dk

− ∑
k:t<τk≤T

αk exp

∫ T

τk

rudu−
∑

j:τk<τj≤T

dj

 .

Following Buehler [Bue09], define

Rt(T ) := exp

∫ T

t

rudu−
∑

k:t<τk≤T

dk

 .

and so the future price becomes

Ft(T ) = Rt(T )

St − ∑
k:t<τk≤T

αk
R(t, τk)

 . (2.5)

Note that the future price has to be non-negative, since the stock price can’t become negative. This means that

St ≥
∑

k:t<τk≤T

αk
Rt(τk)

.

Since this holds for all T , the stock is bounded from below by a ”discounted growth-rate”, meaning that

St ≥ At,

At :=
∑
k:τk>t

αk
Rt(τk)

.

This lower bound indeed makes sense, as all dividends are tradable assets via e.g. dividend swaps and zero

strike calls; the stock should at least exceed their discounted value. This conflicts with the BS framework, in which

the SDE (1.1) models a share price that can come arbitrary close to zero with positive probability. Turning to an

9



alternative process X that does not suffer from this drawback, we know it needs to allow for the existence of a

pricing measure P∗ ∼ P, such that X is a local martingale to exclude dynamic arbitrage. Buehler proves that the

only consistent way to model a local martingale representing the ”true-part” Xt = Ft −At of the stock price, while

ensuring the future price F is priced correctly, is by

St = F0(t)Xt +At, (2.6)

F0(t) :=

(
S0 −

∞∑
k=1

αk
R0(τk)

)
R0(t), (2.7)

where Xt is thus a non-negative local martingale ”pure” stock price process with X0 = 1. The main advantage of

switching to such a pure process is that X is now purely exposed to volatility and not to external equity influencing

factors such as interest rates and dividends, which will take away some of the problems we encounter using

local volatility as a code-book for our call prices later on. Buehler in fact takes into account repo rates and most

importantly credit risk. The former represents the rate earned on lending out money with stock as collateral and

the latter represents the exposure to risk that the counterparty does not pay back its liabilities. Both can be taken

out of the original stock price process. Buehler therefore focuses on the forward price, rather than the future price.

The future is an exchange traded contract and so a clearing house takes care of the credit risk. The forward is an

over-the-counter (OTC) contract, mutually agreed between two parties. Since this is done off-exchange, credit risk

becomes an important factor in the price F .

Put-call parity revised

The second fundamental theorem of asset pricing guarantees the existence of a unique pricing measure P∗ in a

complete market. The price C of a contingent claim H is then given by the discounted expected value of the payoff

taken under P∗, i.e.

Ct(St, T, ·) := Bt(T ) · E∗
[
H(ST )

∣∣Ft],
Bt(T ) := exp

(
−
∫ T

t

rudu

)
,

where we have used E∗ := EP∗ to distinguish expectations taken under P as opposed to P∗. B can be seen as the

price of a zero-coupon bond paying one unit of cash at maturity T . Buhler’s affine transformation of the stock price

(2.6) makes it possible to express call prices on S expressed in prices on X. Let C̃t, Ct denote call prices on S

respectively X, then

C̃t(St,K, T, ·) := Bt(T ) · E∗
[
(ST −K)+|Ft

]
(2.6)
= Bt(T ) · Ft(T ) · E∗

[(
XT −

K −AT
Ft(T )

)+ ∣∣∣∣ Ft
]

(2.8)

= Bt(T ) · Ft(T ) · Ct
(
Xt,

K −AT
Ft(T )

, T

)
.

For put options we can use the same arguments to get

P̃t(St,K, T, ·) = Bt(T ) · Ft(T ) · Pt
(
Xt,

K −AT
Ft(T )

, T

)
.

Recall the put-call parity

C̃t(St,K, T, ·)− P̃t(St,K, T, ·) = Bt(T )(Ft(T )−K),

Ct(Xt,K, T )− Pt(Xt,K, T ) = Xt −K.
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2.3 Local volatility

Dupire [Dup94] approached the call price surface by means of local volatility, assuming the availability of a con-

tinuum of European option prices C(T,K). His idea was to find a function σ : R2
≥0 7→ R≥0 such that a solution

to
dXt

Xt
= σt(Xt)dWt

exists, is unique and has the martingale property. The price of a call option on X with strike K and maturity T can

be expressed as

Ct(Xt,K, T ) = E∗
[
(XT −K)+|Ft

]
=
∫

R
(x−K)+fT (x)dx =

∫ ∞
K

(x−K)fT (x)dx,

where fT denotes density of XT under P∗, i.e. fT is the risk-neutral density of XT . The risk-neutral density can be

deduced from market data via

∂KCt = −
∫ ∞
K

fT (x)dx, (2.9)

∂KKCt = fT (K), (2.10)

where (2.10) holds under the assumption that limx→∞ fT (x) = 0. Dupire noted that there is a unique diffusion

process satisfying the equation

∂T fT (x) =
1
2
∂xx[x2σ2fT (x)], (2.11)

In this equation fT is known and the volatility coefficient σ is unknown. Note that Dupire solved the inverse of the

Fokker-Planck equation, in which σ is known and fT to be found. We can now use Dupire’s equation to get

∂TCt =
∫ ∞
K

(x−K)∂T fT (x)dx
(2.11)

=
1
2

∫ ∞
K

(x−K)∂xx[x2σ2fT (x)]dx.

Assuming limx→∞ ∂x[σ2x2fT (x)] = 0, integration by parts gives

∂TCt =
1
2

[∫ ∞
K

(x−K)∂x[x2σ2fT (x)]dx
]x=∞
x=K

− 1
2

∫ ∞
K

∂x[x2σ2fT (x)]dx

= −1
2

∫ ∞
K

∂x[x2σ2fT (x)]dx

=
1
2
σ2K2fT (K)

(2.10)
=

1
2
σ2K2∂KKCt,

with σ = σt(Xt,K, T ). By absence of static arbitrage, both sides are positive. By isolating σ, we can thus write

σt(Xt,K, T ) =

√
2
K2

∂TCt(Xt,K, T )
∂KKCt(Xt,K, T )

. (2.12)

We can now see the main advantage of using pure process X. If we had sticked to modeling call options on S

instead, dividends would have caused problems. A high dividend yield compared to low interest rates, especially

on low strikes, and cash dividends can make the time derivative of a call option become negative. A call option

maturing before dividend payments will usually have a higher expected payoff than call options maturing straight

after. Dupire derived the local volatility (2.12) in [Dup96] by taking the square root of the risk-neutral expectation of

the instantaneous variance v conditioned on the final stock price ST equal to the strike, i.e.

σ2
t (Xt,K, T ) = E∗[vT |XT = K].
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2.4 Static arbitrage

As mentioned in the introduction, the call price surface is subject to constraints to exclude static arbitrage. These

conditions are given by

(i) increasing in T ,

(ii) nonincreasing and convex in K,

(iii) converge to Xt as K → 0 and to 0 as K →∞.

To see this, we first look at (i). Assume that at time t we observe Ct(K,T1) ≥ Ct(K,T2) on some strike K and

expiry dates t < T1 < T2. We will see that this leads to an arbitrage opportunity via portfolio Vt, constructed

by shorting call Ct(K,T1) and buying call Ct(K,T2). Note that this portfolio gives us an initial non-negative cash

amount already. Then, at t = T1, our portfolio is worth

VT1 = CT1(K,T2)− (XT1 −K)+ =

CT1(K,T2), XT1 ≤ K

CT1(K,T2)− (XT1 −K), XT1 > K.
(2.13)

In both cases we end up with a non-negative profit. In the first case we can sell the call maturing at T2 or hold it

until T2 for a possible profit. In the second case, using that X is independent of interest rates and dividends, the

value our portfolio at T1 equals to the price of a put maturing at T2 by put-call parity. We can lock in this profit by

selling the put or holding the put until T2 for a possible profit.

Looking at (ii), assuming that the call price is decreasing or not convex in K, we can construct a portfolio Vt called

a butterfly spread. A butterfly spread consists of buying two calls with respective strike K−ε and K+ε and shorting

two call options with K, all with the same maturity T . At t = T this portfolio has payoff

VT = CT (K − ε, T )− 2CT (K,T ) + CT (K + ε, T ) = |XT −K|1{|XT−K|<ε} ≥ 0

For (iii), K → ∞ is trivial and for K → 0 we note that a call on K = 0 is like buying a call on the future price, i.e.

the only fair price for this contract is given by

Ct(K = 0, T ) = E∗
[
(XT )+|Ft

]
= 1.

Remark 2.1.
In presence of interest rates and dividends the stock S doesn’t converge to St as K → 0. Using (2.5), we see that

Ct(K = 0, T ) = Bt(T ) · E∗
[
(ST )+|Ft

]
= Bt(T ) · Ft(T )

(2.5)
= Bt(T ) ·Rt(T )

St − ∑
k:t<τk≤T

αk
Rt(τk)


= exp

− ∑
k:t<τk≤T

dk

St − ∑
k:t<τk≤T

αk
Rt(τk)


6= St.

As K goes to zero, the call price converges to the discounted future price. This argument will also show us that

the surface doesn’t have to be increasing in T . Consider two calls maturing at T1 and T2 such that T1 < τk < T2
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for dividend date τk. For ease of notation, assume there are no cash dividends. Provided that∫ T2

T1

rudu <
∑

k:T1<τk≤T2

dk,

we get

Ft(T1) = St exp
(∫ T1

t

rudu−
∑

k:t<τk≤T1

dk

)

> St exp
(∫ T2

t

rudu−
∑

k:t<τk≤T2

dk

)
= Ft(T2).

By the argument for K → 0 above, we see that there is a strike K sufficiently small to guarantee that the call price

is not increasing in T for strikes smaller or equal to that K.

From now on we let the options on X be defined on the grid K = {K0, . . . ,KN+1} × T = {T0, . . . , TM}, where

0 = K0 < K1 < . . . < KN < KN+1 <∞ and 0 = T0 < T1 < . . . < TM <∞. Write

Cmn (t) := Ct(Kn, Tm), n = 0, . . . , N + 1, m = 1, . . . ,M.

A statically arbitrage free surface can be characterized via Davis & Hobson [Dav07].

Definition 2.1.
An option model (Cmn )n=0,...,N+1,m=1,...,M is called free of static arbitrage if we have P-a.s.

−1 ≤
Cmn (t)− Cmn−1(t)
Kn −Kn−1

≤
Cmn+1(t)− Cmn (t)
Kn+1 −Kn

≤ 0, n = 1, . . . , N, (2.14)

for all t ∈ [0, Tm), m = 1, . . . ,M ,

Cm−1
n (t) ≤ Cmn (t), n = 1, . . . , N, (2.15)

for all t ∈ [0, Tm−1], m = 2, . . . ,M and
lim
K→0

Cmn (t) = Xt,

lim
K→∞

Cmn (t) = 0,
(2.16)

for all t ∈ [0, Tm], m = 1, . . . ,M .

Moreover, the model is called admissible if strict inequalities hold in (2.14) for all t ∈ [0, Tm), m = 1, . . . ,M and in

(2.15) for all t ∈ [0, Tm−1], m = 2, . . . ,M .

In order for an option model to be admissible for m = 1, . . . ,M , we want the price surface to be strictly convex on

K0, . . . ,Kn+1. To this end, we have to make the assume for every m that

P∗
[ ∫ Kn

Kn−1

fTm(x)dx > 0
∣∣∣∣Ft] > 0,

for all t ∈ [0, Tm) and n = 1, . . . , N + 1. For every set of strikes such that Kn−1 < Kn we then get

0 <
∫ ∞
Kn

fTm(x)dx <
∫ ∞
Kn−1

fTm(x)dx < 1

By (2.9), this is equivalent to

−1 < ∂KC
m
n−1(t) < ∂KC

m
n (t) < 0,

13



giving us strict inequalities in (2.14). By similar reasoning we have to assume that P∗
[
fT (·) > 0

∣∣∣∣Ft] as a function

of T

∂TC
m
n (t) = ∂T

∫ ∞
Kn

(XT −K)+fTm(x)dx

2.5 Static hedging

The great advantage of modeling an underlying with its options is the extended hedging strategies. The term static

hedging means the replication of future liability by taking a position in the underlying, futures and options at only

one trading time t. This is opposed to semi-static hedging and continuous hedging strategies, where it is allowed

to rebalance your trading books a finite number of times respectively continuously. Note that in practise continuous

hedging becomes semi-static hedging, since we can’t trade on a continuous base.

Most European option payoffs have a convex payoff function H : R>0 7→ R>0. Let x, k ∈ R>0. Following Carr

[Car02], we can write

H(x) = H(k) + 1x>k

∫ x

k

H ′(z)dz − 1x<k

∫ k

x

H ′(z)dz

= H(k) + 1x>k

∫ x

k

(
H ′(k) +

∫ z

k

H ′′(u)du
)
dz − 1x<k

∫ k

x

(
H ′(k)−

∫ k

z

H ′′(u)du

)
dz

= H(k) +H ′(k)(x− k) + 1x>k

∫ x

k

∫ z

k

H ′′(u)dudz + 1x<k

∫ k

x

∫ k

z

H ′′(u)dudz

By Fubini’s theorem we get

H(x) = H(k) +H ′(k)(x− k) + 1x>k

∫ x

k

∫ x

u

H ′′(u)dzdu+ 1x<k

∫ k

x

∫ u

x

H ′′(u)dzdu

Working out the inner integral yields

H(x) = H(k) +H ′(k)(x− k) + 1x>k

∫ x

k

H ′′(u)(x− u)du+ 1x<k

∫ k

x

H ′′(u)(u− x)du

= H(k) +H ′(k)(x− k) +
∫ ∞
k

H ′′(u)(x− u)+du+
∫ k

0

H ′′(u)(u− x)+du.

Taking discounted risk-neutral expectations on both sides together then yields the value of H with maturity T and

strike K

Bt(T ) · E∗[H(ST )|Ft] = Bt(T )H(K) +H ′(K)(Ct(T,K)− Pt(T,K)) +
∫ K

0

H ′′(u)Pt(T, u)du+
∫ ∞
K

H ′′(u)Ct(T, u)du.

Since the choice of strike K is arbitrary, we can set it equal to the future. By put-call parity the second term then

vanishes and so

E∗[H(ST )|Ft] = H
(
Ft(T )

)
+ exp

(∫ T

t

rudu

)
·
(∫ Ft(T )

0

H ′′(u)Pt(T, u)du+
∫ ∞
Ft(T )

H ′′(u)Ct(T, u)du
)
. (2.17)

We now see that any convex payoff can be perfectly hedged by investing in Bt(T )H
(
Ft(T )

)
bonds and a continuum

of out of the money calls and puts expiring at maturity T . In practice we clearly get an approximation, as there is

no possibility to trade a continuum of these option contracts. Applications of this static hedging strategy include

the the log contract which we will use to replicate contracts on realized variance. A static hedging strategy is

model-independent and replicates the payoff H, hence there is no risk in selling these contracts when sold for the

price of the hedging strategy.
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3 Model setup

Since the parameterization of implied volatilities does not serve the market model approach very well, we pursue

the approach of Wissel [Wis08], who used a discretized version of the local implied volatilities (2.12) joined with a

parameterization by him and Schweizer in [Sch08a] for the case K = (0,∞), T = {T}. The latter parameterization

will be applied to the option prices on the closest maturity Tl, where l := min{m : t < Tm}. We extend his approach

mathematically by making it more more realistic and implementation friendly. We will explicitly rely on the affine

transformation (2.6), which allows the model to incorporate (possibly stochastic) interest rates and dividends. After

introducing the parameterization we specify a term structure for these quantities subject to drift restrictions to

exclude dynamic arbitrage.

3.1 Parameterization

Our aim is to model the call option price processes

(Cmn (t))t∈[0,Tm] := (Ct(Kn, Tm))t∈[0,Tm],

with n = 0, . . . , N + 1 and m = 1, . . . ,M . To have all price processes defined on [0, TM ], we let Cmn (t) = Cmn (Tm)

for all t ≥ Tm. We include the stock price process by letting Cm0 (t) := Xt for all t ≤ Tm. Finally, we take KN+1 such

that CmN+1(t) = 0 for all t ∈ [0, TM ] and m ∈ {1, . . . ,M}, i.e. we have

Xt < KN+1 ∀t ∈ [0, TM ], P-a.s..

Note that we have taken care of the limits K → 0 and K → ∞ in Definition 2.1 by including K0 = 0 and choosing

KN+1 sufficiently high.

We can now define the price level and local implied volatilities, serving as the building blocks of our model. We

stretch Definition 5.3 in [Wis08] to a free-to-choose reference strike by using [Sch08a].

Definition 3.1.
Let the option model (Cmn )n=0,...,N+1, m=1,...,M be admissible. For each l = 1, . . . ,M we define for t ∈ [Tl−1, Tl)

and ”reference strike” Kn∗ ∈ K the price level y by

y(t) :=
√
Tl − tΦ−1

(
Cln∗(t)− Cln∗+1(t)
Kn∗+1 −Kn∗

)
(3.1)

and the local implied volatilities (xmn )n=1,...,N for m ≥ l by

xln(t) :=
Kn+1 −Kn

Kn

√
Tl − t

/(
Φ−1

(
Cln−1(t)− Cln(t)
Kn −Kn−1

)
− Φ−1

(
Cln(t)− Cln+1(t)
Kn+1 −Kn

))
, (3.2)

xmn (t) :=

√
2
K2
n

Cmn (t)− Cm−1
n (t)

Tm − Tm−1

/
(Kn −Kn−1)Cmn+1(t)− (Kn+1 −Kn−1)Cmn (t) + (Kn+1 −Kn)Cmn−1(t)

(Kn+1 −Kn)(Kn −Kn−1)(Kn+1 −Kn−1)/2
, (3.3)

for m > l. So y is a process on [0, TM ) and each xmn a process on [0, Tm).

Definition 3.1 invokes the price level y ∈ R and local implied volatilities x ∈ R>0, which are well-defined as long as

the option model is admissible. The price level y and local implied volatilities xln are the discretized analogue of
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Figure 3.1: Price level calculated daily with Tl = 3/12 for different reference strikes Kn∗ .

the price level and local implied volatility in [Sch08a], where the parameterizations are given as

xln(t) =
φ
(
Φ−1

(
− ∂KCln(t)

))
√
Tl − t Kn∂KKCln(t)

, (3.4)

y(t) =
√
Tl − t Φ−1

(
− ∂KCln∗(t)

)
, (3.5)

with φ = Φ′. Using the BS pricing function (1.1) to find the derivatives

∂KC
BS
t = −Φ(d−),

∂KKC
BS
t =

φ(d−)
Kσ
√
T − t

,

we can rewrite (3.4) and (3.5) to

xln(t) = σ,

y(t) =
√
T − t d− = σ−1 log(Xt/Kn∗)− τσ/2. (3.6)

We have the freedom to choose any reference strike Kn∗ ∈ K. Note that y is a direct parameterization of the skew

of the call price ClN∗ via the first derivative of the call price with respect to the strike. By modeling y we in fact

model the call price skew around the reference strike Kn∗ . It is interesting to see how y reveals information on the

call price surface of Tl.

