
Master of Science Thesis

wxHaskell for the web
Substituting C++ with Haskell and JavaScript

by

Ruben Alexander de Gooijer

25 Oktober, 2012

ICA-3508617

Center for Software Technology
Dept. of Information and Computing Sciences
Utrecht University
Utrecht, the Netherlands

Daily Supervisor:
dr. A. Dijkstra

Second Supervisor:
prof. dr. S.D. Swierstra

Abstract

Traditionally applications were built to run on top of a desktop platform, but this is
changing rapidly and the web is now becoming the default deployment platform.
Especially, with the new HTML5 standard the web becomes an even more attrac-
tive platform for many hybrid client/server applications. In Haskell one of the goto
libraries for building graphical user interfaces is wxHaskell. We are motivated by the
idea of using the high level abstractions of wxHaskell to develop type-safe client-
side web applications in Haskell. With the recent advent of a JavaScript back-end
for UHC this has become an attainable goal. As a proof of concept we have ported
a feature-light version of the wxAsteroids game from the original wxHaskell paper
to the browser leaving the source code almost untouched. We have developed
several tools that have helped us realizing the implementation. First, we improved
the existing JavaScript FFI, its surrounding infrastructure, and created interfaces
to the necessary platform interfaces. Second, we have developed a library for
Object-Oriented programming in Haskell, inspired by OOHaskell, that contrary to
OOHaskell does not dependent on functional dependencies. This library has en-
abled us to maintain the wxHaskell interfaces while substituting the wxWidgets C++
implementation for one written in Haskell implemented in terms of HTML5.

2

Contents

1 Introduction 7
1.1 On a historical note . 7
1.2 Motivation . 8
1.3 Research problem . 9
1.4 Outline . 9

2 Background 11
2.1 On the role of GUI toolkits . 11

2.1.1 Graphical representation . 11
2.1.2 User input . 14
2.1.3 Application integration . 14

2.2 wxHaskell: a quick overview . 15
2.3 The target platform . 18

2.3.1 DOM . 18
2.3.2 Graphical representation . 18
2.3.3 Interactive web pages with JavaScript 19

2.4 UHC . 19

3 Exploring the design space 21
3.1 Port wxC in Haskell (A) . 21
3.2 Port wxC in JavaScript (B) . 23
3.3 Replace wxCore with a Haskell implementation (C) 23
3.4 Conclusion . 24

4 Interfacing with JavaScript 25
4.1 Introduction . 26
4.2 Typing the Untyped . 28

4.2.1 A model for JavaScript types 28
4.2.2 Type checking . 30
4.2.3 Representing union types . 32

4.3 Marshalling . 37
4.4 JavaScript Idioms . 38

4.4.1 Instantiating objects . 38
4.4.2 Higher-order call . 39
4.4.3 Exporting Haskell functions 40
4.4.4 Behavior of this . 40
4.4.5 Optional arguments . 41
4.4.6 Global state . 42

3

CONTENTS CONTENTS

4.4.7 Variadic functions . 43
4.5 Linking JavaScript libraries . 44
4.6 Related work . 45

4.6.1 York Haskell Compiler . 45
4.6.2 GHCJS . 46
4.6.3 Haste . 46

4.7 Conclusion, Discussion & Future Work 47

5 A lightweight OO DSL 49
5.1 Introduction . 50

5.1.1 What is Object-Oriented programming? 50
5.1.2 Outline . 51

5.2 The ‘shapes‘ example . 51
5.2.1 Shapes in Java . 52
5.2.2 Shapes in Haskell . 54

5.3 Objects in Haskell . 57
5.3.1 Objects as tail-polymorphic records 57
5.3.2 Constructor arguments . 60
5.3.3 Construction-time computations 61
5.3.4 Semi-explicit parameterized classes 62
5.3.5 Nested object generators . 62
5.3.6 Self-referential objects . 63
5.3.7 Single inheritance with override 65
5.3.8 Class-polymorphic functionality 69
5.3.9 Orphan methods . 70

5.4 A type-perspective . 70
5.4.1 Explicit casting . 70
5.4.2 Self-returning methods . 83
5.4.3 Parameterized classes . 86

5.5 Scraping the boilerplate . 90
5.6 Discussion . 91

5.6.1 Usability . 91
5.6.2 Efficiency . 91
5.6.3 Future work . 92

6 wxAsteroids in the web browser 93
6.1 wxAsteroids . 94
6.2 Design . 96

6.2.1 Approach . 96
6.2.2 Objects . 97
6.2.3 Organization . 98
6.2.4 Mapping to the web browser 98

6.3 Implementation details . 99
6.3.1 Subtyping . 99
6.3.2 Interfacing with the DOM . 101
6.3.3 Implementing wxTimer . 102

6.4 Conclusion . 106

7 Conclusion, Contributions & Future Work 107

4

CONTENTS CONTENTS

A Appendix 111
A.1 XLib Hello World . 111
A.2 LightOO Macros . 112

5

CONTENTS CONTENTS

6

Chapter 1

Introduction

1.1 On a historical note

The internet has become a low cost model for delivering content and applications
to end-users. Although historically based around a page-centric model there re-
cently has been a shift taking place diverging from latter model to one wherein the
page becomes a more active participant in the interaction of the user with the ap-
plication [29]. Essentially taking the page-centric model and transforming it into a
more desktop like experience where updates to the graphical user interface appear
more or less instantaneous. To take advantage of the high reachability, central-
ized maintenance, and low distribution costs of the web platform many applications
nowadays start out their life as web applications. Furthermore, many traditional
applications that could benefit from the web platform are being rewritten such that
they can be deployed on the web. A new class of Internet applications has come
to light, often coined as the next generation of Internet applications or Rich Inter-
net Applications [6], which try to offer the high level of interactivity that users are
accustomed to from desktop applications.

Because the Internet standards were not initially built with this particular usage in
mind there are many issues that needed to be resolved to develop RIAs on top of
these standards. Several companies have tried to workaround the limitations by
providing the extra functionality through a browser plugin [31, 64, 63]. However,
with the recent resurgence in the amount of browsing platforms and the availability
of more adequate standards have rendered these approaches partially redundant
and or inadequate. The same capabilities are now either built in natively or can be
simulated on top of the new standards [61].

Although the capabilities of web browsers have significantly improved they still lack
many of the functionalities that desktop programmers have grown accustomed to.
This gap in functionality is bridged by the development of graphical user interface
(GUI) toolkits that offer things like layout and window management, more compre-
hensive widget sets, and mechanisms to integrate application data. Accessory to
the development of RIAs is the increasing complexity of client-side applications.
The client-side can no longer be regarded as merely a view on the application’s

7

1.2. Motivation Introduction

data. It has gained a multitude of responsibilities such as the management of com-
plex application state, synchronization of state with the server, validation of user
input, etc. Consequently the client becomes tightly coupled with the server and
needs to have in-depth knowledge about its data types and calling conventions.
This can very quickly become a maintenance problem and a source for bugs when
the different tiers (client, server, database) use different formalisms without provid-
ing some automated mapping between them [15]. The dynamically typed language
JavaScript which is at the foundation of every interactive web application worsens
the problem [47, 46]. Many people attempted to mitigate the problems by creating
new languages [33, 10, 4], appropriate tooling [9], libraries [65, 54, 45], and any
combination of these.

1.2 Motivation

The recent addition of a JavaScript back-end to the Utrecht Haskell Compiler (UHC)
[19] opens up the possibility to create client-side web applications using Haskell.
The compiler translates the UHC Core language (a minimal functional language) to
a JavaScript program which may run directly in the browser (supported by a small
runtime system).

The use of Haskell will likely induce a performance penalty, but in return offer many
advantages over JavaScript: type safety, laziness, compiler optimizations, etc. Fur-
thermore, thinking ahead, when augmented with a Haskell server-side component
it is possible to automatically get data type consistency between client and server.
This tier-less approach to programming web applications resembles that of the
Google Web Toolkit (GWT) [34] and the proprietary WebSharper [8].

To move Haskell forward into the space of web programming, and in particular
that of RIAs the presence of tooling for creating Graphical User Interfaces (GUI) is
key. Although Haskell has already quite some existing GUI toolkits 1, none of them
run in the browser. There has been a previous attempt to alleviate this problem,
but unfortunately it depends on a proprietary (albeit widespread) browser plugin
[56]. We have similar goals, but do not want to depend on a proprietary plugin that
bypasses the web standards.

Because there are already many Haskell libraries for constructing desktop GUIs
in Haskell it makes sense to retrofit an existing one such that it may run in the
web browser. This allows us to benefit from years of experience constructing pro-
gramming interfaces for GUI development and expedites porting existing desktop
applications to the web (typically considered a large undertaking).

There are two disparate lines of programming GUIs in Haskell: using Functional
Reactive Programming (FRP), or the traditional imperative event handler based
approach. With FRP widgets (Window Gadgets) are typically viewed as stream
processors - taking an input stream and producing an output stream. GUIs are
formed by composing widgets using combinators that take two or more widgets
and compose them into a single larger widget. The combinators designate how

1For a full list of the available GUI libraries in Haskell see http://www.haskell.org/haskellwiki/
Applications_and_libraries/GUI_libraries

8

http://www.haskell.org/haskellwiki/Applications_and_libraries/GUI_libraries
http://www.haskell.org/haskellwiki/Applications_and_libraries/GUI_libraries

Introduction 1.3. Research problem

the constituent inputs are routed such that they may become outputs of the larger
whole. A GUI application, from the FRP perspective, is therefore often viewed
as a network of communicating widgets in which data flow is made explicit. The
imperative approach is less explicit about its data flow. A typical imperative-style
GUI is constructed by creating new instances of widgets, composing them in a tree-
like structure, connecting callbacks to widgets allowing an application to react to
event occurrences, and at the end initialize the GUI application by entering an event
loop that detects events and dispatches them to the appropriate event handlers.
This is the more traditional approach to program GUI applications and its lack of
explicit data flow makes is much more flexible compared to the FRP approach at
the expense of purity and ease of reasoning.

FRP is still active research and is slowly moving out of academia, but has thus far
not yet really caught on as a popular way to construct GUIs. There also seems
to be no general consensus on which FRP approach is best. On the contrary, the
imperative approach has seen wide adoption with many GUIs constructed using
it. Furthermore, existing FRP seem to often use advanced language extensions
not supported by UHC which would make porting the interface arduous or maybe
even impossible. Because of this practical issue and the fact that FRP is not well
established as a GUI programming technique we lean towards the safe side and
opt for a more imperative approach.

The most prominent imperative-style GUI toolkits for Haskell are Gtk2HS [23] and
wxHaskell [42]. Both wrap existing C/C++ GUI toolkits (GTK+ [26], wxWidgets [57])
in Haskell and expose a more abstract interface. Comparatively wxHaskell offers
nicer abstractions than Gtk2Hs does. The difficulty with both libraries is that they
provide a mere interface to the functionality implemented in a foreign language.
Porting any of them to the browser would require the reimplementation of this func-
tionality. Because wxHaskell already works across desktop platforms and offers
more evolved abstractions we choose to base our work on wxHaskell.

1.3 Research problem

The absence of an approach for programming client-side web GUIs in Haskell has
led us to formulate our problem through the following research question:

• How can wxHaskell be made to run in the web browser?

In order to provide a suitable answer to this insidiously simple question we will
investigate the different options for making wxHaskell run in the web browser, pick
one, and demonstrate its viability by porting the implementation of wxAsteroids,
a clone of the classic Asteroids game also used by wxHaskell to demonstrate its
design and capabilities.

1.4 Outline

The outline of this thesis is as follows. In chapter 2 we provide some background
information on GUI toolkits, the architecture of wxHaskell, the web browser plat-

9

1.4. Outline Introduction

form, and the UHC compiler. Chapter 3 explores the different options for porting
wxHaskell to the web. After picking a particular implementation path chapter 4 con-
tinues with developing the necessary tooling for interfacing with JavaScript from
within Haskell. Subsequently, in chapter 5 we develop an OO programming li-
brary which we use in chapter 6 to implement a subset of wxHaskell necessary for
the wxAsteroids game to work. Finally, we wrap up with a conclusion in chapter
7.

10

Chapter 2

Background

2.1 On the role of GUI toolkits

Before GUI toolkits existed every programmer constructed its own interface ele-
ments. Obviously the result was a lack of consistency between different user inter-
faces and abysmal reuse. This state of affairs led to the invention of the GUI toolkit
to aid consistency and rapid development through reuse. Toolkits typically provide
well integrated library of standardized widgets and a framework that deals with the
low-level intricacies of graphic manipulation and event handling. The application
programmer no longer needs to worry about consistency and may reuse existing
interface elements. The GUI toolkit is a generic piece of software and as such does
not deal with application specific logic. However, through its framework it provides
the programmer with the possibility of integrating application specific functions that
react to user input.

GUI toolkits have strong roots inside the object-oriented programming language
(OOP) community [40], one of the many reasons why todays GUIs are more often
created in object-oriented languages. Although GUI programming is not particularly
tied to OOP, there is a clear correspondence between OOP concepts and those
necessary to effectively model user interfaces. Object identity, state encapsulation,
and inheritance all play an important role in many current GUI toolkit implementa-
tions.

Figure 2.1 shows where a GUI toolkit is typically situated on a desktop stack. Al-
though the figure represents Unix-like environments it is quite similar to that of other
operating systems. Libraries like GTK+ [26] and Qt [50] are situated at the founda-
tional level and communicate through XLib with the X Window System [55].

The following sections describe the constituents of a GUI toolkit from a high level
perspective.

2.1.1 Graphical representation

From an abstract interface description to pixels on the screen.

11

2.1. On the role of GUI toolkits Background

Figure 2.1: Unix desktop GUI stack [28].

An important part of what GUI libraries facilitate is the composition of an abstract
interface description out of widgets. It is the responsibility of the GUI library to
effectively communicate this abstract description to the underlying layer instructing
a display device to display the correct image. Providing a balance between flexibility
and standardization of graphical elements is key to every GUI library. Consequently
widgets are typically parameterized over a large class of attributes (border style,
background color, ...) allowing the programmer to influence the style and eventual
location of their widgets. Often, however, the exact placement of widgets is not
desirable per se and so called layout managers may be used that take in many
widgets and provide for the automatic alignment of widgets.

By virtue of being a communication mechanism GUIs never exist in isolation but
take the role of intermediary between a human and application. The host operating
system may run multiple applications simultaneously of which an arbitrary number
may use the screen to display their GUIs. The screen thus receives a stream of
possibly interleaved drawing instructions and it suddenly becomes unclear what the
end result will be. For instance, with access to the whole screen applications may
erase (partially) each others GUIs by drawing at overlapping coordinates. To allow
fair use of the display hardware and resolve the ambiguity of what will be displayed
on screen a central coordination mechanism must be put in place.

The X Window System [55] is such a central coordinating system. It defines the
concept of a window, a looking glass through which the user can interact with a
computer program. In practical terms this means that it is a rectangular area on
the screen capable of displaying graphics and receiving input. Every window is
contained within another window. The root window is at the top of the window
hierarchy and spans the whole screen. The direct children of the root window are
called top-level windows and are treated as special by what is called a Window
Manager. They are typically decorated with a title bar, a set of buttons (minimize,
maximize, close), and may be moved around and resized. The window concept
helps X with distinguishing applications allowing it to handle clipping 1 problems

1Clipping is a procedure that identifies if a picture is outside or inside a particular "clipping" area

12

Background 2.1. On the role of GUI toolkits

effectively and implement flexible and efficient event handling mechanisms (see
2.1.2).

Figure 2.2: A possible placement of windows.
http://en.wikipedia.org/wiki/File:Some_X_windows.svg

On Unix-line operating systems the X Window System [?] is the most commonly
used windowing system and many modern GUI toolkits are built on top of it [26, 50].
It provides a network-transparent window system through a client-server architec-
ture where the server distributes user input to and accepts display instructions from
its clients. The client communicates with the server and vice versa through the X
Window Protocol. It is however uncommon that this happens directly and most
GUI toolkits built on top of the XLib library [30]. Worthy of mentioning is that the
client and server need not be on different machines and the standard situation on
a desktop environment is that both reside on the same machine.

Figure 2.3: A GUI running on Ubuntu 11.10 using XLib see appendix A.1.

Figure 2.3 shows the output of a traditional "Hello World" program written using
XLib. What happens is that the application (client) opens a connection to the X
server and requests the creation of a new top-level window. The request is inter-
cepted by the Window Manager which reparents the window such that it becomes
a descendant of a decorated window with a title bar and control buttons. The pro-
gram proceeds by sending a command instructing the X server to draw the string
"hello world" to the screen. The server delegates the request to the device driver
responsible for managing the graphics hardware.

Now that we almost hit rock bottom we move back up the layers of abstraction
and just above the GUI toolkit we find what are called User Interface Markup Lan-
guages. These languages, often dialects of Extensible Markup Language (XML),
provide a declarative way of specifying a GUI making it easier to construct GUIs
by not bothering the programmer with the distractions of the implementation lan-

13

http://en.wikipedia.org/wiki/File:Some_X_windows.svg

2.1. On the role of GUI toolkits Background

guage. Furthermore, the implementation of visual construction and manipulation
tools becomes arguably easier. The presence of these tools ushered in a new
era in which the programmer is no longer the predominant factor in the process
of constructing GUIs (at least for the graphical part). There is a scala of different
UI markup languages but some of the common ones are: XUL, XAML, and the
arguably incomplete XHTML.

2.1.2 User input

From a mouse click to a button clicked event

Typically a user interacts with a computer program through input devices such as
a mouse, keyboard, or touch pad. Upon interaction the device drivers should be
aware of changes in device state. How this happens actually depends on the input
device. It may happen through a hardware interrupt or by continuously polling for
changes. A GUI registers interest in device state changes. Once a state change
occurs the GUI is notified and it invokes the appropriate application logic which
may perform arbitrary computations and provide the user with visual feedback. The
essence of this process is clearly captured by Fruit [16], expressing the top level
GUI as a Yampa [17] signal function (SF):

type SimpleGUI = SF GUIInput Picture

The GUIInput type is a snapshot of the input device state. The Picture type contains
the new visual representation in response to the GUIInput. Although accurate as a
top level description it is not representative for internal widgets, whom are likely to
observe additional arbitrary values:

type GUI a b = SF (GUIInput, a) (Picture, b)
SimpleGUI � GUI () ()

In between observing a state change at the device driver level and transforming it
into a high level event a lot may happen. Take for example any GUI toolkit based
on top of the X Windowing System. When X receives input it designates the owner
window. The window abstraction makes this process efficient and straightforward.
Each window is assigned a particular part of the screen, stacking order, and fo-
cus. Based on these properties X can distill which windows are visible and thus
eligible for receiving events. Dependent on whether the window owner (an appli-
cation) has registered interest in the particular event the event will be discarded or
dispatched to the application. The application (GUI toolkit) takes notice of these
events through what is called an event loop which dispatches events to the appro-
priate event handlers. Event handlers have intimate knowledge of the GUI and may
interpret a low level mouse clicked event as a high level button clicked event. Al-
though obviously a simplification, leaving out many details, it roughly corresponds
to what happens.

2.1.3 Application integration

From a static user interface to an interactive application.

14

Background 2.2. wxHaskell: a quick overview

Widgets know how to build visual representations out of their abstract descriptions
and interpret low level user input as high level semantic actions. To be of any use
they allow the integration of application specific logic invoked upon the occurrence
of an internal widget event (e.g. button clicked, item selected). These fragments
of application specific logic are often supplied through callback functions, similar to
how the lower level events are captured by the GUI toolkit. These callback func-
tions, and all other code with access to the application state, may modify the state
effectively rendering the widget’s visual representation out of sync. The most basic
GUI toolkits leave it up to the programmer to manually keep the GUI in sync with
the application state.

State synchronization is not only a problem at the level of application integration, but
also internally at the level of widget design. To remedy this problem typical imple-
mentations of the Model-View-Controller (MVC) pattern use the Observer Pattern
to keep the view(s) synchronized with the model.

The MVC pattern, first described by Smalltalk [40], follows the design principle
Separation of Concerns to separate out the distinct aspects of widgets - application
state (model), visual representation (view), input events (controller) - which makes
for a modular GUI library design. The MVC pattern has seen wide spread adoption
(albeit in deviating forms) as a technique for developing GUI toolkits [27] 2.

The Observer Pattern has a strong resemblance with reactive programming tech-
niques wherein a data flow graph is constructed such that changes can be auto-
matically propagated to the data dependencies. Reactive programming techniques
vary in explicitness about the data flow graph constructed. The Functional Reactive
Programming (FRP) approach is typically very explicit about the data flow graph by
using arrows to express data dependencies. Explicitness requires more thought,
but allows for much better reasoning about what happens as a reaction to a certain
event. Further advantages of FRP are that it is much easier to construct composite
events (e.g. drap and drop) and because data flow is usually much more granular
state changes may cause more efficient repainting.

An alternative approach to state synchronization is data binding which under the
surface also uses the Observer Pattern but typically offers a more end-to-end ap-
proach to synchronization. It allows the programmer to create for example a data
binding for a text field to a particular record in a database. The data binding will en-
sure that modifications to the text field’s contents will automatically be propagated
to the database.

2.2 wxHaskell: a quick overview

wxHaskell [42] is a GUI library for Haskell that wraps around the wxWidgets C++
library [57] offering a more declarative interface for programming GUIs. It aims to
provide a library that is efficient, portable across platforms, retains a native look-
and-feel, provides a lot of standard functionality, good abstractions, and is type safe
where possible. The author notes that there are no intrinsic difficulties with achiev-
ing these desired properties, but that it takes a large initial effort followed by an

2For a list of MVC frameworks see http://en.wikipedia.org/wiki/Model-view-controller

15

http://en.wikipedia.org/wiki/Model-view-controller

2.2. wxHaskell: a quick overview Background

enduring maintenance effort. Many previous attempts by the Haskell community to
construct GUI toolkits have underestimated the amount of work that goes into main-
tenance and eventually turned out to fail. To avoid this pitfall wxHaskell builds on
top of wxWidgets, a widely supported industrial-strength widget toolkit that eases
the development of cross platform GUI applications.

The design of wxHaskell divides into four distinct increasingly abstract layers with
at the bottom layer the low-level details of interfacing with C and at the top layer a
declarative interface for programming GUIs:

1. wxDirect: responsible for generating the Haskell wrappers and foreign import
declarations from C signatures.

2. wxC: provides the coupling of Haskell with wxWidgets. The wxWidgets FFI
declarations are wrapped in Haskell functions that perform conversions be-
tween C and Haskell types and the converse.

3. wxCore: uses wxC to expose the core wxWidgets Haskell interface.

4. wx: uses wxCore to provide the user with a more declarative interface for
programming wxWidgets. It also contains a combinator library to specify lay-
outs.

In wxHaskell the development of GUI applications is centered around the imperative
IO monad, something which in general Haskell programmers would like to avoid.
Though because of Haskell’s treatment of IO computations as first-class values the
library can reach a much higher level of abstraction than can typically be attained
in any other language lacking such treatment. Still, wxHaskell employs implicit data
flow across event handlers through the use of mutable state.

Inside the bottom layer wxHaskell communicates with wxWidgets by using Haskell’s
C FFI. In order to retain type safety for widget operations wxHaskell wraps pointers
to widgets inside a subtyping hierarchy by using phantom types:

type Object a = Ptr a
data CWindow a
data CFrame a
type Window a = Object (CWindow a)
type Frame a = Window (CFrame a)

Both CWindow and CFrame are considered phantom types, they lack a correspond-
ing data declaration and thus only exist at compile time. Using type synonyms the
subtyping relationship is encoded. Note that the type variable is left polymorphic,
however often operations may want to specify that they expect and or produce an
exact type:

frame :: [Prop (Frame ())]→ IO (Frame ())

This is accomplished by applying the type to () (unit) making it monomorph. For
example in the function frame, it takes a list of properties definable on a Frame or
any supertype and produces an instance of a Frame.

16

Background 2.2. wxHaskell: a quick overview

Objects encapsulate state and provide methods for state manipulation. A typi-
cal pattern is to provide so called getters and setters for state manipulation. wx-
Haskell captures association of a particular attribute with a widget using the Attr
type:

title :: Attr (Window a) String

A value of type Attr bundle both getter and setter :

data Attr w a = Attr (w→ IO a) (w→ a→ IO ())

It does not contain any state but simply provides access to an object’s accessor
functions. Two helper functions are defined that allow both the retrieval of a value
and the assignment of a list of values to an object:

get :: w→ Attr w a→ IO a
set :: w→ [Prop w]→ IO ()

When a value is combined with an attribute it is called a property. Properties are
represented by the Prop type.

data Prop w =
∃a.(Attr w a) := a
| ∃a.(Attr a w) : ˜ (a→ a)
| ...

