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Summary 
The fraction of green vegetation cover (fCover) is an important parameter having variety of applications 

in the field of agriculture and forestry. It refers to the percentage of ground covered with 

photosynthetically active green parts of a plant. Many methods can be used for the estimation of fCover 

such as statistical methods relying on vegetation indices, physical methods using the inversion of canopy 

reflectance models and other. fCover estimates can be retrieved using various instruments and platforms 

ranging from low cost, consumer grade cameras to professional spectrometers and from unmanned 

aerial vehicles to satellites.  

The main objective of this thesis is to study the variation in fCover when estimated at various spatial 

resolutions, with various instruments and over different extents. Estimates of fCover derived from 

smartphones and from UAV images were compared. The various estimations were evaluated to better 

understand the impact of geographic scale on fCover as well as the added value of images with a NIR 

band.  With this analysis, it was possible to estimate the extent with which field measurements agree 

with the average fCover of a field which can help to design improved fCover field sampling strategies. 

Next to this, classification and regression methods to estimate fCover were compared. For the 

classification method, an object-based image analysis approach was adopted which is believed to 

outperform pixel-based classification techniques in the analysis of high resolution imagery (Blaschke et 

al., 2014). In the regression method, various vegetation indices and their statistics were used as 

predictors which allowed the most important color and NIR indices to estimate fCover to be identified. 

The results showed that minor differences in the resolution of smartphone photos coming from the 

device models and camera lenses do not have major impact on the fCover estimates. But using too 

coarse spatial resolution as obtained from UAVs at 65 m altitude can lead to substantial over- or 

underestimation of fCover. When possible, it is better to use higher resolution photos as obtained from 

high-end smartphone models because these contribute to the more accurate estimation of fCover. The 

estimation of fCover based on UAV images also showed that color indices obtained at 12 m altitude were 

better predictors for fCover than vegetation indices in the near-infrared region obtained at 100 m height. 

Comparing the two approaches for estimating fCover revealed that both regression and classification 

algorithms can poorly deal with crops whose leaves are not well defined in respect to the background. 

Both algorithms had some difficulties estimating fCover when the sun reflection was strong. But the 

regression algorithm could deal much better with changing illumination when no sun glint was involved.  

The appropriate number of field samples to be taken depends on the accuracy of fCover sought. 

Surveying as little as 5% of a field, gave very good fCover estimate that did not differ from the actual 

fCover with more than 4%. 
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1. Introduction and research objectives 
Estimating vegetation properties from remotely sensed images dates back to the Cold War when the 

USA used satellites to forecast wheat crop yield in the USSR and thus predict production shortfalls 

(Logsdon et al., 1998). Crop yield is still an important factor in national security because the failure of a 

country to produce sufficient quantities of agricultural products can lead to violent conflicts and mass 

migration (Campbell et al., 2007). This is especially true for developing countries in sub-Saharan Africa 

and South Asia not having the financial resources to import agricultural products and suffering from 

climate changes (Schmidhuber & Tobiello, 2007). Nowadays the access to high resolution imagery is not 

limited only to reconnaissance authorities. Satellite images with fairly high resolution such as Landsat-7 

or Landsat-8 with 30m resolution in the visible and near-infrared bands and Sentinel-2 offering 10m 

resolution in the same bands are freely available. Farmers can use this information for predicting crop 

yield, monitoring diseases, planning irrigation and fertilizers application (Bastiaanssen et al., 2000; Seelan 

et al., 2003). Humanitarian organizations can also make use of it by identifying regions threatened by 

food shortages and thus planning in advance counter measures (Kaiser et al., 2003).  

Besides these traditional remote sensing platforms, an increasing amount of data is being collected with 

unmanned aerial vehicles (UAVs) and smartphones making possible the estimation of vegetation 

properties for smaller agricultural fields and at better spatial resolution (Anderson & Gaston, 2013). 

UAVs do not only offer the possibility to collect higher resolution imagery than satellites, they have other 

advantages as well such as collecting data at different angles (Ren et al., 2017) and in cloudy weather 

conditions (Bondi et al., 2016). For the purposes of precision agriculture, topographic and atmospheric 

corrections are often not needed making the use of UAV images less laborious than the use of satellite 

images (Jakob et al., 2017). UAVs are able to carry various instruments ranging from hyperspectral to 

simple consumer grade RGB cameras (Salamí et al., 2014). Smartphones are more limited with respect to 

the cameras that they can carry but they might be equipped with sensors such as gyroscopes and 

inclinometers collecting information about the position, motion and surrounding environment 

(Pongnumkul et al., 2015). These sensors combined with the processing power of smartphones and 

dedicated applications can convert smartphones into effective tools for collecting vegetation properties 

information that might even replace more traditional field instruments. An example, the smartphone 

application PocketLAI can acquire LAI estimates comparable to those acquired with classical instruments 

such as LAI-2000 and digital cameras for hemispherical photography (Campos-Taberner et al., 2015). 

Satellites, UAVs and smartphones allow the estimation of vegetation properties at different spatial 

scales. The spatial extent used in the domain of agriculture can vary widely – from 1 m2 (the area that 

usually a digital camera or a smartphone photo covers when used to take nadir looking photos of 

vegetation at an operator height), to the size of a field (again varying widely is size) and beyond. And, 

while it is often assumed that the better spatial resolution enables the more accurate estimation of 

vegetation properties, there are many other factors that play a role when selecting the right scale 

(Woodcock & Strahler, 1987). When estimating vegetation properties of a field using field 

measurements, appropriate field sampling strategy has to be employed. In general, the more the 

samples within the field are, the more accurate the vegetation parameter estimations of a field are. But 
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a balance has to be found between the number of field measurements and the level of accuracy needed 

(Wang et al., 2015; Gharun et al., 2017).  

With the increased amount and availability of data, new methods are needed for its interpretation. 

While simple statistical techniques such as linear regression are still common, more sophisticated 

machine learning algorithms have gained popularity in recent times because of their good performance. 

However, this abundance of instruments, data and methods can be overwhelming. Therefore, this 

Master’s thesis aims at comparing vegetation properties estimated using various instruments 

(smartphones and UAV images taken at different heights) and analytical methods. This thesis focuses on 

the fraction of green vegetation cover (fCover) as it is an important vegetation parameter having variety 

of applications in agriculture as discussed in the next chapter. 

1.1. Specific research objectives and research questions 

1. Analyze the effect of measuring fCover at various spatial resolutions 

1.1 What are the differences in fCover estimates when using smartphones with different 

resolution (and camera lenses)? 

1.2 What is the error of fCover estimates derived from low-end smartphones when compared 

to the estimates derived from a high-end smartphone model? 

1.3 What are the differences in fCover estimates of a field when using a UAV operated at 

multiple heights?  

2. Study the influence of the method and of the available spectral features 

on the fCover values 

2.1 What are the differences in fCover estimates when a regression approach is used?   

2.2 Which of the color indices mentioned in the methodology chapter is the most important for 

the estimation of fCover? 

2.3 Which of the NIR indices mentioned in the methodology chapter is most important for the 

estimation of fCover?   

2.4 What are the differences in fCover estimates when a classification approach is used? 

3. Model the impact of field sampling on fCover estimates 

3.1 How many smartphone photos, as simulated using UAV images, are needed for a 

statistically robust characterization of the fCover value of a field?  
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2. Literature review 
The first section of this chapter contains an overview of the areas of application of fCover predominately 

in the field of agriculture. The next section outlines different methods used for estimating bio-physical 

variables with emphasize on machine learning methods and object-based image analysis. In the third 

section, the different types of platforms and instruments for collecting remotely sensed data are 

described. The last two sections introduce the problems of selecting proper scale and field sampling 

strategy. 

2.1. Applications of fCover 

fCover has various applications, and many of these applications are in the field of precision agriculture. 

Precision agriculture refers to agricultural practices that aim at maximizing yield, minimizing inputs 

and/or improving the quality of the agricultural products (McBratney et al., 2005). What is specific for 

precision agriculture is the use of technologies such as the global positioning system (GPS), geographic 

information systems (GIS), various sensors, remote sensing (Seelan et al., 2003). Remotely sensed images 

have a variety of applications in precision agriculture – they are used for mapping soil moisture content, 

determining the phenological state of crops, monitoring crop growth, nutrient deficiency and 

evapotranspiration rate, identifying crop diseases, assessing weed and insect infestation (Moran et al., 

1997). Based on remotely sensed images an estimate of the radiation reflected by the crops can be made 

which can indirectly give us insights into different bio-physical properties of the vegetation such as 

chlorophyll and nitrogen content, biomass, etc. (Mulla, 2013). Reflectance can also be used for 

calculating various vegetation indices which do not only relate to the bio-physical properties of crops but 

serve as inputs in agroecosystem models too (Dorigo et al., 2007). One of these bio-physical parameters 

is fCover. 

According to Zeng et al. (2000), fCover was first used to predict ground surface moisture content in the 

atmospheric model of Deardorff (1978) where it was called “fractional foliage surface”. It refers to “the 

fraction of the green vegetation in the nadir direction” (Li et al., 2015). fCover has many applications in 

the field of agriculture - ranging from irrigation (Calera et al., 2001; Er-Raki et al., 2010; El Hajj et al., 

2016) and crop residues management (Bannari et al., 2007; Daughtry et al., 2005) to yield estimation 

(Yang et al., 2010; Castaldi et al., 2015), but also in other domains such as forestry (Berberoglu et al., 

2009; Wu, 2011; Pfeifer et al., 2016; Jing et al., 2011) and climatology (Zeng et al., 2000). It often 

outperforms classical vegetation indices such as NDVI as estimator for yield variation (Yang et al., 2010) 

and soil erosion (Zhongming et al., 2010). 

One of the applications of fCover in agriculture is its use for the estimation of soil water evaporation. Soil 

water evaporation is negatively correlated to fCover because the lower the fCover the higher the 

evaporation (Er-Raki et al., 2010). fCover is essential for the calculation of the crop coefficient used in the 

methodology for estimating crop water requirements of the Food and Agriculture Organization of the 

United Nations (Calera et al., 2001; Er-Raki et al., 2010). In this methodology, fCover is originally referred 

to as ground cover (Doorenbos & Pruitt, 1977). fCover has also been used in models for soil moisture 

estimation (El Hajj et al., 2016). 
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fCover can also be used to estimate the yield variation of different crop types such as sorghum and 

cotton (Yang et al., 2010) or wheat (Castaldi et al., 2015). Yang et al. (2010) use linear spectral unmixing 

method with two endmembers – plant and soil, where the reflectance spectrum of each pixel can be 

represented as a linear function of the endmembers. Both the constrained (ranging between 0 and 1) 

and the unconstrained plant abundance fraction calculated using this methodology show more 

satisfactory results than NDVI as estimators for yield variation. 

fCover can be calculated for post-harvest agricultural fields to quantify the amount of crop residues 

(Bannari et al., 2007, Daughtry et al., 2005). The tillage performed in agricultural fields accelerates soil 

erosion and decreases the content of carbon in soil. Crop residues on agricultural land can prevent these 

processes, thus crop residue fraction cover is an important measure in conservation tillage systems 

(Daughtry et al., 2005). fCover has been widely used in soil erosion models not only for agricultural fields 

but for diverse land cover types (Wang et al., 2002; de Asis & Omasa, 2007; Vrieling et al., 2008; Zhou et 

al., 2008; Zhongming et al., 2010; Panagos et al., 2016). The stratified vegetation cover index proposed 

by Zhongming et al. (2010) shows more satisfactory results in explaining soil erosion than NDVI. It 

measures the vegetation cover in relation to vegetation type and structure and is thus closely related to 

fCover.  

Besides agriculture, fCover is also used in forestry. Berberoglu et al. (2009) used fCover together with 

other biophysical variables as predictors for the percentage tree cover in pure and mixed conifer forests - 

an important indicator for forests and woodlands assessment (Wu, 2011). Pfeifer et al. (2016) used 

fCover for assessing tropical forests degradation. Jing et al. (2011) used the relationship between 

vegetation coverage and precipitation to model natural vegetation restoration in mountainous areas. 

fCover can be applied also for ecological assessment and monitoring (Godínez-Alvarez et al., 2009) and in 

variety of models such as climate models (Zeng et al., 2000) and models for estimating grassland 

production (Roumiguié et al., 2016).  