In the summer of 2011 equity markets crashed and consequently short term implied volatilities increased tremen-

dously. High volatility means high call prices, lowering the convexity of the price with respect to the strike. Thinking

of the option’s extrinsic value, i.e. Ct − (Xt − Kn∗)+, should increase massively for Kn∗ close to at-the-money

(Kn∗=1.00). Consequently the derivatives ∂KCln for Kn away from at-the-money (ATM) change: it decreases for

OTM strikes and increases for ITM strikes. This effect can be seen in Figure 3.1. We see that the quantities stay

relatively stable around ATM compared to the more extreme strikes. This effect is worse for Tl = 1/12.

The path taken by the price level reveals valuable information as well. Observe in Figure 3.2, where we can see

the dynamics of the price level for different reference strikes with Tl (a) reset every month to one month and (b)

reset every three months to three months. We see that the empirical behavior is identical to what we expect from

the BS framework. Taking (b) in particular we see that the second term in (3.6) adds up to decreasing price levels

in the third quarter: as the market goes down, negative implied volatilities go down as well. The higher the strike,
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(b) Tl = 3/12

Figure 3.2: Price level for different reference strikes Kn∗ with Tl resetting every (a) 1 month and (b) 3 months.
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(b) Kn∗ = 1.20

Figure 3.3: Price level with Tl = 3/12 compared to the S&P500 Index reset every quarter for different reference

strikes Kn∗ .

the less pronounced the effect due to the decreasing convexity discussed above. Interesting is the convergence to

zero close Tl that takes place, as this is what (3.6) suggests.

From (3.6) the X term and negative implied volatility we expect to see a strong correlation between the price

level and the S&P500 Index. Figure 3.3 shows that this is indeed the case, where the effect is stronger in (a) for

Kn∗ = 1.00. For an ATM reference strike the quantity is close to zero already and so the convergence to zero has

less influence, increasing the correlation.

The local implied volatility xmn for m > l in (3.3) are obtained via the discretization of the derivatives

∂TCt =
Cmn (t)− Cm−1

n (t)
Tm − Tm−1

,

∂KKCt =
(
Cmn+1(t)− Cmn (t)
Kn+1 −Kn

−
Cmn (t)− Cmn−1(t)
Kn −Kn−1

)/(
Kn+1 −Kn

2
− Kn +Kn−1

2

)
.

In Figure 3.4 we see that local implied volatilities show similar features compared to implied volatilities. This is

expected for xl, but also holds for (xm1 , . . . , x
m
N ) with m = l+ 1, . . . ,M . (a) shows the monthly paths of local implied

volatility going from Tl = 1/12 to Tl = 0. We know that implied volatility blows up and is more volatile close to
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maturity, exactly what we observe here as well. (b) shows the monthly path of the local implied volatility going from

Tm = 6/12 to Tm = 5/12. These paths are not influenced by problems close to maturity, but more by the overall

level of the local volatility surface. It is therefore not surprising that it is less volatile and shows strong negative

correlation with the underlying. The reason why x has a different parameterization for Tl and Tm with m > l is

because the model will now allow for constant local implied volatility dynamics which we will consider in section 5.1.

We will specify dynamics for call prices parameterized in x and y. Therefore, we need the map

(x, y) : {admissible (Cmn )n=0,...,N,m=l,...,M on [Tl−1, Tl)}

7→ {positive (Xm
n )n=1,...,N,m=1,...,M on [Tl−1, Tl)} × {real-valued y on [Tl−1, Tl)}

to be a bijection for each l ∈ {1, . . . ,M}. Wissel shows this by defining

ζmn :=
Kn+1 −Kn

Kn+1 −Kn−1

K2
n(Tm − Tm−1)

(Kn+1 −Kn)(Kn −Kn−1)
,

ηmn :=
Kn −Kn−1

Kn+1 −Kn−1

K2
n(Tm − Tm−1)

(Kn+1 −Kn)(Kn −Kn−1)
,

χmn := (xmn )2,

for every m = 2, . . . ,M and n = 1, . . . , N . Let IN be the N -dimensional identity matrix. The tridiagonal (N × N)

matrices

Am := IN +



χm1 (ζm1 + ηm1 ) −χm1 ηm1
−χm2 ζm2 χm2 (ζm2 + ηm2 ) −χm2 ηm2

. . . . . . . . .

−χmN−1ζ
m
N−1 χmN−1(ζmN−1 + ηmN−1) −χmN−1η

m
N−1

−χmNζmN χmN (ζmN + ηmN )


, (3.7)

for m = 2, . . . ,M . Am are shown to be invertible with all entries in the A−1
m strictly positive. Let Cm denote the

column vector (Cm1 , . . . , C
m
N ) and e the unit column vector (1, 0, . . . , 0) ∈ RN . The following theorem captures the

bijection and gives an explicit inverse to translate the code-book to option prices. The theorem consists of Theorem

5.4 in [Wis08] for an arbitrary reference strike by using [Sch08a].

Theorem 3.1.

(i) Let (xmn )n=1,...,N,m=1,...,M be local implied volatities and y the price level of an admissible option price model.

Then for each l = 1, . . . ,M the option prices Cmn (t),m = l, . . . ,M , for t ∈ [Tl−1, Tl) are given by

Cln(t) =
n∑

j=n∗

Φ

(
y(t) +

∑j+1
i=n∗ (Ki+1 −Ki)

/(
Ki x

l
i(t)
)

√
Tl − t

)
· (Kj+1 −Kj), n = 0, . . . , N,

Cm(t) = A−1
m (t)(Cm−1(t) +Xtχ

m
1 (t)ζm1 e), m = l + 1, . . . ,M.

(3.8)

(ii) Conversely, for positive processes xmn on [0, Tm) with n = 1, . . . , N and m = 1, . . . ,M and a real-valued

process y on [0, TM ), define for each l = 1, . . . ,M option prices Cmn (t), m = l, . . . ,M for t ∈ [Tl−1, Tl) and

all n recursively via (3.8). For l = 1, . . . ,M − 1, set Cln(Tl) := (XTm − Kn)+ for all n. Then the model

(Cmn )n=0,...,N,m=1,...,M is an admissible option price model with local implied volatilities xmn and price level y.
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Figure 3.4: Local implied volatility compared to the S&P500 Index reset every month for Kn = 1.00 and different

Tm.

The summation in here and in the following theorems sum up negative terms when number to which we sum

stands below the reference strike. This theorem shows the convenience of choosing local implied volatility and

price level as a code-book. The option model can be admissible without constraining the code-book state space,

which is (0,∞)N(M−l+1) × R for t ∈ [Tl−1, Tl). This stands in contrast to the implied volatility approaches, where

the state space of implied volatility σmn generally depends on strike, maturity, interest rates and dividends.

3.2 Absence of dynamic arbitrage

Having defined a bijection between the code-book and call prices, we are ready to specify dynamics for the code-

book in terms of SDEs. We change notation of a Brownian motion from Wt to W (t) to keep the notation for all

stochastic processes consistent. We specify the dynamics according to

dxmn (t)
xmn (t)

= umn (t)dt+ vmn (t)dW (t), m = 1, . . . ,M, n = 1, . . . , N, (3.9)

dy(t) = µ(t)dt+ ξ(t)dW (t), (3.10)

with umn , µ ∈ L1
loc(R) and vmn , ξ ∈ L2

loc(RD). The vector xm := (xm1 , . . . , x
m
N ) is expected to make jumps and possibly

change of dynamics going from t ∈ [0, Tm−1) to t ∈ [Tm−1, Tm) due to the different parameterization, whereas y

jumps every maturity Tl.

Define for each l = 1, . . . ,M the processes λmn = (λmn (t))t∈[Tl−1,Tl) ∈ L2
loc(RD), where m = l, . . . ,M and n =

0, . . . , N , according to

λln(t) :=
N∑
j=n

φ

y(t) +
∑j+1
i=n∗

Ki+1−Ki
Kixli(t)√

Tl − t

 1√
Tl − t

(
ξ(t)−

j+1∑
i=n∗

Ki+1 −Ki

Kixli(t)
vli(t)

)
(Kj+1 −Kj). (3.11)

Recursively for m > l, define λm0 (t) := λm−1
0 (t) and

λmn (t) := A−1
n,1(t)ζm1 χ

m
1 (t)λm−1

0 (t) +
N∑
j=1

A−1
n,j(t)

(
λm−1
j (t) + 2vmj (t)

(
Cmj (t)− Cm−1

j (t)
))
. (3.12)

Wissel proves that the model is free of dynamic arbitrage, i.e. a pricing measure P∗ on F exists, if and only if
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� a market price of risk process b ∈ L2
loc(RD) exists such that

dP∗

dP
= E

(∫ TM

0

b(t)dW (t)

)
,

where E denotes the Doléans-Dade exponential defined in section 2.1,

� the drift coefficients µ and u satisfy P∗-a.s.

µ(t) =
1
2
y(t)
Tl − t

(
|ξ(t)|2 − 1

)
, (3.13)

uln(t) = |vln(t)|2 +
1

Tl − t

[
1
2
− 1

2

∣∣∣∣ξ(t)− n∑
i=n∗

Ki+1 −Ki

Kixli(t)
vli(t)

∣∣∣∣2(
y(t) +

n+1∑
i=n∗

Ki+1 −Ki

Kixli(t)

)(
ξ(t)− 1

2
Kn+1 −Kn

Kn xln(t)
vln(t)−

n+1∑
i=n∗

Ki+1 −Ki

Ki xli(t)
vli(t)

)
vln(t)

]
, (3.14)

umn (t) =
(
− λmn (t)− λm−1

n (t)
Cmn (t)− Cm−1

n (t)
+

3
2
vmn (t)

)
vmn (t), m > l, (3.15)

for every t ∈ [Tl−1, Tl) and each l = 1, . . . ,M ,

� the processes Cmn (·) are P∗-a.s. continuous at each Tl for each n = 0, . . . , N and m = 1, . . . ,M .

Wissel shows that consequently that the risk-neutral dynamics of the stock and option prices are given by

dCmn (t) = λmn (t)dW ∗(t),

for every t ∈ [0, Tm) and each n = 0, . . . , N and m = 1, . . . ,M , where W ∗ denotes a D-dimensional Brownian

motion under risk-neutral measure P∗. Girsanov’s theorem tells us that W ∗(t) = W (t) −
∫ t
0
b(t)dt, and thus the

real-world dynamics can be modeled by additionally specifying a market price of risk process b(t). The theorem

consists of Theorem 5.11 in [Wis08] for an arbitrary reference strike by using [Sch08a] and tells us the restrictions

that the Gaussian parameter have to adhere to in order for the SDEs to have a unique solution.

Theorem 3.2.
Fix l ∈ {1, . . . ,M}. Suppose that ξ is locally Lipschitz in y, that for each m = l, . . . ,M the functions vmn are locally

Lipschitz in xm and that ∣∣|ξ(t, y)|2 − 1
∣∣ ≤M1(Tl − t), (3.16)∣∣vln(t, y, xl)
∣∣ ≤ M2(Tl − t) xln

(
1 +

∣∣∣∣y +
n+1∑
i=n∗

Ki+1 −Ki

Kixli

∣∣∣∣)−1

(3.17)

∣∣vl+1
n (t, y, xl, xl+1)

∣∣ ≤M3

∣∣∣∣Cl+1
n (t, y, xl, xl+1)− Cln(t, y, xl)
λl+1
n (t, y, xl, xl+1)− λln(t, y, xl)

∣∣∣∣ (3.18)

for t ∈ [Tl−1, Tl]. Then for any FTl−1 -measurable initial condition of positive random variables xmn (Tl−1) and real-

valued y(Tl−1), the SDEs (3.9) and (3.10) with inverses (3.8) and drift coefficients (3.11)-(3.15) have a unique

solution on the closed interval [Tl−1, Tl] consisting of positive processes xmn , n = 1, . . . , N , m = l, . . . ,M and a

real-valued process y.
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3.3 Examples

With Theorem 3.2 we have an explicit existence result of the option model (Cmn ). With the assumptions in this

theorem we are able to give explicit examples of the model in terms of the input parameters volatilities of the local

implied volatility vmn and price level volatility ξ. We start with generalizing to functions that satisfy the conditions

(3.16) -(3.18). To this extent we write the price level’s volatility function as

ξ(t, y) = (1 + (Tl − t)g(t, y), 0, . . . , 0) ∈ RD, (3.19)

where g is bounded and locally Lipschitz continuous. The vertical translation of size 1 comes in to avoid problems

where t ≈ Tl in (3.16). If we let g include a factor T−1
l we can control the influence of ξ over the interval [Tl−1, Tl).

Note that we can assume this form of ξ without loss of generality, since Brownian motions are invariant under

orthogonal transformations. Generalize the volvols by invoking a function V depending on time to maturity and

moneyness by defining for each l = 1, . . . ,M

vln(t, y, xl) = V

(
Tl − t,

Kn

S(t, y, xl)

)
xln

1 + xln
ηln,

vl+1
n (t, y, xl, xl+1) = V

(
Tl+1 − t,

Kn

S(t, y, xl)

)
ηl+1
n ,

vmn (t, y, xl, . . . , xm) = V

(
Tm − t,

Kn

S(t, y, xl)

)
ηmn for m > l + 1,

where

ηmn :=



(
1 +

∣∣∣∣y +
∑N
i=n+1

Ki+1−Ki
Ki xli

∣∣∣∣)−1

for m = l,∣∣∣∣Cl+1
n (t,y,xl,xl+1)−Cln(t,y,xl)

λl+1
n (t,y,xl,xl+1)−λln(t,y,xl)

∣∣∣∣ for m = l + 1,

1 for m > l + 1.

(3.20)

The invoked fraction xln
1+xln

in vln turns out to be convenient for calibration later on. Note that we need V to be

linearly decreasing in time to maturity and bounded by M2 ∧M3.
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4 Implementation

We will look at the problems encountered during implementation of this model. We start with discussing the data

after which we show how we can make the local implied volatilities numerically well-defined. Having them well-

defined, we can then look at the way to simulate SDEs.

4.1 Data

The data we will take in consideration for calibration regards the call option prices on the S&P500 Index. This

index consists out of 500 shares from a wide range of industries in the U.S. such as energy, financial services and

information technology, capturing around 75% of the total U.S. traded equity. The index level is a capitalization-

weighted average of the stocks, meaning that the stocks are weighted according to the total market value of the

outstanding tradable shares. We will consider the call option prices given over the year 2011. On every date we

have quotes on around 12 different maturities reaching from days to 2 years, each with a large number of different

strikes. Note that the quotes are observed as implied volatilities σ̂mn rather than actual call prices Ĉmn . Additionally,

we have the S&P500 estimated dividend yield d p.a. and annualized interest rate r for different maturities. We

apply a cubic spline to get the full yield curve.

Note that in the case of an index all cash dividend αk = 0, since an index is assumed to have a dividend yield

rather than cash dividends. This directly gives AT = 0 and we include the dividend yield dk by assuming that

proportional dividend is paid continuously, such that the future price (2.7) becomes

Ft(T ) := St ·Rt(T ) = St exp
(∫ T

t

ru − du du
)
.

4.2 Arbitrage-free smoothing of the price surface

Definition 3.1 shows that the local implied volatility is depending on quotes on previous maturities and adjacent

strikes. Let Km be the set of strikes having quotes for maturity Tm. The local implied volatilities x will be well-

defined as long as the K1 ⊇ . . . ⊇ KM . Market data is usually sparse on the strike-maturity grid and does not show

the inclusions of the Km. In fact, market data tends to have the opposite structure: for large maturities the quotes

will be on a wide range of strikes, whereas close maturities have quotes on strikes close to at-the-money. Usually

these strikes overlap with the strikes of the larger maturities. We will have to interpolate or smooth the discrete

market price data such that surface remains free of static arbitrage. Estimating the implied volatility surface is

not straight forward, e.g. simple interpolation or smoothing of the implied volatility quotes does not respect the

constraints of static arbitrage. The estimation does not only depend on the implied volatility, but also interest

rate and dividends. It is therefore more convenient to estimate in the call price space, in which absence of static

arbitrage translates into a clear set of constraints as in Definition 2.1. Two significant papers by Kahalé [Kah04] and

Fengler [Fen09] tackle the estimation in the price surface respecting continuity of the first and second derivative

to K, easing the use of local volatility. Both methods generate a continuous second derivative of the call price

with respect to the strike, on which local volatility highly depends. Both methods are implementation friendly and

computationally light. We choose to pursue Fengler’s approach for two reasons. First, a butterfly spread on an

equidistant strike grid will have a non-negative payoff. Since we have to choose KN+1 sufficiently high to assure

CmN+1 = 0 P-a.s., the butterfly spread

CmN−1 − 2CmN + CmN+1
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Figure 4.1: Linearly interpolated call option prices on 18− 02− 11

is likely to entail a negative payoff at t = Tm with a maximum of
∣∣KN+1 − |KN −KN−1|

∣∣ for some m ∈ {1, . . . ,M},
resulting in xmN ∈ C. In Fengler’s method we can make sure this spread is priced positive.

Secondly, the input data doesn’t need to be free of static arbitrage, since the employed method is based on smooth-

ing rather than on interpolation. This is very convenient, as arbitrage is observed frequently (in particular) for close

maturities. In Figure 4.1 we translated the observed quotes σ̂mn to Ĉmn on February 18th of 2011, interpolating

linearly between the quoted prices. The figure shows clear violations of the arbitrage constraints: The option with

29 days left to maturity becomes increasing for high moneyness and the option prices with 57 and 92 days left to

maturity are not convex in the strike and are not increasing in maturity. Although these violations are outnumbered

by transaction costs in practice, they will ruin the local implied volatilities on the arbitrage-infected maturity and all

maturities thereafter.

To explain the algorithm, we start with defining a cubic spline.

Definition 4.1.
Let C(k) denote the call price for strike k for some arbitrary maturity T . We call C a cubic spline if it is a cubic poly-

nomial on every subinterval (K0,K1), . . . , (KN ,KN+1) and C ∈ C2([K0,KN+1]), the class of twice differentiable

functions. C thus admits the following representation

C(k) :=
N∑
n=0

1{[Kn,Kn+1)}sn(k),

sn(k) := dn(k − kn)3 + cn(u− un)2 + bn(u− un) + an, (4.1)

for given constants an, bn, cn, dn.

Moreover, C is called a natural cubic spline if in addition the second order derivatives in the first and last subinterval

are zero, i.e.

c0 = d0 = cN = dN = 0

For any fixed maturity Tm with m = 1, . . . ,M , denote Cmn := C(Kn) and γn := ∂kkC
m
n for n = 1, . . . , N . Note that

γm1 = γmN = 0 for all m by definition of the natural cubic spline. Furthermore, let

C := (Cm1 , . . . , C
m
N )T ,

γ := (γm2 , . . . , γ
m
N−1)T .
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Let hn := Kn+1 −Kn. Slightly correcting Fengler on notation, construct the N × (N − 2)-matrix Q containing only

zeros except for

Qn−1,n = h−1
n−1, Qn,n = −h−1

n−1 − h−1
n Qn+1,n = h−1

n ,

where n = 2, . . . , N − 1. Furthermore, let R be a symmetric (N − 2)× (N − 2)-matrix containing only zeros except

for

Rn,n =
1
3

(hn−1 + hn) for n = 2, . . . , N − 1,

Rn,n+1 = Rn+1,n =
1
6
hn for n = 2, . . . , N − 2.