Note the use of existential quantification which allows multiple properties of different
value types to be stored in a homogeneous list. The following example combines
all the features described thus far to capitalize the title of a Window:

capitalizeTitle :: Window a→ IO ()
capitalizeTitle w = do

t ← get w title
set w [title := map toUpper t]

The definition of title is fine because its a fairly unique attribute, however an at-
tribute like text is very common and shared by many widgets. Because attributes
often overlap and user defined widgets might also want to reuse the same attribute
wxHaskell uses type classes to model shared attributes.

class Textual w where
text :: Attr w String

instance Textual (Window a) where
text = ...

Where phantom types provide vertical reuse, ad hoc overloading provided by type
classes allows for horizontal reuse. Though wxHaskell has many other features
such as layout combinators, event handling, further discussion of features is post-
poned to the appropriate places in the upcoming chapters.

17

2.3. The target platform Background

2.3 The target platform

The web browser has become a complex beast serving as a deployment platform
for an ever increasing amount of web pages and applications. In this section we
will provide a very brief overview of the core technologies used to built web pages
and applications.

2.3.1 DOM

The Document Object Model is a cross-platform and language-independent stan-
dard for representing and interacting with objects defined in XHTML documents.
It is the interface through which web browser expose their internal state of a web
page for JavaScript to interact with.

2.3.2 Graphical representation

Web browsers offer several technologies for rendering graphics, standardized by
the World Wide Web Consortium (W3C) 3. This section provides a brief overview
of the three major standards and describes their individual merits.

Canvas

The Canvas is an element in the DOM that can be used by JavaScript to perform
basic drawing operations. The drawing operations are performed upon a bitmap
surface that has no recollection about what is actually drawn. This makes the can-
vas applicable for things like animations, image manipulation, games, or anything
that draws a large number of objects that are not necessarily interactive. Conse-
quently event handlers maybe attached to the element itself but not to its contents.
If such behavior is required it either has to be written from scratch or be simulated
by overlaying XHTML elements. Noteworthy is that the Canvas API very much re-
sembles the level of abstraction offered by many well known graphics APIs such as
Java2D 4.

SVG

Scalable Vector Graphics (SVG) [62] is a XML markup language for creating vector
graphics. SVG is a strictly higher level drawing facility than the Canvas. It remem-
bers everything it drew inside a scene graph allowing it to be more intelligent in
repainting its composites and support interactivity on every object it has drawn,
contrary to Canvas. Furthermore, it tightly integrates with the DOM which makes
cooperation with other web technologies such as XHTML and CSS easier.

3http://www.w3.org/
4http://java.sun.com/products/java-media/2D/index.jsp

18

http://www.w3.org/
http://java.sun.com/products/java-media/2D/index.jsp

Background 2.4. UHC

XHTML - CSS

Cascading StyleSheets (CSS) apply visual styling to the structure of an XML Hy-
perText Markup Language (XHTML) or to SVG. XHTML roughly defines a set of
text elements, elements for attaching semantic meaning to other elements, media
elements (video, audio), and a collection of form elements for user input. Each ele-
ment may be have event handlers attached. The combination XHTML - CSS offers
more in terms of standard facilities compared to Canvas and SVG but lacks the
flexibility of both in terms of flexible drawing primitives. This deficiency is usually
compensated by either using browser plugins, or more recently by embedding Can-
vas and SVG elements in XHTML documents augmenting the XHTML experience
5.

2.3.3 Interactive web pages with JavaScript

JavaScript/ECMAScript is a dynamically typed prototype-based language. It is the
primary means for turning static web pages into highly interactive web applications.
The web browser (the host environment) allows access to the elements of a web
page by exposing its functionality to JavaScript through the Document Object Model
(DOM). JavaScript features objects, first class - higher order - and variadic functions
amongst other things [1].

2.4 UHC

Figure 2.4: The UHC pipeline.

The Utrecht Haskell Compiler is an experimental compiler for Haskell 98 plus some
additional language extensions, developed at the University of Utrecht [19]. Its
purpose is more geared towards being a language experimentation platform as op-
posed to being a industrial-strength compiler like the Glasgow Haskell Compiler

5A hybrid HTML5 game, Canvas, XHTML, and CSS http://www.cuttherope.ie/

19

http://www.cuttherope.ie/

2.4. UHC Background

(GHC) [2]. Internally the compiler is organized into different language variants.
Each variant may be compiled separately making language experimentation sig-
nificantly easier. The compilation proceeds by pushing a Haskell through a series
of transformations, expressed as algebras using the Utrecht University Attribute
Grammar system (UUAG) [58], which result in intermediate languages that get pro-
gressively closer to the target platform.

Figure 2.4 displays the compilation pipeline targeting JavaScript. In the first phase
the input Haskell program is desugared into Essential Haskell (EH) a desugared
variant of Haskell. EH is transformed into the Core language which constitutes a
very minimal functional language resembling the lambda calculus. Subsequently
the JavaScript backend hooks into the compilation process and translates Core to
JavaScript. It links the compiled source program together with its base library de-
pendencies and the Runtime System (RTS) inside a single XHTML document.

20

Chapter 3

wxHaskell for the web:
exploring the design space

Bridging the wxWidgets gap

The goal of this thesis is to show how a subset of wxHaskell can be ported to the
web browser. However, as always, there are many routes that lead to Rome. In
section 2.2 we briefly discussed the layered architecture of wxHaskell. Before we
pick a particular implementation path we first consider the different ways we can
cut the cake. Because wxWidgets is written in C++ and all its implementations
are in terms of desktop technology there is no chance of reusing any code. With-
out wxWidgets, wxHaskell is just a small layer of abstractions. Somehow the gap
left by wxWidgets needs to be filled with an implementation in terms the browser
technology whilst trying to maintain the old programming interface. In figure 3.1
the different options are aligned next to the original wxHaskell set-up. They only
differ in where the line is drawn separating Haskell from JavaScript. In this chapter
we will discuss each option individually, weigh their pros and cons, and pick one
approach that will dictate the further developments in this thesis.

3.1 Port wxC in Haskell (A)

The intention of this approach is to leave the original wxC interface intact, swap
its implementation with equivalent functionality provided by some JavaScript GUI
toolkit, augmented with some additional JavaScript wrapper code to overcome
mismatches in functionality. With the JavaScript GUI toolkits maturing there are
quite some options that provide approximately the same functionality as wxWid-
gets.

In order to access all the features of the underlying JavaScript GUI toolkit there
is a significant amount of boilerplate code required. Assuming that we may gen-
erate this boilerplate automatically from an API description there still remains lots
of subtle porting work in order to nicely fit the functionality with the wxC interface.
From a Haskell perspective we end up in a rather strange situation wherein we are

21

3.1. Port wxC in Haskell (A) Exploring the design space

Figure 3.1: Design options: orange: C++, yellow: JavaScript, blue: Haskell

trying to sustain an imperative programming interface for an C++ API by porting its
calls to a JavaScript API inside Haskell which does not natively support OO pro-
gramming. Furthermore, the obtained solution will from a Haskell point of view not
be very portable as the majority of the functionality is still implemented in a foreign
language. Also, changing to another GUI toolkit requires a total rewrite.

Advantages:

• We get a large tested and maintained code base almost for free;

• Ideally, it is a drop in replacement for wxC requiring no change in the above
layers.

Disadvantages:

• Connecting two OO interfaces inside Haskell will not result in idiomatic Haskell;

• The majority of the functionality is still written in JavaScript and thus cannot
benefit from compiler optimizations;

• Tight coupling to JavaScript GUI toolkit results in poor portability and a high
degradation risk;

• Poor extensibility from within Haskell.

22

Exploring the design space 3.2. Port wxC in JavaScript (B)

3.2 Port wxC in JavaScript (B)

Option B draws the line between Haskell and JavaScript a little bit further down.
The key idea is to port the wxWidgets API to JavaScript and perform the actual
implementation in JavaScript. This has as advantage over A that it leads to a much
more natural implementation. It does leave open the question whether there exists
a reasonable semantics preserving mapping from C++ to JavaScript. The fact that
most web browsers implement the DOM in C++ and provide a JavaScript API to
access its functionality would suggest that there is. Also, the similarity between the
wxWidgets JavaScript API and its C++ version will likely ease the implementation
of the Haskell interface code. This can be explained by the nature of the mapping
which will necessarily depend on the set of language features formed by lowest
common denominator of C++ and JavaScript, ruling out the use of idiosyncratic
features of JavaScript which make it particularly hard to bolt a type safe Haskell
interface on top.

With a set-up much like wxHaskell it inherits many of its architectural properties.
For instance, the JavaScript code base does not take part in the compilation pro-
cess which complicates linking and optimization. This might lead to suboptimal
code and larger binaries. Furthermore, every interaction with the wxWidgets imple-
mentation induces cross language communication inflicting a performance penalty.
In wxPython (a Python wrapper for wxWidgets) widgets are extensible through in-
heritance just like in C++. However, in Haskell there is no direct equivalent to
inheritance. This will eventually limit the flexibility of the end-user gets when using
the library.

Advantages:

• Resembles the wxHaskell approach;

• Avoids many difficulties of interfacing with JavaScript from Haskell by provid-
ing a C++ like interface in JavaScript;

• See advantages of option A.

Disadvantages:

• The majority of the library is implemented in JavaScript;

• Not portable from a Haskell perspective;

• Not easily extensible from within Haskell.

3.3 Replace wxCore with a Haskell implementation
(C)

We can also try to move the wxWidgets implementation as much as possible into
Haskell thereby reducing the platform dependent code to a mininum greatly im-
proving portability. With a major part of the code base in Haskell we may reap all
of its benefits such as compiler optimizations, type safety, etc. Though implement-
ing wxWidgets in Haskell is easier said than done. To stay true to wxWidgets we

23

3.4. Conclusion Exploring the design space

should port is OO design to Haskell, because Haskell was not envisioned as a OO
language with typical features like: subtyping, inheritance, encapsulation; it is not
clear at all to us whether this is even possible without extending the language. For-
tunately, the authors of OOHaskell have shown that Haskell can indeed be used to
model the typical, and some of the more advanced features of OO languages by
using some common language extensions. We could use OOHaskell to transport
the OO design to Haskell were it not that we are bound by UHC’s features that does
not yet include functional dependencies. The feasibility of the approach therefore
hinges on the question whether there exists some other solution which works using
UHC and is as powerful as OOHaskell or less powerful but still powerful enough to
model the standard features of any OO language.

Advantages:

• Will result in a Haskell GUI library that is easier to port to other platforms
besides the web platform;

• Increased extensibility with the core design writtein in Haskell;

• A larger Haskell code base can benefit from compiler optimizations, type
safety, etc.

Disadvantages:

• The non-idiomatic use of Haskell will likely result in a less efficient implemen-
tation.

3.4 Conclusion

All three options are potentially viable solutions. Option A seems to be the least
promising approach, because of its many disadvantages compared to the other
two options. Option B is the most practical option and will most likely be directly
useful. However, from a long term perspective it impairs portability of the whole
code base across different target platforms/languages and does not benefit much
from Haskell as language. Admittedly, this argument is weakened by the fact that
the web platform is one of the most widely used standardized platforms available
and will without doubt continue to be so in the foreseeable future. However, with
the rate at which new GUI toolkits crop up it is hard to say which one will survive,
and with a community of Haskell programmers not particulaly fond of JavaScript as
a language it is hard to imagine that they would want to maintain a large JavaScript
code base. Option C is also from an academic perspective a more interesting path
to take, because to the best of our knowledge porting a real-world OO design to
Haskell has not been done before. For the above reasons we choose to continue
with option C. Next, we will look into interfacing with JavaScript of which the out-
comes will also be useful for options A and B.

24

Chapter 4

Interfacing with JavaScript

The Utrecht Haskell Compiler can compile Haskell down to JavaScript, however
for a JavaScript program to be of any real use it must be able to interface with
the target platform. The Haskell Foreign Function Interface (FFI) addendum de-
scribes a framework for interfacing to foreign languages from within Haskell [12].
It instantiates the framework for the C calling convention (which should be sup-
ported by all Haskell implementations), and leaves open the possibility of extend-
ing it to other calling conventions. The C calling convention is significantly different
from JavaScript’s, therefore UHC has gained a new one specifically tailored for
JavaScript [20].

In many aspects Haskell and JavaScript are each others opposites making it some-
times non-obvious how JavaScript functionality should be mapped onto Haskell and
vice versa. This quickly becomes apparent when one tries to come up with mean-
ingful type signatures for imported JavaScript functionality. Further, Haskell data
types differ quite a bit from the ones in JavaScript leaving open the question on
how to deal with conversions between the two different representations. When we
started our research the JavaScript FFI was work in progress, and at times our
efforts mingled with that of the authors of [20]. Our work can hence be viewed as
a natural continuation of theirs with as goal making JavaScript programming more
bearable. We make the following contributions:

• extend the existing infrastructure for programming with the JavaScript FFI;

• augment the FFI with a new keyword for creating JavaScript objects, and a
simple way to incorporate external JavaScript dependencies;

• provide a model for primitive JavaScript types, together with type checking
and marshalling functions.

The outline of the chapter is as follows: section 4.1 introduces the JavaScript FFI,
section 4.2 discusses the possibilities of maintaining type-safety, section 4.3 de-
scribes a simple approach for converting Haskell values from and to JavaScript,
section 4.4 shows how the JavaScript FFI can be used to model common JavaScript
idioms.

25

4.1. Introduction Interfacing with JavaScript

4.1 Introduction

The UHC JavaScript FFI extends the callconv production of the FFI grammar, found
in the Haskell FFI addendum [12], with a new keyword js.

decl := ’import’ callconv [safety] impent var :: ftype
| ’export’ callconv expent var :: ftype

callconv := ’ccall’ | .. | ’js’

Which calling convention is used determines how the compiler interprets the im-
pent and expent strings. A formal grammar for the impent section is given in [20]
describing a small subset of JavaScript with only few non-JavaScript parts used for
expressing the connection between the formal arguments of a Haskell function and
their position in the JavaScript expression. Here we present a revised version of
the grammar:

impent ::= "wrapper" | "dynamic" | jscc
expent ::= "any string"

jscc ::= ident ’.js ’ jsexpr -- JS expression with external dependency
| jsexpr

jsexpr ::= ’{}’ -- Haskell constructor to JS Object
| ’new’? ptrnOrId post* -- JS expression

post ::= ’.’ ptrnOrId -- object field
| ’[’ jsexpr ’]’ -- array indexing
| ’(’ args ’)’ -- function call

args ::= ε
| ’%*’ -- match all arguments
| ptrnOrId (,ptrnOrId)*

arg ::= ’%’ int -- index a specific argument
| literal

ptrnOrId ::= arg
| ident

literal ::= ’any character’ | "any character"
ident ::= letter (letter | integer)*

The grammar is extended with the possibility to specify external JavaScript depen-
dencies, the new keyword for instantiating objects, and some ambiguity issues are
resolved that arose from using specific combinations of match all arguments and
index a specific argument in a single expression.

Every jsexpr is transformed into a valid JavaScript expression iff it is provided with
a correct argument mapping (there are currently no checks in place ensuring this is
the case). Furthermore, the FFI does not check whether the imported functionality
is actually present at runtime. We imagine that this could be implemented in the
future by inserting runtime checks or parsing external sources statically verifying
the presence of the imported functionality (not a trivial problem).

With the JavaScript FFI in place we illustrate its use by a typical use case: display-
ing an alert message.

26

Interfacing with JavaScript 4.1. Introduction

f oreign import js "window.alert(%1)"
alert :: a→ IO ()

f oreign import js "’Hello World!’"
helloWorldStr :: a

main = alert helloWorldStr

Running main will result in the alert shown on the left in figure 4.1. We have im-
ported alert such that it can only run inside the IO monad, because we know that
it has the side-effect of displaying a message box. There is, however, nothing
preventing us from importing alert as a pure function. It is the programmer’s re-
sponsibility judge whether the imported functionality is pure or not. Also, note that
the first argument of alert can be any value. We could just as well apply it to a
Haskell string:

main′ = return "Hello World!"� alert

The result of running main′ is shown in the right in figure 4.1. Because alert ac-
cepts any type as argument and the representation of strings in Haskell differs from
JavaScript we get garbage as output.

Figure 4.1: The result of evaluating main on the left, and main′ on the right.

The problem with alert is fairly innocent, however it gets worse with a function like
plus2:

function plus2(x) {
return x + 2;

}

In general JavaScript functions can take any number of arguments with any number
of types and in all but few cases result in a TypeError [60]. Conform JavaScript we
leave the first argument of plus2 polymorph:

f oreign import js "plus2(%1)"
plus2 :: a→ IO Int

However, again plus2 does not prevent us from passing in e.g. a boolean instead
of a number. When we do JavaScript will coerce the boolean to a number, perform
the addition, and return the result with the coercion going unnoticed. While in some
cases this is intended behavior, there are many more cases where these coercions
are plain programming errors. The silent coercions make it difficult to localize bugs
and it gets worse when the size of the code base increases. The fact that tools such
as Google Closure [9] are created, that help with type checking, proves that this is
in fact a real problem. In the next section we will see how we can give functions like
alert and plus2 a better type signature.

27

4.2. Typing the Untyped Interfacing with JavaScript

4.2 Typing the Untyped

In terms of type systems Haskell and JavaScript are each others opposites. Haskell
has a strong static type system, i.e. the type rules are checked at compile-time and
type inconsistencies are reported to the user. A program that passes the type
checker is sound with respect to the type-rules (i.e. if a program is well-typed it
cannot cause type errors), hence type consistency checks can be omitted which
leads to faster object code. On the other hand in JavaScript all type checking
happens at runtime, types are never specified, variables derive their types from the
value they point to at runtime, and type inconsistencies are resolved by implicit type
conversions.

The JavaScript FFI opens up the beautifully consistent Haskell world to the unsafe
JavaScript world. We would like to move away from importing JavaScript functions
with all arguments left polymorph to a situation where we can be more precise
about a function’s type. This should lead to more idiomatic Haskell and thus allow
us to benefit from static guarantees made by the Haskell type system. Before we
can annotate functions with more precise types we first need a Haskell model of
the JavaScript types. We imagine that these annotations may in the future be used
to automatically insert runtime type checks, but for now we will resort to manual
type checking. We will discuss the proposed JavaScript type model, type checking,
and how to deal with union types.

4.2.1 A model for JavaScript types

The JavaScript language definition [1] describes several primitive types: undefined,
null, boolean, number, and string; as well as several kinds of objects (plain ob-
jects, wrapper objects, function objects, array objects, regex objects). The primitive
types bool, number, and string each have a corresponding wrapper object with an
bi-directional conversion between each pair. Some operations (like +) only work
for particular primitive types. When these functions receive a value of an other
type than the expected type they automatically coerce the value to the expected
type.

Of the primitive types we only model undefined and null. For the others we only
model their wrapper object letting it range over values of the primitive type as well
as their wrapper object. We piggyback on the coercion semantics of JavaScript,
which ensures that we can always use a primitive type as if it were a wrapper
object. Furthermore, we have JSAny range over all JavaScript types. Figure 4.2
shows how the types are related to each other.

JSAny

JSUndefined JSNull JSObject

JSBool JSString JSFunction JSRegex JSArray . . .

Figure 4.2: A model of the JavaScript types.

28

Interfacing with JavaScript 4.2. Typing the Untyped

To translate the model to Haskell we make fruitful use of opaque types for undefined
and null, and of phantom types to model a hierarchy of types [42, 25].

data JSAny a
data CJSUndefined
type JSUndefined = JSAny CJSUndefined
data CJSNull
type JSNull = JSAny CJSNull
data CJSObject a
type JSObject_ a = JSAny (CJSObject a)
type JSObject = JSObject_ ()
data CJSBool
type JSBool = JSObject CJSBool
type JSString = JSObject PackedString
data CJSFunction a
type JSFunction_ a = JSObject (CJSFunction a)
data CJSRegex
type JSRegex = JSObject CJSRegex
type JSArray v = JSObject (BoxArray v)

Both PackedString and BoxArray are UHC specific types used internally for repre-
senting respectively plain strings and arrays. JSObject_ and JSFunction_ take an
additional type parameter which can later be refined to either extend the hierarchy,
or make a function type explicit. Note that we do not have a type for JavaScript
numbers because all non-aggregate types like Int, Float and Double are shared
with the JavaScript. Integer is the only exception, because JavaScript has no na-
tive support for arbitrary-precision integers an Integer value is wrapped by the RTS
inside a BigInt object.

With the model for JavaScript types we can now give both alert and helloWorldStr
a more precise type:

f oreign import js "’Hello World!’"
helloWorldStr :: JSString

f oreign import js "window.alert(%1)"
alert :: JSString→ IO ()

The DOM defines many interfaces for communicating with the web browser. Each
interface corresponds to an object in JavaScript, and we can now easily model
these interface types by extending JSObject_. As example we use the Node inter-
face:

data CNode a
type Node_ a = JSObject (CNode a)
type Node = Node_ ()

The nodeType function is defined for any Node. Using the new type we just in-
troduced we can easily express this by leaving the extension of the node poly-
morph:

29

4.2. Typing the Untyped Interfacing with JavaScript

f oreign import js "%1.nodeType"
nodeType :: Node_ a→ IO JSString

Now nodeType can be applied to all objects that are at least of type Node. This
is works using ordinary type unification and enables a form of subtype polymor-
phism.

Despite all the effort we may spend on typing JavaScript functionality there are
plenty opportunities to undo any assumptions made about the types at runtime,
e.g. nothing prevents us from changing the definition of window.alert to:

window.alert = undefined;

There is not much we can do about this and similar to the Closure compiler we are
forced to make some assumptions about the runtime behavior to ensure consis-
tency:

• all imported JavaScript functions and object properties do not change types
at runtime;

• prototype chains do not change at runtime.

4.2.2 Type checking

As soon as data crosses the language border performing runtime type checks to
preserve type safety becomes inevitable [5]. Take for example the createElement
function:

f oreign import js "document.createElement(%*)"
createElement :: JSString→ IO (Element ())

Dependent on which string we pass to createElement we get back a different sub-
type of Element. For this function to be useful we must be able to determine the
actual return type by discriminating on the value’s type at runtime. Once we have
verified the value to be of a particular, more specific, type we may interpret it as
such using a cast.

One approach to implement runtime type checking of JavaScript values would be to
reuse the Data.Dynamic machinary which works by packing together a value with
its type representation TypeRep in a data type called Dynamic. A Dynamic supports
type safe projection of its contained value by comparing its TypeRep against an ex-
pected TypeRep. The difficulty lies in constructing a (TypeRep) for a given JavaScript
value. There are two design alternatives: delegate the task to the runtime system
or perform the mapping inside Haskell. The first approach leaks knowledge of data
type compilation into the RTS thereby complicating it. The second, does not, but
requires a larger family of type checking functions from the RTS to build up the
TypeRep in Haskell.

Both design alternatives deserve further exploration, but we leave this as future
work and for now resort to a much simpler approach. We simply extend the RTS
with a family of type checking functions that given a value return either true or false
dependent on whether the value’s type matches the expected type.

30

Interfacing with JavaScript 4.2. Typing the Untyped

isNull, isUndefined, isBool, isString,
isChar, isInt, isDouble, isFloat, isNumber, isObject, isFunction :: a→ Bool

The type checking functions are implemented in terms of typeof, which given a
value returns a string describing its type. Here are the implementations of isFunction
and isBool:

primIsFunction = function(a) {
return PrimMkBool(
typeof a === "function"

);
}

primIsBool = function(a) {
return PrimMkBool(

typeof a === "boolean"
|| _primIsA(a, Boolean)

);
}

f oreign import js "primIsBool(%*)"
isBool :: a→ Bool

f oreign import js "primIsFunction(%*)"
isFunction :: a→ Bool

The implementation reflects our decision to treat primitive and wrapper types as
one and the same. We use PrimMkBool to directly create values of the Haskell
type Bool. It embodies knowledge about how the compiler represents data types;
like many other functions defined in the RTS. The primIsA function checks whether
an object is exactly of some type by inspecting its constructor value.

_primIsA = function(a, b) {
if(typeof a === "object" && a !== null && typeof b === "function") {
return a.constructor == b;

}
return false;

}

To transitively test whether an object is of particular type we implement another
function in terms of instanceof :

primIsInstanceOf = function(a, b) {
if(typeof a === "object" && typeof b === "function") {
return PrimMkBool(a instanceof b);

}
return PrimMkBool(false);

}

31

4.2. Typing the Untyped Interfacing with JavaScript

Using primIsInstanceOf we can implement the cast function we mentioned earlier
on which guards the type conversion with a type check.

class JSCtor a where
jsCtor :: a→ b

cast :: JSCtor b⇒ a→ Maybe b
cast a :: Maybe b =

i f instanceOf a (jsCtor (⊥ :: b))
then Just (unsafeCoerce a)
else Nothing

f oreign import js "primInstanceOf(%*)"
instanceOf :: a→ b→ Bool

instance JSCtor (HTMLDivElement ()) where
jsObjectConstructor = htmlDivelementType

f oreign import js "HTMLDivElement"
htmlDivelementType :: HTMLDivElement ()

With cast we can define a function createDivElement for creating HTMLDivElements
in terms of createElement.

createDivElement = do
e← createElement divString
case cast e :: Maybe (HTMLDivElement ()) o f

Just x → x
Nothing→ error "Something went wrong"

4.2.3 Representing union types

Many JavaScript functions take/return an union of types, best illustrated by an ex-
ample:

function foo(b) {
if(b) {
return "an"; (1)

} else {
return false; (2)

}
}

The if statement works for any type by coercing its argument to a value of type
boolean. Dependent on which branch is taken the result of foo will either be of type
string (1) or boolean (2). Keeping up the spirit of providing type annotation foo’s
type can be best described by:

foo :: a -> JSBool + JSString

where it takes any type to an union containing either a JSBool or JSString. The
question is: how do we effectively represent a union of types in Haskell? In the
following section we will discuss three different approaches: hand-made universes,
dynamics, and extensible sums.

f oreign import js "foo"
_foo :: a→ ?

