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Abstract

Methods for detecting community structures in graphs already exist for many years. This subject
is studied by physicists, sociologists and also computer scientists. Traditional methods consider
only the vertices and edges, we call this graph data. In social networks much more information,
in addition to the graph data is available. This can be demographical information, hobbies or
any other interest people put online; we refer to this kind of data as description data. Traditional
methods try to partition the vertices in groups according to a quality measure like modularity.
These methods do not allow overlap; all vertices are member of exactly one group.

In real social networks, communities have overlap, for example your friends and your family.
Thus, a good method for finding communities in social networks should allow communities to
overlap. Other interesting information can be obtained by exploiting the description data. A very
useful application is identifying which elements of the description data characterize a community.

In this thesis we study this problem, with the goal of finding the top-k communities in a certain
data set. We introduce an algorithm which alternates between two steps. The first is finding closely
linked vertices on the graph side with a fast and effective hill climbing algorithm. The other is
reducing the description complexity of this community. The algorithm starts with a candidate set,
and the algorithm is applied on each community one by one. This allows communities to overlap
with the communities found before.

To evaluate our methodology, we performed experiments on real world data obtained from a
number of online social networks, i.e. LastFM, Delicious, and Flickr. The results show that the
proposed method identifies interesting and overlapping communities, characterized by detailed
descriptions. Visualizations of both the subgraphs and the descriptions contribute to an easier
interpretation and thus better understanding of the communities.

At the end we are able to find cohesive communities with concise descriptions, in large data
sets, within a relatively short amount of time.
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Chapter 1

Introduction

1.1 Motivation

Online social networks are booming, Facebook started in 2004 and now has almost a billion users,
Twitter has 500 million users and Google+ has already 170 million users after only 9 months.
Users are putting more and more information about their lives online. These social networks have
abundant information about their user’s interests. Collecting this information and storing it is
one thing, however analyzing the information and drawing interesting conclusions about it is the
most appealing.

Finding cohesive groups with concise descriptions could be useful in advertising. A big beer
brand wants to organize a big rock music festival. It is a new, one time only festival so nobody
knows it. They want to earn money by selling all available tickets. They could use social media
to advertise for the event. This would be much easier when having groups of densely connected
users, and knowing what they, as a group, like to do. Someone who likes rock music but who
has no friends with the same interest probably won’t buy a ticket because he doesn’t like to go
alone. On the other hand, a group of friends that likes to go to dance festivals probably do not
buy tickets because they don’t like the music. If we had groups of densely connected users, and
know their interest it would be much easier to select the right users.

There are is much research to be done on this rapidly growing subject. One important area of
research and the topic we will be focusing on is Detecting Communities and Characterizing them.
This is about finding the groups we wanted to find in the previous example. As of yet, there has
not been an extensive amount of research done on this topic.

1.2 Goal

Let us introduce the subject with an informal description of the research goal of this project. A
social network can be thought of as a set of individuals, users with each user containing some
information. Each user entry in the network stores two types of data, their description data and
their connections to other users.

Each user has connections to zero or more other users, known as friendship links. This network
component of social networks is called the graph space, where each user is a vertex and each
friendship link is an edge between two users. The description data consist of information which
is not part of the network, for example gender, favorite color, name or age. When thinking
of Facebook, description data also includes ”likes” user gives to musicians, books, companies,
pictures or any other type of information a user puts online. Essentially, most information in
social networks associated with individual users which is not part of the graph structure can be
transformed into description attributes. Every user consists of values for one or more of these
attributes.
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1.2. GOAL CHAPTER 1. INTRODUCTION

Within social networks there are groups of users that are more densely connected with each
other than on average in the database. Examples where on average the density of edges is much
higher can be observed in a group of friends, users that are fan of the same band, users that do
the same study in the same city, users who live in the same village, and so on. These groups are
called communities.

The goal of this research project is to find these communities, and characterize them. By char-
acterizing the communities, we mean to find which properties in the description space are typical
for those specific communities. The algorithm to find these communities and their description
needs to be fast and efficient and should be suited to run on large data sets.

We build on top of the EMM framework, which is a generalization of the topic of datamining
called subgroup discovery. Chapter 2 explains the details about this framework. In Chapter
3 we formally introduce the Community Characterization Problem on a formal way. We also
explain how to transform this problem into an instance of EMM. In physics many methods of
detecting communities in a graph are described, they use quality measures like modularity, inverse
conductance or intra community density as quality measures. Most of them do not allow overlap,
and most of them are not suited to run on large data sets. We introduce a new quality measure,
Community Gain, in Chapter 4. This quality measure makes it possible to allow overlap, and
is fast enough to run on large data sets. After that we introduce the algorithms necessary to
complete our task. Finally we describe the data sets we use in Chapter 6 and present our results
in Chapter 7.
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Chapter 2

Preliminaries

In this chapter we will introduce the framework that will be used as a base for the research to
detection and characterisation of communities. The framework is known as exceptional model
mining (EMM), which is a topic from the data ming research area. Before we introduce EMM we
start with explaining subgroup discovery, as EMM is a generalization of subgroup discovery.

2.1 Subgroup Discovery

Subgroup discovery is concerned with finding regions in the input space where the distribution
of a single target attribute is substantially different from its distribution in the whole database
[9]. Given are database DB with description attributes A and target attribute y. Each individual
ri ∈ DB is a set of values for all attributes aj ∈ A and a value yi for target attribute y. For each
description attribute aj ∈ A the domain is specified by dom(aj), for target attribute y the domain

is specified by dom(y). Now an individual ri ∈ DB is a tuple (x1i , . . . , x
|A|
i , yi), x

j
i ∈ dom(aj), yi ∈

dom(Y ).
Subgroup discovery focuses on finding subgroups s ⊂ DB that have a deviating distribution

on the value of the target attribute y compared to the whole database DB. A subgroup s is a
subset of database s ⊂ DB. Each subgroup s has a description query Qs, this is a query over
attributes A. Each query Qs is a conjunction of m selectors Qs = e1 ∧ · · · ∧ em. Each selector
ei ∈ Qs is a tuple (ak, opk, xk), ak ∈ A, opk ∈ {<,≥,=, 6=}, xk ∈ dom(ak).

Example 1. An example of a subgroup description query Qs could be:

Qs = {a1,=, 1} ∧ {a2,=, 0} ∧ {{a4,≥, 1} ∧ {a5, <, 0} ∧ {a6, 6=, 0}

We denote the universe of all possible queries over A as QA. Given database DB we define a
function g : QA → 2DB associating to each query Q ∈ QA the set of records that satisfy Q.

Definition 1 (Subgroup). We define a subgroup s associated with description query Qs as the
set of records g(Qs) ⊂ DB that satisfy Qs. That is g(Qs) = {ri ∈ DB : A(ri) |= Qs}.

DB =

r1
r2

...
r|DB|



A y

x11 x21 . . . x
|A|
1 y1

x12 x22 . . . x
|A|
2 y2

...
...

. . .
...

...

x1|DB| x2|DB| . . . x
|A|
|DB| y|DB|


Figure 2.1: Subgroup discovery
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2.1. SUBGROUP DISCOVERY CHAPTER 2. PRELIMINARIES

A quality measure ϕ : 2DB → R is used to quantify the quality of a subgroup, i.e. how much
a subgroup deviates from the whole database. The higher this value, the better the subgroup is.
The goal of subgroup discovery is finding subgroups and their corresponding description queries
for the top-k (with respect to the quality function ϕ(s)).

Example 2. An example could be a database with clients of a bank that have a loan. The
description attributes are attributes A = {age,married, ownhouse, income, gender} that describe
a person. The target attribute y is a boolean that says whether the client is able to pay back loan
to the bank or not. An example of this data set is shown in Figure 2.2

DB =

r1
r2
r3
r4
r5
r6
r7
r8
r9
r10



A Y
age married own house income gender pay back
22 no no 28, 000 male no
46 no yes 32, 000 female no
24 yes yes 24, 000 male no
25 no no 27, 000 male no
29 yes yes 32, 000 female no
45 yes yes 30, 000 female yes
63 yes yes 58, 000 male yes
36 yes no 52, 000 male yes
23 no yes 40, 000 female yes
50 yes yes 28, 000 female yes



Subgroup
g(Q1) g(Q2)

X

X
X
X

X
X
X

Figure 2.2: Subgroup discovery example

Now the goal is to distinguish groups that have a deviating distribution on the value for the
target attribute y compared to the whole database. In this case that means that we would like to
find subgroups of records that consist of a large majority of records that have the same value for
y. Two of these subgroup description queries can be:

Q1 = {{income,≤, 36000} ∧ {age,≥, 37} ∧ {married,=, yes}}
Q2 = {{income,≤, 36000} ∧ {age,≤, 37}}

Applying queries Q1 and Q2 on the database given in Figure 2.2 gives the following subset.
The records selected by Q1 and Q2 are also marked in Figure 2.2:

g(Q1) = {r7, r8, r9}
g(Q2) = {r1, r3, r4, r5}

Both subgroups selected by Q1 and Q2 are pure, i.e. all records within a subgroups g(Q1) and
g(Q2) have the same target value yi ∈ dom(y). Records g(Q1) have target value y = yes and
records g(Q2) have target value y = no. The data set in Figure 2.2 is very small and has only
few attributes, that makes it easy to find pure subgroups. In other cases, e.g. large data sets, it
might not be possible to find subgroups that are pure within a reasonable time. In general you
could say that the more pure a subgroup s is, the higher the quality ϕ(s) is.

Subgroup discovery problem

Given a database DB the task of the Subgroup discovery is to find the top-k subgroups that have
a deviating distribution of target value y, compared to the distribution of y in the whole database.
The value ϕ(s) is used to rank the subgroups found.

6



2.2. EXCEPTIONAL MODEL MINING CHAPTER 2. PRELIMINARIES

2.2 Exceptional Model Mining

Exceptional model mining can be thought of as a generalization of subgroup discovery [9]. The
goal in subgroup discovery is finding subgroups with a deviating value of a single target attribute
y. In exceptional model mining there are multiple target attributes y ∈ Y .

Again we have database DB with description attributes A, however, the target Y in exceptional
model mining is a set Y of model attributes. Now each record ri ∈ DB consists of values for each
description attribute aj ∈ A and each model attribute bj ∈ Y . An individual ri ∈ DB is a tuple

(x1i , . . . , x
|A|
i , y1i , . . . , y

|Y |
i ) where values xji ∈ dom(aj), aj ∈ A, yji ∈ dom(bj), bj ∈ Y . A formal

scheme of a data set used for exceptional model mining is shown in Figure 2.3.

DB =

r1
r2

...
r|DB|



A Y

x11 x21 . . . x
|A|
1 y11 y21 . . . y

|Y |
1

x12 x22 . . . x
|A|
2 y12 y22 . . . y

|Y |
2

...
...

. . .
...

...
...

. . .
...

x1|DB| x2|DB| . . . x
|A|
|DB| y1|DB| y2|DB| . . . y

|Y |
|DB|


Figure 2.3: Exceptional Model Mining

In subgroup discovery it is easy to calculate whether a value is deviating or not, for example
by looking at the average value of the y in the whole database, and the average value of the y in a
subgroup. With EMM this is much more difficult because Y consists of more than one attribute.
To decide whether a set of records s is exceptional or not, the values of the target attributes Y of
records s are used as input to build a model. A model could be a Bayesian network, a classifier,
of something else. Given a quality measure ϕ : dom(model) → R the quality of the model is
calculated. If the quality is higher than a certain threshold ε the model is exceptional. With
EMM the goal is to find exceptional models and their corresponding model queries Qm ∈ QA for
models m. The descriptions queries have the same structure as the description queries used in
subgroup discovery. The query Qm selects a set of records g(Qm).

Exceptional model mining problem

The goal of Exceptional model mining problem is to find the top-k models that are deviating
compared to the model of the whole database. The value ϕ(m) is used to rank the models found
according to their quality. In our research we will use a specific instance of EMM, where the
data used as values for attributes Y is graph data. A more detailed example is given in the next
section.
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Chapter 3

The Problem

In a social network, there are users and there is information associated with those users. We
therefor represent a social network as an attributed graph, in which each user is a vertex in this
graph. Users have a list of friends, these friendship links are the edges of the graph. Users also put
other information online. For example a user likes his favorite musician, or says he is born in New
York, we call this information description data. The data we consider in our research have both
the graph data and description data. We want to find groups of users that have strong connections
with each other in the social graph. We also want to find a description query as we saw in Section
2.1 to characterize them. We call this the Community identification and characterization problem.

Community identification and characterization can be treated as an instance of EMM, with
a database DB, description attributes A and model attributes Y . But now attributes yj ∈ Y
are the users them themselves, and the values of these attributes are the edges E between the
users V . This gives us the attributed graph G = (V,E,A) where V is the set of vertices (users),
E ⊆ V × V is the set of undirected edges (friendship links) and A = {a1, . . . , a|A|} is the set of
description attributes. Each user vi ∈ V is associated with one or more attributes A[i] ⊆ A. The
values of target attributes Y are the edges in the social graph. This means value yji of user vi has

value vji = 1 ⇐⇒ (vi, vj) ∈ E and vji = 0 otherwise. The values of attributes yj ∈ Y can be
thought of as the adjacency matrix of the social graph G. From now on we refer to the database
as DB = G(V,E,A). We use both ri and vi to refer to user i, dependent on whether we talk
about the graph vertex or the whole user record.

For individual ri ∈ DB, row vector Ai holds all description information of user vi. In our
research we only use binary attributes for values in aj ∈ A, i.e. ∀aj ∈ A : dom(aj) = {0, 1}. For
example, when attribute a1 = New Y ork value a1i of user vi has value a1i = 1 iff user vi lives in
New York and 0 otherwise. For readability we change the notation of the pattern language as
defined in Section 2.1 to an easier notation. Also, to make the language more expressive we allow
disjunction of patterns.