Then define the matrices

A :=

[
Q

−RT

]
, B :=

[
IN 0

0 λR

]
.

Finally, define y := (Cm1 , . . . , C
m
N , 0, . . . , 0) as a (2N − 2)-vector with the observed call prices Cmn on strike Kn,

maturity Tm and x := (CT ,γT )T as a (2N − 2)-vector. Theorem 2.1 in Green & Silverman [Gre93] shows that x

defines a cubic spline if and only if ATx = 0. Using this result, Fengler shows that we obtain an arbitrage-free

surface by the algorithm

(i) Pre-smooth the implied volatility surface by estimation on a regular moneyness grid A = [K1, . . . ,KN ] ×
[T1, . . . , TM ].

(ii) From the last to the first maturity, iterate backwards by:

� For m = M , solve

argmin
x

1
2
xTBx− yTx,

subject to the constraints

ATx = 0 γmn ≥ 0, n = 1, . . . , N

Cm2 − Cm1 ≥ K2 −K1, CmN−1 − CmN ≥ 0,

Cm1 ≥ X0 −K1, CmN ≥ 0,

(∗) Cm1 ≤ X0, CmN−1 − 2CmN + CmN+1 ≥ 0.

(4.2)

� For m = M − 1, . . . , 1, solve the same scheme with constraint (∗) replaced by

Cmn < Cm+1
n , n = 1, . . . , N.

In step (i) we pre-smooth on the grid A to fill up the space with quotes. As discussed above, data is sparse in

contrast to the needed full grid for the algorithm. We take a non-parametric approach applying a Nadaraya–Watson

estimator to evaluate σ(Kn, Tm) at the grid A. The Nadaraya-Watson estimator estimates volatilities according to

σ(Kn, Tm) =
∑
i∈I σ̂(i)g(Kn −Ki, Tm − Ti)∑
i∈I g(Kn −Ki, Tm − Ti)

,

where I denotes the set of all observed implied volatilities σ̂(i) on strike Ki, maturity Ti and g : R2 7→ R the

Gaussian kernel defined as

g(x, y) :=
1

2π
exp

(
− x2

2h1

)
exp

(
− y2

2h2

)
,
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Figure 4.2: Total variance plot implied by a pre-smoothed surface.

with bandwidth parameters h1, h2. Small values of the bandwidth parameter lead to a bumpy surface in the corre-

sponding dimension and large values smooth details away. The Nadaraya-Watson estimator works as a convolu-

tion of the observed data smoothed by g. The choice of the pre-smoothing method nor the choice of the bandwidth

parameters h does not change the result with respect to our goal very much, as long as we reproduce the shape of

an implied volatility surface. Note that we are very likely to introduce arbitrage here, since the pre-smoother is not

constrained in any way. In fact, Kahalé [Kah04] argues that the BS option price is a strictly increasing function of

the total implied variance σ2(K,T )T . Absence of arbitrage becomes equivalent to the total implied variance being

increasing in T . The total variance plot of the pre-smoothed surface on A of Figure 4.2 shows heavy violations in

the problem region extreme strikes × small maturities. In algorithm (4.2) step (ii) we find the objective function to

minimize, where the minimum defines the call price curve K 7→ C(K) for a fixed maturity. As mentioned above, the

equality constraint comes from Green & Silverman in [Gre93], which state that this is a necessary and a sufficient

conditions for the C and γ to define a natural cubic spline. The non-negativity constraints of the γ’s comes from

the call price being increasing and convex with respect to the strike. The rest of the conditions also follow from

the static arbitrage constraints, where the very last condition is added to make sure the local implied volatility for

n = N is well defined.

From now on Cmn will refer to smoothed, arbitrage-free call option prices.

Pricing on arbitrary strikes

Fengler wants to smooth on a regular forward moneyness grid
[
K1
Ft(T ) , . . . ,

KN
Ft(T ) ] × [T1, . . . , TM

]
. Since X is a

martingale, the future price of Xt is simply Xt for any T and we immediately obtain prices on strikes [K1, . . . ,KN ].

Hence, in our case we do not insist on finding the coefficients in (4.1) to find option prices on k ∈ (Kn,Kn+1).

Suppose we run through the smoothing algorithm and want to find option prices with maturity Tm, m = 1, . . . ,M

and strike k ∈ [0,KN+1]\{K0, . . . ,KN+1}. This can be the case when for example it is required to switch from the

forward moneyness grid [ K1
Ft(Tm) , . . . ,

KN
Ft(Tm) ] to moneyness grid [K1, . . . ,KN ] or when prices on a large number

of strikes is needed and the algorithm only calculated the prices for a small N to save computational time. Since

C ∈ C2([K0,KN+1]), we must have

sn−1(Kn) = sn(Kn), s′n−1(Kn) = s′n(Kn), s′′n−1(Kn) = s′′n(Kn).
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For every m = 1, . . . ,M we can solve this to get

amn = Cmn ,

bmn =
Cmn+1 − Cmn

hn
− hn

6
(2γmn + γmn+1),

cmn =
1
2
γmn ,

dmn =
1

6hn
(γmn+1 − γmn ),

for n = 1, . . . , N − 1 and

a0 = a1 = Cm1 , amN = CmN ,

bm0 = bm1 , bmN =
CmN − CmN−1

hN−1
+
hN−1 γ

m
N−1

6
,

cm0 = dm0 = 0, cmN = dmN = 0,

correcting Fengler on bmN . We can now use representation (4.1) to find the call price for any desired strike k. By

put-call parity we also get arbitrage-free prices for standard European put options. Bearing this in mind, we see

that it now becomes easy to price a large class of European options such straddles, strangles, butterfly spreads

and call spreads. We can replicate their payoff by purchasing European calls and puts, i.e. a static hedge. The

price of these options strategies is thus equivalent to the price of their replicate. The payoff and replication of these

options are given below.

� Buying strangle makes the investor long volatility, since its payoff will increase as the underlying moves away

from the strike (usually chosen close to at-the-money). The payoff function is given by

H(ST ,K1,K2, T ) = (K1 − ST )+ + (ST −K2)+,

with K1 ≤ K2. The strangle is replicated by being long both a call and a put maturing at T . The special case

K1 = K2 is called a straddle.

� Buying butterfly spread makes the investor short volatility, since the maximum of the payoff takes place when

the market doesn’t move. The payoff function is given by

H(ST ,K1,K2,K3, T ) = (ST − (K1))+1ST∈[K1,K2] + ((K3)− ST )+1ST∈[K2,K3],

with K1 < K2 < K3. The butterfly spread is replicated by being long one call on K1, short two calls on K2

and long one call on K3 all maturing at T . Note that we can also replicate in terms of puts by being short one

call on K1, long two calls on K2 and short one put on K3 all maturing at T .

� Buying a call spread or capped call gives the investor upside benefits as with a normal call, but his gains are

limited by cap C. This will make the option cheaper than a normal call. The payoff function is given by

H(ST ,K, T, C) = min((ST −K)+, C),

with cap C > 0. A call spread is replicated by being long a call on strike K and short a call on strike K + C,

both maturing at T .
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4.3 Monte Carlo

Algorithm (4.2) gives us an arbitrage-free call price surface, which we can translate into local implied volatilities and

price levels. We arrive at simulation, as we need to simulate the SDEs 3.9 and 3.10 to model their dynamics through

time. The most common method for approximating SDEs is by using the Euler scheme. We start with discretizing

time in steps of size ∆t = 1/252, approximating one business day. For any n = 1, . . . , N and m = 1, . . . ,M we

discretize (3.9) according to

xmn ((i+ 1)∆t) = xmn (i∆t) + xmn (i∆t)
(
umn (i∆t)∆t+ vmn (i∆t)∆tZ

)
,

and (3.9) to

y((i+ 1)∆t) = y(i∆t) + µ(i∆t)dt+ ξ(i∆t)∆tZ,

where Z d= N(0, 1). Sampling from the standard normal distribution is numerically well-understood. Note that i∆tZ

converges to a Brownian motion in the limit of ∆t→ 0. The option model will work as follows:

(i) Obtain a statically arbitrage-free call price surface on K × T via algorithm (4.2) using the observed implied

volatilities.

(ii) Determine ξ, v using calibration procedures, which we will see in section 5.

(iii) Calculate λ, µ, u via equations (3.11)-(3.12) and (3.13)-(3.15).

(iv) Extract a sample Z from the standard normal distribution.

(v) Determine xmn ((i+ 1)∆t) and y((i+ 1)∆t).

(vi) Repeat (ii)-(v) until the cummulative time steps reach any desired t and retrieve the call price surface via

bijection (3.8).

We call one trajectory for the index and its options a Monte Carlo (MC).

Remark 4.1.
Note that we do not explicitly need the inverse of Am defined in (3.7). Consider equation (3.12). For every fixed

m = l + 1, . . . ,M we set up the N -dimensional vector Λm :=
(
λm1 (t), . . . , λmN (t)

)
. If we drop the subscript m and

the dependence on t, A · Λ yields

A1,1λ
m
1 +A1,2λ

m
2 =

(
A1,1A

−1
1,1 +A1,2A

−1
2,1

)(
ζm1 χ

m
1 λ

m−1
0 + λm−1

1 + 2vm1
(
Cm1 − Cm−1

1

))
,

An,−1λ
m
n−1 +An,nλ

m
n +An,n+1λ

m
n =

(
An−1,nA

−1
n−1,n +An,nA

−1
n,n +An,n+1A

−1
n+1,n

)(
λm−1
n + 2vmn

(
Cmn − Cm−1

n

))
,

AN−1,Nλ
m
N−1 +AN,Nλ

m
N =

(
AN−1,NA

−1
N−1,N +AN,NA

−1
N,N

)(
λm−1
N + 2vmN

(
CmN − Cm−1

N

))
.

Since the matrix coefficients add up to one, we simply get

A · Λ =
(
ζm1 χ

m
1 λ

m−1
0 + λm−1

1 + 2vm1
(
Cm1 − Cm−1

1

)
, λm−1

2 + 2vm2
(
Cm2 − Cm−1

2

)
, . . . , λm−1

N + 2vmN
(
CmN − Cm−1

N

))T
.

This is just a system of N linear equations with N variables λmn for every m = l + 1, . . . ,M , which can be solved

significantly faster than finding each inverse of Am. We avoid the calculation of A−1
m in (3.8) of Theorem 3.1 by the

same argument.
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5 Calibration

The parameters governing the surface dynamics have to be calibrated to the observed option prices. Calibration

for volatility models with parameter set Θ usually goes by finding Θ via the minimization of the sum of squared

errors of the implied model volatility versus the observed implied volatility, i.e.

Θ = argmin
∑
j∈J

(
σt(Kj , Tj ,Θ)− σ̂t(Kj , Tj)

)2

, (5.1)

where σt(Kj , Tj ,Θ) denotes the volatility implied by the option price on (Kj , Tj) found via the model. Lévy models

try to calibrate using a similar approach. Here Θ is such that the characteristic function of the option price implied

by the model is minimizing the sum of squared errors relative to the market data. Either way, market models can’t

pursue this approach, since we have σ̂ = σ and hence nothing to minimize. The calibration problem we face is the

determination of the Gaussian components vmn and ξ in the SDEs defining the dynamics of local implied volatilities

xmn and price level y.

5.1 Constant local implied volatility

The model can be simplified tremendously by considering the one-factor version with vmn = 0 for all n, m and ξ ≡ 1.

The drift restrictions (3.13) - (3.15) become µ = 0 and umn = 0 for all n, m. The price level y now evolves according

to

y(t) = y(Tl−1) +W ∗(t− Tl−1),

under P∗ and for all t ∈ [Tl−1, Tl) we have

xmn (t) = xmn (Tl−1).

The randomness pinning down the dynamics of the underlying with its options only comes from the Brownian

motion moving the price level. This gives us insight in the choice of reference strike Kn∗ and the influence of the

price level y.

We have seen in Figure 3.1 that y(t) does not show to have a drift. It is thus tempting to model y with |ξ|2 = 1 to

eliminate µ in (3.13), which would give

VAR[y] = VAR
[ D∑
d=1

ξd W
∗(t)

]
=

D∑
d=1

ξ2d(t) VAR[W ∗d (t)] = |ξ(t)|2t = t.

Unfortunately, Table 5.1 below shows that the variance of one year time series of y with reference strike Kn∗ and

maturity Tl = 3/12 does not come close to one for any of the reference strikes.

Kn∗ 0.90 0.95 1.00 1.10 1.20

VAR
[
y(t)

]
in % 0.53 .071131 0.26 3.86 3.84

SD
[
y(t)

]
in % 7.29 2.67 5.11 19.64 19.59

Table 5.1: Variance and volatility of price level y(t) with Tl = 3/12 for different reference strikes Kn∗ .
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(a) Kn∗ = 1.00, ξ ≡ 100%
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(b) Kn∗ = 1.00, ξ = 5.11%

Figure 5.1: Dynamics of the underlying implied by using constant local implied volatility with a 95% confidence

interval. Nm = 100.

Figure 5.1(a) shows the implied dynamics of the underlying using constant local implied volatility. We have calcu-

lated a 95% confidence interval around the implied index level at every time t calculated as[
S̄t − 1.96 ·

SD
[
St
]

√
Nm

, S̄t + 1.96 ·
SD
[
St
]

√
Nm

]
,

where Nm denotes the number of Monte Carlo simulations and SD
[
St
]

the standard deviation of the Nm values

found for St. Furthermore we used a vector of three month maturities, which we see back in the change of dynam-

ics every three months.

We face a discretization problem. The theory is built on continuous dynamics. Since we have discretized the

SDEs, we are likely to introduce errors. We have ξ = 1 and D = 1, which makes the Brownian motion relatively

volatile.. The samples catalyzing the jumps every three months can lead to errors when they are large. They make

the price level jump significantly, which causes problems inverting matrix A?. We work around this problem by

using constant local implied volatility with ξ set equal to its realised volatility, explained below, of 5.11% and let it

increase linearly towards 1. The resulting process of the underlying is given in Figure 5.1(b), where the amount of

MCs in which we find the discretization problem is reduced by a factor three. The jump size and overall volatility of

the underlying are reduced. Another solution could have been to make the step size ∆ very small around Tl, which

should again reduce the amount of MCs. We do not proceed with this approach, since the influence of a change in

∆ goes through the square root of ∆. We would have to decrease ∆ tremendously to get the desired effect, highly

increasing the computational time.

We emphasize here that we have set the reference strike to ATM, i.e. Kn∗ = 1.00, since it intuitively makes the

most sense. Unfortunately this results in a jump from the closing price of the S&P500 jumping from 1257.6 at the

last business day of 2011 to 1292.1 after the first five business days. While this is only a 2.74% increase in one

business week, we could mitigate this ”starting-up” effect by setting the reference strike somewhat higher. The

opposite holds for choosing the reference strike lower, which would make the initial jump smaller. The choice of a

reference strike has no significant influence on the dynamics of the stock and its options, which is expected given

that it is an arbitrary parameter in [Sch08a].
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5.2 Realized volatility

The starting point of the calibration based on realized volatility is a time series of call prices
(
Ĉ(ti)

)
i∈I on underlying

S observed on daily observation dates ti, where we assume ∆t = ti−ti−1 is constant for all i, and the underlying it-

self on the same observation dates ti. We have seen before that Ĉ =
(
Ĉ(Kj , Tj)

)
j∈J with J the set of all observed

strike and maturity points (Kj , Tj) is likely to be sparse data. We translate these to a time series of call prices(
C(tk)

)
k∈K on pure processX via (2.8), after which we smooth the pure price surface by applying Fengler’s method

to retrieve a full options price surface on the region A =
[
K1, . . . ,KN

]
×
[
T1, T1 + ∆t, T2, T2 + ∆t . . . , TM , TM + ∆t

]
consisting of fixed time to maturities and strike pairs (Tm,Kn). Recall the risk-neutral dynamics of the call price

dCmn (t) = λmn (t) dW ∗(t), (5.2)

for m = l, . . . ,M and n = 0, . . . , N . In equations (3.11) and (3.12) we see that every λmn (t) = λmn (t; ξ, vmn ), i.e. λmn
depends directly on our choice of ξ and vmn . This means that we can choose these parameters such that the option

price dynamics will follow the realized dynamics closely. Recall the notion of variation introduced in Definition 2.6.

Note that the SDE (5.2) implies that λ can be found as the square root of the quadratic variation of the call price,

i.e.

λmn (t) =
√
〈Cmn 〉t.

We can estimate λ by the unbiased estimator

λ̂mn (t0, I) :=
(

252
I

I∑
i=1

(
Cmn (ti)− Cmn (ti−1)

)2)1/2

We can thus choose our parameters Θ =
(
ξ, (vmn )m=l,...,M, n=0,...,N

)
such that they minimize the squared difference

between the one step realized volatility (RV) of our call price time series and λ, i.e

Θ = argmin
n=0,...,N,
m=1,...,M

I∑
i=1

(
λmn (ti−1; Θ)− λ̂mn (ti−1, 1)

)2

, (5.3)

Θ = argmin
n=0,...,N,
m=1,...,M

(
λmn (tI ; Θ)− λ̂mn (t0, I)

)2

. (5.4)

Method (5.3) seems appealing, but it gets computationally very expensive as the data set grows. Method (5.4),

however, can be performed relatively fast.

We would like Θ to approximate the general shape of λ̂, which can be observed in Figure 5.2 (a). We see that

the RV is strictly increasing as a function of the extrinsic option value, simply because it is the variable part in the

option’s price.

Let C1, C2 ∈ R denote constants. We can uniquely minimize the function f(x) = (x − C1)2 with x ∈ R, but there

would be an infinite amount of minima for the function f(x, y) = (x + y − C1)2 with x, y ∈ R. We could, however,

uniquely minimize the functions f1(x) = (x − C1)2 and f2(y) = (y − C2)2 simultaneously. This example can be

extended to our situation, where we have a multi-factor model with D dimensions inducing D(MN + 1) variables

to calibrate using M(N + 1) values of λ̂. We conclude that calibration using RV will only work for D equal to one.
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(b) Estimated realized volatility λ(tI ; Θ) with |v| ≤ LIVRealizedVol

Figure 5.2: (Estimated) realized volatility of the call prices.

Expectations of v

It is interesting to highlight that we are indirectly affected by a well-known issue in calibration. Close to maturity

option prices tend to float away from the theory, due to possible jumps in the underlying asset. We could observe

this before in the volatility surfaces of Figure 1.1, where the implied volatility in the extreme strike and close to

maturity region increases massively. Prices of the corresponding options are relatively expensive, because traders

want to price in a buffer to cover for unhedgeable jumps. Models incorporating jumps such as Lévy models and the

Black-Scholes-Merton model this phenomenon and are hence more suitable for option pricing on short maturities.

The way we are affected by this issue is by the definition of xl, in particular for the OTM strikes. Looking at the

volatility of the time series xl(t) in Figure 5.3 we see that xl behaves more smoothly when choosing Tl larger.

Numerical results

To measure the quality of the calibration, we will have to take into account that we want vl → 0 and ξ → 1 for

t→ Tl. We take the residual norm as an error measure, i.e.