32

Interfacing with JavaScript 4.2. Typing the Untyped

Hand-made universes

The standard Haskell library comes with the Either a b data type with which we can
represent a binary union.

data Either a b = L a | R b

We can use Either to wrap _foo, scrutinize the return value using a type check,
and associate it with either a L or R tag. The use of unsafeCoerce is unavoidable
because we gain knowledge about the types at runtime that cannot be legitimized
at compile-time.

foo :: a→ Either JSString JSBool
foo a =

let ret r | isString r = L (unsafeCoerce r)
| isBool r = R (unsafeCoerce r)

in ret (_foo a)
f oreign import js "foo(%1)"

_foo :: a→ b

Even though the above encoding works fine it does not generalize nicely to n-ary
union types. Especially the manual injection and projection of nested Either data
types quickly becomes cumbersome.

Dynamics

Using the Data.Dynamic library we can hide values of different types in a single
value of type Dynamic. To make the running example a bit more interesting we
cook up a new function with a slightly more complicated type (implementation is
not important):

bar :: JSNull + Int → JSBool + JSString

The argument and result type of bar collapse into a Dynamic type.

bar :: Dynamic→ Dynamic
bar d =

let jsVal =
case fromDynamic d :: Maybe JSNull o f

Just v → unsafeCoerce v
Nothing→ case fromDynamic d :: Maybe Int o f

Just v → unsafeCoerce v
Nothing→ error "impossible"

ret r | isString r = toDyn (unsafeCoerce r :: JSString)
| isBool r = toDyn (unsafeCoerce r :: JSBool)

in ret (_bar jsVal)
f oreign import js "bar(%1)"

_bar :: a→ b

33

4.2. Typing the Untyped Interfacing with JavaScript

To invoke bar we pre- and suffix it with dynamic unwrapping and wrapping calls.

(fromDynamic ◦ bar ◦ toDyn) _null :: Maybe JSString

Unfortunately, the projection (fromDynamic) and injection (toDyn) functions only
work on monomorphic types that are instances of Typeable. Because _bar does
not care about the type of its argument we can freely use unsafeCoerce as an es-
cape hatch making the type system forget that it actually knows the type of v. In
the result position we can use the same trick to let the type system learn about the
new types.

Using dynamics is significantly simpler when dealing with n-ary union types com-
pared to hand-made universes. However, there are several shortcomings:

• limited to injecting and projecting monomorphic types;

• the Dynamic type has no descriptive value.

Unfortunately, the fact that dynamics are limited to monomorphic types does not
align well with our encoding of objects. Suppose we have a function with type:

getNodeType :: Node a + JSNull→ IO Int

A value of type Node a cannot be injected into a Dynamic. What we can do is
temporarily make the type monomorph by flagging the type parameter position with
a special data type.

data TyVar
deriving Typeable

Using a pair of injection and projection functions we can turn a polymorphic into a
monomorpic type and the other way around.

prjNode :: Dynamic→ ∃a.Maybe (Node a)
prjNode = unsafeCoerce ◦ (fromDynamic :: Dynamic→ Maybe (Node TyVar))
injNode :: Node a→ Dynamic
injNode = toDyn ◦ (unsafeCoerce :: Node a→ Node TyVar)

The prjNode function returns a value of type Maybe (Node a) where the type vari-
able a is existentially quantified over preventing the caller from instantiating it to any-
thing other than a polymorphic type variable. Unfortunately, the function pair is type
specific, and we would like to abstract from the specifics using a type class:

class Iso f where
inj :: f a→ Dynamic
prj :: Dynamic→ ∃a.Maybe (f a)

However, it turns out that this does not help much as the nested types cannot be
directly used to create instances of Iso for. First, they need to be wrapped inside a
newtype such that they can be partially applied.

34

Interfacing with JavaScript 4.2. Typing the Untyped

newtype One a x = One {unOne :: a x }

newtype Two a b x = Two {unTwo :: a (b x) }

newtype Three a b c x = Three {unThree :: a (b (c x))}
...

The programmer still needs to manually inject and project its type in and out of a
member of the newtype family, nothing is gained in terms of usability.

instance (Typeable1 a,Typeable1 b)⇒ Iso (Two a b) where
inj = toDyn ◦ (unsafeCoerce :: a (b x)→ a (b TyVar)) ◦ unTwo
prj d =

case fromDynamic d :: Maybe (a (b TyVar)) o f
Nothing→ Nothing
Just x → Just (Two $ unsafeCoerce x)

Extensible unions

Using type classes binary unions can be generalized to n-ary union types with
automatic injection and projection functions [44, 59]. The trick is to rely on a
right-associative nesting of types, and let type class instances generically traverse
the type structure to either inject or project a type. First, we define a binary
union:

data a + b = L a | R b
in f ixr 5 +

Using nested constructor applications of this data type we can write, e.g., a ternary
union:

R (R True) :: Int + String + Bool

The injection and projection functions of the SubType type class automatically find
value level injections and projections for values of type +.

class SubType sub sup where
inj :: sub→ sup -- injection
prj :: sup→ Maybe sub -- projection

The implementation of inj and prj is covered by the following instances:

instance SubType a a where
inj = id
prj = Just

instance SubType a (a + b) where
inj = L
prj (L x) = Just x
prj = Nothing

35

4.2. Typing the Untyped Interfacing with JavaScript

instance (SubType a c)⇒ SubType a (b + c) where
inj = R ◦ inj
prj (R x) = prj x
prj = Nothing

The first instance states that SubType is reflexive. The second instance states for
injection that if we have a value of type a we can inject it into a+b, and for projection
that provided with a value of type a + b we can project out its value if it matches L.
The third instance asserts for injection that provided we can inject a value of type
a into c we can also inject a into a larger type b + c by composing the first injection
with an additional R, and for projection that provided we can project a out of c we
can also project out a from a larger type b + c if its value matches R.

Using extensible unions we may rewrite bar such that its type becomes much more
informative compared to the dynamics approach.

bar :: JSNull + Int → JSString + JSBool
bar a =

let jsVal =
case prj a :: Maybe JSNull o f

Just v → unsafeCoerce v
Nothing→

case prj a :: Maybe Int o f
Just v → unsafeCoerce v
Nothing→ error "impossible"

ret r | isString r = inj (unsafeCoerce r :: JSString)
| isBool r = inj (unsafeCoerce r :: JSBool)

in ret (_bar jsVal)

Similar to the dynamics approach a call to bar should be wrapped with projection
and injection functions:

(prj ◦ bar ◦ inj) _null :: Maybe JSString

It gets interesting if union types also contain polymorphic types:

getNodeType :: Node a + JSNull→ IO Int

Suppose we want to call getNodeType with a value of a type that unifies with Node a.
Injecting this value into the argument type is going to fail, unless we provide a
type annotation which instantiates the type variable to a concrete type matching
the given type. For example, we could apply getNodeType to a HTMLElement as
follows:

getNodeType (inj (⊥ :: HTMLElement ()) :: HTMLElement () + JSNull)

We can even inject a polymorphic value of type Node a given that we provide type
annotations, and use scoped type variables to ensure that identically named type
variables are considered the same. The same rules hold for projection.

getNodeType (inj (⊥ :: Node a) :: Node a + JSNull)

36

Interfacing with JavaScript 4.3. Marshalling

Of the three alternatives this one is the clear winner. It requires less boilerplate
compared to the first approach, and provides more informative types than the sec-
ond. Also, it is more flexible than dynamics as it naturally allows polymorphic types
inside a union type as long as they do not overlap.

4.3 Marshalling

Aggregate Haskell types do not map directly onto JavaScript types. The difference
in data representation calls for conversions functions between Haskell data, and
their JavaScript equivalent. There are cases where such a mapping is obvious,
e.g. a Bool simply maps to the JavaScript boolean type. However, there are also
cases where such a mapping is less obvious, e.g. in the case of Maybe a. To
express the mapping between Haskell values, JavaScript values, and vice versa
we imagine two mapping functions haskToJS and jsToHask for some of the standard
Haskell types:

haskToJS :: Haskell→ JS
haskToJS () = ⊥

haskToJS True = true
haskToJS False = false
haskToJS "" = ""
haskToJS Nothing = null
...

jsToHask :: JS→ Haskell
jsToHask ⊥ = ()
jsToHask true = True
jsToHask false = False
jsToHask "" = ""
jsToHask null = Nothing
...

Besides the obvious mappings there are also a few interesting ones. In particular,
unit (()) which is most often used as a dummy value for expressing that a function
returns no meaningful result, hence it maps naturally to the JavaScript undefined
value returned when a function has no result. Also, Nothing which we could have
mapped to undefined, but did not because there is a subtle difference between un-
defined and null. An undefined value is most often used in cases where something
really is undefined, e.g. when accessing a non-existent object property, whereas
null can be used by the programmer to explicitly state that something is not defined
very much like Nothing.

Because both mappings are only defined for of few standard Haskell types, and
they both range over a set of types in their argument as well as in their result type,
we model them using a type class:

class ToJS a b where
toJS :: a→ b

class FromJS a b where
fromJS :: a→ Maybe b

Although for the standard types there exist a bidirectional mapping this may not
always be to case for very instance of either class, which is why we use separate
type classes. Also, because converting from a JavaScript value to a Haskell value
may go wrong the fromJS function is partial.

For booleans the implementation is straight-forward.

37

4.4. JavaScript Idioms Interfacing with JavaScript

instance ToJS Bool JSBool where
toJS True = jsTrue
toJS False = jsFalse

f oreign import js "true"
jsTrue :: JSBool

f oreign import js "false"
jsFalse :: JSBool

instance FromJS JSBool Bool where
fromJS v =

i f isBool v
then i f jsEq jsTrue v

then Just True
else Just False

else Nothing

The jsEq function is a wrapper around the JavaScript strict equality operator. Ev-
ery time a JSBool is converted to a Bool some type checking is performed. For
booleans this conversion is relatively inexpensive, but for list-like structures this
can become much more expensive. Hence, in the future compiler support for other
strings representations (using overloaded strings) is unavoidable in order to gain
performance. For now the conversion of Haskell to JavaScript strings takes linear
time in the length of the string.

Until now we have only considered simple Haskell types, but when interfacing to
JavaScript libraries it is very useful to be able to convert a Haskell record to plain
JavaScript object. The authors of [20] posited some design alternatives, and de-
cided on a solution where with the help of the RTS a record can be converted to
a JavaScript object by forcing its components WHNF. The functionality is exposed
through the FFI using the "{}" notation.

data JSBook_
type JSBook = JSObject_ JSBook_

f oreign import js "{}"
mkJSBook :: Book → IO JSBook

data Book = Book {author :: JSString, title :: JSString, pages :: Int }
book = mkJSBook (Book {author = toJS "me", title = toJS "story", pages = 123})

The result of applying mkJSBook to a Book value is a simple JavaScript object:

{author : "me", title : "story", pages : 123}

The opposite conversion is left for the programmer to implement.

4.4 JavaScript Idioms

In this section we will explore how the JavaScript FFI can be used to deal with
common JavaScript idioms.

4.4.1 Instantiating objects

In JavaScript objects are instantiated using the new keyword. Its absence in the for-
mer incarnation of the JavaScript FFI has led us to consider lifting it into a primitive
function.

38

Interfacing with JavaScript 4.4. JavaScript Idioms

f oreign import js "primNew(’B’, %1, %2)"
newB :: a→ b→ IO c

function primNew(obj) {
var args = Array.prototype.slice.call(arguments);
args.shift();
var l = arg.length;
switch(l) {
case 0: return new obj;
case 1: return new obj(args[0]);
case 2: return new obj(args[0], args[1]);
case 3: return new obj(args[0], args[1], args[2]);

}
throw new Error(’Too many arguments, not supported.’);

}

Unfortunately, the lifted version does not scale to an arbitrary number of constructor
arguments. There are other solutions such as implementing it as a method on the
Function object, suggested in [18]. However, since its part of the language we
simply choose to expand the JavaScript FFI. Its usage is no different from that in
JavaScript:

f oreign import js "new String(%*)"
newString :: JSString→ IO JSString

4.4.2 Higher-order call

JavaScript functions can be passed as arguments to other functions. If we want to
pass a Haskell function to a higher-order JavaScript function we must first wrap it
as a JavaScript function.

f oreign import js "twice(%*)"
twice :: JSFunction (IO ())→ IO ()

f oreign import js "wrapper"
_twice_hof :: IO ()→ JSFunction_ (IO ())

twice :: IO ()→ IO ()
twice = _twice ◦ _twice_hof

function twice(f) {
f();
f();

}

The JSFunction_ type can be seen as a small box wrapped around the original
Haskell function, which can be used by regular JavaScript code as if it were a
normal function. However, internally the Haskell calling convention is maintained,
and when it returns back into the JavaScript world its return value is evaluated to
WHNF.

39

4.4. JavaScript Idioms Interfacing with JavaScript

It is not uncommon for JavaScript functions to return a function, the createCounter
is an example of such a function. When invoked it returns a new function that at
every call increments a variable and returns it.

function createCounter() {
var i = 0;
return function() {
return i++;

}
}

We can import createCounter just like any other function, except that when we
invoke it we use the dual of "wrapper", called "dynamic", which takes a JavaScript
function and returns a Haskell function wrapping the JavaScript function.

f oreign import js "createCounter()"
createCounter :: IO (JSFunction (IO Int))

f oreign import js "dynamic"
mkCountFunc :: JSFunction (IO Int)→ IO Int

We can now use createCounter to create a counter function, which we use to print
incrementing numbers to the screen.

main = do
counter ← createCounter
let count = mkCountFunc counter
mapM_ (λm→ m� print) [count, count, count]

4.4.3 Exporting Haskell functions

When integrating with existing code it is useful to be able to call Haskell functionality
from JavaScript. The FFI export directive provides such functionality by exporting
a Haskell function under a stable name.

minus :: Int → Int → Int
minus x y = x − y
f oreign export js "minus"

minus :: Int → Int → Int

The compiler generates a wrapper around the minus function, and it can be called
using the name given to it in the export declaration prefixed with the module name.

4.4.4 Behavior of this

In JavaScript the this keyword has a rather peculiar semantics different from many
other OO like languages. It is different in that it is dynamic, i.e. it adapts to whatever
object it is called through. This, in combination with higher-order functions, can

40

Interfacing with JavaScript 4.4. JavaScript Idioms

cause problems with what this is expected to refer to inside the body of a wrapped
function.

For example, in jQuery1, when an event handler is triggered jQuery executes the
handler with this set to the event source. The problem is that we do not have
access to this, and because our Haskell callback is wrapped by the compiler such
that jQuery can execute it as a normal JavaScript function the event source is also
lost. There seems to be no general solution to this problem. This solution proposed
in [20] is to reify this as an additional parameter to the callback function using a
helper function:

function wrappedThis(f) {
return function() {
var args = Array.prototype.slice.call(arguments);
args.unshift(this);
return f.apply(this, args);

}
}

We illustrate how this is done for registering click events:

f oreign import js "%1.click(%2)"
_registerClick :: JQuery→ JSFunction (EventSource→ IO ())→ IO ()

f oreign import js "wrapper"
mkCb :: (EventSource→ IO ())→ IO (JSFunction (EventSource→ IO ()))

f oreign import js "wrappedThis(%1)"
mkWrappedThis :: JSFunction (a→ IO ())→ IO (JSFunction (a→ IO ()))

registerClick :: JQuery→ (EventSource→ IO ())→ IO ()
registerClick jq f = mkCb f � mkWrappedThis� _registerClick jq

4.4.5 Optional arguments

In JavaScript all function arguments are optional by default. When an argument is
not provided it simply defaults to undefined.

function foo(x, y) {
if(!y) {
y = 0; // default value

}
return x + y;

}
foo(3);

The closest correspondence in Haskell to optional arguments is an argument of
type Maybe, or when there are many options a record with defaults for every selec-
tor. The easiest way to deal with JavaScript functions with optional arguments is to
import several versions of the same function:

1http://www.jquery.com

41

http://www.jquery.com

4.4. JavaScript Idioms Interfacing with JavaScript

f oreign import js "foo(%1)"
foo1 :: Int → Int

f oreign import js "foo(%1, %2)"
foo2 :: Int → Int → Int

Although this is an easy solution it is far from pretty, and quickly explodes when the
number of optional arguments increases. A better option would be to import the
function with all of its arguments, and write a wrapper function that uses a Maybe
for all optional arguments.

f oreign import js "foo(%*)"
_foo :: Int → a→ Int

foo :: Int → Maybe Int → Int
foo a Nothing = _foo a jsUndefined
foo a (Just x) = _foo a x

4.4.6 Global state

JavaScript is at its core a language with mutable state, i.e. at each statement the
value pointed to by a variable may change. The ability to import global state is a
practical necessity. In Haskell to goto model for mutable state are IORefs. However,
they are meant for modeling mutable references to immutable Haskell values, not
references to mutable JavaScript values. We want changes to the global state to
immediately reflect in our reads, i.e. in effect two consecutive reads of the same
piece of global state may yield entirely different values.

We create an interface, very similar to that of IORef, for importing mutable JavaScript
state. The differences lie in the creation of a mutable reference, and the ability to
distinguish between read and read-write references.

-- Wraps a getter and setter
data Lens a = Lens (IO a) (a→ IO ())
-- Use a phantom type as flag for read or read and write capabilities

newtype JSRef t a = JSRef (Lens a)
data Read
data ReadWrite
newJSRef :: IO a→ (a→ IO ())→ JSRef ReadWrite a
newReadOnlyJSRef :: IO a→ JSRef Read a
readJSRef :: JSRef t a→ IO a
writeJSRef :: JSRef ReadWrite a→ a→ IO ()

As a simple example on how JSRef s can be used we import a piece of global
JavaScript state (x), and an accompanying mutator (mutX).

42

Interfacing with JavaScript 4.4. JavaScript Idioms

x = 0;
function mutX() {
x += 10;

}

f oreign import js "x"
readVarX :: IO Int

f oreign import js "mutX()"
mutX :: IO ()

We disallow writes to x, and hence create a read-only JSRef . The following frag-
ment illustrates how changes made by the mutX, outside the grip of Haskell, are
reflected in the value read through readJSRef :

globSt =
refX ← newReadOnlyJSRef readVarX
x← readJSRef refX
putStr (show x)
mutX
x← readJSRef refX
putStr (show x)

The JSRef interface is not only useful for importing global state, but also for mod-
eling a more Haskell like interface to object properties. Furthermore, using JSRef
instead of IORef for partially applying event handlers with global state solves the
problem of having stale values, where the authors of [20] struggled with.

4.4.7 Variadic functions

JavaScript functions can take an arbitrary number of arguments. A typical example
of such a function is the string concatenation function concat (a pure function).
Similar to how we dealt with optional arguments we can import concat by importing
different versions.

f oreign import js "%1.concat(%*)"
concat1 :: JSString→ JSString→ JSString

f oreign import js "%1.concat(%*)"
concat2 :: JSString→ JSString→ JSString→ JSString

However, this is a poor choice as it does not truly uphold the semantics of concat. A
better option would be to use the JavaScript apply function. Where apply is defined
as:

fun.apply(thisArg[, argsArray])

Its first argument is where this is going to point to when fun is called, and the
second argument is an array with function arguments. Using apply we can rewrite
concat such that it works for an arbitrary number of arguments.

f oreign import js "%1.concat.apply(%*)"
_concat :: JSString→ JSString→ JSArray JSString→ JSString

concat :: JSString→ JSArray JSString→ JSString
concat x xs = _concat x x xs

43

4.5. Linking JavaScript libraries Interfacing with JavaScript

While we think this to be an acceptable encoding it still does not truly encode
variadic functions. It has been shown that variadic functions can be simulated in
Haskell using type classes[37, 7], but they are not commonly used and we instead
stick with the more lightweight approach.

4.5 Linking JavaScript libraries

Web applications are constructed using a multitude of technologies. They use
HTML in combination with CSS to convey rendering information to the browser,
and use JavaScript for adding interactivity to an otherwise static rendering of the
HTML tree. The technology triad constitutes the corner stone of every web appli-
cation, which is served to the end-user by means of a HTML document that links
all necessary JavaScript and CSS resources together.

In the current UHC pipeline, shown in figure 2.4, a Haskell program is compiled
down to JavaScript, and linked into a single HTML file together with all its module
dependencies, and the RTS. Without optimizations UHC uses a HTML script tag to
link each dependency into the HTML file. With whole program linking turned on it
links all dependencies into a single file.

The compilation pipeline delivers a very basic web application. There are, however,
many possible configurations to packacke a web application. It need not even be
a single binary, but may be spread over several independent units that may be
loaded using variety of linking strategies. Furthermore, how a web application is
assembled and deployed depends very much on the type of web application. Of all
these aspects UHC currently does not address:

• external JavaScript dependencies;

• inclusion of CSS files;

• inclusion of HTML markup;

• post-processing.

Although it is possible to let UHC deal with all these issues we deem it not wise to
do so. The purpose of UHC is to compile Haskell to JavaScript, and the different
concerns of assembling, post-processing, and application distribution should be the
task of some other software product. In the future UHC should no longer generate
a HTML file itself, but produce a manifest containing a list of dependencies with
which other tools can create a web application.

Contrary to the assemble process, the specification of external JavaScript depen-
dencies is a something UHC should allow for. JavaScript FFI declarations import
functionality that may depend on the presence of some external JavaScript library.
To make the compiler aware of external dependencies there should some interface
for conveying this information to the compiler. The dependencies could be speci-
fied in a special dependency file, but this requires a new file format, and adds to
the semantic distance between the JavaScript FFI declarations and the supporting
JavaScript code. A better approach would be to reuse the existing infrastructure
and specify the dependencies at either module or function level.

44

Interfacing with JavaScript 4.6. Related work

-- Module level
{-# INCLUDE "jquery.js" #-}
module JQuery where
-- Function level
f oreign import js "jquery.js %1.append(%*)"

append :: a→ b→ IO ()

Specifying dependencies at the module level has as advantage that is it not nec-
essary to repeat it for every function. However, this ease of use comes at the cost
of loosing granularity in the linking process. Also, for flexibility reasons, the task
of resolving the filename to an absolute location should be a responsibility of the
compiler (search paths should be supplied as a compiler option).

We have implemented a proof of concept for the function level interface, because
GHC has deprecated the language pragma, and the function level interface pro-
vides more granularity. We found that there was no infrastructure present for letting
Haskell Interface (HI) files carry external dependencies of any sorts. Hence, in
the current implementation only dependencies specified in the Main module will
be considered during the linking process. In the future this should, evidently, be
extended to all modules.

4.6 Related work

The omnipresence of JavaScript makes it an attractive target language. There have
already been many attempts at compiling languages to JavaScript2, of which the
Google Web Toolkit (GWT) [34] (Java to JavaScript) has undoubtedly seen most
traction among the commercial programming community. Unlike GWT the compi-
lation of Haskell to JavaScript is still very much in its developing stages. Especially
the FFI to JavaScript is still under developed. In the following sections we will dis-
cuss some of the more prolific attempts at compiling Haskell to JavaScript, and in
particular how their FFI implementation compares to UHC’s.

4.6.1 York Haskell Compiler

YHC was the first to compile Haskell to JavaScript [3]. It translated the intermediate
Core language to JavaScript (similar to UHC), and had tool support for converting
IDL definitions to Haskell, emulation of threading on top of window.setInterval and
CPS, exception handling, an abstraction layer on top of DOM functionality, and a
library for building widgets with inter-widget communication based on [49]. As a way
to communicate with JavaScript it used a special function called unsafeJS, which for
example could be used to convert some value to a string:

unsafeToString a = unsafeJS "return new String(exprEval(a));"

2A listing of languages that compile to JavaScript: https://github.com/jashkenas/
coffee-script/wiki/List-of-languages-that-compile-to-JS

45

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS

4.6. Related work Interfacing with JavaScript

The unsafeJS function is passed a string containing a JavaScript expression, where
the function parameters are brought into scope in the JavaScript expression under
an identical name. The same mechanism was used to implement primitive RTS
operations:

global_YHC′_Primitive′_primIntegerAdd a b =
unsafeJS "return exprEval(a) + exprEval(b);"

Where in YHC the runtime evaluation strategy leaks into the FFI, UHC hides it
from the programmer through its FEL. Unfortunately, due to amount of work that
comes with maintaining a compiler, and the recognition that GHC is the leading
Haskell compiler, the authors have decided to discontinue support for the YHC
project.