From now on, we denote the tuple (aj ,=, 1) as {aj}, and the tuple (aj ,=, 0) as {aj}. Thus,
each description query QC is a query over attributes A. A query QC consists of a disjunction
of patterns p, e.g. QC = p1 ∨ . . . ∨ pn. Each pattern pi consists of a conjunction of positive
and negative conjunctions, for example pi = {a1} ∧ {a3, a5} ∧ . . . ∧ {a2, a1}. In this context
{a1, . . . , an} means a conjunction between all the attributes between the brackets, and {a1, a2}
means NOT (a1 ∧ a2). A description query could thus be:

QC = ({a1, a3, a6}∧{a4}∧{a5, a2})∨({a1, a3, a6}∧{a4}∧{a5, a2})∨({a1, a3, a6}∧{a4}∧{a5, a2})

From now on we refer to the description attributes as tags or the description space and to
information related to the graph as the graph space.

Example 3. An example of the data that could be used for the problem we are focusing on could
be the following set of tags A = {New York, 1986, Student, Coffee, Lady Gaga}. In the example

8



3.1. PROBLEM STATEMENT CHAPTER 3. THE PROBLEM

1

5

2

64

3

8 9

7

Figure 3.1: Example graph

DB =



A E
a1 a2 a3 a4 a5 v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 0 1 0 0 0 0 1 1 0 1 0 0 0
v2 0 1 1 0 0 0 0 1 0 0 1 0 1 0
v3 0 0 1 1 0 1 1 0 1 0 0 0 0 0
v4 0 0 1 1 0 1 0 1 0 1 1 0 0 0
v5 0 1 0 1 0 0 0 0 1 0 1 0 1 0
v6 1 1 0 1 0 1 1 0 1 1 0 0 0 0
v7 1 0 0 0 1 0 0 0 0 0 0 0 1 1
v8 1 1 1 0 1 0 1 0 0 1 0 1 0 1
v9 1 0 0 0 1 0 0 0 0 0 0 1 1 0


Figure 3.2: Example database, verify that data under E corresponds with Figure 3.1

there is a set of 9 users, v1, . . . , v9. The graph used in this example is shown in Figure 3.1. The
database corresponding with this data is given in Figure 3.2. The values of the description data
are chosen at random.

Each user has used some of the tags and is connected to other users. This gives us the database
DB as shown in Figure 3.2. The values aji under A are 1 if and only if user vi contains attribute
aj , for example value a19 = 1 means user v9 has flagged attribute a1 (New York). The values
under E is the adjacency matrix. As you can see value vji has value vji = 1 if and only if user vi
is connected to user vj in the graph shown in Figure 3.1, value vji = 0 otherwise.

A few community descriptions we could find in this data could be:

Q1 = ({Lady Gaga})

Q2 = ({Lady Gaga} ∧ {Student}) ∨ ({Coffee})

Applying queries Q1 and Q2 on the database given in Figure 3.2 gives the following communi-
ties:

g(Q1) = {r7, r8, r9}
g(Q2) = ({r1, r2, r3, r4, r5, r6} ∩ {r1, r2, r3, r4}) ∪ {r3, r4, r5, r6}

3.1 Problem statement

Now that we have defined what the input data set looks like, it is time to focus on the goal of the
research: identifying and characterizing communities. A community C ⊆ DB is defined as a set

9
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of individuals. The word identifying in this context means that we want to find communities that
internally have a significantly higher value of connectedness, compared to the average of the whole
database. The word characterizing means that we want to find description queries that represent
the characteristic features of the individuals in ri ∈ C.

A community C is described by a community description query QC = {p1, . . . , pl}, where
patterns pi ∈ QC have the same properties as the EMM patterns explained in Section 2.2, with
the addition of allowing disjunctions and negations. The conjunction of these patterns determine
which individuals from DB belong to community C. We denote the universe of all possible queries
over A as QA. Given database DB = (V,E,A) we define a function g : QA → 2DB associating to
each query Q ∈ QA the set of records that satisfy Q.

Definition 2. Community C corresponding to a community description query QC is the set of
individuals g(QC) ⊂ DB that satisfy QC . That is g(QC) = {ri ∈ DB : A[i] |= QC}.

Definition 3. The complement of a community C is the set of individuals C ⊂ DB that are not
member of C, i.e. C = DB \ C.

In order to compare the quality of communities a quality measure needs to be defined. This
quality measure should quantify the connectedness of a community. The more connected the
community is, the higher this value should be.

Definition 4 (Graph quality measure). A quality measure ϕ : 2V → R is defined to quantify the
connectedness of a community C given a database DB = (V,E,A). A high value ϕ(C) means
that the community is strongly connected compared to the whole database. For computing the
value of ϕ only the graph space should be used, not the description space.

Another important part of this research is characterizing the community. It is important to
obtain powerful descriptions in the description space for describing the communities. A good
description is as short as possible, i.e. should have a low complexity. A description complexity
measure is used to quantify the complexity of a description:

Definition 5 (Description complexity). A measure to quantify the complexity of a description
query QC for community C given a database DB = (V,E,A). This is a function ρ : QA → R.
This function ρ computes a numeric complexity value for a description query QC . A lower value
for this measure means a better description. For computing the value of ρ only the description
space should be used, not the graph space.

Example In Figure 3.2 and Figure 3.1 an example data set is shown. As is clearly visible,
community C1 = {v7, v8, v9} is strongly connected within the community itself, in fact it has the
maximum number of internal edges because it is a clique. There are also relatively few links to
individuals outside the community. This community C should have a good score ϕ(C).

When we look at the description data we see that it is possible to select all the individuals
ri ∈ C by selecting on attribute a5. A very short description query QC1

= {a5} results in selecting
the right vertices, i.e. g(QC1

) = {v7, v8, v9}. Another option for selecting these individuals could
be Q′C1

= {{a1} ∧ {a5}}. Description queries QC1
and Q′C1

select the same individuals, but QC1

is shorter, thus ρ(QC1) < ρ(Q′C1
), and hance we prefer QC1 .

Community Characterization Problem

Given a database DB with the properties as specified in Section 3.1 the task is to find the top-k
communities in database DB with respect to some objective function. As can be derived from
Definition 4 and Definition 5 a good community C is well balanced between good properties in the
connectedness sense, and the complexity of the description query. Some additional requirements
may be added to resulting communities, like a minimum size |C|. It is important to note that
communities may be overlapping.

10



Chapter 4

Quality Measures

In Definition 4 and 5 in Section 3.1 two formal quality and complexity measures are defined.
In this section we will explain more about them and give an implementation for them. In the
Community Characterization Problem three quality measures are important:

• Define a way to quantify the connectedness of a community. This quality measure is only
about the graph space. The formal definition of this quality measure is given in Definition
4.

• Define how complex a description of a community is. The formal definition of this description
complexity measure is given in Definition 5.

• Define how good a community and it is description are together, this is a combination of the
first two measures.

4.1 Graph Space

The quality measure we will use for quantifying the quality of the graph part of the community
is based on the intuition that the best communities are cliques, with no edges to vertices outside
the clique. A clique is a set of vertices S with an edge between every pair of vertices in set S. An
example of a graph with three communities that are all cliques is shown in Figure 4.1.

Our quality measure uses this idea to calculate the quality of a given community C. The
idea is to compare a given partitioning into communities, with the situation in which the same
communities would be cliques. We call the differences between these two situations errors. The
more errors there are, the less is the quality. For each vertex vi in community C are two types of
errors, i.e. one concerned with the missing links withing the community, and one with the links
that reach outside the community.

15

2

6

4 3

8 9

7

Figure 4.1: Three optimal communities: {v1, v2, v3, v6}, {v4, v5} and {v7, v8, v9}
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1. Between errors: There are two vertices, vi and vj , with vi ∈ C and vj ∈ C. There is an
error if edge (vi, vj) ∈ E because that means there is an edge to a vertex vj which is not
a member of community C. The set of errors of this type related to vertex vi is ErrB(vi).
When clear from the context we will use ErrB(vi) for both the set of errors, and the size of
this set.

2. Within errors: There are two vertices, vi and vj with i < j and but now with both
vi, vj ∈ C. There is an error if edge (vi, vj) /∈ E because there is an edge missing in between
vertices in C. The set of errors of this type related to vertex vi is ErrW (vi). When clear
from the context we will use ErrW (vi) for both the set of errors, and the size of this set.
We count within errors only in the vertex with the lowest index.

The next step is to define a model for counting the errors given a certain partitioning of
individuals into communities. First we define what a model is.

Definition 6 (Model). A model M is a set of communities in which every vertex vi ∈ V is part
of exactly one community, i.e.:

∀Ci,Cj∈M |i6=j : Ci ∩ Cj = ∅∑
Ci∈M

|Ci| = |V |

We refer to the set of all possible models as M

The enumeration of the errors of the graph G with model M is an enumeration of all the
vertices vi ∈ V and the errors related to these vertices vi. We use undirected graphs, that is why
within errors between vertices vi and vj with i < j are only counted in vertex vi.

Definition 7 (Enumerate errors). The enumeration of errors of graph G = (V,E,A) encoded
with model M is written down as.

encode(G|M) =
⋃
vi∈V
{vi, {ErrB(vi)|ErrW (vi)}}

Definition 8 (Counting errors). The number of errors L(G|M) of a graph G = (V,E,A) encoded
with model M is defined as the sum of the number of vertices and the total number of errors given
a model M .

L(G|M) =
∑
vi∈V

(1 + |ErrB(vi)|+ |ErrW (vi)|)

The optimal model M ∈M for encoding graph G is the model with the least number of errors.
Two get more familiar with the encoding we will start with some examples. In Figure 4.2 six
possible models for the given graph are shown. Each model has a different list of errors which
is given in Table 4.2g. The colors in the different figures represent different communities. Each
figure is a different model.

When we order the models given in Figure 4.2 according to the number of errors given in Table
4.2g we will find that models M3 and M5, shown in Figures 4.2c and 4.2e are the best. These
models contain the least number of errors, followed by model M4 and M6 with Figures 4.2d and
4.2f.

4.1.1 Community Quality

Now that we have defined the encoding scheme for the graph space we define the quality measure
for a community. A problem with the error counting scheme as we have defined it, is that it need a
model of the whole graph before we can say something about the quality of the set of communities.
Another problem is that it is impossible to quantify the quality of an individual community. It is

12
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(a) M1, one big community
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(b) M2, nine communities (MI)
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(c) M3, two communities
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(d) M4, two other communities
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(e) M5, three communities
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(f) M6, three other communities

M encode(G|M) L(G|M)
M1 {1{|2,5,7,8,9},2{|4,5,7,9},3{|5,6,7,8,9},4{|7,8,9},5{|7,9},6{|7,9},7,8,9} 30
M2 {1{3,4,6|},2{3,6,8|},3{1,2,4|},4{1,3,5,6|},5{4,6,8|},6{1,2,4,5,8|},7{8,9|},

8{2,5,6,9|},9{7,8|}}
38

M3 {1{|2,5},2{8|4,5},3{|5,6},4{|2},5{8|},6{8|},7,8{2,5,6|},9} 22
M4 {1{6|},2{3|5,7,9},3{2|},4{5,6|},5{4|7,9},6{1,4|7,9},7,8,9} 24
M5 {1{6|},2{3|5},3{2|},4{5,6|},5{4|},6{1,4|},7{8|},8{7,9|},9{8|}} 22
M6 {1{6|5},2{3|},3{2|5},4{6|},5{6,8|},6{1,4,5|},7{8|},8{5,7,9|},9{8|}} 25

(g) Encoded versions

Figure 4.2: Six different models for graph G

13



4.2. DESCRIPTION SPACE CHAPTER 4. QUALITY MEASURES

very useful to quantify the quality of a single community without having the need to know how
the whole graph is divided into communities. We will introduce an approximation method that
quantifies the quality of a community by looking at the community and its neighbors only.

We call the measure we define community gain. The gain for a given community C is the
decrease or increase of the number of errors when using community C. The community gain
is defined as the difference in encoded size between encoding vertices vi ∈ C with two different
models, model MC and model MI . Model MC contains the set of vertices C and model MI is the
independent model. In the independent model MI each vertex vi ∈ V is a separate community.
MI =

⋃
vi∈V {{vi}}. The independent model can be thought of as a model that considers each

user as a seperate, independent community. By comparing the model MC with the independent
model, it is possible to quantify the additional value of community C. The size of each community
C ∈MI is exactly one. Because of this, all the errors related to a vertex vi ∈ C with C ∈MI are
between errors, the size of ErrB(vi) is equal to the number of neighbors of vi.

Definition 9 (Community gain). The community gain CG(C) of community C is defined as

CG(C) =
∑
vi∈C

(L({vi}|MI))− L(C|MC)

.

Example As an example we look at the cyan community C = {v2, v5, v6, v8} in model M5,
shown in Figure 4.2e. In this example the model M5 contains at least community C. In model
M2, shown in Figure 4.2b we see the independent model.

MI = {{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}, {v8}, {v9}}
M5 = {{v1, v3, v4}, {v2, v5, v6, v8}, {v7, v9}}
C = {v2, v5, v6, v8}

CG(C) =
∑
vi∈C

(L({vi}|MI))− L(C|M5)

encode(C|MI) =
⋃
vi∈C
{vi, {neighbors(vi)}}

= {2{|3, 6, 8}, 5{|4, 6, 8}, 6{|1, 2, 4, 5, 8}, 8{|2, 5, 6, 7, 9}}
L(C|MI) = 20

encode(C|M5) = {2{5|3}, 5{4|}, 6{1, 4|}, 8{7, 9|}}
L(C|M5) = 11

CG(C) = L(C|MI)− L(C|M5)

CG(C) = 9

We will use the community gain as quality measure ϕ as specified in Definition 4, that is
ϕ(C) = CG(C). ϕ(C) is a function ϕ : 2V → Z as community gain can have both positive and
negative values.

