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Abstract

In this study, we explored how different mining techniques can be used to gain insight into the healthcare

domain. More specifically, we developed a methodology that takes a set of activity sequences from a

Hospital Information System to analyze patient careflow.

We developed a data-based methodology able that provides insight into patient careflow, based on

a standardized data structure from the Dutch DBC Information System and other external resources.

This approach provides a set of techniques able to analyze any type of care profile, for any specialism,

within any hospital and combinations of either. After an initial data collection, an event log is prepared

containing high-level activities describing the logistic carepath of patients. Secondly, different types of

care profiles are identified by clustering using a Partitioning Around Medoids algorithm based on the

Tanimoto distance between paths. The third step is to apply classification in order to identify the main

characteristics of each type of profile. As a fourth and final step, each cluster is analyzed using the

Trace Alignment plugin in ProM, which allows the identification of both a cluster’s main process pattern

and specific deviations from this process for individual carepaths.

A variety of insightful visualization techniques allows medical specialist to interpret the results of

this methodology without specific knowledge on the Data and Process Mining techniques. The insights

gained from this methodology support the improvement of patient careflow in three different ways: by

treating patients according to the cheapest path with the highest quality of care, by improving standard-

ization of carepaths and by developing a robust, optimal operating schedule using predictive modeling

based on the patient types defined by this analysis.

Keywords: Healthcare, Patient Careflow, Advanced Analytics, Visualization, Data Mining, Clustering,

Classification, R, Process Mining, Trace Alignment, Event Logs, ProM
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Chapter 1

Introduction

In this study we provide insight into patient careflow by analyzing a hospital derived dataset using

various data-based methods, which can be used to improve quality of care whilst decreasing operational

costs. To do so, we used a variety of techniques, which have previously shown success in the analysis

of healthcare processes. This includes data mining and process mining [28, 36, 43, 55, 59, 61, 68, 78],

but also business objectives, mining objectives and external data analysis that have proved useful [4].

This results in a new methodology, that implements the techniques offering the best performance, and

at the same time standardizes the business- and mining objectives. The advantage of this methodology

is that it is applied to a standard dataset, and thus can be applied to any hospital, any department and

for any type of patient careflow.

We start with a short description of the problem in Section 1.1. Section 1.2 will go further into defining

our research goal. Section 1.3 describes the approach for the actual research, with a description of the

applied case study. An outline of the remainder of this thesis is given in Section 1.4.

1.1 Assignment background

Patients follow a certain carepath consisting of a variety of medical activities during treatment. These

carepaths vary for similar patients not only in cost, but also in the ordering and medical content of

activities. The Diagnosis Treatment Combination (DBC)1 system, introduced in 2005, encouraged and

improved standardization for similar carepaths of specific diagnosis/treatment combinations [74]. Such

a standard is called a protocol. In practice, however, there is often a significant difference between the

activities described in a protocol, and the activities actually performed [45]. Hospital board members

therefore lack insight and knowledge about the practical implementation of these processes and the

system is sensitive to fraud [29,35]. A new reimbursement model, DBC Towards Transparency (DOT)2,

was introduced in 2012 and aims to provide more transparency in costs and care activities. Together,

these factors put a lot of pressure on hospitals to “do more with less” [4,5,15].

The core elements of the reimbursement systems are DBC-codes. These codes represent a se-

quence of medical activities for the treatment of patient, where each code corresponds to a specific

problem with a specific treatment for a specific medical discipline [74]. The standardization of patient
1In Dutch: Diagnose Behandeling Combinatie
2In Dutch: DBC Op weg naar Transparantie
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careflow has been shown to improve quality of care [6]. Postoperative stay of patients undergoing stan-

dardized treatment is shortened and hospital costs decrease [65]. It is however not an easy task to

accomplish: manual analysis of these patient careflow processes by interviews is time-consuming and

often sub-optimal [55, 68]. Besides, manually defined processes are not applicable for standardization

across different departments and hospitals [32]. Previous work has shown that improvement of the

treatment process receives significant attention in healthcare, but the use of readily available data is still

limited [59].

Instead, data-driven techniques (data mining and process mining) allow us to perform thorough

analysis and model patient careflow. Although these techniques are similar, we consider them separate

as process mining also includes process modeling in addition to data mining (see Sections 2.2.1 and

2.2.2 for further elaboration). Both mining techniques help to determine the current process and find

homogeneous flows and sequences. Homogeneity for a group of carepaths can be defined based

on, amongst others, the medical content, the logistics process, total costs or a combination of these

elements. As a result, we obtain objective clusters, statistics and other insights that can be used for

further standardization of DBC’s.

Dutch hospitals use a variety of Hospital Information Systems (HIS) and other embedded systems

(e.g. an X-ray device) that track the activities performed in a carepath. Each of these systems records

a huge amount of data, for example every diagnosis and treatment activity performed. Information

Technology continuously aims to support and improve the healthcare sector, which results in an ever-

increasing large quantity of electronic data from operational systems [32,37,43,73].

It is stated that “Data in and of itself has no value! The only value data/information has to offer is in

the context of the business processes, decisions, customer experiences, and competitive differentiators

it can enable.” [33] Today’s buzzwords such as Business Activity monitoring (BAM), Business Operations

management (BOM) and Business Process Intelligence (BPI) describe the need to more fine-grained

techniques that can help improve healthcare processes with the many data available [52, 56, 73]. The

only requirement for these systems – referred to as Business Process Management Systems or Work-

flow Management Systems (WfMS) – is that they record activities in so-called event logs [45]. The

next step is to use these data to identify possible improvements of processes and efficiency, to help

organizations cope with cutbacks and the increasing demand of care.

For this study we aim to use a subset of the many available data as described in the DBC Information

System (DIS)3, provided to us by six different hospitals. The DIS collects both delivered and billed

healthcare products from all healthcare providers (further described in Section 2.1.2) [20]. These event

logs record non-trivial careflow processes, and contain huge numbers of distinct activities in countless

different combinations. This makes analysis non-trivial and often results in spaghetti-like models.

New and powerful data mining and process mining tools and techniques are continuously being

developed and implemented by researchers and software vendors. Most of the techniques make as-

sumptions that do not hold in practical situations, and few of the more advanced techniques have been

tested on real-life processes [56]. The goal is to describe some of these techniques and evaluate their

applicability on standard DBC registration data. Continuing, we describe a methodology suitable for an-

alyzing specific patient careflow and to provide insights in the medical activities performed for individual

carepaths.

3National system that collects and maintains all the information on DBC’s (Section 2.1.1.1)
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1.2 Research statement

The general research objective for this thesis is defined as follows:

To explore advanced Process- and Data mining techniques, and to define a methodology

that provides insight into patient careflow for specific DBC’s in a hospital environment.

In the previous section we already stated that few of the available techniques have been applied

to real-life cases. In Section 2.3, we dive deeper into the available literature on earlier exploratory

research. As we aim to develop a general methodology that provides insight into the patient careflow

based on empirical data4, our first step is to find answers to the following three questions:

1. Can data- and process mining techniques be applied to gain insight in patient careflow?

1.1 Which data mining techniques are applicable?

1.2 Which process miningtechniques are applicable?

Basic statistics and simple analysis are insufficient to gain insights that medical professionals are

able to work with. Not only is expert input an absolute requirement, we also need to quantify the results

in a way that is understandable for both the analyst and medical expert. We need to establish the

required parameters and statistics, on which we can develop our model. Also, we need to define a

transparent way to present the resulting insights to the medical professionals.

Our second research question aims to identify parameters and variables, required for our model.

2. Which insights do we require to assess patient careflow?

2.1 Which criteria (logistic/medical/cost) are used for the assessment?

2.2 Which elements of a specific patient careflow can we use?

2.3 Which parameters/techniques do we need to calculate quality for a specific carepath?

2.4 Which elements of a carepath do we have available as input?

data mining is a subjective and iterative process, which requires both statistical and domain specific

knowledge. The former extracts numbers and statistics from data, whilst the latter adds “meaning” to

the results. Mining does not provide specific optimizations and objective results. In any case, it is a

combination of interaction between the analyst, available techniques and expert domain knowledge.

The third question targets means to compare and evaluate our results.

3. How can we compare, evaluate and advise different carepaths?

3.1 How do we visualize patient careflow?

3.2 How do we define patient careflow quality? (What defines a good carepath or cluster?)

3.3 How do we compare different cluster outcomes?

The goal of this thesis is not to define a standard protocol for healthcare processes, but rather to

evaluate the applicability and value of mining techniques for classifying standard behavior. We aim

to suggest a methodology that helps to indicate the deviation of existing protocols or the (statistical)

possibility to introduce new standardized patient careflow.
4I.e. the recorded set of activities performed for a specific Diagnosis/Treatment combination
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1.3 Research design

The previous section described the research statement for this project, which is a typical data mining

project. This type of projects are thoroughly documented and supported by the Cross Industry Standard

Process for Data Mining (CRISP-DM) as shown in Figure 1.1 [75]. CRISP-DM has been at the basis

for various other healthcare projects, both in data mining and process mining [4,61]. Similarly, we apply

this methodology to our project, as described in the following section. The last phase, Deployment, is

not covered in this thesis, as software implementation and deployment is not part of this study.

Figure 1.1: (Simplified) CRISP-DM model [75].

The understanding gained and decisions made in the different phases of CRISP-DM are supported

by experts: a number of colleagues within Deloitte, who have years of consulting experience within hos-

pitals and healthcare. Each of them has been actively involved in various projects regarding improving

healthcare processes, and worked with both the DBC and the DOT systems. Together with a medical

degree, a PhD in health economics, and a PhD in machine learning, this team offers a valuable and

suitable source of expertise for this study.

1.3.1 Business Understanding

The first phase is to define the business objectives and a means to measure or quantify the analysis

results. In Section 1.1 and 1.2, we already introduced our primary objectives which include the search

for a quality measure. This section describes the initial plan to reach these objectives.

In Chapter 2, we provide a more thorough overview of the healthcare domain with its dynamics and

complexity. A short literature study summarizes the results of previous data mining and process mining

projects in healthcare, which provides a basis for the selection of a few specific techniques.

With the prerequisites in mind, we continue to the second phase: getting to understand the data.

4



1.3.2 Data Understanding

The second phase is concerned with the initial data collection. Before we try to analyze the data, it is

important to understand the acquired data: which columns do we have for what scales, what do they

mean, etc.

Quality assessment (or Data Audit) is also a big part of this phase: is the dataset complete, how do

we cope with missing values, who entered the data (i.e. are typo’s common?). Some relatively simple

visualizations can help add insight to these data.

For this project, we tried to use a sample set from the official DIS as described in Section 2.1.2.

Unfortunately, these data were not publicly available at the collection phase of this project. Instead we

used similar datasets that are at our disposal, also containing DBC data as described in Section 4.2.

This section also describes a thorough data audit.

Once we collected and defined the required data, we prepare the sets for analysis in the next phase.

1.3.3 Data Preparation

The third phase is preparing the raw data into a sample set that can be used for modeling. This contains

every step necessary to prepare the final analysis set from the raw initial data. Example steps are:

selecting the right tables and records, merging multiple sets, cleaning missing data and transforming

the overall structure, as the required structure may depend on the type of analysis.

Together with Data Understanding, this phase often takes up the largest part of any data mining

project. Since we are working with sample sets instead of an extract from the official system, we have

to go through a number of cleaning and validation steps. Also, we need multiple transformation steps

to prepare the final sets since we are working with two different types of analysis that require different

data structures. The entire preparation phase is described in Section 4.3.

Once we have the sets available, we start our actual modeling and analysis.

1.3.4 Modeling

The fourth phase describes the actual modeling of the data. In the modeling phase we try a range of

techniques to develop models that provide insight into the patient careflow. The different model results

are assessed, compared, and sometimes even combined.

Section 4.4 describes the application of the techniques explained in Chapter 3. We present the steps

required to build the models and apply the techniques to a number of sample care products.

The final step of this phase is an addition to the steps described by CRISP-DM: we summarize

the steps performed in the previous phases in a methodology, describing only the most applicable

techniques. This methodology can be used to gain insight into any type of patient careflow, and is

evaluated in the second-last step of the CRISP-DM circle.

1.3.5 Evaluation (Case Study)

The fifth phase before deployment is to validate and evaluate the methodology and models obtained

in the previous phase, which requires expert domain knowledge. At this phase, merely statistics are
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insufficient and human input is required for a thorough model assessment. It is the final check before

Deployment, and consists of two main themes:

1. Evaluation/validation from a Technical perspective.

2. Evaluation/validation from a Business perspective,

it is crucial to validate whether the model contributes to accomplishing the Business Objectives

stated in the first phase.

In Chapter 5, we assess the final methodology by performing a number of Case Studies. We show

that we have developed a methodology that provides valuable insights, that is (widely) applicable to

identify improvements in patient careflow.

1.4 Outline

After this introduction, we first give more detail on the healthcare domain and mining in general (Chap-

ter 2). This chapter also elaborates on previous work performed in this area. Specifics on the data

mining techniques used in this project are explained in Chapter 3. Chapter 4 describes the develop-

ment of our methodology according to the CRISP-DM model. The methodology is then tested on a

number of Case Studies in Chapter 5. The project is evaluated in Chapter 6 before we conclude in

Chapter 6.6.
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Chapter 2

Theoretical background

This chapter offers background information on the research area of this project, which is required for

a deep understanding of the business objectives and techniques applied in this study. We start with

a general overview of the healthcare domain in Section 2.1. A thorough description of the dynamics

and complexity of this domain points out the need for advanced analysis techniques. The applicability of

these techniques is supported by huge amounts of data readily available from many different Information

Systems. For the purpose of this project, we restrict the data set to the standard administration structure

of DBC’s (and in the future DOT) which is built to describe patient careflow. Next, we provide a general

introduction to data mining and process mining in Section 2.2, which explains how these techniques

can be applied to provide useful insights. Section 2.3 provides a short overview of related work on

mining in the healthcare domain. Based on these earlier results, we select a number of algorithms and

techniques as a basis for our methodology design.

2.1 Healthcare domain

Our main goal is to gain insight into patient careflow, which is a far from trivial task in a healthcare

environment [5]. As shown in Figure 2.1, there are a number of main types of healthcare processes [43,

47]. The medical treatment processes describe the diagnostic-therapeutic cycle – patient observation,

Routine Non-routine

Elective care

Medical 

treatment 

processes

Organizational 

processes

Acute care / High 

complication 

probability

Healthcare 

processes

Figure 2.1: Overview of the main types of healthcare processes.
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medical reasoning and decision making. We put our focus towards the organizational processes, which

include inter-operating healthcare professionals, disciplines and departments. In contrast to the medical

processes, these processes are not about the medical content of individual paths, but rather about the

logistics of work processes. The difficulty is that these type of processes are intertwined with each other

and directly linked to the individual patient’s care and requirements [5,38,43,47].

One would argue that each individual patient is unique, in contrast to the highly standardized prod-

ucts in e.g. car manufacturing. It is important to mention that healthcare processes are case-driven,

as each execution of a step can be attributed to exactly one specific case. As a consequence, each

instance of the process varies in the way it is executed [43]. Often used terms to characterize health-

care processes are dynamic and flexible [28,46]. There are a number of characteristics that distinguish

healthcare from other domains. This section gives an overview of the main characteristics.

Dynamic, flexible and complex Medical knowledge is continuously evolving: not only the develop-

ment of new treatments and diagnostic procedures, but also the discovery of new diseases result

in constant changes in healthcare processes. Other causes of change are e.g. the implementa-

tion of new (information) systems – both administrative and operational – or the discovery of new

drugs. Because each patient is unique, each treatment path can be complex because each indi-

vidual might respond differently to certain types of treatment. Even a relatively simple treatment

for one diagnosis can become complex when treatment is required for another diagnosis due to

complications. Therefore, strong flexibility within these processes is required [5,28,36].

Ad hoc actions and process changes Similar to the above, ad hoc changes are sometimes re-

quired to deal with a patient’s unique complications. Following standardized carepaths comes

second to saving a human life, physicians act according to their knowledge and experience. There-

fore not every principle of general operations management is applicable, sometimes physicians

are required to deviate from the standardized path [5,36].

Multi-disciplinary and cross-functional The treatment of a single patient involves procedures from

many disciplines (e.g. management, IT, etc.) and specialized departments (e.g. radiology, cardi-

ology, etc.) within a healthcare organization. It is also directly linked to financial tasks [5,53].

Automation issues In medical decision making, experts and physicians perform trade-offs, deci-

sions and actions based on their knowledge and experience. It is not (yet) possible to automate

these steps in systems such as a Decision Support System. Instead, the degree of collaboration

among humans and automated systems plays a crucial role in delivering high quality services to

patients [28].

Data management issues Every department often has its own Information System or application,

which records data about individual patients. The data from these various applications is often re-

dundant and not linked to other processes and applications. This results in redundant, inaccurate,

uninformative and even confusing data storage [28].

Classification issues To analyze healthcare processes, it is important to classify patients and pro-

cesses in order to define what constitutes such a process. Several techniques have been sug-

gested:
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1. Four levels of process classification: type of care (acute versus elective), complication proba-

bility (high versus low), complexity of care (high versus low) and whether or not the diagnosis

is known [44].

2. A type of ISO-process grouping, which provides homogeneous groups in terms of costs and

the process described by the carepaths [70].

3. The Dutch reimbursement systems DBC and DOT, which have defined patient careflow for

similar DBC’s [74]. These systems contain a lot of detail on the medical process: they de-

scribe specific medical activities for each care product. This is possibly a big obstacle for

process optimization; despite the distinction of medical content for activities, the logistic pro-

cesses they describe can be similar [36].

Healthcare processes are less structured because of these characteristics and issues. Therefore “it is

not known what happens in a healthcare process for a group of patients with the same diagnosis” [46].

Hospitals are searching for reliable techniques that provide valuable insights of these processes and

the variety of executions. The techniques must offer easily obtainable results in an interactive way, such

that useful insights can be concluded from them [55].

Before we continue to make any type of analysis, we need to define what exactly we mean by patient

careflow. The DBC and DOT systems are at the basis of reimbursement for provided patient treatment

in healthcare organizations. Every hospital stores data according to a predefined data structure, in

order to be able to make declarations. These datasets are easily combined in order to analyze multiple

hospitals simultaneously – on a national level, this is done by the DIS (Section 2.1.2). For this reason,

we base our analysis on these standardized and readily available datasets, using a definition of patient

careflow based on the existing DBC and DOT systems.

In the next section, we give a thorough overview of how the reimbursement systems DBC and DOT

are designed. With this in mind, we propose a definition of patient careflow used in our analysis.

2.1.1 Defining patient careflow

The old reimbursement model used in the Netherlands distinguished four budget components: hous-

ing, availability, capacity and production. This resulted in a fixed budget for the various components.

The model was unable to cope with the dynamic and complex nature of the healthcare domain as de-

scribed earlier, which led hospitals to frequently exceed their provided budget [29]. In order to establish

a transparent financing system for healthcare organizations, a new reimbursement model, the DBC sys-

tem, was introduced. Although the system offered many improvements, not everything turned out as

anticipated [25]. The recently introduced system DOT aims to cope with these limitations [29,74].

The DBC and DOT systems aim to provide both medical and financial homogeneity in careflow

groups or clusters. To reach this goal, a number of generalized groups of Diagnosis/Treatment com-

binations are specified, describing patient careflow [74]. The first part of this section focuses on the

developed methodologies and techniques behind these two systems. We use these methodologies and

techniques as a starting point for our analysis. In the last part of this section, we propose our definition

of patient careflow which is based on assumptions and definitions as described in DBC and DOT.
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2.1.1.1 DBC

In 2005, the Dutch government decided to introduce the DBC system to provide more transparency by

forging a stronger link between funding and performance. This system is an example of a case-based

funding system1, consisting of predefined average care profiles that describe carepaths for specific

diagnoses. These profiles have established prices that are used to calculate the fees hospitals receive

for their delivered care services [19,25,29,74].

During the development of the DBC system, administrative differences (i.e. the manner in which

they allocate cost to activities) between hospitals were ignored. The goal was to find groups of DBC’s

with homogeneous care profiles to provide a manageable product structure [74]. The level of cost

homogeneity also played an important role, as cost inhomogeneity leads to financial risks for hospitals

[8]. The first clustering of DBC’s is based on statistical data analyses, which is later refined by scientific

committees based on their medical judgment [74].

The DBC system stimulates hospitals to increase efficiency for individual careflows, because reim-

bursement is based on a fixed price per DBC. A part of these prices – the A-segment – is regulated by

the Dutch government. However, prices for about 70 percent of all DBC’s – the B-segment – are freely

negotiable between hospitals and insurers, which allows for managed competition between hospitals.

This stimulates hospitals to provide the best quality care for the lowest cost [29,55,59,74].

A DBC-code can be viewed as an abstraction of what is inside such a predefined care profile. Each

code describes the sequence of medical activities for the entire path a patient goes through from the

diagnosis of a problem, to the treatment of the problem, to the final discharge [29,74]. A DBC consists

of four attributes as shown in Table 2.1.

Table 2.1: DBC-code structure, each code consists of four attributes. This is an example for

0305.11.1701.0223: arthrosis (hip) - surgical/clinical with joint prosthesis.