4.6.2 GHCJS

The GHCJS project generates JavaScript based on the STG output it gets by hook-
ing into the GHC compilation pipeline. It appears as if the focus of the project thus
far has been mainly on the compilation part, and not so much on the FFI. Its FFI is
rather primitive, and piggybacks on the C calling convention:

f oreign import ccall "logResult"
logResult :: Ptr JSObject → IO ()

There, however, seems no support for anything else but function calls. Also, being
no experts on the possibilities of GHC hooks, we imagine that the decision to over-
load the C calling convention is born out of necessity. Modifying the GHC front-end
to add new syntax will probably require a fork, which is a severe price to pay. This
is where the first-class compiler support for a JavaScript back-end, like with UHC,
really shines as it provides for maximum flexibility.

4.6.3 Haste

Haste [21] was born out of dissatisfaction with the pre-existing Haskell to JavaScript
compilers. Similar to GHCJS it hooks into the STG phase of GHC, however it does
make quite a few different design decisions. For instance, it chooses to not support
concurrency, leave out on-demand code loading, and use a symbolic intermedi-
ate between STG and JavaScript to make many simplifications and optimizations
possible.

Haste also uses the C calling conventions for interfacing with JavaScript:

f oreign import ccall foo :: Int → IO JSString

The author also shows that the C calling convention can be used to model call-
backs.

f oreign import ccall cb :: (JSString→ IO ())→ IO ()

46

Interfacing with JavaScript 4.7. Conclusion, Discussion & Future Work

However, the programmer needs to be careful when invoking the callback. A lot of
RTS details shine through at this point:

function cb(callback, _state_of_the_world) {
A(callback, [[1,’Hello, world!’], 0]);
return [1, "new state of the world"];

}

Although dynamic and wrapper can be both implemented using this functionality
there is no syntax and automatic wrapping/unwrapping support. Finally, Haste al-
lows external JavaScript dependencies to be included, not based on FFI imports,
but simply by providing it as a compilation parameter.

4.7 Conclusion, Discussion & Future Work

In this chapter we have continued the work of [20] by extending the existing infras-
tructure for programming with the JavaScript FFI. We did this by providing a model
for JavaScript types in Haskell, together with type checking and marshalling func-
tions, further we augmented the FFI with a new keyword for creating JavaScript
objects, and a simple way to incorporate external JavaScript dependencies.

There is, however, much work to be done before the JavaScript back-end is ready
for prime time. The inefficiencies caused by mismatches in data representation
should eventually be solved by the compiler, e.g. for strings this could be done by
implementing overloaded strings. Also, the large number of thunks generated by
Haskell programs are a major cause performance problems in the web browser.
Support for strictness annotations and analyses in UHC would likely improve this
situation. Also, more research is necessary into what the best intermediate rep-
resentation is for generating JavaScript code. The decision to compile from Core
to JavaScript has not been made because it is the best match, but for reasons of
simplicity. Besides the performance issues it is definitely worth the effort to look
into what it takes to support: automatically generated FFI definitions, concurrency,
asynchronous server calls, Data.Dynamic as library for type checking JavaScript,
automatic insertion of type checks based on FFI type annotations, exceptions, and
better error reporting.

47

4.7. Conclusion, Discussion & Future Work Interfacing with JavaScript

48

Chapter 5

A lightweight approach to
Object-Oriented programming
in Haskell

We are motived to explore the possibilities of Object-Oriented (OO) programming
in Haskell by our desire to port wxWidget’s design to Haskell. While Haskell was
not originally envisioned as a language for OO programming there have been sev-
eral attempts at forging it into a OO language either by: extending the language
with subtype polymorphism [51], or embedding a DSL (OOHaskell) with the help
of some common language extensions [38]. The latter approach has shown that
Haskell’s type-class-bounded and parametric polymorphism together with multi-
parameter type classes and functional dependencies is expressive enough to model
even the more advanced features of modern OO languages.

Because we do not intend to extend Haskell our interest goes out to OOHaskell.
The model used by OOHaskell to encode objects and their types is based on poly-
morphic, extensible records of closures, and favors encapsulation by procedural
abstraction over existential types [53]. Haskell records are not polymorphic and
extensible, hence OOHaskell makes heavy use of the HList library [39] which mod-
els polymorphic extensible records through advanced type-level programming us-
ing functional dependencies. In their paper the authors also discuss several more
primitive OO encodings. With one standing out in particular as bearing most re-
semblance with OOHaskell. It is described in section 3.4 "Mutable objects, with tail
polymorphism" and attempts to reify extensible records on top of regular records by
leaving the so called tail of the record polymorph. After discussing the alternative
encodings the authors venture into the more involved aspects of OO programming
using the superior HList encoding. Several subjects such as code reuse, cast-
ing, self-returning methods, and more advanced forms of subtyping are left undis-
cussed for the more primitive encodings discharging them as: involved, requiring
lots of boilerplate, or even infeasible.

It would make sense to reuse OOHaskell were it not that UHC does not yet sup-
port functional dependencies. Driven by the practical necessity of a working OO

49

5.1. Introduction A lightweight OO DSL

approach not dependent on functional dependencies we attempt to stretch the pos-
sibilities of the "Mutable objects, with tail polymorphism" approach and try to make
its limitations manifest by submitting it to the different scenarios OOHaskell is sub-
mitted to. The outline and examples in this chapter will therefore, to a large extent,
be shamelessly based on OOHaskell.

Our contribution consists of an extensive exploration of the "Mutable objects, with
tail polymorphism" approach where we augment the original approach with a generic
up and downcast operation and a combinator for expressing inheritance. Further-
more, we generalize the approach to a restricted form of parameterized classes.
All results are bundled inside a ready to use library which comes with useful com-
binators and macros for deriving some of the boilerplate.

5.1 Introduction

5.1.1 What is Object-Oriented programming?

The fundamental concepts of OO programming originated in Simula 67 [35]. Later
Smalltalk [32] extended and refined the concepts of Simula 67 by treating every-
thing as an object (even a class) and uniformly interpreted all operations as passing
messages to objects. Since Simula 67 and Smalltalk, OO languages have evolved
and many varieties exist today which would make it pretentious to suggest we can
provide a fitting answer to the section’s title. However, there exists a common
conception among researchers about what features are typically found in OO lan-
guages. According to Benjamin C. Pierce [52] the fundamental feature set consists
of:

1. Multiple representations. Objects with the same interface may use entirely
different representations, i.e. an object interface is an abstract representation
of the many possible instantiations. Method invocation works irrespective of
the object representation.

2. Encapsulation. The internal representation of an object is hidden such that
only its methods may access it.

3. Subtyping. The type of an object can be described by its interface, nominal
name, or both. Often we want to write functionality which depends only on a
part of an object’s type. It would be too restrictive if we limit the functionality to
work on exactly one object type. Subtyping loosens this restriction allowing
functionality to work for many types as long as the expected type is related to
the given type through the subtyping relation.

4. Inheritance. It is common for objects to share behavior with other objects.
Inheritance is a mechanism which allows a particular form of behavior shar-
ing; it accomplishes this by allowing the incremental extension of classes with
the possibility to override pre-existing behavior. A class acts as a template
for object instantiation. By extending a class we obtain a subclass which is
just a regular class.

50

A lightweight OO DSL 5.2. The ‘shapes‘ example

5. Open recursion. Typically, an OO language allows the body of an object
method to refer to other methods of the same object using a special identifier
usually called this or self. In combination with inheritance it is essential that
self is late-bound allowing it to refer to methods defined at a later point.

5.1.2 Outline

In the section 5.2 we provide a high-level overview of the library. In section 5.3
we incrementally develop the type-independent part of the library. In section 5.4
we look at the library from a type perspective and develop generic casting opera-
tions, discuss self-returning methods, and generalize the approach to a restricted
form of parameterized classes. In section 5.6 we conclude with a discussion about
the usability and efficiency of the library and provide some directions for future
work.

5.2 The ‘shapes‘ example

The ‘shapes‘ example 1 combines the typical aspects found in OO languages into
a single crisp benchmark.

Figure 5.1: An UML diagram for the shapes example. The boxes are subdivided
into three compartments. The top-level compartment contains the class name, be-
neath it is a list of member variables prefixed with +/- respectively public or private,
and at the bottom a list of methods. The arrows indicate an inheritance relationship,
and bold faced text denotes an abstract method.

Figure 5.1 shows the abstract class Shape with two concrete subclasses Rectangle
and Circle. A Shape maintains a position and provides methods to directly moveTo

1See http://onestepback.org/articles/poly/ for a multi-lingual collection of implementations
in both OO as well as non-OO languages

51

http://onestepback.org/articles/poly/

5.2. The ‘shapes‘ example A lightweight OO DSL

a new position, move relative to current position rMoveTo, or draw the Shape in
question. Rectangle and Circle augment their superclass with additional geometric
data and implement the abstract draw method. To exercise subtype polymorphism
different kinds of shapes are placed inside a collection containing shapes. The
collection is then iterated over drawing each individual shape.

We first show the implementation of the ‘shapes‘ example in Java followed by an
implementation in Haskell using our library.

5.2.1 Shapes in Java

The Shape class can trivially be translated to Java:

public abstract class Shape {
private int x;
private int y;

public Shape(int newx, int newy) {
x = newx;
y = newy;

}

public int getX() { return x; }
public int getY() { return y; }
public void setX(int newx) { x = newx; }
public void setY(int newy) { y = newy; }

public void moveTo(int newx, int newy) {
x = newx;
y = newy;

}

public void rMoveTo(int deltax, int deltay) {
moveTo(getX() + deltaX, getY() + deltay);

}

public abstract void draw();
}

The Shape constructor receives an x and y coordinate of type int and assigns
them to its private member variables. The draw method is marked as abstract.
Subclasses stay abstract if they do not implement draw or add new abstract meth-
ods.

Here follows the definition of Rectangle:

public class Rectangle extends Shape {

// Private attributes
private int width;
private int height;

52

A lightweight OO DSL 5.2. The ‘shapes‘ example

// Constructor
Rectangle(int newx, int newy, int newwidth, int newheight) {
super(newx, newy);
width = newwidth;
height = newheight;

}

// Accessors
public int getWidth() { return width; }
public int getHeight() { return height; }
public void setWidth(int newwidth) { width = newwidth; }
public void setHeight(int newheight) { height = newheight; }

// Implementation of the abstract draw method
public void draw() {
System.out.println(

"Drawing a Rectangle at:("
++ getX() ++ "," ++ getY()
++ "), width " ++ getWidth()
++ ", height " << getHeight()

);
}

}

Circle is defined similarly, we elide its full definition for the sake of brevity.

public class Circle extends Shape {
Circle(int newx, int newy, int newradius) {
super(newx, newy);
...

}
}

Next, we put different kinds of shapes into a single collection of shapes. Inserting
a Rectangle and Circle into a collection where shapes are expected exercises the
language’s ability to perform subtype polymorphism.

Shape[] scribble = new Shape[2];
scribble[0] = new Rectangle(10, 20, 5, 6);
scribble[1] = new Circle(15, 25, 8);
for(int i = 0; i < 2; i++) {
scribble[i].draw();
scribble[i].rMoveTo(100, 100);
scribble[i].draw();

}

We iterate over the list and draw the individual shapes to the screen.

53

5.2. The ‘shapes‘ example A lightweight OO DSL

5.2.2 Shapes in Haskell

We will now show how the shapes example is transcribed to Haskell using our
library for OO programming. The library works with regular Haskell records, the
Data.Dynamic library, and uses the C pre-processor (CPP) to derive some of the
necessary boilerplate.

First, we transcribe the interface of the Shape class as a Haskell record. Analogous
to a Java interface.

data IShape a = IShape {
getX :: IO Int
, getY :: IO Int
, setX :: Int → IO ()
, setY :: Int → IO ()
,moveTo :: Int → Int → IO ()
, rMoveTo :: Int → Int → IO ()
, draw :: IO ()
, _shapeTail :: Record a
}

-- Derive boilerplate
De f ineClassmacro (Shape, IShape, shapeTail, , 1)

Record selectors correspond to methods in the Shape class. There is a single
special method _shapeTail for the extension of the record or as we shall call it the
tail of the record. It is an artifact of our dependence on regular Haskell records and
cannot be abstracted over. The technique of leaving the tail polymorph is known
as type extension through polymorphism [11]. Finally, we use a CPP macro for
deriving some of the boilerplate for manipulating records (see section 5.5).

The implementation of Shape is given by shape function:

-- An implementation of the shapes interface
shape newx newy concreteDraw = clazz $ λtail self →

-- Create references for private state
x← newIORef newx
y← newIORef newy
-- Return a Shape

return IShape {
getX = readIORef x
, getY = readIORef y
, setX = writeIORef x
, setY = writeIORef y
,moveTo = λnewx newy→ do

self # setX $ newx
self # setY $ newy

, rMoveTo = λdeltax deltay→ do
x← self # getX
y← self # getY
(self # moveTo) (x + deltax) (y + deltay)

, draw = concreteDraw self

54

A lightweight OO DSL 5.2. The ‘shapes‘ example

, _shapeTail = tail
}

It takes the two initial values for x and y, an implementation for the draw method,
an extension of the record, a self-reference, and returns an instance of Shape (i.e.
a value of IShape). The concreteDraw parameter makes it explicit that we cannot
obtain an instance of Shape unless we provide it with an implementation of draw.
Consequently, we can easily create instances of Shape without creating a subclass
– analogous to an anonymous inner class in Java. The clazz combinator, only used
for classes with no parent class, brings two additional parameters into scope tail
and self .

clazz cont tail self = tail� λt → cont t self

The tail parameter represents the extension of the record and should only be used
at the tail position, _shapeTail in this case. Interestingly, self is an explicit parameter
of the function whereas in most OO languages it is implemented as an language
primitive. For stylistic purposes we use some syntactic sugar to distinguish between
regular functions and methods:

-- Reverse application
(#) :: a→ (a→ b)→ b
o # f = f o

The Rectangle interface is transcribed similar to Shape’s the only difference is that
we use a different macro for deriving the boilerplate.

data IRectangle a = IRectangle {
_getWidth :: IO Int
, _getHeight :: IO Int
, _setWidth :: Int → IO ()
, _setHeight :: Int → IO ()
, _rectangleTail :: Record a
}

-- Boilerplate for record manipulation and subtype axioms
De f ineS ubClassmacro (Rectangle, Shape, IRectangle, rectangleTail, , , , 1,)

Here follows the implementation of the Rectangle:

rectangle x y width height =
-- Create a new object generator by connecting the records of shape and rectangle

(rectangle′ ‘extends‘ shape x y draw) noOverride set_Shape_Tail
where
rectangle′ tail super self = do

w← newIORef width
h← newIORef height
return IRectangle {

_getWidth = readIORef w
, _getHeight = readIORef h

55

5.2. The ‘shapes‘ example A lightweight OO DSL

, _setWidth = writeIORef w
, _setHeight = writeIORef h
, _rectangleTail = tail
}

-- The implementation of the abstract draw method
draw self = printLn (

"Drawing a Rectangle at:("
<< self # getX
<< ", "
<< self # getY
<< "), width "
<< self # getWidth
<< ", height " << self # getHeight

)

We use the extends combinator in order to make Rectangle a subclass of Shape.
It combines the implementation of Rectangle given by rectangle′ with that of its
superclass. The right-hand side of extends is analogous to the call to super in the
Java example. In between the extension of the superclass with its subclass there
is an opportunity to override functionality defined in the superclass. The function
that allows for this to happen is also passed as a parameter to extends. Because
Rectangle does not override any functionality we simply pass in noOverride which
is essentially the identity function.

Notice how we left out the underscore prefix on the method invocations inside the
draw implementation, because objects are represented as a nested records we
need a helper method to invoke for instance _getWidth. The implementation of
these helper functions corresponds to the top-down unwrapping of the record ex-
tensions until the target method is reached.

-- Boilerplate for explicit method lookup
getWidth = _getWidth ◦ unRecord ◦ _shapeTail
getHeight = _getHeight ◦ unRecord ◦ _shapeTail
-- etc.

In an OO language the method lookup algorithm takes care of these method lookups
starting at the callee tracing the pointers until the relevant method is found. Our
method lookup works the other way around by starting at the top.

We leave out the implementation of Circle which is conceptually no different from
Rectangle and continue with the implementation of the scribble loop:

myOOP = do
s1 ← new $ rectangle 10 20 5 6
s2 ← new $ circle 15 25 8
-- Create a single homogeneous list of shapes
-- Shape is short for: IShape ()

let scribble :: [IShape ()]
scribble = consUb s1 (consUb s2 nilUb)

-- Iterate over the homogeneous list with a monadic version of map discarding the result

56

A lightweight OO DSL 5.3. Objects in Haskell

sequence_ $ map (λshape→ do
shape # draw
(shape # rMoveTo) 100 100
shape # draw)

scribble

We use the new combinator to new create object instances. Unlike Java or any
other OO language with subtype polymorphism we cannot simply place s1::Rectangle
and s2 :: Circle inside a list of shapes, so we use a helper function consUb to auto-
matically convert their types to Shape before we cons them onto the list.

ghci> myOOP
Drawing a Rectangle at:(10, 20), width 5, height 6
Drawing a Rectangle at:(110, 120), width 5, height 6
Drawing a Circle at:(15,25), radius 8
Drawing a Circle at:(115,125), radius 8

5.3 Objects in Haskell

In this section we will incrementally develop the object encoding used by our library.
Similar to OOHaskell we follow the examples from the OCaml tutorial [43].

5.3.1 Objects as tail-polymorphic records

"The class point below defines one instance variable varX and two methods
getX and moveX. The initial value of the instance variable is 0. The variable
varX is declared mutable. Hence, the method moveX can change its value.",
section 3.1

OCaml
1 class point =
2 object
3 val mutable varX = 0
4 method getX = varX
5 method moveX d = varX <- varX + d
6 end;;

In a first attempt at transcribing the one-dimensional Point class we map its inter-
face to a record and let every method correspond to a selector.

data Point = Point {
getX :: IO Int
,moveX :: Int → IO ()
}

The point function instantiates a Point by creating a new value of type Point. It
models the mutable variable varX as an IORef lexically scoped over the record.

57

5.3. Objects in Haskell A lightweight OO DSL

Here objects are closures of records2.

point = do
varX ← newIORef 0
return Point {

getX = readIORef varX
,moveX = λd → modifyIORef varX ((+) d)
}

A method is a function which works on and belongs to an object, i.e. it has access
to the state encapsulated by the object. Using point we can write some basic OO
code:

myFirstOOP = do
p← point
p # getX� print
p # moveX $ 3
p # getX� print

> myFirstOOP
0
3

There are a couple of problems with the encoding. In a typical OO language meth-
ods and data are for efficiency reasons modeled as separate entities such that
methods can be shared among objects of the same type. Because efficiency is
not our primary concern we stick with the conceptually simpler approach where
data and methods are modeled as a single entity. Of a more pressing nature is the
impossibility to extend objects with additional methods. For this reason, amongst
other things, the authors of OOHaskell resort to using extensible records [39]. In-
stead of lifting the Haskell 98 restriction we stick with regular records and use a poor
man’s approach to extensible records called type extension through polymorphism
[11], which can easily be modeled using a parameterized record type:

data Point α = Point {
...
, _pointTail :: α
}

The Point type is modified to take a type parameter (α) which represents the exten-
sion/tail of the record together with a special method for manipulating it. To account
for the extension of Point the point function is also modified to take an additional
parameter representing a computation that will result in the tail:

point tail = do
...
record ← tail
return Point {

2Objects as closures in Scheme: ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/
pubs/swob.txt

58

ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/swob.txt
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/swob.txt

A lightweight OO DSL 5.3. Objects in Haskell

...
, _pointTail = record
}

Now that we can extend Point with another record we also want to have a way of
closing the record extension.

emptyRecord :: IO ()
emptyRecord = return ()

The emptyRecord represents the end of a record extension. Like before we can
construct a point object, but we now first apply it to the emptyRecord:

myFirstOOP = do
p <- point emptyRecord
...

We create an extension of Point called Point2D for representing points in the 2-
dimensional plane.

point2d tail =
point point2d′

where
point2d′ = do

varY ← newIORef 0
record ← tail
return Point2D {

_getY = readIORef varY
, _moveY = λd → modifyIORef varY ((+) d)
, _point2DTail = record
}

We omit the interface definition of Point2D as its signature can be easily inferred
from the implementation. The fact that we pass point2d′ to point clearly expresses
that a 2d-point is constructed out of a Point linked to a Point2D. This becomes even
clearer when we look at the type:

>:t point2d emptyRecord
Point (Point2D ())

The type structure revealed by our encoding is in fact equivalent to the phantom
type structure used in [24] to model a type safe interface to external OO code,
which was later formalized in[25]. However, contrary to the phantom types our
encoding has meaningful Haskell inhabitants.

We have already encoded a small hierarchy of points. To accompany colored points
we can simply extend the hierarchy:

Point ()

Point (Point2D ()) Point (ColoredPoint ()) ...

59

5.3. Objects in Haskell A lightweight OO DSL

Every node in the hierarchy represents an unique object type, each child node has
exactly one more nested record than its parent, and there are a finite number of
object types. Under these conditions the hierarchy forms a finite subtype hierarchy
where each child is in a subtype relationship with its parent.

We can benefit from type unification to express the subtyping relationship to the
type system:

getX :: Point α→ IO Int

By leaving the tail of Point polymorph getX can be applied to any object type that is
at least a Point. The Point α type is an abstract encoding matching a set of concrete
encodings. The phantom type encoding allows abstract encodings to occur in the
co-variant (producing) position [25], but because we always have values associated
it is not safe to do so. Hence we limit abstract encodings to the contravariant
(consuming) position.

In the previous section we showed how method lookups are performed, but left their
type unspecified. In our encoding a method always expects an abstract encoding
as its first argument enabling reuse across all subtypes.

-- Optional type
getY :: Point (Point2D a)→ IO Int
getY = _getY ◦ _pointTail

To make our notion of interface, class, and object somewhat less vague we provide
their definitions.

Definition 1. An interface is a record C with the following shape:

data C t = C {m, _cTail :: t }

where C takes a type parameter t representing the tail, and may be instantiated to
either () or a interface. In the body m expands to zero or more methods, and _cTail
is a special method where c is the uncapitalized version of C.

Definition 2. A class is a function that provides the implementation of an interface.

Definition 3. An object is an instantiation (value) of an interface obtained through
a class.

Thus far we have explained the basic object encoding underlying our library to-
gether with its rational. Although we will later discover that we need to slightly
modify it in order to facilitate casting the basic idea will remain the same.

5.3.2 Constructor arguments

"The class point can also be abstracted over the initial value of varX. The pa-
rameter x_init is, of course, visible in the whole body of the definition, including
methods. For instance, the method getOffset in the class below returns the
position of the object relative to its initial position.", section 3.1

60

A lightweight OO DSL 5.3. Objects in Haskell

OCaml
1 class para_point x_init =
2 object
3 val mutable varX = x_init
4 method getX = varX
5 method getOffset = varX - x_init
6 method moveX d = varX <- varX + d
7 end;;

The previous incarnation of point allocated an initial value for varX inside its body.
There is nothing restriction us from moving the initial value out of the body and
turning it into an argument. Here follows a more general version of point:

para_point tail x_init = do
record ← tail
varX ← newIORef x_init
return ParaPoint {

getX = readIORef varX
,moveX = λd → modifyIORef varX ((+) d)
, getOffset = readIORef varX� λx→ return (x − x_init)
, _paraPointTail = record
}

5.3.3 Construction-time computations

"Expressions can be evaluated and bound before defining the object body of
the class. This is useful to enforce invariants. For instance, points can be
automatically adjusted to the nearest point on a grid, as follows:", section 3.1

OCaml
1 class adjusted_point x_init =
2 let origin = (x_init / 10) * 10 in
3 object
4 val mutable varX = origin
5 method getX = x
6 method getOffset = x - origin
7 method moveX d = x <- x + d
8 end;;

Similar to OCaml we may perform computations prior (in the non-strict sense) to
object construction by using a let binding.

adjusted_point tail x_init =
let origin = (x_init / 10) ∗ 10
in do ...

varX ← newIORef x_init
return ParaPoint {
...
, getOffset = readIORef varX� λx→ return (x − origin)

61

5.3. Objects in Haskell A lightweight OO DSL

...
}

5.3.4 Semi-explicit parameterized classes

The para_point function has its argument type fixed to Int. This may proof un-
necessarily restrictive. We can lift the restriction by introducing an additional type
parameter to ParaPoint.

data ParaPoint a t = ParaPoint {
getX :: IO a
,moveX :: a→ IO ()
, getOffset :: IO a
, _paraPointTail :: t
}

The type inferencer will automatically infer a more general type for para_point with-
out any modifications to para_point.

para_point :: Num a⇒ a→ IO (ParaPoint a t)

Parameterized points are now bounded polymorph and can be constructed using
any type of number.

myPolyOOP = do
p ← para_point emptyRecord (1 :: Int)
p′ ← para_point emptyRecord (1 :: Double)
p # moveX $ 2
p′ # moveX $ 2.5
p # getX� print
p′ # getX� print

If we were to apply methods of p with the wrong type

-- Ill-typed
myPolyOOP = do
...
p # moveX $ 2.5
...

we get a type error because the type checker expected the argument of moveX to
have type Int but it got a Double. The generalization of classes to multiple type
parameters is further explored in section 5.4.3.