4.2 Description Space

For the description space we should have a measure to give a penalty based on the complexity of
the description as defined in Definition 5. Before we start with the quality measures themselves
we recall the description query language given in Section 2.1. A query Q is a disjunction of
conjunctions of attributes. For example:

QC = ({a1, a2} ∧ {a3}) ∨ ({a1} ∧ {a4} ∧ {a5})

14
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In this query Q we can see that there are 5 different attributes involved, attributes a1 till a5

and that it consists of two patterns: p1 = {a1, a2} ∧ {a3} and p2 = {a4} ∧ {a5}. Three possible
ways of measuring the complexity of description query Q could be:

• Count the number of patterns. That is |Q|, that would be 2.

• Count the total length of the query. That is
∑
pi∈Q |pi|. That would be 6.

• Count the number of attributes involved in the query. That is |
⋃
pi∈Q |, that would be 5.

Number of patterns It could be useful to look at the number of patterns in a query. Each
pattern is a conjunction, which means that all used attributes are present in the records selected
by a pattern. The other way around, there is no requirement for different patterns in one query
to be similar. Because of that, a query with less patterns is much easier to interpret by humans.

Length of the query Another possibility is to look at the total length of the query. A longer
query is more difficult to interpret is most cases. But it really depends on why the query is long.
It could be because there are many different attributes used in the query, or it could be the case
that there are many very similar records with only few different attributes.

Number of used attributes Both of the methods mentioned before have a big disadvantage
in certain situations. How useful they are is very dependent of the situation where they are used.
A solution to get the best of both methods is to look at the different number of attributes used
in the query. This is does not depend on the number of patterns, or on the total query length.
Each attribute used in the query contains information about users being or not being present in
the corresponding community. The more attributes are needed to describe the community, the
more complex the description is. That is why we use |

⋃
pi∈Q pi| as a measure for the complexity

of description query Q.

ρ(Q) = |
⋃
pi∈Q

pi|

ρ(Q) is the number of attributes involved in the query. That means ρ : QA → [1, |A|], since we
do not allow empty descriptions.

4.3 Community Score

The problem stated in Section 3.1 we mention the objective function ϕ(C)
ρ(QC) . Our goal is to find

a score that is a combination between the connectedness of community C in the graph, and the
ability to describe this community with a compact query QC . For the connectedness we defined
the quality measure ϕ(C), a better score means better properties for this community in the graph.
For the description query we defined a penalty ρ(C), a higher score means a more complex query.
We defined the total community score for community C with description query QC as:

score(C) =
ϕ(C)

ρ(QC)
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Chapter 5

Algorithms

The algorithm to solve our problem we will use is a strategy that is based on alternating between
finding exceptional models and minimizing the description complexity. We modeled our problem
as an instance of exceptional model mining [9]. One strategy to solve this problem is an algorithm
called Exception Maximization Description Minimization, as proposed in [14]. This algorithm does
exactly what we want to do.

5.1 Exception Maximization Description Minimization

The Exception Maximization Description Minimization (EMDM) is an iterative algorithm which
alternates between maximizing exceptionality and minimizing the description complexity. The
algorithm starts with a candidate set of communities. Each candidate is processed one by one.
When a candidate is processed, the next one starts. In each iteration it tries to improve excep-
tionality and minimize description complexity. Improving exceptionality in this context is getting
a better score ϕ(C), and minimizing the description complexity means reducing the complexity
score ρ(QC). After a while the community can stabilize or walk to a situation that is explored
before. When the iterative part is finished, some post processing is done. The algorithm is given
in Algorithm 1. In each iteration the steps are:

• Exception Maximization (EM): try to improve the exceptionality of the community.

• Description Minimization (DM): try to reduce the complexity of the description for this
community.

These EMDM steps are repeated until a certain stop criterion is reached. EMDM terminates
when the community is back in the same state as in an earlier iteration. That prevents the
algorithm from doing the same steps again and again. We will go into more detail about generating
candidates, and about both the EM and DM steps of the algorithm in the next sections of this
chapter.

We have chosen to use a local search algorithm to find the communities, because the data sets
can be very large. Finding the optimal solution is not possible with these amounts of data. To
demonstrate what sizes the data sets have you can have a quick look on Table 6.1 on 27. Another
advantage of this algorithm is that is possible to start with a given community C (a set of users)
or a community description query QC as input of the algorithm. When the latter is done, g(QC)
is used as input candidate for the algorithm. We will go into more details about this in the next
sections.

The algorithm always ends with an DM step, the community gain CG(C) of the final commu-
nity C is the CG value after applying the last description query QC found in the DM step.

16



5.2. GENERATING CANDIDATES CHAPTER 5. ALGORITHMS

Algorithm 1 Exception Maximization Description Minimization

Input: A database DB, a set of candidate communities C
Output: Output: A set R containing the exceptional communities
1: R← ∅
2: for all C ∈ C do
3: while stop criterion not reached do
4: C ← ExceptionMaximization(C)
5: C ← DescriptionMinimization(C)
6: end while
7: R← R ∪ {C}
8: end for
9: return R

5.1.1 Stop Criterion

The EMDM algorithm iterates between the EM and DM step. In most communities there is no
description query that exactly selected the same vertices as the EM step did. Without a stop
criterion the community would alternate between the selected vertices by the description query
in the DM step, and the result of the hill climbing done in the EM step. Also situations where
there is a never ending cycle every n > 1 EMDM iterations are possible. At least, there is no
guarantee on convergence. That is why we introduced two things to guarantee termination. The
stop criterion consists of two conditions

• Saving history: When a candidate is back in a state seen before there is no reason to go on,
as the algorithm is deterministic.

• Maximum iterations: Stop after a fixed, predefined number of iterations.

Saving History

A community consists of a set of vertices C and a description query QC describing them. Before
the EM step starts, and after every hill climbing step a very simple representation CS of the
community C is stored in to a set of history states H, but only if it is not already present in H. If
CS is already in H it means this state was seen before in an earlier iteration, or another candidate,
and there is no reason to go on with improving this candidate. When the candidate is seen in an
previous candate it will be rejected and will not be present in the set of final communities.

Maximum Iterations

After a predefined maximum number of iterations maxIterations the EMDM algorithm always
stops. The result is the community as created after the maxIterationsth DM step. The disadvan-
tage of this criterion is that it is a very unbalanced way to stop the communities. We only want
to use this criterion if nothing else works within a reasonable number of iterations.

5.2 Generating Candidates

The EMDM algorithm tries to improve a given set of candidate communities C. There are different
ways of generating candidates, a good algorithm for generating candidates satisfies the following
four conditions:

Number Each candidate is used as input for the EMDM algorithm. Running this algorithm
on a candidate takes a while. If possible we want to reduce the number of candidates, without
worsening the result.
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(b) Tiling
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(c) Minimum shortest path = 2

Figure 5.1: Three different ways of generating candidates

Speed The algorithm needs to be fast. It is only used for finding candidates, not for finding
perfect communities. The real part of finding good communities is done by the hill climbing
algorithm, after the candidates are generated. We don’t want to waste too much time in finding
candidates.

Distribution The generated candidates must be evenly distributed over the graph. The given
quality measures in the previous section result in strong preference for certain communities. When
candidates are close to each other they are very likely to end up in the same community. To prevent
this, and reducing the risk of missing communities we want the candidates to be distributed evenly
over the graph. When the graph consists of more than one component, we want at least one
candidate on each component of the graph.

Connectedness The conditions specified in Section 4 show that the number of ErrW within
a community C is very important for the community gain score CG(C). In a good community
C there should be at least a path from v1 ∼∗ v2∀v1,v2 ∈ C. At least we do not want to have
candidates with a negative value CG(C).

We did experiments with four different ways of generating candidates.

5.2.1 Singletons

A very trivial way of generating candidates is creating a community for each vertex v ∈ V . This is
very fast and the candidates are evenly spread over the graph. A disadvantage is that it generates
many candidates. An example of a candidate set generated with this algorithm is given in Figure
5.1a. Each colored vertex in Figure 5.1a is a different community.

5.2.2 Using Tiles

Another way of generating candidates is to use tiling. A tile in the adjacency matrix is a clique
in the graph. The tiling algorithm is applied on the adjacency matrix of graph G(V,E,A). A
clique has optimal connectedness within the community, but it could have many outgoing edges.
Another disadvantage of using tiles as input is that finding them is an expensive operation. There
is also no guarantee that all candidates are evenly spread over the graph, unless we allow tiles
of size 1, and thus implicit insert all, or some, leftovers as singletons. The algorithm is given in
Algorithm 2 and the result of running the tiling algorithm is shown in Figure 5.1b.

5.2.3 Minimum Shortest Path

The third method for generating candidates tries to reduce the number of candidates without
losing the guarantee that all candidates are evenly distributed over the graph. It will create
communities C ∈ C with size |C| = 1, just like the singletons algorithm. As an extra constraint to
the singletons, there is a minimum distance minDist of the shortest path in the graph G(V,E,A)
between each candidate. A minimum distance minDist = n means the shortest path between two
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Algorithm 2 Based on Tiling

Input: A set of vertices V in graph G(V,E)
Output: Output: S, a set of candidate communities
1: S ← ∅
2: while V 6= ∅ do
3: A← generateAdjacencyMatrix(G(V,E))
4: C ← findVerticesInBiggestTile(A)
5: V ← V \ C
6: S ← S ∪ {C}
7: end while
8: return S

candidates C ∈ C consists of at least n edges. An example of a candidate set generated with this
algorithm and minDist = 2 is shown in Figure 5.1c.

Algorithm 3 Minimum Shortest Path

Input: A set of vertices vi ∈ V in graph G(V,E)
Input: A minimum shortest path length minDist between each candidate
Output: Output: C, a set of candidate communities
1: C ← ∅
2: S ← ∅
3: for i = 0→ |V | do
4: if vi /∈ S then
5: C ← {vi} ∪ C
6: N ← {vi}
7: for d = 0→ minDist do
8: for ∀u ∈ N do
9: N ← N ∪ neighbours(u, V )

10: end for
11: end for
12: S ← S ∪N
13: end if
14: end for
15: return C

When the graph is not a connected graph, the distance between two vertices in different
components is defined as ∞. This algorithm has the advantage of having at least one candidate
on each component.

5.2.4 Based on Description

We introduced three algorithms to generate candidate communities based on the graph G(V,E)
as input for the EMDM algorithm. A very nice property of the EMDM algorithm is that it is
both possible to start with the EM step and with the DM step. This means that it is also possible
to start with one or more descriptions Q ⊂ QA of a community as given in Definition 2. These
community descriptions are used to select candidates.

Based on these descriptions Q ⊂ QA each candidate C ∈ C is generated as:

C =
⋃

QC∈Q
{{g(Q)}}
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5.3 Exception Maximization

In the EM step in the algorithm the set of vertices vi ∈ C should be adjusted in such a way that
the exceptionality of community C increases, i.e. the resulting community has a better CG(C)
value. The EM algorithm we will use is a hill climbing algorithm. We chose for a local search
algorithm because the graphs used in social networks are quite large. There is also no advantage of
using a slower, global search algorithm. Our goal is to find good communities, with overlap. The
fact that we judge each community individually makes also that it is possible to find communities
in parallel processes. The EM algorithm we use starts with a candidate community C, and only
modifies it with operator ⊕(C) when that operator modifies C on such a way that it will have a
higher CG(C) score afterwards.

Definition 10 (Add). Vertex v ∈ C can be added to community C with the add(C, v) operator.

ADD(C, v) = C ∪ {v}

Definition 11 (Remove). Vertex v ∈ C can be removed from community C with the remove(C, v)
operator.

REMOV E(C, v) = C \ {v}

5.3.1 Conditions and Consequences

In this section we will discuss the consequences of using the operators and find out when it is
useful to apply each operator. In general applying an operator ⊕ to community C is useful if this
causes an increase in community gain, i.e. CG(⊕(C)) > CG(C). By looking at the properties of
MI and MC we will find out the influence of applying ⊕ on the community gain. The community
gain CG(C) is based in the difference on the number of errors under the independent model and
the community model: CG(C) = L(C|MI)− L(C|MC).

Before explaining when we have to choose which operator we recall the two types of errors
used in the models given in Section 4.1. There are within errors ErrW for edges missing within
the community, and between errors for edges between different communities. The choice for the
operator heavily depends on the type of errors present in the community.

5.3.2 Add Operator

If vertex u ∈ C is added to community C the following things will happen:

Encoding C∪{u} with MI For the encoded size L(C∪{u}|MI) nothing will change the number
of errors for vertices vi ∈ C because every vertex already has is own community. For vertex u
new errors are introduced. This number of errors is equal to the number of edges associated with
vertex u. This is easy to verify with Definition 8.

L(C ∪ {u}|MI) = L(C|MI) + L({u}|MI) (5.1)

Encoding C∪{u} with MC For the encoded size L(C∪{u}|MC) more things will happen with
the encoded version of community C ∪ {u}:

• New ErrB errors will occur for errors between vertex u and vertices v ∈ C. This has size
|ErrB(u)|.

• New ErrW errors between vertices v ∈ C and vertex u with (u, v) /∈ E. These errors are only
counted in one of the vertices v and u. This has size |ErrW (u)|. In this context |ErrW (u)|
is the number of ErrW errors if u were in community C, this is the total number of edges
between u and vertices v ∈ C.
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• TypeB errors between vertices v ∈ C and vertex u will disappear. These errors are the
opposite of the typeW errors (if u was a community member) of vertex u. This set of errors
has size |C| − |ErrW (u)|.

• An extra integer is needed for describing vertex u itself. This has size 1.