DBC-code Definition Description Example

0305-..-....-.... specialism department or discipline orthopedics

....-11-....-.... care type acute, regular or follow-up regular

....-..-1701-.... diagnosis arthrosis: pelvic/hip/thigh

....-..-....-0223 treatment conservative or surgical,

ambulatory or clinical

surgical, clinical episode with

joint prosthesis

Not only the DBC’s, also the activities they describe are directly linked to a specific specialism. Each

DBC or care product describes a number of specific activities. An example is given in Table 2.2a for

three outpatient department visits, five nursingdays, surgery, hip imaging and six labtests. The ordering

is not given in the care products The Dutch Healthcare Authority, previously known as the “College

Tarieven Gezondheidszorg”, is responsible for determining the tariff for each individual treatment activity.

These activities are represented by a CTG-code, and classified by an Activity Class (ZPK). ZPK-codes

describe the type of activity (e.g. diagnostic or surgical) and are equal for all specialisms. This allows

the comparison between two carepaths to include similarity measures between two distinct activities

(e.g. two diagnostic activities are more similar than a diagnostic and a surgical activity) [74]. A subset

1Note that the Dutch DBC is similar to DRG. The variations between the two systems mainly lay in starting point and intention,
build-up structure, and in financial incentive [29].
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of ZPK-codes is listed in Table 2.2b.

Table 2.2: Examples for CTG-codes and ZPK-codes.

(a) Overview of the activities described by a DBC-

code (this is an example, not an official extract).

CTG ZPK Description #

190011 1 First outpatient visit 1

190013 1 Outpatient department 2

190204 3 Nursingday 5

38567 5 Replacement of the hip 1

89202 7 Imaging for hip 1

70611 8 Antibodies 1

70702 8 Hemoglobin 2

79991 8 Laboratory research 3

(b) Overview ZPK-codes 1. . . 8 (see Table G.1 for

the complete overview).

ZPK Definition

1 Outpatient department / ER

2 Daycare

3 Clinic

4 Diagnostic activities

5 Surgical activities

6 Other therapeutic activities

7 Medical imaging

8 Chemistry / hematology (labtest)

Although the introduction of the DBC system did offer more insight into pricing, content and quality

of care, there are still areas of improvement. With around 30.000 different DBC’s2, the final product

set is quite large, which reduces the overall transparency. Because this system has defined its set of

unique DBC’s per specialism, it is possible that one specific care profile is defined more than once in

different specialisms. Furthermore, the large size of the product set and reduced transparency allows

organizations to manipulate the resulting reimbursement, which makes the system more fraud-sensitive

[29, 31]. The newly introduced DOT system transcends individual specialisms and decreased the total

set of care-products [74].

2.1.1.2 DOT

The basic idea behind the DOT system is similar to that of DBC: to provide both medical and financial

homogeneity in patient careflow. Although DOT is largely based on DBC, there are three main points of

improvement:

Based on ICD-10 DBC diagnosis classification systems are unique systems developed by separate

medical specialist communities, and therefore incomparable amongst specialisms. Instead, care

products in DOT follow the ICD10 (International Statistical Classification of Diseases and Related

Health Problems) system. This allows the comparison of performance data on both a local and

international level, since every specialism – both local and international – uses the same coding

system [29].

Reduction of products An important and effective difference is a serious reduction of over 30.000

DBC’s into only 4400 care products [19, 74]. As opposed to the previous system, products are

now defined in a specialism transcending fashion3, where medically equivalent products from

different specialties are combined into one single product. This reduction offers a large increase

in uniformity amongst different specialties and departments, which supports negotiations between

2Theoretically, this number can be much higher.
3In Dutch: specialisme overstijgend.
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care providers and health insurers. Instructions for all specialties will be uniform and – similar to

DBC and DRG systems – the compensation per product will be case-mix based [29,74]. Note that

some specialties are yet to be included in this new system.

Grouper Another problem with the previous system is that the validation process does not offer a

strict or uniform system due to its high administrative complexity. This causes risk of upcoding

and overdeclaration. In DOT, care products are deduced from registered activities by a web-

based grouper, as opposed to being selected and validated by medical specialists. This system is

intended to prevent upcoding, whilst increasing registration quality by alleviating the administrative

burden [29,54,68].

The grouper is a central, online system that automatically deduces care products and add-ons

from registered diagnosis and treatment activities. The specification of such a product is done

according to a binary tree-like structure: stepwise choices or decision rules determine which

specific care product is provided. These rules are based on registered activities only, which makes

it important to register every performed activity [19].

Some argue that although an automated system is now responsible to select the appropriate price for

DOT, the resulting care products offer less transparency than the original DBC’s [29]. The DBC system

offers a detailed report of diagnosis and treatment details, whereas the DOT system is a simplification

of the myriad of products [19]. An important recommendation is that the system needs permanent

adjustment in order to avoid future financial risk for hospitals [74].

The advantage of the DBC system is that it offers a greater level of detail, where DOT has improved

homogeneity overall and allows comparison between different specialties. The lack of available DOT

data however prevents us from statistic comparison of the different systems. In general, however, the

patients and their carepaths are the same, and the methodology developed in this study is applicable

to any type of reimbursement system. The next section gives an overview of our definition of patient

careflow which is based on these systems, and lies at the basis of our analysis.

2.1.1.3 Careflow definition

Previously, we stated that patient careflow – or a clinical pathway – describes a group of similar care

profiles, i.e. a number of medical treatments and activities. The large number of process variations

in a healthcare environment make it difficult to analyze and compare performance between patients,

departments and hospitals, without having a rigid patient careflow defined [8, 35, 74]. This system is

widely adopted by large hospitals around the world, with the goal to decrease costs whilst maintaining or

improving quality. They are designed to organize care activities, reduce use of resources and variations

in practice, minimize treatment delays and reduce the length of hospital stay for individual patients.

Collaboration between all kinds of hospital staff members is required for the design of patient careflow,

whereas an individual patient is able to cause variation in the execution of the clinical pathway. In order

to improve clinical pathway performance and homogeneity, a more dynamic and adaptive process is

required [58]. The level of homogeneity in patient careflow can be described on three main levels [74]:

Logistics This level describes patient careflow on a higher level, focusing on the logistics and or-

ganizational process a patient undergoes during treatment. Individual activities are described by

their ZPK, and detailed medical content is ignored (e.g. all surgical activities can be covered
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by a single ZPK, whilst the individual activities show significant differences in cost, duration and

intensity).

Homogeneity is measured based on throughput time, number of (similar) activities and the order

in which they are performed. This allows the comparison of different DBC’s with relatively distinct

types of surgery, but overall similar care profiles.

Medical At this level, medical content such as the detailed description of individual activities per-

formed is important. E.g. surgical activities have a big effect on determining the similarity between

two carepaths.

For any type of analysis on this level, thorough medical knowledge is required. Statistic results do

not provide sufficient insight in the similarity between medical content, which offers limited quality

in clustering.

Financial Creating financially homogeneous groups of DBC’s is a trivial task: the myriad of DBC’s

can be divided into cheap and expensive groups without any advanced analysis simply by looking

at the total averaged cost. When a cluster of DBC’s shows neither medical nor logistics homo-

geneity, this often implicates a large spread in cost. More interesting is using cost as either a

fine-tuning mechanism, or as a verification of the clustering quality [74].

Earlier, we described the difference between medical and organizational processes (Figure 2.1). As is

obvious, the medical content of a carepath defines the medical process, whereas the logistics describe

a part of the organizational process. The financial label of a carepath is linked to both the medical and

logistics process. We put our focus on the organizational process (logistics) within patient careflow,

because our medical knowledge is limited and logistic process offers support for statistical analysis. In

future work, where analytical knowledge is combined with more extensive medical domain knowledge,

these results also offer a good starting point to include the analysis of the medical content.

Now we know what type of process described by patient careflow we are targeting, we continue

to look at the available elements. Using the DBC system, a uniform set of codes (CTG) describe all

types of treatments and activities. These individual treatments are already classified by a ZPK-code.

As stated before, the DBC system contains a lot of detail, but on a ZPK-level there are only 24 distinct

activities. This simplifies the number of possible descriptions for carepaths, which has proven to be a

successful approach [43,46]. Experts have pointed out that for most DBC’s only ZPK-classes 1 through

8 are significant, as the remaining classes do not describe activities affecting the logistic process or

total costs.4 This gives us the possibility to use a restricted set of distinct activities and further simplify

the representation of a carepath.

Another important aspect is whether to include the order in which activities are performed. A good

measure to group different carepaths is comparing the activity content, i.e. the number of activities per-

formed. When we include the ordering of activities, this can result in a different grouping of carepaths,

because the similarity of subsequences can outweigh the difference in number of activities. One of our

goals is to find out which representation is the most qualified, or whether a combination of representa-

tions is required for an optimal result. Therefore we propose three different representations for patient

careflow as input for our analysis (examples are given in Table 4.2):

4ZPK 13 describes the use of prosthetic implants, which are in fact expensive and do have an effect the total costs for a specific
path. However, for the purpose of this study, we assume that the costs are equal for each DBC case.
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1. A string representation of the ordered sequences of activities on a ZPK-level.

Limited to a subset of ZPK-codes, this provides a high-level though extensive description of the

sequence of activities performed.

2. Counts of the performed activities on a ZPK-level.

Limited to a subset of ZPK-codes, this is a total count of the number of performed activities per

code and gives a high-level overview of the content of a carepath.

3. Counts of all performed activities on a CTG-level.

Since this level contains too much detail, this is purely for visualization purposes (see Figure 4.1b).

In the next step we review the available data and discuss how we can build these representations.

2.1.2 Hospital Information System

In Dutch hospitals a variety of HIS and other embedded systems are found, each of which record huge

amounts of data that track e.g. device usage or performed treatment activities. Due to the dynamic

and ever evolving nature of the healthcare environment, existing HIS must be periodically adapted to

the current situation. The systems are often large and complex, and the amount of resources hospitals

invest in the development of these systems is significant [53].

In order to track patient careflow, we need data that describe the activities performed in each exe-

cution. This type of data is generally collected by a WfMS. Such a system can be defined as follows:

“A system that defines, creates and manages the execution of workflows through the use of software,

running on one or more workflow engines, which is able to interpret the process definition, interact

with workflow participants and, where required, invoke the use of IT tools and applications” [77]. Un-

fortunately, the data models in HIS and other types of WfMS often differ between hospitals and even

departments, which makes it difficult to define one standard tool that can cope with any system of any

hospital or specialism. Besides, in general these systems lack maturity and interoperability with other

systems [5].

In the Netherlands a national system is available, the DIS, which is responsible for gathering all

DBC data. It contains information from the HIS of all types of healthcare organizations, describing the

provided and declared care. DIS is responsible for the data-exchange with a number of legal institutions

(NZa, CBS, CVZ, Ministry of Health and DBC Onderhoud), and is – per request – allowed to share

data with third-parties for e.g. research purposes [19]. This relieves the administrative burden of care

providers and provides one single dataset where all DBC’s are gathered. A summary of the available

data is shown in Table 2.3 [18].

The level of detail registered by DIS is limited. For example, DIS only records the start-date for a

performed activity. Specific timestamps for both start and end of an activity are not included. This limits

the possibilities for our analysis, as the ordering of activities is limited to a day-to-day level and the

duration of performed activities is unknown. As a consequence, we are forced to ignore the duration

and specific ordering of activities on a single day, and we combine similar activities on a single day into

a single activity.

This further simplifies the resulting representation, since numerous activities are represented by

a single activity. On a logistics level this makes sense, because most activities do not require extra
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Table 2.3: Four tables from the DIS – only a limited number of columns are provided (e.g. ZPK-codes

are derived from different source). Each table contains a unique primary key (PK), such that they can

be linked to each other by a foreign key (FK).

Patients

PK PatientID

Name

Birthyear

Sex

Carepath

PK PathID

PathStart

PathEnd

Specialism

FK PatientID

Subcarepath

PK SubpathID

FK PathID

AGB

Diagnosis

Treatment

Activity

PK ActivityID

FK SubpathID

CTG-code

Timestamp

Amount

preparations or actions to repeat the activity. E.g. one lab test is similar to doing numerous tests: one

needs to take blood and send it to the lab. The same goes for surgery, assuming that the operations

are combined in one OR-session. Other ZPK-levels such as “Clinic” representing a single nursingday

are already limited to one single activity per day by design. For more problematic cases, we might

lose important detail, e.g. when complications arise after surgery and a patient has to undergo surgery

for a second time. However, this does not outweigh the advantage of the increase in clarity the new

representation offers to the overall logistics process.

Now that we have our definition of patient careflow and know where to get the data, we look into

what we can do with the data. First, we give an overview of the fields of both data mining and process

mining, which gives a general impression of the techniques available. However, before we perform any

type of analytical analysis, we need to prepare the dataset and validate the quality of the acquired data.

2.2 Data tasks

There is a variety of techniques available in data-driven analysis, capable of uncovering patterns and

paths, and providing many other valuable insights. These techniques can be subdivided in data mining

and process mining, of which many have been applied to various types of HIS before [61]. The next

section gives an overview of these techniques in general. Data in itself has no value, but since we now

have many means to record it, we can use it for the analysis of e.g. healthcare processes and types of

patients. However, data-driven analysis only works if the input data is of sufficient quality; therefore we

also dedicate a part of this section to data quality and preparation.

2.2.1 Data Mining

Input data
Data

Preprocessing
Data Mining

Data
Postprocessing

Information

Figure 2.2: The process of Knowledge Discovery in Databases.

Data mining is the analysis step of the “Knowledge Discovery in Databases” (KDD) process (Fig-

ure 2.2); the non-trivial process of identifying valid, novel, potentially useful, and ultimately understand-
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able patterns in data [23, 66]. It commonly refers to the computer-based methodology for uncovering

patterns, and can be characterized as the extraction of implicit and potentially valuable information from

datasets in a programmatically automated manner [76]. CRISP-DM describes similar steps to KDD in

the phases on data understanding, preprocessing and modeling, but is more elaborate as it also has a

large focus on other area’s such as identifying business objectives.

Conventionally, data is analyzed manually, but an analyst may fail to find many hidden and poten-

tially useful relationships and patterns [40]. Data miners often work with readily available data, because

it is often impossible or too expensive (in both costs and time) to gather specific data. An important

difference between data mining and the area of experimental or statistical analysis is that data mining

focuses on the applicability of improvements and insights, where experimental or statistical analysis re-

quires accurate proof and confidence intervals. In other words, data mining is relatively less concerned

with specific relations between variables, and focuses on producing a solution that can generate valu-

able predictions or insights [62]. It is a topic that involves learning in a practical, non-theoretical sense.

The two main types of learning commonly described are supervised and unsupervised learning.

Supervised learning is used when the resulting values are known a priori, and the dataset is used

to build a model that can help predict values for new data points or observations [66]; a form of

predictive modeling.

A well-known example of this is Classification: the attributes of data points in the original set

are matched against predefined classes. The resulting model is then able to predict the class

for new observations based on their attributes. The goal here is to understand the basis for the

classification [61,66].

Unsupervised learning is used when classes or values are unknown a priori, and the goal is to

discover classes or patterns hidden in the data [66]; a form of descriptive modeling.

A well-known example of this is Clustering, where data points are clustered in groups of points

with similar or related attributes. For the assignment of a data point to a cluster we look at the

distance between individual data points, and the distance between an individual data point and a

cluster of points. There are many different ways of calculating the distance between two points

available, e.g. the Euclidian distance, each of which has its own characteristics. Also, clusters can

be represented by different values, e.g. an mean value or a medoid. These variations have an

effect on the resulting clustering [66].

Both learning types are useful tools for this project: we aim to identify standard patient careflow,

which we hope to achieve by clustering a large collection of different carepaths. Each cluster describes

a specific set of characteristics for the carepaths it contains. Once the clusters are generated, clas-

sification helps identifying the key characteristics that make up each cluster. The implementation and

execution of the different algorithms is performed using R, an open source tool for statistical comput-

ing [26].

2.2.2 Process Mining

Process mining is a combination of data mining and process modeling (see Figure 2.3), with the goal

to discover, monitor and improve real processes by extracting knowledge from case-based event logs

[21,52].
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Figure 2.3: Process mining is a combination of process modeling and data mining.

One way to compare and improve patient careflow is to put medical specialists together in workshops

to discuss similarities and possible improvements. This is a time-consuming and often suboptimal

solution [55,68,74]. Instead, process mining offers a range of techniques to automate this process [21]:

Process discovery extracts or discovers process models from an event log, by inferring the order-

ing relations between the various recorded tasks. It offers a tool to find out how people and/or

procedures really work.

Delta analysis or conformance checking verifies whether the real process matches an a-priori pro-

cess model. Process mining offers a tool to monitor deviations by comparing the actual process

as recorded in the event log with the intended process.

Process mining is not just about process discovery and improvement, and has an extensive variety of

algorithms implemented in the ProM framework, an open source process mining tool [1,21,46,52,69].

The only strict requirement for process mining is the availability of a suitable event log, which lists all

events executed on a certain case. These transaction-like logs are often collected by WfMS and other

information systems (e.g. a HIS – Section 2.1.2). The definition and an example of a suitable event log

is described by Table 2.4 [21].

We distinguish three perspectives on the event log, each of which focuses on other elements in the

patient careflow. These perspectives represent the “How?” (process or control-flow), “Who?” (organi-

zational) and “What?” (case or data) questions [2,48,56,72].

Process or Control-flow focuses on the ordering of activities. The key elements are process in-

stances (in this case: individual carepaths). The goal is to identify a good characterization of all

possible paths.

Organizational perspective focuses on the performers or originators involved, and how they are

related. Either these performers are classified in terms of roles and organizational units, or the

relation between individual performers is shown.

Case or Data perspective focuses on properties of cases, i.e. the path of a case in the process,

the originators working on a case, or values of the corresponding data elements. This perspective

requires more detailed information such as extra data attributes of a case.
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Table 2.4: Overview of a suitable event log, (2.4a) shows the events recorded for two cases, with

activities ordered by date. (2.4a) shows the properties a log should comply to.

(a) Example log

Case Event Date Activity Cost

1 23 25-03-2010 Triage 50

1 24 25-03-2010 X-Ray 80

1 25 26-03-2011 Treatment 1 500

4 28 26-03-2011 Triage 50

1 29 26-03-2011 Treatment 2 550

4 31 26-03-2011 Treatment 1 500

1 33 26-03-2011 Clinic 300

4 37 26-03-2011 Clinic 300

4 41 27-03-2011 Treatment 3 450

4 42 27-03-2011 Clinic 300

(b) List of properties

1. Each event refers to an activity.

2. Each event refers to a case.

3. Each event can have a

performer or originator.

4. Events have a timestamp and

are totally ordered.

5. Some logs contain more

information on the case itself

(e.g. age, sex and diagnosis).

2.2.3 Data quality

Due to the increase of data-based methods, data quality is an increasingly important topic as bad data

quality will “deteriorate the process of discovering patterns, relationships and structures when applying

data mining” [7]. “If you don’t have the data, decisions can’t be made (by definition), and if decisions

can’t be made, the organization cannot create value. So there is also an ‘opportunity cost’ associated

with non-existent or bad data” [51].

In short, this is described by the garbage in – garbage out principle: good inputs generally result

in good outputs, whilst bad inputs generally result in bad outputs [41]. Input problems come in three

flavors:

Type problems These problems occur when the incorrect type of input is fed into a system, such

as entering the age of a patient into the sex field. Although often easy to detect, this represents

the maximum form of garbage if undetected.

Quality problems When the system is fed the correct type with wrong details, such as entering the

wrong activity treatment number in the correct field, this is considered a quality problem. A minor

typo in the activity number may merely have small financial consequences, whereas it may also

have huge medical consequences.

Missing values A common problem in datasets is missing data, and can occur due to a number

of reasons: the data may be unavailable, the person entering the data could have skipped a field

by accident or the field may not be applicable. It depends on the context whether e.g. the rows

containing missing values should be ignored or mean values should be used instead.

The DIS collects data from all hospitals and other healthcare organizations in the Netherlands [20].

The first risk lies with the data entry, as any system that requires human input is prone to human

error [17]. These type problems are usually prevented by restricted drop-down boxes in the different

HIS, and the DIS offers an extensive validation on data import. Another risk is that different hospitals
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register activities in a different way than others. Note that this may not always be a conscious choice,

since each hospital has a variety of HIS and other expert systems – each of which uses their own

event log format (see Section 2.1.2). Often, the information required for data mining and other analyses

is hidden in a data structure which is designed for correct and efficient storage. Extracting the right

information from this data is a time-consuming task and requires domain knowledge, as the choices

made during extraction influence the analysis results [11]. Section 4.3 tries to cope with these Quality

problems.

For data mining it is important to define useful data types for the available attributes (e.g. regression

is unable to cope with nominal target values, similarly it is impossible to classify continuous variables

without binning them) [66]. Process mining treats all activities as equal, therefore it is important to

have a uniform and consistent level of detail of events [11]. Practical applications require a number of

preprocessing steps [24]. In Section 4.3 we apply a number of visualization techniques to gain insight

into the data quality, and apply the necessary steps to remove unwanted garbage.

2.3 Related work

This section describes related work performed in the healthcare domain. The described literature helps

to find an answer to our first research question: Can data- and process mining techniques be applied

to gain insight in patient careflow? Based on the literature described below, we select the best possible

algorithms applicable for this study. This section is split in two parts: data mining and process mining.

2.3.1 Data Mining

The patient classification problem is the grouping of patients with similar characteristics (e.g. medical

history, diagnosis or carepath). These groups can be used to increase the predictability of carepath

patterns and length of stay for patients [32], which supports carepaths standardization and allows for

improved resource utilization. The next section provides an overview of previous studies that have tried

to tackle the patient classification problem using a variety of techniques including clustering, classifica-

tion and association rules.

