
Utrecht University

Reducing the overhead of data
transfer in data-parallel programs

Master thesis

Paul Visschers

Supervisors:
Prof. Dr. S. Doaitse Swierstra (Utrecht University)

Ir. Maurice Kastelijn (Vector Fabrics)

March 28, 2012

Abstract

Graphics processing units (GPUs) have evolved to allow for general purpose
many-core programming. Most GPUs have their own separate memory, requir-
ing that input data be transferred to the GPU before running the program and
transferring the results back to the CPU upon completion. This transfer of data
imposes significant overhead that we would like to reduce. A possible solution is
to split up a program into many smaller pieces, called tiles, and then setting up
a pipeline that overlaps data transfers with program execution (on the GPU).
This can reduce the overhead of data transfers significantly.

We examine the effectiveness of several variations of this tiling/pipelining
transformation for a common class of programs. We introduce a model that
predicts the run time performance of these transformations ahead of time, as
well as a recipe that guides users in transforming their code. We show that one
of these transformations provides a good speed-up, which for some problems is
over 2 times faster than versions that do not overlap data transfer and program
execution. Finally we show that our model accurately predicts the run time of
programs using this transformation.

Contents

1 Introduction 3

2 Background 5
2.1 Vector Fabrics . 5
2.2 GPGPU . 5
2.3 Platforms . 6
2.4 Programming models . 7
2.5 Data transfer . 9

2.5.1 Direct memory access . 9
2.5.2 Page-locking . 10
2.5.3 Zero-copy . 10

2.6 Pipelining and tiling . 10
2.7 Tiling of program classes . 12

2.7.1 Map and zip . 12
2.7.2 Stenciled map and zip . 12
2.7.3 Reduce and scan . 12
2.7.4 N-body simulation and matrix multiplication 14

2.8 Multiple kernels . 15

3 Research questions 16
3.1 Problem statement . 16
3.2 Challenges . 16
3.3 Program class . 16

4 Related work 18
4.1 Previous work at Vector Fabrics 18
4.2 GMAC . 18
4.3 Æcute . 18
4.4 Thrust . 19
4.5 Memory access coalescing . 19
4.6 Vectorization . 19
4.7 Data Parallel Haskell and Regular Parallel Arrays 19
4.8 CPU-GPU Communication Manager 20

1

5 Proposed solution 21
5.1 Program analysis . 21
5.2 Platform analysis . 24
5.3 Kernel analysis . 24
5.4 Performance prediction model . 25
5.5 Scheme selection . 25
5.6 Recipe generator . 25

6 Implementation 27
6.1 Tiles . 27
6.2 Pipelines . 28

6.2.1 Naive approach . 28
6.2.2 Initial schemes . 28
6.2.3 Small data transfers . 31

6.3 Platform and kernel analysis . 35
6.4 Performance model . 35

6.4.1 Memory allocation/deallocation prediction 35
6.4.2 Kernel prediction . 36
6.4.3 Data transfer prediction 36
6.4.4 Pipeline prediction . 38
6.4.5 Final compounded prediction 43

6.5 Library and recipe . 43

7 Results 47
7.1 Performance of optimizations . 47

7.1.1 Tile size . 48
7.1.2 Kernel size . 51
7.1.3 Padding/stencil size . 53
7.1.4 Insights . 53

7.2 Accuracy of the performance model 54
7.2.1 Moving average . 54
7.2.2 Jacobi stencil . 55

8 Conclusion 58
8.1 Future work . 58

A Raw results 62

2

Chapter 1

Introduction

The days that graphics processing units (GPUs) were only used for graphics
are over. These days they can be used for general purpose computation. As
GPUs have hundreds of cores, this can lead to programs that are more than a
hundred times faster than their CPU equivalents, that only have a handful of
cores. Unfortunately the architecture of GPUs restrict what types of programs
can actually benefit from running on the GPU.

Because many GPUs have their own memory that is separate from the mem-
ory of the CPU, we need to transfer data to and from the GPU if we are to do
any calculations on it. The most common pattern is to transfer the input to the
GPU, then perform the calculations there and finally transfer the output back
to the CPU. These data transfers impose a significant overhead.

Luckily modern GPUs can transfer data and perform calculations concur-
rently, some can even transfer data upstream and downstream at the same time.
This allows us to create a pipeline that does all three steps in parallel, which
can effectively hide the execution time of the shorter ones. But in order for us
to do this, we need to first split the program into smaller pieces called tiles.
This thesis implements several variations of this tiling/pipelining method and
shows how effective each is in reducing the overhead of data transfers for several
instances of a common program class.

To increase the usefulness of the tiling/pipelining optimizations we create
an accurate model of their execution. This allows us to predict how well each
optimization will perform for a given program and targeted hardware. Users
can use this to quickly do a cost benefit analysis before they invest time in
implementing the optimization. It also enables users to get insight on run times
on hardware they do not have access to. Note that this thesis only focuses on a
single class of programs. The insights gained are transferable to other classes.

To further increase usability, we present a convenient recipe that guides users
in converting their sequential programs to versions that use the tiling/pipelining
optimizations. This recipe makes the conversion about as easy as converting
the sequential program into a simple GPU-using implementation. To make the
recipe as easy as possible, it depends on a custom-made library that performs

3

all the complex operations.

4

Chapter 2

Background

2.1 Vector Fabrics

This thesis is part of an internship at the company Vector Fabrics in Eindhoven.
It is a start-up that is developing tools that help programmers analyze their
programs and that make suggestions for parallelization. The tool predicts the
performance of a suggested parallelization scheme and gives a recipe that the
programmer can follow to implement the scheme. The tool is deployed online
and continues to be improved. While until recently the focus was only on multi-
core CPUs and embedded systems, the company has started to research ways
of incorporating parallelization of programs to the many-core GPU.

2.2 GPGPU

Central processing units (CPUs) have never been well suited for graphics pro-
cessing. Processing one pixel is often independent of processing another, and
different phases can be pipelined so that work on the next image can begin be-
fore the current one is done. All this potential parallelism is lost on the CPU,
and this led to the creation of specialized hardware called the graphics process-
ing unit (GPU). Initially this hardware implemented each phase of the graphics
pipeline directly, but as the complexity of rendering grew this changed. Oper-
ations to determine the color of a pixel became programmable, these programs
were called pixel shaders. Later other types of shaders were introduced. As the
years passed even more of the complexity was put into programmable software
and the hardware became more and more general. In the last few years the
hardware has become so general that it is now possible to do general purpose
GPU (GPGPU) calculations.

Since graphics processing is highly parallelizable, GPUs have evolved to con-
tain many cores (contemporary ones have around 500 cores) and can cheaply
spawn millions of threads. These threads work in a single instruction, multiple
data (SIMD) way, meaning that each thread is doing the same work, but on a

5

different part of the data. CPUs on the other hand have only a handful of cores
and spawning threads is costly, but each core is truly independent.

In general it is not easy to determine what programs benefit from running on
the GPU. It depends on many factors, including the parallelizability and com-
plexity of the program itself and the performance of various pieces of hardware.
Also running on the GPU introduces significant overhead.

Inherently sequential algorithms run slower on the GPU, as only a single
core can be used; a single GPU core is generally slower than a single CPU
core. Also problems that are parallelizable, but have a lot of control flow do
not benefit as much from running on the GPU, since if some threads do some
extra work because an if-statement was true for them, all other threads have
to wait for those to finish their extra work before all of them can continue in
unison. Problems that have lots of independent, computationally intensive and
monotone work benefit fully from the GPU’s architecture. But these problems
are rare; in practice most problems have some limitations that make them harder
to parallelize. Yet even with these limitations it is often possible to speed-up
algorithms significantly by using a GPU.

2.3 Platforms

When it comes to GPU hardware, the currently most popular platform is a
separate GPU that has its own dedicated memory and a CPU that controls the
GPU. The CPU is often called the host, while the GPU is called the device.
As the GPU has separate memory, programs are usually executed in an RPC
style, which is explained in section 2.5. The CPU and GPU are connected by a
PCIe bus. The currently standard PCIe 2.0 bus has a bandwidth of roughly 8
GB/s, so data transfer can be a real bottleneck. The highest performance GPUs
currently all have dedicated memory, so data transfer is an important aspect in
high performance computing. The most popular GPUs with dedicated memory
at the time of writing are in the AMD Radeon HD 6xxx series and the NVIDIA
GeForce 500 series. NVIDIA even has a GPU designed specifically for high
performance computing, instead of graphics rendering, called the Tesla.

There are also GPUs that are integrated into the motherboard or even into
the chip set. These usually do not have their own dedicated memory but are
tied into the memory that normally belongs to just the CPU. Even though
these GPUs physically use the same memory space as the CPU, they still use
separate logical address spaces. This means that the RPC style can still be used,
but these GPUs benefit especially from a technique called zero-copy, which is
explained in section 2.5.3. Intel integrates GPUs onto its motherboards under
the name Graphics Media Accelerator (GMA). GPUs that are integrated on the
CPU chip set are very new and the pioneer is AMD with its Fusion.

At the moment the integrated GPUs are mostly useful because they are
cheap and energy efficient. This makes them perfect for embedded systems and
budget PCs. In the future the separate address spaces will probably be joined
into a single address space, which should make them faster and easier to use

6

when it comes to memory operations, likely even faster than dedicated GPUs.
However dedicated GPUs will probably remain much faster when it comes to
computation. But even if GPUs end up becoming completely integrated with
CPUs, the issue of data transfer may still be relevant in other fields, such as
distributed computing.

2.4 Programming models

Programmers can write code for the GPU by using a suitable programming
model. The Open Computing Language (OpenCL) [11] is one that can be used
to run computations on general heterogeneous hardware platforms. It addresses
a wider range of environments than just CPU/GPU environments. Because it
is an open standard, it has been widely adopted by various hardware vendors.

NVIDIA supports OpenCL on their GPUs, but is also developing its own
proprietary API called Compute Unified Device Architecture (CUDA) [15]. Un-
like the more general OpenCL, it is focused solely on CPU/GPU platforms and
it cannot be used for other types of heterogeneous platforms. Because it is pro-
prietary, it works only with NVIDIA GPUs. This narrower focus has its perks
though, as the programming model itself is much more convenient and gener-
ally tends to be ahead of OpenCL. It is worth noting that conceptually, both
CUDA and OpenCL operate in roughly the same way when it comes to GPU
programming.

Besides the programming models, both AMD and NVIDIA provide a soft-
ware development kit (SDK). These kits provide libraries with common func-
tionality, tools for debugging and profiling and other development help. AMD
only supports OpenCL, so its Accelerated Application Processing SDK (APP)
[1] is based on that. NVIDIA’s GPU Computing SDK combines CUDA and
OpenCL support. Both offer roughly the same functionality.

This thesis focuses on the CUDA programming model. Consider the fol-
lowing sequential program that for every element in a two-dimensional array
(stored physically in a single one-dimensional array):

for{y = 0; y < size.y; y++) {
for{x = 0; x < size.x; x++) {

int a = in[idx2(x, y, size)];
if(x < size.x − 1) {

a += in[idx2(x + 1, y, size)];
}
out[idx2(x, y, size)] = a;
}
}

If we convert this program into a CUDA version, we get the following code:

// The work that is performed on each element is extracted to a kernel.
global void kernel(dim3 size, float ∗in, float ∗out) {
// Each thread has its own x, y and z coordinates associated with it, these

7

// special values are used to retrieve these coordinates.
int x = blockDim.x ∗ blockIdx.x + threadIdx.x;
int y = blockDim.y ∗ blockIdx.y + threadIdx.y;

// The body of work is surrounded by an if−statement that makes sure that
// if more threads than necessary are spawned, the extra threads do not
// access memory that is out of bounds.
if(x < size.x && y < size.y && z < size.z) {

int a = in[idx2(x, y, size)];
if(x < size.x − 1) {

a += in[idx2(x + 1, y, size)];
}
out[idx2(x, y, size)] = a;

}

// Memory is allocated on the GPU (device).
float ∗devIn, ∗devOut;
cudaMalloc(&devIn, size ∗ sizeof(float));
cudaMalloc(&devOutput, size ∗ sizeof(float));

// Input data is copied from the CPU (host) to the GPU.
cudaMemcpy(devInput, input, size ∗ sizeof(float),

cudaMemcpyHostToDevice);

// The kernel is executed on the GPU. The gridSize and blockSize are set so
// that enough threads are spawned.
kernel<<<gridSize, blockSize>>>(size, devInput, devOutput);

// Output data is copied back from the GPU to the CPU.
cudaMemcpy(output, devOutput, size ∗ sizeof(float),

cudaMemcpyDeviceToHost);

// GPU memory is freed.
cudaFree(devInput);
cudaFree(devOutput);

In this code the body of the two nested loops is extracted and put into a
function that is to be run on the GPU called a kernel. For every iteration of
the original loop, a thread is spawned on the GPU that executes the kernel.
The coordinates of the array element to work on are retrieved by special values
provided by CUDA. Once the kernel is defined, the loops themselves have to
be replaced with CUDA calls that allocate memory on the GPU, transfer input
data to the GPU, send the kernel to the GPU and run it in many threads,
transfer the output back to the CPU and finally free the memory on the GPU.

8

2.5 Data transfer

It is a necessary part of GPU computation to get the input data to the GPU
beforehand and to get the output data back to the CPU memory afterwards for
further use. The currently most common approach to running a computation on
the GPU resembles a remote procedure call (RPC). One sends the input data to
the GPU; send the kernel; runs it and send the output data back to the CPU. A
CUDA example of this style is in the previous section. In normal RPC calls the
calling system waits for the called procedure to return. While this is an option
with GPUs, it is usually much faster to use asynchronous calls. This means that
the CPU does not wait for a call to the GPU to finish, but instead continues
immediately. The GPU queues the work it receives and special synchronization
calls can be used to have the CPU wait for the GPU to finish a certain task
before continuing. We refer to this style as asynchronous RPC (ARPC).

Normally, the operating system (OS) virtualizes the host memory. It maps
this virtual memory to pages. Each page is a block of memory (usually 4 KiB)
and may physically reside in the memory or on the hard drive. When data in
pages on the hard drive are accessed, these pages are automatically put into the
physical memory where they can be used. This virtualization and paging means
that if we want to transfer data to the GPU, this data may reside on the hard
drive instead of in memory. The OS must be involved for every data transfer to
check for this and swap in any necessary data.