Despite the wide use of fCover, the multiple terms being used to describe it are not yet standardized 

which makes the comparison of studies using this bio-physical parameter difficult (Godínez-Alvarez et al., 

2009). In literature, fCover can be often regarded to as (fractional/fraction of/percentage of) (green) 

foliage, ground, plant, vegetation or canopy cover. Depending on the purpose for which it is used, cover 

may refer only to certain types of vegetation such as tree and shrub canopies, only to green vegetation, 

to all types of vegetation including litter or in the case of ground cover also to non-vegetation material 

such as rocks (Bonham, 2013). fCover can be expressed in different ways - as percentage, proportion or 

using a categorical scale (Bonham, 2013). In this thesis, fCover is expressed as percentage and refers only 

to the photosynthetically active green parts of a plant. 
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2.2. Methods for estimating fCover 

Various methods exist for estimating fCover. Some of them rely on visual interpretation while other use 

remote sensing observations (Bonham, 2013). In this thesis, the emphasis is put on methods using the 

latter approach. For visual interpretation methods the reader is referred to the book of Bonham (2013). 

Remote sensing observations do not directly provide insights into the biophysical or biochemical 

characteristics of the surface being sensed, they only quantify the radiation field reflected or emitted by 

it. An intermediate step is required to convert the measured radiation into vegetation products (Baret & 

Buis, 2008). The methods used to perform this step can broadly be classified into three groups – physical, 

statistical, and hybrid (Liang, 2005).  

2.2.1. Statistical methods 

Statistical methods rely mainly on vegetation indices (VIs; Liang, 2005). VIs are used for describing the 

relationship between the reflectance measured by a sensor and a parameter of interest (North, 2002). 

Ideally, they have high sensitivity to the parameter of interest and are insensitive to perturbing factors 

such as soil color change and atmospheric effects (Verstraete & Pinty, 1996). Various VIs have been used 

to estimate fCover. While NDVI is the most popular of them (Samani Majd et al., 2013; Zhang et al., 

2013; Adhikari et al., 2016), it is not always the best choice. For example, NDVI is suitable for estimating 

fCover in savannas (Wu, 2011), pecan orchards (Samani Majd et al., 2013) and arid and semi-arid areas 

(Zhang et al., 2013) but for tropical landscapes the reduced simple ratio index is better suited (Adhikari 

et al., 2016).  

Some VIs are based only on the red, green and blue spectral bands. These color indices have the 

advantage that they are more intuitive to humans as human eyes can actually “see” these colors (Meyer 

& Neto, 2008). Color indices such as the Excess Green Index (ExG; Woebbecke, et al., 1995) and the 

Normalized Difference Index (NDI; Perez et al., 2000) are particularly suitable for estimating fCover 

because they allow to easily differentiate between plants and other background by using an appropriate 

threshold value. Color indices are less sensitive than NIR indices to the lighting conditions and can be 

adjusted to different backgrounds (Campbel, 1996 as cited in Meyer & Neto, 2008). Although vegetation 

is well distinguished in the NIR band due to the strong reflection in the latter, color indices still offer an 

alternative way to estimate fCover, when information in the NIR band is missing. 

Statistical methods based on VIs are computationally efficient and suitable for application at a regional 

scale. However, as they are specific to the vegetation type, they are not always suitable for application at 

a larger scale (Jia et al., 2015). 

The soil line concept is also a statistical method used to estimate bio-physical variables. Soil pixels 

plotted in the red and near infra-red spectral space are positively correlated and form a line referred to 

as soil line. When plotted together with vegetation, the soil line represents the base of a triangle with 

the points above it showing vegetation (Liang, 2005). The soil line depends on variety of factors such as 

soil type, moisture content, organic matter content and other. Thus, it is not possible to retrieve global 

soil line but it has to be calculated for each particular case (Fox et al., 2004). 
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Another method that can be associated with the group of statistical methods is spectral unmixing. 

Spectral unmixing is a technique where the spectral reflectance of a scene is presented as a weighted 

sum of the reflectance spectra of its components (North, 2002). At least two components are needed – 

for example, plant and soil (Yang et al., 2010). But it is possible to include more endmembers – soil, 

green vegetation and senescent vegetation (North, 2002) or plant, shaded soil and illuminated soil 

(Gilabert et al., 2000). 

2.2.2. Physical and hybrid models 

Physical models are based mainly on inverting canopy reflectance models but soil and snow reflectance 

models can be used as well (Liang, 2005). These models simulate the radiation field emitted or reflected 

by the surface for a given type of vegetation. To solve the opposite problem – i.e. to retrieve the 

biophysical variables from the remote sensing measurements of the radiation field, the model should be 

inverted. Traditional inversion methods rely on repeated model runs until the total deviation between 

actual data and model predictions is minimized (Kimes et al., 2000; Liang, 2005). Whether the inversion 

is successful heavily depends on the initial values provided to the reflectance model. If these values 

differ substantially from the “true” values, iterating the model may not lead to convergence. Thus, it is 

often necessary to provide several sets with initial values before the best solution can be selected 

increasing even more the computational time needed (Liang, 2005). 

The main advantage of physical models is that training datasets simulated by inverse models cover more 

possible combinations of conditions than training datasets based on empirical data (Baret & Buis, 2008). 

But they also have drawbacks – radiative models have model uncertainties due to the simplifications of 

the canopy structure and uncertainties originating from the radiometric measurements; the distribution 

of the variables in the radiative models is poorly known (Baret & Buis, 20087). These uncertainties make 

the inversion problem ill-posed – a set of different solutions can correspond to similar reflectance values, 

and the use of prior information is often required (Combal et al., 2003). However, as such information is 

not always available other approaches based on contextual and temporal information are gaining 

popularity (Zurita-Milla et al., 2015). Physically based models are also computationally expensive and 

therefore not suitable for application on regional and global scale. This limitation can be overcome by 

employing a generic algorithm which mimics the natural selection during evolutionary processes when 

selecting suitable set of initial variables for the reflectance model (Liang, 2005). Another alternative are 

look-up tables which store precomputed radiative transfer functions and thus allow for fast and accurate 

radiometric processing (Rebordão, 1989; Mobley et al., 2005). Hybrid methods are also computationally 

more efficient than physical models (Liang, 2005). In hybrid methods, a radiative transfer model is used 

for the creation of a training dataset and a non-parametric statistical model is applied for describing the 

relationship between the reflectance and the bio-physical variable. Machine learning techniques such as 

artificial neural networks are often used (e.g. Baret et al., 2007; Jia et al., 2015). 
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2.2.3. Other methods 

Machine learning techniques can be applied not only in the context of radiative transfer models but also 

directly for retrieving bio-physical variables from reflectances (e.g. Verrelst et al., 2012).  The estimation 

of fCover can be considered as a classification problem with two classes – green vegetation and 

background, or as a regression problem where fCover is a dependent variable. Machine learning 

techniques are well suited for addressing both types of problems. In machine learning, it can be 

differentiated between various learning types such as rote learning, learning from instruction, learning 

by analogy and learning from example. Learning from example encompasses supervised and 

unsupervised learning each of them trying to find a general rule, which can explain the data based on a 

sample of it. In supervised learning, a training sample is available, in which both the dependent and 

independent variables are known (input-output pairs). Based on the training sample, a function is 

derived which can map an input to an output minimizing the error. Depending on the type of the output, 

supervised learning can be approached as regression or classification problem. In a classification 

problem, the output is a discrete class or category, while in a regression problem it is a value of a 

continuous variable (Camastra & Vinciarelli, 2015). Although machine learning algorithms are well suited 

to solve this type of problems, they are often considered to be black-box models (Lary et al., 2016).  

Many of the methods mentioned so far and in particularly classification can be applied both on pixel and 

object level. When the estimation of bio-physical variables is carried out on a pixel level, information 

such as texture, context and shape is often neglected (Hay & Castilla, 2008). Object based image analysis 

(GEOBIA) techniques make use of this information by exploring the characteristics of features in the 

images and the relationships between them (Blaschke, 2004). Such techniques have already been used 

for the estimation of various vegetation parameters, fCover being one of them (e.g. Laliberte et al., 2007; 

Bauer & Strauss, 2014). In GEOBIA, it is argued that pixels are not always the best spatial unit when the 

mapping of landscape elements is concerned (Addink et al., 2012). In a typical GEOBIA workflow, an 

image is first segmented and then classified (Blaschke, 2004). During the segmentation step, similar 

pixels are grouped together into objects (Addink et al., 2012) or “objects candidates” – homogenous and 

semantically meaningful groups of pixels (Blaschke, 2010).  

Segmentation techniques have been widely used in remote sensing long before GEOBIA emerged as a 

paradigm (Blaschke, 2010). They can be divided generally into four groups – point-based, edge-based, 

region-based, and combined (Schiewe, 2002), using the discontinuity or similarity of the pixel’s grey level 

values (Addink et al., 2012). In the context of image analysis, point-based approaches use the 

homogeneity between pixels and by applying a threshold divide the image in two or more categories. 

They are not particularly suitable for remotely sensed data because the reflectance values of an object 

may vary depending on the location. In edge-based approaches, the segments are defined by their 

outlines. In region-based approaches, the similarity between the pixels or already-existing regions is 

compared resulting in splitting or merging existing segments (Schiewe, 2002). 

The image objects created during the segmentation step may correspond to real world objects such as 

individual buildings and tree crowns but this is not always possible often due to the mismatch between 

the spatial resolution of the image and the size of the object of interest (Addink et al., 2012). Image 

segmentation can be performed on multiple levels and scales (Addink et al., 2012). The scale depends on 
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the object of the interest which can heavily range in size - from vegetation patches to more generalized 

classes such as forest and agricultural area (Benz et al., 2004). At each scale different features might be 

revealed (Blaschke, 2010). After the image has been segmented, it can be further processed by 

considering additional object properties such as size and shape allowing the interpretation and 

classification of the image (Addink et al., 2012) or in other words the derivation of “meaningful objects” 

(Blaschke, 2010). 

The first commercially available software specially dedicated to GEOBIA is eCognition (Flanders et al., 

2003; Blaschke, 2010). It was followed by other software developments such as Feature Analyst available 

as a plug-in for ArcGIS and ERDAS Imagine (Opitz & Blundell, 2008) and ENVI Feature Extraction (Hölbling 

& Neubert, 2008 as cited in Blaschke, 2010). Free open source solutions are available as well. Examples 

are the object-based image segmentation implemented in SAGA GIS (Böhner et al., 2006), the Orfeo 

Toolbox available as a plug-in for QGIS (Inglada & Christophe, 2009) and InterIMAGE (Pahl et al., 2008). 

There are also stand-alone scripts offering GEOBIA workflows which make use of dedicated R and Python 

packages such as RSGISLib (Clewly et al., 2014). 

GEOBIA techniques often outperform traditional pixel-based classifiers when high resolution images are 

concerned not only in accuracy but also in computational efficiency (Hay & Castilla, 2008). However, 

segmentation is an ill-posed problem, so multiple solutions exist (Blaschke, 2004; Hay & Castilla, 2008). 

2.3. Instruments and platforms for estimating fCover 

fCover estimates can be retrieved using various instruments and platforms ranging from low cost, 

consumer grade cameras to professional spectrometers and from unmanned aerial vehicles to satellites.  

2.3.1. Digital cameras and smartphones 

Digital cameras are often used to take in-situ ground pictures usually only in the visible bands of the 

spectrum. Both hemispherical and nadir looking photographs are suitable as they all provide similar 

fCover estimates (Mougin et al., 2004). For taking nadir looking photographs simple consumer grade 

cameras can be used (e.g. Meyer et al., 2004). Hemispherical photographs require fish eye lenses 

(Jonckheere et al., 2004).  