Clustering Two well-known clustering algorithms applied to healthcare processes are K-means

[32] and hierarchical clustering [74], which are applied to group patients with similar carepaths.

Alternatively, Self Organizing Maps offer an intuitive and visual clustering technique [15, 43, 46],

whereas Sequence Clustering offers an interesting technique for the clustering of similar sub-

sequences [5].

The developers of the original DBC reimbursement system explored and applied a number of

standard clustering techniques and defined an initial grouping of DBC’s providing a statistically

sound product structure. The resulting algorithm consists of two steps to identify the clinical path-

ways: first, clusters of DBC’s with similar care profiles within a given activity class are identified

using Hierarchical clustering on the Tanimoto distance. Secondly, clinical pathways are identified

by analyzing the similarities in these sequences. The resulting care profiles were refined by a

scientific committee, based on their medical judgment [74].
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Compression techniques have proved useful in many domains like DNA and texture clustering.

The application of compression benefits many unsupervised learning techniques, as compression

techniques try to describe objects such as carepaths by the smallest representation possible.

Given an initial carepath, we can then calculate the minimum number of changes we need to

make to transform it into a second path [13,34,49]. The smaller the number of changes, the more

two carepaths are alike. In this context, well-known compression algorithms can lead to elegant,

parameter-free solutions to clustering and distance-function design [22].

Classification A variety of classification techniques such as Random Forest, CART Tree, Ad-

aboost.M1, Naive Bayes and K-Nearest Neighbor have been evaluated by [68]. Especially the

CART Tree appears to be a popular technique, recurring in the classification of Emergency De-

partment patients [15] and for general Business Process Management [16,61].

Association rules With the potential to provide knowledge in form of recurring event patterns in

patient careflow, this technique offers an easy to interpret set of rules describing the event log [28,

40,68]. Alternatively, association rules have been applied to provide more insight into the relation

between carepaths and the diagnosis [58]. However, the unstructured properties of healthcare

processes limit the quality of results in recent studies and test cases [5,28,40,58,68].

2.3.2 Process Mining

The first process mining application on WfMS is found in [3]. Ever since, a lot of work has been per-

formed in search of a successful process mining technique for the healthcare domain [4]. Some say

that process mining is able to provide insights where data mining does not [16]. This section gives a

short overview of the different techniques available, focusing on the process perspective.

Popular example techniques for process discovery are e.g. the Heuristics Miner [72], the Fuzzy

Miner [27], and the Genetic Miner [48]. The Heuristics Miner is able to separate the main behavior from

noise in event logs and has proven to be an insightful tool in the healthcare domain [28, 55, 59, 61, 72].

However, the resulting process is often still spaghetti-like and difficult to understand [43, 45, 46]. The

Fuzzy Miner has many options that help to aggregate and simplify the event log, but this can hide

important detail within a healthcare process [43, 46, 55, 59]. For non-free-choice activities results show

that the Genetic Miner is best in dealing with parallelism and invisible tasks [35,55,59].

A variety of other techniques is also available. For the discovery of patterns within carepaths, time

dependency is found to be one of the major factors using the Time Dependency plug-in [58]. Alter-

natively, a process mining implementation for association rule mining is built into the Association Rule

Miner in ProM. This algorithm has proven to be useful to present behavioral patterns in the form of

statements rather than models, but still has a number of limitations [5,28].

A technique complementary to existing data mining techniques is offered in the Trace Alignment

plugin [9, 10, 39]. Although, to our knowledge, this specific technique has not been applied in the

healthcare domain, we clearly recognize its potential in our search for groups of similar carepaths within

a specific DBC.

The research described in [43,46] also covers work on the organizational perspective in healthcare

processes. For the performance perspective, tools such as Visual Analytics [55, 59] and the Dotted

Chart Analysis [43,46,61] have proven to offer valuable insights [5].
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2.4 Conclusion

Healthcare processes are dynamic and complex, as these processes are described by the activities re-

quired for the treatment of individual patients. Unique complications may require ad-hoc actions, which

are often difficult to organize in the cross-functional setting of a hospital. The Dutch reimbursement

systems DBC and DOT both applied retrospective analysis on the sequence of medical activities for the

entire path patients to define care products (DBC’s). Although these systems encourage standardiza-

tion of patient careflow, in reality it is not known what happens for a group of patients with the same

diagnosis. In order to gain insight into the myriad of different carepaths, hospitals are searching for

reliable techniques that provide easily obtained insights in an interactive way. For the purpose of this

study, we focus on the logistic process of individual paths. This allows for a higher level of abstraction

during the analysis, whilst providing solid grounds for process improvement.

The research mentioned in the previous sections has pointed out the high potential for numerous

data mining and process mining techniques. However, due to the complexity of healthcare processes

there are still a number of limitations to these techniques. Based on the wide variety of clustering tech-

niques and measures described in the literature, we conclude that traditional data mining techniques still

offer the highest level of flexibility for the clustering of patients, but additional techniques are required to

gain the required insights.

Clustering The success of the original DBC system as described in [74] supports our decision to

explore techniques such as hierarchical clustering and partitioning around medoids, using different

distance functions. On the other hand, Self Organizing Maps appear to offer less insight and

flexibility of the clustering characteristics or attributes, therefore it will not be covered by this study.

Classification Since we are trying to gain insight into patient careflow and the clusters we create

to describe different care profiles, we also explore the CART-algorithm, which has proven to be a

popular tool for this exact purpose [15]. It allows us to identify the specific characteristics of each

cluster.

Process mining The process mining techniques described in the literature are useful to identify and

visualize the actual process, e.g. by applying the Heuristics Miner [43, 46]. As our goal is to use

define different profiles within a specific care product, we are also interested in the visualization

capabilities of the Trace Clustering algorithm. This algorithm has shown to offer great insight into

both small and large process deviations, and can offer a lot of insight into specific differences and

similarities (i.e. a standard careflow) within multiple carepaths.

For the development of our models, we use R and ProM. R offers a high level of flexibility and an ex-

tensive number of analytical algorithms and visualization techniques. A variety of packages is available

in standard libraries in R, including numerous traditional mining techniques. Combined with successful

previous experiences and extensive available documentation, R offers a suitable environment for the

development of our clustering and classification techniques. The literature describing process mining

was mainly based on ProM. We follow the literature by using ProM, as this software package offers plu-

gins for both the Heuristics Miner and the Trace Alignment algorithm. These techniques are described

in more detail in the next chapter.
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Chapter 3

Technical background

In the previous section we have seen that we have a wide variety of both data mining and process

mining techniques available, each of which has its own specific pros and cons. For the purpose of this

study, we selected a number of potentially useful algorithms and measures: a number of clustering

and classification techniques implemented in R, and some process mining techniques implemented in

ProM. The next section offers a technical description of these techniques, and is required only when the

goal is to imitate the results provided by this research.

3.1 Clustering algorithms

The first set of techniques aims to group the different carepaths into clusters of similar paths. The

similarity of carepaths can be based on their activity frequencies as described by Representation 2, or

also take into account the ordering of activities as described by Representation 1 (see Section 2.1.1.3

for more detail). In the previous chapter we stated that we have two main types of clustering: hierarchical

and partitional. The next section gives a detailed description of the implementation of these techniques.

Hierarchical clustering This technique comes in two variants: agglomerative (bottom-up) and divi-

sive (top-down) clustering, where in each step clusters are merged or split based on the value of

a certain objective function.

In this study we use the hclust algorithm: an agglomerative variant of hierarchical clustering im-

plemented in R. This algorithm starts at the bottom where each individual carepath represents

a cluster. The algorithm takes a dissimilarity matrix as input; this matrix describes the distances

between all pairs of carepaths, based on a certain distance function between two paths, as de-

scribed in detail in Sections 3.1.1 and 3.1.2. Various methods can be applied to evaluate which

two clusters are closest together. We use Ward’s minimum variance method, which aims at finding

compact, spherical clusters by taking the minimum value for the sum of squares objective function:

dij = d(Xi, Xj) = ||Xi −Xj ||2 (3.1)

Other methods are not covered in this study, as a short analysis showed Ward’s method offers the

best performance. Pseudocode for the algorithm is given in Algorithm 1.
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An advantage of this technique is that the user can select the number of clusters after the al-

gorithm is executed, but it is also computationally heavy. Clusters are never split after they are

merged, which can lead to a suboptimal result for specific clusterings.

PAM This is an example of a K-medoids algorithm: a clustering algorithm related to the K-means

and medoidshift algorithms. Both the K-means and K-medoids algorithms are partitional (breaking

the dataset up into groups) and attempt to minimize the distance between points assigned to a

cluster and a point designated as the center of that cluster. K-medoids chooses observed data

points as centers (medoids) as opposed to the calculated average value of data points used in

K-means [67]. Although neither algorithms can guarantee a global optimum, K-medoids is more

robust to noise and outliers as compared to K-means, because a medoid is less influenced by

outliers or other extreme values than a mean [67]. An example of this difference is given in

Figure 3.2 [50]: a typical convergence to a local minimum for K-means is shown in (1a-1f), whereas

(2a-2h) represent the obvious clustering by applying K-medoids to the same initial medoids.

K-means Taking user-input K, it tries to break up the dataset into K groups, attempting to

minimize the distance between points in a single group and the center of that group.

K-medoids Similar to K-means, but using a single data point in a group for center (medoid).

Psuedocode is given in Algorithm 2. A disadvantage for these algorithms is that we need to

specify the number of clusters K a-priori, which implies that the algorithm has to be executed for

each value K. Numerous executions may be required to get satisfactory results, since there is no

universal rule to determine the preferred number of clusters for any clustering technique [30, 32],

and these algorithms cannot guarantee a global optimum.

An advantage is that the clustering for K clusters does not depend on the clustering of K− 1, and

it may lead to better results (as shown in case study 3 – Section 5.3). Since the pam algorithm is

computationally fast, this often outweighs the disadvantage of selecting K beforehand.

Algorithm 1: hclust
Data: a distance matrix d

representing the distances

between al pairs of carepaths

Result: clustering dendrogram

1 repeat
2 Merge the closest two clusters;

3 Update distance matrix with the

new clusters, to reflect the

distance between the new

cluster and the original clusters;

4 until only one cluster remains;

Algorithm 2: pam
Data: a set of data points S = {x1, . . . , xn}, a

distance matrix d, the number of clusters K

Result: a set M = {m1, . . . ,mK} of medoids,

a vector c for cluster membership

1 foreach mi ∈M do
2 Select K points from S as initial medoids;

3 end
4 repeat
5 Form K clusters: update c by assigning each

point to its closest medoid from M ;

6 Update the medoid of each cluster;

7 until c has not changed ;

Figure 3.1: Pseudocode for the hierachical clustering and partitioning around medoids algorithms [66].
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Figure 3.2: K-means versus K-medoids – the small circles are data points, the four-ray stars are means

and the nine-ray stars are medoids. (1a-1f) present a typical example of K-means convergence to a

local minimum. (2a) starts with the same initial position of medoids, but the final result (2h) represents

the obvious clustering as opposed to the local minimum in (1f).
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3.1.1 Clustering using Vector Distances

The clustering algorithms described in the previous section are based on the distances between objects

and their specific properties and attributes. In our specific case, we have a collection carepaths: the set

of activities patients had to undergo in order to be treated for a specific diagnosis. By creating a vector

of activity frequencies (Representation 2), we are able to calculate the distance between two carepaths

using different distance functions. The advantage of this representation is that it is a fast and clear way

to represent carepaths, the downside is that we lose the ordering of the activities performed.

Distance functions describe the difference or dissimilarity between two data objects. These functions

or measures have well-known properties for d(x, y). A measure that satisfies all three of the following

properties is called a metric [66]:

1. d(x, x) ≥ 0 for all x and y and d(x, x) = 0 only if x = y (Positivity)

2. d(x, y) = d(y, x) for all x and y (Symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y and z (Triangle Inequality)

In this study, we explore three well-known distance functions: the Euclidean distance, the Cosine

distance and the Tanimoto distance. The latter two functions are derived from their similarity counter-

parts.

Euclidean distance One of the most commonly used functions is the Euclidean distance d between

two points x and y in n-dimensional space, as described by the following formula:

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2 (3.2)

The downside of this function is that the distance between two points can be small, even though

they lack any common denominator. Take points A = {1, 0}, B = {3, 0} and C = {0, 1} for

example, where each vector describes the frequency of two activities. According to the Euclidean

distance, points A and C are closer together (d = 1.4) than points A and B (d = 2.0), even though

they do not have a single common activity.

The Euclidean distance can be generalized by the Minkowski distance for r = 2 , as described by

the formula:

d(x, y) =

(
n∑

k=1

|xk − yk|r
)1/r

(3.3)

where n is the number of dimensions, xk and yk the kth component of x and y and a parameter

r >= 1. The number of dimensions n should not be confused with r, which simply specifies

different ways of combining differences in each dimension into an overall distance.

Tanimoto distance A function derived from the Extended Jaccard(EJ) similarity measure. This

distance function compares both the similarity and diversity of two vectors, and is defined by the

following equation:

EJ(x, y) =
x · y

||x||2 + ||y||2 − x · y
(3.4)
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The Tanimoto distance is a proper metric for binary values (which is actually similar to the Jaccard

coefficient), but also proven to be a proper distance metric for positive valued vectors [42].

d(x, y) = 1− EJ(x, y) (3.5)

We expect this distance function to offer good performance with regards to carepath clustering, as

matching zero-frequencies do not contribute to the similarity (unlike with the Euclidean distance),

and the magnitude of frequencies is taken into account.

Cosine distance A function derived from the Cosine similarity: a similarity measure commonly

used for text mining. It takes two frequency vectors as input and measures the cosine of the angle

between them, using the following formula:

cos(x, y) =
x · y
||x|| ||y||

(3.6)

where x · y =
∑n

k=1 xkyk (dot product) and ||x|| =
√∑n

k=1 x
2
k =
√
x · x (length of vector x).

The distance function is described by the following formula and is a proper metric [66]:

d(x, y) = arccos(cos(x, y)) (3.7)

Similar to Tanimoto, matching zero-frequencies are not considered to contribute to the similarity, as

required for mining text or transaction data (the input vectors are often sparse). However, the mag-

nitude of frequencies is not considered, therefore this measure is expected to cluster carepaths

with similar ratio’s between activity frequencies. Cases where every activity is performed ten times

the regular frequency will not be labeled as exceptional, but based on their similar activity ratios

they will be clustered together with the shorter paths.

3.1.2 Compression Clustering

In the next section, we describe a number of techniques that take into account the ordering of carepath

activities, by using string representations of activity sequences (Representation 1). The Kolmogorov

complexity gives us a good measure to compare two strings x and y [13]: it describes the length of the

shortest computer program that produces x as output (in bits). Compression algorithms offer a suitable

heuristic for the calculation of the Kolmogorov complexity of input x (e.g. a string or an image), as

their goal is to describe x in the smallest number of bits. Compression offers a useful tool for many

data mining tasks, as it can be applied in a generic way and are often parameter-free. The according

distance function is described by the following formula [14,22]:

dc(x, y) =
Cxy −min(Cx, Cy)

max(Cx, Cy)
(3.8)

where Cx is the size of the compressed string in bits, and xy is the concatenation of x and y.

We expect compression-based clustering to offer added value to the activity frequency clustering

techniques described in the previous section, as different compression techniques perform well on re-

curring subsequences and therefore on similar carepaths. A downside of this technique is that small

variations in the ordering of activities may greatly decrease the performance of the compression tech-

niques, and activity frequencies may not have enough have enough influence on the final clustering.

In the next section, we explain the technical properties and implementation of our compression-based

clustering algorithms.
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3.1.2.1 Compression algorithms

In this section we describe two compression algorithms (GZIP, Bzip2) readily available in R. For both

of these algorithms, we give a short summary of the idea behind the algorithm and how we expect it

to perform on our carepaths. A third algorithm (xv) is also available, but due to the extremely poor

performance in compression and computing time, we choose not to cover this technique in more detail.

GZIP Using the DEFLATE algorithm, which is a combination of LZ77 and Huffman coding, com-

pression is achieved in two separate steps: [60]

1. Matching and replacement of duplicate strings with pointers. The LZ77 part of the algorithm

identifies duplicate substrings and replaces the duplicate by a back-reference to the first

occurrence (length, distance). An example is given in Figure 3.3.

Figure 3.3: Example LZ77 compression of Length = 4 and Distance = 5.

2. Replacing symbols with new, weighted symbols based on frequency. The Huffman method

creates a tree based on symbol frequency. The resulting bit representation (Dictionary) uses

the shortest bit-sequences for the most frequent substrings or symbols.

Compressing two similar or even identical strings gives a lot of possible back-referencing and

allows for good compression. In Section 4.4.1.2 we use this feature for clustering the different

carepaths.

Bzip2 An open source implementation of the Burrows-Wheeler (BWT) algorithm [63]. It achieves a

higher compression rate than GZIP, but also increases computation time and resource usage.

It uses BWT which takes all possible rotations of the input string, sorts the strings and takes the

last column. If the original string contains several duplicate substrings, the resulting string will

have sorted similar characters together [12]. An example is given in Table 3.1.

Table 3.1: Example of Burrows-Wheeler Transform on “banana–”.

Input Rotations Sorted rotations Output

banana-

banana- anana-b

bnn-aaa

-banana ana-ban

a-banan a-banan

na-bana banana-

ana-ban nana-ba

nana-ba na-bana

anana-b -banana

The next steps exist of amongst others the Move To Front transform and Huffman coding. The

different transformation steps in Bzip2 allow for recurring substrings to be combined together,

which increases compression performance [12]. Similar to GZIP, we hope to exploit this feature in

Section 4.4.1.2.
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3.1.2.2 Clustering compressed activity strings

In Section 4.4.1.2 we represent individual carepaths using strings. As described in Section 2.1.1.1

there are less than 24 different unique activity classes, therefore a simple alphabet suffices to convert

these carepaths into strings using a trivial lookup table like ZPK1 = ‘A’, ZPK2 = ‘B’, . . . In Section 4.2

we will see that a small subset of activities suffices to represent the general patient careflow. Using the

compression algorithms described above, the difference (or distance) between two carepaths strings is

calculated using the Kolmogorov complexity function described by Equation 3.8. Pseudocode for the

algorithm is given in Algorithm 3.

Algorithm 3: calculate Kolmogorov complexity
Data: a set of strings S

Result: a distance matrix describing which strings are most similar

1 foreach combination of strings x, y ∈ S do
// We only store the minimal compressed size of the concatenations xy and yx,

// this way we maximize the compression rate.

2 Calculate size of compressed concatenated strings ; // Cxy = min(Cxy, Cyx)

3 end
4 foreach combination of strings x, y ∈ S do
5 Calculate the distance between x and y ; // d = Cxy −min(Cx, Cy)/max(Cx, Cy)

6 Store d in distance matrix ;

7 end
8 return Distance matrix

Figure 3.4: Pseudocode for the calculating the compression-based distance matrix.

3.2 Classification

Classification mining techniques, such as decision tree classifiers, describe a systematic approach to

building classification models from an input data set. These techniques identify a model that best fits

the relationship between the class label and attributes of input data by employing a learning algorithm.

Besides fitting the original input data, the goal of the resulting model is to correctly predict class labels for

new records. For the purpose of this study, we use a decision tree to identify the main characteristics

of individual clusters: for each child, the tree splits the value of one attribute into two child nodes (a

decision) until there are no decision that improve the number of correctly classified nodes. An example

decision tree is shown in Figure 3.6.

At the basis of many decision tree induction algorithms is Hunt’s algorithm, a recursive fashion for

growing a decision tree by partitioning the training records successively per subsets [66]. We use one

of these decision tree algorithms, CART, as implemented in R (library rpart). The algorithm basically

consists of two (recursive) steps, described in Algorithm 4.

As a result, the algorithm returns a table with five variables, where each record depicts the results for

a single iteration (i.e. a specific number of nodes). One of the most interesting variables is the xerror,
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Root

(dark blue)

a node that has no incoming edges

and zero or more outgoing edges

Internal

(green)

each of which has exactly one

incoming edge and two outgoing

edges

Leaf

(light blue)

each of which has exactly one

incoming edge and no outgoing

edges. Each leaf is assigned a

class label

(a) Three types of nodes

Body 
temperature

Mammals

Gives birth

Non-
mammals

Non-
mammals

ColdWarm

Yes No

(a) Example tree

Figure 3.6: Overview of a decision tree result. Animals are classified whether they are mammals or not,

using only two characteristics. The values for these characteristics are described at the lines between

nodes.

Algorithm 4: Hunt’s algorithm
Data: a set of training records Dt associated with node t, a set of class labels y = {y1, y2, . . . , yc}
Result: a decision tree

1 if the records in Dt belong to the same class yt then
2 t is a leaf node labeled yt

3 end
4 . if the records in Dt belong to more than one class then

// Partition the records into subsets based on an attribute test condition

5 Create a child node for each outcome of the test condition;

6 Distribute the records in Dt based on the outcome of the test;

7 Apply Hunt’s algorithm to each of the child nodes;

8 else

9 end

Figure 3.7: Pseudocode for Hunt’s algorithm, which is the basis of many existing decision tree induction

algorithms [66].

as this depicts an estimate of the cross-validated prediction error for different numbers of splits. The

number of splits is shown in the nsplit column, which indicates the size of the tree. The third useful

variable is the complexity parameter (CP): the lack of fit has to decrease by at least a factor of the CP for

a split in the tree to be allowed. The main role of this parameter is to save computing time by pruning

splits that are obviously not worthwhile: the decision tree algorithm splits each node containing records

that belong to more than one class, the CP makes sure that these splits do not continue indefinitely (i.e.

until all nodes contain records of just one class), but rather only allow splits that are worthwhile.
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3.3 Process Mining

In order to assess the patient careflow described by the individual clusters from the previous sections,

we apply two process mining techniques: the Heuristics Miner and Trace Alignment (with Guide Tree).