2.5.1 Direct memory access

Figure 2.1: A GPU with two copy engines. (Image by NVIDIA [14].)

9

Most modern GPUs have a copy engine that uses direct memory access
(DMA) to bypass the CPU when transferring data. This is much faster than
normal data transfer and has the added benefit that the CPU is free to do
something else. Furthermore, the copy engine is a separate unit from the kernel
engine that runs the kernels on the GPU, which allows concurrent data trans-
fer and kernel execution. Some GPU cards have two separate DMA engines,
such as the NVIDIA Quadro that is modeled in figure 2.1. This architecture
allows concurrent data transfer in both directions, as well as concurrent kernel
execution.

2.5.2 Page-locking

In order to use the DMA feature it is required that the operating system locks
the pages that contain the memory to transfer. This page lock ensures that the
data is swapped in and remains at the same physical memory location, so that
the memory can be accessed by a co-processor (in this case the GPU) without
interference of the operating system. It is not a good idea to page-lock a lot
of memory, as this severely limits the amount of physical memory available for
swappable memory. This leads to a lot of swapping and decreases performance
significantly.

2.5.3 Zero-copy

In addition to the ARPC style, there is another way to get data onto the GPU
which is called the zero-copy method. In this method, the DMA engine is given
direct access to a page-locked part of the host memory like before, but this data
is not copied to the GPU memory explicitly. Instead the kernel is run and it
uses the host memory directly. Data is transferred as needed by the kernel. This
method is especially useful for integrated GPUs that run directly off of the host
memory, but can also be effective for problems where each piece of data is only
used once. If the GPU has dedicated memory and data items are used often, an
explicit data transfer is usually faster. While zero-copy is an interesting topic,
it falls outside the scope of this thesis.

2.6 Pipelining and tiling

Having one or two separate copy engines and a separate kernel engine allows us
to set up a pipeline. Conceptually, a pipeline appears when a complex product
is continuously created in several steps and each step is performed by an inde-
pendent operator. To illustrate, consider the production of bread. The wheat
farmer grows wheat, then the miller turns that wheat into flour and finally
the baker bakes bread using the flour. Since the farmer, miller and baker are
independent entities, the farmer can grow new wheat while the miller is still
working on the old wheat and the baker is using flour created out of even older
wheat. This means that even though the baker depends on the miller and the

10

miller depends on the farmer, all three can work continuously once they get
going. Of course when starting up only the farmer is working, as the others are
waiting for resources. The same happens when shutting down; the baker has
work remaining while the other two have already finished up.

This situation is very similar to running kernels on the GPU. There are also
several independent operators: the kernel engine and (ideally) two copy engines.
Each does a single step in the process: copying the data to the GPU, running
the kernel and copying the data back to the CPU. If there was a continuous
stream of independent kernels to run, we could be copying back results from
one kernel while the next kernel was being run and even copy in data that the
second next kernel will be needing. Unfortunately, in most cases a program
contains only a single kernel or multiple dependent ones. Luckily it is possible
to get the benefits of pipelining on a single kernel with tiling.

When executing a kernel on the GPU many threads are spawned that all
perform the same work, but on different data. We can actually divide up these
threads into groups that we call tiles. We execute the kernel multiple times, each
time for only the threads that are part of a single tile. These kernel executions
are independent, so they can be pipelined. Dividing these threads into tiles, a
process we call tiling, is non-trivial in general. The key to doing it is the access
pattern of the kernel. For example, a thread with thread ID n takes the n-th
element in an array, calculates a result based on that value and stores it in the
n-th element of another array. This is a simple access pattern, many are more
involved. When the threads in a kernel are divided up into tiles, each tile needs
the union of data required by the threads that are in it. Figure 2.2 shows the
different schedules for the RPC style, just tiling and both tiling and pipelining.

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1 Tile 3

Tile 3

Tile 2

Transfer in

Kernel

Transfer out

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1 Tile 3

Tile 3

Tile 2

Transfer in

Kernel

Transfer out

Transfer in

Kernel

Transfer out

Naive

Tiled

Tiled & pipelined

Figure 2.2: The data transfer and kernel execution schedules for the RPC style
(labeled naive), employing only tiling and employing both tiling and pipelining.

11

2.7 Tiling of program classes

It can be difficult to determine what tile shape is most effective for any given
program. To illustrate this the following sections describe several elementary
programs and how they can be tiled.

2.7.1 Map and zip

Map functions are very easy to tile. They take an array and perform a function
on each element individually, resulting in a new array. The n-th kernel thread
only works on the n-th array element, so there is a direct correspondence. This
means that if a tile for threads n through m is created, that tile needs the data
of elements n though m.

Zip functions are slightly more complex, but essentially as easy to tile as
map functions. Instead of having a single input array, zip functions have two
or more input arrays. The direct correspondence between threads and array
elements remains. An example of a zip function is vector addition, which adds
up each number of the first array with the corresponding number in the second
array. There are also unzip functions that have multiple outputs. The two can
also be combined, where a function has multiple inputs and outputs.

2.7.2 Stenciled map and zip

Stenciled map functions are harder to tile than the regular map functions. A
stencil of a certain element is the combination of that element together with
some of its neighbors. So for these functions, every thread n accesses element
n and its neighbors; what and how many neighbors are used depends on the
algorithm. An example is the moving average, where each element in the output
is the average of the corresponding input element and some number of neighbors.
If we choose to take 2 neighbors on each side, a tile for threads n through m
would need the array elements (n−2) through (m+2). This extra data is called
padding. Padding leads to extra data transfer, which reduces the performance
gained by pipelining. Padding also gives difficulties when creating tiles that are
on the edge of the array, as some of the neighbors are missing in this case. It
is possible to do a stenciled map on a two- or three-dimensional dataset. In
this case padding in all directions is required, leading to even more complexity
and transfer overhead. Many 2D and 3D image filters are instances of stenciled
map. Stencils can also be included in zip/unzip functions.

2.7.3 Reduce and scan

Reduce functions convert an array of values to a single compounded value. For
example the sum function adds up all numbers in an array. This function can
be implemented on the GPU by launching a kernel that creates a thread for
every even element. Each thread calculates the sum of that element and the
one preceding it. Then another kernel is launched with threads for every fourth

12

element that adds up that element to the one two spots before it. Now every
fourth element holds the sum of that element and the three preceding elements.
Another kernel is launched for every eighth element, then for every sixteenth
and so forth until the sum of all numbers ends up in the final element1. This
process is shown in the top half of figure 2.3.

Figure 2.3: Parallel implementation of scan/prefix sum with 16 inputs. (Image
by David Eppstein.)

Scan functions [6, 18] are like reduce functions, but instead of giving a single
result (e.g. the sum of all elements) they return an array where each element
holds the result up to that position. In the case of our sum example each element
n holds the sum of elements 0 through n. This scan version of sum is called
prefix sum. The first half of the parallel implementation of scan is the same as
that of reduce. Once that is done, the values in the array are used to fill in the
prefix sum for every element. This process is shown in the second half of figure
2.3. In the figure, adding the value of element 8 to the value of element 12 yields
the prefix sum for the latter. After this is done, every 4th element holds their
prefix sum and can be added to the element two spots after it. This pattern
is repeated until all elements hold their prefix sum. It is easy to see how this
process works for bigger arrays.

Tiling reduce and scan functions can be done by first splitting up the array
as normal. But if we then run the function on each tile naively, we do not get

1For convenience and clarity, we assume that the length of the array is a power of 2.

13

the correct results. This is because each tile only calculates the local results, i.e.
a tile for elements n through m contains the compounded value(s) of only those
elements. We want them to contain those of elements 0 through m instead.
By adding the compounded value of the previous tile to the current tile, this
problem is solved.

While this tiling scheme works, it is not very efficient. This is because the
middle part of scan functions (and the last part of reduce functions) has steps
that only spawn a handful of threads. Contemporary GPUs have roughly 500
cores, so most of them are unused at this stage in the program (i.e. occupancy
is low). By tiling, this middle part happens in every tile. This leads to more
core inactivity than with a normal implementation. Whether the benefits of
pipelining make up for this is hard to say just from code inspection. There may
be more involved tiling schemes that eliminate this problem, but those will be
even more specific to this small class of programs.

2.7.4 N-body simulation and matrix multiplication

An n-body simulation calculates the gravitational pull of particles; since every
particle affects every other particle, this is a hard problem to tile. In one step
of the simulation, for every particle a new position and velocity is calculated
based on the location and mass of all the other particles. We break up the input
into tiles as we did for the map/zip class and put those tiles in the pipeline.
While working on a tile on the GPU, the data of every other tile is required. So
those are presented to the GPU by pipeline as well. This leads to a lot of data
transfers; for N tiles we get N2 data transfers to get the data to the GPU as
each tile is sent N times.

If the GPU has ample memory space it is possible to improve this behavior.
Instead of copying over the old tile when transferring a new one to the GPU
we allocate enough memory to hold the entire input. This way we can use the
pipeline to fill in this data as we go. This means that calculation can still start
right after the first tile is loaded into the GPU memory, but no tile is transferred
more than once. If the GPU does not have enough memory to store the entire
input, a hybrid can be used to minimize data transfers. As these tiling schemes
are quite complex, it is difficult to predict whether they will actually speed up
the program.

Matrix multiplication has an access pattern that makes it equally difficult to
tile. For each element (x, y) all data in row x of the first matrix and all data in
column y of the second matrix is required. While this pattern is more involved
than that of the n-body simulation, it has the same basic problem that data in
tiles is required more than once. The same optimization can be applied, given
enough GPU memory.

14

2.8 Multiple kernels

Up until now we have only considered pipelining kernels by tiling them. But if
we have multiple sequential kernels that each process the output of the preceding
one, making a separate pipeline for each is inefficient. This is because for each
kernel, we transfer data to the GPU and then transfer it back to the CPU. We
can in fact leave the output of one kernel on the GPU and feed it straight into
the next kernel. If the access patterns of the kernels are similar enough, we can
merge the kernels themselves so that we transfer data to the GPU; run the first
kernel; run the second kernel and finally transfer the output back. This can
then also be tiled and pipelined. If the access patterns are very dissimilar, this
is harder and may not even be viable. Note that although this is an important
issue, it is outside the scope of this thesis.

15

Chapter 3

Research questions

3.1 Problem statement

When computing on the GPU, it is necessary to first transfer input data to
it and transfer output data back to the CPU when the computation finishes.
These data transfers impose a significant overhead. This thesis investigates how
to use tiling and pipelining to overlap data transfer and computation in order
to reduce/eliminate this overhead. Furthermore, this thesis is geared towards
integrating this optimization into the tools developed at Vector Fabrics.

3.2 Challenges

One of the challenges in this thesis is to determine what optimizations actually
lead to increased performance. We try various schemes to see what works best
under what conditions. The second challenge is to determine the run time of
an optimized program on a chosen set of hardware without actually needing to
run on this hardware. We create a detailed model model that predicts these run
times. These predictions help determine what the best optimization is and what
speed-up to expect for any particular combination of program and platform.
Once an optimization is chosen the input program needs to be transformed. A
recipe will instruct how to do so by hand, in several easy steps. To simplify the
recipe and to limit the amount of boilerplate code, a library is presented that
implements most of the common code.

3.3 Program class

As was explained in section 2.6, there are many classes of programs that can
be tiled. However it is not easy to make a general system that works for all
of those classes. This thesis focuses exclusively on the stenciled map/zip class
described in section 2.7.2. This class is basic enough to serve as a good starting

16

point and it is interesting as the stencils make tiling non-trivial. The following
algorithms are instances of this class and serve as test cases:

Moving average A one-dimensional program that for each element, calculates
the average of that element and any chosen number of its neighbors. This
is often used in economics and other fields to show longer term trends.

Emboss A two-dimensional image filter that is used to convert images. The
result indicates where in the image contrast is strong. For every element,
it takes the sum of the direct neighbors on the bottom right and subtracts
the sum of the neighbors on the top left. This image filter is ubiquitous
in photo manipulation software.

Jacobi stencil A stencil algorithm that is used to solve Laplace’s equation. For
this thesis, a three-dimensional implementation is used to complement the
other programs. For every element, this program takes the average of its
direct neighbors minus the element itself. Laplace’s equation is used to
model electromagnetism, gravitation and fluid dynamics.

17

Chapter 4

Related work

4.1 Previous work at Vector Fabrics

Previous projects at Vector Fabrics have focused on converting programs to
run on the GPU. One of those focused on an analysis that determines what
programs can run on the GPU successfully [9], the other concerned a model
that predicts performance of programs (kernels) running on the GPU [16]. The
results obtained in these projects are orthogonal to those in this thesis.

4.2 GMAC

GMAC (Global Memory for ACcelerators) is a CUDA library that abstracts
from the separate address spaces of the CPU and GPU and provides the pro-
grammer with a unified address space [5]. This removes the need to have two
pointers (one for CPU memory and one for GPU memory) for essentially the
same data. This is a very nice abstraction that removes a lot of the boilerplate
code. While this abstraction is not necessary for this thesis, a similar abstrac-
tion could be created to deal with optimization-specific boilerplate. Not only
does this increase user-friendliness but it may also make the optimization easier
to reason about, aiding in expanding it to new problems.

4.3 Æcute

Æcute is a framework that decouples access and execute specifications [7]. By
separating the two parts, it becomes much easier to reason about and the frame-
work has enough data to optimize data transfer. The user provides an explicit
description of the access patterns (i.e. how the program should iterate over the
data). As this thesis only deals with a single program class with a relatively
simple access pattern, there is little use for this. Still in future work it will be
useful to see how this framework encodes those patterns and optimizes the code.

18

4.4 Thrust

Thrust is a C++ library that simplifies the development of a set of common
problems in CUDA [2]. It has efficient implementations of four basic algorithms
and also has algorithms that are derived from those four basic ones. The library
does not seem to do any optimizations that concern data transfer, so it is likely
that it can benefit from tiling/pipelining.