Smartphones can also be used for taking high quality photographs. They are useful for vegetation 

properties estimation not only because of their high resolution camera but also because of other 

embedded sensors collecting information about the position, motion and surrounding environment 

(Pongnumkul et al., 2015). Smartphone photos have been used in a variety of agricultural applications 

such as disease detection and diagnosis, soil study, determining ripeness of fruits, fertilizer application 

and irrigation (Pongnumkul et al., 2015). They are not only compact, accessible and computationally 

efficient (Aquino et al., 2015) but in combination with dedicated applications can also enable the direct 

estimation of bio-physical variables (Campos-Taberner et al., 2015; Bauer et al., 2016; Qu et al., 2016; 

Vesali et al., 2016) and even provide an all-round farm management information system (Welte et al., 

2013). Vegetation properties such as the leaf area index (LAI) and chlorophyll content derived from 

smartphone photos are comparable to those estimated with specialized instruments (Campos-Taberner 
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et al., 2015; Orlando et al., 2016; Qu et al., 2016; Vesali et al., 2017). Smartphones are a promising tool 

that may replace traditional instruments for field measurements (Campos-Taberner et al., 2015). This is 

possible both due to the high resolution camera that many of them have and to other built-in sensors 

such as gyroscopes and inclinometers which allow the measurement of the angular velocity and the 

angles of slope (Campos-Taberner et al., 2015; Qu et al., 2016). However, more research is needed to 

evaluate the impact of the smartphone model and the type of vegetation when smartphone photos are 

used for the estimation of vegetation parameters (Campos-Taberner et al., 2015). Another concern is the 

location accuracy provided by smartphone devices. Many of the agricultural activities in which 

smartphones are involved are location based. However, the actual locational accuracy of the smartphone 

devices has to be carefully tested before they can be used for making any agricultural decisions 

(Seyyedhasani et al., 2016).  

2.3.2. Satellites and their instruments 

Satellite and areal images are replacing costly field surveys for collecting crop status information. The 

increasing spatial and temporal resolution of space-borne and airborne remote sensors enables the 

global monitoring of various crop characteristics in a timely manner (Somers et al., 2009). Global 

estimate of fCover is already provided by Copernicus Global Land Service at 1 km resolution based on 

images from the Proba-V satellite which is equipped with the Vegetation imager instrument. With the 

launch of Sentinel-2 in 2015 with the MultiSpectral Instrument (MSI) on board, images in the visible and 

near-infrared bands are freely available at 10 m resolution making possible the estimation of fCover at 

even better spatial scale. Multispectral images with near a meter ground sampling distance are available 

upon payment from commercial satellite images providers such as Digital Globe. However, when 

validating remotely sensed data, field surveys are inevitable (Korhonen et al., 2006). For example, in 

order to validate satellite products derived from medium resolution sensors such as MODIS, 40-50 

photographs per 1km2 are needed. Satellite observations still remain the only feasible way of obtaining 

fCover at regional and global scales (Xiao et al., 2016). 

2.3.3. Unmanned Aerial Vehicles (UAVs) 

An even higher spatial resolution (in the order of cm) can be derived by using unmanned aerial vehicles 

(UAVs). UAVs can offer better temporal frequency than conventional satellites and airborne platforms 

(Anderson & Gaston, 2013) because their operation is not affected by cloud coverage; UAVs are able to 

collect images at various viewing angles (Ren et al., 2017) and in various weather conditions such as 

complete cloud cover (Bondi et al., 2016). Another advantage over satellite and airborne platforms is 

that for the purposes of precision agriculture, topographic correction is often not needed because most 

agricultural areas are flat and have similar geographic features (Jakob et al., 2017). UAV images have 

been used in variety of agricultural applications such as modelling canopy structure, ripeness monitoring, 

water stress detection, estimation of nitrogen level, pathogen detection, aerobiological sampling, plant 

health monitoring, mapping invasive weeds, monitoring herbicide application (Salamí et al., 2014). For 

many of these applications, it is necessary to estimate various vegetation parameters (Salamí et al., 

2014). UAV images used to estimate vegetation properties such as canopy height and aboveground 

biomass have shown results comparable to field measurements (Li et al., 2016). Some vegetation 
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properties such as nitrogen amount might be even more accurately estimated from UAV images rather 

than specialized field instruments due to the fact that soil and shadows are often eliminated in UAV 

images (Agüera et al., 2011). 

The sensors mounted on UAVs range from simple RGB cameras (e.g. Burkart et al., 2017) to multispectral 

(e.g. Navia et al., 2016) and hyperspectral cameras (e.g. Zheng et al., 2016). However, for monitoring 

vegetation red, green and near-infrared channels are most commonly used (Salamí et al., 2014). Many of 

the cameras used are commercial off-the-shelf devices that could be easily upgraded so that information 

in the NIR band is collected (Salamí et al., 2014). The spatial resolution of the cameras usually ranges 

between 5 and 12 megapixels (Salamai et al., 2014). Commonly used vegetation indices can be 

calculated without additional correction to reflectance of the UAV images and with low signal to noise 

ratio (Jakob et al., 2017). However, when digital numbers are used instead of calibrated reflectance 

values, the results might be only qualitative and not quantitative (Candiago et al., 2015). UAV data also 

requires different and often more complex pre-processing than data collected by aerial and space 

platforms. Despite the wide use of UAVs in different domains, the geometric and radiometric correction 

of such data is still demanding (Jakob et al., 2017).  

2.4. The importance of scale 
The instruments and platforms listed in the previous sections allow the estimation of vegetation 

properties at various scales. Scale refers not only to the spatial resolution but also to the spatial extent 

(Goodchild & Procter, 1997) and between the two of them there is often a trade-off: when the extent 

increases, the resolution usually decreases (Glenn et al., 2014).  

It is often assumed that better spatial resolution contributes to the more accurate estimation of bio-

physical variables. However, multiple factors have to be taken into account when choosing the best 

spatial resolution (Woodcock & Strahler, 1987). Woodcock & Strahler (1987) suggest a method based on 

the spatial structure of the image for determining the optimal relationship between spatial resolution 

and the environmental characteristics of interest. Their method assesses the spatial structure of images 

by using local variance which is measured by the standard deviation averaged over a moving window. If 

the size of the pixel is similar or smaller to that of the object of interest, the variance is high. If on the 

other hand the object of interest is smaller than the pixel size, the variance is low. Thus, a rapid change 

in variance can show when the optimal scale is reached. 

Several authors have pointed out that vegetation indices derived from UAV images are better estimates 

for vegetation parameters than Gaofen and Landsat images (Gao et al., 2016; Lukas et al., 2016) and 

comparable to field measurements (Rasmussen et al., 2016; Li et al., 2016) or even better than them 

(Agüera et al., 2011; Balota & Oakes, 2016). Higher resolution satellite images such as those provided by 

RapidEye have performance similar to ground-based optical sensors (Bu et al., 2017) and UAVs and 

aircrafts (Matese et al., 2015) when used for estimating vegetation properties. These results might be 

due to the fact that the pixel size provided by these platforms is similar to the size of the vegetation 

properties and thus better able to capture the variability in their values. However, the correlation 

between the vegetation indices and the bio-physical variables of interest depends not only on the pixel 

size but also on the bio-physical variables themselves, the vegetation indices used for their estimation, 
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the phenological stage and the vegetation type (Lukas et al., 2016; Matese et al., 2015). Thus for 

example, vegetation indices derived from Landsat images were better estimates for nitrogen content 

than indices derived from UAV images, while for other parameters such as biomass and nitrogen uptake 

the opposite was true (Lukas et al., 2016). Davidson & Csillag (2016) found stronger relationship between 

biomass and various vegetation indices at coarser spatial resolution. This phenomenon might be 

explained by the fact that at coarser scales the variance between the dependent and independent 

variables is lower, while the covariation between the two increases (Davidson & Csillag, 2001). 

Woodcock & Strahler (1987) argue that the technique used to derive information from images also plays 

an important role when selecting a suitable scale. So, the fact that better estimates of bio-physical 

variables are derived from coarser resolution imagery might be due also to the limited ability of the 

widely used pixel-based methods to deal with high resolution data (Hay & Castilla, 2008).   

2.5. The importance of field sampling strategy 
Comparing vegetation properties across different scales resembles the problem of validating vegetation 

products derived from satellite imagery with field measurements. In each of the cases, a sampling 

strategy has to be proposed as the extents of the study area at the different scales usually do not 

overlap. However, when designing a sampling strategy, the spatial resolution of the final product has to 

be taken into account (Woodgate et al., 2012). While at a coarser spatial resolution (1 km2), various 

sampling strategies exist (e.g. Baret et al., 2005), this is not the case for higher spatial resolution 

products (Chen et al., 2016). Chen et al. (2016) studied the impact of sampling for estimating fCover over 

alpine grassland using UAV images of 30x30 m plots and varying number of 0.5x0.5 m quadrats within 

the plots. They suggested that the larger the number of quadrats is, the better the fCover estimate over 

the field is. Godínez-Alvarez et al. (2009) suggest 70 m long transects with at least 10 m spacing between 

them and fCover to be recorded every 1 m when line-point intercept method is used; when grid-point 

intercept method is used, fCover is to be recorded at 1 m2 quadrats every 14 m. Though, their sampling 

strategy is developed for fCover studies based on visual interpretation and not imagery analysis. Balance 

should be achieved between the costs for field sampling and the level of precision sought (Wang et al., 

2015; Gharun et al., 2017). However, more sampling plots are needed when the variance of the modeled 

parameter is high (Gharun et al., 2017). The optimal sampling size can be derived also based on 

statistical features or on some prior knowledge (Wang et al., 2015). 
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3. Study area, Data and Methods 

3.1. Study area 

The study area is located in Bangladesh which is characterized by sub-tropical humid climate (Fig. 1). 

There are four seasons – dry winter season lasting from December to February, pre-monsoon hot 

summer season lasting from March to May, rainy monsoon season lasting from June to September, and 

post-monsoon autumn season lasting from October to November (Shahid, 2010). Maize and wheat are 

the most popular crops after rice but while maize can be grown both during the winter as well as the 

summer season (Rahman et al., 2012), wheat can be grown only during the dry winter season 

(O’Callaghan et al., 1994). Mung beans on the other hand are usually grown in the post-monsoon dry 

season (Afzal et al., 2006). Various crops were sampled during the field surveys such as wheat, maize and 

mung beans (Fig. 2, Fig. 3). The field surveys were conducted during the cropping seasons of 2014, 2015 

and 2016. For the purposes of this Master’s thesis only data from 2016 was used. The field surveys took 

place in Barisal, Kalapara and Patuakhali located in the south part of the country (Fig. 1).  

 

 
Fig. 1. Map 
showing the three 
study sites – 
Barisal, Kalapara 
and Patuakhali, 
located in the 
administrative 
division of Barisal 
(depicted in light 
red) 

3.2. Data 

Several fields were visited and photos were collected using smartphones and GeoX-8000 octocopter.  

During the field campaign in 2014, only one smartphone model was used to collect RGB images. In 2015 

and 2016, various devices were used – Lava, Okapia, Samsung Galaxy Grand Prime (shortly Samsung 

Galaxy), Symphony smartphones, a Samsung tablet and other (Fig. 2). However, some of the photos 

were taken only with certain devices and not with all smartphones available. These photos were 

excluded from the dataset so that each device type is represented by an equal number of photos. Thus, 

out of 292 photos taken in 2016 only 165 were used for the analysis. Each of the pictures was taken 
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vertically above ground and covered approximately 1 m2 as measured by a square frame placed on the 

ground during the field surveys (Fig. 4).  

 
Fig. 2. Percentage of smartphone photos per device and crop type for the field campaign in 2016 

 

 
Fig. 3. Percentage of photos per crop type from smartphones (left) and UAV (right) used for analysis 

 

  
Fig. 4. The smartphone photos were collected vertically above ground using a square frame (left); the pictures were 
then manually cropped only to the extent of the red frame and annotated (right). 