The first is useful to draw a global workflow model for the main process, whilst the latter is able to

identify the main process pattern within a cluster. In this section, we provide a general introduction to

these techniques. For further specification we would like to refer to the literature on these techniques.

3.3.1 Heuristics Miner

The Heuristics Miner algorithm has proven to be able to deal with noise and low frequent behavior,

resulting in workflow models that describe only the main behavior. These models offer a high-level

overview visualization of the process [28,72]. This technique lacks the ability to indicate the number of

occurrences of certain paths and dependencies. Since the data we use is high-level and offers a limited

number of distinct activities, we expect rather simple models as a result. A few examples are given in

Figures 5.3, 5.11 and 5.18. Instead we look at the Trace Alignment for more detail on the process.

3.3.2 Trace Alignment

This technique offers more detail on both the most frequent carepath pattern and the individual devia-

tions within a group of carepaths or traces [10]. In an early stage of the analysis, this technique can be

used to explore the process, whilst specific questions can be answered at later stages.

A formal definition of Trace Alignment is proposed in [9, 10]. In short, this technique tries to align

activities from one trace to the activities described by all other traces using gaps-symbols for activities

which do not match. An example for different pair-wise alignments is given in Figure 3.8. The number

of possible alignments is high (e.g. for two traces of length 100, the number of possible alignments is

approximately 1077), therefore it is infeasible to enumerate all possible alignments.

(a)

trace 1: a b c a c - -

trace 2: a - c a c a d

(b)

trace 1: a b c a c -

trace 2: a c a c a d

(c)

trace 1: a b c a c - - - - - -

trace 2: - - - - - a c a c a d

Figure 3.8: An example of different pair-wise Trace Alignments. It is infeasible to enumerate all the

possible alignments, this is just an impression of a few possibilities [10].

In order to select the best alignments, the sum-of-pairs method is adopted. A succession of pairwise

alignments is iteratively constructed (i.e. progressive alignment), where the selection of aligned traces

for each iteration is based on their similarity [10].

Note that the Trace Alignment is based on the Guide Tree, which performs hierarchical clustering

of activity sequences. Since we perform extensive clustering analysis using more traditional clustering

techniques, we “skip” this clustering step and instead select one cluster (i.e. the entire set of carepaths

from our clustering algorithms described earlier) and align the entire cluster. A few examples are given

in Figures D.4 and D.5.
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3.4 Conclusion

In this section we provided more detail on a number of different techniques and metrics as described

in Section 2.3. During the methodology design phase, we explore these techniques and select the best

algorithms to perform clustering, classification and process mining.
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Chapter 4

Methodology design

In previous chapters we gave a thorough understanding of the healthcare environment, patient careflow

and mining techniques. In this chapter, we apply this information to the different phases of CRISP-DM.

4.1 Business Understanding

The first phase is to define and understand the objectives and requirements from a business perspec-

tive. We translate this knowledge into a data mining problem definition [75]. The main objective of this

study as stated in Section 1.2 is:

To explore advanced Process- and Data mining techniques, and to define a methodology

that provides insight into patient careflow for specific DBC’s in a hospital environment.

In other words, we are looking for a methodology that supports us in gaining insight into patient

careflow in order to be able to improve its performance, quality and standardization. Our search for the

specific business objectives and requirements is guided by our research questions.

4.1.1 Which insights do we require to assess patient careflow?

Question 2.1: Which criteria (logistic/medical/cost) are used for the assessment? Due to the highly

dynamic and flexible nature of the healthcare domain in combination with limited medical expertise in-

volved in this project, we limit our scope to the organizational or logistic process. In order to understand

what we mean by patient careflow we refer to Section 2.1.1.3, which describes how the Dutch reim-

bursement systems work. This section leads us to the five representations of patient careflow as shown

in Table 4.1. Question 2.2: Which elements of a specific patient careflow can we use? For the purpose

of this project, the analyses are based on patients within individual DBC-codes from the DBC system.

Data on this level is readily available, and patient careflow described by the DBC system offers enough

variety whilst being limited to one specialism.

One thing we have learned from previous data mining projects in both healthcare and other domains

is that data mining is an interactive and iterative process. Question 2.3: Which parameters/techniques

do we need to calculate quality for a specific carepath? The selection of the number of clusters is

a compromise between quality/significance and usability. In other words: a high number of clusters
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Table 4.1: List of the three different representations of patient careflow.

# Description

1. A string representation of the ordered sequences of activities on a ZPK-level.

2. Counts of the performed activities on a ZPK-level.

3. Counts of all performed activities on a CTG-level.

can have the best numbers regarding quality, but is often less insightful or even unusable than a lower

number of clusters. For this reason, we focus on a variety of visualization techniques. Visualizations

provide a useful tool to gain insights into results, and are easy to communicate results to medical

specialists, nurses and other medical staff. With the right type of visualization, a clear assessment of

quality and usability is easily performed. When we look at quality of patient careflow, we look at the

level of homogeneity as defined by:

1. The (sub)sequence of events.

2. The number of events (both in total and individually).

3. The total cost of individual carepaths.

Question 2.4: Which elements of a carepath do we have available as input? Attributes like activity

sequences, activity counts and (estimated) cost functions can easily be derived from DIS and other

event logs. The details of the available data are explored in the next phase of CRISP-DM in Section 4.2.

4.1.2 How can we compare, evaluate and advise different carepaths?

Table 4.2: Examples of views 1 and 2 of patient careflow, based on a small eventlog. The ZPK 5 events

are both on the same day, and represented by a single activity.

(a) Example event log

CTG ZPK Date

100 1 01-01-2010

400 4 01-01-2010

500 5 02-01-2010

501 5 02-01-2010

100 1 03-01-2010

(b) Representation 1 and 2

ZPK 1 2 3 4 5 6 7 8

Vector 1 0 0 1 1 0 0 0

String a d e a

Examples of the representations described in Table 4.1 are found in Table 4.2, based on the event

log in Figure 4.2a. Figure 4.2b shows representation 2: a fixed-length vector, where the length is the

total number of distinct activities over all carepaths, and representation 1: the sequence of activities

per individual carepath are translated into strings, e.g. ZPK 1 = ‘a’, ZPK 2 = ‘b’, . . . , ZPK 8 = ‘h’. For

both representations, we see that both ZPK 5 activities (CTG 500 and 501) are represented by a single

activity, as these both occurred on the same day. Representation 3 is similar to representation 2, but

then counts each individual activity. This produces a longer and sparser vector.
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Question 3.1: How do we visualize patient careflow? By scaling the total counts per activity on a level

between 0 and 1, we are able to visualize the many different carepaths where the gray-scale represents

the relative quantity [74]. This is possible on a ZPK-level, as shown in Figure 4.1a, and similarly on a

CTG-level as shown in Figure 4.1b.

Question 3.2: How do we define patient careflow quality? The visualized part of patient careflow

quality is simple with the use of the previously described visualization techniques. When a group of

carepaths shows a high level of logistics homogeneity, its visualization shows little color variation for

each row in a column. Vice versa, a high level of color variation implies inhomogeneous patient care-

flow. Theoretically, the number of activities and total cost should be similar for individual carepaths.

An example visualization of one patient careflow on both a ZPK and CTG-level is shown in Figure 4.1.

Although some patterns are visible in the CTG overview, the high spread of activities support the gen-

eralization to a ZPK-level in order to improve readability.

Carepaths
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Z
P

K
)
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4

5
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7
8

(a) The variety of performed activities on a ZPK-level (b) The variety of performed activities on a CTG-level

Figure 4.1: Count overviews of patient carepaths. (4.1a) shows Representation 2 for ZPK 1 through 8,

where the green lines separate the different hospitals. (4.1b) shows Representation 3 of all individual

activities. The high spread of CTG-activities supports the generalization to the ZPK-level.

For a good clustering of patient careflow, we expect to see relatively little color variance within each

cluster column (separated by the green lines in Figure 4.1a), and relatively high color variance between

clusters. As we have stated before we choose not to specify numerical measures, because for the

business application of this methodology a limited number of clusters is preferable. Although it is difficult

to create a valid model on too few ZPK-codes, too many patient types become unmanageable from

both a modeling and business point of view [32]. Question 3.3: How do we compare different cluster

outcomes? We aim to group patients in a small number of clusters, but this is often not statistically

optimal, as the variance within the resulting clusters will be relatively high. Therefore we choose to use

a variety of visualization techniques for the assessment of clusters, instead of a numerical measure.

The list below describes the five different visualization techniques that provide insight on both the cluster

quality and the patient careflow described by such a cluster:

Overview plot as shown in Figure 4.1. This overview shows the number of activities (y-axis) of

the individual carepaths (x-axis), using color to indicate the frequency – the darker the color, the

higher the frequency for this activity. The high spread of CTG-activities supports our decision to
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generalize activities to the ZPK-level. Green lines are used to indicate different clusters.

Parallel coordinates for ZPK frequency This is a simple technique to visualize the different ac-

tivity frequencies per carepath. A complete overview of all paths helps identifying the important

factors in clustering, where individual plots per cluster give clear insight in the frequency patterns

within a cluster. The latter is useful to compare a group to its representative carepath as defined

in Section 4.4.3. An example is given in Figure 4.3.

(Stacked) Barchart for ZPK frequency The overview and parallel coordinates plots offer nice fre-

quency indications per ZPK per carepath. However, neither provide a clear overview of the total

number of activities. For this purpose, we use a stacked barchart where each ZPK is labeled with

a unique color. The total height of the bar is the total number of performed activities. We also use

the green bars to indicate the different clusters similar to the overview plot. An example is given

in Figure 4.2.

Histogram for activity frequency A frequency histogram for each activity offers a clear visualiza-

tion of the distribution over a group or cluster. It is useful to evaluate both data quality and cluster

quality, as it allows us to check the activity frequencies overall and the difference of frequencies

between clusters. An example is given in Figure 4.4.

Boxplot for costs and frequency A simple though effective numerical way to show patient care-

flow quality is to calculate the spread in total costs and number of total activities of the individual

carepaths in a cluster. A small spread represents high homogeneity within a cluster, and different

value-ranges between clusters represents a good clustering. Boxplots regarding total costs and

number of activities give an extra level of detail with regards to the difference in cluster quality. An

example is given in Figure 5.6.

Once we have identified our preferred clustering, we need to identify the main carepath that repre-

sents each cluster. For this purpose, we use the Trace Alignment as described in Section 3.3.2. This

tool enables us to preserve ordering, visualize patterns and identify deviations.

4.2 Data Understanding

The second phase is all about data: the selection and collection of available data, discovering first

insights into the data, understanding the data and identification of data quality problems. This phase

has a close link to the Business Understanding phase, as the identification of business objectives is

impossible without at least some understanding of the available data [75].

For the remaining phases in CRISP-DM describing the methodology design, we take a subset of the

available data for DBC 305..1701.223 (arthrosis: pelvic/hip/thigh – does not describe a care type). This

is a relatively routine treatment and allows us to assess the different available techniques.

4.2.1 Collection

In Section 2.1.2 we described the DIS, a national system that is responsible for gathering all DBC

data. Every hospital in the Netherlands is legally obligated to provide this system with their DBC data,
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describing both the provided and billed care. Since this system offers one single dataset with all DBC’s

of all Dutch hospitals, this is a suitable source: it supports a standardized analysis methodology and

allows benchmarking between hospitals and patient careflow.

Unfortunately, data from the official DIS was not publicly available at the collection phase of this

project. Instead, we use similar datasets that are at our disposal that describe DBC data in a similar

fashion. These sets were originally used for the analysis of the effect of the implementation of DOT

compared to the current DBC system. The quality requirements of these sets were lower than that of

DIS, which required a more thorough data audit.

Neither the original DIS, nor the sample datasets used in this study contain specifics about the

registered activities and treatments. For these details, we turn to DBC Onderhoud, which provides us

with more details on DBC and CTG codes.1 Although activity prices are not publicly available for a

large part of CTG-codes, Deloitte has calculated average prices for over 900 CTG codes in previous

projects [74]. Experts also gave an indication of prices on the rough average cost of a ZPK-level activity.

An overview of the resulting external datasets is shown in Table 4.3, each of which is linked to our main

dataset.

Table 4.3: External data files.

Name Description Source

DBC Typification list A set of DBC codes and their description DBC Onderhoud

Activities description

list

A set of CTG-codes, with their description and the ZPK

it is classified to

DBC Onderhoud

CTG Cost table A set of averaged costs for ±900 CTG’s Deloitte

ZPK Cost table A set of roughly estimated prices for a number of ZPK’s Deloitte

4.2.2 Understanding

In order to be able to format and assess the acquired data, it is important to have some understanding

of the data: which columns do we have, what do they mean and what values can they acquire? We

start with a more thorough overview of the available tables as described in Section 2.1.2 and Table 4.3.

Patients This table contains patient data: a unique identifier (unique on a hospital level), birthdate

(DD-MM-YYYY) and sex (1 = male, 2 = female, 0 = missing).

Note that in the DIS system, PatientID’s are based on the Social Security Number. This means pa-

tients can be tracked back to every hospital they visited, which allows for more extensive analysis.

In our sample sets, PatientID’s are entirely anonymous.

Carepath Each patient is linked to one or more carepaths, and each carepath is directly linked to a

specific specialism. The creation of two or more simultaneous carepaths is restricted and allowed

only if it satisfies specific rules.

Subcarepath In order to make distinction in diagnosis and treatment, each carepath is subdivided

into subcarepaths. A side-effect is that these subcarepaths are an administrative feature that

1http://www.dbconderhoud.nl/index.php?option=com_docman&task=doc_download&gid=2323&Itemid=593
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help hospitals declare provided care before the completion of an entire carepath. This table also

contains the AGB-code, which represents the hospital the patient was admitted to for that sub-

carepath.

We look up the codes describing the diagnosis, treatment and specialism from this table in the

“DBC Typification list”, which provides us with a textual description of each DBC.

Activities table Each subcarepath describes a series of activities, and each activity is represented

by a CTG-code. As stated before, the only recorded time is the date of the execution of the activity.

No specific time or duration is available. This table also contains an amount-field, which describes

a variety of values: e.g. the number of performed activities, or the amount of milliliters of medicine.

It can also contain a 0 for activities that have not been performed even though they are part of

the predefined carepath, or when the activity is already booked on a different DBC. In the Data

Preparation phase, we describe how we cope with these values.

Based on the CTG-code, we find the description and ZPK-code in the “activities description” list.

The ZPK-code can be seen as a higher-level activity description and is useful for generalization of

medical activities, especially for the logistics process.

DBC Typification list This list contains descriptions for the DBC components. The descriptions

depend on the specialism, and an As code describes the component (1 = type, 3 = diagnosis, 4 =

treatment).

Activities description list For each CTG-code, this table provides an activity description and ZPK-

code.

CTG Cost overview A list of averaged prices in Euro per CTG-code. Note that this list contains

less than the top-20% (±900 out of ±5100) most occurring activities of all possible CTG-codes,

but covers over 97% (±80650 out of ±83000) of all the activities described in the event log. The

missing values mainly describe anesthetics (ZPK 6) and labtests (ZPK 8), which would have little

effect on the total costs of a carepath.

ZPK Cost overview A list of rough prices in Euro per ZPK-code. Note that only for ZPK 1, 2, 3

and 5 pricing is included. For the purpose of this study, the other activities are assumed to be

financially insignificant.

In our definition of patient careflow as proposed in Section 2.1.1.3, experts have pointed out that for

most DBC’s only ZPK levels 1 through 8 are relevant. This is a valuable insight, as this decreases the

number of distinct possible activities and immediately decreases the amount of noise. Experts have also

indicated that with the arrival of new interns, they see the number of ZPK 8 (labtest) activities increase.2

No data is available regarding the involved staff, therefore it is impossible to determine which labtest

was requested by whom. This would result in a bias towards the (lack of) experience of the performing

staff member. An interesting question is whether statistics on the set of requested labtests can support

interns in their decision making, as they have statistic support for which labtests they should request.

On a DBC level, a number of things have to be taken into account. It is possible that one patient

is linked to more than one carepath, and each carepath can consist of more than one subcarepath.

2This is explained by their lack of experience. Interns often request more labtests “just to be sure” they include the right test.
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In some cases, this implies that one patient has multiple diagnoses. Whilst we have little data on a

patient’s (medical) background, the number of diagnoses often offers a good indication of the complexity

of a patient’s required care. Due to the lack of medical background information, it is hard to identify

complication factors. In combination with the fact that we focus on the logistics process, we are not

going to try to classify patients in order to predict which type of patient careflow they require, and focus

on the evaluation of the logistics properties of carepaths in general.

When it comes to individual activities, especially on a ZPK level, we need to be aware that the

registered amount for an activity is not always a frequency. It can also be a measure (often in milliliters)

or 0-value. Activities with an amount of 0 have to be ignored – they have not been performed and are

there only for administrative purposes. As described for Representation 1 and 2, the logistics aspect of

patient careflow allows us to summarize all ZPK-activities on one day in a single event. However, this

is not the case for ZPK 3: some hospitals register the number of nursingdays per patient at the day of

discharge, therefore we have to generate the activities accordingly.

The CTG Cost overview should offer a more accurate pricing than the ZPK Cost overview with

regards to the total costs of individual carepaths. However, for this study this is not always desirable

for two reasons. First of all, a more accurate pricing model might differentiate financially between

two carepaths similar on both a logistics and a medical level. Since we are not trying to improve the

reimbursement system, we do not want to differentiate solely for financial reasons. Secondly, with

regards to the summarized activities as described above, multiple CTG-activities might be merged into

one ZPK-code for a single day. In order to prevent extensive calculations and assumptions a generalized

set of ZPK prices provides reasonable financial insight, even though they are infeasible in practice.

4.2.3 Audit

Quality assessment (or data audit) is also a big part of the data understanding phase. If the data is of

bad quality or has a large number of missing values, the quality of the data-driven analysis will also be

bad.

The origin of data should always be taken into account, as manual registrations have a high risk of

typo’s and wrongful registrations. However, hospitals continuously invest money to prevent erroneous

registrations by keeping their HIS and other systems up-to-date and according to protocol. Since the

DIS system has set legal quality requirements, we assume that the registered data meets this quality

standard.

At the Data Collection phase of this study, the DIS data was unavailable. Instead, we collected DBC

data from individual hospitals. Each individual set required extensive modeling to make them conform

the DIS structure, which was performed by colleagues during previous projects. Therefore, thorough

evaluation of data completeness and data correctness was readily available.

In the modeling of our final data structure, a number of factors remain to be considered:

1. Some of the subcarepaths were linked to missing carepaths, these are disregarded.

2. Some of the patient data is missing. As stated before, we do not necessarily require these at-

tributes, as a thorough predictive analysis is not part of our research objectives.

3. Some of the diagnosis values were missing. These records are disregarded, as we need the

diagnosis to identify the DBC of a carepath.
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4. The CTG Cost table describes prices for less than 20% of the total number of CTG-codes. It

would be unrealistic to estimate specific activity values, and since we do not have the data to

calculate average prices, we also include roughly estimated ZPK prices. These prices are solely

used to indicate cost homogeneity of patient careflow, and do not represent a realistic carepath

cost indication.

5. Not every CTG can be linked to a ZPK. This is because for some activities a different coding table

(e.g. internal) is used. We remove these from the set and count the number of “extra” activities

after clustering for validation (a large number of extra activities may indicate that a carepath is no

longer representative, as too many activities are removed).

6. Some hospitals register activities in a single record, where the amount describes the number of

performed activities. In order to preserve the ordering of activities, these activities need to be split

up (this is important only for ZPK 3).

4.2.4 Visualization

In addition to Figure 4.1a, we give a first impression of the data by two different ways of indicating the

frequency of ZPK activities: the (stacked) activity frequency barchart and parallel coordinates plot from

Section 4.1.2. Figure 4.2 shows the total number of activities performed for each of the 2110 carepaths,

sorted by hospital.
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Figure 4.2: Activity frequency Barchart for all carepaths, per hospital (separated by green lines). Each

bar represents a single path, each color one type of activity (ZPK).
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In the parallel coordinates plot of Figure 4.3, each individual line represents one or more carepaths,

and the height of the line represents the frequency for that activity. There is some indication of distinction

between regular and top clinical hospitals (patients in the latter type generally require more surgery

and clinic time). However, since the DBC system does not make this distinction with regards to the

reimbursement for a single DBC, therefore we do not include the hospital type in our analysis. Instead

we cluster all patients and try to differentiate between e.g. routine cases and exceptional cases. The

resulting clusters will be checked to see whether they are dominated by a specific type of hospital.
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Figure 4.3: Parallel coordinates plot for all hospitals. A line represents one or more carepaths, the

height the frequency of an activity.