4.5 Memory access coalescing

Memory access coalescing deals with adapting the patterns of memory access
in such a way as to optimize it [4, 17, 16]. In the context of GPUs it focuses
on having a group of threads access the global memory in such a way that a
single memory operation can read or write all the data at once, instead of having
each thread have a separate memory operation that must be serialized with the
others. While not being the same thing as tiling, both deal with memory access
patterns and aim to adapt these so that the most optimal pattern is used. This
means that if we want to do both, it is likely that the choices for one of them
will affect the other. We may be able to kill two birds with one stone here, but
the two may get in each other’s way just as well.

4.6 Vectorization

Most modern CPUs have special hardware that can execute a single operation on
multiple pieces of data (SIMD). The field of vectorization deals with analyzing
programs to determine what data can be combined into vectors or superwords
[12]. This can of course only be done if the same operation is going to be
performed on those values and the operations are independent from each other.
The hardware usually only allows for a handful of elements to be vectorized
at once, while the tiles discussed in this thesis tend to consist of roughly a
million elements. But with both vectorization and tiling, finding the places
where they can be applied are very similar. This thesis does not do any program
analysis and only deals with a single program class, so these difficulties are not
encountered. Yet if the work in this thesis is going to be used in a full-fledged
system, the ability to recognize opportunities for tiling will simply be invaluable.

4.7 Data Parallel Haskell and Regular Parallel
Arrays

Data Parallel Haskell is an extension to the Haskell programming language that
introduces parallel arrays [3]. These arrays behave mostly like normal arrays or
lists, but many basic operations on them have parallel implementations. It uses
some fusion techniques so that more complex operations derived from these basic
ones are more efficient. It can deal with user-defined element types and parallel

19

arrays can even be nested, while being stored as flat arrays in memory. It is an
elegant approach as the user can use functions that they are already familiar
with, so that programming with the parallel arrays is no harder than using
lists or normal arrays. Unfortunately not all list functions have an equivalent
operation on parallel arrays. It also seems that the use of the stencils in this
thesis are not easily expressed in this library, in fact those may not be viable at
all in Data Parallel Haskell.

Regular Parallel Arrays (Repa) were introduced as a continuation of this
work [10]. These arrays are implemented without needing to introduce new
extensions to the Haskell language and provides a pure interface that allows
array operations to be expressed naturally with functions such as maps, folds
and permutations. For many operations the performance rivals more complex
implementations in C.

This style can even be applied to stencils [13]. This makes it a very inter-
esting library as it can do the same as the work in this thesis, but does so in
a much more elegant way. However Repa does not employ GPUs, which is the
primary focus of this thesis.

4.8 CPU-GPU Communication Manager

The CPU-GPU Communication Manager is a run-time CUDA library and a
compiler that combine into a system that performs all the data transfers auto-
matically [8]. The library has its own calls for allocating memory on both the
CPU and the GPU, the data transfers are completely implicit. Besides hiding
the data transfers it also performs optimizations that turn cyclic communica-
tion into acyclic communication. Basically this means that it uses calls that are
asynchronous, i.e. that return immediately and then perform their work. This
way the CPU can continue with the rest of the program immediately instead of
having to wait for the GPU to finish the command. It also tries to move some
operations out of loops so that those can be performed earlier on and less often.
We think that this is a good way to improve user friendliness. There seems to be
little overlap with this thesis though and the work in this thesis will not benefit
from it. This is because the Communication Manager takes away control over
the data transfers, and that control is needed by the approach in this thesis.

20

Chapter 5

Proposed solution

This chapter introduces an overview of the proposed solution. Aiding program-
mers in converting their sequential program to a parallel version is a complicated
process involving several distinct operations. A high-level overview of this pro-
cess is given in figure 5.1. It contains a program analysis, a platform analysis,
a performance model, a scheme selection algorithm, a recipe generator and a
library. These parts make up the full set of operations needed to analyze an
input program, see if it can be optimized, predict performance and help the user
modify their code. The following sections explain the purpose of each operation.

5.1 Program analysis

It is important to determine what programs, or parts of programs, can be run on
the GPU. This can be done by using a combination of static and dynamic source
code analysis. To a large extent, this has been addressed in a previous internship
at Vector Fabrics [9]. This work analyzes a given loop1 and checks that several
conditions are met. The first condition states that one loop iteration may not
depend on other iterations, i.e. there may be no loop-carried dependencies. A
loop must be affine, which basically means that the number of iterations can
be statically determined. Also no static or global variables may be used and
only a limited set of library and system calls. A loop may contain any number
of nested loops, as long as those loops adhere to the same restrictions and all
operations are performed in the inner-most loop.

The tiling optimization proposed in this thesis introduces several additional
conditions that must be met to enable proper tiling. As we only consider the
stenciled map/zip class, these conditions essentially check that the given loop is
in this class. The first condition is that input and output is stored in separate
arrays. Because multiple iterations may depend on the same inputs, in-place
updating would introduce loop-carried dependencies. There may only be up

1Parallelization optimizations exploit repetition, making loops the obvious choice for anal-
ysis. Recursion is not considered in this thesis.

21

Program properties Platform propertiesKernel properties

Program Platform

Program analysis Platform analysis

Kernel

Kernel extraction

Kernel analysis

Performance prediction
model

Performance estimates
(one for each pipelining scheme)

Scheme selection

Optimal pipelining scheme

Recipe generator

Recipe (and library)

Performance estimate
(for optimal pipelining scheme)

Figure 5.1: High-level overview of the operations that are involved in guided
optimization.

to three nested loops, as well as up to three logical dimensions in arrays (this
may be implemented as nested arrays or as a single contiguous array). This
is because GPUs only supports logic for three dimensions. Furthermore each
iteration must map to a single element in each array. In input arrays neighboring
elements may be accessed, which make up the stencil.

Once the program analysis decides that a loop is an instance of the stenciled
map/zip class, it extracts the following data2:

type loopProperties = {
2These and subsequent algebraic data types are described in OCaml.

22

lowerBound: int;
upperBound: int;
stride: int
}

type arrayProperties = {
bytesPerElement: int;
size: vector;
mapping: matrix
}

type inputArrayProperties = {
general: arrayProperties;
stencil: vector list
}

type programProperties = {
dimensionality: int;
iterationSpace: loopProperties list;
inputArrays: inputArrayProperties list;
outputArrays: arrayProperties list
}

These data types model the structure of the analyzed loop as far as is relevant
for the performance prediction model and the recipe generator3. To illustrate
how these data types work, we give an instance for the two-dimensional Emboss
program:

let emboss = {
dimensionality = 2;
iterationSpace = [
{lowerBound = 0; upperBound = 8000; stride = 1};
{lowerBound = 0; upperBound = 8000; stride = 1}

];
inputArrays = [
{general = {bytesPerElement = 4; size = [8000; 8000]; mapping = [[1;1]]};
stencil = [[−1;−1];[0;−1];[−1;0];[1;0];[0;1];[1;1]]}

];
outputArrays = [bytesPerElement = 4; size = [8000; 8000]; mapping = [[1;1]]}]
}

Here the dimensionality indicates the number of nested loops, while itera-
tionSpace shows that each of these loops runs from 0 up to (but excluding)
8000 with a stride of 1. We have one input array and one output array, each
of them is 8000x8000 elements. These elements are floats and thus use 4 bytes

3The quality of generated recipes can be improved by having the program analysis provide
more detail, e.g. on variable names or line numbers. But this is not done in this thesis.

23

each. The mapping value indicates that each array is accessed with the iter-
ation variables directly. We encode this explicitly to allow one loop to iterate
over multi-dimensional arrays and multiple nested loops to iterate over a single
array. The stencil value indicates what values in the input array are used. In
this case six neighbors are used and the value itself is not.

5.2 Platform analysis

The choice for the most optimal pipelining scheme does not only depend on
the program, but also on the platform this program is intended to run on.
Therefore a platform analysis is included that extracts relevant performance
metrics. These are stored in the following data type:

type platformProperties = {
copyEngines: int;
pinnedHostToPinnedHost: measurements;
pinnedHostToDevice: measurements;
deviceToPinnedHost: measurements;
mallocFreeHost: measurements;
mallocFreeDevice: measurements;
}

This data type contains the number of copy engines (see section 2.5.1), run
times of data transfer operations that are used by the tilings schemes and run
times of memory allocation and deallocation. To illustrate we show the instance
for the Tesla C2050:

let tesla = {
copyEngines = 2;
pinnedHostToPinnedHost = [13.774600; 20.085802; ... 1849985.625000];
pinnedHostToDevice = [3184.277100; 3259.644043; ... 1697684.750000];
deviceToPinnedHost = [3253.160400; 3516.952637; ... 1644188.375000];
mallocFreeHost = [779003.500000; 778444.375000; ... 7295391.000000];
mallocFreeDevice = [101616.515625; 101620.953125; ... 224929.796875]
}

The Tesla has dual copy engines as is indicated. Furthermore the relevant
metrics are added that show how many nanoseconds each operation takes when
done for 10, 100, 1000 etc. up to 10.000.000 bytes at a time (i.e. for powers
of 10). The performance prediction model uses these values to estimate various
data transfer and memory allocation/deallocation times. Host refers to the
CPU, device to the GPU and pinned to the fact that the memory is page-locked.

5.3 Kernel analysis

The difficult task of predicting the run time of kernels is outside the scope of
this thesis, but we still need accurate kernel metrics to generate an accurate

24

prediction. If we were to actually predict it, the program analysis would have
to extract additional data that tells what operations are used in the kernel.
The platform analysis would also have to provide metrics on individual kernel
operations. The performance prediction model would then predict the kernel
run time by using that data. The performance of kernels is often non-linear, so
predicting it is a complex subject in itself. Previous work at Vector Fabrics has
already focused on modeling kernel performance [16].

In this thesis we simply create the kernel from the given input program (by
hand), then measure the run time in the same way as the platform analysis
measures the run time of data transfers and memory allocations. This provides
us with a reliable run time for kernels, that can be used directly in performance
predictions of the full program. In figure 5.1, the blocks associated with kernel
analysis are dotted, to indicate that these disappear in a full implementation.

5.4 Performance prediction model

Once the program properties, kernel properties and platform properties are ex-
tracted, this data is fed into the performance prediction model. There are sev-
eral ways of implementing the tiling/pipelining method, which we call pipelining
schemes. Each of these schemes is modeled and an estimate of the total run
time is generated. As the run time depends on the chosen tile size, each result
is returned as a function:

type estimates = {
basic: tileSize −> float;
scalable: tileSize −> float;
buffered: tileSize −> float;
}

The concrete pipelining schemes referred to here are explained in the next chap-
ter (section 6.2).

5.5 Scheme selection

The output of the performance prediction model is used by the scheme selection
algorithm to select the optimal combination of pipelining scheme and tile size.
Once this has been selected, the performance prediction is returned, so that it
can be used to give the user an expected speed-up. The selection itself is also
returned and used by the recipe generator.

5.6 Recipe generator

After a pipelining scheme has been chosen, a recipe is generated that explains
how the input program is to be transformed. This recipe is presented to the
user/programmer so that they can make the necessary changes. To cut down

25

on boilerplate and to simplify the recipe as much as possible, much of the
implementation details are provided in a library. The recipe does not only use
knowledge of the chosen tiling scheme, but also data extracted by the program
analysis such as stencil size. An advanced version can even include information
such as line numbers and variable names to make the recipe more concrete and
informative, but this is omitted in this thesis.

26

Chapter 6

Implementation

In this chapter we explain in detail what has been implemented during this the-
sis. We explain how tiles are chosen; what the various approaches to pipelining
entail; how small data transfers affect performance; how the platform and ker-
nel analyses are done; how the performance model works in detail and finally
how the library can be used. The program analysis and the scheme selection as
described in the previous chapter are not implemented in this thesis and so are
not explained. The recipe generator also is not implemented, but a prototype
recipe is given.

6.1 Tiles

In this thesis, tiles are always created as either a range, a rectangle or a cuboid
for one-, two- or three-dimensional programs respectively. The sizes in each
dimension can be freely chosen and these affect performance in several ways.

Choosing smaller tiles has its advantages. As mentioned in section 2.6, at
the start and end of a pipeline not all engines are working. When the first tile
starts, only one (copy) engine is working, when the second tile starts two engines
are working (copy and kernel engine). GPUs with only a single copy engine are
maxed out at that point, while those with a second one are maxed out when
the third tile starts. At the end of the program, the same occurs in reverse.
This happens only for the first and last few tiles, so having smaller tiles reduces
this effect. Smaller tiles can also save on both total memory used and memory
allocation/deallocation time (for the scalable and buffering schemes described
in section 6.2).

Larger tiles can also pay off. Since fewer of them are needed, the number
of data transfer operations and kernel launches is reduced, which decreases the
overhead incurred by these operations. If there is padded data on tiles, larger
ones have fewer padded elements relative to their size. This reduces the total
amount of data that is transferred.

In two and three dimensions not just the size of the tile matters, but also

27

its shape. Having square or cubic tiles helps reduce the impact of padding. For
example a 25x1 tile with one element of padding on each side has 54 elements
of padding, while a 5x5 tile has only 22, even though both tiles have the same
amount of elements. On the other hand, having tiles that are longer on the x-
axis reduces the number of data transfer operations (this is explained in section
6.2.3).

Based on the program and the platform, these effects each occur in some
degree. This means that somewhere between one tile for the whole program and
one tile for every element there is a sweet spot. There is no single sweet spot for
all programs. This is why we created the performance prediction model, so that
we can determine this quickly and reliably based on properties of the program,
the platform it is to run on and details of the optimization used. Section 7.1
shows the effects of tile size on the run time of some typical programs.

6.2 Pipelines

For this thesis, we implemented several pipeline schemes. While the basic notion
of the pipeline is present in each of them, there are some variations in the im-
plementation details. These variations concern how memory is allocated on the
GPU and how data is transferred to it. This section first explains what happens
with the naive approach, then it introduces two simple pipelining schemes and
discusses their relative strengths and weaknesses. It also explains a problem
that arises with small data transfers and introduces both another scheme and a
small modification of the existing schemes that aim to circumvent this problem.

6.2.1 Naive approach

Figure 6.1 shows how for a single input array, memory is allocated on the GPU
and how data is transferred to it. It also shows a representation of the pipeline,
where each engine is scheduled to perform an operation. Because in the naive
approach there is no actual pipelining, it shows only the RPC model where first
data is transferred to the GPU, the kernel is performed and finally the results
are sent back to the CPU (as discussed in section 2.5).