This will give us the following equation:

L(C ∪ {u}|MC) = L(C|MC) + |ErrB(u)|+ |ErrW (u)| − (|C| − |ErrW (u)|) + 1 (5.2)

L(C ∪ {u}|MC) = L(C|MC) + |ErrB(u)|+ |ErrW (u)| − |C|+ |ErrW (u)|+ 1 (5.3)

L(C ∪ {u}|MC) = L(C|MC) + |ErrB(u)|+ 2× |ErrW (u)| − |C|+ 1 (5.4)

Condition Adding a vertex u to community C is useful if CG(C ∪ {u}) > CG(C), and because
CG(C) = L(C|MI) − L(C|MC) that means L(C|MI) should increase with a higher value then
L(C|MI) does. L({u}|MI) is degree(u) + 1, we can calculate the degree as degree(u) = |C| −
|ErrW (u)|+ |ErrB(u)|). From equation 5.1 and 5.4 can be read that this gives us:

L({u}|MI) > |ErrB(u)|+ 2× |ErrW (u)| − |C|+ 1 (5.5)

|C| − |ErrW (u)|+ |ErrB(u)|+ 1 > |ErrB(u)|+ 2× |ErrW (u)| − |C|+ 1 (5.6)

2× |C| − |ErrW (u)|+ |ErrB(u)| > |ErrB(u)|+ 2× |ErrW (u)| (5.7)

2× |C|+ > 3× |ErrW (u)| (5.8)

Now there is a formal condition that states when it is useful to add a vertex u to community C.
The increase of the community gain of adding u to C is ∆CG(add(C, u)) = 2×|C|−3×|ErrW (u)|.

5.3.3 Remove Operator

In some cases it is useful to remove a vertex v from a community C because the community gain
CG(C) improves. The formal definition for the remove operator is given in Definition 11.

Encoding C \{u} with MI For the encoded size L(C \{u}|MI) nothing will change the number
of errors for vertices vi ∈ C \ {u} because every vertex already had his own community. Errors
related to vertex u will disappear from encode(C \ {u}|MI). This is easy to verify with Definition
8.

L(C \ {u}|MI) = L(C|MI)− L({u}|MI) (5.9)

Encoding C \ {u} with MC For the encoded size L(C \ {u}|MC) this will happen with the
encoded version of community C. In this situation |C| and ErrX(u) refer to the situation where
u is not yet removed from C.

• Some ErrB errors between vertex u and v ∈ C will disappear, because both u and v are not
in C. This has size |ErrB(u)|

• Some ErrW errors between vertices v ∈ C and vertex u with (u, v) /∈ E will disappear.
These errors are only in one of the vertices v and u. This has size |ErrW (u)|.

• New ErrB errors will occur for errors between vertex u and vertices v ∈ C. This has size
|C| − |ErrW (u)| − 1.

• One that was needed for describing vertex u itself is not needed anymore. This has size 1.
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This will give us the following equation:

L(C\ {u}|MC) = L(C|MC)− |ErrB(u)| − |ErrW (u)|+ (|C| − |ErrW (u)| − 1)− 1 (5.10)

L(C \ {u}|MC) = L(C|MC)− |ErrB(u)| − |ErrW (u)|+ |C| − |ErrW (u)| − 2 (5.11)

L(C \ {u}|MC) = L(C|MC)− |ErrB(u)| − 2× |ErrW (u)|+ |C| − 2 (5.12)

Condition Removing a vertex u from community C is useful if CG(C \ {u}) > CG(C), and
because CG(C) = L(C|MI)− L(C|MC) that means L(C|MI) should decrease with a lower value
then L(C|MI) does. From equation 5.9 and 5.12 can be read that this gives:

−L({u}|MI) > −|ErrB(u)| − 2× |ErrW (u)|+ |C| − 2 (5.13)

L({u}|MI) < |ErrB(u)|+ 2× |ErrW (u)| − |C|+ 2 (5.14)

|C| − |ErrW (u)|+ |ErrB(u)| < |ErrB(u)|+ 2× |ErrW (u)| − |C|+ 2 (5.15)

|C| − |ErrW (u)| < 2× |ErrW (u)| − |C|+ 2 (5.16)

2× |C| < 3× |ErrW (u)|+ 2 (5.17)

Now there is a formal condition that states when it is useful to remove a vertex u from commu-
nity C. The increase of the community gain of removing u from C is ∆CG(REMOV E(C, u)) =
3× |ErrW (u)|+ 2− 2× |C|.

5.3.4 Hill Climbing

With the operations defined in the preceding section it is possible to execute a hill climbing
algorithm, which optimizes a community in each step. The Greedy Community Optimizer (GreCO)
algorithm selects a set of possible operations each GreCO step, applies the best one, and goes to
the next iteration. The set of possible operations OPC that are potentially useful is limited
to OPC = {∀vi∈CREMOV E(C, v) : |C| > 1} ∪ {∀v∈CADD(C, v) : ∃w ∈ C ∧ (v, w) ∈ E}.
This is a REMOV E operation for each vertex vi ∈ C, and an ADD operation for each vertex
vi ∈ neighbors(C). The best operation is the one with the highest increase in community gain:
arg maxop∈OPC

∆CG(op). An operation is only useful when the change in community gain is
nonnegative for the add operator, and positive for the remove operator. If two communities have
the same community gain, the add operator is preferred to the remove operator. We only allow
the ADD operator to be applied when the community gain does not change when applying it.
This gives us the guarantee that the algorithm terminates, because it always reaches a point where
it is not possible anymore to grow without getting a lower community gain score.

Algorithm 4 Greedy Community Optimizer (GreCO)

Input: A candidate community C and a graph G(V,E)
Output: The result after applying of the hill climbing algorithm.
1: loop
2: O ← {∀vi∈CREMOV E(C, v) : |C| > 0}
3: O ← O ∪ {∀v∈CADD(C, v) : ∃w ∈ C ∧ (v, w) ∈ E}
4: ⊕ ← arg maxop∈O∆CG(op)
5: if ∆CG(⊕) > 0 ∨ (∆CG(⊕) = 0 ∧ ⊕type=add) then
6: C ← ⊕(C)
7: else
8: return C
9: end if

10: end loop
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Example 4. We start with showing that the EM phase of the algorithm works really well on a
toy example. In Figure 5.2 a small example with a graph of 7 vertices and a set of 2 candidates
consisting of only one vertex are given. In Table 5.2i some information about the set of possible
operations, the community gain score, and the density of the community is given.
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Fig C |C| ICD CG Possible operations (A = ADD, R = REMOV E)
5.2a {2} 1 - 0 A(1):2, A(4):2
5.2b {2, 1} 2 1 2 A(3):3, A(4):6, R(1):0, R(2):0
5.2c {2, 1, 4} 3 1 6 A(3):9, A(5):6, A(6):6, A(7):6, R(2):2, R(1):2, R(4):2
5.2d {2, 1, 4, 3} 4 0.83 9 A(5):8, A(6):8, A(7):8, R(2):6, R(1):3, R(4):3, R(3):6
5.2e {7} 1 - 0 A(4):2, A(5):2, A(6):2
5.2f {7, 5} 2 1 2 A(4):6, A(6):6, R(5):0, R(7):0
5.2g {7, 5, 6} 3 1 6 A(4):12, R(7):2, R(5):2, R(6):2
5.2h {7, 5, 6, 4} 4 1 12 A(1):11, A(2):11, A(3):11, R(5):6, R(6):6, R(7):6

(i) Greedy community optimizer steps for candidates 1 and 2

Figure 5.2: Two candidates and the GreCO steps resulting in the final communities

It is easy to verify that the GreCO algorithm always selects the operation that results in the
community with the highest information gain. When there is more than one operation possible re-
sulting in the same information gain the ADD operation has a higher priority than the REMOV E
operator. When choosing between two possible ADD operations resulting in communities with
the same information gain, the vertex with the lowest index is picked.

5.4 Description Minimization

For minimization of the description for community C we create a description query QC . Building
a query QC in fact is like building a classifier. A classifier is an object that is able to assign a class
label y to a record, given a set of values for the description attributes. In our project we tried
many different classifiers (see also Section 7.4 on page 34), but we chose for descriptive queries.

In Section 2.2 we introduced exceptional models. We explained that our target attributes Y
are the users themselves, and the values of attributes Y are the adjacency matrix. The model
we build is based on the community found by the GreCO algorithm. This model reduces target
attributes Y (adjacency matrix) to a single binary value y. The value of y depends on being, or
not being, a member of C. Class label yi = 1 means individual vi ∈ C, class label yi = 0 means
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vi ∈ C. To get this description we use the ReMine [17] algorithm. We most accurate description
query in terms of precision and recall. When two queries perform equally accurate, the shortest
one is chosen. It is important to note that the values of y are different for different communities.

After we found the description query community C is updated to g(QC).

Algorithm 5 DM Step

Input: A database DB with attributes A, and a community C ⊆ V
Output: An updated community C and a description query QC describing C
1: QC ← findBestDescriptionQuery(DB,C)
2: C ← g(QC)
3: return (C,QC)

5.4.1 ReMine

For finding the description query we use an algorithm inspired on the ReMine algorithm[17]. Let us
start with an informal introduction to ReMine. ReMine is an iterative algorithm with two steps in
each iteration. The algorithm starts with all records vi ∈ DB in one big partition P = {DB}. In
the first step it tries to find the best split patterns fi ∈ Fnew in each partition Pi ∈ P. Information
gain is used as quality measure to find out which one is the best. After finding a single pattern in
each partition, it merges all the records back together and goes to the second step. The second step
is to split the database on all combinations of having, and not having each pattern fi ∈ F ∪ Fnew
found in this and earlier iterations. A new, larger set of partitions is obtained by doing this and
then it starts with the next iteration. In each next iteration it finds one good pattern in each
partition, and splits the database on all combinations of having and not having each pattern.

The original ReMine algorithm stops when the new partitioning found is the same as the
partitioning in the previous iteration. This can take very long on the large data sets of our
project. That is why we stop when a certain number of iterations maxIterations is reached.

The bestSplit method tries to split a partition on a split with the highest information. That

means splitting in such a way that one of the partitions Pi have a high percentage of |v∈C∧v∈Pi|
Pi

and the other partition Pj has high percentage of
|v∈C∧v∈Pj |
|Pj | . I.e., the class label used for building

the classifier is yi = 1 ⇐⇒ vi ∈ C and yi = 0 otherwise.
The algorithm is shown in 6

Algorithm 6 ReMine

Input: A database DB with attributes A, and a community C ⊆ V
Input: The maximum number of iterations maxIterations
Output: A set of partition P with the set of features describing it
1: F ← ∅
2: count← 0
3: while count < maxIterations do
4: P ← split(DB,F )
5: Fnew ← ∅
6: for all partition Pi ∈ P do
7: Fnew ← Fnew ∪ bestSplit(Pi, C)
8: end for
9: F ← Fnew ∪ Fnew

10: P ← split(DB,F )
11: count← count+ 1
12: end while
13: return (P, F );

The ReMine algorithm finds a set of partitions P is found. Each partition P ∈ P is described
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by a conjunction of having or not having attributes FP . The class label of the majority class is
assigned to each partition. All partitions P ∈ P|Pclasslabel = 1 are partitions that consist of a
majority of records being a member of community C.

Example 5. An example of partitions found by the ReMine algorithm on a hypothetical database
is given in Table 5.1. The description query QC to describe this community would be

QC = ({a1, a3, a6}∧{a4}∧{a5, a2})∨({a1, a3, a6}∧{a4}∧{a5, a2})∨({a1, a3, a6}∧{a4}∧{a5, a2})

P ∈ P f1 = a1 ∧ a3 ∧ a6 f2 = a4 f3 = a5 ∧ a2 |P | |ri ∈ C| |ri ∈ C| Pclasslabel
P1 1 1 1 21 4 17 0
P2 1 1 0 0 0 0 N/A
P3 1 0 1 5 4 1 1
P4 1 0 0 17 4 13 0
P5 0 1 1 18 18 0 0
P6 0 1 0 31 29 2 1
P7 0 0 1 21 17 4 1
P8 0 0 0 49 2 47 0

Table 5.1: Result of a run of the ReMine algorithm

The final classifier tests whether a record vi ∈ DB has all features FP of one or more of the
partitions with class label 1. If so, than record vi is selected by the algorithm as a member of
community C. If it does not contain all of the features f ∈ FP then it is not a member of C. The
final classifier has the form as desribed in Chapter 3.

BestSplit

The original ReMine uses FP-trees [7] to find the best split pattern. Our data sets are much larger
in both terms of number of attributes and number of records than the data sets they use. That is
why we used a beam search to find the best split pattern in each partition. This approach doesn’t
give us necessarily the optimal pattern, but with setting the parameters beamLength and the
maximum pattern length maxPatternLength we can balance it between accuracy and calculation
time. The bestSplit procedure is shown in Algorithm 7.
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Algorithm 7 bestSplit

Input: A set of records P ⊆ DB and a community C ⊆ V
Input: The configuration parameters maxPatternLength and beamLength
Output: A pattern fsplit to split on and two new partitions P1, P2.
1: B ← {(∅, 0)} list (beam) of tuples (patterns, information gain) starting with empty pattern
2: length← 0
3: while length < maxPatternLength do
4: for all patterns f ∈ B do
5: Bnew ← ∅
6: for all attribute aj ∈ A \ f do
7: fnew = f ∪ {aj}
8: ig ← informationGain(P,DB,C, fnew) – information gain when splitting on fnew
9: ADD(Bnew, (fnew, ig));

10: end for
11: B ← B ∪Bnew
12: sort(B) – according to information gain when splitting on pattern
13: B ← TAKE(B, beamLength)
14: end for
15: end while
16: return (B[0], vi ∈ DB |= B[0], vi ∈ DB 6|= B[0]);
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Chapter 6

Data

Data used in the experiments consist of two parts, the description part and the graph part. For
the graph part we use data from real applications in all experiments. For the description part we
use both data retrieved from real world social networks and data constructed with CFinder[15].
We will give some details about the data sets and the way we constructed the data.