From the figures above we read that for a small number of cases the total number of activities

explodes: about 140 carepaths contained over 60 activities, 11 paths have more than 200 registered

activities. ZPK 8 (labtest) is by far the most frequently performed activity, as visualized in more detail by

Figures 4.4. This figure also shows a relatively large spread for ZPK 3 – some patients required up to

70 nursingdays. Experts indicated the difference in number of nursingdays is important and therefore

interesting, as a larger number of nursing days is expensive and one of the reasons for increased waiting

times. They also suggested ZPK 8 activities can be removed from the event log, since they are large

in number, but of relatively low importance considering these are short and cheap activities. Besides,

earlier we stated that interns apply more tests than experienced medical professionals, which is a known

problem and defined as part of the learning process for interns.

Figure 4.4 suggests that ZPK 4 (diagnostic activity) and 6 (other therapeutic activity) are performed
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Figure 4.4: Histogram per ZPK for number of activities (over all hospitals).

only in about 21 to 24 percent of the total number of carepaths, as for most carepaths the activity

frequency is 0. As especially diagnostic activities are required for most type of treatments, this seems

infeasible. However, Figure 4.1a indicates that both these activities are concentrated in just one or two

hospitals, which suggests this may be caused by the difference in administrative software and/or habits

of hospitals. In future data collection steps extra care should be given to preventing these administrative

differences, as especially diagnostic activities (ZPK 4) are an important part of patient careflow.

4.3 Data Preparation

The data preparation phase covers all steps required to transform the raw data into a format that will be

fed into the modeling tool(s). Example steps are: selecting the right tables and records, merging multiple

sets, cleaning missing data and transforming the overall structure [75]. Multiple different transformations

are performed in order to comply with the required data structures for the different analyses.

In our case, data preparation includes a number of preprocessing steps: we “simplify” the log by

removing the excess of low level activities (i.e. we focus on ZPK-level activities). By aggregating the

data to one level, unnecessary details and other noise is removed which improves clarity of the gained

insights. Appendix A gives a detailed description of the collected data structures and the different steps

required in order to create the final sets. Although this is an extensive and time-consuming task, we

summarize the performed steps in the following overview:
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1. Import individual files into Microsoft SQL Server 2008, using SQL Server Integration Services.

This step includes the formatting of individual records and the addition of (dummy) values.

2. Join individual hospital tables, and add details: DBC description, ZPK-codes and ZPK/CTG prices.

This also includes the labeling of Process Instances: a unique ID for each carepath and one for

each DBC (or subcarepath).

3. Select the activities for a single DBC, and calculate the (total) number of activities and carepath

costs.

4. Export data for import in R, as described in Table 4.4. We start with the largest number of events

feasible, where all activities for ZPK-codes 1 to 8 are included.

Table 4.4: Data model for input tables in R.

Carepaths

PK Process ID

CTG Count

ZPK (aggregated) Count

CTG Costs

ZPK Costs

ZPK (aggregated) Costs

Other activities Count

Patients

PK/FK Process ID

DBC Count

Sex

Age

Hospital

Path Start date

Path End date

Activities

PK Key

FK Process ID

Start date

CTG-code

ZPK-code

5. Import and transform data in R. The tables Carepaths and Patients are imported as-is. The other

objects are divided into separate tables for CTG-activities and ZPK-activities. This allows us to

filter unwanted ZPK activities and clean duplicate ZPK-activities. The resulting table is used to

generate the tables for Strings/Counts/Norm in R, which is more flexible and faster than MS SQL

Server. The following list gives describes the resulting tables:

CTGs: a sorted list of PID’s with ordered CTG activities.

ZPKs: a sorted list of PID’s with ordered ZPK activities, aggregated to one activity per ZPK

per day.

Carepaths / Patients: same as input table.

Strings: a list of PID’s with String representations of ZPK activities.

Counts: matrix of activity counts (representing either CTG or ZPK activities).

Norm: matrix of activity counts scaled between 0 and 1 (this is used for pretty printing: the

closer the value to 1 the darker the color representing a higher number of performed activities.

0-values have not been performed and colored white).

6. Import data in ProM, this includes: create output for ProM (one set per cluster), format data using

MS Access macro and create MXML file using ProM Import.
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4.4 Modeling

The fourth phase is concerned with the actual modeling of the data. In this phase, we apply various

modeling techniques as described in Chapter 3. As some techniques require specific data formats,

there is a close link between Data Preparation and Modeling. During the Modeling phase, it is common

to identify data (format) problems and discover new ideas which require additional Data Preparation

steps. The different model results are assessed, compared, and sometimes even combined [75].

Based on an event log for one unique DBC, our methodology describes three stages:

1. In the first stage, the individual carepaths are clustered based on (dis)similarity measures.

Different mining techniques are explored and evaluated for the clustering of different carepaths

into groups that describe similar activity sequences. In a medical environment, individual cases

can often be differentiated into categories or types of patients (e.g. routine, re-admitted and

complicated). As we have seen in Figure 4.1, there is a lot of variation in carepaths. Our goal is

to reduce this variation by dividing patients into similar clusters or categories.

2. The second stage applies classification to identify the main characteristics of each cluster.

3. The third stage identifies frequent recurring patterns and points out important deviations for each

category.

This stage is based on the clustering result of the first stage: for each cluster we align activity

sequences and identify the pattern as executed for the majority of cases. The visualization also

points out deviations from this pattern. The global pattern of a cluster offers a good description

for the patient careflow, and provides a more detailed description of the type of patients in each

category.

4.4.1 Create Clusters

In Section 2.1 we proposed two different representations of carepaths: using vectors for the number

of activities or strings for the sequence of activities. For either representation, different measures are

available to define the (dis)similarity between two individual carepaths. Two main methods describe the

available clustering techniques: hierarchical and partitioning. For hierarchical clustering, we use the

standard hclust algorithm as implemented in R. For partitioning clustering, we mainly focus on the use

of pam (partitioning around medoids) in R. In the sections below, we analyze the different possibilities as

summarized in Table 4.5 and select the best available option.

4.4.1.1 Using Vector representations

We start modeling the dataset using vector representations for individual carepaths. In Section 4.2.4

we already introduced the issues with the exploding number of ZPK 8 activities. In order to demonstrate

its disruptive power, we used the complete dataset for our initial clustering. The resulting clusters are

visualized in Figure B.1. The overview plots show large variation within columns, where the activity

barcharts only show a noticeable difference between clusters for ZPK 8. Taking the previously de-

scribed expert’s opinion on ZPK 8 into consideration, we choose to completely ignore ZPK 8 for further

clustering.
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Table 4.5: Different clustering techniques for both Vector and String representations.

(a) Vector

Clustering Distance metric

Hierarchical Euclidean

Cosine

Jaccard

Partitioning Euclidean

Cosine

Jaccard

(b) String

Clustering Compression

Hierarchical gzip

bzip2

Partitioning gzip

bzip2

Similarly, none of the different clustering techniques and distance measures are able to cope with

the administrative differences between hospitals for ZPK 4 and 6 as described earlier (see Figure 4.1

and Section 4.2.4). With the support of experts, we decided to also remove these activities from our

dataset, as these will bias clustering towards differentiating between hospitals. This is unfortunate,

because ZPK 4 is an interesting activity to use for analysis.

In order to remove further noise from the dataset, we filter each carepath to one activity per ZPK per

day: ZPK 1, 2 and 3 can only occur once a day anyway3, and although multiple surgeries (ZPK 5 activi-

ties) may be registered on a single day, in a logistics sense this is similar to one activity.4 Similarly, ZPK

7 can be regarded as a single activity. Note that these steps are actually part of the Data Preparation

phase, and show a perfect example of the iterative nature of CRISP-DM.

(a) Overview plot (sorted per Hospital – green line)
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Figure 4.5: Initial overviews of DBC 305..1701.223 for ZPK 1, 2, 3, 5 and 7.

The remaining ZPK-activities are sorted per hospital and shown in Figure 4.5a. Figure 4.5b shows

a stacked barchart for the same activities, sorted on the total number of activities.

In Section 4.1.2, we stated that a limited number of clusters is required to provide a workable so-

3ZPK 2 and 3 describe a day at the hospital.
4A patient can only undergo surgery once a day (which may include multiple activities), unless it is an emergency. The latter

would imply a different DBC which would be filtered from our dataset.
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lution. Based on expert input, we set the amount of preferable clusters to a number between 3 and 6.

In Appendix B, we provide a complete overview of the results for all combinations of distance functions

and clustering algorithms proposed in Table 4.5. However, we only show the results for four and five

clusters. Using less clusters lacks sufficient distinction between different groups of carepaths, whilst the

gain in cluster quality of more clusters does not outweigh the loss of its practical applicability.
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(a) Clustering overview plot, showing different color variations between the four clusters.
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(b) Activities barchart sorted per cluster, showing different color variations and height of the bars between the four

clusters.

Figure 4.6: Four clusters using pam with the Tanimoto distance.
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The best model is shown in Figure 4.6, creating four relatively balanced clusters with the Tanimoto

distance using pam. The selected number of clusters is based mainly on the activity frequencies visual-

ized by Figure 4.6b and activity frequency histograms per cluster. From these visualizations we can see

whether we have found distinct clusters, as the silhouette value returned by pam indicates the highest

clustering quality is for a large number (about twenty) of clusters. The pam-algorithm has a risk of reach-

ing local optima, but since multiple executions of the algorithm using different random initializations of

its medoids return the same visualizations, we will assume for the rest of this study that one execution

of the pam-algorithm is sufficient.

The Cosine distance completely fails to separate the longer carepaths from the shorter paths. Ear-

lier, we explained that the Cosine distance is often used in text mining due to its ability to ignore common

0-values. This advantage is lost however since we are working with such a small, filtered subset of the

initial activities. The Euclidean distance appears to offer better performance than the Cosine distance,

as it groups a small number of long (and thus exceptional) carepaths together. However, the distinction

between other clusters is less obvious, and the number of exceptions caught by Tanimoto is larger.

Although it seems that hclust offers a more balanced clustering than pam, this is at the expense

of the distinction between individual clusters. The latter technique clearly distinguishes the exceptional

cases, and offers a clear distinction between number of nursingdays (ZPK 3) and outpatient department

(ZPK 1) for the remaining clusters.

The addition of an extra cluster (five instead of four) results in a more specific clustering of ex-

ceptional cases, but – similar to our argument to disregard the results for six clusters – this does not

outweigh the gain in overall clarity of a lower number of clusters, as the gain in distinction between

the remaining clusters is negligible. More details on the specific clustering results for this DBC are

presented in the case study in Section 5.1.

4.4.1.2 Using String representations

String clustering is based on the same dataset as used for vector clustering in the previous section. The

advantage of string clustering is that the ordering of activities is maintained when comparing individual

carepaths, the disadvantage that this is at the expense of cluster quality.

445749 46069 1115731 943605 407739 467126 425612 355978 479530 641406 811675

Carepaths (Activity frequencies)

0
20

40
60

80

ZPK

3

1

7

5

2

(a) GZIP compression for 4 clusters (hclust in R)
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(b) Bzip2 compression for 5 clusters (pam in R)

Figure 4.7: Two examples of bad clustering.
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Regardless of the compression algorithm and clustering method, the complete set of results shows

a large spread in total number of activities within different clusters, similarly to the results as shown in

Figure 4.7 (see Appendix B for more visual impressions). This is undesirable, as this number is what

defines both financial homogeneity (more activities are more expensive) and logistics homogeneity (e.g.

the length of hospitalization and number of operations) as described in Section 2.1.1.3.

4.4.2 Classification of resulting clusters

In the second modeling stage, we try to identify the main characteristics of the different clusters gained

from the pam model for the Tanimoto distance. We use a standard R library rpart as described in Sec-

tion 3.2 to build our tree. First, we grow the entire tree on the entire input data we used for clustering,

and then we will evaluate the different cutoff points in search for the best tree. For the many different

ZPK 3 ≤ 6

784/126/800/400

ZPK 1 ≤ 3

784/0/169/6 0/0/628/0

ZPK 3 ≥ 11

0/119/0/0 0/7/3/394

(a) Classification tree for ZPK 1 and 3: the description between the nodes represent the decision-rule (the left child

statisfies the rule, the right does not), the barcharts represent the number of paths for each of the clusters in the

node, and the numbers at the leafs the final number of paths per cluster, per leaf-node.

(b) rpart error

CP nsplit xerror

0.3840 0 1.046

0.0908 2 0.232

0.0019 3 0.141

0.0015 5 0.143

0.0008 8 0.140

0.0000 13 0.134

(c) Cluster labeling based on Classification tree

# Label Description

1 Short 6 or less nursingdays, 3 or less outpatient department

visits

2 Long Exceptional cases up to 70 nursingdays

3 Short 6 or less nursingdays, relatively more outpatient de-

partment visits

4 Medium Between 7 and 11 nursingdays

Figure 4.9: Classification of resulting clusters.
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resulting trees it becomes obvious that ZPK 1 and ZPK 3 are the most important attributes to discrim-

inate between clusters, which corresponds to what we see in the figures in Appendix D.1. Figure 4.6

also supports these conclusions, and also show the importance of the ratio between ZPK 1 and 3. For

the classification tree however, adding this ratio does not improve the quality.

Figure 4.8b shows the error rates for the tree built with ZPK 1 and 3. In many cases, the absolute

lowest value for the xerror would indicate the best possible CP-value. However, a lower CP-value

indicates more splits, which may result in a single cluster classified by multiple nodes, which is not

preferable as this implies clusters are described by multiple sets of characteristics. Instead we look for

the smallest number of nsplit for the lowest value of xerror. With only two activities (ZPK 1 and 3)

required to predict the according cluster, we have an insightful tree using only seven nodes as opposed

to the thirteen splits the lowest error rate offers. Three out of four clusters are classified almost entirely

in a single leaf node, which is preferable because this allows us to describe a cluster by a single set of

characteristics. Only cluster 1 and 3 are similar, and cannot easily be distinguished without additional

information or attributes (which is also visible in Figure 4.6). In total, less than 9 percent of all paths is

incorrectly classified, which experts considered acceptable considering the simple general description

of different carepaths provided by the tree.

The simplicity in this classification model offers an easy overview of the characteristics of the different

clusters. The four clusters the carepaths are divided into can be labeled by length of hospitalization

according to Table 4.8c. A detailed analysis of the resulting classification is given in Section 5.1.

4.4.3 Identification of frequent patterns

In the third and last modeling stage process mining is applied to identify frequent patterns for each

cluster, resulting from the data mining process as described in the previous sections. We export the

Process ID’s for each cluster and create a subset of the original data. The four individual subsets

are read into ProM and analyzed using the Trace Alignment plugin. Note that we us a single cluster

for the Guide Tree in order to enable the plugin whilst preserving our original clustering. We sort the

alignment in an effort to visualize the most important patterns, e.g. by putting the longest traces at the

top. The Trace Alignment also returns the most frequent pattern (i.e. the pattern described by more

than half of the traces) and provides an insightful visualization for deviations. The results are shown in

Appendix D.2.

As a final step, a small visualization of the Heuristics Miner gives a global view of the possible flow.

As we expected in Section 3.3.1, the resulting models are extremely simple. Since they lack the number

of repeated activities etc., its usability is limited to the global comparison of clusters. The models for

the patient careflow described in the previous sections are shown in Figure 5.3, together with the main

process pattern found by the Trace Alignment plugin.

4.5 Conclusion

The development of the analysis proposed in this study is based on CRISP-DM, which offers a solid

basis for any type of data analysis project. This includes the application of our methodology as described

in Figure 4.10. However, as the main goal of this methodology is one-fold, the first stage of CRISP-

DM does not have to be repeated: a thorough Business Understanding of the healthcare domain is
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described in Sections 2.1 and 4.1, which also define the main business objective: to provide insight

into patient careflow on a logistics level. Besides, this methodology is designed for a collection of

standardized DIS-data and a number of readily available external sources providing more detail on

individual activities. A detailed description of these data is offered in Section 4.2 (Data Understanding).

It is at the physical Data Collection stage that we start with the description of our methodology – we call

it Step 0, as it needs to be performed only once for multiple analyses.

1. Data Preparation0. Data Collection 2. Analysis 3. Results

DIS

External 
sources

Single 
DBC 

event log

Visualize
event log 

(Data Audit)

Activity 
overview

Activity 
histogram

Filtered 
DBC 

event log

Clustering
(PAM with 
Tanimoto)

Classification
 (CART)

Trace 
Alignment

Activity 
barchart 

Activity 
histogram 

Classification 
tree

Alignment 
overview

Cluster 
labeling

Process 
pattern

Figure 4.10: Methodology overview.

Step 0 Data Collection

The analysis in this methodology is based on standard data structures: DIS-data containing pa-

tient information and activity sequences or carepaths, description lists of DBC’s and activities, and

cost overviews on both a CTG and ZPK level. The required data modeling phase is thoroughly

described in Sections 4.2, 4.3 and Appendix A. Once it is set up however, the database can be

used for numerous analyses.

Step 1: Data Preparation

The focus of this step is on the filtering and selection of the right activities used in the analysis. It

also entails the filtering of infeasible or distorting carepaths. The choices for filtering and selection

are based on the activity overview plot and activity histograms (e.g. Figures 4.1a and 4.4, which

indicate data differences between hospitals and infeasible activity frequencies). More examples

are provided in the case studies of Chapter 5.

Step 2: Analysis (Modeling)

The thorough exploration in the previous section identified three suitable and complementary min-

ing techniques that provide valuable insights:

Partitioning Around Medoids (using Tanimoto distance) This clustering technique shows

good performance in the grouping of different carepaths into groups with similar paths.

Classification (using CART) The clustering obtained with pam is easily classified using trees,

which enables us to describe the different groups by their characteristics.
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Trace Alignment (ProM plugin) The third step allows us to identify the main process for each

cluster, and to identify deviations in individual carepaths.

Step 3: Results (Evaluation / Deployment)

The second part of our research objective as stated in Section 1.2 asks for “insight into patient

careflow”. In the previous section we managed to develop a number of models and visualizations

that provide us with detailed insights. More specifically, the results lead us to a number of possible

process improvements:

1. Using the average cost of the individual clusters, it is straightforward to identify the most

preferable (i.e. cheapest) carepath. This is a legitimate argument in favor of trying to increase

the share of patients treated according to this path. However, the lack of detailed medical

insight included in the analysis implies that it is still up to medical specialists to make the final

decision on the provided care for individual patients.

2. The Trace Alignment provides a detailed overview of the (logistics) process for a specific type

of patients. It also shows many deviations from the global path within such a cluster. This

overview is a valuable insight to improve cluster carepath standardization, which is proven to

result in an increase of care quality and decrease of care costs (see Section 1.1).

3. Now that a limited number of different patient types are defined, a more robust operating

schedule is feasible by applying sophisticated optimization techniques to schedule patients

by category. Previous work has pointed out the value of categorizing patients and scheduling

accordingly, as it allows for even workload distribution, prevents over-utilization of resources

and decreases under-utilization of beds [71]. However, without further medical knowledge on

patients, little statistical support is found on predicting the category a patient belongs to. This

is often compensated with an educated guess based on years of experience of the medical

specialists.

In the next chapter, we validate our methodology by applying it to a number of Case Studies. The

first study is based on the same event log used to develop this methodology, but offers more detail on

the final results. Two more case studies are performed to validate that the methodology is not overfitted

to the case used during the development.
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Chapter 5

Evaluation (Case Studies)

This chapter tests the previously developed methodology to a number of cases. The first case is used

during the modeling stage: hip arthrosis (or more commonly: hip replacement). This surgical procedure

is considered standardized and involves hospitalization of patients. In addition to the results shown

during the modeling phase, a more detailed look at the clustering results with regards to e.g. costs and

cluster description is provided. The second case study is similar to the first: an orthopedic surgical DBC

that describes arthrosis carepaths, commonly known as a knee replacement. The third case is known

medically as a malignant breast neoplasm (or more commonly: breast cancer). These cases are all

considered standardized surgical procedures, and entail patient hospitalization.

5.1 Arthrosis (hip) - surgical/clinical with joint prosthesis

During the modeling phase of Chapter 4 we described the first two steps of our methodology, Step 0:

Data Collection and Step 1: Data Preparation based on this DBC. In order to be thorough, we start with

a summary of Step 1 before continuing to the actual modeling stages.

5.1.1 Step 1: Data Preparation

As described in Section 4.4 we limit the dataset to ZPK’s 1, 2, 3, 5 and 7. Figure 4.1a showed that

ZPK 4 and 6 only occur in one or two hospitals, which would bias clustering towards differentiating

between hospitals. We also decided – with the support of our medical experts – to ignore labtests

(ZPK 8) because of their high frequency (Figure 4.4 shows an average of almost 20 activities for ZPK

8, compared to 6.5 nursingdays (ZPK 3) as second-most frequent activity), whilst they have little effect

on the logistic process.

5.1.2 Step 2: Analysis

Clustering The first step is to group the different carepaths into similar groups, by applying pam us-

ing the Tanimoto Distance. The selected clustering result from Section 4.4 is shown in Figure 4.6b.

An overview of the different patterns described by the clusters is shown in the parallel coordinates

plot of activities within clusters (Figure 5.1).
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Figure 5.1: Parallel plot per cluster (clusters 1 to 4 are plotted from left to right, top to bottom), with

the exceptional cluster 2 (right-top) showing the highest frequencies for all activities. It also shows that

although cluster 3 (left-bottom) appears short, it has many outpatient department visits (ZPK 1).

In addition to the parallel coordinates plot, we look at the actual activity frequency distributions

within clusters per ZPK, as shown in Figure 5.2. This visualization shows the actual number of

exceptions and deviations, something the parallel coordinates plot does not offer.