6.2.2 Initial schemes

Basic scheme

The first scheme is rather straightforward, so we have called it the basic scheme
(see figure 6.2). For each input and output array, it allocates an array of the
same size on the GPU. The data associated with each tile is then copied from
the CPU input array to the same location in the GPU input array. Then
for that tile, a kernel is run that reads the data in the GPU input array and
writes to the GPU output array. Then from the GPU output array the data is
transferred back to the CPU output array. As there are multiple tiles, work can
be overlapped as is shown in the figure.

28

Transfer in

Kernel

Transfer out

CPU GPU

Input array

Figure 6.1: Data transfer of an input array and the pipeline schedule for the
naive approach.

Scalable scheme

The scalable scheme (see figure 6.3) is similar to the basic scheme. However
instead of allocating a full-sized array on the GPU, a tile-sized array is allocated
for every input and output array. This isolates the data for each tile from that
of the other tiles. As there are only three copy/kernel engines, only three tiles
are worked on at a time. This means that when we start work on the fourth tile,
the memory used for the first tile is free. This allows us to reuse this memory
for the fourth tile. This saves time, as allocation and deallocation of arrays
is not needed beyond the first three. In this scheme, each kernel operates on
just one of these tiles and a corresponding output array that is also tile-sized.
Then from that output array it is transferred back to the CPU and put into
the correct location in the final output array. The arrays that are allocated for
the input tiles must be large enough to include all necessary padding. For the
output arrays this is not necessary as neighbors can only be read, not written
to. Note that the pipeline schedule is the same as for the basic scheme.

Trade-offs

We cannot clearly say that one of these schemes is better than the other. But
each does have its relative strengths and weaknesses. The basic scheme is the
easiest to implement, as elements can be indexed the same way on the GPU as
they can be on the CPU. This makes it far easier to implement. In the library

29

CPU GPU

Tile

Padding

Input array

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1 Tile 3

Tile 3

Tile 2

Transfer in

Kernel

Transfer out

Figure 6.2: Data transfer of a tile of an input array and the pipeline schedule
for the basic scheme.

implemented in this thesis, the user has to manually call an indexing function
for each array access. These calls do the actual conversion, but the user has to
add them by hand. It may be possible to remove the need to add them manually
through the pre-compiler.

On the other hand, the scalable scheme needs far less memory than the basic
one. This means that less time is needed to allocate and deallocate this memory
on the GPU. In most situations the scalable scheme is faster because of this (see
section 7.1.1). Also because the size of memory on the GPU is based on the tile
size and not the array size, it can easily run programs that use more memory
than is available on the GPU.

At this point the schemes do not account for the fact that with heavy
padding, there is a lot of overlap in tiles. Both just copy this overlapping
data multiple times. For the basic scheme, it would be easy enough to eliminate
these redundant data transfers. For the scalable scheme this is not the case,
as the overlapping data is actually needed in different places in memory on the
GPU. It may be possible to use extra kernels to move this data around, but this
adds much complexity and may introduce so much overhead that is not worth
it. In practice, we did not run into any instances of the stenciled map/zip class
with a lot of padding though, which is why this was not a priority. In section
7.1.3 we discuss the implications of this decision.

30

CPU GPU

Tile

Padding

Input array

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1 Tile 3

Tile 3

Tile 2

Transfer in

Kernel

Transfer out

Figure 6.3: Data transfer of a tile of an input array and the pipeline schedule
for the scalable scheme.

6.2.3 Small data transfers

Non-contiguity

When using the basic and scalable scheme on two- or three-dimensional pro-
grams, run times became very large. After some analysis, it turned out this
was caused by the way data was transferred. To illustrate, look at figure 6.4.
Because two- and three-dimensional data is physically stored in a single con-
tiguous one-dimensional array, tiles are usually not contiguous in memory. To
transfer this data, many smaller data transfers are needed.

This does not have to be a problem in itself, but unfortunately small data
transfers to and from the GPU are extremely expensive. To illustrate, the graph
in figure 6.5 shows the transfer time per byte for data transfers of various sizes.
Transferring 10 bytes at a time is in fact more than 1600 times slower than doing
100,000 at once (326 vs. 0.20 ns/B). Transferring data on the CPU itself (i.e.
CPU to CPU) has the same problem, but it is far less pronounced (see figure
6.6 for a better view). Here 10 bytes at a time is roughly 10 times slower than
100,000 at once (0.67 vs. 0.07 ns/B). Oddly enough the efficiency is lowered
with data transfers that are larger than 100,000 bytes; we are not sure what
causes this, possibly caching behavior.

31

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(2,0)

(1,0)

(0,0) (0,1)

(1,1)

(2,1) (2,2)

(1,2)

(0,2)

Physical

Logical

Figure 6.4: Logical versus physical views on a two-dimensional array. The
selected tile (in yellow) is not contiguous in physical memory.

10 100 1000 10000 100000 1000000 10000000 100000000
0

50

100

150

200

250

300

350

Data transfer time

CPU ↔ GPU
CPU ↔ CPU

Bytes per data transfer operation

T
ra

ns
fe

r
tim

e
pe

r
by

te
 (

ns
)

Figure 6.5: The clear difference in data transfer times for smaller vs. larger
data transfers. These values are for an NVIDIA Tesla C2050 and an Intel i5.

Buffered scheme

Because the overhead of smaller data transfers is so much less of an issue on
CPU transfers, we introduce the buffered scheme (see figure 6.7). This adds
an intermediate buffering step on the CPU to the scalable scheme. Instead of
sending data from the input array to a GPU tile array, this data is sent to
a tile array on the CPU. From this array it is then transferred to the GPU.

32

10 100 1000 10000 100000 1000000 10000000 100000000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Data transfer time

CPU ↔ CPU

Bytes per data transfer operation

T
ra

ns
fe

r
tim

e
pe

r
by

te
 (

ns
)

Figure 6.6: A more informative view on CPU to CPU transfers. Again these
values are for an NVIDIA Tesla C2050 and an Intel i5.

For the output, there is an analogous buffering step. The CPU to/from GPU
transfers are all contiguous, eliminating the effect that small data transfers have
on transfer speed.

Unfortunately the performance of this scheme is quite poor. While it does
much better than the basic and scalable ones in cases that have many small
data transfers, the buffered scheme transfers each piece of data twice and this
incurs its own overhead. So much so that its performance circles around that of
the naive approach. Section 7.1 shows the performance of this scheme for some
typical programs.

Luckily the work that was done on this scheme is not wasted effort. In this
thesis we only focus on programs that store data in physical memory as a single
contiguous array. Yet if a program were to use nested arrays (i.e. arrays of
pointers to arrays) the data cannot be transferred in a single copy to begin
with. This means that naively the data is either transferred with many small
transfers, or the data is flattened beforehand. At that point the buffered scheme
definitely outperforms the naive approach. It is of course best to use flattened
arrays to begin with, but that may not always be an option.

Making data contiguous

As the buffered scheme was inadequate in resolving the problem of non-contiguous
memory, another approach is needed. Recall figure 6.4 that shows how data in
a tile is not necessarily contiguous in physical memory. We can in fact make a

33

CPU CPU

Tile

Padding

Input array

GPU

Transfers

Kernel Tile 1

In 1 In 2

In 1

In 3

In 2

Tile 3

In 5

In 4

Out 1

Out 2

Tile 2

In 4

In 3

Out 1

Tile 5

Out 3

Out 4

Tile 4

In 5

Out 2

Out 3

Out 5Out 4

Out 5

CPU

Figure 6.7: Data transfer of a tile of an input array and the pipeline schedule
for the buffered scheme.

two-dimensional tile contiguous by stretching it in the X-axis until it is as large
as the array itself (see figure 6.8).

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(2,0)

(1,0)

(0,0) (0,1)

(1,1)

(2,1) (2,2)

(1,2)

(0,2)

Physical

Logical

Figure 6.8: Logical versus physical views on a two-dimensional array. This time
the selected tile (in yellow) is contiguous in physical memory.

We adapt the three previous schemes (basic, scalable and buffered) to recog-

34

nize when the tile size in the X-axis is as large as that of the input and output
arrays on the CPU. If this is the case, the small data transfers are replaced by
a single larger transfer. As the small data transfers are removed, their overhead
also disappears. This adaptation works very well, resulting in multi-dimensional
programs performing roughly as well as one-dimensional ones.

This optimization only works with very specific tile sizes, as tiles must be as
large as the full array on one or more axes for the data to become contiguous
in memory. This means that we must make a trade-off between the loss of
performance by choosing this particular tile size (as discussed in section 6.1 and
the gain in performance of using the optimization. For example, programs with
very large arrays use data transfers that are large enough to begin with. The
effectiveness of this adaptation is shown in section 7.1.

6.3 Platform and kernel analysis

Both the platform analysis and the kernel analysis are implemented as a single
executable C program. Running this program on a system provides a list of
measurements of the run times of each of the various data transfer and memory
allocation/deallocation operations. It also provides these results for the moving
average, emboss and Jacobi stencil kernels.

Each list holds the run time of an operation performed on powers of 10 bytes,
so 10, 100, 1000 etc. This gives enough data points for (linear) interpolation.
The program repeats measurements and calculates the average, so only a single
run is required for accurate results. The output is in OCaml code that can
be used directly in the code for the prediction model. Figure 6.5 has already
illustrated the values retrieved for both CPU to/from GPU and CPU to CPU
data transfers.

The choice to use powers of ten and linear interpolation is a practical one. It
is accurate enough for our purposes, easy to implement and the analysis program
terminates within a few minutes.

6.4 Performance model

In this section, we explain how we have modeled the performance of the various
tiling/pipelining schemes. First we discuss memory allocation and deallocation,
kernel execution and data transfer individually and then how the performances
of each is combined into a pipeline.

6.4.1 Memory allocation/deallocation prediction

For the tiling schemes to operate, memory must be allocated on the GPU. For
the buffered scheme, some must even be allocated on the CPU. This memory
must also be freed after use. First we have to determine how much memory
every scheme needs:

35

Basic scheme For every input and output array, an array of the same size is
allocated on the GPU.

Scalable scheme For every input array, three arrays are allocated on the GPU.
These arrays are as big as the chosen tile size, plus padding. If the size of
the tile in the X-axis is the same as that of the input array, the padding
in that direction is omitted1. If this is the case, this may also happen
for the Y-axis. The implementation of the scheme does not remove the
padding in the Z-axis if possible, as at that point there is only one tile
and pipelining has become redundant. For every output array, three tiles
are allocated on the GPU as well. These also have the size of a tile, but
do not have padding.

Buffered scheme For the buffered scheme the same memory is used as for the
scalable scheme. In addition to this, the same memory is duplicated on
the CPU for the buffers.

Now that we know how many allocation/deallocation operations are needed and
how many bytes each of them needs, we can get a run time for these operations
by (linearly) interpolating on the values provided by the platform analysis.

6.4.2 Kernel prediction

In a real system, the run time for a kernel is predicted by first making a detailed
analysis of the work the kernel does and the hardware it is running on. There
are many optimizations available to speed up a kernel and not all of these are
very obvious. It can matter how data is stored and accessed for example, and
this can contribute to total run time much more than just the amount of data
that is used. It is an exciting and difficult subject in its own right.

As this thesis focuses on the data transfer from and to the GPU and the
overlap between these and kernel execution, predicting the run time of the kernel
itself is out of scope. Instead we use the values provided by the platform/kernel
analysis directly, to interpolate how much time a kernel takes for a single tile of
the chosen tile size.

6.4.3 Data transfer prediction

To predict the data transfer time per tile we need to determine both how many
data transfers there are and how many bytes each of them transfers. First we
determine this for the transfer of output data, as this is easiest. Then we do so
for the input data where padding makes things trickier.

Output transfer

For every tile that is processed, we transfer a tile-sized chunk of data from the
GPU to the CPU for each output array. In the three-dimensional case, this

1If we did not omit this padding, data that is contiguous on the CPU would not be
contiguous on the GPU, defeating the purpose of choosing that specific tile size.

36

data is in the shape of a cuboid. If this tile is of size (X,Y, Z), it is clear that
we have to transfer a total of X ∗ Y ∗ Z elements. But as mentioned in section
6.2.3, this data is not contiguous in physical memory on the CPU. It is part of
a bigger array that is stored in a single flattened array.

We have already stated that we assume that all arrays are flattened. This
means that a single contiguous array is used to stored multi-dimensional data.
For this prediction, we also assume that the program analysis describes the
program in such a way that the logical index (x, y, z) corresponds to the physical
index x + X ∗ (y + Y ∗ z)2. That means that normally only the elements that
have the same y and z coordinates are contiguous in memory. In this case we
have Y ∗ Z data transfers, each X elements long.

As is explained in section 6.2.3, if on the x-axis the tile is as big as the output
array itself we can make do with fewer, longer data transfers. When this is the
case, all data that has the same Z-coordinate is contiguous in physical memory.
We end up with Z data transfers, each X ∗ Y elements long. If in this case the
same condition holds in the y-axis, we get only a single data transfer that is
X ∗ Y ∗ Z elements long.

Once we know how long each of the data transfers is, we can use the data
provided by the platform analysis to determine how long each of these transfers
takes. We then multiply by the number of transfers to get the total duration
of output data transfers for a single tile. Note that for the buffered scheme,
we need to use different measurements than for the basic and scalable schemes
(CPU to CPU instead of GPU to GPU). We must also add a single GPU to
CPU transfer of X ∗ Y ∗ Z elements.

Input transfer

For transferring input, the same model is used as for transferring output, but
we must first modify the tile size we work with to account for padding. The
initial conversion is quite straightforward, we simply add the tile size (X,Y, Z)
to the padding size (PX ,PY ,PZ).

However if the tile size on the x-axis is as big as the input array, we need to
remove this padding on that axis. It is not just that this extra memory is never
used, but keeping it causes the data that is contiguous on the CPU to not be
contiguous on the GPU. Therefore we must remove it or we run into the same
inefficiencies we are trying to avoid. The same goes for the y-axis, but only if it
is already done for the x-axis. In other words, based on contiguity of data of the
tile we get a tile size of either (X +PX , Y +PY , Z +PZ), (X,Y +PY , Z +PZ)
or (X,Y, Z+PZ). With this modified tile size, we do the same as for the output
transfers.