Data set Source tag data |Tags| Tag density |V | |E| |E|
|V |2

Delicious Real data set 1350 0,0389 1861 7664 0,00221
Flickr S Real data set 2791 0,0298 100267 3781947 0,00037
Flickr M Real data set 7565 0,0136 100267 3781947 0,00037
Flickr L Real data set 16215 0,0072 100267 3781947 0,00037
Flixster CFinder 5844 0,0252 25000 221625 0,00035
Friendster CFinder 8088 0,0252 32768 267528 0,00024
Last FM Real data set 11946 0,0015 1892 12717 0,00355

Table 6.1: Data sets used in experiments

6.1 Real World Data

Data sets Flickr, Last FM and Delicious are data sets where both the graph part and the description
part are retrieved from online social networks. In all three sets the vertices in the graph represent
users that have an account on the corresponding websites. The description part consists of tags
used by the corresponding users.

6.1.1 Last FM

On www.last.fm users can connect themselves with other users by adding them as friend. The
graph defined by this friendship links is used as the graph data in this data set. Users can play
music and a list of played songs and artist is kept in the database. Each artist is associated with
one or more specific music styles, like song for peace, piano, death metal or pop. The description
data is a matrix with music styles as attributes, A = {song for peace, piano, death metal, pop,
. . .}. The description matrix has attribute xji = 1 when user vi has played a song of an artist

associated with music style aj ∈ A and xji = 0 otherwise.

6.1.2 Delicious

Delicious is a website where users can share their bookmarks. Each user has a contact list, in this
list they can save the users from which they like the bookmarks. We used the contact lists of a set
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of users as the input for constructing the graph. Users can categorize their bookmarks by adding
tags to a bookmark. The description data is a matrix with these tags as attributes, A = {search
engines, travel, bookstores, . . .}. The description matrix has attribute xji = 1 when user ri has

tagged a bookmark with tag aj ∈ A and xji = 0 otherwise.

6.1.3 Flickr

The Flickr data set is preprocessed into three different data sets. For each data set the graph is
the same, it is constructed from the explicit social network Flickr is. For the description space the
tags users assigned to photos are used. The set of description attributes could be A = {waterfall,
building, Nikon, pretty woman, . . .}. The problem with this data set is that there are so many
tags that it is not useful to use them all. Tags that are used very often probably not tell something
specific about a set of users, e.g. Nikon. On the other hand, tags that are use only few times, like
me on the moon are also not very useful. We ordered the tags by the frequency that they occur
in the database. We first removed the top 5% tags.

After that we wanted to have three different sets of tags, to see the difference in performance
with different sets of tags. That is why created three different data sets. We allowed tags with a
frequency of at least: 100, 250 and 500. This resulted in three sets of attributes of different sizes:
attributes(Flickr S) ⊂ attributes(Flickr M) ⊂ attributes(Flickr L). The description matrix has
attribute xji = 1 when user vi has tagged a photo with tag aj ∈ A and xji = 0 otherwise.

6.2 Synthetic Data

To compare the results of our quality measure with other methods of finding communities in
graphs we also created description data with CFinder. CFinder is a tool to find communities
using the Clique Percolation Method [2]. This is a well-known method for finding communities.
Creating description data based on the communities found with CFinder should result in compact
descriptions, because the description data is based on community stuctures.

As input networks in CFinder we used several graphs from real social networks. We used
CFinder to find a set of communities C in these graph. We filtered the set of communities found
by CFinder by requiring a minimum size for each community. The minimum size we used is

different for each set. Our goal was to have the number of attributes |V |8 < |A| < |V |
2 .

We used each community C ∈ C as an attribute ai in the attribute space A. Each community
Cj ∈ C found by CFinder is seen as an attribute in the generated description matrix A. The
description matrix has attribute xji = 1 when user vi is a member of community Cj found by

CFinder, and xji = 0 otherwise.
After generating the attributes based on the communities found by CFinder 4 × |C| extra

attributes are added to the description matrix A as noise. The values of these attributes are
initially 0 for all records. Now we have the total set of attributes, we only need to add some noise
to make the data more realistic. That is done by flipping each value xji in the description matrix
from 0 to 1, or from 1 tot 0 with a chance of 0.025. We chose for 0.025 because that is the average
density of the real data sets.
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Chapter 7

Experiments

In previous sections we defined the problem, discussed related topics, listed down the algorithms
and described the data. These are all the tools we need to have before start running experiments.
In this section we show step by step that the algorithm works and what results we can get.

7.1 Setup

7.1.1 Hardware

All experiments are done with a Windows 7 64 bit Professional operating system. The system
contains an Intel i7 Q740 processor. This processor has 4 cores and supports hyper threading.
The system has 12 GB internal memory. For all the experiments we used 8 threads at the same
time.

7.1.2 Software Implementation

We created our own software package and data format to run all the experiments. The software
we created for doing the experiments is written in C# with .NET 4.0. Both for the graph data,
and the description data we used a matrix implementation. Each row vector in the matrices is a
bit array. These are arrays of integers with each bit representing an entry in the matrix. After the
generation of candidates the EMDM iterations are done in multiple threads. A shared HashMap
used as object to store the previous states.

7.2 Graph Space

In this subsection we present experiments in the graph space only. That means we only consider
the EM step in only one operation of the EMDM algorithm. The EM algorithm given in Algorithm
4 is a hill climbing algorithm. Given a candidate, i.e. a set of vertices, it starts improving it till
the community is in a local optimum. This section is about the steps from the candidate to the
local optimum.

7.2.1 EM Step (GreCO)

In Section 5.3 we already showed that the GreCO algorithm we use will always terminate. We
start with an example, on a small subset of the graph part of the Delicious data set. We took
the first 250 vertices from the original Delicious graph, and all 1426 edges that are between these
vertices. The only reason to reduce the number of vertices is just because it is not possible to
visualize all the 1861 nodes and distinguish the colors of the resulting communities.
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Figure 7.1: Resulting communities in the first 250 vertices from the Delicious data set

In Figure 7.1 we show the resulting communities of applying the EM steps on the reduced
Delicious data set. Each community found has different color and a different number. It is easy to
verify that the communities found by the algorithm make sense. Some vertices were part of more
than one community. In that case the vertex is colored with the color of the community with the
highest community gain. The white vertices are not part of any community.

In the next subsection we go more in to detail to show that our quality measure makes sense.
We will do this by comparing them with other quality measures used in the field of community
detection.

7.2.2 Community Gain

In the previous subsection we gave an indication that the EM algorithm works by just looking at
one image. Now we will proof that it works by comparing it with other common quality measures.
The measures we compare ours with are inverse conductance, intra cluster density, and modularity.
For each data set we used the community with the highest community gain as example.

Inverse Conductance

The first quality measure we compare the community gain with is inverse conductance. This
quality measure is a very simple network community score. It can be thought of as the ratio
between the number of edges inside the community and the number of edges leaving the community
[10]. That is:

Inverse conductance(C) = 1− |{(u, v) : u ∈ C, v ∈ C}|∑
u∈C degree(u)
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A higher value for the inverse conductance means a better community. In Figure 7.2 we show
that an increase of the community gain also implies an increase of the inverse conductance of the
same community.

(a) Delicious (b) Flickr (c) Friendster

(d) Flixster (e) Last FM

Figure 7.2: Community gain and inverse conductance in each GreCO step

Intra Cluster Density

The intra cluster density is the ratio of the number of edges in a community C, and the number
of edges if the vertices vi ∈ C if the community were a clique. That is:

Intra cluster density(C) =
|{(u, v) : u ∈ C, v ∈ C, v 6= u}|

|C|(|C| − 1)/2

Figure 7.3 represents the graphs of the community gain and the intra cluster density. The intra

cluster density tends to stabilize around 0.5. Compared to the density |E|
|V |2 of the whole graphs, as

shown in Table 6.1 on page 27 the intra cluster density of the communities found is much higher.
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(a) Delicious (b) Flickr (c) Friendster

(d) Flixster (e) Last FM

Figure 7.3: Community gain and intra community density in each GreCO step

Modularity

One of the most used measures to quantify the quality of a community is modularity. Modularity
is the ration between the number of edges between the vertices of a community, and the expected
number of vertices in the null model [10].

A good null model of a social network can be generated by cutting all the edges into two stubs.
To generate the null model G′(V,E′), two random stubs are drawn from all remaining stubs and
connected. This is repeated till all the stubs are connected to another one. The new graph is the
null model. All vertex degrees have the same as in the original graph, but the edges are different.
The modularity of a community is the ratio between the real number of edges and the number of
edges in the null model. That is:

Modularity(C) =
1

4m
(|{(u, v) : u, v ∈ C, (u, v) ∈ E}| − |{(u, v) : u, v ∈ C, (u, v) ∈ E′}|)

An easier way then generating null models on this way is by using the vertex degrees and
number of edges in the graph for generating the null model. That is what we used for calculating
the modularity:

Modularity(C) =
∑

u,v∈C×C
(|{(u, v)} ∩ E| − degree(u)× degree(v)

2× |E|
)

In this formula |{(u, v)} ∩ E| is 1 if there is an edge between vertex u and vertex v, and 0

otherwise. degree(u)×degree(v)
2×|E| is the chance of the existence of a an edge between u and vertex v

in the null model.
The resulting experiments displayed in Figure 7.4 show that an increase in community gain

also resulted in a higher value for the modularity.
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(a) Delicious (b) Flickr (c) Friendster

(d) Flixster (e) Last FM

Figure 7.4: Community gain and modularity in each GreCO step

7.3 Candidate Selection

The EMDM algorithm begins with a candidate set of communities C. Finding a community and
finding the corresponding description is a complex operation that takes much time from the CPU
and memory. That is why it is important to reduce the number of candidates that we use as input
of the EMDM algorithm. In Section 5.2 we proposed four algorithms.

7.3.1 Singletons

This algorithm works very well in terms of results, but generates many candidates. We investigated
this algorithm but treated it as a special instance of the minimum shortest path algorithm with a
minimum distance minDist = 0.

7.3.2 Tiling

This algorithm worked very well on the small graphs, but finding tiles in larger graphs seemed
impossible within a reasonable amount of time because of the large size of the data. One of the
requirements of the candidate finding algorithms was that they are fast, the goal is to reduce the
total time. The tiling algorithm clearly does not meet this requirement. That is why we did not
spend any time on further research.

7.3.3 Based on Description

This algorithm is useful when you want to start with a description as input. In that case speed
is not a requirement, it is just another way of generating input. In fact the algorithm starts with
the DM step when using this algorithm to generate the candidates.

7.3.4 Minimum Shortest Path

This algorithm, introduced in Section 5.2.3 tried to find candidates that have a given minimum
shortest path distance from each other. This way different candidates are generated from different
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areas on the graph. We investigated the relation between the minimum distance minDist, the
number of candidates generated, and the community gain in the top-k results.

Table 7.1 gives us the number of candidates generated with values 0 ≤ minDist ≤ 5. In some
data sets there was no shortest path longer than a certain minDist value. At that point only one
candidate is left in a connected graph.

minDist

Data set
0

(Singletons)
1 2 3 4 5

Delicious 1861 508 267 180 1 1
Flickr 100267 31992 7214 2006 175 62
Flixster 25000 5684 208 1 1 1
Friendster 32768 6508 695 1 1 1
Last FM 1892 741 217 101 1 1

Table 7.1: Number of candidates with each minDist value.

Our goal was to reduce the number of candidates without reducing the community gain. We
looked at the top-k communities found, ordered by community gain and then by size. The value for
k is dependent on the data set. Figure 7.5 gives us the community gain at the top-k communities.
It is easy to see that the community gain is going down at a higher minDist value. But at
minDist = 1 the decrease is really small or almost nonexistent. In the Flickr data set the
decrease in community starts at minDist = 3, compared to the minDist = 0 only 2% of the
number of candidates is left. The experiments that minDist can often be increased without
negatively affecting the community gain of the top-k, effectively making search more effective

(a) Delicious (b) Flickr (c) Flixster

(d) Friendster (e) Last FM

Figure 7.5: Number of candidates with each minDist value

7.4 Classifiers

The biggest problem we had was to find a suitable classifier for using in the DM step. A classifier
needs to have these properties:
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• It should not take too long to build them, since each candidate in each EMDM iteration a
classifier needs to be build.

• It should have a good precision/recall score. Otherwise it does not describe the community
found in the EM step.

• Part of the goal or our research is characterizing communities. So it should be possible to
transform the classifier into something that is easy to interpret by humans.

We tried many different classifiers like decision trees, nearest neighbor, emerging patterns,
ReMine, our own adaption of ReMine as explained in Section 5.4.1, and few others.

7.4.1 Decision Trees

Our first idea was to build a decision tree. For each attribute aj the information gain when
splitting on each attribute is calculated. This is done by first splitting the database into two
partitions and then calculating the information gain.

Paj=1 = {ri ∈ DB : rji = 1}
Paj=0 = {ri ∈ DB : rji = 0}

IG(aj , DB) = impurity(DB)−
(
|Paj=1|
|DB|

× impurity(Paj=1) +
|Paj=0|
|DB|

× impurity(Paj=0)

)
with

impurity(P ) =
|{ri ∈ P : ri ∈ C}|

|P |
× |{ri ∈ P : ri ∈ C}|

|P |

The attribute with the highest information gain is chosen as split node. All records ri with
label rji = 1 (Paj=1) go to the left side of the split node, all other nodes (Paj=0) to the right
side. After this is done this step is repeated in recursion on both partitions Paj=1 and Paj=0 until
there is a three with leaf nodes with an impurity of 0 or no improvement is possible. The class
label belonging to a leaf node is determined by the majority of class labels of the corresponding

partition. So if the majority of the records belong to C, i.e. |{ri ∈ Pleafnode : ri ∈ C}| > |Pleafnode|
2

a leaf node has class label 1.
After the classifier is build a record ri can be classified by entering the tree at the root and go

left or right dependent of the values ri for the split nodes. When arrived in the leaf node the class
label of the leaf node is assigned to the record.