5.3.5 Nested object generators

"The evaluation of the body of a class only takes place at object creation time.
Therefore, in the following example, the instance variable varX is initialized to
different values for two different objects.", section 3.1

62

A lightweight OO DSL 5.3. Objects in Haskell

OCaml
1 let x0 = ref 0;;
2 class incrementing_point :
3 object
4 val mutable varX = incr x0; !x0
5 method getX = varX
6 method moveX d = varX <- varX + d
7 end;;

The variable x0 mimics what would be referred to in OO terminology as a class
variable. The scope of a class variable is not limited to object instances, but as its
name suggests ranges over all instances of a particular class. We could model x0

as a global variable like in the fragment above. However, we can do much better by
using what OOHaskell calls nested object generators.

makeIncrementingPointClass = do
x0 ← newIORef 0
return $ λtail→ do

record ← tail
modifyIORef x0 (+1)
varX ← readIORef x0 � newIORef
return Point {

getX = readIORef varX
,moveX = λd → modifyIORef varX (+d)
, _pointTail = record
}

The makeIncrementingPointClass consists of two levels: the outer level describes
the class template, the inner the point class. This is possible because there is
nothing preventing us from returning classes instead of object instances. Classes
are like objects just values unlike the case in many OO languages where they are
special constructs.

myNestedOOP = do
localClass← makeIncrementingPointClass
localClass emptyRecord� (#getX)� print
localClass emptyRecord� (#getX)� print

If we run makeIncrementingPointClass it returns a closure over x0. Hence, each
time localClass is used to create a new instance of Point the construction-time
computation increments the class variable x0.

ghci> myNestedOOP
1
2

5.3.6 Self-referential objects

"A method or an initializer can send messages to self (that is, the current ob-
ject). For that, self must be explicitly bound, here to the variable s (s could be

63

5.3. Objects in Haskell A lightweight OO DSL

any identifier, even though we will often choose the name self.) ... Dynamically,
the variable s is bound at the invocation of a method. In particular, when the
class printable_point is inherited, the variable s will be correctly bound to the
object of the subclass.", section 3.3

OCaml
1 class printable_point x_init =
2 object (s)
3 val mutable varX = x_init
4 method getX = varX
5 method moveX d = varX <- varX + d
6 method print = print_int (s # getX)
7 end;;

Thus far we have avoided objects wherein methods refer to each other. The ability
to refer to other methods inside the object is an essential feature of OO language
and is enabled by a special identifier typically called this or self. The lack of such
a special keyword in our encoding leaves us with the question on how we can
provide a class with a reference to itself before it is even constructed? An imperative
approach to solving this problem would be to use a mutable reference and leave it
undefined to just after the object is constructed when it should be fixed with a proper
reference to the object. All under the assumption that the self-reference is not
touched during object construction as it would lead to undefined behavior.

We could explicitly write down this process, but fortunately it has already been
captured by the fixIO combinator [22].

fixIO :: (a→ IO a)→ IO a

It takes a function that takes as its first argument expects a value of the type that it
itself produces. We will use fixIO to provide objects with a self-reference. Because
object instantiation now consists of two separate actions – closing record extension,
and passing a self-reference – we capture the act of creating a new object instance
inside a combinator:

new o = fixIO $ o emptyRecord

We implement the printable_point class and have it take a self-reference:

printable_point x_init = clazz $ λtail self → do
varX ← newIORef x_init
return PrintablePoint {

getX = readIORef varX
,moveX = λd → modifyIORef varX ((+) d)
, print = (self # getX)� putStr ◦ show
, _printablePointTail = tail
}

Note that we essentially rely on laziness for this construction to work, self should
only be accessed in safe positions (inside methods) as premature evaluation would
cause the program to crash. We can test the self-reference by invoking print.

64

A lightweight OO DSL 5.3. Objects in Haskell

mySelfishOOP = do
p← new $ printable_point 3
p # moveX $ 2
p # print

In OO languages it is common practice to call initializer methods on an object inside
the constructor. This can be mimicked by wrapping a class and carry out some
initialization logic before returning the actual instance:

printable_point_constructor x_init tail self = do
p← printable_point x_init tail self
p # moveX $ 2
p # print
return p

5.3.7 Single inheritance with override

"We illustrate inheritance by defining a class of colored points that inherits from
the class of points. This class has all instance variables and all methods of
class point, plus a new instance variable color, and a new method getColor.",
section 3.7

OCaml
1 class colored_point x (color : string) =
2 object
3 inherit point x
4 val color = color
5 method getColor = color
6 end;;

Inheritance is a technique for sharing behavior between objects. It accomplishes
sharing by incrementally extending classes – better known as subclassing. Often
inheritance is confused with the orthogonal question of substitutability. Creating a
new subclass is not necessarily the same thing as introducing a new subtype [14].
Although disparate issues our encoding does not permit the separation of the two,
i.e. inheritance necessarily implies subtyping.

The correct implementation of inheritance in combination with self-reference is
known to be tricky [13]. It is crucial that self is late-bound, i.e. when a class is
extended self is bound at the latest possible moment such that a subclass may
intercept method invocations on self in the superclass by overriding its behavior
in the subclass. Late-binding is also referred to as open recursion conveying the
intuition that the actual type of self is left open until the recursion is closed.

The colored_point class takes an initial values for x, color, and an extension of the
record.

colored_point x color = clazz $ λtail self →
printable_point x colored_point′

where

65

5.3. Objects in Haskell A lightweight OO DSL

colored_point′ = do
return ColoredPoint {

_getColor = return color
, _coloredPointTail = tail
}

Compared to our previous attempt at extending records in section 5.3.1 the object
now has access to itself through self . Note that the self-reference should not be
accessed in unsafe positions, i.e. positions where it is evaluated before the actual
object is constructed and the self-reference is fixed. The combination of record
extension 5.3.1 and self-reference 5.3.6 allows us to model a basic form of inheri-
tance:

myColoredOOP = do
p← new $ colored_point 3 "red"
x← p # getX
c← p # getColor
print (x, c)

> myColoredOOP
(3, "red")

The above code shows that subclassing works, but we have yet to consider over-
riding methods. To show what is wrong with the approach to overriding methods
shown in OOHaskell (section 2.4, p. 22) we adapt colored_point by overriding the
print method.

colored_point x color = clazz $ λtail self → do
super ← printable_point x colored_point′ self
return super {

print = do putStr "so far - "; super # print
putStr "color - "; putStr (show color)

}

where
colored_point′ = do

return ColoredPoint {
_getColor = return color
, _coloredPointTail = tail
}

Overriding print is done by updating the record that results from constructing a
ColoredPoint. There are, however, a couple of questionable aspects about this
approach. First, referring to the whole record as super is not appropriate as super
should only refer to the parent object. Second, as a side-effect of letting super refer
to the whole object we cannot refer to super in colored_point′. Unsatisfied with
this approach to overriding methods provided by OOHaskell we continue to explore
what it takes to properly model inheritance.

66

A lightweight OO DSL 5.3. Objects in Haskell

Deriving the inherit combinator

One of the key observations in implementing inheritance is that super refers to
the fully constructed parent object. It exists as such in the scope of the subclass,
allowing methods to refer to the unmodified parent object, after which it can be
opened up to be extended with additional methods, possibly overriding methods of
the super object.

For colored_point this means that we first instantiate its parent printable_point with
the emptyRecord which results in a binding to super that part-takes in the construc-
tion of colored_point′. Then the print method is overridden and the emptyRecord
is replaced with the ColoredPoint extension containing all additional methods and
data.

colored_point x color = clazz $ λtail self → do
super ← printable_point x emptyRecord self
wrapper ← colored_point′ tail super self
return super {

print = do putStr "so far - "; super # print
putStr "color - " ; putStr color

, _printablePointTail = wrapper
}

where
colored_point′ tail super self = do

return ColoredPoint {
_getColor =

do x← super # getX
putStrLn ("Retrieving color at: " ++ show x)
return color

, _coloredPointTail = tail
}

Because we use normal records the process of overriding and extending becomes
somewhat entangled.

Cook et al. [13] show how inheritance can be modeled using a combinator B de-
fined in the lambda calculus. They proof its correctness with respect to the opera-
tional semantics of a commonly used OO method-lookup algorithm.

B : (Wrapper ×Generator)→ Generator

W BG = λsel f .(W(sel f)(G(sel f))) ⊕G(sel f)

The combinator takes a wrapper, generator, and builds a new generator by dis-
tributing the self-reference to both the generator and wrapper. It passes a genera-
tor applied to self as super to the wrapper, and combines the two using ⊕ forming
a new generator. That the two instances of the generator applied to self are shared
is left implicit, but is made clear by the visualization in figure 5.2.

It turns out that colored_point is a concrete instantiation of Cook’s B combinator
obfuscated by technicalities caused by the use of records and IO monad. To make

67

5.3. Objects in Haskell A lightweight OO DSL

Figure 5.2: A visualization of the inheritance combinator (B) taken from [13].

this correspondence clear we reify the combinator as the extends Haskell function,
but first we define a couple of type synonyms that will make the type signature
easier to digest:

type Class tail self o = tail→ self → o
type EmptyClass = IO ()
type OpenClass tail self o = Class (IO tail) self (IO o)
type SuperClass self sup = Class EmptyClass self (IO sup)
type SubClass tail sup self o = tail→ super → self → IO sub

The extends combinator takes a few more parameters than B. Since we cannot de-
fine a generic operation for record concatenation (as OOHaskell does) we param-
eterize over it using ⊕. Furthermore, for syntactic purposes we have not combined
override and ⊕ into a single operation.

extends ::
SubClass tail sup self sub -- w

→ SuperClass self sup -- g
→ (sup → self → IO sup′) -- override
→ (sup′ → sub → o) -- combine subclass and superclass
→ OpenClass tail self o

extends w g override ⊕ = clazz $ λtail self → do
super ← g emptyRecord self
wrapper ← w tail super self
super′ ← override super self
return $ super′ ‘ ⊕ ‘ wrapper

We can now express colored_point in terms of extends:

colored_point x color =
(wrapper ‘extends‘ printable_point x) override (λo v→ o {_printablePointTail = v})
where
override super self = return super {

print = do putStr "so far - "; super # print
putStr "color - " ; putStr color

68

A lightweight OO DSL 5.3. Objects in Haskell

}

wrapper tail super self =
return ColoredPointClass {

_getColor = do x← super # getX
putStrLn ("Retrieving color at: " ++ show x)
return color

, _coloredPointTail = tail
}

and demonstrate it through a simple example:

myOverridingOOP = do
p← new $ colored_point 3 "red"
p # getColor
p # print

>myOverridingOOP
Retrieving color at position: 3
so far - 3 color - "red"

Sometimes you might want to override existing methods without adding new ones.
This form of anonymous overriding is also possible:

colored_point′ x_init color tail self = do
super ← colored_point x_init color tail self
return $ super {

print = putStr "I’m a colored point"
}

5.3.8 Class-polymorphic functionality

Because classes are just values we can parameterize computations over classes.

-- Optional type
myFirstClassOOP ::

Num a⇒ (a→ IO (PrintablePoint b→ ())
→ PrintablePoint b
→ IO (PrintablePoint b))

→ IO ()
myFirstClassOOP point_class = do

p← new $ point_class 7
p # moveX $ 35
p # print

Any subclass of PrintablePoint may be passed into myFirstClassOOP.

ghci>myFirstClassOOP printable_point
42

69

5.4. A type-perspective A lightweight OO DSL

ghci>myFirstClassOOP (flip colored_point’ "red")
so far - 42 color - red

5.3.9 Orphan methods

Orphan methods are methods which can be shared between classes without rely-
ing on inheritance – a kind of horizontal reuse.

print_getX self = (self # getX)� Prelude.print

The print_getX function can be applied to any subclass of PrintablePoint. In OOHaskell
its type would be much more granular and hence work for any class that supports
the getX method. We can get some of the structural behavior of OOHaskell by intro-
ducing a type class per method and overload the method on its object type.

class HasGetX o where
callGetX :: o→ IO Int

instance HasGetX (PrintablePoint t) where
callGetX = getX

print_getX self = (self # callGetX)� Prelude.print

On occasions this might be useful, but it requires significant boilerplate and quickly
runs into ambiguity problems for methods with polymorphic arguments.

5.4 A type-perspective

5.4.1 Explicit casting

Up to this point we have avoided the issue of ascribing a value a different type
based on its relationship in the subtyping hierarchy. Type ascription in the presence
of subtyping is commonly known as casting. Given a value of type X, ascribing it
a supertype is referred to as an upcast, whereas ascribing it a subtype is referred
to as a downcast. The former allows X to be viewed as its supertype and can
therefore be regarded as a form of abstraction or elimination. The latter can be
viewed as a form of introduction and is arguably more involved since it needs to
recover from potentially hidden information.

We will focus on single inheritance where each subtype has a single supertype:

... supertype

X

... subtype

70

A lightweight OO DSL 5.4. A type-perspective

To illustrate why we need casting we show a typical OO scenario where two ob-
jects of different types, related by subtyping, are placed inside a list containing only
elements of their supertype.

let rect = ... :: IShape (IRectangle ())
circle = ... :: IShape (ICircle ())

Suppose that we insert both shapes into a list:

[rect, circle] -- Type error

The result is a type error, because the two type element types do not unify. What
we actually want is that the type system infers the more general type IShape a, but
this would imply that it has some notion of subtyping and allow universal quantifi-
cation over monomorphic values at the covariant position, neither of which are the
case.

There are two options to make it work either change the type of list elements, or
change the type of the elements inserted into the list. The former leads to more
idiomatic Haskell and has two basic options: use Either, or an existential enve-
lope.

-- Either
[L rect,R circle] :: [Either (IShape (IRectangle ())) (IShape (ICircle ()))]

Using Either requires tagging rect and circ with respectively L and R. It is the
simplest solution and leaves the original types intact. That the original types are
kept intact is at the same time one of the problems. We can construct the list,
but we cannot pass it to a function that expects a list of any shape. Also, when
generalizing to n distinct types operations like injection, projection, and mapping
become more involved.

-- Existential envelope
[rect, cirlce] :: [∃a.IShape a]

Using existentials we can take advantage of the tail-polymorphic structure and hide
the tail of a record by existentially quantifying over it. Now we can simply insert
any subtype of IShape inside a list without further ado. However, plain existentials
cannot not recover from the existentially quantified information. In section 5.4.2
we will see how in combination with explicit casting we can mitigate the loss of
information.

Neither approach is satisfactory. OOHaskell uses yet another approach to insert el-
ements into the list where it circumvents unification problems by explicitely chang-
ing the type of list elements before they are inserted. Their type is modified by
using a narrowing function that shops off the tail.

The narrowing function for shapes is defined as follows:

-- Specific narrowing function
up_shape :: IShape a→ IShape ()
up_shape o = o {_shapeTail = ()}

71

5.4. A type-perspective A lightweight OO DSL

It takes at least a shape, opens up the object, and throws out the tail replacing it
with the emptyRecord′. We can use up_shape as a helper to insert rect and circle
into a list of shapes.

[up_shape rect, up_shape circle] :: [IShape ()]

Even though it provides a working solution it appears to be even less useful com-
pared to existentials. It accomplishes the same thing with more boilerplate for the
necessarily type specific record manipulation, a run-time overhead for perform-
ing the actual record manipulation, and requires knowledge of the whereabouts
of the narrowing functions. Furthermore, similar to existentials it does not admit
downcasting because it simply throws out information that may later be required to
perform a downcast.

In the following sections we will improve upon the above techniques by implement-
ing generic functions for up and downcasting. We use type classes for automati-
cally generating the type conversion functions and dynamic typing for hiding the tail
instead of deposing it. The use of dynamic types allows a downcast to reconstruct
the original types.

Generic upcast

An upcast is a function that when given a source (subtype) and target (supertype)
type provides unique directed-path through the subtyping hierarchy from source to
target type composed of the smallest possible narrowing steps that allow it to move
along the edges of the path.

Although up_shape conceptually corresponds to such a path its implementation
does not. In order to implement a generic upcast function we need a more compo-
sitional approach that is explicit about the constituents of the path.

Suppose we want to upcast a Cube to a Shape obtaining a more explicit version
than:

from_cube_to_shape = up_shape

requires that we follow the edges in figure 5.3 from Cube to Shape. The la-
bels on the edges are functions that allow us to transition from one vertex to the
other.

up_rectangle :: IShape (IRectangle ())→ IShape ()
up_rectangle o = o {_shapeTail = ()}
up_circle :: IShape (ICircle ())→ IShape ()
up_circle o = o {_shapeTail = ()}
up_cube :: IShape (IRectangle (ICube ()))→ IShape (IRectangle ())
up_cube o = o {_shapeTail = _shapeTail o {_rectangleTail = ()}}

The explicit version of from_cube_to_shape mentioning all labels in the path is given
by:

72

A lightweight OO DSL 5.4. A type-perspective

IShape ()

... (IRectangle ())

... (ICube ()))

up_cube

up_rectangle

... (ICircle ())

...

up_circle

...

up_shape

Figure 5.3: The shapes subtyping hierarchy where the edges are annotated with
narrowing functions.

from_cube_to_shape = up_rectangle ◦ up_cube

Where up_shape allowed us to take a shortcut the explicit version does not. It
requires N record manipulations, where

N =
1
2

(ns − nt)(nt + ns − 1)

and ns, nt are respectively the depth of the source and target type with n > 1. Thus
instead of a single record manipulation with up_shape it requires 3 record manip-
ulations. Clearly, the explicit approach is less efficient but the effect is somewhat
mitigated by the fact that n is bounded by the subtyping depth which in practice is
quite limited.

Manually writing functions like from_cube_to_shape is tedious, not generic, and
hence offers no benefits over just using up_shape. The possibility to explicitly spec-
ify the path only turns into a benefit when we can craft a function that will automat-
ically create the path for us provided with a source and target type. This is exactly
what we aim for. A generic upcast function should therefore: given a source and
target type automatically create the path between source and target by decompos-
ing it into individual narrowing steps.

Because the behavior of an upcast depends on both the source and target type we
model it using a multi-parameter type class3:

class α ≺ β where
upcast :: α→ β

The type class reads: if α is a subtype of β, there exists an upcast operation which
can be used to cast a value of type α into value of type β.

In order for this proposition to hold we rely on the essential property that each
subclass can be interpreted as a new subtype, and thus walking over the type
structure implies walking over the subtyping hierarchy.

The rules that decide whether two types are related by subtyping are shown in
Figure 5.4. It is well-known that these type rules do not directly translate into an

3We use TypeOperators solely for stylistic purposes.

73

5.4. A type-perspective A lightweight OO DSL

[reflexivity]
A <: A

[transitivity] A <: B B <: C
A <: C

Figure 5.4: Typing rules for the subtyping relation.

algorithmic implementation because it is not clear when they should be applied. In
other words, they are not syntax directed (see Chapter 16 [52]).

It turns out that if we limit the inhabitants of the ≺ type class to first-order val-
ues with a tail-polymorphic structure we can obtain a syntax directed version of
the typing rules. Instance declarations then correspond to the typing rules which
through context reduction provide the compiler with evidence on whether two types
are related by subtyping.

We use the ‘shapes‘ example in a first attempt at translating the typing rules to
instance declarations on a per type basis, i.e. introducing new instance declara-
tion for each new type. The reflexivity rule is trivially implemented by the identity
function, because upcasting a value to itself has no effect.

-- Reflexivity
instance IShape () ≺ IShape () where

upcast = id
instance IShape (IRectangle ()) ≺ IShape (IRectangle ()) where

upcast = id
instance IShape (ICircle ()) ≺ IShape (ICircle ()) where

upcast = id

Note that we need to lift a Haskell 98 restriction which requires the shape of an
instance head to be of the form C (T a1 ... an), where C is designates the class,
T a data type constructor, and a1, ..., an a set of distinct type variables. We lift it to
arbitrary nested types by enabling the FlexibleInstances extension.

Next, we implement transitivity for Rectangle and Circle.

-- Transitivity
instance (IShape () ≺ β)⇒ IShape (IRectangle ()) ≺ β where

upcast = upcast ◦ up_rectangle
instance (IShape () ≺ β)⇒ IShape (ICircle ()) ≺ β where

upcast = upcast ◦ up_circle

The transitivity instances embed a single narrowing step and delegate further work
to other instance declarations. We can now perform a generic upcast without know-
ing about the specifics of narrowing functions. The solution also allows for easy
extension to new object types by simply adding another instance for reflexivity and
transitivity.

To illustrate what happens at compile-time we let the system automatically derive
from_cube_to_shape for us:

let cube = ... :: IShape (IRectangle (ICube ()))
in upcast cube :: IShape ()

74

A lightweight OO DSL 5.4. A type-perspective

The compiler builds up a proof tree for each application of upcast proving that the
source and target type are related by subtyping thereby also ruling out silly casts
(i.e. casts between two unrelated types). Here is the proof tree derived by the
context reduction machinery for the above example:

[refl-shape]
IShape () ≺ IShape () · · ·

[trans-rect]
IShape (IRectangle ()) ≺ IShape () · · ·

[trans-cube]
upcast cube :: IShape ()

The value produced by the proof should look familiar. It corresponds to the
from_cube_to_shape function except that at the end it includes the identify function
as a residue of the recursion.

id ◦ up_rectangle ◦ up_cube
≡ {- left-identity -}

up_rectangle ◦ up_cube
≡ {- by definition -}

from_cube_to_shape

There are quite some subtleties involved in the transitivity case. First, we need two
additional language extensions FlexibleContexts and OverlappingInstances. The for-
mer does the same for the context as FlexibleInstances does for the head. The
latter is necessary because β makes the transitive and reflexive case overlap. For-
tunately, this is a harmless case of overlapping instances as it does not lead to any
difficulties in determining the most specific instance which can still be determined
by solely looking at the instance head. Leaving β polymorph allows the recursive
call to upcast to pick either another transitive instance or bottom out the recursion
at the reflexive instance. This is necessarily the case because the choice on which
instance to pick is determined by the instantiation of β at the call site.

Pushing it a bit further

While the instance per new subclass/subtype approach works its dependence on
concrete types requires an unnecessary amount of instances for classes with es-
sentially the same type structure (see Circle and Rectangle). A much better ap-
proach would be to abstract over the concrete types. As a consequence the prob-
lem of providing instance declarations shifts from per new subclass to per increase
in the depth of the subtyping hierarchy. Fortunately, this is not that much of a
problem because the depth of a subtyping hierarchy is in practice often quite lim-
ited.

We refactor the previous instance declarations, replacing the concrete types with
type variables, but leaving the structure intact.

-- depth 1: reflexivity
instance c () ≺ c () where

upcast = id

For each subsequent increase in depth we add an instance for both reflexivity and
transitivity.

75

5.4. A type-perspective A lightweight OO DSL

-- depth 2
instance a (b ()) ≺ a (b ()) where

upcast = id
instance (a () ≺ x)⇒ a (b ()) ≺ x where

upcast = upcast ◦ (? :: a (b ())→ a ())
-- depth 3

instance a (b (c ())) ≺ a (b (c ())) where
upcast = id

instance (a (b ()) ≺ x)⇒ a (b (c ())) ≺ x where
upcast = upcast ◦ (? :: a (b (c ()))→ a (b ()))

By abstracting over the concrete types we gained some expressive power, but lost
some information. We no longer know which narrowing functions should be called
at the position of the question mark. In order to capture the specific narrowing
functions we introduce a new type class Narrow. It allows us to defer the decision
on what concrete narrowing function to use to the call site.

The Narrow type class captures the set of specific narrowing functions.

class Narrow α β where
narrow :: α→ β

We augment the transitivity instances with an additional Narrow constraint, and
replace the question marks with calls to the narrow function.

-- Depth 2: add a Narrow constraint
instance (a () ≺ x,Narrow (a (b ())) (a ()))⇒ a (b ()) ≺ x where

upcast = upcast ◦ (narrow :: a (b ())→ a ())
-- From rectangle to shape

instance Narrow (IShape (IRectangle ())) (IShape ()) where
narrow = up_rectangle

It is important that the type variables in the head of the transitivity instance match
those annotating the narrow function. We use the ScopedTypeVariables extension to
bring the type variables in the head into scope such that they may be reused in the
body of upcast. Furthermore, by adding the Narrow constraint the Paterson Condi-
tions no longer hold, i.e. the context is no longer smaller than the instance head4.
To lift this restriction we must enable UndecidableInstances with which termination
of context reduction process is no longer guaranteed. Fortunately, this causes no
problems because we can tell by our instance definitions that there is no possibility
to send the context reduction into an infinite loop.