ResNorm :=
N∑
n=0

M∑
m=1

(
λmn (Θ)− λ̂mn

)2

.

Since Matlab [MAT09] requires the values of λ to be given in matrix form, we have to copy λ0 over all maturities.

This means that the error induced by λ0 is enlarged with a factor M .

Using three months maturities from now until two years (M = 8) and five percent strikes differences ranging from

0.70 to 1.30 (N = 13), we will analyze the implications of this calibration method. Without constraining the state

space of ξ and v we can reduce the error to practically zero as the residual norm strikes at 4.3766 ·10−8%. Although

this seems appealing, it comes at the expense of the condition that we prefer the volvols v to be between zero and

their RV and ξ between its RV and 100% . We find many values of v with an absolute value exceeding 100% and a

few that even exceed 1000% by far. We find ξ striking at 15.68%, compared to its RV of 13.47%

Since these values drift far away from their RVs, we invoke the constraint |vmn | ≤ 100% for n = 1, . . . , N,m =

1, . . . ,M . Simply replacing the values of v that exceed more than 100% by simply 100% gives λmn different signs

for different values of m,n, which will lead numerical errors in the call price dynamics. Calibration with the added
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Figure 5.3: Realized volatility of xl for different values of Tl.

constraint gives a higher residual norm of 13.55%, since the volatility of the index is now estimated at 13.53%. For

ξ we find 34.45%. Alternatively trying to calibrate setting ξ ≡ 100% worsens the result with a residual norm of

30.58% and an index volatility estimate of 16.08%. With these new constraints we find the estimates for v almost

all located at the boarder where |vmn | = 1. By similar arguments as for the constant local implied volatility case

where ξ ≡ 100%, we get numerical errors around Tl when v is found to be at the border and even worse when

also ξ ≡ 100% as well. Instead, we invoke the constraint |vmn | ≤ LIVRealizedVol % for n = 1, . . . , N,m = 1, . . . ,M .

We end up with v = −LIVRealizedVol % for most strikes and maturities and ξ = 24.39%. With a residual norm of

22.65% this is not a very good result, but the error mainly comes from the fact that the index volatility is estimated

at 7.94% compared to its RV 23.33% and thus adds 8 · (23.33%− 7.94%)2 = 18.95% to the overall residual norm.

Summarized we find that the best result is obtained for the constraint |vmn | ≤ LIVRealizedVol, whereas ξ should

be left unconstrained. Figure 5.2(b) shows the shape of λ induced by Θ under these constraints. We see that the

overall fit is good, but the problem region of small strike and short maturity doesn’t fit well. This can be explained by

the desired fit of λ0 defined in (3.11) to the RV of the index. The RV of the call prices is decreasing for decreasing

strikes below one, while we found the RV of the index struck at 23.33% over the year 2011. This is a few factors

higher than the ATM RV of the call price already and hence where this method fails. If we had persuaded an

approach without matching the RV of the underlying, the overall shape and residual norm would have been a lot

better. The problem with this approach is that volatility of the underlying would then be estimated close to zero,

reducing the randomness its dynamics. For our purposes we are interested in the dynamics of the underlying for

the sake of overall capacity of the model, whereas in practice one could choose to leave this behind when pricing

forward start options or forward start variance swaps. We can then model the future price of the underlying at

every modeled maturity by finding the strike for which the call price equals the put price (recall the put-call parity in

section 2.2), which can be of more interest than the spot price itself.

Recall the examples that followed from the Lipschitz conditions in section 3.3. After performing the above calibra-

tion we set g(t, y) = 1− ξ, ensuring condition (3.16) since ξ(t)→ 1 linearly as t→ Tl.
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Figure 5.4: Dynamics of the underlying implied by using realized volatility with a 95% confidence interval. Nm =

100.

Subsequently we put the volvol functions equal to

V

(
Tm − t,Kn

)
=

vmn (Tm − t) m = l, l + 1,

vmn m > l + 1.

Assuming that M2 is large enough to ensure

(Tl − t)|vln(t, y, xl)| ≤M2 x
l
n

(
1 +

∣∣∣∣y +
N∑

i=n+1

Ki+1 −Ki

Kixli

∣∣∣∣)
for all t ∈ [Tl−1, Tl] makes condition (3.16) satisfied. Finally, we assume (3.18) holds.

We have seen that working in one dimension leads to the significant jumps as seen in Figure 5.2 at every three

months, with numerical errors due to discretization as a result. In order to alleviate this we will try to calibrate the

model in a multi-factor environment in the next section.

5.3 Principal component analysis

It is given that the market movements can not be captured within one source of randomness and so the one-factor

model implied by the RV calibration is arguable. Principal component analysis (PCA) works around this and will

lead to a multi-factor model.

Whereas we smoothed the call prices on the grid A =
[
K1, . . . ,KN

]
×
[
T1, T1 +∆t, T2, T2 +∆t . . . , TM , TM +∆t

]
for

the calibration on using RV, the grid A =
[
K1, . . . ,KN

]
×
[
T1, T2, . . . , TM

]
will suffice here. This arbitrage-free data

can then be translated into the time series
(
x(ti), y(ti)

)
i∈I on which we will perform calibration. Note that we do

need arbitrage-free data, as the quantities defining the time series
(
x(ti), y(ti)

)
i∈I are only defined if the data set

is arbitrage-free. The time series
(
x(ti), y(ti)

)
i∈I can be calculated quite fast due to Fengler’s efficient algorithm

discussed in section 4.2. As for time series of implied volatilities, the local implied volatilities are very stable over

time. More precisely we say that the surfaces show a high level of autocorrelation, defined for time points s > t as

AC(t, s) := E
[(
Xt − E[Xt]

)(
Xs − E[Xs]

)∣∣Ft].
For such type of time series it makes sense to trust on the theory built on PCA. PCA tries to extract the uncorrelated

sources of variation in a multivariate system. For our purposes we usually see a maximum of three components,

33



where the first component can be related to the overall level, the second as tilt and the third as curvature. The

theory of PCA is most suited for time series analysis of implied volatility surfaces, but will work for time series

analysis on local implied volatility surfaces as well. The dynamic properties of implied volatility time series are

usually analyzed for a fixed maturity or (ATM) strike. We will calibrate across strike and moneyness using methods

developed by Cont & da Fonseca in [Con02]. Cont & da Fonseca perfom a Karhunen-Loève (KL) decompostion on

implied volatility surfaces across maturity and moneyness, which is a generalization of PCA to higher dimensional

random fields.

Theoretical framework

Let us be given a (function of a) local implied volatility surface x. We will view this as a random surface, denoted

by X. Assume X ∈ L2(R). We decompose this non-zero mean surface X into

X(ω,a) = E[X(ω,a)] + Y (ω,a), a ∈ A, (5.5)

where Y is a zero-mean random surface. Both the correlation function RY (a1,a2) and the covariance function

CY (a1,a2) of the zero-mean random process Y are equal to the covariance function CX(a1,a2) of the non-zero

mean process X, which we will all denote as simply C hereafter.

Let Ω be a Hilbert space of the random variables Y (ω) : Ω → R on our probability space. Let
(
Ek(ω)

)
k≥1

denote

the Hilbert basis of Ω. The KL theorem of a zero-mean random process such as Y tells us that Y admits a

representation

Y (ω,a) =
∞∑
k=1

ck(a)Ek(ω), (5.6)

where the Ek are orthonormal, i.e. normalized and uncorrelated, random variables. This makes the covariance

function equal to

C(a1,a2) = E
[
Y (ω,a1)Y (ω,a2)

]
=
∞∑
j=1

∞∑
k=1

cj(a1)ck(a2)E
[
Ej(ω)Ek(ω)

]
=
∞∑
k=1

ck(a1)ck(a2), (5.7)

where we used the monotone convergence theorem in the second equality and orthonormality of the Ek in the last.

Since the covariance function C is symmetric, it is Hermitian. The spectral theorem (e.g. [Dri03], Theorem 35.17)

then tells us that

C(a1,a2) =
∞∑
k=1

λkfk(a1)fk(a2), (5.8)

where λ1 ≥ λ2 ≥ . . . ≥ 0 are the normalized eigenvalues and
(
fk(a)

)
k≥1

the orthonormal eigenfunctions corre-

sponding to C. They are obtained as the solution to the eigenvalue problem found by the projection of (5.8) on

fk(a1), i.e. by solving ∫
A

C(a1,a2)fk(a1)da1 = λkfk(a2). (5.9)

Combining (5.7) and (5.8) we see that

ck(a) =
√
λkfk(a),

which can be used in (5.6) to get

Y (ω,a) =
∞∑
k=1

√
λkfk(a)Ek(ω).
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Note that Y consists of random variables Ek orthogonal in L2(Ω,P) and of surfaces fk orthogonal in L2(A). We

call this form of Y its KL decomposition. Using (5.5), we hence get

X(ω,a) = E[X(ω,a)] +
∞∑
k=1

√
λkfk(a)Ek(ω)

Numerical approach

In order to solve the problem numerically, we approximate the eigenfunctions fk according to

fk(a) ≈
D∑
j=1

fj,khj(a), (5.10)

where {hj(a) : A → R} is a set of shape functions such as the Nadaraya-Watson estimator which we have

discussed in section 4.2. Plugging this into equation (5.9) and changing the order of integration and summation

gives
J∑
j=1

fj,k

(∫
A

C(a1,a2)hj(a1)da1 − λkhj(a2)
)

= εD,

where the error εD is induced by the truncated summation (5.10). The Galerkin method requires that εD stands

orthogonal to the approximating function hj , i.e. for all j = 1, . . . , D we need

D∑
j=1

fj,k

(∫
A

∫
A

C(a1,a2)hj(a1)hi(a2)da1da2 − λk
∫
A

hi(a2)hj(a2)da1da2

)
= 0. (5.11)

Defining the (D ×D) matrices

Ci,j =
∫
A

∫
A

C(a1,a2)hj(a1)hi(a2)da1da2,

Hi,j =
∫
A

hi(a2)hj(a2),

fj,l = fj,l,

Λl,k = λk1{l=k},

equation (5.11) becomes
D∑
j=1

Ci,jfj,k =
D∑
j=1

D∑
l=1

Hi,jfj,lΛl,k.

This is simply

Cf = HfΛ,

a D-dimensional generalized eigenvalue problem which can be solved easily numerically to find f and Λ. We then

obtain the eigenfunctions fk for k = 1, . . . , D by substituting f in (5.10). Subsequently, we normalize and then

rearrange the eigenvectors and eigenfunctions in a decreasing order.
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Implementation

Recall the generalization of the volvols by the use of a generalizing V of section 3.3. Introduce the transformations

Z of our local implied volatilities for each l = 1, . . . ,M by

Zln(t) = log
(
xln(t)

)
−
(
xln(t)

)−1
,

Zmn (t) = log (xmn (t)) for m > l.

By Itô’s formula, the dynamics of Z are given by

dZmn (t) = θmn dt+ V

(
Tm − t,

Kn

S(t, y, xl)

)
dW (t), (5.12)

with

θmn :=


xmn +1
xmn

umn − 1
2
xmn +2
xmn

(vmn )2,

uln − 1
2 (vln)2 for m > l.

(5.13)

We can approximate dZ√
dt

by the defining the time series
(
U(ti)

)
i∈I by

Umn (ti) :=
Zmn (ti)− Zmn (ti−1)√

ti − ti−1
≈ dZmn (ti)√

dt
.

Using (5.12) together with the way we defined v, we get

dZmn (ti)√
dt

= θmn
√
dt+ V

(
Tm − t,

Kn

S(t, y, xl)

)
dW (t)√

dt
= θmn

√
dt+ V

(
Tm − t,

Kn

S(t, y, xl)

)
dW̃ (t),

where W̃ (t) =
(
W̃1(t), . . . , W̃D(t)

)
is a time-scaled Brownian motion with E[W̃k] = 0 and E[W̃ 2

k ] = 1 for all k =

1, . . . , D. Via the procedure described above, we estimate Vk by

V̂k(a) =
√
λkfk(a), a ∈ A.

This method will only estimate the V in the trading region A, and hence we set V (a) = 0 for a /∈ A to make sure

the conditions on V are satisfied.

Principal component analysis can only be used when the number of principal components D is smaller than the

dimensions of the observed variable. Whereas we had NM observed variables per observation date tk before, we

now only have one. This means that we are still left with determining ξ.

Numerical results

We find empirically that we can cover for 98% of the variance in the first three principal components. We find the

covered variance by summing the square of the normalized eigenvalues, i.e. the number of components D is such

that

D = inf
{
I :

I∑
i=1

λ2
i > 0.98

}
.

This method is computationally fast compared to calibration via realized volatility. The time needed for an analysis

consisting of up to 20 principal components is a matter of seconds.
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(c) ξ = (0, 0, 0)T

Figure 5.5: Dynamics of the underlying implied by using principal component analysis with a 95% confidence

interval plotted for different ξ. Nm = 100.

Figure 5.5 shows us the dynamics of the underlying after calibration using PCA. Since we have ξ free to choose,

we let |ξ|2 = 1 in (a) and (b) by setting them equal to respectively (0, 1, 0)T and ( 1√
D
, 1√

D
, 1√

D
)T . The influence on

the path taken is small, also when we put the weight of ξ on the first or third dimension of the Brownian motion.

As expected, the number of MCs with an error is larger in (a), since all the weight is put on one Brownian motion.

Setting ξ = (0, 0, 0)T in (c) such that it increases linearly to ( 1√
D
, 1√

D
, 1√

D
)Tas t → Tl gives very stable results,

since at every Tl the Gaussian parameters v and ξ are very small. As with every path we have shown up till now,

the change of dynamics has most impact at the first Tl.
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6 Pricing

Modeling the call price surface as a whole adjoined with the underlying lends itself very well to pricing path depen-

dent, as well as forward start derivatives. We will look into forward start derivatives. In particular, we will look at

forward start calls and variance swaps, giving the investor exposure to forward volatility. After this we will shortly

touch upon the barrier option.

6.1 Forward start options

Forward start options are options that convert a notional amount N into options with a strike set ATM of a percent-

age thereof on reset date T1. The premium for this option is paid when the contract is sold at t < T1, i.e. before

the option actually comes into existence. Forward start options are therefore complex. First of all they are directly

exposed to the term structure of volatility which makes the pricing challenging. Secondly they lack of specific

greeks until the time they come into existence. There is no possibility to delta-hedge a forward start option, since

the price of a forward start option does not change as the price of the underlying changes.

Let t < T1 < T2, where T1 denotes the reset date and T2 the option’s maturity. The payoff function is given by

HFS(ST2) = (ST2 −KST1)+.

Now set t = T0 < T1 < . . . < TM , where T1, . . . , TM−1 are called the reset dates. The generalization of forward

start options is given by the cliquet, which pays

HCL(STM , TM ) =
M∑
m=1

(STm −KSTm−1)+

at maturity TM . As the forward start options serve as the building blocks of a cliquets, we will focus on this first.

The analytical expression in the BS framework for the price of a forward start option is found by first noting from

the BS formula (1.2) that at T1 the price can be written as

CBSFST1
(St,K, T1, T2, r, q, σ) =

ST1

St
CBSt (St,K, T2 − T1, r, d, σ)

We then get time t value

CBSFSt (St,K, T1, T2, r, q, σ) = Bt(T1) · E∗
[
ST1

St
CBSt (St,K, T2 − T1, r, d, σ)

∣∣∣∣Ft]
= Bt(T1) · E∗

[
ST1

St

∣∣∣∣Ft] · CBSt (St,K, T2 − T1, r, d, σ)

= exp
(∫ T1

t

−dudu
)
· CBSt (St,K, T2 − T1, r, d, σ). (6.1)

The volatility σ to use here is the implied volatility corresponding to maturity T2−T1. As [Ber07] mentions, the price

of a forward start option must be very accurate, since at the reset date T1 the option becomes a liquid vanilla. Our

market model should thus be able to capture the forward implied volatilities, in particular those of T2 − T1.

Forward and expected future implied volatility

The common way to quote the price of forward start options is in terms of forward implied volatility. The forward

implied volatility is the σ̂ such that the BS forward start price matches the observed forward start price ĈFS , i.e.

ĈFSt (T1, T2,K) = CBSFSt

(
St,K, T1, T2, r, q, σ̂(T2 − T1,K)

)
.
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(b) FS = 12M

Figure 6.1: Forward implied volatility compared to the expected implied volatility obtained by the model.

The market model approach now shows its additional benefit, as it implies an expected future implied volatility

surface. We can see this as the implied volatility that belongs to the expected call price at future time T , i.e. we

average the call prices found at T over all taken Monte Carlos. Inverting this then gives Et[σ̂T1(K,T2)]. For the

model to be consistent we should obtain the difference between the forward implied volatility and expected future

implied volatility converges to zero as t → T1. We would like to see the difference to be generally small; if our

model’s expected future implied volatility equals the forward implied volatility it is in some sense self-consistent.

Note that this is not the smile consistency we normally see, since this terminology would mean that have a neat

calibration of our model to the future implied volatility surface. Figure 6.1 shows us that we indeed have a small

error over the whole surface for t close T1, but unfortunately the error in the problem region small strike and close

to maturity increases as T1 is chosen larger. The error for high strikes stays very low and stable across the different

maturities. The same results are found using the other calibration methods.

We conclude that we can price forward start options with this model in a correct way. The most liquid forward start

options are the ones where the strike is set higher or equal to ATM, which is exactly where we see the consistency.

The forward implied volatility we would quote from the model ”agrees” with the dynamics of the call prices. In the

next section we will see how products on the market rely on forward start options.

6.2 Structured products

Many products trading on the markets have combined an element of derivatives in them to achieve a specific

risk/return profile for the investor. These products are referred to as structured products. They are OTC instruments

offering a high level of flexibility. Common features of these products are:

� Callable, where the issuer can cancel the instrument by buying it back from the investor. This is typically the

case when interest rates lower.

� Putable, where the investor can sell the instrument back to the issuer. This is typically the case when interest

rates rise.

� Convertible, where the instrument can be converted into a certain number of equities. This is often seen as

a low risk way of gaining exposure to an equity price increase.
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� Index-linked, where the coupon on the instrument is variable and is determined according to a specified

reference index.

� Yield-enhancing, where the embedded derivatives aim to leverage the product’s coupon level.

� Capital protecting, where the design of the product is such that the investor’s capital is guaranteed at maturity,

while also having the chance of an excess return. The way to achieve this is by the investment in zero coupon

bonds, ensuring a guaranteed capital return. As the bonds will be bought at a discount to their maturity value,

this allows money left over to invest in derivatives to construct the required payoff profile.

A commonly sold structured product is the Barrier Reverse Convertible. An example term sheet can be found in

appendix A.5.

We explore the use of exotic derivatives in structured products. Suppose an investor has a capital of size N

available for a structured product. A capital protection note with a fixed coupon C and participation level x pays

HT (ST , C, T, x) = N ·
(

1 + max
(
C, x

(
ST − St
St

)))
.