While the preceding model is precise for the input tiles that are in the middle
of the array, it is not quite accurate for the tiles that are at the edges. This is
because at the edges of the array, some of the padding is necessarily removed
as those elements do not actually exist (and accessing them would lead to a

2Uppercase letters indicate tile size on one of the axes. Lowercase letters indicate indices.

37

segmentation fault). For programs with a lot of padding, this may cause the
prediction to be less accurate. It is not a significant problem in practice as
the schemes we have implemented are not suited to programs with very large
stencils anyway.

If we were to implement more involved schemes that take into account that
the padding on one tile is also used in one or more other tiles, modeling how
much data is sent and when would become more involved as well.

6.4.4 Pipeline prediction

The transfers of input and output and the execution of the kernels are scheduled
in a pipeline. It is important to understand how the pipeline works so we can
properly model when operations overlap and when they do not. This section
shows what various pipelines look like and how they can be properly modeled.

Dual copy engines

Depending on the program either the data transfer to the GPU, the execution of
the kernel, or the data transfer back to the CPU takes the longest; we call this
the dominant operation. Which of these operations is dominant affects how the
pipeline behaves. Figure 6.9 shows what happens when each of the operations
is dominant.

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1

Tile 5

Tile 4

Tile 3

Tile 4

Tile 3

Tile 2

Tile 5

Tile 4 Tile 5

Tile 1 Tile 2 Tile 4Tile 3 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Transfer in

Kernel

Transfer out

Transfer in

Kernel

Transfer out

Transfer in

Kernel

Transfer out

Transfer input dominant

Kernel dominant

Transfer output dominant

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Figure 6.9: The behavior of a five-tile pipeline on a GPU with dual copy engines,
for various dominant operations.

It is interesting to see that in each case, once the engine performing the dom-
inant operation starts working, it processes all tiles back-to-back. We call the
part where the dominant operation is being performed the inner part. The parts
where the dominant operation is not being performed is called the outer part(s).

38

As the duration of the inner part was defined as the sum of the durations of the
dominant operation for each tile, we can express this as 5∗dominant operation.
If we abstract from the number of tiles and make the meaning of the term
dominant operation more concrete, we get

#tiles ∗max(transferIn, kernel , transferOut).

For the outer part, we can clearly see that its duration is always equal to the
sum of the durations of the non-dominant operations. This can be expressed as

transferIn + kernel + transferOut −max(transferIn, kernel , transferOut).

We can simply combine the inner and outer parts to get the run time of the
entire pipeline, we get

transferIn + kernel + transferOut

+(#tiles − 1) ∗max(transferIn, kernel , transferOut).

If we interpret this formula, we can look at it as us having to pay full price
for the first tile, but each additional tile only adding the cost of the dominant
operation. Unfortunately, this interpretation does not help us if we try to model
the behavior when there is only a single copy engine and/or when buffering is
involved. Another interpretation of the pipeline is needed.

Single copy engine

The pipelines for a single copy engine are pictured in figure 6.10. To illustrate
that the previous view does not work well in this case, we try to interpret it
in the same way. Since both copy operations are now performed on the same
engine, we need to add them up instead of taking the maximum. We get this
slightly modified formula:

transferIn + kernel + transferOut

+(#tiles − 1) ∗max(transferIn + transferOut , kernel).

When we check this formula against the pipeline in the figure, we see that it
does not work. This is because even though both transfers now operate on the
same engine, they are not a single operation. Each still has a different set of
interdependencies with the kernels and each other.

The problem is actually that we have not correctly identified the inner and
outer parts. Recall the description of pipelines in section 2.6. Here we have
explained that when the pipeline is started, only one engine is active as the
rest is waiting for input. Then the next step two engines are working and then
all three are working. The reverse is true when the pipeline finishes up, first
decreasing to two engines and then only one. Our formula does not reflect these
start-up and shutdown steps though. But we can adapt it so that it models
them properly.

39

In 1

Tile 1 Tile 2 Tile 4Tile 3 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

In 1Transfers

Kernel

Transfers

Kernel

Transfers dominant (but not individually)

Kernel dominant

Out 1In 2 Out 2In 3 Out 3In 4 Out 4In 5 Out 5

In 2 Out 1 In 3 Out 2 In 4 Out 3 In 5 Out 4 Out 5

Tile 1

In 1Transfers

Kernel

Transfers dominant

Out 1 Out 2 Out 3 Out 4 Out 5

Tile 2

In 2 In 3 In 4 In 5

Tile 3 Tile 4 Tile 5

Figure 6.10: The behavior of a five-tile pipeline on a GPU with a single copy
engine, for various dominant operations.

We can model the first step as transferIn, as this step only transfers input.
The next step has both an input transfer and a kernel, so its length can be de-
fined as max(transferIn, kernel). Then we get the step where all three operations
are performed, that we can model with max(transferIn + transferOut , kernel .
This step is actually repeated often, depending on the total number of tiles in
the pipeline. We get similar formulas for the shutdown steps, leading to the
following compounded formula:

transferIn + max(transferIn, kernel)

+(#tiles − 2) ∗max(transferIn + transferOut , kernel)

+ max(kernel , transferOut) + transferOut .

We can actually identify all of these steps in the pipelines we have drawn; For
the single copy engine pipeline this is done in figure 6.11.

Dual copy engines revisited

The start-up and shutdown steps that model the behavior with a single copy
engine can also be used to model the behavior with dual copy engines. When
we take another look at figure 6.9, at first glance it does not seem as though this
view is applicable. This is because we have scheduled those pipelines so that all
operations start as soon as they possibly can. But we can safely postpone various
non-dominant operations without affecting the total length of the pipeline. We
have done so in figure 6.12 and postponing these operations reveals the same
steps as we had in the single copy engine case.

So now we can actually model the pipeline as it should look. Regret-
tably measurements on the Tesla C2050 have shown that when both copy
engines are working, the total bandwidth is not doubled. In fact it only in-

40

In 1

Tile 1 Tile 2 Tile 4Tile 3 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

In 1Transfers

Kernel

Transfers

Kernel

Transfers dominant (but not individually)

Kernel dominant

Out 1In 2 Out 2In 3 Out 3In 4 Out 4In 5 Out 5

In 2 Out 1 In 3 Out 2 In 4 Out 3 In 5 Out 4 Out 5

Tile 1

In 1Transfers

Kernel

Transfers dominant

Out 1 Out 2 Out 3 Out 4 Out 5

Tile 2

In 2 In 3 In 4 In 5

Tile 3 Tile 4 Tile 5

Figure 6.11: The behavior of a five-tile pipeline on a GPU with a single copy
engine with the start-up and shutdown steps marked.

Tile 1 Tile 2

Tile 1

Tile 3

Tile 2

Tile 1

Tile 5

Tile 4

Tile 3

Tile 4

Tile 3

Tile 2

Tile 5

Tile 4 Tile 5

Tile 1 Tile 2 Tile 4Tile 3 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Tile 1 Tile 3Tile 2 Tile 4 Tile 5

Transfer in

Kernel

Transfer out

Transfer in

Kernel

Transfer out

Transfer in

Kernel

Transfer out

Transfer input dominant

Kernel dominant

Transfer output dominant

Figure 6.12: The behavior of a five-tile pipeline on a GPU with dual copy engines
with the start-up and shutdown steps marked.

creases by 26%, which is far from advertised. We modeled the duration of
both transfers as max(transferIn, transferOut), but this is not correct in prac-
tice. If both transfers take roughly the same time, a bandwidth of 126%
means that the duration is 79.5% of the sum of the two operations, or 157%
of one of them. One of the operations may be longer than the other (e.g.
when there are multiple input arrays), meaning that these operations only

41

overlap during the duration of the shorter one. This overlapping part can
be expressed as 1.57 ∗ min(transferIn, transferOut). What is left is the part
where the longer operation does not overlap and goes at full speed, modeled
as max(transferIn, transferOut) −min(transferIn, transferOut). If we combine
these parts and simplify, we get the formula:

max(transferIn, transferOut) + 0.57 ∗min(transferIn, transferOut).

It is unclear what exactly causes the bandwidth to only increase so little. It
may be the maximum bandwidth of the GPU or the CPU memory is just not
large enough. It may be that the GPU has to do a lot of extra synchronization.
It may be the connection between GPU and CPU, although the PCI/e bus
should have separate bandwidth for each direction. As we do not really know
why it is happening, it is hard to predict what happens on other GPUs with
dual copy engines.

Still, now that we know how to correctly model both the pipeline and con-
current data transfers, we can create the final formula for dual copy engines,
which is:

transferIn + max(transferIn, kernel) + (#tiles − 2)∗
max(max(transferIn, transferOut) + 0.57 ∗min(transferIn, transferOut), kernel)

+ max(kernel , transferOut) + transferOut .

Buffered scheme

The buffered scheme adds extra buffering steps to the start and end of the
work on a tile. This makes the pipeline more complex. Figure 6.13 shows the
pipelines for both single and dual copy engines and marks the start-up and
shutdown steps, of which there are now four on each end. The analyses in
the previous sections work for the buffered scheme too. The following formula
models the behavior when using a single copy engine:

bufferIn+

max(bufferIn, transferIn)+

max(bufferIn, transferIn, kernel)+

max(bufferIn, transferIn + transferOut , kernel)+

(#tiles − 4) ∗max(bufferIn + bufferOut , transferIn + transferOut , kernel)+

max(bufferOut , transferIn + transferOut , kernel)+

max(bufferOut , transferOut , kernel)+

max(bufferOut , transferOut)+

bufferOut

This formula can be adapted to dual copy engines by substituting each instance
of bufferIn+bufferOut with max(transferIn, transferOut)+0.57∗min(transferIn, transferOut)
just as we did with the basic and scalable schemes.

42

Transfer in

Kernel

Dual copy engines

Tile 1

In 1 In 2

In 1

In 3

In 2

Tile 3

In 5

In 4

Out 1

Out 2

Tile 2

In 4

In 3

Out 1

Tile 5

In 7

In 6

Out 3

Out 4

Tile 4

In 6

In 5

Out 2

Out 3

Tile 7

Out 5

Out 6

Tile 6

In 7

Out 4

Out 5

Out 7Out 6

Out 7

CPU

Transfers

Kernel

Single copy engine

Tile 1

In 1 In 2

In 1

In 3

In 2

Tile 3

In 5

In 4

Out 1

Out 2

Tile 2

In 4

In 3 Out 1

Tile 5

In 7

In 6

Out 3

Out 4

Tile 4

In 6

In 5

Out 2

Out 3

Tile 7

Out 5

Out 6

Tile 6

In 7

Out 4

Out 5

Out 7Out 6

Out 7

CPU

Transfer out

Figure 6.13: The behavior of a seven-tile pipeline on a GPU with both single
and dual copy engines with the start-up and shutdown steps marked.

6.4.5 Final compounded prediction

The final compounded prediction is the prediction for the pipeline added to the
prediction of the allocation and deallocation of the memory. The predictions
for the basic and scalable schemes are implemented in OCaml. The buffered
scheme is not implemented, but using this thesis and the other implementations
as a reference, that should be easy enough. In section 7.2 the accuracy of the
predictions of this model are determined by comparing them to the actual run
times.

6.5 Library and recipe

The three schemes described in section 6.2 are implemented in a CUDA library.
This library can be used to easily map sequential programs that are in the
stenciled map/zip class to versions that use tiling and pipelining on the GPU.
In addition to the constraints mentioned in 5.1, this library has the following:
array elements must be floats, all arrays must be the same size, arrays must be
flattened in such a way that for each of them the physical position of an element
with logical index (x, y, z) is x + X ∗ (y + Y ∗ z) (where X and Y are the array
size in the x and y-axis respectively). These constraints were added to ease
implementation and we intended to remove them eventually, but never did. We
reckon that removing the restrictions will not be too difficult, but it does mean
that more configuration parameters are needed which makes the library less
convenient. However instead of lifting just these constraints, it may be better
to also generalize to other programs classes.

To give users instructions on how to (manually) convert their programs, we
provide them with a recipe. The following prototype recipe explains succinctly
how to convert the sequential version of a program to a version that uses this

43

tiling/pipelining library:

1. Create a kernel that performs the computation for a single element.

(a) Extract the body from the loop(s) and put it in a new global void
function we will refer to as kernel.

(b) The kernel function must have 6 parameters:

i. A vector3 called size that holds the size of the length in each
direction of the arrays.

ii. A grid3 called inP that holds information that is needed for the
idx1/2/3 functions when accessing input arrays.

iii. A float ** called in which is an array containing all input arrays.

iv. A grid3 called outP that holds information that is needed for
the idx1/2/3 functions when accessing output arrays.

v. A float ** called out which is an array containing all output
arrays.

vi. A vector3 called offset that holds offsets for the tile and is to be
used to get the correct coordinates.

(c) Add CUDA-specific code to the kernel function that determines the
x, y and z coordinates for the current element.

(d) Surround the extracted computation code with an if-statement so
that it performs the body only if the x, y and z coordinates are
each smaller than those of the ‘vector3‘ parameter that indicates the
dimensions of the arrays.

(e) Make sure to access the elements of each array by using the idx1/2/3
function.

2. Replace the original code with a scheme that uses CUDA calls to concur-
rently copy and calculate on the GPU.

(a) Include the CUDA tiling library.

(b) Create an array and put each input array in it. Do the same for the
output arrays.

(c) Add a call to runScalable; as arguments use the size of the arrays,
the number of input arrays, the array of input arrays, the number
of output arrays, the array of output arrays and the kernel that was
created in the previous steps. (In an actual recipe created by the
recipe generator, this section would also indicate the values of the
arguments for tile size, block size, number of streams and padding
size.)

3. Compile with CUDA.

(a) Change the extension of the file from ‘.c‘ to ‘.cu‘.

(b) Compile with ‘nvcc‘ instead of ‘gcc‘.

44

As mentioned before we did not implement a recipe generator. Such a generator
basically outputs the given recipe and add values for relevant parameters such
as tile size and block size. A more involved generator can even include line
numbers and variable names to make the recipe more concrete, but then the
recipe will look different. The given recipe is similar in style to those used by
Vector Fabrics. However in their recipes each step has a small link to a more
detailed explanation and examples. This recipe does not have this expanded
documentation yet.