The subtype type class has some interesting behavior, different from what one
might intuitively expect from subtyping:

foo c =
let c′ = upcast c :: A (B (C ()))

4For more details see: http://www.haskell.org/ghc/docs/7.2.2/html/users_guide/
type-class-extensions.html#instance-rules

76

http://www.haskell.org/ghc/docs/7.2.2/html/users_guide/type-class-extensions.html#instance-rules
http://www.haskell.org/ghc/docs/7.2.2/html/users_guide/type-class-extensions.html#instance-rules

A lightweight OO DSL 5.4. A type-perspective

b = upcast c :: A (B ())
a = upcast c :: A ()

in ()

On basis of subtyping one might expect the type of foo to correspond to:

foo :: (a ≺ A (B (C ())))⇒ a→ ()

since both b and a are included in A (B (C ())). However, the actual type of foo
corresponds to:

foo :: (a ≺ A (), a ≺ A (B ()), a ≺ A (B (C ())))⇒ a→ ()

Each call to upcast contributes a constraint to the context. However, the context re-
duction machinery is not aware of the subtyping rules and therefore cannot reduce
the constraint set to a ≺ A (B (C ())). This is not erroneous nor does it affect the be-
havior of foo, but for a clean type signature we must perform the context reduction
in our head and provide foo with an explicit type signature.

Generic downcast

A downcast is the partial inverse of upcast. Its partial because it attempts to restore
type information whilst admitting the possibility of failure in case the expected type
does not correspond to the actual type.

The problem with the current implementation of upcast is that the individual narrow-
ing steps throw away the tail making it impossible to later restore it with a downcast.
In order to facilitate downcasts the tail needs to be somehow maintained without
having it surface in the type. A known technique for hiding types is existential
quantification. However, using plain existentials we cannot recover from the hidden
information. The Data.Dynamic library does allow hidden types to be restored by
testing on type equality between the run-time type representations of the hidden
value and its expected type. If the value’s type matches the expected type it pro-
vides proof that the hidden value may safely be recovered from as the expected
type.

Before implementing downcast we fix the tail representation by wrapping it inside a
new data type Record such that an upcast can hide the tail.

-- A wrapper for the tail
type Record α = Either α Dynamic

Record is represented using the binary sum type Either a b. With the tail wrapped
inside a Record α value we gain the possibility of hiding the tail. We make no
distinction between the type of an empty record and that of a hidden tail.

-- Smart constructors
record = L
unRecord (L a) = a
hideRecord :: Typeable α⇒ Record α→ Record ()
hideRecord (L a) = R (toDyn a)

77

5.4. A type-perspective A lightweight OO DSL

emptyRecord :: IO (Record ())
emptyRecord = return (record ())

The record and unRecord functions wrap and unwrap a record, hideRecord hides
a record by injecting it into a Dynamic, and emptyRecord is adapted to the new
record representation. Note that the representation requires every interface to be
an instance of Typeable such that it can be used by the Data.Dynamic library.

We now wrap every tail inside a Record like this

data IShape α = IShape {
...
, _shapeTail :: Record α
}

, and revise the narrowing functions to use hideRecord:

instance Narrow (IShape (IRectangle ())) (IShape ()) where
narrow o = o {_shapeTail = hideRecord (_shapeTail o)}

The effect of the new representation is that for example an upcast from Cube to
Shape still has the same type, but internally looks more like this:

IShape (IRectangle (ICube ()))

where black is the visible and gray the invisible part of the type. By changing the
representation we introduced the possibility of restoring the subtypes.

With the correct data structure in place we are ready to implement the downcast
function. Since we do not know what types are possibly hidden – it can be any
subtypes – a downcast is necessarily a partial function. The best we can do is try
to perform a downcast. A downcast is a function from a value of type β to a value of
type Maybe α which succeeds only if β is a supertype of α, and β can be converted
into a value of type α.

downcast :: β→ Maybe α

At first, it seems to make sense to place downcast inside the ≺ type class given
that downcast is the partial inverse of upcast and the instances are governed by the
same subtyping rules.

class α ≺ β where
upcast :: α→ β
downcast :: β→ Maybe α

This works fine for the reflexivity instances, but unfortunately breaks for transitiv-
ity as the type class constraints necessary for downcast are not incompatible with
those required for upcast. An upcast forgets information while downcast tries to gain
information. Hence, we introduce a separate type class for the supertype relation
and rely on the library designer to ensure consistency between the two.

78

A lightweight OO DSL 5.4. A type-perspective

-- New type class for downcasting
class α � β where

downcast :: α→ Maybe β

For reflexivity a downcast always succeeds.

-- Depth 1
instance a () � a () where

downcast = Just
instance a (b ()) � a (b ()) where

downcast = Just

The interesting case is transitivity.

instance (a (b ()) � a (b c))⇒ a () � a (b c) where
downcast o = case ? :: Maybe (a (b ())) o f

Just r → downcast r
Nothing→ Nothing

The instance declaration should be read as follows: given a value of type a () we
may downcast it to a subtype a (b c) provided that we can downcast it to a (b ()), if
the downcast is successful we delegate the task of resolving c to another instance,
otherwise we fail by returning Nothing.

Similar to upcast we have lost information by abstracting over the actual types. We
capture the dual of Narrow through a new type class:

class Widen β α where
widen :: β→ α

and replace the question mark with a call to widen:

instance (a (b ()) � a (b c),Widen (a ()) (a (b ())))⇒ a () � a (b c) where
downcast o = case widen o :: Maybe (a (b ())) o f

Just r → downcast r
Nothing→ Nothing

By pattern matching on a known part of the type structure and an unknown part c
a downcast can incrementally recover from the hidden types. The implementation
of widen only works correctly if different parts of the library maintain the following
invariants:

1. An upcast always hides the tail of a record by using hideRecord.

2. All interfaces should derive from Typeable.

3. Fresh object instantiations always have emptyRecord′ as tail.

4. A downcast can only encounter a R data constructor.

79

5.4. A type-perspective A lightweight OO DSL

Invariant (1) is not enforced by the type system. Without precautions it is possible
for upcast to choose emptyRecord′ which would destroy the invariant. Fortunately,
as library designer we may export Record as an abstract data type and confine
emptyRecord to internal use.

Invariant (2) is taken care of by the macros (see section 5.5). However, if a interface
does not derive from Typeable and (1) holds, using casting operations on that class
will fail at compile-time.

Invariant (3) is covered by the new combinator.

Invariant (4) follows from (1) and (3). A downcast cannot encounter L because
widening only starts at a concrete object type. Furthermore, it cannot encounter
the empty record because any downcast always bottoms out at a reflexivity instance
which itself does not inspect the representation.

All instances of Widen are defined in terms of genericWiden:

instance Widen (IShape ()) (IShape (IRectangle ())) where
widen o = genericWiden o _shapeTail (λo v→ o {_shapeTail = v})

The genericWiden function is passed the object it should perform widening on and
a getter/setter for the object’s tail. It discriminates on the object’s tail and attempts
to recover its tail.

genericWiden :: ∀o a b c.Typeable b⇒
o

→ (o→ Record a)
→ (o→ Record b→ c)
→ Maybe c

genericWiden o getTail setTail =
case getTail o o f

R d → maybe Nothing (Just ◦ setTail o ◦ record) (fromDynamic d :: Maybe b)
L → error "invariant (4)"

A change in semantics

In section 5.3.1 we informally described the semantics of tail-polymorphic records.
The meaning of the tail-polymorphic type structure now slightly changes because
we modified the object representation such that the tail of a record may be hidden
using a dynamic type. Whereas an object of type A () used to mean exactly A () it
can now mean at least A () even though its type has not changed. Given that now
both A () and A a can be interpreted as at least A () we wonder: can we substitute
one for the other? We cover this question of substitutability for the contra- and
covariant position.

A ()→ ...
-- subst

A a→ ...

80

A lightweight OO DSL 5.4. A type-perspective

We may substitute A () with A a in the contravariant position by changing the type
signature. All calls to the function can remain unchanged. However, from a im-
plementation perspective this substitution may prove problematic since we cannot
use casting on polymorphic objects. Also, the substitution transitively inhibits other
functions from using casts. A better alternative would be to substitude A () with a
type variable constrained by the subtype type class:

A ()→ ...
-- subst

a ≺ A ()⇒ a→ ...

Now the function can get any monomorphic subtype of A () as argument, i.e. ex-
cluding A a or any polymorphic subtype (e.g. A (B a)). Furthermore, before the
argument can be used it must first be casted to A ().

We may substitute A a for A () in the contravariant position by again simply chang-
ing the type signature:

A a→ ...
-- subst

A ()→ ...

This change will require all call sites to upcast the function argument to A () un-
less the argument is already of type A (). The function implementation will remain
unaffected by the change.

We now consider substitutability in the covariant position. Substituting A () with
A a in the covariant position is not possible because this would require universal
quantification over a value with a monomorphic type. However, what we can do is
abstract over its tail using existential quantification:

...→ A ()
-- subst
...→ ∃a.A a

The resulting existential type can then be freely applied to functions expecting an
universally quantified value of type A a. Thus the existential gives us the same
behavior we would otherwise get from returning a value of type A a.

If a function has A a in the covariant position it can only have gotten it as an ar-
gument. It can never by itself produce a value of type A a. If a function has A a
in the covariant position we can substitute it with A () provided that we modify the
calling and return context to cast the argument and return value to the appropriate
type.

We conclude that moving between A a and A () is a delicate business. It does not
always go without affecting the implementation, and in particular substituting A ()
with A a may break functions that depend on casting. Using polymorphic objects
transitively inhibits other functions from using casts, and when used as argument
to a method requires rank-2 polymorphism. The only benefit they bring is that
no type conversions are necessary. Hence from a user’s perspective it makes
sense to stick with monomorphic objects at the cost of some more explicit type
conversions.

81

5.4. A type-perspective A lightweight OO DSL

Combinators

Using the subtype type class we can define two asymmetric combinators consUb
and nilUb that allow the construction of a homogeneous list out of object values
related by subtyping. Upon inserting a value it is first cast to the supertype that is
provided at the call site and then "consed" on to the list. The supertype should be
the common upper bound of all elements in the list.

consUb :: ∀a b.(a ≺ b,Typeable a)⇒ a→ [b]→ [b]
consUb o xs = (upcast o :: b) : xs
nilUp = []

We have used the above combinators in section 5.2.2 to insert different kind of
shapes into a homogeneous list of shapes:

let scribble :: [IShape ()]
scribble = consUb s1 (consUb s2 nilUb)

The dual, for the lower bound, is implemented similarly:

consLb :: ∀a b.(b � a,Typeable b)⇒ b→ [a]→ [a]
consLb o xs =

case downcast o :: Maybe a o f
Just x → x : xs
Nothing→ xs

nilLb = []

The definition of consUb/nilUb and consLb/nilLb only work for lists. We generalize
their definition by overloading them on the container type such that they may be
used for any container type that allows incremental construction.5

class Applicative f ⇒ CastCons f where
consUb :: ∀a b.(a ≺ b,Typeable b,Monoid (f b))⇒ a→ f b→ f b
consUb o xs = pure (upcast o :: b) ⊕ xs
consLb :: ∀b a.(b � a,Typeable b,Monoid (f a))⇒ b→ f a→ f a
consLb o xs = maybe xs (xs ⊕ ◦pure) (downcast o :: Maybe a)
nilUb, nilLb :: Monoid (f a)⇒ f a
nilUb = ∅
nilLb = ∅

Similarly, we can lift casting operations to work on container types:

class Functor f ⇒ Castable f where
fup :: a ≺ b⇒ f a→ f b
fup = fmap upcast
fdown :: ∀a b.(Foldable f ,Applicative f ,Monoid (f a), b � a)⇒ f b→ f a
fdown = foldr (⊕ ◦ maybe ∅ pure ◦ (downcast :: b→ Maybe a)) ∅

5∅: mempty, ⊕: mappend

82

A lightweight OO DSL 5.4. A type-perspective

Not all types that allow mapping also allow deconstruction, hence the Applicative
constraint is pushed down as a function constraint. We use fdown to create a list of
rectangles out of a list of shapes:

let scribble′ :: [IShape (IRectangle ())]
scribble′ = fdown scribble

We can also define the familiar instanceof operations in terms of downcast. It test if
a value is of a particular type:

instanceof :: ∀a b.(b � a)⇒ b→ a→ Bool
instanceof b = isJust (downcast b :: Maybe a)

Using instanceof we can define a function selectiveDraw that accepts any Shape,
but only draws rectangles.

selectiveDraw :: IShape ()→ IO ()
selectiveDraw shape =

when (shape ‘instanceof ‘ (⊥ :: IShape (IRectangle ())))
(shape # draw)

Note that instanceof only type checks if it is used for testing if an object actually is
some subtype of its current type. There is no need for testing if it is an instance of
some supertype because this is intrinsically known.

5.4.2 Self-returning methods

A self-returning method is a method whose return type is the type of self or some
other type based on self. It is known that encapsulation by procedural data abstrac-
tion requires recursive types for the precise typing of self-returning methods in the
presence of inheritance (section 3.1 [14]). On the left in figure 5.5 the problem is
made explicit in Java (which lacks recursive types). To let the program type check
some otherwise superfluous casts must be inserted. On the right there is a hack
which uses Java Generics [48] and a special getThis function to reify the lost type
information 6.

In a first attempt to implement a self-returning method we reuse the shapes exam-
ple and augment IShape with a method meShape that returns itself.

data IShape α = IShape {
...

meShape :: IO (IShape α)
, _shapeTail :: Record α
}

In the return type of meShape we simply refer to itself. Unfortunately, because
α is now used at two positions in interface the _shapeTail function becomes less

6http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html#
FAQ205

83

http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html#FAQ205
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html#FAQ205

5.4. A type-perspective A lightweight OO DSL

class A {
public A foo() {
return this;

}
}

class B extends A {
public B bar() {
return this;

}
}

B b = new B();
// type check error
b.bar().foo().bar();
// fine
((B) b.bar().foo()).bar();

abstract class A<T extends A<T>> {
public T foo() {
return (T) getThis();

}
public abstract T getThis();

}

class B extends A {
public B bar() {
return this;

}
public B getThis() {
return this;

}
}

B b = new B();
// fine
b.bar().foo().bar();

Figure 5.5: On the left: an example in Java where we use self-returning methods in
combination with inheritance. On the right: a trick to resolve the need for casting.

general compared to what it would have been had we only used α in a single
position.

-- Without meShape
_shapeTail :: IShape α→ Record β→ IShape β
-- With meShape
_shapeTail :: IShape α→ Record α→ IShape α

As a consequence we can no longer change the type of the tail in isolation mak-
ing record extension highly impractical and impossible to fit into our framework for
casting. Alternatively we could try to abstract over the return type by parameteriz-
ing over it, similar to what is done on the right in figure 5.5. However, this will also
not work because the type parameter now has to unify with itself which is prohibited
by the occurs check. Because Haskell does have iso-recursive types OOHaskell
uses newtype wrappers to solve this problem. Unfortunately, wrapping self inside
a newtype will not work for our encoding as it again requires using the tail type
parameter at multiple positions preventing record extension.

Confronted with the impossibilities of the encoding we resort to a less sophisticated
version of self-returning methods and take for granted that some casts are required.
We start by making the return type of meShape concrete:

data IShape α = IShape {
...
meShape :: IO (IShape ())

84

A lightweight OO DSL 5.4. A type-perspective

...
}

shape newx newy concreteDraw = clazz $ λtail self →
...
return IShape {
...
meShape = return self
...

}

The program type checks, but there is a subtle problem. The type inferencer has
instantiated self to IShape () which again inhibits further extension. We should
somehow convince the type inferencer that it may temporarily assume self to be
of type IShape () without this knowledge overspecializing the inferred function type.
There are two approaches that may help us achieve our goal: upcasting or existen-
tial quantification.

-- Upcast
meShape = return (upcast self :: IShape ())

By using upcast we make our knowledge that self is of at least IShape () explicit
changing the inferred type to:

-- Inferred type
shape

:: IShape a1 ≺ IShape ()⇒
Int
→ Int
→ (IShape a1 → IO ())
→ IO (IShape a1 → Record a)
→ IShape a1

→ IO (IShape a)

Self is now overloaded by what at first sight may seem like a problematic con-
straint. However, because objects are always instantiated by using new we know
that a1 will eventually be instantiated to a concrete type such that substituting it in
IShape a1 ≺ IShape () will satisfy the constraint.

As an example we show how we can call meShape on a Rectangle. Calling meShape
on a Rectangle returns a Shape which we downcast back to a Rectangle and use
to invoke getWidth:

-- ((Rectangle) s1.meShape()).getWidth()
mySelfReturn = do

s1 ← new $ rectangle 10 20 5 6
shape← s1 # meShape
let Just rect = downcast shape :: Maybe (IShape (IRectangle ()))
w← rect # getWidth
putStrLn $ show w

85

5.4. A type-perspective A lightweight OO DSL

A different approach would be to existentially quantify over the tail of the record.

-- Existential quantification
data IShape α = IShape {
...
meShape :: ∃α.IO (IShape α)
...

}

This makes it easy to return self .

meShape = return self

But because the tail is existentially quantified over it does not allow casting. We
solve this by placing a subtype constraint on the quantified variable.

meShape :: ∃α.(IShape α ≺ IShape ())⇒ IO (IShape α)

Herewith the concrete type can be reified through an upcast.

mySelfReturn = do
...
let shape′ = upcast shape :: IShape ()
let Just rect = downcast shape′ :: Maybe (IShape (IRectangle ()))
...

We gained ease of expression at the return site, but at the same time made the
task of the caller more verbose. Also, the use of anonymous existentials is unique
to UHC and requires newtype wrappers in GHC which makes it a far less attractive
option. For these reasons we prefer to use concrete object types, even though the
combination of top-level class definitions, overloading, and parameter hiding can
trigger the monomorphism restriction7.

5.4.3 Parameterized classes

In section 5.3.4 we showed how we could create polymorphic classes by adding
type parameters to the interface definition. Parameterization over method types
allows for much greater flexibility because the same interface can be reused for in-
stantiations with different concrete types. This is especially useful for container-like
classes where operations on the container are independent of the actual contents.
In this section we will further explore parameterized classes in combination with in-
heritance and casting. But before we do we first generalize our previous definition
of an interface.

Definition 4. An interface is a record C with the following shape:

data C a1, ..., an, t = C {m, _cTail :: Record t }

7http://www.haskell.org/onlinereport/decls.html#sect4.5.5

86

http://www.haskell.org/onlinereport/decls.html#sect4.5.5

A lightweight OO DSL 5.4. A type-perspective

class Pair<A,B> {
private final A a;
private final B b;

public Pair(A a, B b) {
this.a = a;
this.b = b;

}

public A getFirst() {
return a;

}

public B getSecond() {
return b;

}
}

class Triple<A,B,C> extends Pair<A,B> {
private final C c;

public Triple(A a, B b, C c) {
super(a,b);
this.c = c;

}

public C getThird() {
return c;

}

public Triple<B,A,C> swap() {
return
new Triple<B,A,C>(
getSecond(),getFirst(),c

);
}

}

Figure 5.6: Two generic container types reminiscent of the Haskell tuple.

where C takes n > 1 type parameters, t represents the tail, and may be instantiated
to either () or an interface. In the body there is m which expands to zero or more
methods that may use any of a1, ..., an, and a special method _cTail where c is the
uncapitalized version of C.

Many statically typed OO languages have the ability to parameterize classes. We
show that our library can easily deal with parameterized classes that are invariant
in their type parameters. As a reference we have implemented a class Pair in
Java using generics, reminiscent of the Haskell tuple, and let another class Triple
extend from Pair (see figure 5.6). Both Pair and Triple are parameterized over their
contained types.

We perform a stepwise transcription of the Java code to Haskell. First, the Pair
interface.

data IPair a b t = IPair {
_getFirst :: IO a
, _getSecond :: IO b
, _pairTail :: Record t
}

In Java all classes are subclasses from Object. Staying true to the example we also
extend from Object which we take to be a simple placeholder.

pair a b =
(pair′ ‘extends‘ object) noOverride set_Object_Tail
where

87

5.4. A type-perspective A lightweight OO DSL

pair′ tail super self =
return IPair {

_getFirst = return a
, _getSecond = return b
, _pairTail = tail
}

For casting to work we provide the necessary instances for Narrow and Widen:

type Pair_ a b t = Object_ (IPair a b t)
type Pair a b = Pair_ a b ()
instance (Typeable a,Typeable b)⇒ Narrow (Pair a b) Object where

narrow = modify_Object_Tail hideRecord
instance (Typeable a,Typeable b)⇒ Widen Object (Pair a b) where

widen o = genericWiden o get_Object_Tail set_Object_Tail

Notice that we take fruitful use of the fact that the tail is always the last type pa-
rameter. If this were not the case we would have been be forced to write down all
instances of the sub- and super type classes, for all interface shapes, which would
lead to a combinatorial explosion in the number of instances.

We proceed by transcribing the Triple class. Interestingly, the Triple_ type synonym
and the Java class declaration look very much alike. In Java the type variables
are introduced implicitly by usage whereas in Haskell they need to be explicitly
declared before they can be used. In both cases the programmer is responsible for
the correctly distributing the type variables.

type Triple a b c = Triple_ a b c ()
type Triple_ a b c t = Pair_ a b (ITriple a b c t)
data ITriple a b c t = ITriple {

_getThird :: IO c
, _swap :: IO (Triple b a c)
, _tripleTail :: Record t
}

The implementation follows naturally from the interface definition. Unfortunately,
the type inferencer does not infer the correct type for triple. It infers that both a and
b should be of the same type because they are used interchangeably at different
points in the program (see _swap and pair). We have to explicitely mark them as
distinct by providing a type signature.

triple ::
a

→ b
→ c
→ OpenClass (Record tail) self (Pair_ a b (ITriplet a b c tail))

triple a b c =
(triple′ ‘extends‘ pair a b) noOverride set_Pair_Tail
where

88

A lightweight OO DSL 5.4. A type-perspective

triple′ tail super self =
return ITriple {

_getThird = return c
, _swap = new $ triple b a c
, _tripleTail = tail
}

swapTriple = _swap ◦ unRecord ◦ get_Pair_Tail

We also require two additional instances for Narrow and Widen:

instance (Typeable a,Typeable b,Typeable c)⇒ Narrow (Triple a b c) (Pair a b) where
narrow = modify_Pair_Tail hideRecord

instance (Typeable a,Typeable b,Typeable c)⇒ Widen (Pair a b) (Triple a b c) where
widen o = genericWiden o get_Pair_Tail set_Pair_Tail

We put the two classes to use by constructing a Pair and Triple, insert them into a
list of pairs, and map over the list projecting out the first component and printing its
value.

myOOTriplet = do
p← new $ pair (0 :: Int) (3.0 :: Double)
t ← new $ triple (0 :: Int) (4.0 :: Double) "Hi"
let pairs :: [Pair Int Double]

pairs = consUb t (consUb p nilUb)
sequence_ $ map (λp→ p # getFirst� print) pairs
t′ ← t # swapTriple
t′ # getFirst� print

ghci>myOOTriplet
0
0
4.0

With parameterized classes the question of substitutability can be extended to in-
corporate a class’ type parameters. For instance, Pair Point Point where Point is
a subclass of Object is intuitively a subtype of Pair Object Object, i.e. it is safe to
substitute a value of type Pair Object Object with a value of type Pair Point Point
because both getFirst and getSecond are expected to return a Point which can safely
be interpreted as an Object. This intuition is formalized by depth subtyping. Un-
fortunately, our library is limited to a coarse form of width subtyping. With depth
subtyping casting no longer solely dependents on the top-level type structure, but
also needs access to the innards in order to change the type of method arguments
and return types. This is exactly what OOHaskell’s deep′narrow function does (see
section 5.9 [38]), leaning heavily on advanced type-level programming to make
such generic record traversals possible. This is where our simple OO approach
begins to crack in accordance with the predictions of OOHaskell’s authors. Hence,
we are forced to stick with a less powerful option where the type parameters are
left invariant. As a consequence it is impossible e.g. to insert a Pair Point Point into
a list with elements of type Pair Object Object.

89

5.5. Scraping the boilerplate A lightweight OO DSL

Although we cannot use casts at the type parameter position, the typing of # is
compatible with both width and depth subtyping similar to OOHaskell where they
covered this fact extensively in section 5.9 and 5.10 [38]. We have transcribed their
examples without any trouble8.

5.5 Scraping the boilerplate

Given our decision to no use extensible records and with Haskell not being tailored
towards OO programming it is only logical that there are quite a few steps involved
to start implementing a new class:

1. Create a new record for representing the class’ interface.

2. Make it an instance of some Typeable type class.

3. If the class is a subclass

(a) Make each function available as a method by explicitly unrolling the ob-
ject representation.

(b) Make it an instance of both Narrow and Widen.

The first and second step are easily done manually. The third step is the most
painful part where both the declaration of methods and the implementation of
Narrow and Widen require nested record reads and writes which is known to be
thorny issue9.