Each of the devices provided varying picture quality with Samsung Galaxy having the best resolution 

followed by Okapia, Lava, Symphony and the Samsung Tablet. The smartphone photos were not geo-

referenced. They were collected following a regular grid and each photo was taken three times using the 

same device. The photos were processed with CAN-EYE - software that allows the extraction of fCover 

from RGB images. In CAN-EYE, the first step of processing is cropping the images in order to exclude the 
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parts of them that are not relevant for the analysis. The photos from the field surveys in Bangladesh 

were cropped so that only the area within the sampling frame was included. Additionally, an adjustment 

factor is applied brightening or darkening the image, so it can be better differentiated between green 

and background pixels. Next, the images are roughly classified using thresholding and the initial 

classification is then manually adjusted until a satisfactory result is reached. The output is annotated 

images having two classes – green vegetation and background (Weiss & Baret, 2016). These annotated 

images were used as ground truth. However, as the photos processed with CAN-EYE contained black 

background (Fig. 4) additional processing was needed to remove it before the images could be imported 

in SAGA GIS (Fig. 5). The black background was removed using the image processing software XnView 

Version 2.40 (XnSoft, 2017). 

 
Fig. 5. Main pre-processing steps for smartphone and UAV images 

RGB photos of the fields were collected with an octocopter at three different altitudes – 7 m, 12 m and 

65 m. A SonyNex 7 camera was used to acquire these photos. Multispectral images were collected as 

well at an altitude of 100 m resulting in a different spatial resolution than the RGB images (Appendix A). 

For the collection of multispectral images, the Miniature Multiple Camera Array (Mini-MCA) by Tetracam 

(2017) was used. It covers five spectral bands – 530 nm, 680 nm, 710 nm, 740 nm and 800 nm, with 10 

nm band width. Some of the UAV images were not processed due to a failure in the processing software 

or due to insufficient data. Thus, for some dates and test sites images were available only for certain 

altitudes and spectral bands. Only images which contain information both in the visible and NIR bands 

were used in the analysis (Appendix A). For all UAV images considered in the analysis, hundred bare soil 

pixels per image were manually identified; the values for these pixels in the red and NIR band were 

retrieved; a linear function was fitted to them in Excel (Microsoft, 2016), thus calculating the soil line 

equation parameters. As the UAV images usually include many different plots with different crops, the 

images were manually cropped according to the extent of each single plot (Fig. 5). This procedure 

resulted in 150 images at plot level; 30 of them being collected at more than two different altitudes. 

Selected plots were further divided into 1x1 m tiles to enable the analysis of the impact of sampling 

strategy on fCover (Fig. 5). All UAV images were geo-referenced and orthorectified with Agisoft (Agisoft 

LLC, 2014). 
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3.3. Methods 

This section contains a detailed description of the methods used to answer the research questions. The 

first sub-section describes how the effect of spatial resolution on fCover is measured. The analysis is 

performed both for UAV and smartphone devices. The second sub-section describes the regression 

model used for calculating fCover. The various vegetation indices used as predictors in the regression 

model are outlined as well as the random forests algorithm. The next sub-section introduces an 

alternative classification method for estimating fCover relying on object-based image analysis. In the last 

section, it is elaborated on how an optimal number of smartphone photos can be determined so that the 

fCover of a field is accurately estimated. 

3.3.1. The effect of spatial resolution 

To study the effect of spatial resolution, first the differences in fCover estimates when using 

smartphones with different resolution (and camera lenses) were examined. fCover estimates based on 

annotated photos from various smartphone devices - Lava, Okapia, Samsung Galaxy, Symphony 

smartphones and a Samsung tablet, were used. The fCover estimates were compared for each photo and 

smartphone model. The differences were evaluated by subtracting the lowest estimate from the highest 

estimate for each photo. Thus, the photos and the corresponding smartphone models for which this 

difference was largest could be identified. Next, the error in fCover estimates derived from low-end 

smartphones when compared to the estimates derived from a high-end smartphone model was 

measured. This was done by comparing the fCover measurements based on annotated photos from the 

different smartphone devices to those derived from the annotated pictures from the Samsung Galaxy 

device, which is assumed to best represent ground truth. A linear model was used to visualize the 

relationships between them. The coefficient of determination (𝑅2) was calculated for each linear model 

in Excel as the squared Pearson’s correlation coefficient (𝑟) using the following formula: 

𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)/(𝑛 − 1)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2/(𝑛 − 1)𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2/(𝑛 − 1)𝑛

𝑖=1

 

where 𝑥𝑖 and 𝑦𝑖  are the variables,  𝑥̅ and 𝑦̅ are their sample means, and 𝑛 is the sample size (Vittinghof 

et al., 2011). 

fCover estimates were retrieved also by applying a regression algorithm on UAV images taken from two 

different altitudes – 12 m and 65 m. As no annotated UAV images were available to be used as ground 

truth, no statement was made about the error of these estimates. The emphasis was on the variation in 

the fCover values at different altitudes. The relationship between the different estimates was described 

using a linear model. 

3.3.2. Regression algorithm 

Two different algorithms for estimating fCover were proposed – a classification and a regression 

algorithm. For the regression algorithm, a machine learning technique was used. There is abundance of 

machine learning algorithms used in remote sensing – artificial neural networks, support vector 

machines, self-organizing map, decision trees, random forests, etc. (Lary et al., 2016). In the present 

research, a random forests (RF) regression algorithm was applied. The RF algorithm can be used not only 



17 
 

for prediction but also for assessing variable importance (Breiman, 2001). In the proposed methodology, 

the dependent variable fCover was estimated using a number of independent variables represented by 

various vegetation indices. The vegetation indices were first calculated on pixel level and then 

aggregated over the whole photo using their statistics (minimum, maximum, mean, and standard 

deviation). The fCover estimates obtained were compared to those based on the annotated photos using 

linear regression. The coefficient of determination was calculated. Using the ability of the RF algorithm to 

measure variable importance, the different vegetation indices were ranked according to their ability to 

predict fCover. Due to the lack of measurements in the NIR band for the smartphone photos, only color 

vegetation indices were used for the estimation of fCover from them. For the UAV images, both NIR and 

color indices were used as predictors. The processing steps are described in Fig. 6. 

 
Fig. 6. Processing steps for the regression approach 

3.3.3. Color indices 

In total, ten color indices were calculated. The color indices included the Red Green Ratio Vegetation 

Index (RGVI) by Jordan (1969), the Excess Green Index (ExG) by Woebbecke et al. (1995), the Excess Red 

Index (ExR) by Meyer et al. (1999), the Normalized Difference Index (NDI) by Perez et al. (2000), the 

Excess Green minus Excess Red index (ExGR) and the Improved Normalized Difference Vegetation Index 

(INDI) by Meyer & Neto (2008), the Modified Excess Green index (MExG) by Burgos-Artizzu et al. (2011), 

the Color Index of Vegetation Extraction (CIVE) by Kataoka et al. (2003), the vegetation index (VEG) by 

Hague et al. (2006), the combined index (COM1) by Guijarro et al. (2011), and a modification of the 

combined index (COM2) by Guererro et al. (2012) These are listed in Table 1.  

For calculating COM1, Guijarro et al. (2011) combined the ExG, ExGR, CIVE and VEG indices into one new 

index that can better segment green plants. The indices were weighted according to their relevance. The 

weights proposed were respectively w1=0.25, w2=0.3, w3=0.33 and w4=0.12. Guererro et al. (2012) 

proposed a similar weighted index - COM2. However, as they used only ExG, CIVE and VEG, the weights 

were slightly adjusted. They used the following weighting - w1=0.36, w2=0.47, w3=0.17. The VEG index 

used α=0.667 as a constant parameter (Hague et al., 2006). The CIVE, ExG, ExR, ExGR, MExG, VEG indices 

were calculated without applying a threshold value marking the difference between green and non-
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green pixels. When using random forests, it is not needed to define a threshold as the algorithm 

automatically finds the values (nodes) in which the independent variables should be split so that the sum 

of squared error between the actual and the mean value in the node is minimized (Moisen, 2008). All 

indices were calculated using the Boehner’s Simple Language (BSL) module in SAGA GIS Version 4.1.0 

(Conrad et al., 2015). The VIs formulas were saved as SAGA GIS parameter files (Appendix B). 

Index Formula Index Formula 

ExG 
2𝑔 − 𝑟 − 𝑏 

INDI 
128 × ((

𝐺 − 𝑅

𝐺 + 𝑅
) + 1) 

ExR 1.3𝑅 − 𝐺 CIVE 0.441𝑅 − 0.811𝐺 + 0.385𝐵 + 18.78745 

ExGR 𝐸𝑥𝐺 − 𝐸𝑥𝑅 COM1 𝑤1𝐸𝑥𝐺 + 𝑤2𝐸𝑥𝐺𝑅 + 𝑤3𝐶𝐼𝑉𝐸 + 𝑤4𝑉𝐸𝐺 

MExG 1.262𝐺 − 0.844𝑅 − 0.311𝐵 COM2 𝑤1𝐸𝑥𝐺 + 𝑤2𝐶𝐼𝑉𝐸 + 𝑤3𝑉𝐸𝐺 

NDI 𝐺 − 𝑅

𝐺 + 𝑅
 

VEG 𝐺

𝑅𝛼 × 𝐵1−𝛼
 

Table 1. List with color indices; R refers to red, G refers to green, and B refers to the blue spectral band; g, r and b 

refer to the percentage of red, green and blue pixels respectively; w refers to weights; α is a constant. 

For the UAV images collected at 100 m height some of the color indices could not be calculated because 

no data was collected in the blue band at this altitude.  Therefore, for the calculation of the color indices 

the data obtained at 12 m or if not available at 65 m height was used.  

3.3.4. NIR indices 

For the estimation of fCover from UAV images with a NIR band, additional indices were included. There 

was a special focus on indices accounting for soil as these are known to be more robust than the widely 

used NDVI (e.g. North, 2002). The indices used were the Difference Vegetation Index (DVI), the 

Normalized Difference Vegetation Index (NDVI), the Renormalized Difference Vegetation Index (RDVI) by 

Roujean & Breon (1995), the Green Normalized Difference Vegetation Index (GNDVI) by Gitelson et al. 

(1996), the Soil Adjusted Vegetation Index (SAVI) by Huete (1988), the Simple Ration index (SR) by Jordan 

(1969), the Green Chlorophyll Index (GCI) and the Red Edge Chlorophyll Index (RECI) by Gitelson et al. 

(2006), the Global Environmental Monitoring Index (GEMI) by Pinty & Verstraete (1992), the Modified 

Soil Adjusted Vegetation Index (MSAVI) by Qi et al. (1994), the Triangular Vegetation Index (TVI) by Broge 

& Leblanc (2001), the Adjusted Transformed Soil Adjusted Vegetation Index (ATSAVI) by Baret & Guyot 

(1991). These are listed in Table 2. 

DVI and NDVI are one of the earliest vegetation indices and have been used in variety of domains 

(Roujean & Breon, 1995; Liang, 2005). DVI is less sensitive to the background reflectance but it is more 

sensitive to the spectral and directional canopy properties as compared to NDVI (Roujean & Breon, 

1995). SAVI is similar to NDVI but it includes an adjustment index L which accounts for the influence of 

soil. The adjustment factor generally varies between 0 and 1 taking smaller values if the vegetation 

density is low and larger values (>0.5) if the vegetation density is high. For the estimation of SAVI, an 

adjustment factor L=0.5 was used as it is proved to reduce soil noise for a range of different vegetation 

densities (Huete, 1988). In MSAVI, the constant L used in SAVI was replaced with a variable function thus 

minimizing further the sensitivity to soil (Qi et al., 1994).  RDVI is also suggested to be less sensitive to 

soil reflectance than NDVI (Roujean & Breon, 1995). GEMI is less sensitive to atmospheric effects than 
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NDVI and SR (Pinty & Verstraete, 1992). GNDVI is as well similar to NDVI but instead of the red band it 

uses the green band; it has wider dynamic range and is more sensitive to chlorophyll compared to NDVI 

(Gitelson et al., 1996). The RECI index is calculated using both red edge bands at 710 and 740 nm.  