Section 2.4 has already shown how a sequential program can be converted
to a CUDA program. Now we show the result of using the recipe on that same
sequential program:

// The user still extracts a kernel, but with the following parameters.
global void kernel(vector3 size, grid3 inP, float ∗∗in,

grid3 outP, float ∗∗out, vector3 tileOffset) {
// Tile information is used to correctly retrieve thread coordinates.
int x = tileOffset.x + blockDim.x ∗ blockIdx.x + threadIdx.x;
int y = tileOffset.y + blockDim.y ∗ blockIdx.y + threadIdx.y;

// The body is only changed slightly, a new idx2 function is used that corrects
// for different sizes of arrays on the GPU. Also note that there could be
// multiple arrays, therefore in this case we take the first element from
// the array of input arrays and of the array of each output arrays.
if(x < size.x && y < size.y && z < size.z) {

int a = in[0][idx2(x, y, inP)];
if(x < size.x − 1) {

a += in[0][idx2(x + 1, y, inP)];
}
out[0][idx2(x, y, outP)] = a;

}

// Instead of allocating memory, transferring data and calling the kernel, a
// single call to the library function is made. This does all the work. Note
// that the last four arguments will be provided by the program analysis and
// the performance model.
runScalable(size, inputCount, inputs, outputCount, outputs, kernel,

tileSize, blockSize, streamCount, padding);

When compared to the naive CUDA implementation, there is very little
added complexity in the creation of the kernel while the rest of the program has
become much simpler. The library takes care of (and hides for the user):

• Allocating and deallocating GPU memory.

• Setting up and using streams that are used in CUDA to manage concur-
rency.

• Setting up and using events, that can allow the CPU to wait until the
GPU has finished an operation.

45

• Determining the number of tiles.

• Setting up a loop that creates the pipeline that:

– Calls the kernel with address corrections.

– Orders the operations sent to the GPU so that overlap is maximized,
yet no tiles interfere with each other.

– Handles the start-up and shutdown phases properly.

• Sends the data associated with each tile by:

– Determining the location of each tile.

– Adding padding for input and removing padding in corner cases to
avoid segmentation faults.

– Determining if there is contiguity in data and exploit that if possible.

– Copying the correct data in several chunks to and from the GPU.

Note that the library can easily be used with the basic and buffered schemes by
calling runBasic or runBuffered instead of runScalable. It is likely that when
generalizing the library to different program classes, its usage will become more
complex.

46

Chapter 7

Results

This chapter discusses both the performance of the various tiling/pipelining
schemes, as well as the accuracy of the performance model. We do so by showing
the results of using the library and the model on the prototypical example
programs introduced in section 3.3 and discussing them. However we limit
discussion to the one-dimensional moving average and the three-dimensional
Jacobi stencil programs. While we have performed measurements on the two-
dimensional emboss program as well, the results fall right in between the other
programs and thus do not provide any further insights. The raw data for all
three programs is included in appendix A.

All measurements were performed on an Intel i5 (2.80 GHz quad core) CPU
with either a Tesla C2050 (1.15 GHz per each of 448 cores, dual copy engines) or
a GeForce GTX 460 (1.35 GHz per each of 336 cores, single copy engine) GPU.
The CUDA environment was initialized beforehand, all input and output data
was page-locked and registered with CUDA beforehand and all of this data was
fully allocated (malloc is normally lazy). Measurements were taken by using a
single CPU-based timer (clock gettime in the C standard library). Results were
only accurate down to milliseconds, so all results are rounded to them.

7.1 Performance of optimizations

In this section the performance of the various tiling/pipelining schemes described
in section 6.2 is shown. We vary tile size, kernel execution times and padding
size. Other parameters are kept constant, such as array size which is not inter-
esting to vary and are always 64 million elements total. We also keep thread
block size constant1 (1000 for moving average and 400x1x1 for Jacobi stencil).

1The GPU groups its threads in blocks. This is an important parameter when optimizing
kernels, but not interesting for our purposes.

47

7.1.1 Tile size

The results of the performance model are used to both determine the best
scheme and the optimal tile size for that scheme. In this section we discuss the
effects of tile size on performance.

Moving average

The graph in figure 7.1 shows the run times based on chosen tile size for the
one-dimensional moving average program when run on the Tesla. Note that the
x-axis of this graph uses a logarithmic scale (base 10). The line that is labeled
sequential indicates how long it takes to run the program on the CPU without
any optimizations. The line labeled naive shows the run time for the naive
approach, where we simply move all the input data to the GPU, run the kernel
and then move all the output data back. Neither actually uses tiles, which
is why they are both horizontal lines. We want the optimizations to perform
better than the naive implementation.

3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Moving average (on Tesla)

Sequential
Naive
Basic (normal)
Scalable (normal)
Buffered (normal)

Tile size (log of #elements)

R
un

 t
im

e
(m

s)

Figure 7.1: The effects of tile size on run time. The array has 64 million
elements; padding is 4 elements on each side; blocks are 1000 elements wide.

The basic and scalable schemes perform well and almost identical. The
scalable one tends to be a bit faster, as per array this scheme allocates three
times the tile size instead of one time the full array size. At the last point the
tile size is equal to the full array size, which is why the basic scheme performs

48

better here. The smallest tile size measured is 5000 elements; with smaller
tiles the performance drops significantly as the data transfers become too small.
The buffered scheme performs poorly as it performs more data transfers and
has a more complex pipeline. This scheme was created to remedy problems in
multi-dimensional programs, so there is no actual benefit to using it in this case.

Of the available schemes, the scalable one performs best for this program.
The optimal tile size is one million elements, at which point it takes 71 ms to
run the program. The naive implementation takes 121 ms, so this is a speed-up
of 1.70x. The graph in figure 7.2 shows the results for the same program run
on the GTX; these are very similar. In this case the scalable version is also the
best and the optimal tile size is again one million elements. With a naive run
time of 138 ms and a run time of 85 ms for the scalable scheme, the speed-up is
1.58x. The slightly lower relative speed-up was expected, as the GTX has only
a single copy engine, while the Tesla has dual copy engines.

3 4 5 6 7 8 9
0

100

200

300

400

500

600

Moving average (on GTX)

Sequential
Naive
Basic (normal)
Scalable (normal)
Buffered (normal)

Tile size (log of #elements)

R
un

 t
im

e
(m

s)

Figure 7.2: The same graph as in figure 7.1, but for the GTX instead of the
Tesla.

Jacobi stencil

As we mentioned in section 6.2.3, multi-dimensional programs can suffer from
not having tiles that are contiguous in physical memory. The Jacobi stencil is
such a program as it is three-dimensional. We wanted to run this on 64 million-
element arrays, if we make a cube out of those we get a 400x400x400 element

49

array. We are using C floats so 400 elements take 1600 bytes; transferring only
those 400 elements at a time is not a viable option.

The graph in figure 7.3 shows that for the Jacobi stencil program, the normal
scalable scheme (i.e. the one that copies data in small chunks, even though this
data is contiguous due to the chosen shape of the tile) performs extremely poorly.
The buffered scheme performs much better, but never performs better than the
naive implementation. Finally the adapted scalable scheme that uses contiguity
of data to merge data transfers works very well. We do not show the basic
scheme as it performs almost identically to the scalable one. At the optimal tile
size of 400x400x25 it takes only 74 ms, which is a speed-up of 1.49x compared
to the 110 ms the naive version takes. Again the GTX has a very similar graph,
so we do not show it here; it has the same optimal tile size and the speed-up is
1.36x (120 vs. 88 ms).

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Jacobi stencil (on Tesla)

Sequential
Naive
Scalable (normal)
Buffered (normal)
Scalable (contiguous)

Tile size in z-axis (log of #elements)

R
un

 t
im

e
(m

s)

Figure 7.3: Not every scheme deals with three dimensions well. The array has
400x400x400 elements while the tile has 400x400xZ elements (z-axis is variable);
padding is 1 element on every side; blocks are 400x1x1 elements wide.

Note that this program has a lower relative speed-up than the moving aver-
age program. This is because this program has to transfer much more padding
per tile. At the optimal tile size it uses 400x400x2 elements of padding per tile
(the padding in the X and Y-axes falls away because the tile is as large as the
array in those axes). There are 16 tiles in total making for a total of 5,120,000
elements of padding, which is significant (8% of the total size). The moving

50

average uses only 8 elements of padding per tile and has a total of 64 tiles at
the optimal tile size. This means a total of 512 elements of padding, which is
negligible. The large amount of padding for the Jacobi stencil program (which
only has a single element of padding in each direction) indicates that reducing
or eliminating the redundant data transfers of padding data is a good candidate
for future work.

7.1.2 Kernel size

Not all programs in the stenciled map/zip class benefit equally from using the
tiling/pipelining schemes. By running variations of our prototype examples
where the kernel is executed a variable number of times, we show the effects of
the ratio between data transfer times and kernel execution times on performance
and relative speed-up.

Moving average

The graph in figure 7.4 shows the run time for the moving average program with
tiles of one million elements. The number of times the kernel is repeated is var-
ied, giving a good indication of both the absolute performance of the schemes as
well as the relative performance compared to the naive implementation. Again
the X-axis is a logarithmic scale with base 10.

It is interesting to see with more kernel iterations the three schemes perform
almost completely identically. This is because at that point, the execution of
the kernel takes so long that it effectively hides the overlapping data transfers.
Conversely with few kernel iterations the data transfers completely hide the
kernel executions and because the data transfer time is not varied, this results
in a horizontal line. This horizontal line is higher for the buffered scheme as
this scheme does additional data transfers.

For very small kernels, their activity is hidden because they are overlapped
with the larger data transfers. But as those kernels are so small, there is lit-
tle speed-up gained from overlapping them. For very large kernels, the data
transfers become fully hidden and we always get the same amount of speed-up
in absolute terms. But as those data transfers are relatively small compared to
the kernel, the relative speed-up is also quite low. The sweet spot in terms of
relative speed-up is where the data transfers (with overlap between them) and
the kernels take roughly the same amount of time.

For the moving average program, the relative speed-up is largest at three
kernel iterations; it is 2.06x (171 vs. 83 ms). This is actually quite close to the
theoretical limit. While the naive theoretical limit is 3x when all three engines
are working at peak occupancy, we have already shown in section 6.4.4 that this
is not realistic. As the dual copy engines only give a speed-up of 1.26x instead
of 2x, we can say that a more accurate theoretical limit is 2.26x.

It is a bit hard to conclude from the measurements taken how close to this
theoretical limit the scalable scheme can get, as measurements were only taken
for integral numbers of iterations. At two iterations the relative speed-up is

51

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

Moving average (on Tesla)

Naive
Basic (normal)
Scalable (normal)
Buffered (normal)

Kernel complexity (#iterations)

R
un

 t
im

e
(m

s)

Figure 7.4: The effects of kernel run time on total run time. The array has 64
million elements; tile size is 1 million elements; padding is 4 elements on each
side; blocks are 1000 elements wide.

2.056x; at three iterations it is 2.060x; at four iterations it is 1.806x. Still it is
clear that the optimization is very close to the theoretically expected speed-up.

For the GTX the best number of iterations was two, which gave a speed-up
of 1.99x. As the theoretical speed-up with a single copy engine is 2x, this is
very good.

Jacobi stencil

The results for the Jacobi stencil are interesting as well. Figure 7.5 shows the
graph for the most interesting cases. Here we once again see that the normal
scalable scheme performs very poorly. The data transfers are so inefficient that
it takes a very large kernel for the kernel to outweigh the data transfers. Even
when it does, the performance is much poorer compared to the other schemes.
This is likely due to synchronization issues that occur with very small data
transfers, which means that those data transfers are never truly overlapped
with kernel execution and thus never truly hidden. Figure 7.6 shows the same
graph for lower iteration numbers without the normal scalable scheme; it again
shows the horizontal lines for few iterations, and diagonals for many iterations.
The optimal number of iterations for the Tesla is five, giving a 2.02x speed-up.
For the GTX the best speed-up is 1.81x at 4 iterations.

52

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

Jacobi stencil (on Tesla)

Naive
Scalable (normal)
Buffered (normal)
Scalable (contiguous)

Kernel complexity (#iterations)

R
un

 t
im

e
(m

s)

Figure 7.5: The effects of kernel run time on total run time. The array has
400x400x400 elements while the tile has 400x400x25 elements; padding is 1
element on every side; blocks are 400x1x1 elements wide.

7.1.3 Padding/stencil size

As we have already discussed in section 6.2.2, larger amounts of padding lead to
extra data transfer in the schemes we have implemented. To illustrate we have
made a variation of the three-dimensional Jacobi stencil program that allowed
us to easily change the amount of padding. The results are shown in figure
7.7. It shows that the effects are linear and at roughly 13 elements of padding
on each side using tiling and pipelining becomes useless as the naive version is
faster. It will definitely pay off to remove the redundant data transfers, even
with small padding sizes if this does not introduce significant overhead.

7.1.4 Insights

It is clear that tiling and pipelining GPU-based programs pays off. Speed-ups
of over 2x can be expected for some programs. For the test programs we have
used, the scalable scheme that merges transfers of contiguous data works best.
Removing redundant data transfers for padded data seems to be a good next
step, as this can reduce overhead of programs, even with low amounts of padding
in multi-dimensional cases.

53

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Jacobi stencil (on Tesla)

Naive
Buffered (normal)
Scalable (contiguous)

Kernel complexity (#iterations)

R
un

 t
im

e
(m

s)

Figure 7.6: The effects of kernel run time on total run time. The array has
400x400x400 elements while the tile has 400x400x25 elements; padding is 1
element on every side; blocks are 400x1x1 elements wide.

7.2 Accuracy of the performance model

This section shows the accuracy of the performance prediction model with re-
spect to the run time of programs that are using the scalable scheme that merges
transfers for contiguous data. The raw data in appendix A holds the results for
the basic scheme too, as well as for variations that do not merge transfers if
possible. The buffered scheme is not implemented, so there are no results for it.

7.2.1 Moving average

Figure 7.8 shows the graphs for the moving average program for both the Tesla
and the GTX. These graphs vary the tile size, so the measured results are the
same as in in section 7.1.1. The predictions made by the model are not always
very accurate. That is fine though, as long as the predictions both correctly
reveal the optimal tile size and are accurate for this optimal tile size.