The goal is the scrape as much boilerplate as possible. We see three possible
plans of attack to achieve this goal:

1. Create a DSL for OO programming which translates back to regular Haskell.

2. Use Template Haskell.

3. Use the C pre-processor (CPP).

A DSL will lead to the most elegant solution with minimal input required by the
programmer. Furthermore, and admittedly more important it can hide all the id-
iosyncrasies of the encoding. Creating such a DSL does require more research
and we leave it as future work. Template Haskell would be an ideal trade-off, un-
fortunately we cannot use it as it is GHC specific. Consequently we are left with
CPP which allows us to derive some of the boilerplate but not all it. For instance,
it cannot generate class methods from an interface definition. What it can do is
generate the boilerplate instances and tail manipulation functions with some help
from the type class system.

We define two macros for deriving step (2) and (3 b) one for top-level classes
DefineClass and the other for subclasses DefineSubClass. See A.2 for a de-
scription of their implementation.

8See: https://github.com/rubendg/lightoo
9For an ongoing discussion see: http://hackage.haskell.org/trac/ghc/wiki/

ExtensibleRecords. There are also quire some approaches that uses lenses for dealing with
records http://brandon.si/code/haskell-state-of-the-lens/

90

https://github.com/rubendg/lightoo
http://hackage.haskell.org/trac/ghc/wiki/ExtensibleRecords
http://hackage.haskell.org/trac/ghc/wiki/ExtensibleRecords
http://brandon.si/code/haskell-state-of-the-lens/

A lightweight OO DSL 5.6. Discussion

5.6 Discussion

5.6.1 Usability

When designing a new language one has maximal flexibility with respect to the
syntax and semantics. Because we choose to embed our DSL in Haskell we inherit
the limitations of the host language. The fact that implementation details reach the
surface directly follows from this decision, even though the combinators and CPP
macros help with hiding some of them. In particular our reliance on non-extensible
records is a great source of trouble and a major factor in the abstraction leaks.
Also, the peculiar combination of subtype constraints with tail-polymorphism does
not result in an uniform treatment of subtyping. Uniformity is a key aspect in good
language design, it contributes to the predictability of a language – an important
factor in the usability of any language. Grasping the subtle details of the library is
not for the faint of heart and significantly diminishes its usability.

Besides the limitations of our OO encoding there are also some aspects of Haskell
that will trouble any embedding of OO-like code in Haskell. For example, the lack
of mutually recursive modules makes properly organizing OO code difficult. When
applying the one interface per file scheme it often turns out that method types
necessitate that modules importing each other. The lack of recursive modules in
Haskell then requires all interface definitions to reside inside a single file, something
which is not only cumbersome from a organizational point of view, but also breaks
encapsulation at the module level.

Despite these issues we are confident that we have improved the usability of the
"Mutable objects, with tail polymorphism" approach [38], by providing a set of useful
combinators bundled inside a ready to use library.

5.6.2 Efficiency

Contrary to OOHaskell which uses polymorphic, extensible records of closures for
their object representation we use a much simpler model: records of closures. This
decision has various implications for the efficiency of our encoding.

Similar to OOHaskell our object representation makes no distinction between an
object’s data and its methods. For efficiency reasons many OO languages do make
such a distinction in order to share methods across all instances of a class. How-
ever, separating the two destroys the simplicity of the approach. Because we have
not attempted to implement the optimization it remains unclear if it is even possible
with our encoding.

In OOHaskell method-lookup is linear in the amount of methods. Our encoding
has a more efficient method-lookup which is linear in the subclass depth. Unfortu-
nately, we do not have constant-time record extension, but due to the nested record
structure record extension that is linear in the subclass depth.

In an OO language one would typically expect that casting operationally corre-
sponds to the identity function. OOHaskell shows in section 5.7 [38] that they sup-
port nominal subtypes by explicit nomination of the types on top of their structural

91

5.6. Discussion A lightweight OO DSL

record types. Using the nominal subtyping scheme they are able to implement an
upcast which operationally corresponds to the identity function. They also suggest
that some forms of downcasts can be implemented, but do not provide any further
details. Our implementation of casting does, unfortunately, not correspond to the
identity function, but requires repeated narrowing of which the complexity is given
in section 5.4.1. Without the use of extensible records and type-level programming
there appears to be no way around this.

5.6.3 Future work

We have focused on exploring and extending the Mutable objects, with tail poly-
morphism approach. It would be interesting to see whether some of the insights
gained by our exploration can be transferred to the other more primitive encodings
presented in OOHaskell. Furthermore, in our exploration we have limited ourselves
to Haskell with a minimal amount of language extensions, lifting this restriction may
yet lead to another OO encoding. Another interesting direction to look into is to
see whether there exists a proper translation of Featherweight Java [36], a core
calculus embedding the essence of Java, to our encoding.

92

Chapter 6

wxAsteroids in the web
browser

In this chapter we will put the results from the previous two chapters to use by im-
plementing a subset of wxHaskell that runs inside the web browser. The wxHaskell
paper [42] explained its design and capabilities by implementing a clone of the
classic asteroids game wxAsteroids [41]. It is a great showcase of the different key
aspects of wxHaskell: widgets, graphics rendering, and user input. Furthermore, it
provides a good example of how typical wxHaskell programs are constructed. In-
stead of porting the fully featured wxAsteroids we have ported a less feature heavy
version due to time constraints. Figure 6.1 shows the original wxAsteroids on the
left, running on the desktop, next to our port running on the desktop (middle), and
in the web browser (right). It shows how LightOO together with the JavaScript FFI
can be used to implement the wxWidgets OO design in Haskell in terms of the
technologies available in the browser.

In this chapter we will explain the gist of wxAsteroids, the design issues, followed
by a more detailed explanation of the implementation.

Figure 6.1: The original wxAsteroids on the desktop (left), modified wxAsteroids on
the desktop (middle), and in the web browser (right).

93

6.1. wxAsteroids wxAsteroids in the web browser

6.1 wxAsteroids

In the asteroids game the player is tasked with carefully maneuvering its spaceship
through an asteroid field making sure it does not get hit. The spaceship can move
left and right using the arrow keys. There is an inifite supply of asteroids that
move vertically downwards. Whenever a rock hits the spaceship, the rock turns
into an explosion. In accordance with the original wxAsteroids hitting a rock does
not destroy the spaceship. First, we define some constants:

height = 600
width = 300
diameter = 24
chance = 0.1

The height and width values determine the dimensions of the game field. The
diameter represents the diameter of a rock, and the chance determines the chance
a new rock appears in a given time frame. The asteroids function constructs the
user interface, and is run by the start function:

asteroids :: IO ()
asteroids = do

vrocks← varCreate randomRocks
vship ← varCreate $ div width 2
w ← window Nothing []
t ← timer w [interval := 50

, on command := advance w vrocks
]

set w [area := rect (pt 0 0) (sz width height)
on paint := draw vrocks vship
, on leftKey := varUpdate vship (λx→ max 0 (x − 5)) >> return ()
, on rightKey := varUpdate vship (λx→ min width (x + 5)) >> return ()
]

main = start asteroids

First two mutable variables are created: vrocks holds an infinite list containing the
positions of all the future rock positions, vship contains the current position of the
spaceship.

Next, we create a top-level window that serves as a placeholder for the game. The
first parameter denotes a potential parent window, the second a list of properties.
Subsequently we attach a timer to the window firing every 50 milliseconds. On
each tick, it calls advance, moving all rocks to their next position and updating the
screen.

Finally, we set a few attributes on the window w. We assign it an area with the given
constant dimensions. The other attributes are prefixed with on designating event
handlers. The paint event handler is invoked when a repaint request is made, and
draws the current game state to the screen through draw (later defined). Pressing
the left or right arrow key changes the x position of the spaceship.

94

wxAsteroids in the web browser 6.1. wxAsteroids

The vrocks variable contains an infinite list of all future rock positions. This infinite
list is generated by the randomRocks function which depends on random number
generation. Because at the time of writing there was no back-end support for ran-
dom number generation through the standard System.Random library we used a
more ad hoc solution:

f oreign import js "Math.random()"
randomNumber :: IO Double

rand = unsafePerformIO randomNumber
randoms :: [Double]
randoms =

let inf = ⊥ : inf
in map rand inf

The randoms function provides a infinite list of random numbers in the range [0,1).
It works by mapping a random number generator rand over an infinite list. Note that
this only works because rand is not subject to let floating.

randomRocks = flatten [] (map fresh randoms)
fresh r
| r > chance = []
| otherwise = [track (floor (fromIntegral width ∗ r / chance))]

track x = [point x (y − diameter) | y← [0, 6 ... height + 2 ∗ diameter]]
flatten rocks (t : ts) =

let now = map head rocks
later = filter (¬ ◦ null) (map tail rocks)

in now : flatten (t ++ later) ts
flatten rocks [] = error "Empty rocks list not expected in function flatten"

The fresh function is mapped over randoms. It compares each number against the
chance constant, and if a rock should appear it generates a finite list of future rock
positions that move the rock from the top to the bottom of the screen, otherwise it
returns the empty list. Finally, the flatten function flattens this list into a list of time
frames, where each element contains the position of every rock in that particular
time frame.

The advance function is called on every timer tick:

advance vrocks w = do
(r : rs)← varGet vrocks
varSet vrocks rs
repaint w

It moves vrocks to the next time frame (its tail), and request a repaint of the window
(w). A repaint causes the paint event handler to be triggered which in turn calls draw
with two parameters: the graphics context (gc) and view area (view). The graphics
context paints on the window area on the screen, but is in principal independent of
its back-end.

95

6.2. Design wxAsteroids in the web browser

draw vrocks vship gc view = do
rocks← varGet vrocks
x ← varGet vship
let

shipLocation = point x (height − 2 ∗ diameter)
positions = head rocks
collisions = map (collide shipLocation) positions

drawShip gc shipLocation
mapM (drawRock gc) (zip positions collisions)

The draw function reads the current rock and spaceship positions, and positions
the spaceship at the current x, and fixed y-position. Then it checks if there are any
collisions between the spaceship and any of the rocks. Finally, we draw the space-
ship and all the rocks onto the screen. The collide function simply checks whether
a rock has entered the spaceship’s comfort zone given their positions.

collide pos0 pos1 =
let distance = vecLength (vecBetween pos0 pos1)
in distance 6 fromIntegral diameter

Both entities are drawn using the drawBitmap function. It takes a graphics context,
bitmap, position, transparency mode (not implemented), and a list of properties
as arguments. Dependent on whether a collision occured the picture of a rock
changes to either a normal rock or a exploded one.

drawShip gc pos = drawBitmap gc ship pos True []
drawRock gc (pos, collides) =

let rockPicture = i f collides then burning else rock
in drawBitmap gc rockPicture pos True []

Finally, we specify the resources that we used.

rock = bitmap "rock.ico"
burning = bitmap "burning.ico"
ship = bitmap "ship.ico"

The summary we just gave does not differ much from the one given in [42]. We have
simplified the porting effort by omitting features such as the menu, sound effects,
and status field. Furthermore, we render the game on top of a window instead
of a frame (which features all the standard decorations such as a title, maximize,
minimize, and closing buttons). Besides the ommittances the source has remained
largely the same.

6.2 Design

6.2.1 Approach

We took wxHaskell version 0.12.1.4 from hackage and performed a depth first
search on the features that needed to be supported in order for wxAsteroids to

96

wxAsteroids in the web browser 6.2. Design

work. All unused features were commented out and all irrelevant parts that dealt
with the implementation details of the C++ back-end were removed. Furthermore,
all relevant functions exposed through wxcore were undone from their implementa-
tion and replaced by error "to be implemented". This allowed us to type check
the whole codebase without yet having the implementation at hand. At all times
we kept our codebase compatible with ghci by using CPP macros to conditionally
import modules. With hindsight this turned out to be well worth the effort. Due to
its superior error reporting capabilities we could more easily pinpoint programming
errors. It also served as a useful reference for improving UHC by occassionally
catching errors in its implementation.

Fortunately, none of the implementation details of wxcore leak to wx. This allowed
us to leave the wx sources largely untouched. We used the elaborate wxWidgets
documentation and source code as a reference for implementing wxcore.

6.2.2 Objects

In order to maintain some type safety when communicating with C++, wxcore as-
signs phantom types to objects, with as top-level type:

data Object a = Object ! (Ptr a)
| Managed ! (ForeignPtr (TManagedPtr a))

All objects are either a normal or managed pointer to an object that lives in the
C++ world. For example, the type of a window (Window a) is a type synonym that
expands to Object (WxObject (CEvtHandler (CWindow a))). The type structure
used here is identical to the type structure we used to program OO in Haskell. This
turns out the be very useful because it allows the implemention of wxcore functions
without (in most cases) altering their interface which makes it very close to a drop-in
replacement for the original wxcore implementation.

The Object data type is replaced with a record IObject with a corresponding imple-
mentation:

object = clazz $ λtail self → do
flag← newIORef False
return IObject {

setFlag = writeIORef flag
, getFlag = readIORef flag
, _objectTail = tail
}

In Graphics.UI.WXCore.Types there are quite some methods defined for objects
with the assumption that they are implemented as pointers to C++ objects. Some
of these methods are replaced whereas others do not make sense anymore. For
example, objectCast is replaced by upcast and downcast, objectIsNull makes no
sense anymore as we always have evidence that an object exists there is no need
to check whether it is null, objectDelete is also irrelevant we can simply rely on
garbage collection.

97

6.2. Design wxAsteroids in the web browser

What has also changes is object identity. Before, object identity boiled down to
pointer equality. The idiomatic Haskell approach to test values for equivalence is by
structural equivalence. However, objects are black boxes that hide their data. What
makes two objects identical becomes subject to interpretation of the programmer.
Hence, we implement an equality test similar to pointer equality [52]:

sameObject a b = do
a # setFlag $ False
b # setFlag $ True
a # getFlag

Every object has a flag associated with it. The sameObject function tests if changing
it in a also changes it in b essentially testing pointer equality.

6.2.3 Organization

We have set-up wxcore such that every class definition resides in its own module
in similar to header files in C++. Implementations of a particular class import the
interface definition and re-export it together with a class for constructing instances.
Interface definitions typically need other interface definitions to define their type.
This is no problem unless both definitions depend on each others types. Unfortu-
nately, this is a quite common scenario in OO languages. Since Haskell does not
support cyclic imports there is no other option than placing the interface definitions
in the same module breaking the organization scheme.

6.2.4 Mapping to the web browser

The wxcore abstractions at some point need to interface to the target platform.
The web browser already offers a great deal of functionality that make it easy cre-
ate GUIs. We choose the easy route by piggybacking on much of the high-level
technology is already present. We let a wxWidget window correspond to a HTML
div element. Asteroids draws on a graphics context associated with a window. As
back-end for the graphics context we use a HTML5 canvas element, because draw-
ing on divs is not possible without CSS3 hacks. The graphics context is created on
demand and covers the whole window. We could just as well have used SVG as a
back-end, but it was easier to use the canvas due to its small API.

Event listeners are registered on the div representing the window. When an event
is triggered by the target platform its event object properties are read and mapped
to a subclass of the Event object. This object is then dispatched internally inside
the wxWidgets event system which invokes to the appropriate event listeners. De-
coupling the native event mechanism from the wxWidgets event mechanism pro-
vides the opportunity to trigger custom events not originating from the target plat-
form.

Finally, initialization of the application is done through the start function:

start io =
w ← htmlWindow

98

wxAsteroids in the web browser 6.3. Implementation details

-- Wrap a haskell function as if it were a regular JavaScript function
cb← wrapFunc io
-- Set the onload event on the window object

set "onload" cb w
return ()

The moment the web page is loaded the application starts.

6.3 Implementation details

6.3.1 Subtyping

WxHaskell makes extensive use of a phantom type structure for modelling a type
safe interface to foreign objects. In chapter 5, section 5.4.1 we explained that func-
tions consuming abstract objects (i.e. objects with their tail left polymorph) are
inhibited from using casts on those objects. Because there are many places where
wxHaskell uses polymorphic objects - for attribute classes, as function arguments,
inside properties - it make sense to explore whether this can persist if we provide a
Haskell implementation, and if changes are required how this affects the interaction
of the different parts of wxHaskell.

We start by looking at the Graphics.UI.WX.Classes module, part of the wx library.
It defines a host of type classes for capturing common attributes of widgets. For
example, there is a type class that ranges over widgets that can be positioned and
sized:

class Dimensions w where
area :: Attr w Rect
...

Typically, these attribute classes are instantiated by wxHaskell with polymorphic
objects:

instance Dimensions (Window a) where
...

Fortunately, this part of wxHaskell is not affected by our implementation because it
turns out that in all encountered cases the concerning widget is used solely as the
first argument for invoking its own methods. Nevertheless it would have been pos-
sible to use these type classes if we were forced to instantiate them with concrete
objects, there would simply be more explicit casting compensating for the loss in
expressiveness in the types.

However, we have encountered cases wherein we were forced to change the type
of a function. For instance, in the case of event processing wxHaskell invokes the
evtHandlerProcessEvent method passing it any subtype of the Event class.

evtHandlerProcessEvent :: EvtHandler a→ Event b→ IO Bool

99

6.3. Implementation details wxAsteroids in the web browser

Because an Event object ends up as an argument to a callback function, which
typically needs to know the event type (e.g. a mouse or keyboard event), there will
be some casting involved. Hence we are forced to change the function type making
it accept only concrete Event objects.

evtHandlerProcessEvent :: EvtHandler a→ Event → IO Bool

Another thing we encountered that sometimes proves useful is to be able to change
the type of property (Prop w), e.g. from a Prop Frame to a Prop Window. The wx
library already defines casting functions for Attr w a and Prop w:

castProp :: (v→ w)→ Prop w→ Prop v
castProp coerce prop =

case prop o f
(attr := x) → (castAttr coerce attr) := x
(attr : ˜ f) → (castAttr coerce attr) : ˜ f
(attr ::= f)→ (castAttr coerce attr) ::= (λv→ f (coerce v))
(attr :: ˜ f) → (castAttr coerce attr) :: ˜ (λv x→ f (coerce v) x)

castAttr :: (v→ w)→ Attr w a→ Attr v a
castAttr coerce (Attr name getter setter upd) =

Attr name (λv→ getter (coerce v)) (λv x→ (setter (coerce v) x))
(λv f → upd (coerce v) f)

Both functions take a coercion function and consistently apply it to the argument
(contravariant) positions. The Prop w type is actually a contravariant functor with
castProp as mapping function, because its type parameter w is only used in con-
travariant positions.

class Contravariant f where
contramap :: (a→ b)→ f b→ f a

instance Contravariant Prop where
contramap = castProp

We specialize contramap for upcasting the properties:

upcastProp :: ∀v w.w � v⇒ Prop v→ Prop w
upcastProp p =

contramap (handleErr ◦ (downcast :: w→ Maybe v)) p
where
handleErr = maybe (error $ "Non-existent property: " ++ propName p) id

That the upcastProp function is implemented in terms of downcast may seem some-
what counterintuitive. Upcasting a property does not change the getter and setter
stored in the attribute, but wraps them inside a new function accepting the upcasted
type which is subsequently coerced back (downcasted) to the old type and applied
to the wrapped function. Similarly, we define its dual:

downcastProp :: ∀v w.w ≺ v⇒ Prop v→ Prop w
downcastProp p = contramap (upcast :: w→ v) p

100

wxAsteroids in the web browser 6.3. Implementation details

6.3.2 Interfacing with the DOM

For platform dependent features the implementation needs to communicate with
JavaScript. In chapter 4 we developed some techniques which we are now go-
ing to use for interfacing with JavaScript, in particular the DOM. The DOM is the
primary interface to browser functionality. Its interfaces are specified in IDL (In-
terface Definition Language), here follows an excerpt of the HTMLElement IDL
definition1:

interface HTMLElement : Element {
attribute DOMString title;
...
readonly attribute boolean isContentEditable;
...
[TreatNonCallableAsNull] attribute Function? onkeydown;
...

}

The top-level declaration provides a name for the interface, optionally followed by
a colon and the interface it extends from. The body contains all attributes anno-
tated with their contained type, additional constraints on the interpretation of the
contained data (TreatNonCallableAsNull), and its usage (readonly).

To model the interface types we simply extend JSObject:

data CHTMLElement a
type HTMLElement_ a = Element (CHTMLElement a)
type HTMLElement = HTMLElement_ ()
data CElement a
type Element_ a = Node_ (CElement a)
type Element = Element_ ()
data CNode a
type Node_ a = JSObject (CNode a)
type Node = Node_ ()

The structure is exactly the same as the one used by wxHaskell to model C++
object types in Haskell. It is even a better fit for JavaScript, because its single pro-
totype chain does not naturally allow the modeling of multiple inheritance, of which
it is known that it cannot be practically modeled with this type structure [25].

For wxAsteroids it is important to know when the user holds down either the left or
right key. We import the onkeydown event using the eventJSRef function:

onkeydown = eventJSRef "onkeydown"

It captures the onkeydown property as a read-write JSRef , interprets the TreatNon-
CallableAsNull constraint as a Maybe, and can be used to import any of the event
handlers that are part of an HTMLElement.

1http://www.whatwg.org/specs/web-apps/current-work/multipage/elements.html#
htmlelement

101

http://www.whatwg.org/specs/web-apps/current-work/multipage/elements.html#htmlelement
http://www.whatwg.org/specs/web-apps/current-work/multipage/elements.html#htmlelement

6.3. Implementation details wxAsteroids in the web browser

eventJSRef :: String→ HTMLElement_ a→ JSRef ReadWrite (Maybe (Event → IO ()))
eventJSRef id e =

let get = do
f ← getProperty id e
i f isNull f

then return Nothing
else unwrapFunc1 (unsafeCoerce f)

set Nothing = setProperty_ id _null e
set (Just f) = do

f ← wrapFunc1 f
setProperty_ id f e

in newJSRef get set

Internally it creates a new JSRef with a getter and setter that respectively read and
write the property. Because there is no automatic back and forth conversion from
Haskell functions to JavaScript functions we use wrapFunc1 and unwrapFunc1 for
respectively wrapping and unwrapping 1-argument functions. These functions are
part of a larger family of wrapping and unwrapping functions:

f oreign import js "wrapper"
wrapFunc :: IO ()→ IO (JSFunction (IO ()))

f oreign import js "wrapper"
wrapFunc1 :: (a→ IO ())→ IO (JSFunction (a→ IO ()))

f oreign import js "dynamic"
unwrapFunc :: JSFunction (IO ())→ IO (IO ())

f oreign import js "dynamic"
unwrapFunc1 :: JSFunction (a→ IO ())→ IO (a→ IO ())

...

Unfortunately, the wrapping and unwrapping is not tracked by the RTS. Repeated
getting and setting will grow a series of wrapping and unwrapping functions around
the original function causing performance problems. Also, the use of Haskell strings
for accessing JavaScript properties is a root of performance problems as well.
Strings need to be packed before the are in JavaScript format requiring order n time
where n is the length of the string. A better solution would be to use overloaded
strings2 with compiler support for representing Haskell strings directly as JavaScript
strings. Besides the technical details eventJSRef is a definite improvement upon
the laisser faire attitude of JavaScript where a TreatNonCallableAsNull constraint
depends run-time type checking, the event handler function can be any type of
function making it very easy to let programming errors go by unnoticed.

6.3.3 Implementing wxTimer

We discuss the implementation of the wxTimer object, a small and relatively self-
contained example that touches many of the aspects discussed thus far. We start
at wxAsteroids moving stepwise from wx to the wxcore implementation.

2http://www.haskell.org/ghc/docs/7.4.2/html/users_guide/type-class-extensions.
html#overloaded-strings

102

http://www.haskell.org/ghc/docs/7.4.2/html/users_guide/type-class-extensions.html#overloaded-strings
http://www.haskell.org/ghc/docs/7.4.2/html/users_guide/type-class-extensions.html#overloaded-strings

wxAsteroids in the web browser 6.3. Implementation details

First, in wxAsteroids, we create a timer and attach it to a Window. We set the timer
such that it calls advance every 50 milliseconds.

...

t ← timer w [interval := 50
, on command := advance vrocks w
]

...