Additionally, indices using the parameters from the soil line equation were included (Table 2). To 

calculate the soil line indices, the soil line equation intercept and slope values were averaged over all 

available NIR images containing bare soil pixels. One of the first indices to use these parameters is the 

Perpendicular Vegetation Index (PVI) by Richardson & Weigand (1977). The Transformed Soil Adjusted 

Vegetation Index (TSAVI) by Baret et al. (1989) also uses the soil line parameters and similarly to SAVI 

minimizes the influence of soil brightness. Baret et al. (1989) suggest that the intercept and the slope are 

related by a second order polynomial, however this assumption was not considered here as both 

parameters were empirically estimated. The Second Soil Adjusted Vegetation Index (SAVI2) by Major et 

al. (1990) is claimed to be superior to SR, PVI and SAVI. Here it was applied in its simplest version without 

iteration. The Adjusted Transformed Soil Adjusted Vegetation Index (ATSAVI) by Baret & Guyot (1991) is 

similar to TSAVI but it includes additional parameter minimizing soil effects (X=0.08). The VIs formulas 

were saved as SAGA GIS parameter files (Appendix C). 

Index Formula Index Formula 

SR 𝑁𝐼𝑅

𝑅
 

GCI 𝑁𝐼𝑅

𝐺
− 1 

DVI 𝑁𝐼𝑅 − 𝑅 TVI 60(𝑁𝐼𝑅 − 𝐺) − 100(𝑅 − 𝐺) 

NDVI 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

RECI 𝑁𝐼𝑅

𝑅𝑒𝑑𝑔𝑒

− 1 

RDVI 𝑁𝐼𝑅 − 𝑅

√𝑁𝐼𝑅 + 𝑅
 

PVI (𝑁𝐼𝑅 − 𝑎𝑅 − 𝑏) √1 + 𝑎2⁄  

GNDVI 𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

SAVI2 
𝑁𝐼𝑅 (𝑅 −

𝑏

𝑎
)⁄  

SAVI 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
(1 + 𝐿) 

TSAVI 𝑎(𝑁𝐼𝑅 − 𝑎𝑅 − 𝑏)

(𝑎𝑁𝐼𝑅 + 𝑅 − 𝑎𝑏)
 

MSAVI 2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)

2
 

ATSAVI 𝑎(−𝑎𝑅 − 𝑏)

𝑎𝑁𝐼𝑅 + 𝑅 − 𝑎𝑏 + 𝑋(1 + 𝑎2)
 

GEMI 𝜂(1 − 0.25𝜂) − (𝑅 − 0.125) (1 − 𝑅)⁄  

𝜂 =
2(𝑁𝐼𝑅2 − 𝑅2) + 1.5𝑁𝐼𝑅 + 0.5𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5
 

 
 

Table 2. Indices including the near-infrared (NIR) band; L is parameter between 0 and 1 used for minimizing soil 

background effect; a and b refer to the slope and intercept in the soil line equation; X is parameter used for reducing 

background effects. 

3.3.5. Random forests 

The RF algorithm is an ensemble method meaning that it is based on a large number of decision trees 

(Liaw & Wiener, 2002). In a decision tree, the data is split at multiple nodes. At each node the data is 

separated in two parts according to a value of a certain predictor variable. The predictor variable is 

chosen based on the impurity of the data at the node – this is a measure for the homogeneity of the 
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data. The process of splitting continues until it is no longer possible to create new nodes or when a 

certain number of nodes is reached as defined by the user (Moisen, 2008). Unlike decision trees, in RF 

the splits are based on the variable minimizing impurity most out of a set of randomly chosen predictor 

variables (Liaw & Wiener, 2002). The RF algorithm is insensitive to the number of independent variables, 

so it can handle a big number of predictors. It is also robust to overfitting and faster than other ensemble 

methods using bagging and boosting (Breiman, 2001). While RF can be referred to as “black box” model, 

it offers the possibility to estimate various metrics which facilitate its interpretation (Prasad et al., 2006). 

One of these metrics is the previously mentioned variable importance. Variable importance is estimated 

by measuring the prediction error when the data for the predictor variable is randomly permuted 

(Prasad et al., 2006). It has to be noted that while the variables importance measures may vary from run 

to run, their ranking is stable (Liaw & Wiener, 2002). 

In this thesis, the randomForest package in R (Liaw & Wiener, 2002) was used to create the RF model. 

The R script is available in Appendix D. 

3.3.6. Classification algorithm 

As stated in the literature review chapter, the estimation of fCover can also be approached as a 

classification problem. GEOBIA models are suitable for classifying very high resolution images or images 

in which the object of interest is represented by several pixels (Blaschke et al., 2008). They have already 

been used to estimate ground cover and showed difference between 1 and 4% between the true and 

estimated cover (Luscier et al., 2006). 

In this thesis, SAGA GIS Version 4.1.0 (Conrad et al., 2015) was used to implement a GEOBIA workflow. 

First, for each device, crop type and acquisition date one RGB photo and the corresponding annotated 

photo were selected for training resulting in 46% of all photos being used as training samples. For this 

purpose, photos which represent relatively equally both classes (green and non-green) were chosen. 

Both the annotated and original images were imported in SAGA GIS and aligned, so that they overlap 

spatially. The original RGB image was then segmented (Fig. 7).  

   
Fig. 7. Supervised classification based on object-based image segmentation; the picture on the left shows a 

fragment of an original photo of maize taken with Samsung Galaxy smartphone; the picture in the middle shows the 

segmentation performed on the same photo; the picture on the right represents the original photo overlaid with the 

areas classified as green vegetation. 
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The parameters for the segmentation were retrieved in a stepwise manner in which the segmented 

image is overlaid with the original image and the parameters are adjusted until a satisfactory grouping of 

the pixels is achieved as in Luscier et al. (2006). A grouping was perceived as satisfactory when the 

segments did not cover more than one class. After the segmentation was performed, for each segment 

in the training photos the class (green/non-green) from the corresponding annotated photo was 

extracted. These training samples were used for the creation of the classifiers. Once a classifier was 

trained for each combination of crops, smartphones and acquisition dates, the rest of the images were 

segmented and classified using the existing classifiers (Fig. 7). The method used for classifying the images 

was a winner-takes-all method combining the binary encoding, Mahalanobis distance, maximum 

likelihood and spectral angle mapping methods. The SAGA GIS tools used to implement this workflow are 

shown in Fig 8. 

 
Fig. 8. Processing steps for the classification approach 

The fCover estimates obtained using the classification approach were compared to those based on the 

annotated photos using linear regression. The coefficient of determination was calculated. 

3.3.7. The impact of field sampling 

When taking photos of a field using a smartphone, it is not feasible to cover the whole field. A sampling 

strategy has to be employed optimizing the number of photos taken so that there is a statistically robust 

relationship to the fCover value of the whole field. UAV images on the other hand are not as limited as 

smartphones in regards to their spatial extent and can easily capture many fields at once. In order to 

make a statement about the optimal number of pictures to be taken on ground, smartphone photos 

covering entire fields were simulated using high resolution UAV images. This simulation was performed 

by cropping parts of the UAV images to the same extent that smartphone photos have. Thus, each of the 
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study fields was divided into 1x1 m tiles. Tiles at the edges of the images were omitted during the 

analysis as those included areas from adjacent fields (Fig. 9). Next, fCover was calculated using the 

average of different number of simulated photos. The photos were selected randomly and each selection 

was repeated ten times (Appendix E). The distribution of the fCover measurements and the relation to 

the field fCover was examined. Due to size of the fields, the analysis was performed only for two of them 

- one wheat field with high fCover value (0,59) and one maize field with low fCover value (0,19). 

   
Fig. 9. The picture on the left shows a wheat field which is divided in 1x1 m tiles according to the grid cells; some of 

the tiles contain parts outside of the study field and are therefore removed from the analysis, these tiles are 

depicted in yellow in the second picture; the picture on the right shows a single tile used as a simulation of a 

smartphone photo. 
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4. Results, Discussion and Conclusion 
The results of the analysis described in the previous chapter are presented. The structure of this chapter 

closely follows the one of the research questions outlined in the first part. The first section elaborates on 

the effect of spatial resolution on fCover for various types of devices. The next section describes the 

influence of the method used for fCover estimation. Two methods are compared – classification and 

regression, showing both their advantages and disadvantages as well as how they handle images of 

various conditions. In the third section, the problem of choosing an appropriate number of samples is 

reviewed linking the number of samples taken per field to the field fCover. The last two sections contain 

discussion of the results and conclusion. 

4.1. The effect of spatial resolution 

The effect of spatial resolution on fCover estimates was first examined by comparing the estimates 

based on annotated photos from different devices (Fig. 10). The analysis showed that the difference in 

fCover estimates ranges between 0 and 0,45 (Appendix F). The largest differences were recorded 

between Symphony and Samsung Tablet devices. These devices have the lowest resolution. What was 

typical for the cases with large fCover differences, was that they all depicted crops whose leaves were 

not well distinguished from the background (Fig. 11). However, for 70% of the samples the difference 

between the lowest estimate and the highest estimate of the same area was lower than 0,1 (Appendix 

F). 

 
Fig. 10. Differences in the fCover estimates obtained from annotated photos from different devices 

The fCover estimates based on annotated photos from Samsung Galaxy were considered to best 

represent the ground truth. Comparing the fCover estimates based on the annotated photos from other 

devices to the Samsung Galaxy estimates showed that fCover values derived from higher resolution 

photos were more accurate than those derived from lower resolution photos. The increase of the error 

with the deterioration of the resolution was clearly visible from the variance explained. Devices 

providing better resolution such as Okapia and Lava had larger coefficient of determination than devices 

with lower resolution such as Symphony and Samsung Tablet (Fig. 12). The percentage of variance 
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explained decreased with the diminishing resolution provided by these devices proving that the better 

resolution had positive impact on fCover accuracy. 

    
Fig. 11. Parts of photos taken with Symphony (a, c) and Samsung Tablet (b, d) devices having large differences in the 

fCover estimates; the difference in the fCover estimates are 0,45 between a and b, and 0,22 between c and d. 

  

  
Fig. 12. Scatterplots showing the linear relationship between the fCover measurements based on manually 

annotated photos; measurements from different devices are compared to Samsung Galaxy measurements 

(assumed to be closest to the ground truth). 

Lastly, the fCover estimates derived from UAV images were compared. Due to the lack of training data 

for the UAV images, no comparison could be made to ground truth data. In order to obtain fCover 

estimates, a regression algorithm was applied. The regression model was trained with smartphone 

photos and the predictors for the model were calculated at field level. The regression model is presented 

in more detail in the next section. fCover estimates derived from images at two different altitudes – 12 m 

and 65 m, were compared. There were in total 30 fields for which fCover was estimated at both heights. 

a

) 

d c b 
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All of the fields were planted with maize and showed very little variation in the estimated fCover values 

(Fig. 13). 

   
Fig. 13. The scatterplot on the left shows the linear relationship between the fCover measurements as predicted by 
the regression algorithm using UAV images taken at an altitude of 12 m and 65 m; the boxplots on the right show 
the distribution of the fCover values derived from UAV images taken at an altitude of 12 m and 65 m. 

The fCover estimates at an altitude of 12 m and 65 m were not correlated as evidenced by the low 

variance explained (Fig. 13). The fCover estimated at the height of 65 m was approx. twice higher than 

the fCover estimated at 12 m. No conclusion could be made which one of the estimates was over-

/underestimated due to the lack of ground truth data. It was assumed that this outcome was related to 

the difference in the spatial resolution obtained at the two different altitudes. This outcome showed that 

substantial difference in the spatial resolution of UAV images can lead to underestimation or 

overestimation of fCover by as much as a factor of two. 