The problem was that the decision trees we either very large, for example > 2500 nodes for all
of the top-50 communities from the 25000 records Flickr L subset, which is overfitting. We tried
to balance this by introducing a maximum height of the decision tree, but that did not work out.
We also tried changing the majority rule to determine the class labels of the leaf nodes, instead

of just looking to the majority class we tried something dependent in of the ratio |C|
|DB| . When we

did this the precision and recall dropped from almost 1 to 0.1. Overall was not possible to create
a classifier with decision trees that satisfied all of the requirements.

7.4.2 Nearest Neighbor

For both partitions C and C a vector NN with length |A| is created. This vector contains the
average number of 1 values for each attribute in each partition. The vectors have the following
values:
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∀aj ∈ A : NNC [j] =
|{ri ∈ C : rji = 1}|

|C|

∀aj ∈ A : NNC [j] =
|{ri ∈ C : rji = 1}|

|C|

Now a record ri is classified by calculating the Euclidean distance between ri and the vectors
NNC and NNC . If the distance to NNC is the smallest, ri is classified as belonging to the
community, otherwise ri is classified is not belonging to the community.

Unfortunately the precision and recall values obtained with this classifier where really bad,
both below 0.25. That is not enough for this research.

7.4.3 Emerging Patterns

Another approach which looked promising was using emerging patterns. Finding a community C
could be thought of as splitting the database into two partitions, C and C. Emerging patterns
are patterns that are frequent in one partition and not frequent in the other [3]. These properties
are exactly what we want, they characterize the difference between C and C.

Unfortunately finding emerging patterns is an expensive operation, and it did not work out on
the large and sparse data sets we have.

7.4.4 ReMine

We started with implementing the original ReMine[17] algorithm which uses FPTrees[7]. This
algorithm finds the optimal pattern to split on. Unfortunately finding optimal split patterns took
too long. That is why we modified the algorithm on such a way that it does not find the optimal
pattern, but a good one. This modification is explained in Section 5.4.1

With this adapted version of ReMine we were able to find a classifier that satisfies all of our
requirements:

• It does not take too long to build them.

• It has a decent precision/recall value.

• By transforming it into a tag cloud it is easy to interpret them.

Dependent of the size and the density of the description data it is possible to tune the algorithm
with the two parameters. A longer beam and a longer maximum pattern length increase the
runtime, but also increase the precision/recall scores.

Examples of the results found with this classifier are demonstrated in the section with the final
results, Section 7.5.3.

7.5 Overall Results

7.5.1 Stop Criterion EMDM

In Section 5.1.1 we discussed the stop criterion we introduced to guarantee the termination of the
EMDM algorithm. We had two solutions to do this:

• Maximum iterations

• Saving history
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Figure 7.6: Number of iterations

The experiments showed that these methods worked really well. We chose a maximum number
of iterations maxIterations = 5 and ran the experiments. During the experiments we counted
how many iterations each candidate did before it was in a state that was seen before. It turned
out that only few communities were stopped because maxIterations was reached. Table 7.2 and
Figure 7.6 show the number of communities that used each 1 ≤ n ≤ 5 iteration before they were
in a state as seen before. It is very easy to see that most candidates only need 2 EMDM iterations
before they are the same as seen before, by themselves or by another candidate.

Data set 1 2 3 4 5 Total
Delicious 6 164 5 1 0 176
Flickr S 446 933 55 16 5 1455
Flickr M 437 943 60 8 5 1453
Flickr L 436 954 48 9 6 1453
Flixster 3 165 12 4 3 187
Friendster 877 1767 143 26 6 2819
Last FM 27 116 16 10 8 177

Table 7.2: Number of iterations before seeing earlier situation

7.5.2 Overlap

The EMDM algorithm allows overlap between communities. In fact, there is not a single measure
to prevent overlap. In many cases this is an advantage. We start first with the same example as
used in Section 7.2.1, now shown in Figure 7.7. The number in each vertex represents the number
of communities that it is part of. The darker the color, the more communities contain those vertex.

If we look at the central vertex indicated by the arrow it is easy visible from communities it
is part of (if not, look at Figure 7.1). This is a good example where overlap is useful. In social
networks overlap between natural communities is a very frequent occurring thing.
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Figure 7.7: Resulting communities in first 250 vertices from Delicious data set

The example given in 7.7 is very small. A few other examples from the larger data sets show
that allowing overlap is useful. For each data set there are many communities that have overlapping
vertices, but a majority of vertices that are not overlapping. A real world example could be a
person that is friends with both friends from the city where he is born, and the city where he
studies. He himself is the overlap, the two groups of friends are the two different communities he
is a member of. Table 7.3 gives an example from each data set we did experiments with.

Data set |C1| |C2| |C1 ∩ C2| |C1 ∪ C2| Overlap
Delicious 14 13 2 25 8.0%
Flickr M 352 200 36 516 7.0%
Flixster 45 56 3 98 3.1%
Friendster 63 52 10 105 9.5%
Last FM 26 11 1 36 2.8%

Table 7.3: Overlap examples

Preventing too Much Overlap

Sometimes the communities found by EMDM are very similar. The method of saving history as
explained in Section 5.1.1 and proved to be useful in Section 7.5.1 has a second advantage except
speeding up the whole process and guaranteeing termination. It also filters duplicate communities
from the resulting community set.

It turned out that the EM step has a very strong preference for certain communities. That
is why reducing the number of candidates worked so well. But in many cases it turned out that
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Figure Data set ID Patterns Total length Attributes |C| CG(C)
7.8a Flickr L 996 33 377 32 58 1188
7.8b Flickr L 1361 25 406 30 125 3647
7.8c Flickr L 1922 46 593 39 75 2011
7.8d Last FM 5 3 10 5 9 27
7.8e Last FM 217 4 14 4 7 18

Table 7.4: Pattern lengths for example communities

EMDM found a few large communities with only one vertex different from each other. The union
of these communities had a lower community gain score than each individual, so it was not in the
result set.

For those cases we did some post processing by requiring a minimum Jaccard distance. The
Jaccard distance is defined as:

JD(C1, C2) =
|C1 ∪ C2| − |C1 ∩ C2|

|C1 ∪ C2|
A higher Jaccard distance between two communities means less overlap. In the post processing

a minimum Jaccard distance of 0.25 turned out to work pretty well. But this can be different on
different data sets, and it may be very useful to look at the similar communities and think about
why they are not one community.

7.5.3 Communities Found

Our goal was to find communities, with compact descriptions. In this subsection we present some
examples communities we found. In the examples we separate the results from the real world data
sets and the data sets we generated with CFinder.

Real World Data

We have three real world data sets, Delicious, Flickr, and Last FM. In each of these data sets we
were able to find good results on the graph part. It turned out that the classifiers we found were
very complex and large to interpret. They consist out of many conjunctions. In Table 7.4 some
of the communities we found are shown.

Each of the n patterns is a conjunction of one or more attributes. The total classifier is the
disjunction of all patterns, it has the same form as specified in Section 3. The total length is
the sum of the lengths of all patterns. The attributes column gives us the number of distinct
attributes used in the classifier. Although the total length is quite high, the number of attributes
is much lower. This means there is a lot of similarity between each of the patterns.

To interpret a classifier we looked at all the distinct attributes aj ∈ QC one by one. We looked
at the information gain when splitting DB on aj . The higher the information gain, the more
important the attribute is for the community.

The information gain is calculated as:

IG(C, aj) = impurity(DB)− (
Pc=0,aj=1 + Pc=1,aj=1

|DB|
+
Pc=0,aj=0 + Pc=1,aj=0

|DB|
)

After splitting DB on aj we now how important an attribute is to a community C. Attributes
can contribute both in a positive or a negative way. If the ratio inCom

inCom+outCom of records ri

containing attribute aji = 1 is higher before the split, an attribute is contributing negative, i.e. a

record ri having aji = 1 is less likely to be a member of the community than another record rk
having ajk = 1.
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(a) Flickr L community 996

(b) Flickr L community 1361

(c) Flickr L community 1922

(d) Last FM community 5 (e) Last FM community 217

Figure 7.8: Tag clouds for different communities

To make it easier to interpret the complex classifiers we visualized them using tag clouds. More
important tags are larger, and less important tags are smaller. Tags in green are contributing
positive, tags in red are contributing negative. The tag clouds are from the same communities as
mentioned in Table 7.4.

It is very clear that the tags are related to each other. Unfortunately we did not find any
compact descriptions from the Delicious data set that can be easily presented here.

CFinder Data

The data sets generated with CFinder have description data that is created from community like
structures. We expect shorter communities than with the real world data sets. In Section 4.3
we discussed the quality measure to quantify the quality of the communities. As quality measure
ϕ(C) for the graph part we used community gain, and as description complexity measure ρ(QC)
we use the number of attributes used in the description query. The total objection function is
ϕ(C)
ρ(QC) . We ordered the results descending according to these score function and took the top-k

communities found.
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(a) Friendster top-250 (b) Flixster top-188

Figure 7.9: Top-k communities

Data set minDist |Candidates| EM only time (s) EMDM time (s) EM/Total
Delicious 3 180 0.5 47 1.1
Flickr L 3 2006 1493 219373 0.7
Flixster 2 208 0.9 4585 0.02
Friendster 1 6508 28 69408 0.04
Last FM 2 217 0.7 82 0.9

Table 7.5: Runtime of different experiments

Figure 7.9 is a plot of the description complexity ρ(QC) and the community gain of the two
data sets we generated with CFinder. In the Friendster data set we found far more communities
with a high community score. This is mainly caused due to the graph part of the community. This
can be verified by looking at the differences between the two data sets in Figure 7.5 in Section 7.3.

In both data sets we found communities that are large, and have a high community gain score.
All the communities found have queries consisting of less than 22 attributes, and the majority has
even less than 12.

7.5.4 Runtime

The EM algorithm we developed is quite fast, unfortunately the DM part took much more time.
With CFinder we were only able to find communities in the few social graphs we had with low
density, and even then it was not possible to find communities in graphs with more than 25000
vertices. In our EMDM approach very much time was spent in building classifiers. We think
the method used in the EM step can also be very useful in other applications than the EMDM
algorithm. That is why we also illustrate the performance of the EM step without finding classifiers.
For all data sets we used the lowest minDist settings that did not cause a significant drop down
in the quality of the result. Table 7.5 gives us the runtimes of the complete experiment. This
also includes the time of reading the description matrix and the graph from the disk, generate
candidates, do the filtering at the and, and sort the result according to the community score.

7.5.5 Communities found

In appendices A, B and C we listed the communities found by our research, and gave a summary
about it. Appendix A is a table of statistics about the top-50 communities found. Appendix B
is a table of statistics about all the communities found. Appendix C lists the top-50 communities
themselves, with scores of every community found.
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Related work

The problem of community detection is a topic on which much research is done, and with many
different methods. See [10] for an empirical comparison of different algorithms and quality mea-
sures. Most of the methods only focus on the graph part of networks, not on the description data
that we consider as well. The majority of the methods do graph partitioning, i.e. assigning each
vertex to exactly one community.

Kahn, Yan and Wu introduce the concept of proximity patterns in [8]. Many traditional methods
use the concept of frequent patterns, which are patterns occurring frequently in the database.
Proximity patterns try to blur the boundary between the graph data and the description data.
When mining proximity patterns not only patterns within one vertex are considered. Patterns
can also exist of one attribute of a vertex u, and one attribute of a vertex v, as long as there is
an edge (u, v) ∈ E. They developed a model called Nearest Probabilistic Association to define the
frequency of a proximity pattern. This approach transforms the problem of finding communities in
graph and attribute data into something similar as traditional frequent pattern mining; for which
many methods exist. They also developed an adapted FP-tree algorithm which is quite fast.

In literature there is not a single accepted definition for a cluster in a graph. Silva, Meira and
Zaki suggest using γ-quasi-cliques in [13]. An γ-quasi-cliques with 0 < γ ≤ 1 is a set of vertices V
where every vertex v ∈ V is connected to at least γ(|V | − 1) vertices. This paper introduces the
SCORP algorithm. It starts with mining all frequent item sets for all users. For each frequent item
set it selects the set of vertices containing all items. Then it finds all quasi-cliques in these sets, and
tries to adjust the set of items selecting these vertices. A big disadvantage of this approach is that
it needs to find all frequent item sets, that can be a very large set with a low minimum support σ.
Another disadvantage is that there are a many parameters to tune: γ, σmin, εmin,minsize. There
is no general good set of settings, it heavily depends on the data set.

Moser, Colak, Rafiey and Ester introduce a problem similar to our problem as finding cohesive
patterns in [11]. A cohesive pattern is defined as a connected sub graph whose density exceeds a
given threshold. Furthermore a cohesive pattern has, in a large enough subspace, homogeneous
feature values. Integrating constraints on the frequent item sets reduces the number of patterns
substantially. They developed an algorithm called CoPaM that efficiently finds the set of all
maximal cohesive patterns. The results of this method set are reasonable, but the size of the data
sets is many times smaller than the data sets we used (742 vs. 100267). With patterns longer
than 5 it was not possible to generate them because of memory overflow.

Atzmueller and Mitzlaff use subgroup discovery as a framework to find communities in [1]. A
subgroup discovery function sd(s) is more or less what we call community queries. This description
selects certain vertices of DB. They start with building an adapted version of FP-trees. Every
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tree node of the FP-tree also store edge information about the community they represent. After
generating these FP-tree upper bounds of the possible community qualities can be calculated. By
calculating these upper bounds, an algorithm called COMODO can order, sort and prune this
tree and efficiently find communities. They use traditional quality measures like modularity and
inverse conductance to quantify the quality of a community.