Combined, the different views from Figures 4.6b, 5.1 and the histograms in Appendix D.1 give

some indication of the type of patients described by each cluster. The longest carepaths are

grouped in cluster 2 as these paths have the highest number of nursingdays, diagnostic activities

and surgeries performed. Cluster 1 and 3 appear similar, except that patients in the latter visited

the outpatient department more often. In the next section, classification is applied for a thorough

analysis of the differences between these clusters.

Classification The second model classifies the clustering above as shown in Figure 4.9. As de-

scribed in Section 4.4.2, we try to find a tree that identifies each cluster with preferably just one

or two different descriptions. Unlike with many other classification models, this means we do not

necessarily select the tree with the best fit (or lowest xerror), but rather use common sense to

select a good (or at least sufficient) fit.

Using just two activities over three splits, the tree selected for this analysis is able to correctly

classify over 91 percent of all carepaths. The tree contains exactly four leaf nodes, where each

leaf represents one cluster. The best fit spreads the four clusters over 14 nodes, with an increase
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Figure 5.2: Nursingday (ZPK 3) frequency distributions per cluster: the clusters are given from left to

right, top to bottom. The histograms for the other ZPK-activities are described in Appendix D.1.

of only about 1 percent in correctly classified paths. If we take into account all available activities,

we can correctly classify the entire set using 25 nodes. Experts agreed that this increase of fit

does not outweigh the increased complexity of the tree.

Table 5.1: Cluster labeling based on classification tree. These labels are created by medical experts,

and give some indication of the type of care profiles a cluster describes.

# Label Description

1 Short 6 or less nursingdays, 3 or less outpatient department visits

2 Long Exceptional cases up to 70 nursingdays

3 Short 6 or less nursingdays, relatively more outpatient department visits

4 Medium Between 7 and 11 nursingdays

Process Mining When the Heuristics Miner is applied to the same event logs, we get the process

models as depicted in Figure 5.3. The Trace Alignment offers insightful images, although unfortu-

nately the formatting of the images offers little flexibility for larger clusters and longer carepaths.

From the different plots above we could already conclude that cluster 2 is relatively small (about 6

percent of all carepaths) describing the exceptionally long traces, which is supported by the align-

ment in Figure D.4. Clusters 1, 3 and 4 actually contain too many traces to plot clearly on a single
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page in Figure D.5, though support the short patterns as indicated by previous visualizations.

For overview and comparison purposes, we combine the results of the Heuristics Miner and the

main traces from the Trace Alignment in Figure 5.3.

ZPK 1

ZPK 7

ZPK 3

ZPK 5

(a) Cluster 1: 135373331

ZPK 1 ZPK 7

ZPK 3

ZPK 5

ZPK 2

(b) Cluster 2: 17135373333333333333317

ZPK 1 ZPK 7

ZPK 3

ZPK 5ZPK 2

(c) Cluster 3: 171353733317

ZPK 1 ZPK 7

ZPK 3

ZPK 5

ZPK 2

(d) Cluster 4: 11353733333317

Figure 5.3: Heuristics Miner process models with main patterns from the Trace Alignment. These main

patterns describe ZPK-activity sequences that occurred for at least half of the carepaths. Each activity

is represented by the number of its class.

5.1.3 Step 3: Results

The deliverables for this analysis consists of two main items based on the actual process: first, we

have the clustering result as visualized in Figure 4.6, and the results from the classification tree in

Table 5.1. Combined, these visualizations offer a clear division of carepaths into four groups with specific

characteristics. The parallel coordinates plot in Figure 5.1 and the activity histograms in Appendix D.1

provide a more detailed view of these characteristics. Secondly, the main activity patterns and process

models are described in Figures 5.3 and Appendix D.2. The figures in the appendix also give a good

indication of deviations within the standardized processes.
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Figure 5.4: Neither a specific hospital type nor the patient’s sex are dominant in any cluster.
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Additionally, we have data on patients’ age, sex and the type of hospital. Figure 5.4a indicates that

none of the clusters is dominated by a specific type of hospital, although hospitals 1 and 4 have a

relatively high number of patients in cluster 3. The available data on patients was limited and is plotted

in Figure 5.5 and 5.4b. The fact that there are more women (obviously) does not add any insights

to the clustering. Age however is an interesting factor: we have seen that patients in clusters 1 and

3 require less nursingdays, Figure 5.5 shows that these patients are generally younger than patients

from clusters 2 and 4. This type of insight could offer support for predictive modeling, which may help

improve scheduling and resource management in future projects.
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Figure 5.5: Although the mean and median ages differ between clusters, each cluster contains patients

of a broad range of ages, which implies age is not a predictive or decisive factor in the selection of a

carepath.

During the Data Preparation phase we have performed extensive abstraction and filtering of the

original dataset. An interesting insight gained from Figure 5.6 is that although the total number of

activities has decreased with almost 60 percent using distinct ZPK-activities instead of individual CTG-

activities, the relative number of activities is still similar to the original CTG-activities. The same goes

for the “real” price versus the roughly estimated price: even on a limited set of activities and prices, the

relative estimated cost per cluster is similar to the real cost per cluster. Another interesting point is the

number of “other activities” (the activities that could not be linked to a ZPK-code), these are low overall.

Cluster 2 shows the highest number of outliers, which could be explained by the fact that these patients

require special care (such as new and innovative – and therefore unregistered – operations).
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Figure 5.6: Boxplots for number of activities, carepath costs (real and estimated) and their ratio. The red

circle denotes the average value for each column, whereas the thick black line in the middle of the plots

denotes the mean. The box covers the values for 50 percent of the entire sample, whilst 95 percent

of is covered by the area described by the dotted line. This allows us to evaluate the spread of values

for each cluster in one overview. The remaining 5 percent are considered outliers, and their values are

denoted by the black circles.

The last column of Figure 5.6 shows the relative price of the carepaths described by the four different

clusters. Although the total number of activities for cluster 1 and 3 is similar, the latter has lower cost

due to the higher number of (cheap) outpatient department activities, whilst cluster 1 entails more nurs-

ingdays. This insight indicates a possible financial profit from having patients come in at the outpatient

department, instead of hospitalizing them. The downside of this carepath is that – statistically speaking

– it shows a higher risk of requiring “extra” activities, as the number of outliers in the first two columns

is higher for cluster 3 than for cluster 1.
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5.2 Arthrosis (knee) - surgical/clinical with joint prosthesis

The next case study is similar to the first case: treating knee arthrosis by surgically implanting a joint

prosthesis, which requires the hospitalization of patients. As the initial step in our methodology, Step 0:

Data Collection, has already been performed, the required data is easily exported. We start the analysis

at the Data Preparation stage.

5.2.1 Step 1: Data Preparation

The initial dataset is visualized in Figure 5.7a and 5.7c. These plots point out a number of data issues:

1. This DBC is surgical, but (5.7a) shows that the fifth hospital has recorded a number of carepaths

without surgical activities (ZPK 5). We return to Step 0 to remove these paths from the dataset.

2. According to (5.7a), diagnostic activities (ZPK 4) are mainly registered in hospitals 5, 6, and a little

in 4. This is unfortunate, as experts expect this analysis may lead to valuable insights that support

the decrease in number of diagnostic activities. Similarly to the previous case study however, we

disregard this activity at this stage.

Similarly, other therapeutic activities (ZPK 6) are mainly registered in hospital 2. For this DBC,

experts indicated these activities are not relevant and they are also removed from the set.

3. In (5.7c) we notice a number of exceptional cases. Although some of these exceptions are realis-

tic, one carepath shows hospitalization of more than 366 days. Not only does this appear unlikely,

the DBC system restricts the length of one DBC to a maximum of one year, which forces us to

return to Step 0 to remove this entire path from the dataset.

A visual impression of the remaining dataset is given in Figure 5.7b. This figure shows little distinct

differences between the different hospitals, and only contains the same activity classes as the previous

case study. We now continue to perform the actual analysis based on this filtered and audited dataset.

5.2.2 Step 2: Analysis

Clustering For the first step, we use the Partitioning Around Medoids (pam in R) technique, in com-

bination with the Tanimoto distance between individual carepaths. The input for this step is the

event log resulting from the previous audit and filter step (Figure 5.7b). In order to find the opti-

mal clustering, we apply the algorithms for a range of clusters. The stacked barchart visualizing

activity frequencies is used to asses and compare the different clusterings. Figure 5.8 shows the

activity frequency barchart for 4, 5 and 6 clusters: 4 clusters results in distinct categories, more

distinct than using 6 clusters (cluster 6 contains carepaths similar to the paths in clusters 1 and 2).

However, 5 clusters (Figure 5.8c) shows the most distinct clusters with the highest level of detail,

and this is the model we use for the rest of the analysis steps.

To provide further validation of the quality of the selected clusters we zoom in on individual ac-

tivities. Like for many carepaths, ZPK 1 and 3 are the most variable in both number and cost.

Although a ZPK 5 activity (the actual surgery) is more expensive, this is generally performed only
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(c) Activity frequency barchart

Figure 5.7: Carepath overviews per hospital

once. Besides, experts indicated that a second surgery is never optional, but an absolute require-

ment, and it is not something we can improve by e.g. standardization. The detailed descriptions for

ZPK 3 are shown in Figure 5.9, the remaining activity histograms are described in Appendix E.1.
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Figure 5.8: Clustering results for 4, 5 and 6 clusters.
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Figure 5.9: Histograms for nursingday frequencies per cluster (clusters are ordered from left-to-right,

top-to-bottom). The fifth cluster contains the exceptional cases with longest hospitalization.
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Classification In order to automatically identify the characteristics that define a specific cluster

we apply the Classification and Regression Tree (CART) as explained in Section 3.2. As we

stated before, CART returns a table with xerror-values for different tree sizes. The minimal value

for xerror provides the best fit1. For the purpose of this project however, we aim to describe

the general patient careflow at a high level. Therefore, we try a number of different parameters

(e.g. with or without individual ZPK’s, or including the ratio between two different ZPK’s) until the

resulting tree shows the right2 balance between tree-size and xerror-value.

After thorough analysis of the trees resulting from the different attributes, one of the best perform-

ing trees is based on ZPK 1, 3, 7 and the ratio between ZPK 1 and 3, as shown in Figure 5.10

(xerror-values are shown in Table C.1b). Especially the ratio between outpatient department vis-

its and number of nursingdays proved to be an important indicator for the separation of clusters 1

and 2 from clusters 3, 4 and 5. With seven leaf nodes, just two clusters are divided over multiple

nodes. Overall, this tree managed to correctly classify over 91 percent of the total number of

paths. Experts agreed that the simplicity of the tree provides valuable insights and outweighs the

incorrect classification of a small set of carepaths.

ZPK (1 / 3) ≥ 0.5941

484/398/296/439/64

ZPK 1 ≤ 4

ZPK 7 ≤ 2

405/9/0/0/0 53/122/1/0/0

ZPK 3 ≤ 6

0/264/0/0/0 0/3/71/0/0

ZPK 3 ≥ 6

ZPK 3 ≤ 12

0/0/218/62/1 0/0/0/0/63

0/7/3/394/0

Figure 5.10: Classification tree based on ZPK 1, 3, 7 and the ratio between ZPK 1 and 3

1As a statistically objective measure, the “best fit” contains the lowest number of erroneously classified carepaths.
2The value of “right” is a subjective measure: we look for the lowest number of erroneously classified paths in the smallest

possible tree, in an optimal tree each cluster is concentrated in exactly one leaf-node.
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Each cluster is labeled according to the choices made by the decision tree, which lead us to the

categories listed in Table 5.2.

Table 5.2: Cluster labeling based on classification tree.

# Label Description

1 Short 4 or less outpatient visits with similar number of nursingdays, 2 or less images

2 Short 5 or more outpatient visits, 6 or less nursingdays

3 Medium Between 6.5 and 12.5 nursingdays

4 Medium More than 6.5 nursingdays with relatively many Outpatient visits

5 Long More than 12.5 nursingdays

Process Mining Figure 5.11 shows the process models discovered by the Heuristics Miner. The

process models also show the main activity patterns discovered by the Trace Alignment plugin.

For readability purposes, we visualized the actual alignments in Appendix E.2.

A noticeable downside of the Heuristic Miner becomes obvious in Figure 5.11: although every

carepath starts with a visit to the outpatient department (ZPK 1), this is not clearly indicated by

three out of five process models that start with surgery (ZPK 5). patient careflow that starts with

surgery before any type of imaging (ZPK 7) and visit to the outpatient department is infeasible –

at least for this DBC. Only the models (5.11d) and (5.11e) are similar to the process models from

the previous study, whereas in fact the trace alignment indicates all types of carepaths from both

DBC’s are similar. This is sensible, as they are similar types of orthopedic DBC’s.
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ZPK 3

ZPK 5

ZPK 2

(a) Cluster 1: 1135373331

ZPK 2
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ZPK 3

ZPK 5 ZPK 1

(b) Cluster 2: 11157333311
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(c) Cluster 3: 115733333331

ZPK 1
ZPK 7

ZPK 3

ZPK 5

ZPK 2

(d)

ZPK 1

ZPK 7

ZPK 3ZPK 5

ZPK 2

(e) Cluster 5: 11533333333333333331

Figure 5.11: Heuristics Miner process models with main patterns from the Trace Alignment.

Similarly to cluster 2 from the previous case study, cluster 5 contains the “exceptional cases”: a

small set – less than four percent of the total number of paths – of relatively long carepaths.
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5.2.3 Step 3: Results

The clustering (Figure 5.8c) and classification (Table 5.2) results combined offer a clear division of

carepaths into five groups with specific characteristics for each cluster. A more detailed view of these

characteristics is visualized in Appendix E.1. The main activity patterns, together with a good indication

of deviations from these patterns are visualized per cluster in Figures E.6, E.7 and E.8. Figure 5.11

combines the main activity pattern with the heuristic process model in a single visualization.

As previously stated, we have additional data on patients’ age, sex and the type of hospital. None

of the clusters is dominated by a specific type of hospital in Figure 5.13a, although hospitals 2 and 6

are mainly concentrated in cluster 4. The share of male patients per cluster is similar for all clusters (on

average about 30 percent) and does not give any indication of differences between males and females.

Every cluster contains patients of the ages between 40 and 98. Yet, the average age for the clusters

with more nursingdays is higher (cluster 3: 74, cluster 5: 75) than for the shorter clusters (cluster 1: 69,

cluster 2: 70, cluster 3: 71). This indicates that on average, older patients require longer hospitalization.
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Figure 5.12: Similarly to the previous case study, age is not a decisive factor as each of the clusters

shows a similar range in patient’s ages.

Similar to the previous case study, the abstraction of activities to the level of activity classes de-

creased the number of activities by more than 55 percent, without changing the relative number of

activities and costs. Also, the cluster containing “exceptional” carepaths shows the highest variance in

number of both regular activities and “other activities”. The overall average for the latter is generally low

with about 2 other activities per individual path.
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Figure 5.13: Neither a specific hospital type nor the patient’s sex are dominant in any cluster.
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Figure 5.14: Number of activities, carepath costs (real and estimated) and their ratio.
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5.3 Malignant breast neoplasm - surgical/clinical

The common description of our third case study is the surgical removal of breast cancer, which requires

the hospitalization of patients. As the initial step in our methodology, Step 0: Data Collection, has

already been performed at the development stage of this study, the required data is easily exported. We

start the analysis at the Data Preparation stage.

5.3.1 Step 1: Data Preparation

The initial dataset is visualized in Figure 5.15. Both plots point out a number of data issues:

1. This DBC is surgical, but (5.15a) shows that three carepaths do not contain any surgical activities.

We return to Step 0 to remove these paths from the dataset.

2. In (5.15c) we notice a number of exceptional cases. As none of these exceptional cases seem

excessive (unlike the path from the previous case study), no further action is required.

3. According to (5.15a), hospital 2 has a relatively high concentration of carepaths with multiple

surgical activities. As this hospital is one of the top-clinical hospitals, this is plausible and no

further action is required.

4. For the first time, ZPK 4 and 6 registrations are not disproportionately dominated by one or two

hospitals, which allows us to include them in our analysis.

5. Considering the relatively low activity frequency, ZPK 8 appears to be less dominant for this DBC

compared to the previous case studies. However, during the modeling phase we observed a

decrease of clustering quality when we include this type of activities, and we decided to ignore it

nevertheless.

6. During our initial modeling step, we identified a number of male patients. As the activities regis-

tered for these patients were not exceptional, we simply assumed these were clerical errors and

manually altered their sex.

After the data corrections and filtering of the DBC dataset, we continue to do the actual analysis.

5.3.2 Step 2: Analysis

Clustering The input for this step is the event log resulting from the previous audit and filter step

(Figure 5.15b). In order to find the optimal clustering, we apply the pam algorithm using the Tani-

moto distance for a range of clusters. The stacked barchart visualizing activity frequencies is used

to asses and compare the different clustering results. Figure 5.16 shows the barchart for 4, 5 and

6 clusters: both 4 and 6 clusters results in distinct categories, but lack the cluster for easy diag-

nosis as visible in (5.16c). The solution obtained with 5 clusters shows the most distinct clusters

with a separate cluster for patients with little diagnostic imaging, and this is the model we use for

the rest of the analysis steps.

To provide further validation of the quality of the selected clusters we zoom in on individual activi-

ties. Like for many carepaths, ZPK 1 and 3 are the most variable in both number and cost. For this
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(c) Activity frequency barchart

Figure 5.15: Carepath overviews per hospital

case study however, ZPK 7 (diagnostic imaging) and 5 (the actual surgery) activities also show

cluster characterizing properties. These figures are shown in Appendix F.1.

A good example for these properties is cluster 43: in most cases only one diagnostic image was

required for the cancer to be discovered and surgically removed. This leads to a low number of to-

tal surgeries and nursingdays. A second cluster with similar numbers for surgery and nursingdays

3Note: this cluster was one of the main reasons to choose 5 clusters, this paragraph points out its significance.
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Figure 5.16: Clustering results for 4, 5 and 6 clusters.

does have an average number (about 3) of diagnostic images taken. The detailed descriptions for

these ZPK’s are shown in Appendix F.

69



Classification In order to automatically identify the characteristics that define a specific cluster we

apply the Classification and Regression Tree (CART) as explained in Section 3.2. As we stated

before, CART returns a table with xerror-values for different split numbers. The minimal value for

xerror provides the best fit (objective measure). For the purpose of this project however, we aim

to describe the general patient careflow at a high level. Therefore, we try a number of different

attributes (e.g. with or without individual ZPK’s, or including the ratio between two different ZPK’s)

until the resulting tree shows the right balance between tree-size and xerror-value (subjective

measure).

After thorough analysis of the trees resulting from the different attributes, one of the best perform-

ing trees is based on ZPK 1, 3, 7 and the ratio between ZPK 1 and 3, as shown in Figure 5.17

(xerror-values are shown in Table C.1c). Especially the ratio between outpatient department vis-

its and number of nursingdays proved to be an important indicator for the separation of clusters 1

and 2 from clusters 3, 4 and 5. With seven leaf nodes, the majority of clusters are characterized by

a single leaf-node, leaving just two clusters divided over multiple leafs. Overall, this tree managed

to correctly classify over 86 percent of the total number of paths. A small increase of less than 2

percent would require two extra leaf nodes, and the smallest number of incorrect classifications

(3 out of 1286) would require 33 leafs. Experts agreed that the simplicity of the tree provides

valuable insights and outweighs the incorrect classification of a relatively small set of carepaths.

Each cluster is labeled according to the choices made by the decision tree, which lead us to the

categories listed in Table 5.3.

Table 5.3: Cluster labeling based on classification tree.

# Label Description

1 Medium 6 or more outpatient visits, 5 or less nursingdays

2 Long 7 or less outpatient visits, 6 or more nursingdays

3 Short 4 or less outpatient visits, 5 or less nursingdays, multiple images

4 Simple Similar to 3, with only one image required for surgery

5 Outpatient 8 or more outpatient visits

Process Mining In the previous case study we observed process models from the Heuristics Miner

that did describe patient careflow in the way we would expect or find intuitive. Similar results were

gained from the event log for this case study. Although the different process models gave correct

results, the model offering the most intuitive overview of the corresponding carepaths was created

for cluster 5 in Figure 5.18b. This model shows patients come in at the outpatient department (ZPK

1), then continue for diagnostic activities and imaging (ZPK 4, 6 and 7) during hospitalization (for

either a single day or a number of nursingdays – ZPK 2 and 3). Alternatively, patients are admitted

for surgery (ZPK 5) after visiting the outpatient department, and before (or actually during) being

hospitalized (ZPK 2 and 3). The addition of ZPK’s 4 and 6 gives a good indication of the difference

between surgical and non-surgical days.

The main patterns from the Trace Alignment plugin are given in Table 5.18a. Although the align-

ment was unable to find main patterns for the additional ZPK’s 4 and 6, the overall pattern gives a
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ZPK 1 ≤ 7

350/176/363/181/216

ZPK 3 ≥ 5

0/138/0/0/2 ZPK 1 ≥ 4

ZPK 1 ≥ 5

215/0/0/6/14 ZPK 3 ≥ 2

87/2/0/20/1 12/0/67/14/0

ZPK 7 ≥ 1

16/15/294/30/0 1/2/2/111/0

19/19/0/0/199

Figure 5.17: Classification tree based on ZPK 1, 3, 7.

clear description of the main pattern, and the length of the patterns is consistent with the charac-

teristics identified by the classification tree.