4.2. Influence of the method on the estimated fCover values 

First, the regression model is presented. The regression model trained with smartphone photos is 

referred to as RF.model, the model trained with both RGB and NIR UAV images is referred to as 

RF.model_NIR and the model trained only with NIR UAV images is referred to as RF.model_NIRO. All 

models provided a satisfactory fit to the data as it can be seen from the variance explained and the mean 

of squared residuals (Table 3). The models with NIR indices clearly outperformed the model relying only 

on color indices. However, it has to be noted that because of the lack of training data for the UAV 

images, the RF.model trained on smartphone photos was used to calculate fCover estimates from the 

RGB UAV images. As both RGB and multispectral UAV images were collected over the same areas, the 

RF.model based estimates were used as training data for the RF.model_NIR and the RF.model_NIRO. 

Thus, the variance explained for the latter models was artificially boosted and the fCover estimates 

retrieved from these models were identical to those obtained with the RF.model. The variance explained 

showed in Table 3 was calculated based on the out of bag (OOB) samples. These samples were not used 

during the training of the model and therefore give the opportunity to realistically test the ability of the 

regression model to predict fCover. The randomForest package in R uses “pseudo R-squared” to estimate 

the percentage of variance explained, which is calculated as follow: 
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𝑅2 = 1 − 𝑚𝑠𝑒/𝑉𝑎𝑟(𝑦) 

where 𝑚𝑠𝑒 is the vector of mean square errors, and 𝑉𝑎𝑟(𝑦) is the variance of the response variable 

(Breiman et al., 2015). It has to be differentiated between the variance explained based only on OOB 

samples as in Table 3 and the variance explained showed in Fig. 13 as in the latter both the OOB and the 

training samples were included, thus increasing the coefficient of determination. 

Table 3. The percentage of variance explained and mean of squared residuals of out of bag (OOB) samples as per 

model; OOB samples are not used during the training of the models. 

 % Variance explained Mean of squared residuals 

RF.model 66.73% 0.0104 

RF.model_NIR 97.04% 0.0005 

RF.model_NIRO 92% 0.0013 

While the fCover estimates derived from manually annotated photos best aligned with those derived 

from the highest resolution images, the percentage of variance explained for all types of devices was 

high (>95%) (Fig. 14). Higher resolution photos however did not always outperform lower resolution 

photos when used for fCover estimation. For example, the fCover measurements derived from Samsung 

Tablet photos corresponded better to those derived from manually annotated photos taken with the 

same device compared to Symphony and Lava derived estimates. Thus, it can be concluded that minor 

differences in the photos resolution resulting from the device type did not have major impact on the 

fCover estimates. 
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Fig. 14. The charts show the linear relationship between 
the fCover measurements as predicted by the regression 
algorithm and the actual fCover measurements as 
calculated from the manually annotated photos. 

An analysis of the residuals showed that for all devices, there was a particular photo for which the 

observed fCover exceeded the estimated fCover with at least 0,1. What was peculiar about this photo 

was that it had strong reflectance of sun light (glint), so some parts of the plants appeared white on the 

photos (Fig. 15). This phenomenon might have led to the underestimation of fCover by the regression 

algorithm. All other photos where the absolute difference between the ground truth and the predicted 

fCover peaked (>0,1) were characterized by rather granular structure of the plants in contrast to wheat, 

maize and mung beans which have well distinguished leaves (Fig. 15).  

   

   
Fig. 15. Photos taken with Lava (a), Okapia (b), Samsung Galaxy (c), Symphony (d) and Samsung Tablet (e) devices 
showing the effect of glint; the last photo (f) shows the type of plant for which the residuals in the  regression 
algorithm often peaked. 
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In the RF.model, the most important parameter was the mean value of the ExR index. In this model, it 

was evident that the mean values of the indices were more important variables than any other statistics 

(minimum, maximum values and standard deviation). In contrast, in the RF.model_NIR both the mean 

and the standard deviation of the VIs played an important role. In the RF.model_NIR, the most important 

parameter was the mean value of the ExR index too. The most important parameter based on a NIR VI 

was the standard deviation of the RECI index using the red edge at 710 nm. The same held true also for 

the RF.model_NIRO (Table 4). 

Table 4. The table shows the first ten most important variables in each model (RF.model, RF.model_NIR, 

RF.model_NIRO) as measured by node purity of the random forests trees. 

 RF.model  RF.model_NIR  RF.model_NIRO 

№ VI Importance  VI Importance  VI Importance 

1 ExR_mean  1.01990145  ExR_mean      4.397639e-01  RECI1_std    0.4130000876 

2 ExGR_mean 0.51256694  INDI_std      2.251080e-01  GCI_std      0.2333413393 

3 INDI_mean 0.46265651  RECI1_std     1.870275e-01  RECI1_mean   0.1716849517 

4 COM1_mean 0.34974767  NDI_std       1.627520e-01  SR_std       0.1583610722 

5 NDI_mean  0.27896846  INDI_mean     1.622089e-01  TSAVI_std    0.1110948238 

6 ExR_std   0.23431179  NDI_mean      1.289101e-01  ATSAVI_std   0.1095700862 

7 ExGR_std  0.16522928  ExGR_mean     2.426570e-02  RECI2_std    0.0785645667 

8 CIVE_mean 0.15114382  VEG_min       2.143247e-02  GEMI_std     0.0476674859 

9 ExGR_max  0.12776804  GCI_std       1.855404e-02  RDVI_std     0.0328379150 

10 ExG_mean  0.12513443  RECI2_std     1.684232e-02  DVI_std      0.0185556549 

Lastly, results for the classification model are presented. The percentage of variance explained when the 

training samples were excluded amounted to 76% (Fig. 16). However, this measure cannot be directly 

compared to variance explained for the regression algorithm (Table 3) because different amount of 

training samples were used. 

  
Fig. 16. These charts show the coefficients of determination for the classification model with and without including 

the training samples. 

The fCover estimates derived from manually annotated photos best aligned with those derived from the 

images taken with Symphony, Samsung Galaxy and Okapia (Fig. 17). So, similarly to the regression 

approach, higher resolution photos did not always outperform lower resolution photos when used for 
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fCover estimation. However, in contrast to the regression approach for some devices this relationship 

was very weak. For example, for Lava pictures the variance explained amounted to only 0,44 (Fig. 17). It 

is unlikely that the low coefficient of determination was caused by the resolution of Lava smartphones 

because fCover estimates derived from other devices offering lower resolution (e.g. Symphony, Samsung 

Tablet) had stronger relationship to the actual fCover. It is assumed that this phenomenon is rather 

related to the characteristics of the photos. Thus, it can be concluded that minor differences in the 

photos resolution resulting from the device type were not strongly correlated to the fCover estimates 

when the latter were calculated using a classification approach and manually annotated photos from the 

same device. In both cases when a regression and when a classification approaches were used, there was 

no clear pattern showing that higher resolution photos were always better aligned to the manually 

annotated photos taken with the same device. 

  

  

 

Fig. 17. The charts show the linear relationship between 
the fCover measurements as predicted by the 
classification algorithm and the actual fCover 
measurements as calculated from the manually 
annotated photos. 

The overall percentage of variance explained including the training samples amounted to 66% opposed 

to 76% when the training samples were excluded (Fig. 16). These contradictory results could be 
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explained with the strategy adopted for selecting training photos and the limited amount of data. For 

each device, crop type and date of acquisition a separate classifier was trained resulting in 46% of data 

being used for training. However, for some crops there was only one photo per acquisition date. This 

often resulted in a classifier being trained for that particular photo but not being applied on any other 

photos. Mostly these photos contained crops other than mung beans, maize and wheat that did not have 

well distinguished leaves. Such photos were more challenging for classification and by training a classifier 

specific for them they were excluded from the validation dataset. Thus, the validation dataset included 

samples that were easier to classify (e.g. mung beans, maize, wheat). The classifiers trained on such 

photos performed worse in comparison to other classifiers for other crops (mung beans, maize, wheat) 

but because they were not applied on many other photos, they had limited negative influence on the 

overall accuracy of the fCover estimates. An example for this phenomenon is shown in Fig. 18; for this 

particular photo the predicted fCover was 0,72 while fCover from the annotated photo amounted to 

0,31.  

   
Fig. 18. The original RGB photo (a), the corresponding annotated photo (b), and classified photo (c); the classifier 

was trained using the annotated version of the photo. 

Another common reason for misclassification was the difference in the illumination in the photos used 

for training the classifiers and the photos on which the same classifiers were applied (Fig. 19). The 

approach to use for the training of the classifiers only photos that were acquired in the same day did not 

manage to minimize the effect of changing illumination. Strong reflectance of sun light in some of the 

photos was also a common reason for the inaccurate estimation of fCover similarly to the regression 

algorithm (Fig. 15). 

  

Fig. 19. The photo on the left was 
used for training a classifier 
applied on the photo on the right; 
the actual fCover on the right 
photo was 0,55, while the 
predicted fCover amounted to 
0,32. 
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4.3. The impact of field sampling 

The last research question concentrated on the effect of field sampling and namely the optimal number 

of smartphone photos to be taken, so that a statistically robust characterization of the fCover value of a 

field can be obtained. One wheat plot with denser vegetation cover (fCover = 0,59) and one maize plot 

with lower vegetation cover (fCover = 0,19) were examined (Fig. 20). For the estimation of fCover, the 

regression algorithm was used. The fields had different size, so dividing them in 1x1 m tiles resulted in 

having 75 tiles for the wheat field and 87 tiles for the maize field. For both plots, the average fCover was 

calculated by using an increasing number of randomly collected tiles with each selection being repeated 

ten times. 

  

  
Fig. 20. Distribution of the fCover measurements per field using an increasing number of randomly selected 

samples; the analysis is performed for one wheat and one maize field. 

For the wheat field, the analysis showed that fCover estimates based only on one sample could yield 

results very similar to the field fCover. The difference between the fCover estimates based on one 

sample and the field fCover for the wheat field ranged between -3% and 1%. For the maize field, this 

difference ranged between -3% and 22% probably due to its more heterogeneous pattern. Four samples 

were needed to achieve an fCover estimate similar to the field fCover (ca. ±4% difference).  
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4.4. Discussion 

The images used in this thesis were not radiometrically corrected, only digital numbers were used for the 

analysis. The lack of radiometric correction has certain implications for the fCover estimates. First, the 

parameters of the soil line equation used for the calculation of some of the vegetation indices could be 

influenced. If the images used for its estimation were radiometrically corrected, the parameters of the 

equation would have been precisely calculated while using the digital numbers resulted in having diverse 

pixel values for bare soil. However, the vegetation indices using the soil line equation parameters were 

not among the most important indices, thus it can be assumed that the lack of radiometric correction 

does not have major impact on fCover estimates when applying the regression approach. Secondly, the 

lack of radiometric correction has an impact on the classification of images. When using a classification 

approach, differing sun reflectance can lead to under- or overestimation of fCover with more than a 

factor of two. Possible solutions for this problem are to apply a radiometric correction or to develop 

different classifiers adjusted to various levels of sun illumination and record the level of illumination for 

each photo taken. This is especially crucial for UAV images which while providing reliable base for the 

estimation of vegetation indices are prone to angular variation in reflectance and thus can lead to 

misleading results (Rasmussen et al., 2016). 

Comparing both regression and classification approaches showed that regression algorithms are better 

suited for fCover estimation. The regression approach outperformed the classification approach with its 

better ability to deal with varying sun illumination. This was evidenced by the more accurate estimation 

of fCover for photos of the same crop where varying illumination conditions were present. The better 

performance might be also due to the fact that while the classification algorithm was relying only on the 

digital numbers of the pixels, in the regression algorithm vegetation indices were used as predictors. In 

their study about the estimation of cotton leaf area index, Bendig et al. (2015) concluded that models 

using vegetation indices rather than spectral reflectance as independent variables are better at 

predicting. Thus, a possible way of improving the classification approach is to use vegetation indices 

during the processes of segmentation and/or classification. 

While this research makes use of different methods for estimating fCover, it is not possible to apply the 

whole spectrum of available methods. As shown in the literature review there is wide abundance of 

methods which makes a complete overview and comparison between all of them hardly possible. 