Keeping C fixed (possibly at zero), the selling institution will invest in a zero-coupon bond such that it returns

N ·(1+C) at maturity T and use the residual money to invest in call options to settle participation in the performance

of S, where participation level x is left to be determined. Alternatively, the selling institution could fix a participation

level x and search for the coupon C such that the difference between the time t price of the zero-coupon bond

and its redemption value at time T equals the price of the call structure. Let S denote the vector (S0, . . . , SM ), a

reverse cliquet becomes

HT (S,C, T ) = N ·
(

1 + max
(
C,

M∑
i=1

min
(
STi
STi−1

− 1, 0
))

.

The idea remains the same, the institution will invest in a zero-coupon bond and use the residual to invest in

options that give the upside participation. The key element is then to find an attractive coupon C that guarantees

the minimum return on the structured product. Clearly, a high interest rate environment will make the zero-coupon

bond relatively cheap and thus increases the money left over for investing in derivatives.

We will concern ourselves with the pricing of the equity participation and thus indirectly with finding the coupon.

The payoff of a reverse cliquet is given by

H(S,C, TM ) = N ·max
(
C,

M∑
i=1

min
(
STi
STi−1

− 1, 0
))

.

We can see this as a strip of variable notional forward start options and so we can apply our model to find these

products.

6.3 Variance swaps

Every derivative has its embedded risks, which are quantified by the derivative’s greeks. The most common greek

is delta, defined as the sensitivity of the portfolio’s value relative to a change in the underlying. The most common

eliminated risk is the risk coming from the delta. Another important greek is vega, which measures the sensitivity

of the portfolio relative to change in volatility. Equity derivatives depend to a very large extend on volatility and
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traders seek ways to eliminate the vega risk they are exposed to. Although vega risk can be eliminated via trading

strategies using calls or puts, these turn out not to be self-financing or depend heavily on the strikes of these vanilla

options. Apart from this we would also invoke exposure to the underlying , i.e. it will be difficult to hedge vega risk

while staying delta neutral. Variance swaps then come in naturally, as their payoff is directly the realized variance

of the underlying and does not depend on external factors. Moreover, a variance swap can be replicated via stan-

dard calls and puts, easing their replication and hence sale. The wider class of volatility derivatives including e.g.

volatility swaps or forward variance calls can be used not only to vega hedge, but also to trade the spread between

implied and realized volatility or to gain exposure to future variance.

Let I = {t0, . . . , tI = T} be set of daily observation dates, then the realized variance is denoted by

σ2(S, T ) :=
1
T

I∑
i=1

(
log
(

Si
Si−1

))2

=
252
I

I∑
i=1

(
log
(

Si
Si−1

))2

. (6.2)

Following [Dem99], a variance swap based on notional N pays

N ·
(
σ2(S, T )−K2

vol

)
with agreed observation dates I and strike σ2

K . We will assume that the notional amount equals one for ease of

computations. The strike Kvol is usually chosen such that the risk-neutral expectation of this contract is zero, as

with any swap. Assume that the stock price moves according to

dSt
St

= µtdt+ σtdWt,

where W is a P-Brownian motion. As before, we will use quadratic variation of the returns of S as the unbiased

estimator

K2
vol =

1
T − t

E∗
[
〈log(S)〉T

∣∣Ft] =
1

T − t
E∗
[ ∫ T

t

σ2
udu

]
.

We are left with finding an expression for this expectation. By applying Itô’s lemma we can write

d log(St) =
(
µt −

σ2
t

2

)
dt+ σtdWt.

Consequently, we get
dSt
St
− d log(St) =

σ2
t

2
dt,

which brings us to ∫ T

t

σ2
udu = 2

(∫ T

t

dSu
Su
− log

(
ST
St

))
. (6.3)

We basically have an expression for K2, but unfortunately log contracts are not liquidly traded in any market. We

can work around this problem by splitting up the logarithm to log
(
ST
St

)
= log

(
ST
Ft(T )

)
+ log

(Ft(T )
St

)
. By the static

hedge strategy in (2.17), we can replicate the former according to

−E∗
[

log
(

ST
Ft(T )

)∣∣∣∣Ft] = exp
(∫ T

t

rudu

)(∫ Ft(T )

0

1
K2

Pt(T,K)dK +
∫ ∞
Ft(T )

1
K2

Ct(T,K)dK
)
.

The latter equals

E∗
[

log
(
Ft(T )
St

)∣∣∣∣Ft] =
∫ T

t

ru − du du = E∗
[ ∫ T

t

dSu
Su

]
,
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where the last equality uses the fact that integrals over Brownian motions equal to zero. Summarily, we find the

fair price of the variance swap to be

K2
vol =

1
T − t

E∗
[ ∫ T

t

σ2
udu

]
=

2
T − t

E∗
[ ∫ T

t

dSu
Su
− log

(
ST
St

)∣∣∣∣Ft]
= − 2

T − t
E∗
[

log
(

ST
Ft(T )

)∣∣∣∣Ft]
=

2
T − t

exp
(∫ T

t

rudu

)(∫ Ft(T )

0

1
K2

Pt(T,K)dK +
∫ ∞
Ft(T )

1
K2

Ct(T,K)dK
)
,

meaning that we can replicate the realized variance on S by a static position in OTM puts and calls, where the

quantity of the contracts are inversely proportionally weighted with their squared strike.

Note that we do not have a continuum of option prices, whence we have to approximate K2
vol. We can construct a

variance swap curve by using the full option price grid. Let nτ denote the number such that

nτ = argmin
n∈{0,...,N}

∣∣Kn − Ft(T )
∣∣

The fair strike is approximated by

K2
vol =

2
T − t

exp
(∫ T

t

rudu

)( nτ∑
n=0

1
k2
Pt(T, k)dk +

KN∑
n=nτ

1
k2
Ct(T, k)dk

)
. (6.4)

We see that strike Kvol is highly dependent on the volatility surface. On the other hand, the swap’s payoff is

completely determined by the actual volatility. Following [Car07], it’s observed that the variance swap strikes

generally stand above the realized variance. There is hence a ”cost of carry” when having a variance swap. This

brings us to a practical volatility mismatch, where the trader profits when he is short variance. The Credit Suisse

Global Carry Selector I and II funds are two strongly performing funds that obtain their performance from the

realized and implied volatility mismatch in variance swaps.

Forward start variance swaps

A forward start variance swap is a contract in which the buyer agrees on time t to pay a fixed K2
vol on maturity T2

and in return receive the realized variance accrued over the period from T1 to T2, with t < T1 < T2. We simulate

the call prices on a daily basis and consider the call prices on every quarter. On these points in time we take the

average of every Monte Carlo, giving us the model’s call prices on forward start periods that are multiples of three

months. We then calculate the fair price of the variance swap as the sum of OTM option prices weighted by the

inverse of their squared strike according to equation (6.4), giving Figure 6.2. We see that the variance swap rates

lie higher than the spot curve. The rates do not necessarily lie higher per forward start period, e.g. the curve with

a forward start period of nine months lies below the curves with a forward start period of three and six months. A

variance swap curve is also generally observed to have an upward slope, rather than the downward slope we have

here. Another observation here is that the variance swap rates we see in Figure 6.2 are unfortunately highly un-

realistic. Volatility empirically barely spikes above levels as high as 40% and hence variance swap rates obtained

from our model at this height makes the model not particularly useful.
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Figure 6.2: The variance swap rates Kvol obtained from the model for different forward starting periods.

From the way realized variance is defined in (6.2) we can conclude that variance is additive. From (6.2) we get

σ2(S, T2) · T2 = σ2(S, T1) · T1 + σ2(S, T2 − T1) · (T2 − T1), (6.5)

so the fair strike for a forward start variance swap starting at T1 and maturing at T2 would be

σ2(S, T2 − T1) =
σ2(S, T2) · T2 − σ2(S, T1) · T1

T2 − T1
. (6.6)

Equation (6.6) in fact shows us how a variance swap is hedged in the market. The variance swap can be replicated

by buying T2/(T2 − T1) variance swaps with maturity T2 and selling T1/(T2 − T1) variance swaps with maturity T1.

We can now compare the forward variance rates that would be quoted according to equation (6.6) to the forward

variance swap rates implied by the model. Unfortunately, as discussed above, the forward start variance swap

rates obtained from the model are fairly unrealistic. The figure shows that the quoted variance swap rates indeed

lie below the high rates implied by the model, except for the maturities from nine months up to one year, where the

fit is relatively close for all four observation periods T2 − T1.

6.4 Barrier options

Among the most liquid exotics are the barrier options. Barrier options come in to or out of existence when the

underlying crosses a contract dependent barrier L on pre-specified observation dates ti. Let S denote the running

maximum and S the running minimum over these observation dates, i.e.

St := max
i: ti≤t

Sti , St := min
i: ti≤t

Sti .

Most commonly the barrier call option is available in four different variants. These are named down-and-in (DI),

down-and-out (DO), up-and-in (UI) and up-and-out (UO) with respective payoff functions

HDI(ST , L,K, T ) := (ST −K)+1ST≤L, HUI(ST , L,K, T ) := (ST −K)+1ST≥L,

HDO(ST , L,K, T ) := (ST −K)+1ST>L, HUO(ST , L,K, T ) := (ST −K)+1ST<L,
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Figure 6.3: Relative error of forward start quotes versus the model’s implied variance swap rates.

and corresponding prices CDI , CDO, CUI , CUO. It is clear that once a barrier is breached, the value of a barrier

option becomes equal to zero for the ”out” variants or to that of a vanilla for the ”in” variants . For fixed L, K and T

we have the equalities

Ct = CDIt + CDOt , Ct = CUIt + CUOt . (6.7)

We see that having the market price of a vanilla call together with one modeled barrier price allows us to find all

prices. Our model allows for the calculation of the ”in” barrier option by the following steps.

(i) Simulation of the stock with options over the interval [0, T ].

(ii) Determine τ := inf{t ∈ [0, T ] : S ≥ / ≤ L}.

(iii) Discount the call value from t = τ to t = 0.

(iv) Average over all sample paths to get the barrier call price.

In practice the observation dates can be of the American, Bermudan or European type. We can easily implement

these irregularities in the observation dates by adjusting the dates on which we store the simulations.

Unfortunately, the barrier option valuation is highly dependent on the dynamics of the stock price, which we have

seen not to be very accurate for any type of calibration. Moreover, Monte Carlo methods are slow compared to

other pricing methods, especially in the case of a full strike and maturity market model where we simulate for

many strikes and maturities at the same time. On the other hand we can clearly outnumber the computational time

by using the analytical expression for the price of a barrier option in the BS framework. However, the assumed

lognormal dynamics for the underlying are wrong and so the BS framework should be rejected for path-dependent

options, especially when the barriers are low. Among others, barriers can be priced effectively and realistically

using finite difference schemes that outnumber the computational time for low-factor models. It is hence beyond

the scope of this thesis to analyze the pricing of barrier options via market models.
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7 Conclusion

We have been analyzing the mathematics of a market model. In order for our market model to work, we had to use

a grid with arbitrage-free call prices. Unfortunately option prices are quite often with light arbitrages, making the

model non-usable. We worked our way around this by applying a smoothing algorithm on the option prices. The

algorithm returns an arbitrage-free grid even when the data is not free of arbitrage. We have seen that this enables

us to price derivatives such as straddles, strangles and butterfly spreads in an arbitrage-free way.

We parameterized the grid with its call prices on fixed strikes and maturities into a price level and local implied

volatilities. The price level turned out to be fairly correlated with the underlying as long as we set the reference

strike to at-the-money. The local implied volatility showed similar properties as the well-understood implied volatil-

ities and the price level turned out to be a direct translation of the price skew. We could specify their dynamics

via a system of SDEs ensuring the absence of dynamic arbitrage. Since the parameterization is a bijection, we

equivalently obtained dynamics for the call prices. The inversion of local implied volatilities and price level to

call prices then also ensures the absence of static arbitrage. We have made the model usable in a interest rate

and dividend environment by using an affine transformation of the underlying’s price. This transformation can be

the solution to many more models that don’t work in a dividend environment. Having taking interest rates and div-

idends apart from the price modeling, we could add stochastic dynamics to the interest rates and dividends as well.

After setting up the model we looked into the calibration of the parameters that are left free to choose, subject

to some constraints. For every SDE we had to set the Gaussian parameter, being ξ corresponding to price level

y and vmn corresponding to local implied volatility xmn . We tried to calibrate these to the realized volatility of time

series of the local implied volatilities, obtaining an one-factor model. Another approach has been to perform a

principal component analysis, yielding a three-factor model. Although both methods are appealing, we continued

using the principal component three-factor model after considering the numerical stability, speed of calibration and

mathematical sense. Unfortunately the model does not enable the user to have a view on the call or stock price

process, mainly due to the fact that the Gaussian parameters had to be Lipschitz continuous. Moreover, the stock

price dynamics coming from the model are not very realistic, the jump on the first expiry date of the call options is

too large. Since the model is more focussed on call price dynamics rather than stock price dynamics, one could

argue the relevancy of matching the dynamics of the stock price.

From calibration we went to the pricing of derivatives. We started with looking at forward start options, a class

of options with difficult pricing and risk management. The forward start option does not explicitly depend on the

stock price dynamics. We have seen that the expected call prices are conform to the forward start prices for strikes

higher or equal to at-the-money. Since these are the most liquid forward start options, we found the model to

be very suitable for these derivatives. However, we would not need a full grid of option prices, a market model

specifying dynamics on a fixed strike relative to the underlying’s price would suffice. To show the usability of these

derivatives we have seen an example of their role in certain structured products.

Finally we looked at the replication of variance swaps and used the additive property of variance to check if a

forward start variance swap priced using the model comes close to the price traders would give based on the

observed option price surface. Forward start variance swap prices fully depend on dynamics of the whole option

price surface and do not explicitly depend on the stock price dynamics, which would put this market model in a

qualified position. The match of the forward start variance swap curve compared to forward start variance swap

prices given in practice using the additive property of variance did not turn out to be a close match, except for
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forward start periods from nine months up to one year. We are left with the forward start options as the derivative

being served most by this market model. We finished with looking into barrier options. Although a market model

lends itself very well to price these derivatives, we didn’t numerically pursue their pricing. The stock price dynamics

will have to be accurate, which is not the case. Apart from that the computational time is high and barrier options

belong to the simplest exotic derivatives, leading to many models that can price them faster and more accurate.

The coding needed for this model is included with a discussion of the pitfalls encountered. The smoothing algo-

rithm is widely applicable, whereas the pricing model itself will serve fewer readers.

Future research is left for market models that work for all strikes and maturities, rather than on a fixed strike and

maturity grid. We have worked our way around this by applying the smoothing algorithm at every modeled time,

but this is not a neat procedure.

From a mathematical point of view the hunt is after a model that could take data (possibly containing arbitrage)

on a variable strike and maturity grid which returns call prices on arbitrary strikes and maturities. From a practical

point of view it is not necessary for the model to work for all strike and maturities at the same time, since for pricing

purposes it is generally sufficient to have all strikes versus one maturity or one strike versus all maturities, where

the latter reminds us of modeling the yield curve in the interest rate world. These conditions have mathematically

been worked out for fixed income and equity markets and save a lot of computational time compared to a market

model on a full grid.
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A Appendix

In this appendix we will go through the Matlab codes corresponding to the theory we have gone through. We will

discuss the pitfalls in the algorithms as well as certain choices made throughout the coding.

We assume that we are given the index level, a M×N matrix of quoted call prices, an interest rate r and a dividend

yield d corresponding to observation dates tk. We conclude the appendix with a term sheet of a structured product.

A.1 Inverting Black & Scholes

The inversion of the Black & Scholes call price formula is a fundamental procedure for this thesis. We hence give

the Matlab function that inverts (1.2) below. If additionally a forward start date T1 is specified, the inverse is taken

using the Black and Scholes formula for forward start call options (6.1) instead.

1 function volatility = blsimplvol(S,T,K,optionvalue,r,q,T 1)

2

3 % Set options

4 options = optimset('fzero');

5 options = optimset(options, 'TolX', 1e−6, 'Display', 'off');

6 LB = eps(1);

7 UB = 10;

8

9 if nargin ==6

10 if blsprice(S,T,K,LB,r,q) < optionvalue

11

12 if blsprice(S,T,K,UB,r,q) <= optionvalue

13 volatility = NaN;

14 else

15 [volatility, fval, exitFlag] = fzero(@objfcn,[LB UB],options,...

16 S,K,r,T,optionvalue,q);

17 if exitFlag < 0

18 volatility = NaN;

19 end

20 end

21 else

22

23 Spot = S

24 Strike = K

25 Maturity = T

26 PriceSigma0 = blsprice(S,T,K,LB,r,q)

27 OptionValue = optionvalue

28 PriceSigma2 = blsprice(S,T,K,UB,r,q)

29 volatility = NaN;

30 end

31

32 else %nargin==7

33

34 if blsprice(S,T,K,LB,r,q,T 1)< exp(−r*T 1)*optionvalue

35

36 if blsprice(S,T,K,UB,r,q,T 1) <= exp(−r*T 1)*optionvalue

37 volatility = NaN;
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38 else

39 [volatility, fval, exitFlag] = fzero(@objfcn2,[LB UB],options,...

40 S,K,r,T,optionvalue,q,T 1);

41 if exitFlag < 0

42 volatility = NaN;

43 end

44 end

45 else

46

47 Spot = S

48 Strike = K

49 Maturity = T

50 PriceSigma0T1 = blsprice(S,T,K,LB,r,q,T 1)

51 OptionValue = optionvalue

52 PriceSigma2T1 = blsprice(S,T,K,UB,r,q,T 1)

53 volatility = NaN;

54

55 end

56 end

57 end

58

59 function delta = objfcn(volatility, S, K, r, T, optionvalue,q)

60 callprice = blsprice(S,T,K,volatility,r,q);

61 delta = callprice − optionvalue;

62 end

63

64

65 function delta = objfcn2(volatility, S, K, r, T, optionvalue,q,T 1)

66 callprice = blsprice(S,T,K,volatility,r,q,T 1);

67 delta = callprice − exp(−r*T 1)*optionvalue;

68 end

A.2 Arbitrage-free smoothing of the call price surface

For Fengler’s algorithm to smooth the call price surface, we used the code below. This code assumes that we have

pre-smoothed the price surface such that the whole M ×N matrix of call prices is filled up with quotes. First thing

to notice is that we invoke a parameter Ns, which is there to make the algorithm work for pure call prices as well. It

is there to blow up the index level and call prices, since Matlab’s quadratic programming quadprog does not find a

solution when the difference between the call prices is very small. quadprog does not obey the boundaries of the

constraints in which it has to find a solution perfectly and therefore we change boundaries that should just be zero

to a value ε = 10−6.

1 function [CALL AF,PUT AF,IMPLV AF] = Fengler(stock,fmoneynessCALL AF,...

2 maturity,fmoneynessCALL,CALL,L,r,q,Nd,Ns,CALLonFixedGrid,...

3 CALL AFonFixedGrid,t)

4 %FENGLER is the numerical implementation of Fengler's algorithm step II,

5 % in which he smooths the implied volatilty surface using cubic splines.

6 % Input CALL is a full call surface on grid fmoneynessCALL X maturity.

7 % This is likely to have a lot of arbitrage.