5.3.3 Step 3: Results

Combined, the clustering (Figure 5.16c) and classification (Table 5.3 and Figure 5.17) results offer a

clear division of carepaths into five groups with specific characteristics as visualized in Appendix F.1,

which displays histograms for the most frequent ZPK’s (i.e. 1, 3, 7 and 5). The Trace Alignments,

showing the main activity patterns and deviations from these patterns, are visualized per cluster in

Appendix F.2. From these visualizations we derived the main process patterns as shown in Figure 5.18,

which also shows the most insightful process model, describing two different paths from the outpatient
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# Main pattern

1 1135373331

2 11157333311

3 115733333331

4 135333331

5 11533333333333333331

(a) Main patterns (all clusters)

ZPK 1

ZPK 7

ZPK 3

ZPK 5

ZPK 2ZPK 4ZPK 6

(b) Heuristics Process Model (cluster 5)

Figure 5.18: Example Heuristics Miner process model with main patterns from the Trace Alignment.

department to the actual hospitalization – one with surgery, and one with different types of diagnostic

activities.

As previously stated, we have additional data on patients’ age, sex4 and the type of hospital. Like

with the previous case studies, none of the clusters is dominated by a specific type of hospital in Fig-

ure 5.19a. An interesting observation, however, is that hospitals 4 and 5 have few patients (about

3 percent) in the exceptional cluster 5. This does not add valuable insight to the type of patients or

surgery per type of hospital, as 4 is a top-clinical hospital whilst 5 is a general hospital. Similar to the

previous cases, the longest type of carepaths have the oldest patients on average, but again – with just

44 exceptions – the ages range from 40 to 90 for all clusters.
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(b) Sex (M = 1, F = 2)

Figure 5.19: Neither a specific hospital type nor the patient’s sex are dominant in any cluster.

Unlike the other case studies, the extensive abstraction and filtering of activities from our original

dataset does show its effect on the relative number of activities. Not only did the total number of

activities decrease with over 50 percent, also the variety in number of activities decreased. With the

support of experts, we consider this to be a useful side-effect, as we target the logistics process of

patient careflow on a daily basis: the resulting dataset results in a higher level of distinction (i.e. less

overlap) in number of activities per cluster. The resulting variation in number of activities per cluster is

similar to the variations described in the filtered datasets from the previous case studies.

The relative cost per activity is relatively high for cluster 4, although the average total carepath cost

4Note that this DBC entails female patients by definition, and male entries are considered to be clerical errors.
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Figure 5.20: Although the mean and median ages differ between clusters, each cluster contains patients

of a broad range of ages, which implies age is not a predictive or decisive factor in the selection of a

carepath.

is similar to the costs of cluster 3. This is an example of why it is important to take both the number of

activities and the ratio of cost per activity into account: in this case the reduced number of images for

cluster 4 implies that there are less activities to spread the costs over. One could consider this cluster

to have more cost efficient activities, and we would prefer the carepath of cluster 4 over that of cluster

3.

5.4 Summary

In the previous sections we analyzed three different types of patient careflow, and managed to identify

a number of distinct carepath types. Using a variety of visualizations and mining techniques, we were

able to identify the main process pattern differences, and characterized each cluster based on their

main attributes. Also, the total number of activities and costs give insight into which carepath type is

preferable on both a logistic and financial level. The type of hospital did not offer support in categorizing

the myriad of paths, but the age of patients does provide the insight that older people generally do

require more nursingdays to recover. The latter insight cannot be used as a general rule of thumb

however, as the variety of patients’ age has a similar distribution for all clusters, ranging between the

ages of 40 and 90.

73



●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 3 5

0
50

10
0

15
0

Activities (CTG)

Clusters

N
um

be
r 

of
 A

ct
iv

iti
es

●

●

●

●

●

●●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

1 3 5

10
20

30
40

50
60

Activities (ZPK)

Clusters

N
um

be
r 

of
 A

ct
iv

iti
es

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●
●

1 3 5

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

Price (CTG)

Clusters

E
ur

o

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●●
●

●

●

●

●

1 3 5

20
00

40
00

60
00

80
00

10
00

0
12

00
0

Price (ZPK)

Clusters

E
ur

o

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1 3 5

0
10

20
30

40

Other activities

Clusters

E
ur

o

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

1 3 5

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Price/Activities (ZPK)

Clusters

N
um

be
r 

of
 A

ct
iv

iti
es

●

●

●

●

●

Figure 5.21: Number of activities, carepath costs (real and estimated) and their ratio.

A selection of insights gained from the previous sections is summarized in Table 5.4. Together

with the visualizations used to gain these characteristics, this table provides a valuable overview of the

different types of patient careflow described by a single care product.
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Table 5.4: Summarized tables. Each of the table provides a short overview of the case studies presented

in the previous sections. For each of the clusters, these tables describe: the size of the clusters in

number of carepaths, the label our experts gave to the clusters describing the general patient careflow,

the main activity pattern supported by at least half of the paths within a cluster as identified by the

Trace Alignment plugin, the average total number of ZPK activities, the average number of ZPK 1 and 3

activities, the average costs of a carepath, the spread in size and/or cost of paths within a cluster (++

represents a low spread, −− a high spread) and the average age of patients within a cluster.

(a) Arthrosis (hip) - surgical/clinical with joint prosthesis, 4 clusters

Cluster Label Path ZPK# ZPK1 ZPK3 Cost +/− Age

1 (784) Short 135373331 10 2.2 5.2 e 5 100 + 71

2 (126) Long 17135373333333333333317 30 4.5 19.8 e 11 603 −− 78

3 (800) Short 171353733317 13 4.7 4.3 e 5 064 +− 69

4 (400) Medium 11353733333317 15 8.2 3.3 e 6 432 +− 76

(b) Arthrosis (knee) - surgical/clinical with joint prosthesis, 5 clusters

Cluster Label Path ZPK# ZPK1 ZPK3 Cost +/− Age

1 (484) Short 1135373331 11 3.3 4.7 e 5 652 + 69

2 (398) Short 11157333311 14 5.1 4.9 e 5 924 +− 70

3 (296) Medium 115733333331 16 4.0 8.3 e 7 345 +− 74

4 (439) Medium 135333331 11 2.2 5.9 e 6 052 + 71

5 (64) Long 11533333333333333331 32 4.8 22.1 e 8 496 −− 75

(c) Malignant breast neoplasm - surgical/clinical, 5 clusters

Cluster Label Path ZPK# ZPK1 ZPK3 Cost +/− Age

1 (350) Medium 7411533111 15 6.0 3.2 e 2 911 +− 62

2 (176) Long 411453333331 20 5.3 8.8 e 5 032 − 69

3 (363) Short 741145331 11 3.8 2.2 e 2 315 + 63

4 (181) Simple 115331 9 3.6 8.8 e 2 207 + 63

5 (216) Outpatient 41411453311111 22 9.9 4.7 e 3 976 −− 61
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Chapter 6

Discussion and Conclusions

In the previous chapters, we tried to develop a methodology to gain insight into patient careflow using

a variety of data analysis and visualization techniques. The first phase was getting a thorough un-

derstanding of the healthcare domain, and we proposed our own definition of patient careflow. In the

second phase, we collected a number of standardized datasets and identified the useful attributes these

sets contained. Based on the prepared datasets from the third phase, we started our exploratory mod-

eling in phase four and developed our final methodology. This methodology was tested on three case

studies in the fifth, final phase. The next section provides a recap on these five phases. We describe

why we did what, what went wrong and what is next.

6.1 Business Understanding

It is not an easy task to define useful though specific business objectives in a broad, dynamic and

complex domain such as healthcare. Although this area of research is increasingly popular due to both

an increasing pressure of governments to reduce costs and an increase in demand for care, it is still

relatively new. The same goes for the area of process mining; although it is rapidly gaining popularity,

few organizations have successfully implemented this type of analysis.

In order to define patient careflow on a suitable level for this study, we proposed a simplified view of

the healthcare logistic process: medical activities are described on a high level by their ZPK, and only

a limited set of eight different classes is included in the analysis. This view of the logistics process sup-

ports the analysis of care products from both the old DBC and the new DOT reimbursement systems,

as the process is described on a high level. Especially DOT is designed to supersede individual spe-

cialisms; its products may describe medically dissimilar care profiles that are similar only in the logistic

process.

In the end, we think this abstract view of the healthcare process allows us to perform a valid statistical

analysis without extensive medical knowledge – both on the details of individual activities and patient’s

specific requirements. Note however, that although the visualizations provided in this methodology are

considered statistically sound, it is up to the actual medical specialists to change and improve their

decision making during patient treatment. Our analysis is restricted to providing insights, and is not

designed to automate medical decision making.

The data collection, auditing and preparation described in the next two phases, Data Understanding
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and Data Preparation, are closely related and consisted of numerous iterations. Therefore, we dedicate

the next section to both phases simultaneously.

6.2 Data Understanding and Preparation

These phases required a significant amount of domain knowledge in order to gain a thorough under-

standing of the available fields and data types. One of the main advantages of this study is that it uses

a number of standardized datasets, which means that for every implementation and analysis the data

collection and preparation phases are similar. After the data is prepared once, new data – whether it

is from a new hospital or an addition to an existing set – can be loaded directly into the main database

and used for numerous analyses.

For the purpose of this study we used a sample of the available data extracted directly from a number

of HISs, structured similarly to the official DIS. However, as these sample sets did not undergo auditing

by the DIS, the data quality could not be guaranteed without validation. We do note that DIS only

considers care profiles that are consistent with a specific set of rules regarding the type and number of

activities they entail; the ordering of activity sequences is not an element validated by this system. A

thorough evaluation of the data described and audited by DIS is described in [64].

The Data Understanding and Preparation phases required a large amount of time – about two-thirds

of the time spent on this study – partially due to a lack of experience in data modeling and auditing. No

research has been done on the selection of database environments, as this was not part of our scope.

Instead, we used a readily available Microsoft SQL Server 2008 R2 environment. With the support of

technical experts we were able to automate the data preparation process. This helped to gain insight

and control over the entire process, and proved to be a worthy investment of time due to the iterative

nature of CRISP-DM. We were also able to identify inefficient processes in SQL Server: carepath

representations required hours to generate. Instead, we decided to export the event log directly and

generate both the vector and string representations in R, which required seconds to generate.1 This

also provided us with more flexibility regarding the filtering of activity classes.

The auditing performed for this study assures that the remaining dataset described the abstract view

of the logistic process with the same level of granularity for all treatments and activities, and removed

both type problems and quality problems (see Section 2.2.3). Despite this thorough and time-consuming

auditing phase, the case studies in Chapter 5 pointed out some issues remained undiscovered until the

actual modeling phase. This iterative property of our methodology is typical for data-based analysis, and

is also described by CRISP-DM. The fact that we discovered the flaws in the data using a structured

methodology and insightful visualizations help prove the completeness of our methodology.

For example, the amount of activities caused confusion in the initially collected data: for some ac-

tivity types, this field indicated the number of activities performed, whilst others described volumes of

medicine. During the auditing stage, we identified one hospital that booked nursingdays on a single

day. As a response, experts suggested hospitals did this on purpose, as it would require fewer actions

to register the contents of a carepath on the day of discharge. It was not until the final modeling stage

that we realized registrations were booked on the first day of hospitalization instead of the last day, and

1Apart from the fact that R is better equipped to perform these type of calculations, it only performs these calculations on data
from one DBC for the filtered set of activities, instead of the entire database.
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we had to return to the data understanding and preparation phase to correct the sample data. With this

example, we conclude the Data Preparation phase and continue to the modeling phase.

6.3 Modeling

Prior to the modeling stage, we reviewed the literature for algorithms and techniques used in previous

research. Based on this literature we realized that despite the potential of process mining techniques,

the dynamic nature of healthcare processes has proven to be too difficult to be tackled by a single

technique. Therefore, we decided to split the analysis of these processes into different steps: first,

carepaths are clustered and classified based on their (high level) activity content using traditional data

mining techniques. Secondly, the activity sequences for individual clusters are analyzed using relatively

new process mining techniques.

6.3.1 Data Mining

The clustering and classification performed in this study are complementary. The first tries to identify

groups with similar carepaths based on the individual activity frequencies and labels each path with a

cluster number. The latter technique takes these cluster labels, and tries to identify the main charac-

teristics for each cluster by building a decision tree. This section recaps some of the decisions made

during the development of the model and evaluates the results.

6.3.1.1 Clustering

Traditional clustering techniques come roughly in two flavors: hierarchical and partitional. One of the

advantages of hierarchical clustering is that the entire clustering hierarchy is built, before the user has

to decide on the best number of clusters k. This immediately describes an important disadvantage: the

hierarchy is built on choices made in previous layers of the hierarchy, whilst these choices may not be

optimal for this specific value of k.

Alternatively, we need to define the number of clusters before applying the partitional clustering

algorithm. Trying a range of clustering values implies running the algorithm for each individual value of

k. The advantage is that the clustering result is a local optimum for each k. A good example for this

feature is given in Figure 5.16, where the clustering for five clusters identified a care profile the other

clustering results (k = 4 and k = 6) did not. Since hierarchical clustering combines two entire clusters in

each layer, this technique would never have identified this profile.

Although K-means is one of the most popular techniques for partitional clustering, we decided to

use the Partitioning Around Medoids (K-Medoids or pam) algorithm as implemented in R. This algorithm

takes an existing data point to represent the average value of a cluster, which implies carepaths are

clustered based on their distance to an existing path, instead of a fictional value. pam is able to use any

type of (dis)similarity measure between carepaths, which allowed us to explore a number of metrics:

Compression Clustering The first distance metrics are based on the Kolmogorov complexity as

explained in Section 3.1.2. The theory is simple: compression algorithms work better for carepaths

with recurring subsequences, therefore a larger decrease in size of compressed string represen-

tations of combined carepaths, suggests these paths are similar. Although the clustering results
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show this type of distance metrics turned out to be able to identify carepaths with similar subse-

quences, they were proven unable to identify paths with similar activity frequencies. Especially

the longer activity sequences with a limited number of different possible activities performed rela-

tively well with compression, which resulted in a spread of the exceptional cases over the different

clusters.

For the purpose of this research, the number of activities represented by a cluster is more im-

portant than common subsequences, because the number of nursingdays says more about the

total costs of a carepath than a subsequence of diagnostic activities. Therefore we chose not to

include this type of analysis in our final methodology. However, it would still be interesting to see

whether common subsequences and the total number of activities could somehow be combined

in comparing individual carepaths.

Vector Clustering The next set of distance measures is based on vector representations of carepaths.

Both the literature on the development of the original DBC system, and the clustering results as

described in Section 4.4.1.1 indicated the high quality of the Tanimoto distance. This distance

measure is able to identify a large set of exceptional cases, and known to be able to cope with

matching 0-values (i.e. it does not count missing activities from two carepaths as a similarity).

The Euclidean distance shows similar performance, although its clustering appears to show more

extremes in clusters: the group of exceptional cases is smaller than for the clustering with Tani-

moto, resulting in a higher spread of hospitalization duration for the remaining clusters. Besides,

the Euclidean distance has an obvious disadvantage: the distance between two vectors can be

small even without sharing any common variable. However, as every DBC of the three case

studies analyzed in this Chapter 5 contains at least a number of outpatient department visits and

nursing days, the probability of this type of paths existing is negligible for this set of activity classes.

When future research tries to target activities on a higher level of detail, the Cosine distance be-

comes more interesting as it is able to cope with many matching 0-values. The currently selected

set of activity classes is too small to have a risk of many matching 0-values, and the clustering

resulting from this distance measure turned out to be incapable of identifying similar care profiles.

6.3.1.2 Classification

By applying a classification algorithm to the clustering obtained, we automate the process of identifying

main characteristics for each cluster. The Classification And Regression Tree algorithm as implemented

in R first builds the entire tree, up to the point where an extra split does not improve the classification

error. We can then select the preferred number of splits, based on the xerror-value; the lower the value,

the better the carepaths are classified. For this study, however, it is more important to have a small and

simple tree describing each cluster with only a few characteristics, rather than having a large tree with

multiple characterizations for each cluster. With our case studies, we managed to correctly classify

about 90 percent of the individual carepaths, which experts considered a reasonable percentage taking

into account the dynamic and complex nature of healthcare processes.

The size and classification error of the tree also give some indication over the clustering quality: if a

small tree is able to easily separate one cluster from the other, this implies the clusters are distinct in a

small number of activity frequencies. However, as the distances between carepaths are calculated over
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a number of activities, it is not realistic to conclude the clustering quality is bad when a larger tree is

required to describe the different types of care profiles.

6.3.1.3 Software package

As software analysis was not part of the scope of this project, we selected R for the development of our

models mainly because of our (successful) previous experiences. Both the internal documentation and

the online community proved to be valuable resources during the modeling phase, and we were able to

develop an almost fully automated tool that supports and executes the first steps of our methodology.

We were also able to (automatically) create insightful visualizations in a single environment, even though

R is not a Business Intelligence or Visual Analytics tool such as Qlikview and MagnaView. Another

advantage is that the generic properties of the code generated allows us to re-use it for purposes other

than patient careflow discovery. In short, the flexibility and extensibility of R proved valuable for this

research.

6.3.2 Process Mining

In Section 2.3.2 we mentioned a number of techniques that have been applied to the healthcare domain

in previous research. Especially the Heuristics Miner has been proven to perform well for event logs

that contain a lot of noise, which is often the case in healthcare processes. Also the Trace Alignment

plugin was expected to provide the insight we were looking for.

For the purpose of this study however, we removed the noise from the event log during the Data

Understanding and Preparation phases by generalizing activities by their ZPK, resulting in small lists of

five to eight activities. The Heuristics Miner derived similar process models for each of the clusters, and

provided little insight into the different carepaths clustered together. Only for the third case study, the

process model from Figure 5.18b resulted in a useful insight: on a single nursingday, a patient had either

surgery or a number of diagnostic and/or therapeutic activities. The remaining models all described a

global process, but lacked information on the number of iterations and start or end activity of a carepath.

The Trace Alignment turned out to be a more valuable tool in visualizing and identifying patterns

within a cluster of carepaths. The visualization offers a clear overview of the main patterns by aligning

the most frequent activities. As each row in the visualization is unique, the number of occurrences of a

carepath is indicated by a number, which helps identifying the patterns for the most frequent paths. A

significant downside of this plugin is its coloring function: for each analysis random colors are assigned

to the activities. It takes a lot of manual input to re-use the same coloring scheme for multiple analyses.

Note that before we were able to run the Trace Alignment, we had to execute the Guide Tree Miner.

However, the different clustering functionalities for this plugin did not provide the means to create clus-

ters of the same quality as our R clustering offered, and we did not want to create a larger set of clusters.

Therefore, we decided to ignore the functionality of this plugin entirely by selecting a single cluster per

clustering, which enabled us to preserve our original clustering results as input for the Trace Alignment

plugin.

The previous paragraph offers a good example of some of our struggles in using ProM, due to the

lack of experience with the tool. Although the resulting visualizations can be interpreted by medical ex-

perts without specific analytical knowledge, ProM does not offer a user-friendly process mining tooling.

Instead, it is a technical though extensible tool containing numerous experimental techniques, and with
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the support of experienced users and developers it turned out to be a useful tool for the purpose of this

study.

6.4 Analysis results

The case studies in Chapter 5 provide a complete overview of the different visualizations required to

perform patient careflow Discovery. For each case study, we started with plotting the entire event log

grouped per hospital, which enabled us to audit the data to remove both bias towards hospitals and

infeasible carepaths. After we performed clustering for a range of clusters, the different results are

plotted in an activity barchart visualizing the different patterns described by each cluster. For each of

the clusters, we can evaluate individual activity patterns in activity histograms which help to evaluate the

different results. After selecting the optimal number of clusters, a classification tree is built identifying the

main characteristics of each cluster. By visualizing the number of cluster elements in each node of the

tree, the tree gives a clear overview of the quality of the splits and indicates whether we have identified

the main characteristics describing each group. Together with the results from the Trace Alignment,

the summaries in Table 5.4 provide a clear and useful insight into patient careflow. These results help

improving patient careflow by increasing standardization, selecting the care profile with the lowest cost

for the highest quality of care and in the future for predictive modeling, allowing the development of

robust and optimal operating schedules.

6.5 Future Work

For the purpose of this study, we selected a single care product (or DBC) for each case study. However,

since we are looking at the logistic process of patient careflow, medical differences between different

DBC’s and specialisms are not considered, which should enable us to combine patient data from differ-

ent DBC’s and even different specialisms to find homogeneity within the logistic patterns. To allow this

type of analysis in future work, one has to take care when selecting the DBC products, as the different

products should have similar activity profiles regarding the activity classes. Another dangerous assump-

tion is that registrations are done in a uniform way throughout numerous hospitals and specialisms, as

this study has already pointed out differences in the way hospitals register their diagnostic activities.

With the introduction of the new DOT system, we hope the quality of registrations will increase such that

the data supports the analysis of a combination of care products.

We limited the scope of this research to the analysis of the logistic process of patient careflow,

which enabled us to perform a statistically sound analysis. This study offers a good starting point for

the analysis of the medical processes in future work, where thorough understanding of the analytical

process is combined with extensive medical domain knowledge. To enable this, one should consider

collecting more medical data on patients such as whether the patient is a diabetic2, or a description of

his or her medical history. The latter is already made possible in the DIS, as it stores patients by a unique

identifier based on their social security number. This means patients can be tracked to every hospital

they visited in recent years, and might provide insight on e.g. exceptional cases that are transferred

from a different hospital because they need special care.