Priority is given to those which are computationally more efficient. Thus, physical models are excluded in 

favor of statistical and machine learning models. But only for the regression approach, there are plenty 

of different statistical and machine learning models that can be used for its implementation. In this 

thesis, a random forests model was used. Although it showed satisfactory results, it is important to cover 

wider range of machine learning methods (e.g. Support Vector Machines) before implementing it on a 

larger scale. The classification method also offers wide variety of different options for its 

implementation. While here an object-based approach was chosen, classification can be performed also 

on pixel level. More sophisticated software for object-based image analysis offer additional parameters 

to be adjusted besides the parameters for band width for seed point generation and generalization 

available in SAGA GIS. eCognition for example offers the opportunity to define classes based on the 

values for these classes for certain vegetation indices. 
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Analyzing the impact of field sampling on fCover showed that at least 5% of the area has to be studied in 

order to achieve an fCover estimate that does not differ from the actual fCover with more than 4%. A 

similar study of fCover over alpine grassland showed that sampling as little as 0,1% of the area can yield 

fCover accuracy of over 80% (Chen et al., 2016). However, Chen et al. (2016) outlined that these results 

largely depend on the homogeneity of the area as measured by the coefficient of variation. 

Due to the lack of smartphone photos and UAV images of the same area when studying the impact of 

field sampling simulated photos were used. While these photos cover approximately the same area as 

smartphone photos, they are not a perfect substitute for smartphone photos as they do not offer the 

same picture quality. Optimally, real smartphone photos have to be used. 

While programming scripts were used to calculate the vegetation indices and to train the regression 

model, for both the regression and classification algorithm a higher degree of automation could be 

achieved. This would include batch processing for the images in SAGA GIS and automated coupling with 

the R script without the need to export and preprocess the data in Excel. SAGA GIS does offer the 

opportunity for batch processing and also has Python API which as well can be used to automate the 

processes. 

4.5. Conclusion 

The main objective of this thesis was to study the impact of various factors on fCover. First, the effect of 

spatial resolution on the fCover estimates was examined by using different devices such as smartphones 

and UAV providing various level of resolution. Next, the influence of the method used for fCover 

estimation was studied by comparing two types of approaches – regression and classification. Lastly, the 

impact of field sampling was analyzed by relating the fCover obtained from varying number of samples 

to the fCover of the field, where these samples were collected. 

The analysis of smartphone photos showed that the differences in the fCover estimates obtained from 

the various devices are minor. Comparing the fCover estimates derived from low-end smartphones to 

those derived from a high-end smartphone model revealed an increase of the error in fCover estimates 

when photos with lower resolution were used. When fCover estimates are based on UAV images, using 

too coarse spatial resolution as obtained at 65 m altitude can lead to substantial over- or 

underestimation of fCover. The fCover estimates based on UAV images acquired at 12 m and 65 m 

altitude differed by as much as a factor of two. 

The difference between the predicted fCover retrieved with the regression method and the actual fCover 

as calculated from the annotated photos was low. This was evidenced by the high percentage of variance 

explained between the two estimates, which amounted to more than 95% for all types of devices. The 

most import color index was the ExR index, while from the vegetation indices in the near-infrared region 

this was the RECI index based on the red edge at 710 nm. The difference between the predicted fCover 

retrieved with the classification method and the actual fCover as calculated from the annotated photos 

was low. However, the percentage of variance explained for the different devices varied greatly. 

The number of smartphone photos needed in order to achieve statistically robust characterization of the 

fCover of a field depends on the heterogeneity of the particular field. For the fields studied, surveying 
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four photos per field yielded an fCover estimate that did not differ from the actual fCover with more 

than 4%. Four photos amounted to approx. 5% of the field area. 

Future research could concentrate on developing a routine for radiometric correction of smartphone 

photos and UAV images or on developing classifiers accounting for various levels of sun illumination. 

Exploring the application of vegetation indices for the purpose of segmentation and/or classification 

could improve the results obtained with the object-based image analysis technique. Additional machine 

learning methods for regression could be investigated. 
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Appendix A 

Place Date RGB Multispectral Resolution RGB 
(cm) 

Resolution multispectral 
(cm) 

Barisal 20160113 0 100 n/a 5,14 

Barisal 20160113 0 100 n/a 5,11 

Barisal 20160123 65 0 1,15 n/a 

Barisal 20160203 12 100 0,45 5,34 

Barisal 20160302 65 0 1,20 n/a 

Barisal 20160331 0 100 n/a 5,44 

Barisal 20160413 0 100 n/a 5,11 

Barisal 20160424 0 100 n/a 5,07 

Kalapara 20151229 12 0 1,21 n/a 

Kalapara 20160120 12 100 0,20 5,21 

Kalapara 20160120 12 100 0,20 5,43 

Kalapara 20160131 12 100 0,23 5,28 

Kalapara 20160131 65 100 1,23 5,28 

Kalapara 20160209 7 0 0,12 n/a 

Kalapara 20160209 12 0 0,21 n/a 

Kalapara 20160303 0 100 n/a 5,57 

Kalapara 20160323 0 100 n/a 5,09 

Kalapara 20160405 0 100 n/a 5,34 

Kalapara 20160420 0 100 n/a 5,21 

Patuakhali 20160106 65 0 1,17 n/a 

Patuakhali 20160117 12 0 0,30 n/a 

Patuakhali 20160117 65 0 1,21 n/a 

Patuakhali 20160127 12 100 0,32 5,29 

Patuakhali 20160127 12 100 0,32 5,05 

Patuakhali 20160127 65 100 8,83 5,29 

Patuakhali 20160127 65 100 8,83 5,05 

Patuakhali 20160207 12 100 0,30 5,09 

Patuakhali 20160207 12 100 0,30 5,07 

Patuakhali 20160304 65 100 1,31 5,53 

Patuakhali 20160316 65 0 1,32 n/a 

Patuakhali 20160407 0 100 n/a 5,36 

Patuakhali 20160418 0 100 n/a 5,08 

Patuakhali 20160418 0 100 n/a 5,25 
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Appendix B 

Matrix R(), G(), B(), ExG, ExR, ExGR, MExG, NDI, INDI, CIVE, COM1, COM2, VEG; 

Point p; 

 

ExG  = R; 

ExR = R; 

ExGR = R; 

MExG = R; 

NDI = R; 

INDI = R; 

CIVE = R; 

COM1 = R; 

COM2 = R; 

VEG = R; 

 

foreach p in R do 

{ 

  ExG[p]  = 2*G[p] - R[p] - B[p]; 

  ExR[p] = 1.3*R[p] - G[p]; 

  ExGR[p] = 3*G[p] - 2.3*R[p] - B[p]; 

  MExG[p] = 1.262*G[p] - 0.844*R[p] - 0.311*B[p]; 

  NDI[p] = (G[p] - R[p])/(G[p] + R[p]); 

  INDI[p] = 128*((G[p] - R[p])/(G[p] + R[p]) + 1); 

  CIVE[p] = 0.441*R[p] - 0.811*G[p] + 0.385*B[p] + 18.78745; 

  COM1[p] = 0.25*(2*G[p] - R[p] - B[p]) + 0.3*(3*G[p] - 2.3*R[p] - B[p]) + 0.33*(0.441*R[p] - 0.811*G[p] + 

0.385*B[p] +18.78745) + 0.12*(G[p]/(R[p]^0.667 + B[p]^0.333)); 

  COM2[p] = 0.36*(2*G[p] - R[p] - B[p]) + 0.47*(0.441*R[p] - 0.811*G[p] + 0.385*B[p] +18.78745) + 

0.17*(G[p]/(R[p]^0.667 + B[p]^0.333)); 

  VEG[p] = G[p]/(R[p]^0.667 + B[p]^0.333); 

} 

 

showMatrix(ExG); 

showMatrix(ExR); 

showMatrix(ExGR); 

showMatrix(MExG); 

showMatrix(NDI); 

showMatrix(INDI); 

showMatrix(CIVE); 

showMatrix(COM1); 

showMatrix(COM2); 

showMatrix(VEG); 
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Appendix C 

Matrix R(), G(), NIR(), R1(), R2(), SR, DVI, NDVI, RDVI, GNDVI, SAVI, MSAVI, GEMI, GCI, TVI, RECI1, RECI2, PVI, 

SAVI2, TSAVI, ATSAVI; 

Point p; 

 

SR  = R; 

DVI = R; 

NDVI = R; 

RDVI = R; 

GNDVI = R; 

SAVI = R; 

MSAVI = R; 

GEMI = R; 

GCI = R; 

TVI = R; 

RECI1 = R; 

RECI2 = R; 

PVI = R; 

SAVI2 = R; 

TSAVI = R; 

ATSAVI = R; 

 

foreach p in R do 

{ 

  SR[p]  = NIR[p]/R[p]; 

  DVI[p] = NIR[p] - R[p]; 

  NDVI[p] = (NIR[p] - R[p])/(NIR[p] + R[p]); 

  RDVI[p] = (NIR[p] - R[p])/((NIR[p] + R[p])^(1/2)); 

  GNDVI[p] = (NIR[p] - G[p])/(NIR[p] + G[p]); 

  SAVI[p] = ((NIR[p] - R[p]) *1.5)/(NIR[p] + R[p] + 0.5); 

  MSAVI[p] = (2*NIR[p] + 1 -((2*NIR[p] + 1)^2 - 8*(NIR[p] - R[p]))^(1/2))/2; 

  GEMI[p] = ((2*(NIR[p]^2 - R[p]^2) + 1.5*NIR[p] + 0.5*R[p])/(NIR[p] + R[p] + 0.5))*(1 - 0.25*((2*(NIR[p]^2 - 

R[p]^2) + 1.5*NIR[p] + 0.5*R[p])/(NIR[p] + R[p] + 0.5))) -((R[p] - 0.125)/(1 - R[p])); 

  GCI[p] = NIR[p]/R[p] - 1; 

  TVI[p] = 60*(NIR[p] - G[p]) - 100*(R[p] - G[p]); 

  RECI1[p] = NIR[p]/R1[p] - 1; 

  RECI2[p] = NIR[p]/R2[p] - 1; 

  PVI[p] = (NIR[p] - 0.85*R[p] - 27.06)/1.31; 

  SAVI2[p] = NIR[p]/(R[p] - 31.84); 

  TSAVI[p] = (0.85*NIR[p] - 0.72*R[p] - 23)/(0.85*NIR[p] + R[p] - 23); 

  ATSAVI[p] = (-0.72*R[p] - 23)/(0.85*NIR[p] + R[p] -22.86); 

} 

 

showMatrix(SR); 

showMatrix(DVI); 

showMatrix(NDVI); 

showMatrix(RDVI); 

showMatrix(GNDVI); 

showMatrix(SAVI); 

showMatrix(MSAVI); 

showMatrix(GEMI); 

showMatrix(GCI); 

showMatrix(TVI); 

showMatrix(RECI1); 

showMatrix(RECI2); 

showMatrix(PVI); 

showMatrix(SAVI2); 

showMatrix(TSAVI); 

showMatrix(ATSAVI); 
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Appendix D 

# import data 

dataset = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master thesis/Smartphone_dataset.csv", header = 

TRUE, sep = ";", dec = ",") 

 

#assign names to variables 

ID<-dataset$ID 

date_1<-dataset$Date_1 

date_2<-dataset$Date_2 

device<-dataset$Device 

fNumber<-dataset$FNumber 

fCover<-dataset$fCover 

 

ExG_mean<-dataset$ExG_mean 

ExG_min<-dataset$ExG_min 

ExG_max<-dataset$ExG_max 

ExG_std<-dataset$ExG_std 

 

ExR_mean<-dataset$ExR_mean 

ExR_min<-dataset$ExR_min 

ExR_max<-dataset$ExR_max 

ExR_std<-dataset$ExR_std 

 

ExGR_mean<-dataset$ExGR_mean 

ExGR_min<-dataset$ExGR_min 

ExGR_max<-dataset$ExGR_max 

ExGR_std<-dataset$ExGR_std 

 

MExG_mean<-dataset$MExG_mean 

MExG_min<-dataset$MExG_min 

MExG_max<-dataset$MExG_max 

MExG_std<-dataset$MExG_std 

 