There are many studies to detection of communities in networks, they are related to both social
networks, and physics. In physics network analysis is a frequently studied topic, for example in.
Many of these studies focus on the graph part only, not on the description atrributes. Du et
al.[4] propose an algorithm ComTector in. They start with finding maximal cliques as first step
in finding communities and use these to find communitues.
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Conclusions

During the experiments we were getting more and more convinced that our approach of finding
communities is a very useful one. Our goal was to find cohesive communities with concise descrip-
tions. This turned out to work really well with our approach. The algorithm was fast enough
to work on large data sets, and we found many communities with descriptions that made sense.
Allowing overlap turned out to be very useful.

In the introduction we mentioned an example of the beer brand that wants find the right
public to sell their tickets to. When looking at the community shown in Figure 7.8d on page 40
this is exactly the group we wish to find in the introduction. When we change ”beer brand” to
”airline” and ”rock festival tickets” to ”tickets to Mexico” we would be very satisfied with the
results displayed in Figure 7.8c.

We will explain the most important results of our research slightly more formal.

9.1 Community gain

The quality measure community gain we defined in this thesis seems to be very useful. A better
community gain score implied a better modularity, inverse conductance, and a far higher intra
cluster density than over the whole graph. This strong proves that the community gain score is a
good score to define the quality of a community. When looking at the picture shown in Section
7.1 it is easy to verify that the communities make sense. Groups of vertices that are close together
and have many internal edges belong to the same community. A large advantage of the community
gain is that it is quite easy to optimize, as we have proven with the GreCO heuristic.

9.2 EMDM Algorithm

The EMDM algorithm did not work out on the way as we hoped it would. We hoped that both
the EM and the DM step would improve the community each iteration. The idea was that the
community would converge to a final state and that the EM or DM step would not change the
algorithm. The experiment in Section 7.5.1 illustrates that in many cases the algorithm just
alternates between one community found in the EM step, being adjusted in the DM step, and
then goes back to the same result as found in the EM step. Om the other hand; it demonstrates
that the EM step is very powerful, it has a strong preference for certain communities.

The EMDM algorithm with a candidate set as input also allows overlap. In our opinion allowing
overlap is a very natural thing in social networks. People have certain circles of friends, which have
small overlap. By prohibiting overlap it is never possible to find natural communities. Experiment
7.5.2 confirms our vision on this point.
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9.2.1 Local search

Working with candidates that only look at vertices in the same area of the graph, and no need
to look at the whole graph is a good property. It makes is possible to run different candidates in
parallel. In an era where computers are getting more and more processors this is useful. Another
advantage of local search is that there is no need to divide the whole graph into communities
before knowing the quality of the partitioning.

9.2.2 Candidate Set

A big advantage of our approach is that it is possible to start with both the EM and the DM
step. This makes it possible to generate candidates based on a description, which could be very
useful in some cases, like advertising. The idea of reducing the number of candidates by requiring a
minimum distance between each candidate worked really well. It reduced the number of candidates
very much, without reducing the accuracy.

9.2.3 EM step

With CFinder it was possible to find the communities in graphs till about 25 thousand vertices,
after that it took more than the 10 GB memory available in the computers we used. It also took
more than 24 hours to find all the communities with graphs of this size. With our program finding
all communities in the Flickr data set (100267 vertices), with a setting of minDist = 3 takes only
24 minutes. This makes it a very useful method for finding communities in large graphs.

9.2.4 DM step

We had the many problems with finding good descriptions for each community. It was possible
to find a very good classifier, but then it was so large that it was not possible to interpret it by
hand. With the adapted ReMine approach and our method of determining the importance of each
tag in the classifier we were able to generate tag clouds. These tag clouds made it possible to
characterize the communities. Unfortunately finding descriptions was a complex operation. For
the Flickr L data set, with minDist = 3 the EM steps took only 1.16% of the total runtime. The
rest was for the DM steps.

9.3 Future research

Although we are very satisfied after the research there are many points interesting for further
investigation.

9.3.1 Description space

All the data we used for the description data was tag data. The EMDM algorithm does not
restrict the data to be binary tag data. The most problems we had during the research, had to do
with the classifiers. It would be very interesting to try to work with different types of data and
algorithms on the description side. It could also result in a more useful application of the EMDM
algorithm, where it slowly converges into good communities.

9.3.2 Graph space

We focused on undirected, unweighted graphs only. But it can be useful to work with weighted
graphs and/or directed graphs. For example two persons, queen of pop Madonna and one of her
million fans can have a friendship link. Probably the fan knows much more about her, than other
way around. This could be modeled with a directed graph.
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Using weights for edges could also be interesting. In our research we just say people are friends,
or they are not. Instead of using this binary value we could make it an integer dependent on how
close their relation is. This can be done by counting how often they chat with each other, watch
each other’s profiles, or check each other’s photos.

9.3.3 Post processing

As mentioned before, the EM step has a strong choice for certain communities. It finds many
communities that are more or less similar. We now solved it by filtering them on a minimum
Jaccard distance. May be there are better ways, for example by combining similar communities
in the result set to something better.
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Appendix A

Summary Top-50 Communities

This appendix gives the average scores of the top-50 communities found in the data sets. For
readability and because of the number of columns the data is split into two tables.

Data set |tags| Density |V | |E| minDist #Candidates
Delicious 1350 0.0389 1861 7664 3 180
Flickr S 2791 0.0298 100267 3781947 3 1453

Flickr M 7565 0.0136 100267 3781947 3 1453
Flickr L 16215 0.0072 100267 3781947 3 1453
Flixster 5844 0.0252 25000 221625 2 208

Friendster 8088 0.0252 32768 267528 1 6508
Last FM 11946 0.0015 1892 12717 2 217

Table A.1: Summary of top-50 communities found

Data set Size CG ICD #Patterns #Attributes Length Score Runtime
Delicious 13.3 101.6 0.78 4.5 12.9 43.3 95.80 7.8
Flickr S 78.7 2584.4 0.55 16.3 26.9 297.4 829.60 167.9

Flickr M 78.1 2550.4 0.55 16.3 24.3 273.8 856.30 187.5
Flickr L 83.3 2744.4 0.54 23.3 25.9 405.9 858.40 246.2
Flixster 24.4 311.1 0.61 5.2 10.8 39.6 124.20 29.9

Friendster 41.1 606.8 0.58 4.2 9.0 29.3 3029.70 66.9
Last FM 17.2 97.2 0.55 5.6 9.4 39.1 86.90 10.9

Table A.2: Summary of top-50 communities found
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Appendix B

Summary Found Communties

This appendix gives the average scores of all the communities found in the data sets. For readability
and because of the number of columns the data is split into two tables.

Data set |tags| Density |V | |E| minDist #Candidates #Communities
Delicious 1350 0.0389 1861 7664 3 180 167
Flickr S 2791 0.0298 100267 3781947 3 1453 835

Flickr M 7565 0.0136 100267 3781947 3 1453 843
Flickr L 16215 0.0072 100267 3781947 3 1453 848
Flixster 5844 0.0252 25000 221625 2 208 173

Rriendster 8088 0.0252 32768 267528 1 6508 1530
Last FM 11946 0.0015 1892 12717 2 217 134

Table B.1: Summary of communities found

Data set Size CG ICD #Patterns #Attributes Length Score Runtime
Delicious 7.3 39.0 0.77 3.1 9.6 25.1 88.10 3.2
Flickr S 10.7 181.1 0.61 4.4 13.5 51.2 965.90 11.4

Flickr M 10.6 177.6 0.61 4.25 11.3 43.2 967.90 12.7
Flickr L 11.0 190.2 0.62 4.7 10.4 49.8 966.50 16.3
Flixter 11.0 97.2 0.58 3.8 9.6 26.1 102.60 9.4

Friendster 14.5 101.1 0.60 4.3 10.7 29.7 2945.80 10.0
Last FM 8.9 39.5 0.61 4.2 6.5 21.3 107.40 4.7

Table B.2: Summary of communities found
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Appendix C

Top-50 Communities Listed

This appendix lists the top-50 communities found in the data sets we used, with respect to the
score function. Each data set takes one full page.

• Delicious, Table C.1 on page 53.

• Flickr S, Table C.2 on page 54.

• Flickr M, Table C.3 on page 55.

• Flickr L, Table C.4 on page 56.

• Flixster, Table C.5 on page 57.

• Friendster, Table C.6 on page 58.

• Last FM, Table C.7 on page 59.
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 49 20 353 0.95 7 13 56 27.1
2 59 49 768 0.55 15 29 246 26.4
3 77 18 291 0.96 7 14 49 20.7
4 44 12 108 0.87 3 6 12 1
5 165 10 90 1 2 5 7 1
6 124 14 149 0.87 3 10 23 14.9
7 84 12 102 0.84 3 9 16 11.3
8 1 13 111 0.80 3 10 17 11.1
9 82 18 168 0.69 5 18 58 9.3
10 153 14 113 0.74 5 13 39 8.6
11 106 9 57 0.86 3 7 14 8.1
12 69 8 56 1 3 7 15 8
13 137 16 87 0.57 3 11 23 7.9
14 177 19 102 0.53 5 13 51 7.8
15 16 9 66 0.94 4 9 22 7.3
16 18 12 102 0.84 4 14 32 7.2
17 123 14 122 0.78 5 17 45 7.1
18 107 22 99 0.47 5 14 43 7.0
19 143 7 42 1 2 6 9 7
20 127 12 90 0.78 4 13 30 6.9
21 55 25 150 0.5 9 23 146 6.5
22 158 10 84 0.95 4 13 37 6.4
23 4 11 74 0.78 4 12 30 6.1
24 176 6 30 1 1 5 5 6
25 160 11 83 0.83 3 14 34 5.9
26 14 19 102 0.53 8 18 101 5.6
27 142 19 102 0.53 8 18 100 5.6
28 140 7 39 0.95 2 7 10 5.5
29 161 22 96 0.47 6 18 64 5.3
30 57 7 42 1 3 8 18 5.2
31 146 7 42 1 2 8 12 5.2
32 48 19 99 0.52 6 19 64 5.2
33 118 6 30 1 2 6 8 5
34 113 12 60 0.63 4 12 34 5
35 150 9 60 0.88 4 12 32 5
36 37 22 99 0.47 6 21 78 4.7
37 154 11 89 0.87 5 19 53 4.6
38 92 7 42 1 3 9 15 4.6
39 95 10 60 0.77 3 13 28 4.6
40 173 15 96 0.63 6 22 88 4.3
41 174 10 39 0.62 4 9 21 4.3
42 175 8 56 1 5 13 34 4.3
43 40 19 99 0.52 9 23 124 4.3
44 79 8 38 0.78 3 9 20 4.2
45 42 8 41 0.82 3 10 20 4.1
46 58 9 57 0.86 5 14 50 4.0
47 33 13 48 0.53 4 12 31 4
48 32 13 63 0.60 4 16 44 3.9
49 62 8 53 0.96 4 14 36 3.7
50 39 6 30 1 4 8 21 3.7

Table C.1: Top-50 Communities Delicious
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 230 355 23154 0.45 2 8 13 2894.2
2 807 313 17661 0.45 2 8 13 2207.6
3 558 103 2970 0.52 1 5 5 5
4 891 193 13203 0.57 36 34 607 388.3
5 1892 184 8262 0.49 34 38 828 217.4
6 1624 196 9543 0.49 53 46 1288 207.4
7 19 121 3342 0.48 5 22 55 151.9
8 377 101 2945 0.52 10 27 141 109.0
9 361 101 3269 0.54 18 31 280 105.4
10 139 140 4952 0.50 61 50 1220 99.0
11 25 112 3069 0.49 19 33 349 9
12 894 71 1799 0.57 11 25 123 71.9
13 941 100 2949 0.53 32 42 653 70.2
14 603 58 1296 0.59 8 22 114 58.9
15 1117 73 1968 0.58 21 34 387 57.8
16 1833 82 2406 0.57 41 43 883 55.9
17 1526 44 776 0.60 6 15 59 51.7
18 311 100 2355 0.49 43 52 1071 45.2
19 996 58 1188 0.57 12 29 186 40.9
20 167 70 1335 0.51 22 33 351 40.4
21 1050 46 759 0.57 10 20 123 37.9
22 1073 70 1563 0.54 35 42 725 37.2
23 1496 43 591 0.55 5 16 56 36.9
24 134 52 822 0.53 8 23 111 35.7
25 1161 43 594 0.55 5 17 64 34.9
26 386 59 872 0.50 9 25 150 34.8
27 540 34 552 0.66 6 16 63 34.5
28 1002 40 651 0.61 5 19 57 34.2
29 957 58 1227 0.58 34 37 663 33.1
30 112 46 723 0.56 9 24 111 30.1
31 427 52 867 0.55 9 29 151 29.8
32 276 61 1002 0.51 30 34 639 29.4
33 439 42 468 0.51 4 16 45 29.2
34 914 49 672 0.52 16 24 231 2
35 988 55 1077 0.57 29 39 401 27.6
36 144 34 378 0.55 4 14 41 2
37 1157 46 591 0.52 10 22 167 26.8
38 1720 55 894 0.53 30 34 496 26.2
39 581 37 471 0.56 6 18 74 26.1
40 1298 40 600 0.58 9 23 126 26.0
41 457 56 956 0.54 13 39 256 24.5
42 1577 35 371 0.54 5 16 46 23.1
43 491 52 729 0.51 14 33 264 22.0
44 536 44 593 0.54 14 28 204 21.1
45 994 31 333 0.57 6 16 59 20.8
46 1931 52 696 0.50 19 35 380 19.8
47 829 42 639 0.58 11 33 209 19.3
48 756 20 191 0.66 3 10 20 19.1
49 1609 35 431 0.57 13 23 179 18.7
50 1137 31 465 0.66 9 25 132 18.6