8 % Input fmoneynessCALL AF is in order of magnitude of CALL
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9 % Input fmoneynessCALL the vector of size(CALL,2) with containing

10 % Input maturity is in years

11

12 % If Ns>1 while working with real stock and call prices, then the error

13 % will be that there is no feasible solution

14

15 % Set parameters and sizes

16 M = length(maturity);

17 Nk = size(fmoneynessCALL AF,2)−1; %Number of active strikes

18 CALL AF = zeros(M,Nk);

19 l = find(any(CALL,2),1,'first');

20

21 if size(fmoneynessCALL AF,1)==1 && CALL AFonFixedGrid == 1

22 fmoneynessCALL AF = repmat(fmoneynessCALL AF,[M 1]);

23 end

24 % Set scaling

25 Kmax = fmoneynessCALL AF(:,end);

26 fmoneynessCALL AF(:,end) = [];

27 fmoneynessCALL AF = fmoneynessCALL AF*Ns;

28 fmoneynessCALL = fmoneynessCALL*Ns;

29 CALL = CALL*Ns;

30 stock = stock*Ns;

31 Kmax = Kmax*Ns;

32

33 for m=M:−1:l
34

35 r loc(m) = max(1,round(maturity(m)*Nd));

36 forward = stock*exp( (r(r loc(m)) − q)*maturity(m) );

37

38 if CALL AFonFixedGrid == 1

39 K AF(m,:) = fmoneynessCALL AF(m,:);

40 K max = Kmax(m,1);

41 else

42 K AF(m,:)= fmoneynessCALL AF.*forward;

43 K max = Kmax*forward;

44 end

45

46 if CALLonFixedGrid == 1

47 % Plug in the fixed grid

48 K = unique(horzcat(fmoneynessCALL(m,:),K max,1.05*K max));

49 else %CALLonFixedGrid = 0

50 K = fmoneynessCALL.*forward;

51 end

52

53 N = length(K);

54 Q = zeros(N,N−2);
55 R = zeros(N−2,N−2);
56 h = diff(K);

57

58 for j=1:N−1
59 if j ˜=1

60 Q(j,j) = − h(j)ˆ(−1) − h(j−1)ˆ(−1);
61 Q(j+1,j) = h(j)ˆ(−1);
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62 Q(j−1,j) = h(j−1)ˆ(−1);
63 R(j,j) = (h(j−1)+h(j))/3;
64 if j˜=N−1
65 R(j+1,j) = h(j)/6;

66 R(j,j+1) = R(j+1,j);

67 end

68 end

69 end

70

71 Q(:,1) = [];

72 R(:,1) = [];

73 R(1,:) = [];

74

75 A = vertcat(Q,−R');
76 B = horzcat(vertcat(diag(ones(N,1)),zeros(N−2,N)),vertcat(zeros(N,N−2),L*R));
77 y = zeros(2*N−2,1);
78

79 if CALLonFixedGrid ==1

80 y(1:N,1) = horzcat(CALL(m,:),blsprice(stock,maturity(m),...

81 K max,0.3,r(r loc(m)),q),blsprice(stock,maturity(m),...

82 1.1*K max,0.3,r(r loc(m)),q));

83 else

84 y(1:N,1) = horzcat(CALL(m,:));

85 end

86

87 epsilon = 10ˆ(−6); %epsilon for avoiding machine precision

88 A1 = zeros(2,2*N−2);
89 B1(1:2,1) = 0;

90 A1(1,1) = 1;

91 A1(1,2) = −1;
92 A1(2,N−1) = −1;
93 A1(2,N) = 1;

94 B1(1,1) = exp(−r(r loc(m))*maturity(m))*(K(2)−K(1));
95 B1(2,1) = −epsilon;
96

97 % Ensure a non−negative call spread at strike N

98 if CALLonFixedGrid == 0

99 if K AF(Nk) < max(K)

100

101 idx = find(round(100*K AF(Nk))<=round(100*K),1,'last');

102 A1 = vertcat(A1,0*A1(1,:));

103 A1(3,idx−1) = −(K max − fmoneynessCALL AF(Nk));

104 A1(3,idx) = K max − fmoneynessCALL AF(Nk−1);
105 B1(3,1) = −10ˆ(−5); %Make larger if LIV at strike N is weird

106

107 else

108 warning('Convexity in maximum AF strike not guaranteed')

109 end

110 end

111

112 % Due to working so close to machine precision:

113 lb = ones(2*N−2,1)*epsilon;
114 lb(1:N) = lb(1:N); % Increase lower bound of call price
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115 lb(1) = exp(−q*maturity(m))*stock − exp(−r(r loc(m))*maturity(m))*K(1);

116 options = optimset('LargeScale','off');

117

118 if m==M

119 x0 = zeros(2*N−2,1);
120 x0(1:N) = exp(−q*maturity(m))*stock;
121 ub = ones(2*N−2,1);
122 ub(2:end) = Inf;

123 ub(1) = exp(−q*maturity(m))*stock;
124

125 x(m,:) = quadprog(B,−y,A1,B1,A',zeros(N−2,1),lb,ub,x0,options);
126 else

127 x0 = x(m+1,:);

128 ub = ones(2*N−2,1);
129 ub(N+1:end) = Inf;

130 ub(1:N) = exp(q*(maturity(m+1)−maturity(m))).*x(m+1,1:N);
131

132 % Close maturities give ub(1) < lb(1) sometimes. We make this

133 % call a bit more cheaper to let quadprog still continue

134

135 if ub(1)<lb(1)

136 warning('ub(1)<lb(1). Fixed')

137 idx = (ub(1:N)<lb(1:N));

138 lb(idx) = ub(idx)−epsilon;
139 end

140

141 if ub(N)<lb(N)

142 warning('ub(N)<lb(N). Fixed')

143 idx = (ub(1:N)<lb(1:N));

144 lb(idx) = ub(idx)−epsilon;
145 end

146

147 if ub(N)<lb(N)

148 warning('Change ub(idx)−epsilon')
149 end

150

151 x(m,:) = quadprog(B,−y,A1,B1,A',zeros(N−2,1),lb,ub,x0,options);
152 end

153

154 gamma = zeros(N,1);

155 gamma(2:N−1,1) = x(m,N+1:end);

156

157 if min(min(x(:,1:N)))<0

158 x(x<0) = eps; % Due to machine precision

159 end

160

161 if min(min(x(:,N+1:end)))<0

162 warning('Feng: There is a negative gamma. Increase lb of gamma');

163 end

164

165 % Pricing on AF grid

166 for n=1:Nk

167 if K AF(m,n)>=K max
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168 CALL AF(m,n)=0;

169 else

170

171 i = find(K <= K AF(m,n), 1, 'last' );

172 K(i) = round(K(i));

173 K AF(m,n) = round(K AF(m,n));

174

175 if i==N−1 %Moet eigenlijk N−1 zijn en als dan i=N dan probleem

176

177 b = (x(m,N−1) − x(m,N−2))/h(N−2);
178 a = x(m,N−1);
179

180 CALL AF(m,n) = ...

181 min(CALL AF(m,n−1)/2,max(+b*(K AF(m,n)−K(i)) + a, ....

182 blsprice(stock,maturity(m),K AF(m,n),0.35,r(r loc(m)),q)));

183

184 elseif i==N

185

186 CALL AF(m,n) = min(CALL AF(m,n−1)/2,...
187 blsprice(stock,maturity(m),K AF(m,n),0.35,r(r loc(m)),q));

188

189 elseif i>0

190

191 d = (gamma(i+1,1)−gamma(i,1))/(6*h(i));
192 c = gamma(i,1)/2;

193 b = (x(m,i+1)−x(m,i))/h(i) − h(i)*(2*gamma(i)+gamma(i+1))/6;

194 a = x(m,i);

195

196 CALL AF(m,n) = d*(K AF(m,n)−K(i))ˆ3 + c*(K AF(m,n)−K(i))ˆ2 + ...

197 b*(K AF(m,n)−K(i)) + a;

198

199 if CALL AF(m,n)<0

200 warning('Fengler:Negative call price. Change epsilon')

201 if m<M && n>1

202 CALL AF(m,n)= min(CALL AF(m,n−1),CALL AF(m+1,n))/2;

203 end

204 end

205

206 else % Case i=0

207

208 b = (x(m,2) − x(m,1))/h(1) − h(1)*gamma(2)/6;

209 a = x(m,1);

210

211 CALL AF(m,n) = b*(K AF(m,n)−K(1)) + a;

212

213 end

214 end

215 end

216 end

217

218 % If an arbitrage free PUT surface is requested

219 if nargout > 1

220 PUT AF = 0*CALL AF;
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221 for m=l:M

222 D r = exp(−r(r loc(m))*maturity(m));

223 D q = exp(−1.5*q*maturity(m));
224 for n=1:Nk

225 PUT AF(m,n) = CALL AF(m,n) + D r*K AF(m,n) − D q*stock;

226 end

227 end

228 end

229

230 % If an arbitrage−free IVS is requested

231 if nargout > 2

232 IMPLV AF = 0*CALL AF;

233 for m=l:M

234 for n=1:Nk

235 IMPLV AF(m,n) = blsimplvol(stock,maturity(m)−t,K AF(m,n),CALL AF(m,n),r(r loc(m)),q);

236 end

237 end

238 end

239

240 CALL AF = CALL AF/Ns;

241

242 end

A.3 Local implied volatility and price level

1 function x = LocImplVol(t,stock,callmatrix,maturity,strike,q)

2 %LV SURFACE returns the local implied volatility surface of callmatrix with size(maturity,strike−1)
3 % equals size(callmatrix)

4 % Input maturity = [T 1,...,T M]

5 % Input strike = [K 1,...,K {N+1}]
6

7 % l selects shortest maturity for which options are alive.

8 l = find(t<maturity,1,'first');

9

10 % Set sizes

11 M = size(callmatrix,1);

12 N = size(callmatrix,2);

13 x = 0*callmatrix;

14

15 for m=1:M

16 for n=1:N

17

18 if m==l

19

20 call0 = stock*exp(−q*(maturity(m)−t));
21 numerator = ( strike(n+1)−strike(n) )/( strike(n)*sqrt(maturity(m)−t) );

22

23 if n==1

24 denumerator1 = norminv( (call0−callmatrix(m,n) )/( strike(n)−0 ));

25 denumerator2 = norminv( (callmatrix(m,n)−callmatrix(m,n+1) )/( strike(n+1)−strike(n) ));
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26 elseif n==N

27 denumerator1 = norminv( (callmatrix(m,n−1)−callmatrix(m,n) )/( strike(n)−strike(n−1) ));

28 denumerator2 = norminv( (callmatrix(m,n)−0 )/( strike(n+1)−strike(n) ));

29 else

30 denumerator1 = norminv( (callmatrix(m,n−1)−callmatrix(m,n) )/( strike(n)−strike(n−1) ));

31 denumerator2 = norminv( (callmatrix(m,n)−callmatrix(m,n+1) )/( strike(n+1)−strike(n) ));

32 end

33

34 x(m,n) = numerator / (denumerator1 − denumerator2);

35

36 else

37

38 call0 = stock*exp(−q*(maturity(l)−t));
39 numerator = (callmatrix(m,n) − callmatrix(m−1,n) )/( maturity(m) − maturity(m−1) );

40

41 if n==1

42 denumeratornumerator = ( (strike(n)−0)*callmatrix(m,n+1) ...

43 − (strike(n+1)−0)*callmatrix(m,n) + (strike(n+1)−strike(n))*call0 )*(strike(n))ˆ2;

44 denumeratordenumerator = ( strike(n+1)−strike(n) )*( strike(n)−0 )*( strike(n+1)−0 );

45 elseif n==N

46 denumeratornumerator = ( (strike(n)−strike(n−1))*0 ...

47 − (strike(n+1)−strike(n−1))*callmatrix(m,n) ...

48 + (strike(n+1)−strike(n))*callmatrix(m,n−1) )*(strike(n))ˆ2;

49 denumeratordenumerator = ( strike(n+1)−strike(n) )*( strike(n)−strike(n−1) )...

50 * ( strike(n+1)−strike(n−1) );

51 else

52 denumeratornumerator = ( (strike(n)−strike(n−1))*callmatrix(m,n+1) ...

53 − (strike(n+1)−strike(n−1))*callmatrix(m,n) ...

54 + (strike(n+1)−strike(n))*callmatrix(m,n−1) )*(strike(n))ˆ2;

55 denumeratordenumerator = ( strike(n+1)−strike(n) )*( strike(n)−strike(n−1) )...

56 * ( strike(n+1)−strike(n−1) );

57 end

58

59 x(m,n) = sqrt(numerator/(denumeratornumerator/denumeratordenumerator));

60

61 end

62

63 if x(m,n)==0

64 warning('LocImplVol: There is a zero LIV')

65 end

66

67 if x(m,n) > 2

68 warning('LocImplVol: There is an extreme LIV too large.Change strike maturity grid')

69 x(m,n)=2;

70 end

71

72 if abs(imag(x(m,n))) > 0 | | isnan(x(m,n))==1

73 warning('LocImplVol: There is a negative LIV.')

74 x(m,n)=−0.01;
75 end

76

77 if numerator<0

78 warning('LocImplVol','Decreasing call price in m>l')
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79 end

80

81 end

82 end

83

84 end

1 function y= PriceLevel(t,CallMatrix,maturity,strike,RefStrike)

2 %PRICE LEVEL returns the price level of callmatrix with:

3 % Input maturity with numel(maturity) = size(CallMatrix,1).

4 % Input strike needs to contain a highest strike for which all prices are zero.

5

6 % Include the case RefStrike = N by adding an extra column of zeros

7 CallMatrix = horzcat(CallMatrix,zeros(size(CallMatrix,1),1));

8

9 % l selects shortest maturity for which options are alive.

10 l = find(t<maturity ,1,'first');

11

12 y = sqrt(maturity(l) − t)* norminv( (CallMatrix(l,RefStrike) − CallMatrix(l,RefStrike+1)) / ...

13 (strike(RefStrike+1) − strike(RefStrike)) );

14 end

A.4 Calibration

Coding the calibration turns out to be a tedious procedure. We first consider the method using realized volatility

and after that we turn to the method using principal component analysis.

Realized volatility

Calibration using realized volatility relies heavily upon Matlab’s implemented lsqcurvefit, which tries to find the best

data fit for nonlinear functions.

1 function [v,xi,RVs,Xvol,Yvol,LambdaCheck,resnorm] = ...

2 Calibrate RV(stock,PURECALLS AF,PureX,PureY,T liquid,MONEY total,RefStrike)

3 %CALIBRATE RV calibrates v and xi using realized volatility.

4 % Input stock and PureY are series of the stock and price level on the observations dates

5 % Input PURECALLS AF and PureX are [T 1,T 1+dt...,T M,T M+dt] x [K 1,...K N]

6 % T liquid = [T 1,...,T M]

7 % MONEY total = [K 1,...,K {N+1}]]
8 % RefStrike = K {nˆ*}
9

10 % Set parameters and sizes

11 D=1;

12 Nb = 252;

13 Nobs = length(stock);

14 M = length(T liquid);

15 Nk = length(MONEY total)−1;
16
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17 % Calculate realized volatility of LIV time series

18 for m=1:M

19 % Delete the +dt maturities

20 PureCalls AF(m,:,:) = PURECALLS AF(2*m−1,:,:);
21 for n=1:Nk

22 % Variance of X

23 Xvol(m,n) = sqrt(var(squeeze(PureX(m,n,:))));

24 % Quadratic Variance of X

25 %Xvol2(m,n) = sqrt(Nb*sum(diff(PUREx(2*m−1,n,:),1,3).ˆ2,3)/(Nobs−1));
26 end

27 end

28 Yvol = sqrt(var(PureY));

29 Xvol(Xvol<eps)=eps;

30

31 % CALCULATE VARIATIONS

32 RVstock = sqrt( Nb * sum(diff(log(stock)).ˆ2) / (Nobs−1) );

33 RVcalls = zeros(M,Nk);

34 for m=1:M

35 SUM = zeros(1,Nk);

36 for i=1:Nobs−1
37 SUM(1,:) = SUM(1,:) + (squeeze(PURECALLS AF(2*m,:,i+1)−PURECALLS AF(2*m−1,:,i))).ˆ2;
38 end

39 RVcalls(m,:) = sqrt(Nb * SUM / (Nobs−1));
40 end

41 RVstock = repmat(RVstock,[M 1]);

42

43 % Calibration on full surface

44 v xi = 0.1*horzcat(ones(M,size(PureX,2)),ones(M,1)); % [T 1,...,T M] x [K 1,...,K N xi]

45 x y = zeros(M,Nk+1);

46 for m=1:M

47 x y(m,:) = horzcat(PureX(m,:,end−1),PureY(end−1));
48 end

49

50 RVs = horzcat(RVstock,RVcalls);

51 options = optimset('TolFun',1e−8,'TolX',1e−8,'PrecondBandWidth',0,'MaxFunEvals',20000);
52 InitialCondition = zeros(size(v xi));

53

54 % Set lower and upper bounds for vˆm n and xi

55 ub = Inf*ones(size(InitialCondition));

56 lb = −Inf*ones(size(ub));
57 lb(:,end) = 0;

58

59 % FOR XI

60 %ub(1,end) = 1;

61 %lb(1,end) = 1−eps;
62

63 %ub(1,end) = Yvol;

64 %lb(1,end) = Yvol−eps;
65

66 % Keeping v equal to Xvol

67 %ub(:,1:end−1) = eps;

68 %lb(:,1:end−1) = −eps;
69
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70 % All parameters zero and xi == 1

71 ub(:,1:end−1) = Xvol(:,1:end);

72 lb(:,1:end−1) = −Xvol(:,1:end);
73 % lb(:,end,1) = 0;

74

75 [v xi,resnorm] = ...

76 lsqcurvefit(@(v xi,x y) lambda(v xi,x y,T liquid,MONEY total,D,...

77 PureCalls AF,RefStrike),InitialCondition,x y,RVs,lb,ub,options);

78

79 %v xi(v xi(:,1:end−1,:)>1)=1;
80 %v xi(v xi(:,1:end−1,:)<−1)=−1;
81 % Input x y = [T 1 (,...,T m)] x [K 1,...,K N y]

82 LambdaCheck = lambda(v xi,x y,T liquid,MONEY total,D,PureCalls AF,RefStrike);

83 v = v xi(:,1:end−1,:);
84 xi = squeeze(v xi(1,end,:));

85

86 end

87

88 function lambda = lambda(v xi,x y,maturity,strike,D,callmatrix,RefStrike)

89 %LAMBDA2 returns lambdastock = \lambdaˆm 0 and lambda = \lambdaˆ1 n for all m

90 % corresponding to every xˆm n, to be used for calibration of v and xi

91 % Input strike = K 1,...,K {N+1}
92 % Input maturity = T 1,..,T M

93 % Input X = [T 1,..,T M] X [K 1,..,K N]

94

95 % Input v xi = [T 1,..,T M] X [K 1,..,K N XI] x D

96 % Input x y = [T 1 (,...,T m)] x [K 1,...,K N y] x D if UsedForDaily = 0

97 % Input x y = [T 1 (,...,T m)] x [K 1,...,K N y] x (Nobs−1) if UsedForDaily = 1

98

99 % Input callmatrix = [T 1 (,...,T m)] x [K 1,...,K N y] x D

100

101 % Output lambda = [T 1 (,..,T M] X [K 1,..,K N] x D

102

103 v = v xi(:,1:end−1,:);
104 % v = [T 1 (,...,T M)] x [K 1,...,K N] x D

105 xi = squeeze(v xi(1,end,:))';

106 % |xi|ˆ2 = 1 if D=2 by

107 % xi(1,1) = sqrt(1−xi(1,2)ˆ2);
108 xi = repmat(xi,[size(v,1) 1]);

109 % xi = [T 1 (,...,T M)] x D

110

111 x = x y(:,1:end−1,:);
112 % x = [T 1 (,...,T M)] x [K 1,...,K N] x Nobs

113 y = x y(1,end,:);

114 y = squeeze(y);

115 % y = Nobs x 1

116

117 t = 0;

118 l = find(t < maturity,1,'first');

119 M = size(x,1);

120 N = size(x,2);

121

122 % Set sizes
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123 NewSum = zeros(D,1);

124 PreviousSum = 0*NewSum;

125 lambdastock = zeros(M,1,D);

126 lambdas = zeros(M,N,D);

127

128 for m=l:M

129 if m==l

130

131 Sum = zeros(N+1,1);

132 SumV = zeros(N+1,D);

133

134 if RefStrike<N

135 for n=RefStrike−2:N−1
136 Sum(n+2,1) = Sum(n+1,1) − (strike(n+1)−strike(n))/(strike(n)*x(l,n));
137 SumV(n+2,:) = SumV(n+1,:) − squeeze(v(1,n,:))'*(strike(n+1)−strike(n))/ ...