We can see that the model does both very well. For the Tesla, the model
predicts that the optimal tile size is any of 250,000, 500,000 or 1,000,000 elements
that all have a run time of 69 ms. The measured values for these samples are
all 71 ms, which is in fact the lowest measured run time. The prediction is
only 2.82% off, so it is very accurate. For the GTX it predicts that 500,000,

54

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

Effects of padding/stencil size

Naive
Scalable (contiguous)

Padding/stencil size (#elements on each side)

R
un

 t
im

e
(m

s)

Figure 7.7: The run time of a three-dimensional program based on padding/s-
tencil size on the Tesla. The program is a variation of Jacobi Stencil. The array
has 400x400x400 elements while the tile size is 400x400x25 elements; padding
is 1 element on every side; blocks are 400x1x1 elements wide.

1,000,000 and 2,000,000 elements will all result in the minimal run time of 86
ms. The measurements show that this is exactly what happens. So this is even
more accurate.

7.2.2 Jacobi stencil

For the Jacobi stencil, the results are shown in figure 7.9. Again accuracy is
very high. For the Tesla, it predicts that 400x400x25 is the optimal tile size
with a run time of 75 ms. It actually takes 74 ms, so it is only 1.35% off. For
the GTX it predicts that either 400x400x25 or 400x400x50 is the optimal tile
size, taking 89 ms. The actual result show that both of these tile sizes run for
88 ms. This is as little as 1.14% off. So again the results are very accurate.

55

3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

Moving average

Measured on Tesla
Predicted for Tesla
Measured on GTX
Predicted for GTX

Tile size (log of #elements)

R
un

 t
im

e
(m

s)

Figure 7.8: The accuracy of the model for moving average for various tile sizes.
The array has 64 million elements; padding is 4 elements on each side; blocks
are 1000 elements wide.

56

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

Jacobi stencil

Measured on Tesla
Predicted for Tesla
Measured on GTX
Predicted for GTX

Tile size in z-axis (log of #elements)

R
un

 t
im

e
(m

s)

Figure 7.9: The accuracy of the model for Jacobi stencil for various tile sizes.
The array has 400x400x400 elements while the tile has 400x400xZ elements (z-
axis is variable); padding is 1 element on every side; blocks are 400x1x1 elements
wide.

57

Chapter 8

Conclusion

From the results obtained it is very clear that in the context of GPU program-
ming, tiling and pipelining is a very useful optimization. Speed-ups of over 2x
are possible for some programs, while for typical programs speed-ups of over
1.5x can be expected. This is very useful, especially given the fact that for
many programs that one wants to run on the GPU, the transfer of data takes
more time than the actual calculations.

The performance of the optimizations can be predicted accurately The per-
formance prediction model has, for the typical programs that were tested, pre-
dicted the optimal tile sizes perfectly. Furthermore, the values that are predicted
at the optimal tile sizes are never more than three percent off.

For the stenciled map/zip class, the implementation details can be hidden
from the end user. A recipe can be given to ease the transformation of the
original sequential source code to the tiling/pipelining GPU version.

8.1 Future work

While this thesis features some interesting work, there is more to be done.
Expanding up this work can be done by doing one of the following:

• The optimizations can be extended to new program classes that are more
difficult to tile. This is not trivial at all, but much work has already been
done on this in other contexts [12, 13].

• The library can be expanded so that it is less restrictive, e.g. using any
combination of data types instead of only floats and processing input and
output arrays of different sizes.

• The work can be integrated with the tools created by Vector Fabrics, so
that the users of those tools can actually benefit from it.

• Fusing multiple kernels into a single pipeline can make more complex input
programs much faster (as discussed in section 2.8).

58

• Current implementations transfer the data that is part of the padding of
a tile multiple times. The basic scheme can be modified to eliminate these
extra transfers. The scalable and buffered schemes may also be adapted
to eliminate these transfers, but this will be more difficult.

• The naive approach does not work very well if the arrays used are nested
(i.e. arrays of pointers to arrays instead of a single flat array). We expect
that in general it is better to use flat arrays instead, but that may not
always be an option. The buffered scheme will likely outperform the naive
approach in this case. It will be interesting to see by how much.

• The performance prediction model has a small gap in it when it comes to
accuracy. It does not take into account that at the edges and corners of
the input arrays, the padding falls outside of the boundaries of the arrays
and is thus not transfered. The model can be made more accurate by
taking this into account as well. The effects on the typical examples used
in this thesis will be minimal, but for programs that have a lot of padding,
this may make a significant difference in accuracy.

59

Bibliography

[1] AMD. Accelerated Parallel Processing OpenCL programming guide, August
2011.

[2] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library
for cuda. In Wen-mei W. Hwu, editor, GPU Computing Gems, Jade Edi-
tion. Morgan Kaufman Publishers, October 2011.

[3] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
Gabriele Keller, and Simon Marlow. Data parallel haskell: a status re-
port. In Proceedings of the POPL 2007 Workshop on Declarative Aspects
of Multicore Programming, DAMP 2007, Nice, France, January 16, 2007,
2007.

[4] Jack W. Davidson and Sanjay Jinturkar. Memory access coalescing: a
technique for eliminating redundant memory accesses. In Proceedings of
the ACM SIGPLAN 1994 conference on Programming language design and
implementation, PLDI ’94, pages 186–195, New York, NY, USA, 1994.
ACM.

[5] Isaac Gelado, Javier Cabezas, Nacho Navarro, John E. Stone, Sanjay Patel,
and Wen-mei W. Hwu. An asymmetric distributed shared memory model
for heterogeneous parallel systems. In Proceedings of the Fifteenth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2010), March 2010.

[6] Mark Harris. Parallel Prefix Sum (Scan) with CUDA. NVIDIA, April 2007.

[7] Lee W. Howes, Anton Lokhmotov, Alastair F. Donaldson, and Paul H.J.
Kelly. Deriving efficient data movement from decoupled access/execute
specifications. In Proceedings of the 4th International Conference on High
Performance and Embedded Architectures and Compilers (HiPEAC), vol-
ume 5409 of Lecture Notes in Computer Science, pages 168–182. Springer,
2009.

[8] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson,
Stephen R. Beard, and David I. August. Automatic cpu-gpu communica-
tion management and optimization. In PLDI’11 Proceedings of the 2011
ACM Conference on Programming Language Design and Implementation.

60

[9] Călin Juravle. Automatic program analysis for data parallel kernels. Mas-
ter’s thesis, Utrecht University, July 2011.

[10] Gabriele Keller, Manual M. T. Chakravarty, Roman Leshchinskiy, Simon
Peyton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel
arrays in haskell. 2010.

[11] Khronos Group. The OpenCL specification, June 2011.

[12] Samuel Larsen and Saman Amarasinghe. Exploiting superword level par-
allelism with multimedia instruction sets. In Proceedings of the ACM SIG-
PLAN 2000 conference on Programming language design and implementa-
tion, PLDI ’00, pages 145–156, New York, NY, USA, 2000. ACM.

[13] Ben Lippmeier, Gabriele Keller, and Simon Peyton Jones. Efficient parallel
stencil convolution in haskell. 2011.

[14] NVIDIA. Quadro dual copy engines, October 2010.

[15] NVIDIA. CUDA C programming guide, May 2011.

[16] Andreas Resios. GPU performance prediction using parametrized models.
Master’s thesis, Utrecht University, July 2011.

[17] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,
David B. Kirk, and Wen-mei W. Hwu. Optimization principles and appli-
cation performance evaluation of a multithreaded gpu using cuda. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, PPoPP ’08, pages 73–82, New York, NY, USA,
2008. ACM.

[18] Shubhabrata Sengupta, Mark Harris, and Michael Garland. Efficient Par-
allel Scan Algorithms for GPUs. NVIDIA, December 2008.

61

Appendix A

Raw results

This appendix has all the raw data that was used to get the results in chapter
7. All measurements and predictions are in milliseconds.

62

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

5k 413 121 298 287 415 305 286 414
10k 413 121 157 142 294 151 142 294

100k 413 121 81 74 144 81 74 143
250k 413 121 78 71 137 78 71 136
500k 413 121 77 71 121 77 71 121

1M 413 121 77 71 117 77 71 117
2M 413 121 77 70 119 77 71 119
4M 413 121 77 72 128 77 72 128

16M 413 121 81 80 203 81 80 202
32M 413 121 89 93 321 89 92 321
64M 413 121 120 136 579 120 135 472

Table A.1: Performance of moving average on the Tesla based on tile size. The
array has 64 million elements; padding is 4 elements on each side; blocks are
1000 elements wide.

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

5k 409 134 220 212 217 220 213 216
10k 409 134 157 152 173 157 152 175

100k 409 134 96 90 132 96 90 133
250k 409 134 92 87 134 92 86 133
500k 409 134 91 85 116 91 85 116

1M 409 134 91 85 114 91 85 114
2M 409 134 90 85 114 90 85 113
4M 409 134 90 85 122 90 85 121

16M 409 134 91 90 192 92 90 192
32M 409 134 92 93 293 93 93 293
64M 409 134 134 134 518 134 134 428

Table A.2: Performance of moving average on the GTX based on tile size. The
array has 64 million elements; padding is 4 elements on each side; blocks are
1000 elements wide.

63

Tesla GTX
Normal Contiguous Normal Contiguous

Tile size Basic Scalable Basic Scalable Basic Scalable Basic Scalable
5k 139 132 139 132 164 157 164 157

10k 106 100 106 100 127 121 127 121
100k 78 71 78 71 94 88 94 88
250k 76 69 76 69 92 86 92 86
500k 75 69 75 69 91 85 91 85

1M 75 69 75 69 91 85 91 85
2M 76 70 76 70 91 85 91 85
4M 77 72 77 72 91 86 91 86

16M 84 82 84 82 91 89 91 89
32M 93 96 93 96 91 94 91 94
64M 111 125 111 125 91 104 91 104

Table A.3: Predictions of moving average based on tile size. The array has 64
million elements; padding is 4 elements on each side; blocks are 1000 elements
wide.

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 413 121 77 71 120 77 71 117
2 822 146 77 71 116 77 71 117
3 1233 171 89 83 118 89 83 117
4 1647 195 114 108 124 114 108 124
5 2058 220 139 133 141 139 133 140
6 2466 245 165 158 167 164 158 167
7 2898 270 190 184 192 190 184 194
8 3280 295 215 208 217 215 209 216
9 3699 319 240 234 242 240 234 242

10 4116 344 264 257 265 264 257 265
15 6174 468 389 382 390 389 382 390
20 8223 592 514 507 515 514 507 515
30 12307 840 764 757 765 764 757 765
40 16457 1088 1014 1007 1015 1014 1007 1015
50 20573 1336 1264 1257 1266 1264 1257 1265
75 30820 1956 1889 1882 1890 1889 1882 1890

100 41113 2576 2514 2507 2515 2514 2507 2515
150 61775 3817 3764 3757 3765 3763 3757 3765
200 82191 5057 5013 5007 5015 5013 5006 5014

Table A.4: Performance of kernel-iterated variant of moving average on the
Tesla. The array has 64 million elements; tile size is 1 million elements; padding
is 4 elements on each side; blocks are 1000 elements wide.

64

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 409 135 91 85 114 91 85 114
2 818 171 92 86 114 92 86 114
3 1227 206 124 118 125 124 118 125
4 1636 242 160 154 161 160 154 162
5 2045 278 196 190 197 196 190 197
6 2454 314 232 226 233 232 226 233
7 2864 350 268 262 269 268 262 269
8 3273 386 304 298 305 304 298 305
9 3682 422 340 334 341 340 334 341

10 4091 458 376 370 377 376 370 377
15 6137 638 556 549 557 556 549 557
20 8183 817 735 729 737 735 729 736
30 12274 1177 1095 1089 1097 1095 1089 1096
40 16366 1537 1455 1449 1456 1455 1449 1456
50 20458 1896 1815 1809 1817 1815 1809 1816
75 30685 2795 2715 2709 2716 2715 2709 2716

100 40918 3694 3616 3609 3616 3615 3609 3616
150 61375 5493 5415 5409 5416 5415 5409 5416
200 81829 7291 7215 7209 7216 7215 7209 7216

Table A.5: Performance of kernel-iterated variant of moving average on the
GTX. The array has 64 million elements; tile size is 1 million elements; padding
is 4 elements on each side; blocks are 1000 elements wide.

65

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 237 117 274 260 410 192 185 421
2 237 117 188 180 260 137 129 270
5 237 117 132 126 175 99 91 183

10 237 117 123 117 145 90 83 155
25 237 117 115 109 128 81 74 138
50 237 117 112 107 126 79 72 125

100 237 117 113 107 132 77 71 118
200 237 117 102 96 133 77 71 116
400 237 117 103 97 142 78 72 124
800 237 117 106 101 168 79 74 141
2k 237 117 113 111 217 82 80 200
4k 237 117 135 140 335 88 91 315
8k 237 117 161 177 582 116 131 457

Table A.6: Performance of emboss on the Tesla with tiles of 8000xY elements
(the tile size in the table indicates the size of the tile on the Y-axis). The array
has 8000x8000 elements; padding is 1 element on every side; blocks are 1000x1
elements wide.

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 235 129 298 292 268 259 251 275
2 235 129 214 209 197 175 168 207
5 235 129 168 162 147 124 117 157

10 235 129 161 154 132 107 100 142
25 235 129 148 142 123 96 90 134
50 235 129 137 132 121 93 87 122

100 235 129 134 128 132 91 85 114
200 235 129 133 128 133 91 85 114
400 235 129 133 128 140 90 85 119
800 235 129 133 129 157 90 86 135
2k 235 129 135 133 208 90 88 193
4k 235 129 145 145 314 90 90 292
8k 235 129 171 172 533 129 129 417

Table A.7: Performance of emboss on the GTX with tiles of 8000xY elements
(the tile size in the table indicates the size of the tile on the Y-axis). The array
has 8000x8000 elements; padding is 1 element on every side; blocks are 1000x1
elements wide.