The timer function is defined in Graphics.UI.WX.Timer, part of the wx package:

type Timer = TimerEx ()
timer :: Window a→ [Prop Timer]→ IO Timer
timer parent props
= do t ← windowTimerCreate parent

timerStart t 1000 False
set t props
return t

It creates a new timer using windowTimerCreate, sets the default resolution to 1
second, and sets some properties on the object. The interval attribute is specific to
a timer object, and hence has its widget type fixed to a concrete timer.

interval :: Attr Timer Int

The command attribute is overloaded on the widget type as it can be reused by
other widgets for setting zero-argument event handlers.

class Commanding w where
command :: Event w (IO ())

instance Commanding Timer where
command = newEvent "command" timerGetOnCommand timerOnCommand

Before we move on the the wxcore implementation, we only need to make a minor
adjustment to the type signature of timer to account for name mismatch:

timer :: Window_ a→ [Prop Timer]→ IO Timer

In wxcore we find the definitions for timerGetOnCommand, timerOnCommand, etc.
These functions are implemented with the C++ back-end in mind. For example, the
timerGetOnCommand and timerOnCommand functions rely on some C++ wrapper
code that allows storing and retrieval of Haskell closures. It ensures that Haskell
functions can be safely passed into the C++ world without Haskell garbage collect-
ing them.

timerOnCommand :: TimerEx a→ IO ()→ IO ()
timerOnCommand timer io
= do closure← createClosure io (λownerDeleted → return ()) (λev→ io)

timerExConnect timer closure

103

6.3. Implementation details wxAsteroids in the web browser

timerGetOnCommand :: TimerEx a→ IO (IO ())
timerGetOnCommand timer
= do closure← timerExGetClosure timer

unsafeClosureGetState closure (return ())

Obviously, these implementations make no sense in our situation. We leave the
function types in tact, but reimplement their functionality in terms of calls to a timer
object. Before we present their new implementation we first provide a sample of
the C++ implementation of the timer object:

class wxTimerBase : public wxEvtHandler
{
public:
wxTimerBase(wxEvtHandler *owner, int timerid = wxID_ANY) {
Init();
SetOwner(owner, timerid);

}

void SetOwner(wxEvtHandler *owner, int timerid = wxID_ANY) {
m_owner = owner;
m_idTimer = timerid == wxID_ANY ? wxWindow::NewControlId() : timerid;

}

int GetInterval() const { return m_milli; }
bool IsOneShot() const { return m_oneShot; }
...

A timer inherits from wxEvtHandler, and is constructed by passing it an owner
and optionally an identifier. Normally identifiers are used by wxWidgets to identify
windows, but because we could not infer the use case of ids on a timer we left it out
of our implementation.

timer owner =
(timer′ ‘extends‘ evthandler) noOverride set_EvtHandler_Tail
where
timer′ tail super self = do
...

The constructor now corresponds to the timer function (different from the timer de-
fined inside wx), and extends from evthandler, which we will not present for the sake
of brievity. Inside the constructor some variables are brought into scope covering
both the Init and SetOwner function:

interval ← newIORef 0
owner ← newIORef owner
jsTimerId ← newIORef (−1)
isone ← newIORef False
isRunning← newIORef False
return ITimer {
...

104

wxAsteroids in the web browser 6.3. Implementation details

Most variables have corresponding methods for getting their values.

, _timerGetInterval = readIORef interval
, _timerGetOwner = readIORef owner
, _timerIsOneShot = readIORef isone
...

The timerStart method implements the functionality for starting a timer with a par-
ticular frequency (milli), and provides the possibility of firing the timer only once
(oneshot).

, _timerStart = λmilli oneshot → do
let this = upcast self :: Timer
timingEvent ← new $ timerEvent this
handler ← readIORef owner
let cb = do {

; handler # evtHandlerProcessEvent $ (upcast timingEvent)
; when oneshot (self # timerStop)
}

w ← htmlWindow
timerId ← setInterval w cb milli
writeIORef jsTimerId timerId
return True

The implementation makes fruitful use of the native setInterval function for installing
a timed callback on the global window object. Inside the callback the evtHandlerProcessEvent
is invoked on the owning object passing it an instance of a TimerEvent. If the timer
is a one shot than it stops the timer from preventing any future invocations of the
callback. The setInterval method returns an identifier which we store inside the
jsTimerId variable such that we may later use it to stop the timer:

, _timerStop = do
timerId ← readIORef jsTimerId
clearInterval timerId

, _timerTail = tail
}

With the timer implementation we can now implement the timerOnCommand and
timerGetOnCommand functions, which are no methods of the timer class, but helper
functions created by wxHaskell.

timerOnCommand :: Timer_ a→ IO ()→ IO ()
timerOnCommand t f = do

owner ← t # timerGetOwner
(owner # evtHandlerBind) wxEVT_TIMER (const f) idAny idAny

timerGetOnCommand :: Timer_ a→ IO (IO ())
timerGetOnCommand t = do

owner ← t # timerGetOwner

105

6.4. Conclusion wxAsteroids in the web browser

cb← do {cd ← (owner # evtHandlerGetHandler) wxEVT_TIMER idAny idAny
; return $ maybe (const $ return ()) id cd
}

return $ cb (error "touched event object")

The timerOnCommand function simply binds a callback to the owner of the timer,
whereas timerGetOnCommand tries to retrieve an already bound callback. The
evtHandlerGetHandler method had to be invented as its not part of the wxWidgets
EvtHandler class, which can be justified by the fact that wxHaskell also uses wrap-
per code to implement this functionality.

Finally, the windowTimerCreate function simply instantiates a new timer.

windowTimerCreate :: Window→ IO Timer
windowTimerCreate w = new $ timer (upcast w)

We should note that we have changed the type signature such that it takes a con-
crete window instead of a polymorphic one. We could have left it polymorph, be-
cause the owner object is never required as a concrete object inside the timer
implementation, but doing this would have required that we made use of parame-
terized classes in effect complicating the types; we choose not to.

The wx timer now works inside the web browser, completely transparent to the
end-user.

6.4 Conclusion

We have successfully ported a feature-light version of wxAsteroids to the web
browser. Albeit the modest scope of the port we foresee no intrinsic difficulties
in implementing the lacking features. We have discussed the design decisions in-
volved and provided some details on the actual implementation. However, there is
still much work to be done making decisions on how to best map wxWidgets fea-
tures onto the web platform. Also, programming in LightOO feels a bit hacky due
to the lack of an uniform treatment of subtyping which has forced us to make slight
modifications to the wxcore interface. Furthermore, the lack of recursive modules
breaks code organization and we expect that a full implementation of wxWidgets
will soon run into performance problems related to the JavaScript back-end.

106

Chapter 7

Conclusion, Contributions &
Future Work

Research question: how can we make wxHaskell run in the web browser?

To answer the research question we have explored the different paths that could
potentially lead to a proof of concept implementation of wxHaskell for the web. Of
these paths we picked the least obvious and most challenging one, developed the
necessary tools, and applied them to successfully port a feature-light version of
wxAsteroids which is near to interchangeable with the desktop version1. To the
best of our knowledge we are also the first to actually implement a real-world OO
design in Haskell.

Besides the implementation of a subset of wxHaskell we contribute two indepen-
dently useful libraries: an extended JavaScript programming prelude2, and a light-
weight approach for OO programming in Haskell inspired by OOHaskell which only
requires Haskell 98 plus some lifting of type class restrictions3. Almost all code
snippets in this thesis can be found at 4.

From the discussions and conclusions of chapter 4, 5, and 6 it should be clear that
in order for the wxWidgets implementation in Haskell to be of any real use there is
still lots of work to be done. Also, some inherent limitations of the Haskell language
such as the lack of first-class language support for extensible records and mutually
recursive modules makes OO programming in Haskell feel a bit like a hack. It would
be interesting to see if there exists a translation from feather-weight Java to our OO
library as it would open up the possibility of creating a small language extension to
hide the crufty details, and may even be able to work around the lack of an uniform
treatment of subtyping in our encoding by inserting explicit casts at the required
places. For all practical purposes, if the JavaScript FFI keeps on improving, design
option B remains the most practical approach to implement a fully fledged port of
wxHaskell for the web.

1https://github.com/rubendg/wxasteroids
2https://github.com/UU-ComputerScience/uhc-js
3https://github.com/rubendg/lightoo
4https://github.com/rubendg/thesis-snippets

107

https://github.com/rubendg/wxasteroids
https://github.com/UU-ComputerScience/uhc-js
https://github.com/rubendg/lightoo
https://github.com/rubendg/thesis-snippets

Conclusion, Contributions & Future Work

108

Acknowledgements

At the end of my bachelor’s study at the Applied Computer Science University
Utrecht I had doubts about whether to pursue a master degree or not. Due to
the discussions with my American colleges at the time, and my working experi-
ence among former university graduates who had greatly impressed me with their
technical skills, I decided it was worth a try.

Getting through the courses has been a bumpy ride to say the least. I had to
overcome quite a few gaps in my background knowledge. At some point I nearly
lost confidence, but thanks to the wonderful Andres Löh I regained trust in that
everything would work out fine. I experienced Andres as an enthusiastic, knowl-
edgeable, and excellent teacher with a great knack for understanding what you do
not understand, but are not yet able to express. Writing the thesis, doing research,
has been a great learning experience. Especially, being more practically minded, it
took some time to get comfortable with the mindset necessary for literally spending
weeks on something without having a clue whatsoever if it will result in anything to
show for.

First of all I would like to thank my supervisors Atze Dijkstra and Doaitse Swier-
stra for helping me with this project, and Atze for going out of line by improving
UHC even when time would not allow it. Without UHC this project would not have
been possible! I want to thank Sean Leather for proofreading my thesis and pro-
viding useful suggestions and criticism. Many thanks also to Jurrien Stutterheim
and Alessandro Vermeulen for the discussions on the JavaScript back-end and
their continuous effort to stay involved. Of course my thesis could not have been
finished without a healthy dose of saccharine at the Pie-Thursdays, many thanks
roomies Paul van der Walt, Ruud Koot, and Sjoerd Timmer. I sure did not intend to
leave a mark on your theses the day you ate my rum-drenched tipsy cake! Finally,
I would like to thank my family and friends for supporting me and listening to my
endless ramblings about Haskell and otherwise unrelated topics.

Conclusion, Contributions & Future Work

"Haskell is the world’s finest imperative programming language", Simon P. Jones

110

Appendix A

Appendix

A.1 XLib Hello World

#include <X11/Xlib.h>
#include <unistd.h>

#define NIL (0)

static const char text[] = "hello world!";

main()
{

// Open the display
Display *dpy = XOpenDisplay(NIL);

int blackColor = BlackPixel(dpy, DefaultScreen(dpy));
int whiteColor = WhitePixel(dpy, DefaultScreen(dpy));

// Create the window
Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0,

0, 200, 100, 0, blackColor, blackColor);

// Register MapNotify events
XSelectInput(dpy, w, StructureNotifyMask);

// Make the window appear on the screen
XMapWindow(dpy, w);

// Create a new graphics context
GC gc = XCreateGC(dpy, w, 0, NIL);

XSetForeground(dpy, gc, whiteColor);

111

A.2. LightOO Macros Appendix

// Loop until we get a MapNotify event
for(;;) {

XEvent e;
XNextEvent(dpy, &e);
if (e.type == MapNotify)

break;
}

XFontStruct *fs = XLoadQueryFont(dpy, "cursor");

XDrawString(dpy, w, gc, 40, 50, text, sizeof(text));

// Flush the commands to the X server
XFlush(dpy);

sleep(8);
}

A.2 LightOO Macros

We define CPP macros for deriving the boilerplate for top-level classes and sub-
classes. To ease their definition we create a helper type class that allows us to
capture the set of tail manipulation functions:

class ModTail c where
getTail :: c t → Record t
setTail :: c t → Record t′ → c t′

modifyTail :: (Record t → Record t′)→ c t → c t′

modifyTail = mkMod setTail getTail
mkMod set get f o = set o (f (get o))

For example, the instance for Shape looks like this:

instance ModTail IShape where
getTail = _shapeTail
setTail o v = o {_shapeTail = v}

The ModTail type class does not yet provide us with access to the tail of a subclass,
but we can use it to derive a family of functions for nested tail manipulation by
expressing their tail manipulation functions in terms of their parent’s.

Here is an example of a family of functions derived for IShape () and IShape (IRectangle ()):

-- Shape
get_Shape_Tail :: IShape a→ Record a
get_Shape_Tail = getTail
set_Shape_Tail :: IShape a→ Record b→ Shape_ b
set_Shape_Tail o v = setTail o v

112

Appendix A.2. LightOO Macros

modify_Shape_Tail = mkMod set_Shape_Tail get_Shape_Tail
-- Rectangle

get_Rectangle_Tail :: IShape (IRectangle a)→ Record a
get_Rectangle_Tail = getTail ◦ unRecord ◦ get_Shape_Tail
set_Rectangle_Tail :: IShape (IRectangle a)→ Record b→ IShape (IRectangle b)
set_Rectangle_Tail o v = modify_Shape_Tail (λo→ record $ setTail (unRecord o) v) o
modify_Rectangle_Tail = mkMod set_Rectangle_Tail get_Rectangle_Tail

Because the nested types can at times become quite lengthy we mold the types
into a type synonym structure. This makes it easier for the programmer to read type
errors, provide type annotations when necessary, and for the macros to generate
code.

type Shape_ t = IShape t
type Shape = Shape_ ()
type Rectangle_ t = Shape_ (IRectangle t)
type Rectangle = Rectangle_ ()

The DefineClassmacro can be used to derive the boilerplate for top-level classes,
DefineSubClass for subclasses. Their definition is somewhat complicated by the
fact that they are also suited for parameterized classes.

#define DefineClass(X,XC,XTAIL,AP,NP)
#define DefineSubClass(X,Y,XC,XTAIL,AP,YP,XP,NP,CONSTR)

• X, the name of the class

• Y, the name of the parent class

• XC, the name of the data type representing the class

• XT AIL, is the name of the function for manipulating the tail

• AP, all type parameters except the tail

• YP ⊆ AP, all type parameters that distribute to Y

• XP ⊆ AP, all type parameters that distribute to X

• NP = |AP| + 1, the number of type parameters

• CONS TR, a listing of Typeable constraints on the AP type parameters used
for the Narrow and Widen instances

#define DefineClass(X,XC,XTAIL,P,NP) \
type X ## _ P t = XC P t ; \
type X P = X ## _ P () ; \
\
deriving instance Typeable ## NP XC ; \
\
instance ModTail (XC P) where { \
getTail = _ ## XTAIL ; \
setTail o v = o { _ ## XTAIL = v } } ; \

\

113

A.2. LightOO Macros Appendix

get_ ## X ## _Tail :: X ## _ P t -> Record t ; \
get_ ## X ## _Tail = getTail ; \
set_ ## X ## _Tail :: X ## _ P t -> Record tt -> X ## _ P tt ; \
set_ ## X ## _Tail o v = setTail o v ; \
modify_ ## X ## _Tail = mkMod set_ ## X ## _Tail get_ ## X ## _Tail ;

#define DefineSubClass(X,Y,XC,XTAIL,AP,YP,XP,NP,CONSTR) \
type X ## _ AP t = Y ## _ YP (XC XP t) ; \
type X AP = X ## _ AP () ; \
\
instance (CONSTR) => Narrow (X AP) (Y YP) where { \
narrow = modify_ ## Y ## _Tail hideImpl } ; \

\
instance (CONSTR) => Widen (Y YP) (X AP) where { \
widen o = genericWiden o get_ ## Y ## _Tail set_ ## Y ## _Tail } ; \

\
deriving instance Typeable ## NP XC ; \
\
instance ModTail (XC XP) where { \
getTail = _ ## XTAIL ; \
setTail o v = o { _ ## XTAIL = v } } ; \

\
get_ ## X ## _Tail :: X ## _ AP t -> Record t ; \
get_ ## X ## _Tail = getTail . headRecord . get_ ## Y ## _Tail ; \
\
set_ ## X ## _Tail :: X ## _ AP t -> Record tt -> X ## _ AP tt ; \
set_ ## X ## _Tail o v =
modify_ ## Y ## _Tail (\o -> consRecord $ setTail (headRecord o) v) o ; \

\
modify_ ## X ## _Tail = mkMod set_ ## X ## _Tail get_ ## X ## _Tail ;

114

Bibliography

[1] ECMAScript Language Specification (Standard ECMA-262). Technical report.

[2] The glasgow haskell compiler. http://www.haskell.org/ghc/.

[3] York haskell compiler. http://www.haskell.org/haskellwiki/Yhc.

[4] Inc 280 North. Cappuccino, objective-j. http://cappuccino.org/.

[5] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically typed language, 1989.

[6] Jeremy Allaire. Macromedia flash mx - a next-generation rich client. Technical
report, Macromedia, March 2002.

[7] Kenichi Asai. On typing delimited continuations: three new solutions to the
printf problem. Higher Order Symbol. Comput., 22(3):275–291, September
2009.

[8] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing reactive
guis in f# using websharper. In Proceedings of the 22nd international con-
ference on Implementation and application of functional languages, IFL’10,
pages 203–216, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] M. Bolin. Closure: The Definitive Guide. O’Reilly Series. O’Reilly Media, 2010.

[10] T. Burnham. CoffeeScript: Accelerated JavaScript Development. Pragmatic
Bookshelf, 2011.

[11] F. Warren Burton. Type extension through polymorphism. ACM Trans. Pro-
gram. Lang. Syst., 12(1):135–138, January 1990.

[12] Manuel Chakravarty, New South, Wales Sigbjorn, Galois Connections, Fer-
gus Henderson, Melbourne Marcin Kowalczyk, Utrecht Simon Marlow, Cam-
bridge Erik Meijer, Microsoft Corporation, Sven Panne, and et al. The haskell
98 foreign function interface 1 . 0 an addendum to the haskell 98 report. Inter-
face, 2003.

[13] William R. Cook, Brian Dalio, Tom Freeman, Craig Hansen-sturm, Victor Law,
Leonard Nicholson, James Redfern, Tom Rockwell, and Chris Warth. A deno-
tational semantics of inheritance. Technical report, 1989.

[14] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not sub-
typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on

115

BIBLIOGRAPHY BIBLIOGRAPHY

Principles of programming languages, POPL ’90, pages 125–135, New York,
NY, USA, 1990. ACM.

[15] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In In 5th International Symposium on Formal Methods
for Components and Objects (FMCO. Springer-Verlag, 2006.

[16] Antony Courtney. Functionally Modeled User Interfaces. Signals.

[17] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa arcade.
In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell’03),
pages 7–18, Uppsala, Sweden, August 2003. ACM Press.

[18] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, Incorporated,
2008.

[19] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of
the utrecht haskell compiler. In Proceedings of the 2nd ACM SIGPLAN sym-
posium on Haskell, Haskell ’09, pages 93–104, New York, NY, USA, 2009.
ACM.

[20] Atze Dijkstra, Jurriën Stutterheim, Alessandro Vermeulen, and S. Doaitse
Swierstra. Building javascript applications with haskell. 2012.

[21] Anton Ekblad. Towards a declarative web, 2012.

[22] Levent Erkök, John Launchbury, and Andrew Moran. Semantics of fixio, 2001.

[23] Axel Simon et al. Gtk2hs.

[24] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling hell
from heaven and heaven from hell. SIGPLAN Not., 34(9):114–125, September
1999.

[25] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. J. Funct.
Program., 16(6):751–791, November 2006.

[26] GNOME Foundation. The gtk+ project. http://www.gtk.org/.

[27] A. Fowler. A swing architecture overview.
http://java.sun.com/products/jfc/tsc/articles/architecture/.

[28] Emden R. Gansner and John H. Reppy. A foundation for user interface con-
struction, pages 239–260. A. K. Peters, Ltd., Natick, MA, USA, 1992.

[29] Jesse James Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com, 2 2005.

[30] J. Gettys, R.W. Scheifler, and R. Newman. Xlib: C language X interface (X
version 11, release 4). Silicon Press, 1990.

[31] A. Ghoda. Introducing Silverlight 4. Apress Series. Apress, 2010.

[32] Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[33] Google. The dart programming language specification.
http://www.dartlang.org/docs/spec/dartLangSpec.pdf.

116

BIBLIOGRAPHY BIBLIOGRAPHY

[34] R. Hanson and A. Tacy. GWT in action: easy Ajax with the Google Web toolkit.
Manning Pubs Co Series. Manning, 2007.

[35] Jan Rune Holmevik. Compiling simula: A historical study of technological
genesis. IEEE Ann. Hist. Comput., 16(4):25–37, December 1994.

[36] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:
a minimal core calculus for java and gj. ACM Trans. Program. Lang. Syst.,
23(3):396–450, May 2001.

[37] O. Kiselyov. Type-safe functional formatted io.

[38] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system. Draft,
2005.

[39] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heteroge-
neous collections. In Haskell 2004: Proceedings of the ACM SIGPLAN work-
shop on Haskell, pages 96–107. ACM Press, 2004.

[40] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object Oriented
Program., 1:26–49, August 1988.

[41] Daan Leijen.

[42] Daan Leijen. wxHaskell: a portable and concise GUI library for haskell. In
Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 57–68, New York, NY, USA, 2004. ACM Press.

[43] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system, release 3.08. INRIA-Rocquencourt, 2004. http://caml.inria.fr/
pub/docs/manual-ocaml/.

[44] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’95, pages 333–343, New
York, NY, USA, 1995. ACM.

[45] C. Lindley. JQuery Cookbook. O’Reilly Series. O’Reilly Media, 2009.

[46] Tommi Mikkonen and Antero Taivalsaari. Using javascript as a real program-
ming language. Technical report, Mountain View, CA, USA, 2007.

[47] Tommi Mikkonen and Antero Taivalsaari. Web applications - spaghetti code for
the 21st century. In Proceedings of the 2008 Sixth International Conference on
Software Engineering Research, Management and Applications, pages 319–
328, Washington, DC, USA, 2008. IEEE Computer Society.

[48] M. Naftalin and P. Wadler. Java Generics and Collections. Java Series.
O’Reilly Media, 2006.

[49] Rob Noble and Colin Runciman. Gadgets: Lazy functional components for
graphical user interfaces. pages 321–340. Springer Verlag, 1995.

[50] Nokia. The qt project. http://qt.nokia.com/.

[51] Johan Nordlander. Polymorphic subtyping in o’haskell. In APPSEM Workshop
on Subtyping and Dependent Types in Programming, 2000, 2001.

117

http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/

BIBLIOGRAPHY BIBLIOGRAPHY

[52] Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[53] Benjamin C. Pierce and David N. Turner. Object-oriented programming with-
out recursive types. In In Proc 20th ACM Symp. Principles of Programming
Languages, pages 299–312.

[54] M. Russell. Dojo: the definitive guide. Definitive Guide Series. O’Reilly, 2008.

[55] Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans.
Graph., 5:79–109, April 1986.

[56] Erik Van Seters. wxFlashkell: Building Flash based GUI’s in Haskell. 2009.

[57] J. Smart, K. Hock, and S. Csomor. Cross-platform GUI programming with
wxWidgets. Bruce Perens’ Open Source series. Prentice Hall PTR, 2006.

[58] Doaitse S. Swierstra, Pablo, and Joao Sariava. Designing and Implementing
Combinator Languages. In Advanced Functional Programming, pages 150–
206, 1998.

[59] Wouter Swierstra. Data types & la carte. J. Funct. Program., 18:423–436, July
2008.

[60] Peter Thiemann. Towards a Type System for Analyzing JavaScript Programs.
In Mooly Sagiv, editor, Programming Languages and Systems, volume 3444
of Lecture Notes in Computer Science, chapter 28, page 140. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2005.

[61] W3C. Html5. http://www.w3.org/TR/html5/.

[62] W3C. Svg primer. http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html.

[63] J. Weaver and J.L. Weaver. JavaFX Script: Dynamic Java Scripting for Rich
Internet/Client-side Applications. Apress, 2007.

[64] S.T. Young, M. Givens, and D. Gianninas. Adobe AIR programming unleashed.
Unleashed Series. Sams, 2008.

[65] F. Zammetti. Practical Ext JS Projects with Gears. Practical Projects. Apress,
2009.

118

	Introduction
	On a historical note
	Motivation
	Research problem
	Outline

	Background
	On the role of GUI toolkits
	Graphical representation
	User input
	Application integration

	wxHaskell: a quick overview
	The target platform
	DOM
	Graphical representation
	Interactive web pages with JavaScript

	UHC

	Exploring the design space
	Port wxC in Haskell (A)
	Port wxC in JavaScript (B)
	Replace wxCore with a Haskell implementation (C)
	Conclusion

	Interfacing with JavaScript
	Introduction
	Typing the Untyped
	A model for JavaScript types
	Type checking
	Representing union types

	Marshalling
	JavaScript Idioms
	Instantiating objects
	Higher-order call
	Exporting Haskell functions
	Behavior of this
	Optional arguments
	Global state
	Variadic functions

	Linking JavaScript libraries
	Related work
	York Haskell Compiler
	GHCJS
	Haste

	Conclusion, Discussion & Future Work

	A lightweight OO DSL
	Introduction
	What is Object-Oriented programming?
	Outline

	The `shapes` example
	Shapes in Java
	Shapes in Haskell

	Objects in Haskell
	Objects as tail-polymorphic records
	Constructor arguments
	Construction-time computations
	Semi-explicit parameterized classes
	Nested object generators
	Self-referential objects
	Single inheritance with override
	Class-polymorphic functionality
	Orphan methods

	A type-perspective
	Explicit casting
	Self-returning methods
	Parameterized classes

	Scraping the boilerplate
	Discussion
	Usability
	Efficiency
	Future work

	wxAsteroids in the web browser
	wxAsteroids
	Design
	Approach
	Objects
	Organization
	Mapping to the web browser

	Implementation details
	Subtyping
	Interfacing with the DOM
	Implementing wxTimer

	Conclusion

	Conclusion, Contributions & Future Work
	Appendix
	XLib Hello World
	LightOO Macros