138 (strike(n)*x(l,n));

139 end

140 end

141

142 for n=RefStrike−1:−1:0
143

144 if x(m,n+1)˜=0

145 Sum(n+1,1) = Sum(n+2,1) + ...

146 (strike(n+2)−strike(n+1))/(strike(n+1)*x(l,n+1));
147

148 SumV(n+1,:) = SumV(n+2,:) + ...

149 squeeze(v(1,n+1,:))'*(strike(n+2)−strike(n+1))/(strike(n+1)*x(l,n+1));
150 end

151

152 end

153

154 for n=N:−1:0
155

156 if n˜=N

157 PreviousSum = squeeze(lambdas(m,n+1,:));

158 end

159

160 if n>0

161 NewSum = normpdf( (y+Sum(n+1,1))/sqrt(maturity(l)−t))*...
162 (xi(m,:)' − squeeze(SumV(n+1,:))')...

163 *(strike(n+1)−strike(n))/sqrt(maturity(l)−t);
164 else

165 NewSum = normpdf( (y+squeeze(Sum(n+1,1)))/sqrt(maturity(l)−t))*...
166 (xi(m,:)' − squeeze(SumV(n+1,:))')...

167 *(strike(n+1)−0)/sqrt(maturity(l)−t);
168 end

169

170 if n˜=0

171 lambdas(l,n,:) = PreviousSum + NewSum;

172 else

173 lambdastock(l,1,:) = PreviousSum + NewSum;

174 end

175 end
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176

177 else

178

179 lambdastock(m,1,:) = lambdastock(l,1,:);

180 Amatrix = A(x,maturity,strike); % N x N x M matrix

181 Bvec = zeros(N,D);

182

183 for n=1:N

184 Bvec(n,:) = squeeze(lambdastock(m,1,:))*beta(m,1,maturity,strike)*x(m,1)ˆ2 ...

185 + (squeeze(lambdas(m−1,n,:))+2*squeeze(v(m,n,:))*...
186 (callmatrix(m,n)−callmatrix(m−1,n)));
187 end

188

189 lambdas(m,:,:) = linsolve(Amatrix(:,:,m),Bvec);

190

191 end

192

193 lambda = horzcat(lambdastock,lambdas);

194

195 end

196

197 lambda = squeeze(lambda);

198

199 end

200

201 function A = A(x,maturity,strike)

202 % Input LIV x corresponding to [T 1,...,T M] X [K 1,...,K N]

203 % Input maturity = [T 1,...,T M]

204 % Input strike = [K 1,...,K {N+1}]
205 % Output A = N x N x M

206

207 M = size(x,1);

208 N = size(x,2);

209 A = zeros(N,N,M);

210

211 % Note that A for m=l will not be used

212 for m=2:M

213 for i=1:N

214 A(i,i,m) = 1+( beta(m,i,maturity,strike)+gamma(m,i,maturity,strike) )*x(m,i)ˆ2;

215 end

216 for i=1:N−1
217 A(i,i+1,m)= −gamma(m,i,maturity,strike)*x(m,i)ˆ2;
218 A(i+1,i,m)= −beta(m,i+1,maturity,strike)*x(m,i+1)ˆ2;
219 end

220 end

221 end

222

223 function beta = beta(m,n,maturity,strike)

224 % Input m>l=1

225 % Input maturity = [T 1,...,T M]

226 % Input strike is [K 1,...,K {N+1}]
227

228 numerator = ((strike(n+1)−strike(n))*(maturity(m)−maturity(m−1)).*(strike(n)).ˆ2 );
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229 if n==1

230 denumerator = ((strike(n+1)−0)*(strike(n+1)−strike(n))*(strike(n)−0));
231 else

232 denumerator = ((strike(n+1)−strike(n−1))*(strike(n+1)−strike(n))*(strike(n)−strike(n−1)));
233 end

234 beta = numerator / denumerator;

235 end

236

237 function gamma = gamma(m,n,maturity,strike)

238 % Input m>l=1

239 % Input maturity = [T 1,...,T M]

240 % Input strike is [K 1,...,K {N+1}]
241

242 if n==1

243 numerator = ((strike(n)−0)*(maturity(m)−maturity(m−1))*(strike(n))ˆ2 );

244 denumerator = ((strike(n+1)−0)*(strike(n+1)−strike(n))*(strike(n)−0));
245 else

246 numerator = ((strike(n)−strike(n−1))*(maturity(m)−maturity(m−1))*(strike(n))ˆ2 );

247 denumerator = ((strike(n+1)−strike(n−1))*(strike(n+1)−strike(n))*(strike(n)−strike(n−1)));
248 end

249 gamma = numerator / denumerator;

250 end

Principal component analysis

Calibration using PCA starts with the log-transformation of the local implied volatilities. Calculating the covariance

of a M × N matrix should be interpreted as taking the covariance between two vectors of length M · N . This

requires some ordering work done by the function covariance3D.

1 function [v,DdNormalizedSquared,CutOff] = Calibrate PCA(PureX,PureY,D,CutOffLevel,Nb)

2 %CALIBRATE PCA returns a calibrated v using principal component analysis

3

4 % Filter negative X − should not occur

5

6 if sum(sum(any(PureX<0)))>0

7 warning('Calibrate PCA: There is a negative LIV')

8 PureX(PureX<=0)=0.01;

9 end

10

11 % Get time series U by transforming to Z and dividing by sqrt(1/Nb)

12 U = sqrt(Nb)*diff(Ztransform(PureX),1,3);

13

14 % Covariance matrix (NxM) x (NxM)

15 K cov = covariance3D(U);

16

17 % size(h,3) is gelijk aan = D

18 h = PureX(:,:,end);

19 for d=1:D−1
20 h = cat(3,h,PureX(:,:,end−d));
21 end

22
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23 % Solve Cc*Aa = Bb*Aa*Dd or C*f = H*f*lambda

24 Bb = Integrate Shape(h);

25 Cc = Integrate ShapeCovariance(h,K cov);

26 [Aa,Dd] = eig(Cc,Bb);

27

28 % Normalize & order descending

29 [Dd,idx] = sort(diag(Dd)/norm(diag(Dd)),'descend');

30 Aa = Aa(:,idx);

31 Aa norm = vnorm(Aa);

32 for j=1:size(Aa,1)

33 Aa(j,:) = Aa(j,:)./Aa norm;

34 end

35

36 % Show the contribution per component

37 DdNormalizedSquared = Dd.ˆ2;

38 CutOff = find(cumsum(DdNormalizedSquared)>CutOffLevel,1,'first')

39

40 f k = eigenfunctions(Aa,h);

41

42 v = zeros(size(h));

43 for d=1:size(v,3)

44 v(:,:,d) = Dd(d)*f k(:,:,d);

45 end

46

47 v(:,:,CutOff+1:end)=[];

48

49 end

50

51 function Z = Ztransform(x)

52

53 Z = zeros(size(x));

54

55 Z(1,:,:) = log(x(1,:,:)) − 1./x(1,:,:);

56 Z(2:end,:,:) = log(x(2:end,:,:));

57

58 end

59

60 function COV = covariance3D(U)

61 %COV(U) calculates the covariance of a 3 dimensional matrix with with 2

62 % dimensional observations and size(U,3) observations

63

64 % Set sizes

65 [M N Nobs] = size(U);

66 COV = zeros(M,N,M,N);

67

68 % Make time series U zero−mean
69 U = U − repmat(mean(U,3),[1 1 size(U,3)]);

70

71 for m=1:M

72 for n=1:N

73 for mm=1:M

74 for nn=1:N

75 COV(m,n,mm,nn) = sum( (U(m,n,:)).*(U(mm,nn,:)) ) / ( Nobs−1 );
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76 end

77 end

78 end

79 end

80

81

82 end

83

84 function B = Integrate Shape(h)

85

86 % Set sizes

87 [M N D] = size(h);

88 B = zeros(D);

89

90 for i=1:D

91 for j=1:D

92 B(i,j) = sum(sum(h(:,:,i).*h(:,:,j)));

93 end

94 end

95

96 end

97

98 function C = Integrate ShapeCovariance(h,K)

99

100 % Set sizes

101 [M N D] = size(h);

102 C = zeros(D);

103

104 for i=1:D

105 for j=1:D

106 SUM = 0;

107 for m=1:M

108 for n=1:N

109 SUM = SUM + sum(sum(h(m,n,i).*squeeze(K(m,n,:,:)).*squeeze(h(:,:,j))));

110 end

111 end

112 C(i,j) = SUM;

113 end

114 end

115

116 end

117

118 function f k = eigenfunctions(f,h)

119 %EIGENFUNCTIONS calculates f k = sum i f {i,k} h i

120 % h = M x N x D

121

122 % Set sizes

123 [M N D] = size(h);

124 f k = zeros(M,N,D);

125

126 for i=1:D

127 for m=1:M

128 for n=1:N
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129 f k(m,n,i) = f(:,i)'*squeeze(h(m,n,:));

130 end

131 end

132 end

133

134 end

Evolution of the call price surface

For every Monte Carlo we have to repeat steps (ii)-(v) of section 4.3 to simulate the call price surface over time.

After the determination of ξ and v via the calibration procedure above, we let the call prices evolve over time in terms

of local implied volatility x and price level y via SDEs (3.9) and (3.10). Every time step involves the conversion of

these values into pure call prices. We translate these pure prices into real call prices on pre-specified time points

OutputSteps, which will give the output of the function split up in primarily stock price, call price and put price.

Additional output such as the process of the local implied volatilities, price level, pure stock price and pure call

prices can be requested, as well as the expected future and forward implied volatility surfaces.

1 function [Stock,Calls,Puts,X i,Y i,PureStocks,PureCalls,Exp Fut IVs,Forward IVs]= ...

2 TimeSeries2(PureStock tmin1,CallSurface tmin1,X tmin1,Y tmin1,tmin1,t,maturity,PricingStrikes,...

3 strike,dt,v,xi,Stock tmin1,RefStrike,r,q)

4 %TIME SERIES calculates the time evolution from the CallSurface tmin1, X tmin1 and Y tmin1 to t.

5 % Input t gives the date(s) on which we want to see the output

6 % Input maturity = [T 1,...,T M]

7 % Input strike = [K 1,...,K {N+1}]
8 % Input v = [T 1,...,T M] x [K 1,...,K N] x D

9 % Input xi = D x 1

10

11 if any(X tmin1<0)==1

12 warning('Negative LIV, change input TimeSeries2 to different LIV matrix')

13 end

14

15 % Set sizes and parameters

16 M = size(X tmin1,1);

17 N = size(X tmin1,2);

18 Nd = 360;

19 Ntimesteps = floor((max(t)−tmin1)/dt);
20 OutputSteps = floor((t−tmin1)./dt);
21 counter = 1;

22 D = length(xi);

23 X i = zeros(M,N,Ntimesteps+1);

24 X i(:,:,1) = X tmin1;

25 Y i = zeros(Ntimesteps+1,1);

26 Y i(1) = Y tmin1;

27 PureStocks = zeros(Ntimesteps+1,1);

28 PureStocks(1,1) = PureStock tmin1;

29 PureCalls = zeros(M,N,Ntimesteps+1);

30 PureCalls(:,:,1) = CallSurface tmin1;

31 RealStrikes = zeros(M,N);

32

33 for m=1:M
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34 r loc = max(1,round(maturity(m)*Nd));

35 forward = Stock tmin1*exp((r(r loc) − q)*maturity(m));

36 RealStrikes(m,:) = strike(1:end−1)*forward;
37 end

38

39 Stock = zeros(length(OutputSteps),1);

40 Calls = zeros(M,length(PricingStrikes)−1,length(OutputSteps));
41 Puts = Calls;

42 Exp Fut IVs = Calls;

43 Forward IVs = Calls;

44

45 % Perform Ntimesteps steps of size dt

46 for i=2:Ntimesteps+1

47

48 % Find first active maturity

49 l = find(tmin1+(i−2)*dt < maturity,1,'first');

50

51 % Lipschitz conditions

52 clear XI

53 V = zeros(size(v));

54 V(l:end,:,:) = v(1:end−l+1,:,:);
55

56 % Let V converge to zero and xi to norm 1

57 if any(xi==1)==1

58 ChangeXI=0;

59 else

60 ChangeXI=1;

61 end

62

63 %ChangeXI=0

64 if l==1

65

66 V(l,:,:) = v(l,:,:) − v(1,:,:)*(i−2)*dt/(maturity(l) − tmin1);

67

68 if ChangeXI==0

69 XI = xi;

70 else

71 XI = xi + (1/sqrt(D)−xi)*(i−2)*dt/(maturity(l) − tmin1);

72 end

73

74 else

75

76 V(l,:,:) = v(1,:,:) − v(1,:,:) *((i−2)*dt−maturity(l−1))/(maturity(l) − maturity(l−1));
77

78 if ChangeXI==0

79 XI = xi;

80 else

81 XI = xi + (1/sqrt(D)−xi)*((i−2)*dt−maturity(l−1))/(maturity(l) − maturity(l−1));
82 end

83 end

84

85 % Avoid dividing by zero

86 if (i−1)*dt == maturity(l)
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87 dtt = dt−eps(1);
88 else

89 dtt= dt;

90 end

91

92 % Calculate lambdas

93 [lambdastock,lambda] = ...

94 lambda2(tmin1+(i−2)*dtt,X i(:,:,i−1),Y i(i−1),V,XI,...
95 PureCalls(:,:,i−1),maturity,strike,RefStrike);
96

97 % Create D−dimensional Brownian motion movements

98 Normaldtt = sqrt(dtt).*randn(D,1);

99

100 % MOVEMENTS UNDER Pˆ*

101 VdW = zeros(M,N);

102

103 for d=1:D

104 VdW(:,:) = VdW + V(:,:,d)*Normaldtt(d);

105 end

106

107 MU = ...

108 mu(tmin1+(i−2)*dtt,Y i(i−1),XI,maturity);
109 Y i(i) = ...

110 Y i(i−1) + MU*dtt + XI'*Normaldtt;

111 U = ...

112 u(tmin1+(i−2)*dtt,D,X i(:,:,i−1),Y i(i−1),V,XI,...
113 lambda,PureCalls(:,:,i−1),maturity,strike,RefStrike);
114 X i(:,:,i) = ...

115 X i(:,:,i−1) + X i(:,:,i−1).*( U.*dtt + VdW);

116

117 [PureStocks(i,1), PureCalls(:,:,i)] = ...

118 CallPrice(tmin1+(i−1)*dtt,X i(:,:,i−1),Y i(i−1),maturity,strike,RefStrike);
119

120 % Obtain call, put and ivs surface at time t

121 if i == OutputSteps(counter)+1

122

123 Stock(counter) = Stock tmin1*PureStocks(i,1);

124 RealCalls=zeros*PureCalls(:,:,i);

125

126 for m=l:M

127 D q = exp(−q*(maturity(m) − (i−1)*dt));
128 Dforward = Stock tmin1*D q;

129

130 RealCalls(m,:) = Dforward*PureCalls(m,:,i);

131 end

132

133 % Change to F/S grid by Fengler

134 L smooth = 100;

135

136 % Calculates the call surface at the counter time on the stock

137 % moneynes grid.

138 [Calls(l:end,:,counter),Puts(l:end,:,counter)] = ....

139 Fengler(Stock(counter),PricingStrikes*Stock(counter),maturity(l:end)...
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140 −(tmin1+(i−1)*dtt),RealStrikes,RealCalls(l:end,:),L smooth,r,q,Nd,1,1,1);

141

142 counter = counter+1;

143 end

144 end

145 end

146

147 function MU = mu(t,y,xi,maturity)

148

149 l = find(t < maturity,1,'first');

150 MU = .5*y*( norm(xi)ˆ2 − 1 )/( maturity(l)−t );

151

152 end

153

154 function U = u(t,D,x,y,v t,xi t,lambda,callmatrix,maturity,strike,RefStrike)

155 %U calculates the drift coefficient in the SDE of LIV X

156 % Input x = [T 1,...,T M] x [K 1,...,K N]

157 % Output u = [T 1,...,T M] x [K 1,...,K N]

158

159 % Set paramters and sizes

160 l = find(t < maturity,1,'first');

161 M = size(x,1);

162 N = size(x,2);

163 U = zeros(size(M,N));

164

165 for m=l:M

166 if m==l

167

168 Sum = 0;

169 SumV = zeros(D,1);

170

171 if RefStrike<N

172 for n=RefStrike+1:N

173 if x(m,n)˜=0

174 v n = squeeze(v t(m,n,:)); % Column vector

175 SumV1 = SumV;

176 SumV = SumV + v n.*(strike(n+1)−strike(n))/(x(m,n)*strike(n));
177 Sum = Sum + (strike(n+1)−strike(n))/(x(m,n)*strike(n));
178 end

179 U(m,n) = norm(v n)ˆ2 + (.5 − .5*norm(xi t + SumV)ˆ2 ...

180 + (y+Sum')*(xi t' + SumV1')*v n )/( maturity(m)−t );

181 end

182 end

183

184 for n=RefStrike

185 v n = squeeze(v t(m,n,:));

186 SumV = 0*SumV;

187 SumV1 = SumV;

188 U(m,n) = norm(v n)ˆ2 + (.5 − .5*norm(xi t − SumV)ˆ2 ...

189 + (y+Sum')*(xi t' − SumV1')*v n )/( maturity(m)−t );

190 end

191

192 if RefStrike>1
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193 for n=RefStrike−1:−1:1
194 if x(m,n+1)˜=0

195 v n = squeeze(v t(m,n+1,:));

196 SumV1 = SumV;

197 SumV = SumV + v n.*(strike(n+2)−strike(n+1))/(x(m,n+1)*strike(n+1));
198 Sum = Sum + (strike(n+2)−strike(n+1))/(x(m,n+1)*strike(n+1));
199 end

200 U(m,n) = norm(v n)ˆ2 + (.5 − .5*norm(xi t − SumV)ˆ2 ...

201 + (y+Sum')*(xi t' − SumV1')*v n )/( maturity(m)−t );

202 end

203 end

204

205 else % m>l

206 for n=1:N

207 v n = squeeze(v t(m,n,:));

208 U(m,n) = ( (squeeze(lambda(m−1,n,:)−lambda(m,n,:)))'./ ...

209 (callmatrix(m,n)−callmatrix(m−1,n)) + 1.5*v n')*v n;

210 end

211 end

212 end

213 end

214

215 function [lambdastock,lambdas] = lambda2(t,x,y,v,xi,callmatrix,maturity,strike,RefStrike)

216 %LAMBDA2 returns lambdastock = \lambdaˆm 0 and lambda = \lambdaˆ1 n for all m

217 % corresponding to every xˆm n, to be used for TimeSeries

218 % Input strike = [K 1,...,K {N+1}]
219 % Input maturity = [T 1,..,T M]

220 % Input X = [T 1,..,T M] X [K 1,..,K N]

221 % Input v = [T 1,..,T M] X [K 1,..,K N] x [1,..,D]

222 % Input xi = D x 1

223 % Input x = [T 1,...,T m] x [K 1,...,K N]

224 % Input y = 1 x 1

225 % Input callmatrix = [T 1,...,T m] x [K 1,...,K N]

226 % Output lambdastock = D x 1

227 % Output lambda = [T 1,..,T M] X [K 0,...,K N] x D

228

229 l = find(t < maturity,1,'first');

230 M = size(x,1);

231 N = size(x,2);

232 D = length(xi);

233 %xi = repmat(xi,[1 size(v,1)])';

234

235 % Set sizes

236 NewSum = zeros(D,1);

237 PreviousSum = NewSum;

238 lambdastock = zeros(D,1);

239 lambdas = zeros(M,N,D);

240 Amatrix = A(x,maturity,strike); % N x N x M matrix

241

242 for m=l:M

243 if m==l

244

245 Sum = zeros(N+1,1);
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246 SumV = zeros(N+1,D);

247

248 if RefStrike<N

249 for n=RefStrike−2:N−1
250 Sum(n+2,1) = Sum(n+1,1) − (strike(n+1)−strike(n))/(strike(n)*x(l,n));
251 SumV(n+2,:) = SumV(n+1,:) − squeeze(v(1,n,:))'*(strike(n+1)−strike(n)) ...