66

Tesla GTX
Normal Contiguous Normal Contiguous

Tile size Basic Scalable Basic Scalable Basic Scalable Basic Scalable
1 251 245 201 194 265 259 220 214
2 183 176 137 131 201 194 155 149
5 142 135 100 93 162 156 116 110

10 128 122 87 80 149 143 104 97
25 120 113 80 73 141 135 96 90
50 118 111 77 71 139 133 93 87

100 117 110 76 70 137 131 92 86
200 117 110 76 70 137 131 91 86
400 118 112 77 71 136 131 91 86
800 120 116 78 74 136 132 91 87
2k 129 128 84 82 136 135 91 89
4k 144 148 93 97 136 140 91 94
8k 173 187 111 125 136 149 91 104

Table A.8: Predictions of emboss with tiles of 8000xY elements (the tile size in
the table indicates the size of the tile on the Y-axis). The array has 8000x8000
elements; padding is 1 element on every side; blocks are 1000x1 elements wide.

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 237 117 113 107 135 78 71 119
2 473 137 113 107 133 78 71 117
3 709 157 113 107 133 78 72 117
4 948 177 121 114 134 96 90 119
5 1183 198 129 123 139 117 111 125
6 1420 218 143 133 140 137 132 138
7 1658 239 160 155 159 159 152 159
8 1892 259 182 174 180 180 173 179
9 2155 279 202 195 201 200 193 200

10 2365 299 221 214 220 220 213 220
15 3559 401 324 318 324 323 317 323
20 4741 503 427 421 427 426 420 426
30 7084 706 633 627 634 633 626 633
40 9472 910 840 834 840 839 832 839
50 11803 1113 1046 1041 1047 1045 1039 1045
75 17783 1621 1562 1557 1563 1561 1555 1561

100 23682 2130 2078 2073 2080 2077 2071 2077
150 35520 3147 3109 3106 3112 3108 3102 3109
200 47332 4163 4141 4138 4144 4140 4134 4140

Table A.9: Performance of kernel-iterated variant of Emboss on the Tesla. The
array has 8000x8000 elements; tile size is 8000x100 elements; padding is 1 ele-
ment on every side; blocks are 1000x1 elements wide.

67

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 235 129 134 128 134 92 86 114
2 471 158 135 129 132 92 86 114
3 707 186 135 129 133 104 98 116
4 942 215 145 139 136 132 126 132
5 1179 243 162 156 161 161 155 161
6 1414 271 190 184 190 189 183 189
7 1649 300 219 213 218 218 212 218
8 1885 328 247 241 247 246 240 246
9 2120 356 276 270 275 275 269 275

10 2357 385 304 299 304 303 298 303
15 3536 526 447 441 447 446 440 446
20 4714 668 589 584 589 589 583 588
30 7072 952 875 869 875 874 868 874
40 9429 1235 1160 1154 1160 1159 1153 1159
50 11786 1518 1445 1440 1445 1444 1438 1444
75 17681 2227 2158 2153 2159 2157 2151 2157

100 23574 2936 2871 2866 2872 2870 2863 2870
150 35369 4353 4296 4293 4298 4295 4289 4296
200 47242 5770 5722 5719 5725 5721 5715 5722

Table A.10: Performance of kernel-iterated variant of Emboss on the GTX.
The array has 8000x8000 elements; tile size is 8000x100 elements; padding is 1
element on every side; blocks are 1000x1 elements wide.

68

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 280 110 1904 1902 393 920 907 350
2 280 110 1390 1378 249 485 467 224
5 280 110 1082 1074 171 239 236 156

10 280 110 980 973 145 160 152 130
25 280 110 931 925 130 106 100 132
50 280 110 915 908 131 91 84 142

100 280 110 946 940 134 85 79 145
200 280 110 980 976 139 80 74 150
400 280 110 999 994 150 79 74 132

Table A.11: Performance of Jacobi stencil on the Tesla with tiles of 400xYx25
elements (the tile size in the table indicates the size of the tile on the Y-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 276 120 1998 1994 281 1090 1082 242
2 276 120 1485 1480 197 594 587 174
5 276 120 1179 1173 152 300 293 128

10 276 120 1083 1077 131 204 198 118
25 276 120 1024 1018 125 140 134 128
50 276 120 1004 998 128 113 107 136

100 276 120 994 988 134 103 97 145
200 276 120 989 983 137 98 92 152
400 276 120 986 981 147 94 88 127

Table A.12: Performance of Jacobi stencil on the GTX with tiles of 400xYx25
elements (the tile size in the table indicates the size of the tile on the Y-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

69

Tesla GTX
Normal Contiguous Normal Contiguous

Tile size Basic Scalable Basic Scalable Basic Scalable Basic Scalable
1 2144 2137 1028 1022 2127 2121 1151 1145
2 1541 1535 552 545 1594 1588 621 615
5 1180 1174 266 259 1274 1268 303 297

10 1060 1053 172 165 1168 1161 198 192
25 989 982 115 109 1104 1098 135 129
50 967 960 97 90 1082 1076 114 108

100 958 952 88 81 1072 1066 104 98
200 960 954 84 78 1066 1061 99 94
400 973 967 80 75 1064 1059 94 89

Table A.13: Predictions of Jacobi stencil with tiles of 400xYx25 elements (the
tile size in the table indicates the size of the tile on the Y-axis). The array has
400x400x400 elements; padding is 1 element on every side; blocks are 400x1x1
elements wide.

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 280 110 1848 1858 220 953 971 195
2 280 110 1349 1346 184 509 504 164
5 280 110 1073 1065 157 239 231 138

10 280 110 1034 1026 146 145 137 134
25 280 110 1004 998 150 102 97 154
50 280 110 994 990 171 91 86 180

100 280 110 989 988 217 88 86 228
200 280 110 991 996 335 91 95 346
400 280 110 1001 1018 580 109 124 501

Table A.14: Performance of Jacobi stencil on the Tesla with tiles of 400xYx400
elements (the tile size in the table indicates the size of the tile on the Y-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

70

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 276 120 2000 1964 209 1148 1116 183
2 276 120 1474 1454 178 620 602 158
5 276 120 1160 1148 153 306 296 136

10 276 120 1053 1045 146 198 190 136
25 276 120 990 984 148 133 127 151
50 276 120 970 965 167 111 107 175

100 276 120 963 964 211 101 99 219
200 276 120 965 966 316 95 95 325
400 276 120 980 982 529 120 120 416

Table A.15: Performance of Jacobi stencil on the GTX with tiles of 400xYx400
elements (the tile size in the table indicates the size of the tile on the Y-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

Tesla GTX
Normal Contiguous Normal Contiguous

Tile size Basic Scalable Basic Scalable Basic Scalable Basic Scalable
1 2020 2013 981 975 2016 2010 1108 1102
2 1460 1454 527 521 1520 1514 598 592
5 1127 1121 255 249 1222 1216 292 286

10 1021 1015 166 160 1123 1118 191 185
25 973 967 114 108 1064 1059 131 126
50 981 977 98 94 1044 1040 111 107

100 1033 1032 94 92 1034 1033 101 99
200 1150 1154 98 102 1029 1033 96 99
400 1390 1405 111 125 1026 1040 91 104

Table A.16: Predictions of Jacobi stencil with tiles of 400xYx400 elements (the
tile size in the table indicates the size of the tile on the Y-axis). The array has
400x400x400 elements; padding is 1 element on every side; blocks are 400x1x1
elements wide.

71

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 280 110 1801 1795 208 157 150 208
2 280 110 1332 1323 170 114 108 162
5 280 110 1066 1064 151 89 82 134

10 280 110 1025 1018 143 83 76 126
25 280 110 999 993 149 80 74 132
50 280 110 994 988 170 80 76 153

100 280 110 988 988 217 81 79 199
200 280 110 990 995 336 87 91 313
400 280 110 1001 1018 576 109 124 443

Table A.17: Performance of Jacobi stencil on the Tesla with tiles of 400x400xZ
elements (the tile size in the table indicates the size of the tile on the Z-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

Normal Contiguous
Tile size Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 276 120 1879 1874 199 177 171 200
2 276 120 1414 1408 161 133 127 157
5 276 120 1134 1129 152 107 101 129

10 276 120 1042 1037 141 98 93 122
25 276 120 985 981 147 93 88 127
50 276 120 968 965 166 92 88 147

100 276 120 964 963 209 91 89 193
200 276 120 965 966 313 90 90 293
400 276 120 981 982 527 120 120 409

Table A.18: Performance of Jacobi stencil on the GTX with tiles of 400x400xZ
elements (the tile size in the table indicates the size of the tile on the Z-axis).
The array has 400x400x400 elements; padding is 1 element on every side; blocks
are 400x1x1 elements wide.

72

Tesla GTX
Normal Contiguous Normal Contiguous

Tile size Basic Scalable Basic Scalable Basic Scalable Basic Scalable
1 2020 2013 163 157 2016 2010 177 171
2 1460 1454 119 112 1520 1514 134 128
5 1127 1121 93 86 1222 1216 108 102

10 1021 1015 84 78 1123 1118 99 94
25 973 967 80 75 1064 1059 94 89
50 981 977 81 77 1044 1040 92 89

100 1033 1032 84 83 1034 1033 92 90
200 1150 1154 93 97 1029 1033 91 95
400 1390 1405 111 125 1026 1040 91 104

Table A.19: Predictions of Jacobi stencil with tiles of 400x400xZ elements (the
tile size in the table indicates the size of the tile on the Z-axis). The array has
400x400x400 elements; padding is 1 element on every side; blocks are 400x1x1
elements wide.

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 280 110 1002 998 152 80 74 132
2 554 124 1003 999 152 80 75 131
3 846 138 1003 999 151 81 76 131
4 1120 152 1004 998 154 83 77 132
5 1395 166 1005 1002 155 88 82 134
6 1677 180 1005 1000 158 102 96 138
7 1951 194 1006 1001 162 116 110 145
8 2222 208 1006 1006 162 130 125 155
9 2503 222 1007 1002 180 145 138 169

10 2799 236 1007 1002 186 158 152 182
15 4150 306 1013 1006 257 228 223 253
20 5610 377 1013 1010 328 299 293 323
30 8309 517 1021 1017 470 440 434 464
40 11181 658 1063 1061 611 581 575 605
50 14020 799 1204 1204 754 722 716 746
75 21004 1152 1556 1559 1109 1075 1069 1099

100 27978 1504 1909 1914 1464 1427 1422 1451
150 41946 2209 2615 2624 2174 2133 2128 2158
200 55899 2915 3321 3334 2884 2839 2834 2863

Table A.20: Performance of kernel-iterated variant of Jacobi stencil on the Tesla.
The array has 400x400x400 elements; tile size is 400x400x25 elements; padding
is 1 element on every side; blocks are 400x1x1 elements wide.

73

Normal Contiguous
Iterations Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

1 276 120 984 979 148 93 88 127
2 553 143 985 980 149 95 89 127
3 830 166 987 982 153 97 92 129
4 1106 188 987 983 155 110 104 134
5 1383 210 990 985 159 132 127 153
6 1659 233 989 985 179 154 149 176
7 1935 255 991 986 202 177 172 199
8 2212 278 993 988 224 199 194 221
9 2489 300 993 989 247 222 217 244

10 2767 323 995 991 270 245 239 266
15 4151 436 1002 998 383 358 352 379
20 5532 549 1009 1005 496 471 466 493
30 8295 775 1161 1158 722 697 692 719
40 11069 1002 1387 1385 949 924 918 945
50 13839 1228 1614 1610 1176 1150 1145 1173
75 20763 1794 2180 2178 1743 1716 1711 1738

100 27679 2359 2746 2745 2310 2282 2277 2304
150 41455 3491 3878 3877 3443 3414 3409 3436
200 55347 4623 5010 5012 4577 4547 4541 4568

Table A.21: Performance of kernel-iterated variant of Jacobi stencil on the GTX.
The array has 400x400x400 elements; tile size is 400x400x25 elements; padding
is 1 element on every side; blocks are 400x1x1 elements wide.

74

Normal Contiguous
Padding Sequential Naive Basic Scalable Buffered Basic Scalable Buffered

0 263 111 966 960 147 78 72 127
1 263 111 1001 996 158 80 74 134
2 263 111 1039 1034 162 82 77 137
3 263 111 1074 1070 172 84 79 140
4 263 111 1109 1105 179 87 81 148
5 263 111 1147 1141 179 90 84 151
6 263 111 1183 1179 187 93 88 162
7 263 111 1218 1214 202 97 91 159
8 263 111 1252 1244 198 100 95 168
9 263 111 1292 1293 205 103 97 170

10 263 111 1326 1322 213 106 101 175
11 263 111 1359 1354 224 109 104 178
12 263 111 1398 1393 228 113 108 183
13 263 111 1434 1430 233 115 110 187
14 263 111 1468 1464 250 119 114 192
15 263 111 1501 1498 248 122 117 196
16 263 111 1541 1538 244 125 120 201

Table A.22: Performance of a variant of Jacobi stencil on the Tesla, where
padding size is variable (and indicates the number of elements that are padded
on each side of each tile). The array has 400x400x400 elements; tile size is
400x400x25 elements; blocks are 10x10x10 elements wide.

75

	Introduction
	Background
	Vector Fabrics
	GPGPU
	Platforms
	Programming models
	Data transfer
	Direct memory access
	Page-locking
	Zero-copy

	Pipelining and tiling
	Tiling of program classes
	Map and zip
	Stenciled map and zip
	Reduce and scan
	N-body simulation and matrix multiplication

	Multiple kernels

	Research questions
	Problem statement
	Challenges
	Program class

	Related work
	Previous work at Vector Fabrics
	GMAC
	Æcute
	Thrust
	Memory access coalescing
	Vectorization
	Data Parallel Haskell and Regular Parallel Arrays
	CPU-GPU Communication Manager

	Proposed solution
	Program analysis
	Platform analysis
	Kernel analysis
	Performance prediction model
	Scheme selection
	Recipe generator

	Implementation
	Tiles
	Pipelines
	Naive approach
	Initial schemes
	Small data transfers

	Platform and kernel analysis
	Performance model
	Memory allocation/deallocation prediction
	Kernel prediction
	Data transfer prediction
	Pipeline prediction
	Final compounded prediction

	Library and recipe

	Results
	Performance of optimizations
	Tile size
	Kernel size
	Padding/stencil size
	Insights

	Accuracy of the performance model
	Moving average
	Jacobi stencil

	Conclusion
	Future work

	Raw results