Table C.2: Top-50 Communities Flickr S
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 1021 355 23157 0.45 3 6 12 3859.5
2 636 310 17667 0.45 5 14 39 1261.9
3 558 103 2970 0.52 1 4 4 742.5
4 251 121 3342 0.48 1 5 5 668.4
5 891 193 13203 0.57 15 23 166 574.0
6 194 184 8262 0.49 24 37 559 223.2
7 382 196 9531 0.49 127 60 3064 158.8
8 377 101 2945 0.52 23 28 382 105.1
9 361 101 3269 0.54 14 33 247 99.0
10 139 140 4952 0.50 57 50 1146 99.0
11 1056 112 3069 0.49 28 33 456 9
12 894 71 1799 0.57 9 20 76 89.9
13 1117 73 1968 0.58 16 25 187 78.7
14 603 58 1296 0.59 12 17 147 76.2
15 1833 82 2406 0.57 30 32 489 75.1
16 1413 97 2346 0.50 21 32 379 73.3
17 276 58 996 0.53 5 17 64 58.5
18 134 52 822 0.53 9 15 100 54.8
19 167 70 1335 0.51 10 27 134 49.4
20 1050 46 759 0.57 10 17 125 44.6
21 1526 44 776 0.60 12 18 138 43.1
22 540 34 552 0.66 4 13 41 42.4
23 1555 55 1080 0.57 16 27 204 4
24 1496 43 591 0.55 5 15 42 39.4
25 457 56 956 0.54 7 25 118 38.2
26 1073 70 1563 0.54 42 41 664 38.1
27 996 58 1188 0.57 32 32 360 37.1
28 427 52 867 0.55 14 24 193 36.1
29 1157 46 591 0.52 4 17 40 34.7
30 1931 52 696 0.50 9 21 97 33.1
31 1720 55 894 0.53 27 28 458 31.9
32 957 58 1227 0.58 31 39 645 31.4
33 112 46 723 0.56 9 23 105 31.4
34 574 61 1002 0.51 18 33 373 30.3
35 1298 40 600 0.58 10 22 133 27.2
36 386 59 872 0.50 13 32 251 27.2
37 1002 40 651 0.61 11 24 154 27.1
38 914 49 672 0.52 25 25 413 26.8
39 1577 34 369 0.55 3 14 23 26.3
40 581 37 468 0.56 5 18 56 2
41 675 43 594 0.55 15 23 162 25.8
42 342 49 669 0.52 13 30 203 22.3
43 439 42 468 0.51 8 21 122 22.2
44 1239 37 399 0.53 6 18 58 22.1
45 1137 31 465 0.66 6 21 92 22.1
46 1344 52 729 0.51 17 33 348 22.0
47 1789 28 321 0.61 6 15 45 21.4
48 628 35 425 0.57 9 20 104 21.2
49 759 34 378 0.55 7 18 87 2
50 829 42 639 0.58 9 31 181 20.6

Table C.3: Top-50 Communities Flickr M
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 1519 196 9546 0.49 1 2 2 4
2 1021 355 23157 0.45 3 6 12 3859.5
3 891 193 13203 0.57 28 17 279 776.6
4 566 307 17661 0.45 142 49 3920 360.4
5 1001 184 8256 0.49 32 28 537 294.8
6 155 101 2945 0.52 17 25 213 117.8
7 157 199 6561 0.44 119 62 3307 105.8
8 139 140 4952 0.50 61 47 1241 105.3
9 952 103 2970 0.52 19 29 258 102.4
10 1056 112 3069 0.49 32 30 491 102.3
11 894 71 1799 0.57 12 19 124 94.6
12 361 101 3269 0.54 42 39 667 83.8
13 791 122 3323 0.48 36 42 611 79.1
14 1403 100 2949 0.53 33 40 509 73.7
15 1117 73 1968 0.58 21 27 312 72.8
16 603 58 1296 0.59 13 18 151 7
17 1045 100 2355 0.49 26 38 423 61.9
18 1833 82 2406 0.57 46 39 593 61.6
19 134 52 822 0.53 8 15 76 54.8
20 167 70 1335 0.51 10 25 131 53.4
21 1526 44 776 0.60 6 16 70 48.5
22 1073 70 1563 0.54 27 33 495 47.3
23 132 81 1977 0.53 42 42 627 47.0
24 1676 37 471 0.56 5 11 37 42.8
25 540 34 552 0.66 4 13 39 42.4
26 988 55 1077 0.57 21 26 233 41.4
27 1050 46 759 0.57 9 19 111 39.9
28 1002 40 651 0.61 10 17 87 38.2
29 996 58 1188 0.57 33 32 377 37.1
30 574 61 1002 0.51 17 27 241 37.1
31 457 58 954 0.52 17 27 203 35.3
32 1157 43 591 0.55 5 17 45 34.7
33 386 59 872 0.50 8 26 125 33.5
34 1670 55 870 0.52 12 26 174 33.4
35 112 46 723 0.56 11 22 118 32.8
36 1789 28 321 0.61 7 10 37 32.1
37 505 62 848 0.48 34 28 557 30.2
38 1931 52 696 0.50 10 23 126 30.2
39 675 43 594 0.55 21 20 234 29.7
40 957 58 1227 0.58 32 42 666 29.2
41 144 34 378 0.55 6 13 60 29.0
42 439 42 468 0.51 7 17 69 27.5
43 450 49 666 0.52 17 25 210 26.6
44 628 35 425 0.57 7 16 65 26.5
45 1720 55 894 0.53 25 34 478 26.2
46 1298 40 600 0.58 17 23 218 26.0
47 1137 31 465 0.66 8 18 110 25.8
48 609 49 669 0.52 21 27 235 24.7
49 1415 52 729 0.51 16 31 311 23.5
50 81 30 372 0.61 8 16 82 23.2

Table C.4: Top-50 Communities Flickr L
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 64 79 2868 0.64 4 12 31 2
2 9 61 1614 0.62 2 7 11 230.5
3 141 56 1712 0.70 4 11 32 155.6
4 122 64 1515 0.58 10 13 104 116.5
5 167 43 843 0.64 2 8 13 105.3
6 95 34 495 0.62 2 6 11 82.5
7 163 63 852 0.47 10 16 105 53.2
8 162 64 840 0.47 12 16 122 52.5
9 207 22 237 0.67 2 5 9 47.4
10 181 19 171 0.66 3 6 16 28.5
11 154 41 326 0.46 8 13 75 25.0
12 127 31 204 0.47 5 9 30 22.6
13 153 31 333 0.57 5 17 51 19.5
14 23 16 114 0.65 3 7 16 16.2
15 169 37 291 0.47 9 18 91 16.1
16 198 21 144 0.56 4 9 30 1
17 97 15 105 0.66 3 7 16 1
18 170 22 132 0.52 5 9 28 14.6
19 20 28 198 0.50 7 14 65 14.1
20 149 24 195 0.56 6 14 46 13.9
21 81 30 207 0.49 11 16 101 12.9
22 46 19 102 0.53 4 8 21 12.7
23 197 25 114 0.46 4 9 29 12.6
24 183 24 174 0.54 7 14 52 12.4
25 172 12 96 0.81 4 8 19 1
26 5 35 212 0.45 8 19 89 11.1
27 94 31 207 0.48 10 19 99 10.8
28 103 10 54 0.73 2 5 9 10.8
29 45 16 84 0.56 5 9 31 9.3
30 159 13 96 0.74 4 11 27 8.7
31 61 13 87 0.70 3 10 19 8.7
32 106 7 39 0.95 2 5 8 7.8
33 123 19 96 0.52 5 13 37 7.3
34 69 22 105 0.48 7 16 68 6.5
35 137 13 54 0.56 5 9 27 6
36 205 22 102 0.48 7 17 60 6
37 176 11 44 0.6 6 8 38 5.5
38 165 13 57 0.57 5 11 25 5.1
39 173 16 69 0.52 8 15 82 4.6
40 114 8 35 0.75 4 8 18 4.3
41 178 9 48 0.77 5 11 28 4.3
42 92 13 42 0.51 4 10 21 4.2
43 180 7 33 0.85 4 8 18 4.1
44 196 10 27 0.53 3 7 15 3.8
45 96 7 30 0.80 3 8 14 3.7
46 145 10 45 0.66 6 13 42 3.4
47 2 10 30 0.55 4 9 21 3.3
48 105 9 27 0.58 4 9 17 3
49 158 9 30 0.61 5 10 28 3
50 72 5 20 1 3 7 15 2.8

Table C.5: Top-50 Communities Flixster
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 4726 69 1152 0.49 2 8 12 1
2 6378 70 1392 0.52 6 11 38 126.5
3 4328 46 705 0.56 2 6 10 117.5
4 407 63 1410 0.57 7 13 61 108.4
5 6370 52 1062 0.60 8 10 56 106.2
6 2366 40 507 0.55 3 6 13 84.5
7 5205 49 648 0.51 4 8 27 8
8 4825 54 1005 0.56 7 13 53 77.3
9 382 67 1137 0.50 7 15 60 75.8
10 4989 43 606 0.55 4 8 24 75.7
11 5156 38 650 0.64 4 9 24 72.2
12 10 41 650 0.59 4 9 24 72.2
13 5025 35 569 0.65 4 8 26 71.1
14 5927 70 1125 0.48 10 16 102 70.3
15 108 27 351 0.66 1 5 5 70.2
16 99 33 489 0.64 3 7 18 69.8
17 6055 61 888 0.49 5 13 36 68.3
18 1342 28 333 0.62 2 5 9 66.6
19 796 49 732 0.54 5 11 43 66.5
20 397 27 330 0.64 2 5 9 6
21 5284 50 851 0.56 5 13 39 65.4
22 5286 49 846 0.57 7 13 59 65.0
23 3468 31 447 0.65 3 7 16 63.8
24 4729 31 366 0.59 2 6 9 6
25 124 37 549 0.60 3 9 17 6
26 123 49 588 0.5 5 10 35 58.8
27 121 49 645 0.51 5 11 34 58.6
28 6496 45 585 0.53 5 10 32 58.5
29 5098 31 405 0.62 3 7 18 57.8
30 4797 34 507 0.63 4 9 24 56.3
31 4974 23 506 1 5 9 25 56.2
32 2246 31 393 0.61 3 7 18 56.1
33 972 36 498 0.59 5 9 42 55.3
34 6295 47 605 0.51 6 11 39 5
35 857 31 330 0.56 3 6 18 5
36 253 36 384 0.53 4 7 23 54.8
37 137 34 543 0.65 5 10 41 54.3
38 5360 35 488 0.60 4 9 22 54.2
39 5229 34 429 0.58 2 8 13 53.6
40 200 43 579 0.54 8 11 58 52.6
41 967 27 315 0.63 2 6 10 52.5
42 5213 35 419 0.56 2 8 14 52.3
43 2391 29 314 0.59 2 6 10 52.3
44 5186 31 417 0.63 4 8 28 52.1
45 1136 40 495 0.54 4 10 22 49.5
46 1899 40 543 0.56 4 11 37 49.3
47 2134 40 591 0.58 6 12 45 49.2
48 252 25 243 0.60 3 5 16 48.6
49 4915 26 242 0.58 2 5 9 48.4
50 451 43 474 0.50 5 10 41 47.4

Table C.6: Top-50 Friendster
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APPENDIX C. TOP-50 COMMUNITIES LISTED

Rank ID Size CG ICD #Patterns #Attributes Pattern length Score
1 108 43 330 0.45 3 3 6 1
2 43 40 330 0.47 4 7 17 47.1
3 195 43 348 0.46 7 12 45 2
4 110 42 366 0.47 10 13 98 28.1
5 49 25 297 0.66 7 12 44 24.7
6 165 41 347 0.47 16 18 176 19.2
7 148 28 309 0.60 10 17 110 18.1
8 185 43 354 0.46 20 22 241 16.0
9 42 42 348 0.46 15 22 160 15.8
10 14 16 54 0.48 4 4 10 13.5
11 28 16 81 0.55 4 7 17 11.5
12 158 13 45 0.52 4 4 10 11.2
13 193 13 45 0.52 4 4 10 11.2
14 2 11 38 0.56 2 4 5 9.5
15 100 16 81 0.55 4 9 25 9
16 61 10 30 0.55 4 4 10 7.5
17 8 15 51 0.49 4 7 21 7.2
18 15 19 84 0.49 6 12 36 7
19 84 16 48 0.46 4 7 19 6.8
20 83 16 54 0.48 4 8 19 6.7
21 191 19 81 0.49 7 12 49 6.7
22 1 16 66 0.51 5 10 35 6.6
23 71 15 51 0.49 4 8 21 6.3
24 45 7 42 1 4 7 19 6
25 44 15 60 0.52 5 10 28 6
26 145 8 29 0.67 4 5 14 5.8
27 5 13 51 0.55 4 9 25 5.6
28 88 16 45 0.45 5 8 27 5.6
29 17 9 36 0.66 4 7 17 5.1
30 75 10 36 0.6 4 7 18 5.1
31 47 14 50 0.51 5 10 35 5
32 162 14 53 0.52 6 11 35 4.8
33 149 14 53 0.52 6 12 37 4.4
34 105 13 48 0.53 5 11 36 4.3
35 86 13 42 0.51 6 10 38 4.2
36 137 13 45 0.52 4 11 25 4.0
37 26 10 24 0.51 4 6 16 4
38 51 13 51 0.55 7 13 58 3.9
39 79 7 30 0.80 3 8 16 3.7
40 78 7 15 0.57 4 4 10 3.7
41 35 12 36 0.51 6 10 33 3.6
42 58 13 42 0.51 6 12 41 3.5
43 123 10 27 0.53 4 8 24 3.3
44 132 13 36 0.48 4 11 31 3.2
45 10 16 54 0.48 7 17 75 3.1
46 73 10 36 0.6 6 12 48 3
47 106 6 21 0.8 4 7 14 3
48 112 13 36 0.48 5 12 39 3
49 134 4 6 0.66 2 2 3 3
50 167 7 15 0.57 4 5 11 3

Table C.7: Top-50 Communities Lastfm
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