252 /(strike(n)*x(l,n));

253 end

254 end

255

256 for n=RefStrike−1:−1:0
257 if x(m,n+1)˜=0

258 Sum(n+1,1) = Sum(n+2,1) + (strike(n+2)−strike(n+1))/(strike(n+1)*x(l,n+1));
259 SumV(n+1,:) = SumV(n+2,:) + squeeze(v(1,n+1,:))'*(strike(n+2)−strike(n+1))...
260 /(strike(n+1)*x(l,n+1));

261 end

262 end

263

264 for n=N:−1:0
265

266 if n˜=N

267 PreviousSum = squeeze(lambdas(m,n+1,:));

268 end

269

270 if n>0

271 NewSum = normpdf( (y+Sum(n+1,1))/sqrt(maturity(l)−t))*...
272 (xi − squeeze(SumV(n+1,:))')*(strike(n+1)−strike(n))/sqrt(maturity(l)−t);
273 else

274 NewSum = normpdf( (y+Sum(n+1,1))/sqrt(maturity(l)−t))*...
275 (xi − squeeze(SumV(n+1,:))')*(strike(n+1)−0)/sqrt(maturity(l)−t);
276 end

277

278 if n˜=0

279 lambdas(l,n,:) = PreviousSum + NewSum;

280 else

281 lambdastock(:) = PreviousSum + NewSum;

282 end

283 end

284

285 else % m>l

286

287 Bvec = zeros(N,D);

288

289 for n=1:N

290 Bvec(n,:) = lambdastock(:)*beta(m,1,maturity,strike)*x(m,1)ˆ2 ...

291 + (squeeze(lambdas(m−1,n,:))+2*squeeze(v(m,n,:))*...
292 (callmatrix(m,n)−callmatrix(m−1,n)));
293 end

294

295 lambdas(m,:,:) = linsolve(Amatrix(:,:,m),Bvec);

296

297 end

298 end
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299 end

300

301 function [A] = A(x,maturity,strike)

302 % Input LIV x corresponding to [T 1,...,T M] X [K 1,...,K N]

303 % Input maturity = [T 1,...,T M]

304 % Input strike = [K 1,...,K {N+1}]
305 % Output A = N x N x M

306

307 % Set sizes

308 M = size(x,1);

309 N = size(x,2);

310 A = zeros(N,N,M);

311

312 % Note that A for m=l will not be used

313 for m=2:M

314 for i=1:N

315 A(i,i,m) = 1+( beta(m,i,maturity,strike)+gamma(m,i,maturity,strike) )*x(m,i)ˆ2;

316 end

317 for i=1:N−1
318 A(i,i+1,m)= −gamma(m,i,maturity,strike)*x(m,i)ˆ2;
319 A(i+1,i,m)= −beta(m,i+1,maturity,strike)*x(m,i+1)ˆ2;
320 end

321 end

322 end

323

324 function [beta] = beta(m,n,maturity,strike)

325 % Input m>l=1

326 % Input maturity = [T 1,...,T M]

327 % Input strike is [K 1,...,K {N+1}]
328

329 numerator = ((strike(n+1)−strike(n))*(maturity(m)−maturity(m−1)).*(strike(n)).ˆ2 );

330 if n==1

331 denumerator = ((strike(n+1)−0)*(strike(n+1)−strike(n))*(strike(n)−0));
332 else

333 denumerator = ((strike(n+1)−strike(n−1))*(strike(n+1)−strike(n))*(strike(n)−strike(n−1)));
334 end

335 beta = numerator / denumerator;

336 end

337

338 function [gamma] = gamma(m,n,maturity,strike)

339 % Input m>l=1

340 % Input maturity = [T 1,...,T M]

341 % Input strike is [K 1,...,K {N+1}]
342

343 if n==1

344 numerator = ((strike(n)−0)*(maturity(m)−maturity(m−1))*(strike(n))ˆ2 );

345 denumerator = ((strike(n+1)−0)*(strike(n+1)−strike(n))*(strike(n)−0));
346 else

347 numerator = ((strike(n)−strike(n−1))*(maturity(m)−maturity(m−1))*(strike(n))ˆ2 );

348 denumerator = ((strike(n+1)−strike(n−1))*(strike(n+1)−strike(n))*(strike(n)−strike(n−1)));
349 end

350 gamma = numerator / denumerator;

351 end

71



A.5 Term sheet

Below we see the term sheet of a structured product. A term sheet is a non-binding agreement stipulating the

major terms and conditions of an investment. The structured product covered in the below term sheet regards a 2

year investment that will pay an annual coupon of 7.75% per annum and guarantees the repayment of the notional

as long as the 3 underlying shares do not trade below 49% of the strike price their, which is set ATM based on the

closing price of the shares as of 8 June 2012. The repayment is guaranteed as well when the barrier of 49% is

breached but the underlying shares have a closing price at maturity that is greater than the set strike price. When

they do not satisfy this condition, the investor will receive an amount equal to

min
(
SiT
Sit

∣∣∣∣ i = 1, 2, 3
)
,

where Si denotes the closing price of share i at maturity T or strike fixing date t.
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Barrier Reverse Convertible 
 

Indicative Terms, 31 May 2012 Subscription Period until 8 June 2012, 3:00 p.m. CET  
 

7.75% p.a. on Coca-Cola / McDonald's / Starbucks 
 

18 June 2012 until 18 June 2014 
 

Barrier Reverse Convertibles offer an attractive yield in the form of a coupon. Depending on the performance of the Underlyings, the Barrier Reverse Convertibles will either be 
redeemed at 100% or the Underlying with the worst performance will be delivered (see Redemption Mode). The Coupon will be paid out in any case. 
 

Your market expectations: sideways to slightly positive 
 

This structured product does not constitute a participation in a collective investment scheme within the meaning of the Swiss Federal Act on Collective 
Investment Schemes (CISA) and is therefore not subject to authorization and supervision by the Swiss Financial Market Supervisory Authority (FINMA). 

1. Product Description 
 

 

Swiss Sec. Number / ISIN 18 599 715 / CH0185997159 (WKN: CLA3NV) 
Ticker CLANP 
Product Type Yield-Enhancement Products (category 1230: Barrier Reverse Convertibles), according to the Swiss Derivative Map of the Swiss Structured 

Products Association (www.svsp-verband.ch). Detailed information on profit and loss prospects, as well as risks can be found in section 2 and 
3 on the following pages. 

 

 

Issuer Credit Suisse AG, Zurich, acting through its Nassau Branch, Bahamas 
Lead Manager Credit Suisse AG, Zurich 
Rating Aa1 (Moody's) / A+ (Standard & Poor's) / A (Fitch) 
Calculation / Paying Agent Credit Suisse AG, Zurich 
 

Underlyings Underlying Bloomberg ind. Strike Price ind. Barrier ind. No. of shares (Ratio) Exchange 
 The Coca-Cola Company share KO UN USD 75.06 USD 36.7794 13.3227 New York Stock Exchange
 

McDonald's Corporation share MCD UN USD 90.11 USD 44.1539 11.0975 New York Stock Exchange
 

Starbucks Corporation share SBUX UW USD 54.73 USD 26.8177 18.2715 Nasdaq 
 

 

Currency USD 
Issue Price 100% (USD 1,000) 
Issue Size USD 10,000,000 (10,000 Barrier Reverse Convertibles) 
Denomination USD 1,000 (Notional Amount) = 1 Barrier Reverse Convertible 
Initial Fixing Date 8 June 2012 
Payment Date 18 June 2012 (payment of the Issue Price) 
Strike Price 100% of the official closing price of the respective Underlying on the relevant Exchange on the Initial Fixing Date 
 

 

Coupon 7.75% p.a. (indicative), paid annually 
 (Interest Payment: 0.62% p.a., Premium Payment: 7.13% p.a.) (indicative)  
Coupon Payment Date(s) 18 June 2013, 18 June 2014 (Following Business Day Convention) 
Barrier 49% (indicative) of the respective Strike Price 
Barrier Period 11 June 2012 until 12 June 2014 (continuous monitoring) 
 

 

Redemption Mode a) If the Underlyings have never been traded at or below their Barriers during the Barrier Period, each Barrier Reverse Convertible will be 
redeemed at 100% of the Notional Amount (USD 1,000). 
 

 b) If at least one Underlying has been traded at or below its Barrier during the Barrier Period and if the Final Fixing Prices are equal to or higher 
than the respective Strike Prices, each Barrier Reverse Convertible will be redeemed at 100% of the Notional Amount (USD 1,000). 
 

 c) If at least one Underlying has been traded at or below its Barrier during the Barrier Period and if at least one of the Final Fixing Prices is lower 
than the respective Strike Price, the investor will receive the Underlying with the worst performance between Initial and Final Fixing Date in the 
respective above specified Ratio per Barrier Reverse Convertible. The respective fraction, calculated based on the Final Fixing Price of the 
delivered Underlying, will not be cumulated and will be paid out in cash. 
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Last Trading Date 12 June 2014 (until 12:00 p.m. CET) 
Final Fixing Date 12 June 2014 
Final Fixing Price 100% of the official closing price of the respective Underlying on the relevant Exchange on the Final Fixing Date 
Redemption Date 18 June 2014 (redemption of the Barrier Reverse Convertibles) 
 

 

Minimum Trading Lot USD 1,000 (1 Barrier Reverse Convertible) 
Listing SIX Swiss Exchange listing will be applied for. 
Clearing SIX SIS Ltd, Clearstream Banking, Euroclear 
Price Setting Secondary market prices are quoted "clean", i.e. the accrued Coupon is not included in the price. 
Secondary Market Under normal market conditions, secondary trading will be maintained throughout the term of the product, during which the bid and offer prices 

may differ (spread). 
Coupon Basis 30/360 (unadjusted) 
Settlement Cash settlement in USD / physical delivery 
 

 

Publications www.credit-suisse.com/derivatives, SIX Telekurs Ltd (publication of incidental changes and adjustments to the terms and conditions of the 
Barrier Reverse Convertibles, e.g. in consequence of an extraordinary event); Bloomberg <CSZH>, Reuters <CSZEQ00> (publication of 
prices) 

Form of Securities Barrier Reverse Convertibles are issued in the form of unverurkundete Wertrechte (dematerialised securities) by registration with SIX SIS Ltd. 
The Barrier Reverse Convertibles will not be issued in physical or certificated form, but will be maintained as intermediated securities while they 
are outstanding. 

Sales Restrictions USA, U.S. Persons, UK, European Economic Area, Bahamas 
Governing Law / Jurisdiction Swiss law; exclusive place of jurisdiction is Zurich 1 
 

 

Fees The distributor or the investor's bank may impose an agio of up to 2% on the Issue Price. Furthermore, the distributor or the investor's bank 
may impose a commission/brokerage fee. 
In connection with the product, the Issuer and/or its affiliates may pay to third parties, or receive from third parties as part of their 
compensation or otherwise, one-time or recurring remunerations (e.g. placement or holding fees). Please contact Credit Suisse AG for further 
information. 

 

 

Taxes Stamp duties 
No Swiss stamp tax will be imposed at issuance (primary market). However, Swiss security transfer stamp tax of 0.15% will be charged to 
Swiss resident investors on secondary market transactions (TK-Code 22). The investor will have to bear Swiss security transfer stamp tax and 
usual fees in case of delivery of an Underlying, based on the Strike Price. 

Withholding tax 
This product is not subject to Swiss withholding tax.  

Income tax 
The Interest Payment is subject to Swiss income tax for Swiss resident private investors. The Premium Payment qualifies as tax free capital 
gain for Swiss resident private investors and private assets.  

EU savings tax 
Certain payments made by Swiss paying agents to EU resident individuals will be subject to EU withholding tax. The Swiss paying agents may 
therefore withhold such amounts as are necessary to pay the EU withholding tax (TK-Code 6; "in scope"). 
 
The aforementioned taxes are valid at the time of launch of the issue and are not exclusive. Any taxation will depend on the investor's personal 
circumstances. The relevant tax laws or the regulations of the tax authorities are subject to change. Credit Suisse AG expressly excludes all 
liability in respect of any tax implications. 

 

2. Profit and Loss Prospects 
 

Each Barrier Reverse Convertible entitles its holder to receive the Coupon according to the coupon payment schedule. The Coupon will be paid out regardless of the 
performance of the Underlyings. The Barrier Reverse Convertibles are conditionally capital protected, i.e. they are capital protected as long as no Barrier has been breached. 
The Barrier Reverse Convertibles will be redeemed according to the Redemption Mode. If none of the Underlyings breaches its Barrier or if all Final Fixing Prices are equal to or 
higher than the respective Strike Prices, the investor will receive 100% of the Notional Amount. If at least one Underlying breaches its Barrier and if at least one of the Final 
Fixing Prices is lower than the respective Strike Price, the investor will receive the Underlying with the worst performance between Initial and Final Fixing Date in the respective 
above specified Ratio per Barrier Reverse Convertible. The respective fraction, calculated based on the Final Fixing Price of the delivered Underlying, will not be cumulated and 
will be paid out in cash. 

The potential profit is limited to the Coupon. The maximum loss an investor may sustain consists in a total loss of the invested amount. 
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3. Risks 
 

General Risks of Structured Products 
This investment product is a complex structured financial instrument and involves a high degree of risk. It is intended only for investors who understand and are capable of 
assuming all risks involved. Before entering into any transaction, investors should determine if this product suits their particular circumstances and should independently assess 
(with the assistance of any professional advisers) the specific risks (maximum loss, currency risks, etc.) and the legal, regulatory, credit, tax and accounting implications. The 
Issuer and/or its affiliates make no representation as to the suitability or appropriateness of this investment product for any particular investor or as to the future performance of 
this investment product. This document does not replace a personal conversation with your relationship manager, which is recommended by Credit Suisse AG before any 
investment decision. 

This investment product is a derivative financial instrument and does not constitute collective capital investments within the meaning of the Federal Act on Collective Investment 
Schemes (CISA). Accordingly, it is not subject to the regulations of the CISA or the supervision of the Swiss Financial Market Supervisory Authority (FINMA). Consequently, the 
investor does not have the benefit of the specific investor protection provided by the CISA. 

The Issuer has no obligation to invest in the Underlyings and investors have no recourse to the Underlyings or distributions, if any, made based on the Underlyings. From time to 
time the Issuer may engage in transactions with regard to the Underlyings or derivatives thereon. In addition, the Issuer may enter into certain transactions for purposes of 
hedging against risks emanating from issuing structured products. Such transactions may have a (potentially adverse) effect on the performance of the Underlyings or the 
performance of the product itself. 

Product-Type-specific Risks 
An investment in these Barrier Reverse Convertibles is not the same as an investment in the Underlyings. Changes in the market value of the Underlyings may not result in a 
comparable change in the value of the Barrier Reverse Convertibles. The potential loss associated with an investment in these Barrier Reverse Convertibles is limited to the 
difference in percent between the Strike Price and the value of the delivered Underlying on the Redemption Date, which may lead to a complete loss of the investment made. 
Nevertheless, the Barrier Reverse Convertibles may trade considerably below the Issue Price during their term, regardless of any Barrier being reached or breached. The 
Coupon will be paid in any case. For further details please consult the risk disclosure brochure "Special Risks in Securities Trading", which can be obtained free of charge from 
Credit Suisse AG.  

Currency Risk 
The investor may be exposed to a currency risk if the product is denominated in a currency other than that of the country in which the investor is resident. Currency fluctuations 
may therefore have an impact on the value of the investment. 

Issuer Risk 
The investor is subject to the risk of an impairment of the Issuer's financial strength; therefore, the value of this investment does not only depend on the performance and 
quality of the Underlyings but also on the Issuer's creditworthiness. The product is a direct, unsubordinated, unconditional and unsecured obligation of Credit Suisse AG and 
ranks equally with all of its other obligations of the equivalent type. The rating of Credit Suisse AG is Aa1 (Moody's) / A+ (Standard & Poor's) / A (Fitch). Credit Suisse AG is 
subject to the supervision of FINMA. 
 

 

This document constitutes marketing material and is not the result of a financial analysis or research and therefore not subject to the Swiss Bankers 
Association's "Directives on the Independence of Financial Research". This document has been produced by Credit Suisse AG, Zurich, solely for information 
purposes and does not constitute an offer or a solicitation of an offer to purchase or sell any securities. Detailed information on Credit Suisse AG can be 
found in the Base Prospectus for the issuance of Warrants of Credit Suisse AG, dated 27 June 2011, under the heading 'Description of the Issuer' (pages 82 
to 112). The legally binding terms as well as the Base Prospectus with regard to the description of the Issuer may be obtained directly from Credit Suisse AG.

For products not listed on the SIX Swiss Exchange this document constitutes the simplified prospectus as defined by art. 5 CISA. It does not constitute a 
listing prospectus under the rules of the SIX Swiss Exchange or a prospectus in the sense of art. 652a resp. 1156 of the Swiss Code of Obligations. 
 