2The glucose levels for diabetes patients are checked every day, which would explain a higher number of labtests.
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In order to take into account the type of hospital in future research, collecting data from a larger

number of hospitals would also allow the analysis of whether top-clinical hospitals describe different

types of carepath than general hospitals. The dataset used in this study contained only six hospitals,

which proved to be too small to find any type of insight.

Finally, future research can enable the incorporation and implementation of this type of analysis

tooling into modern WfMS, similarly to the study in [43]. It would be interesting to see how these

analyses could be leveraged by incorporating them into day-to-day decision making [43].
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6.6 Conclusion

Despite the extensive amount of research performed on the application of data-based methods in the

healthcare domain, no single technique or methodology has been found able to cope with its extensive

dynamic properties. We developed a methodology that uses a combination of data mining and process

mining techniques, and is able to provide valuable insight into patient careflow that supports an increase

in quality of care with a decrease in costs. This answers our first research question, “Can data- and

process mining techniques be applied to gain insight in patient careflow?”, with a solid “yes”.

In the previous chapters we have proven that by using standardized data, this methodology is able

to identify clusters with similar care profiles, classify the important characteristics of these profiles, and

discover process properties with the following techniques:

Clustering Based on the Tanimoto Distance between vector representations of individual carepaths,

the Partitioning Around Medoids (PAM) algorithm identifies distinct clusters describing specific

types of care profiles.

Classification Using the Classification And Regression Tree (CART) algorithm, a decision tree

identifies the main characteristics for each cluster.

Trace Alignment This plugin in ProM offers a clear overview of the different paths contained in a

single cluster, and identifies both the main process pattern and deviations from these patterns.

In order to answer the second research question, “Which insights do we require to assess patient

careflow?”, we targeted the organizational process of the healthcare domain. This allowed us to focus

on an abstract view of the logistic process, where individual activities were generalized into activity

classes (ZPK’s). This approach automatically dealt with the fact that limited patient data as well as

medical knowledge was available for this study. Based on a number of insightful visualizations, the

clustering of these generalized carepaths was best achieved using the smallest number of clusters,

describing the highest number of distinct care profiles.

The answer to our third research question, “How can we compare, evaluate and advise different

carepaths?”, lies with the visualizations and subjective measures mentioned in previous sections. The

decision on the final number of clusters is mainly based on a stacked barchart, where each bar shows

the total activity frequency of an individual path, and colors indicate the individual activities. A good clus-

tering shows little variation for the activities within a cluster, whilst each cluster shows distinct patterns

for their average activity frequencies (example are given in Figures 4.6b,5.8c and 5.16c). Individual

activity histograms per cluster visualize these frequencies in more detail (examples are given in Ap-

pendices D.1, E.1 and F.1). After classification, which enabled us to identify the main characteristics of

each cluster, we performed the Trace Alignment. The data transformation from R into ProM required

extensive manual interaction, but the results were valuable: matching activities were aligned amongst

individual paths and provided a clear overview of the major patient careflow per cluster. Deviations were

also clearly visible, as these were represented by unaligned activities.
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Together with a number of statistics on patient’s age, number of activities and carepath costs, the

mining results and different visualizations offered valuable insight in the different types of patient care-

flow for individual DBC’s. Based on these insights, a number of process improvements are possible:

1. Medical specialists can be stimulated to treat patients according to the carepath with the highest

quality of care and lowest costs.

2. Standardization can be improved for the different types of carepaths within one care product or

DBC.

3. These results can be used as input for predictive modeling, in order to provide an optimal and

robust operating schedule.

The next step for this study is the last phase of CRISP-DM: Deployment. By including medical

specialists from a live hospital environment, the insights gained from this methodology can be used to

realize the improvements described above.
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Glossary

care product A single care product describes a set of treatment activities for a specific DBC.

care profile (In Dutch: zorgprofiel) See care product.

carepath The specific process or activity sequence a patient goes through during treatment.

clinical pathway See patient careflow.

CRISP-DM (Cross Industry Standard Process for Data Mining) A commonly used technique for DM

projects in business applications.

CTG-code Each code represents a specific treatment activity and its fixed prices. The Nederlandse

Zorgautoriteit (NZa) oversees the healthcare tariff agreements between care providers and fun-

ders for each of these codes.

data mining The process of discovering new patterns from large data sets involving methods at the

intersection of artificial intelligence, machine learning, statistics and database systems. Also: Ex-

traction of interesting (non-trivial, implicit, previously unknown and potentially useful) information

or patterns from data in large databases.

DBC (Diagnosis Treatment Combination – in Dutch: Diagnose Behandeling Combinatie) The Dutch

refund system for hospital care products. Each code describes a care product. Similar to the

Diagnosis-related group (DRG) system.

DIS (DBC Information System) National Information System that records all DBC information –

both declared and performed by Healthcare providers (http://www.dbcinformatiesysteem.nl

– Dutch).

distance function A function that defines the distance between point x and y.

DOT (DBC Towards Transparency – in Dutch: DBC Op weg naar Transparantie) An improved refund

system, based on the former DBC system, trying to provide a more transparent and clear refund

system.

DRG (Diagnosis-Related Group) A classification system for hospital cases, defining homogenous

groups of database-stored cases according to medical costs. The partitioning is based on medical

and surgical treatments.

event log A collection of recorded events.
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grouper A grouper is an algorithm that combines all activities and information on a patient into a

billable care product [19].

healthcare processes These general kinds of processes can be subdivided into medical and or-

ganizational processes as shown in Figure 2.1.

HIS (Hospital Information Systems – in Dutch: ZIS) A digital Information System for Hospitals, con-

taining patient data (e.g. personal details, insurance provider and general practitioner), logistic

process descriptions (e.g. who treated the patient, which activities) and details used for treatment

reimbursement.

Kolmogorov complexity The shortest description of a string in a fixed description language –

K(x).

medical treatment processes Describes the diagnostic and therapeutic procedures to be carried

out for a particular patient, i.e. the diagnostic-therapeutic cycle.

metric A (distance) function that satisfies the properties for positivity, symmetry and triangle in-

equality .

organizational processes Organizational business processes of healthcare organizations, required

to coordinate interoperating healtchare proessionals, disciplines and departments.

overdeclaration When a hospital or medical specialist registers an inappropriate number of DBCs

for one patient, in order to increase the total refund.

patient careflow (Also: clinical pathway) A group of similar care episodes: when patients undergo

similar activities in their path from intake until discharge.

process mining A collection of techniques that allow the extraction of information from event logs.

A family of a-posteriori analysis techniques.

upcoding When a higher-paying service (DBC) is chosen, even when this is not medically neces-

sary, this is referred to as upcoding. It is a fraudulent practice where providers try to cheat the

system to increase their reimbursement without performing the suggested services and activities.

WfMS (Workflow Management System) A system that provides an environment to automate and

assist in the management of tasks and the flow of workitems from one task to another. These

systems require a process model and their main function is to ensure that all the activities are

performed in the right order and by the right resource [57].

ZPK (activity class) Each individual activity (CTG-code) can be described by a higher level class. A

list of different classes is given in Appendix G.
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Appendix A

Database structure

At the data collection stage for this project, the DIS system was unavailable for third-parties. Therefore,

we use datasets readily available describing patient data in a similar fashion. These datasets however

do require extra preparation to become DIS-complient.

Unlike for the DIS system, the hospitals were unable to guarantee the quality for these sets, they

were a quick data dump to use for a quick analysis. We came up against quite some cleaning necessi-

ties, e.g.: one hospital did not have a single opening clinic activity, only repeating and repeating-open-

new-dbc clinics. Some activities were doubly registered and multiple ID’s were missing. This section

describes the way we build our final analysis sample set in different stages in data preparation and

cleaning.

A.1 DIS Import

Tablename description Unique

* patient Hospitalized patients no

* zorgtraject Carepath-ID’s for each hosital yes

* subtraject Subcarepath-ID’s for each hospital yes

* verrichtingen Activities for each hospital yes

dbc AGBCodes Used for numerical reference to a hospital yes

dbc Kostprijzen Average prices of over 900 unique activities yes

dbc Specialismes

& Omschrijving

Description for Specialism-Diagnosis-Treatment combinations no

dbc Zorgklasse Classes for most Activities no

dbc ZPKPrijzen Estimated indicative prices for a handful of Activity Classes yes

The initial database is a direct import of the comlete datasets supplied by a number of hospitals. These

sets contain incomplete carepaths and missing or incorrect values, which will be removed or fixed at

following stages. Data preparation steps at this stage consist only of:

1. Importing data from source files (using SSIS into MS SQL Server)

2. The creation of numerical PatientID’s for certain hospitals. The DIS system uses randomized

strings. For clarity and speed purposes, we prefer using numerical ID.
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3. The addition of missing patient values with fictional details (birthdate = 01/01/0001, sex = 3).

4. Removal of carepaths without diagnosis for certain hospitals. Since we target specific Diagnosis-

Treatment combinations, these carepaths are not going to be in our analysis set.

5. Addition of activities: some hospitals booked the total number of nursingdays on a single day (see

Figure A.1). Experts pointed out that this was impossible: a patient for hip surgery rarely stays in

the hospital for just one day. In order to use the ordering of acitivities, we have created inidividual

events for each individual nursingday. Using Trace Alignment we realized that the total number of

nursingdays was not recorded on the last day as initially assumed, but rather on the first day of

hospitalization.1
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Figure A.1: Overview per hospital: histogram of frequencies for ZPK3. Hospital 5 shows for most

patients a single nursingday is recorded. Experts pointed out this is not possible for this DBC.

1This was a clear example of the iterations in CRISP-DM: in the modeling phase we found that many patients for hip-
replacements spent one single day at the hospital.
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Figure A.2: DIS Import

A.2 DIS Stage1

Tablename description Type

Activities Inner join on table Table

PID-Activities Adding ProcessID’s for Careflows and SubCareflows View

First cleaning stage: an inner join for each hospital on all four tables (Patients, Careflows, SubCareflows,

Activities) to remove incomplete flows and activities.

• Some Activity-codes contain trailing Characters. Our Class-codes do not contain this level of

Activity detail, for which reason we simply remove the trailing characters. Also note that our

remaining set will still contain activities without a link to a Class-code.

• Update Number of Activities. In the DBC-system, each Activity (e.g. a Nursing Day) can only

be linked to one DBC, patients on the other hand can be hospitalized for multiple DBC’s. We want

to prevent loosing Activities due to official registration restrictions, therefor we update the NoA.

• Add ProcessID’s on a Careflow level (one unique key for each Careflow/Patient combination) and

on a DBC or SubPath level (one for each Careflow/Patient/DBC combination) – this is done in a

simple View using Partition.
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(a) DIS Stage1

(b) DIS Stage2

Figure A.3: Database Staging models

A.3 DIS Stage2

Tablename description

Carepaths One description row for each Carepath

Activities-incl Activities that belong to a specific Activity-class

Activities-excl Activities that do not belong to a any Activity-class

Second cleaning stage: unjoining PID-Activities from Stage1 into ProcessInstances (Carepaths) and

AuditTrailEntries (Activities)

• Select unique ProcessID’s, also add descriptions for Specialism, Diagnosis and Treatment.

• Select unique Activities with linking ID’s, add Activity-class and description

• Select unique Activities with linking ID’s without Activity-classes separately.

A.4 DIS Data

Tablename description

Outputs Overview of parameters per EXPORT

Carepaths Collection of selected carepaths, either by Carepath level or DBC level

Activities Activities

Prices Overview of prices per Carepath: based on either Activties, Activity Classes and

Grouped per class per day
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Collection analysis sets: every analysis sample set is copied to this database with a unique ID.

• Import parameters (Specialism/Diagnosis/Treatment and PID-level)

• Two exports are available, due to different datatype requirements per tool:

R Transactional data for activities per Carepath, plus a small overview of Carepath Prices (for

cluster validation).

ProM – ProcessInstances based on either complete Carepaths or unique DBC’s,

– AuditTrailEntries of every unique Activity (from incl)

– AuditTrailEntries with one Activity Class per day

Figure A.4: Database models

A.5 R

For reading in R we use two tables as input:

Activities similar to the AuditTrailEntries table above.

Instances or Patiens or Paths, per Patient/Path-ID a list of different costs.

Before we are able to use these tables as input we first need to transform the Activities table.

VII



String each activity at ZPK-level is represented by a character (or n-characters), such that each

Patient’s path is represented by a string.

Count each patient’s path is represented by a vector of counts per activity.

Norm same as above, but then the values are scaled per activity over all patients between 0 . . . 1.

A.6 ProM

ProM takes either MXML or XES formatted files as input. To convert our input sample datasets, we use

ProM Import, a easy tool that can take an MS Access Database and convert it to MXML format. But the

data has to be formatted to a certain transactional type of database first:

A.6.1 Using MS Access to prepare the output datasets

Taking the ProM output tables ProcessInstances (Trajecten) and AuditTrailEntries (unique or distinct

Verrichtingen), we need to transform the data to the ProM Import model.

Patients

PK Patientnr

 Name
 Birthyear
 Sex

Carepath

PK Pathnr

 Path_Start
 Path_End
 Specialism
FK1 Patientnr

Subcarepath

PK Subnr

FK1 Pathnr
 AGB
 Diagnosis
 Treatment

Activity

PK Activity

FK1 Subnr
 EventType
 Timestamp
 Amount

Figure A.5: Datamodel for ProM Input

For this, we use the provided MS Access template that has a macro.

A.6.2 ProM Import

Once the MS Access File is transformed (estimated runtime per number of PI’s: ) we run ProM Import

which exports an MXML file.
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Appendix B

Modeling images

B.1 Vector clustering ZPK 1 to 8
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(b) Euclidean distance with hclust (Barchart)
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(d) Tanimoto distance with pam (Barchart)

Figure B.1: Clustering example for ZPK 1 to 8 (DBC 305..1701.223). We consider this a good example

of bad clustering, as it is based on a single variable.
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B.2 Comparing hclust with pam for different distance measures
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(b) Euclidean distance, 5 clusters
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(c) Cosine distance, 4 clusters
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(d) Cosine distance, 5 clusters
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(e) Tanimoto distance, 4 clusters
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(f) Tanimoto distance, 5 clusters

Figure B.2: Hierarchical clustering (hclust in R)
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(a) Euclidean distance, 4 clusters
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(b) Euclidean distance, 5 clusters
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(c) Cosine distance, 4 clusters
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(d) Cosine distance, 5 clusters
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(e) Tanimoto distance, 4 clusters
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(f) Tanimoto distance, 5 clusters

Figure B.3: Partitional clustering (pam in R)
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(a) Gzip compression, 4 clusters (hclust in R)
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(b) Gzip compression, 4 clusters (pam in R)
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(c) Gzip compression, 5 clusters (hclust in R)
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(d) Gzip compression, 5 clusters (pam in R)
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(e) Bzip2 compression, 4 clusters (hclust in R)
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(f) Bzip2 compression, 4 clusters (pam in R)
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(g) Bzip2 compression, 5 clusters (hclust in R)
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(h) Bzip2 compression, 5 clusters (pam in R) - same as

Figure B.4f

Figure B.4: Clustering Kolmogorov Complexity (Compression)
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Appendix C

CP-Tables from rpart

Table C.1: rpart error

(a) Case study 1

CP nsplit xerror

0.3840 0 1.046

0.0908 2 0.232

0.0019 3 0.141

0.0015 5 0.143

0.0008 8 0.140

0.0000 13 0.134

(b) Case study 2

CP nsplit xerror

0.3450 0 1.000

0.2231 1 0.655

0.1303 2 0.432

0.0576 3 0.302

0.0568 4 0.256

0.0526 5 0.199

0.0409 6 0.135

0.0175 7 0.094

0.0150 9 0.059

0.0067 10 0.044

0.0000 32 0.013

(c) Case study 3

CP nsplit xerror

0.2156 0 1.014

0.2086 1 0.780

0.1181 3 0.390

0.0298 4 0.258

0.0157 6 0.193

0.0141 8 0.185

0.0105 9 0.158

0.0098 12 0.137

0.0000 78 0.051
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Appendix D

Arthrosis (hip) - surgical/clinical with
joint prosthesis

D.1 Activity frequency histograms

Activity frequency distributions per cluster: the clusters are given from left to right, top to bottom.
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Figure D.1: The number of nursingdays shows the largest difference between individual clusters. Cluster

2 requires the longest hospitalization, with some extreme values (60+ days), whereas clusters 1 and 3

require about 5 days.

XIV



ZPK 1

Number of performed activities

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

Mean: 2.2

Median 2

ZPK 1

Number of performed activities

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

Mean: 4.46

Median 4

ZPK 1

Number of performed activities

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

Mean: 4.27

Median 4

ZPK 1

Number of performed activities

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

Mean: 3.25

Median 3

(a) Outpatient department
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(b) Diagnostic activities

Figure D.2: Cluster 1 has the fewest activities for both ZPK’s, whereas cluster 2 has the highest fre-

quencies for both these activities. Cluster 3 and 4 are quite similar, although the latter is smaller.
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(a) Surgery
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(b) Other therapeutic activities

Figure D.3: For these two activities, there is not much difference in frequency per cluster. The only

difference is that most double surgeries belong to cluster 2, which is also the cluster that requires the

longest hospitalization (Figure D.1
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D.2 Trace Alignments

Figure D.4: Trace Alignment for cluster 2
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(a) Cluster 1 (b) Cluster 3 (c) Cluster 4

Figure D.5: Trace Alignment for Clusters 1, 3 and 4
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Appendix E

Arthrosis (knee) - surgical/clinical
with joint prosthesis

E.1 Activity frequency histograms

Activity frequency distributions per cluster: the clusters are given from left to right, top to bottom.
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Figure E.1: Outpatient department
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Figure E.2: Nursingdays
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ZPK 7

Number of performed activities

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0 Mean: 1.7

Median 2

ZPK 7

Number of performed activities
F

re
qu

en
cy

0 5 10 15 20

0
50

10
0

15
0

20
0 Mean: 2.71

Median 3

ZPK 7

Number of performed activities

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0 Mean: 2.68

Median 3

ZPK 7

Number of performed activities

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0 Mean: 2.09

Median 2

ZPK 7

Number of performed activities

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0 Mean: 3.47

Median 3

Figure E.3: Diagnostic activities

XXII



ZPK 5

Number of performed activities

F
re

qu
en

cy

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0 Mean: 1.02

Median 1

ZPK 5

Number of performed activities
F

re
qu

en
cy

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0 Mean: 1.03

Median 1

ZPK 5

Number of performed activities

F
re

qu
en

cy

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0 Mean: 1.08

Median 1

ZPK 5

Number of performed activities

F
re

qu
en

cy

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0 Mean: 1.01

Median 1

ZPK 5

Number of performed activities

F
re

qu
en

cy

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0 Mean: 1.62

Median 1

Figure E.4: Surgery
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Figure E.5
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E.2 Trace Alignments

Figure E.6: Trace Alignment for cluster 5
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(a) Cluster 1 (b) Cluster 2

Figure E.7: Trace Alignment for clusters 1 and 2
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(a) Cluster 3 (b) Cluster 4

Figure E.8: Trace Alignment for clusters 3 and 4
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Appendix F

Malignant breast neoplasm -
surgical/clinical

F.1 Activity frequency histograms

Activity frequency distributions per cluster: the clusters are given from left to right, top to bottom.
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Figure F.1: Nursingdays
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Figure F.2: Outpatient department
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Figure F.3: Medical imaging
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Figure F.4: Surgery
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Figure F.5: Diagnostic activities
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Figure F.6: Daycare
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Figure F.7: Other therapeutic activities
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F.2 Trace Alignments

Figure F.8: Trace Alignment for cluster 5
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(a) Cluster 1 (b) Cluster 3

Figure F.9: Trace Alignment for clusters 1 and 3
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Figure F.10: Trace Alignment for cluster 2
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Figure F.11: Trace Alignment for cluster 4
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Appendix G

ZPK-code overview

Below is a complete overview of the available ZPK-codes in the Dutch DBC and DOT systems.

Table G.1: ZPK code overview

ZPK Definition (Dutch)

1 Outpatient department / ER Polikliniek- en eerste hulpbezoek

2 Daycare Dagverpleging

3 Clinic Kliniek

4 Diagnostic activities Diagnostische activiteiten

5 Surgical activities Operatieve verrichtingen

6 Other therapeutic activities Overige therapeutische activiteiten

7 Medical imaging Beeldvormende diagnostiek

8 Clinical chemistry and hematology Klinische chemie en haematologie

9 Microbiology and parasitology Microbiologie en parasitologie

10 Pathologie Pathologie

11 Other laboratory operations Overige laboratoriumverrichtingen

12 (Para)medical functions (Para)Medische en ondersteunende functies

13 Prosthetic implants Bijzondere kunst- en hulpmiddelen

14 Rehabilitation Revalidatie

15 Blood products Bloedprodukten

17 Long Asthma Centers Longastmacentra

18 Other ER activities IC zorgactiviteiten niet zijnde ic-behandeldag

19 ER treatment IC-behandeldag

20 Expensive drugs/medicine Dure geneesmiddelen

21 Other drugs/medicine Weesgeneesmiddelen

22 Clotting factors Stollingsfactoren

89 Other activities Overige zorgactiviteiten t.b.v. afleiding

99 Not included in careprofile Niet in profiel meegenomen
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