NDI_mean<-dataset$NDI_mean 

NDI_min<-dataset$NDI_min 

NDI_max<-dataset$NDI_max 

NDI_std<-dataset$NDI_std 

 

INDI_mean<-dataset$INDI_mean 

INDI_min<-dataset$INDI_min 

INDI_max<-dataset$INDI_max 

INDI_std<-dataset$INDI_std 

 

CIVE_mean<-dataset$CIVE_mean 

CIVE_min<-dataset$CIVE_min 

CIVE_max<-dataset$CIVE_max 

CIVE_std<-dataset$CIVE_std 

 

COM1_mean<-dataset$COM1_mean 

COM1_min<-dataset$COM1_min 

COM1_max<-dataset$COM1_max 

COM1_std<-dataset$COM1_std 

 

COM2_mean<-dataset$COM2_mean 

COM2_min<-dataset$COM2_min 

COM2_max<-dataset$COM2_max 

COM2_std<-dataset$COM2_std 

 

VEG_mean<-dataset$VEG_mean 

VEG_min<-dataset$VEG_min 

VEG_max<-dataset$VEG_max 

VEG_std<-dataset$VEG_std 

 

# Random Forest 

library(randomForest) 

RF.model<-randomForest(fCover~ExG_mean+ExG_min+ExG_max+ExG_std+ExR_mean+ExR_min+ExR_max+ExR_std+ 

                         ExGR_mean+ExGR_min+ExGR_max+ExGR_std+MExG_mean+MExG_min+MExG_max+MExG_std+ 

                         NDI_mean+NDI_min+NDI_max+NDI_std+INDI_mean+INDI_min+INDI_max+INDI_std+ 
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                         CIVE_mean+CIVE_min+CIVE_max+CIVE_std+COM1_mean+COM1_min+COM1_max+COM1_std+ 

                         COM2_mean+COM2_min+COM2_max+COM2_std+VEG_mean+VEG_min+VEG_max+VEG_std, data=dataset) 

importance(RF.model) 

save(RF.model, file = "RF.rda") 

plot(RF.model) 

print(RF.model) 

 

# Predicted fCover - training dataset 

dataMatrix<-cbind(ExG_mean, ExG_min, ExG_max, ExG_std, ExR_mean, ExR_min, ExR_max, ExR_std, ExGR_mean, 

                  ExGR_min, ExGR_max, ExGR_std, MExG_mean, MExG_min, MExG_max, MExG_std, NDI_mean, NDI_min, 

                  NDI_max, NDI_std, INDI_mean, INDI_min, INDI_max, INDI_std, CIVE_mean, CIVE_min, CIVE_max, 

                  CIVE_std, COM1_mean, COM1_min, COM1_max, COM1_std, COM2_mean, COM2_min, COM2_max, COM2_std, 

                  VEG_mean, VEG_min, VEG_max, VEG_std) 

dataSmartphone<-data.frame(dataMatrix) 

pred_fCover<-predict(RF.model, dataSmartphone) 

write.csv(pred_fCover, file = "C:/Users/nikolina/Desktop/GIMA/SM_fCover_pred.csv") 

 

# Predicted fCover - UAV dataset 

UAVdataset = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master thesis/UAV_dataset.csv", header = TRUE, 

sep = ";", dec = ",") 

 

ExG_mean<-UAVdataset$ExG_mean 

ExG_min<-UAVdataset$ExG_min 

ExG_max<-UAVdataset$ExG_max 

ExG_std<-UAVdataset$ExG_std 

 

ExR_mean<-UAVdataset$ExR_mean 

ExR_min<-UAVdataset$ExR_min 

ExR_max<-UAVdataset$ExR_max 

ExR_std<-UAVdataset$ExR_std 

 

ExGR_mean<-UAVdataset$ExGR_mean 

ExGR_min<-UAVdataset$ExGR_min 

ExGR_max<-UAVdataset$ExGR_max 

ExGR_std<-UAVdataset$ExGR_std 

 

MExG_mean<-UAVdataset$MExG_mean 

MExG_min<-UAVdataset$MExG_min 

MExG_max<-UAVdataset$MExG_max 

MExG_std<-UAVdataset$MExG_std 

 

NDI_mean<-UAVdataset$NDI_mean 

NDI_min<-UAVdataset$NDI_min 

NDI_max<-UAVdataset$NDI_max 

NDI_std<-UAVdataset$NDI_std 

 

INDI_mean<-UAVdataset$INDI_mean 

INDI_min<-UAVdataset$INDI_min 

INDI_max<-UAVdataset$INDI_max 

INDI_std<-UAVdataset$INDI_std 

 

CIVE_mean<-UAVdataset$CIVE_mean 

CIVE_min<-UAVdataset$CIVE_min 

CIVE_max<-UAVdataset$CIVE_max 

CIVE_std<-UAVdataset$CIVE_std 

 

COM1_mean<-UAVdataset$COM1_mean 

COM1_min<-UAVdataset$COM1_min 

COM1_max<-UAVdataset$COM1_max 

COM1_std<-UAVdataset$COM1_std 

 

COM2_mean<-UAVdataset$COM2_mean 

COM2_min<-UAVdataset$COM2_min 

COM2_max<-UAVdataset$COM2_max 

COM2_std<-UAVdataset$COM2_std 

 

VEG_mean<-UAVdataset$VEG_mean 

VEG_min<-UAVdataset$VEG_min 

VEG_max<-UAVdataset$VEG_max 

VEG_std<-UAVdataset$VEG_std 
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dataMatrix1<-cbind(ExG_mean, ExG_min, ExG_max, ExG_std, ExR_mean, ExR_min, ExR_max, ExR_std, ExGR_mean, 

                  ExGR_min, ExGR_max, ExGR_std, MExG_mean, MExG_min, MExG_max, MExG_std, NDI_mean, NDI_min, 

                  NDI_max, NDI_std, INDI_mean, INDI_min, INDI_max, INDI_std, CIVE_mean, CIVE_min, CIVE_max, 

                  CIVE_std, COM1_mean, COM1_min, COM1_max, COM1_std, COM2_mean, COM2_min, COM2_max, COM2_std, 

                  VEG_mean, VEG_min, VEG_max, VEG_std) 

 

dataUAV<-data.frame(dataMatrix1) 

pred_fCover_UAV<-predict(RF.model, dataUAV) 

write.csv(pred_fCover_UAV, file = "C:/Users/nikolina/Desktop/GIMA/UAV_fCover_pred.csv") 

 

# Train model with UAV dataset (NIR indices included) 

UAVdataset_NIR = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master thesis/UAV_dataset_rgb12.csv", 

header = TRUE, sep = ";", dec = ",", blank.lines.skip = FALSE) 

 

fCover<-UAVdataset_NIR$fCover_rgb 

 

ExG_mean<-UAVdataset_NIR$ExG_mean 

ExG_min<-UAVdataset_NIR$ExG_min 

ExG_max<-UAVdataset_NIR$ExG_max 

ExG_std<-UAVdataset_NIR$ExG_std 

 

ExR_mean<-UAVdataset_NIR$ExR_mean 

ExR_min<-UAVdataset_NIR$ExR_min 

ExR_max<-UAVdataset_NIR$ExR_max 

ExR_std<-UAVdataset_NIR$ExR_std 

 

ExGR_mean<-UAVdataset_NIR$ExGR_mean 

ExGR_min<-UAVdataset_NIR$ExGR_min 

ExGR_max<-UAVdataset_NIR$ExGR_max 

ExGR_std<-UAVdataset_NIR$ExGR_std 

 

MExG_mean<-UAVdataset_NIR$MExG_mean 

MExG_min<-UAVdataset_NIR$MExG_min 

MExG_max<-UAVdataset_NIR$MExG_max 

MExG_std<-UAVdataset_NIR$MExG_std 

 

NDI_mean<-UAVdataset_NIR$NDI_mean 

NDI_min<-UAVdataset_NIR$NDI_min 

NDI_max<-UAVdataset_NIR$NDI_max 

NDI_std<-UAVdataset_NIR$NDI_std 

 

INDI_mean<-UAVdataset_NIR$INDI_mean 

INDI_min<-UAVdataset_NIR$INDI_min 

INDI_max<-UAVdataset_NIR$INDI_max 

INDI_std<-UAVdataset_NIR$INDI_std 

 

CIVE_mean<-UAVdataset_NIR$CIVE_mean 

CIVE_min<-UAVdataset_NIR$CIVE_min 

CIVE_max<-UAVdataset_NIR$CIVE_max 

CIVE_std<-UAVdataset_NIR$CIVE_std 

 

COM1_mean<-UAVdataset_NIR$COM1_mean 

COM1_min<-UAVdataset_NIR$COM1_min 

COM1_max<-UAVdataset_NIR$COM1_max 

COM1_std<-UAVdataset_NIR$COM1_std 

 

COM2_mean<-UAVdataset_NIR$COM2_mean 

COM2_min<-UAVdataset_NIR$COM2_min 

COM2_max<-UAVdataset_NIR$COM2_max 

COM2_std<-UAVdataset_NIR$COM2_std 

 

VEG_mean<-UAVdataset_NIR$VEG_mean 

VEG_min<-UAVdataset_NIR$VEG_min 

VEG_max<-UAVdataset_NIR$VEG_max 

VEG_std<-UAVdataset_NIR$VEG_std 

 

SR_mean<-UAVdataset_NIR$SR_mean 

SR_min<-UAVdataset_NIR$SR_min 

SR_max<-UAVdataset_NIR$SR_max 

SR_std<-UAVdataset_NIR$SR_std 
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DVI_mean<-UAVdataset_NIR$DVI_mean 

DVI_min<-UAVdataset_NIR$DVI_min 

DVI_max<-UAVdataset_NIR$DVI_max 

DVI_std<-UAVdataset_NIR$DVI_std 

 

NDVI_mean<-UAVdataset_NIR$NDVI_mean 

NDVI_min<-UAVdataset_NIR$NDVI_min 

NDVI_max<-UAVdataset_NIR$NDVI_max 

NDVI_std<-UAVdataset_NIR$NDVI_std 

 

RDVI_mean<-UAVdataset_NIR$RDVI_mean 

RDVI_min<-UAVdataset_NIR$RDVI_min 

RDVI_max<-UAVdataset_NIR$RDVI_max 

RDVI_std<-UAVdataset_NIR$RDVI_std 

 

GNDVI_mean<-UAVdataset_NIR$GNDVI_mean 

GNDVI_min<-UAVdataset_NIR$GNDVI_min 

GNDVI_max<-UAVdataset_NIR$GNDVI_max 

GNDVI_std<-UAVdataset_NIR$GNDVI_std 

 

SAVI_mean<-UAVdataset_NIR$SAVI_mean 

SAVI_min<-UAVdataset_NIR$SAVI_min 

SAVI_max<-UAVdataset_NIR$SAVI_max 

SAVI_std<-UAVdataset_NIR$SAVI_std 

 

MSAVI_mean<-UAVdataset_NIR$MSAVI_mean 

MSAVI_min<-UAVdataset_NIR$MSAVI_min 

MSAVI_max<-UAVdataset_NIR$MSAVI_max 

MSAVI_std<-UAVdataset_NIR$MSAVI_std 

 

GEMI_mean<-UAVdataset_NIR$GEMI_mean 

GEMI_min<-UAVdataset_NIR$GEMI_min 

GEMI_max<-UAVdataset_NIR$GEMI_max 

GEMI_std<-UAVdataset_NIR$GEMI_std 

 

GCI_mean<-UAVdataset_NIR$GCI_mean 

GCI_min<-UAVdataset_NIR$GCI_min 

GCI_max<-UAVdataset_NIR$GCI_max 

GCI_std<-UAVdataset_NIR$GCI_std 

 

TVI_mean<-UAVdataset_NIR$TVI_mean 

TVI_min<-UAVdataset_NIR$TVI_min 

TVI_max<-UAVdataset_NIR$TVI_max 

TVI_std<-UAVdataset_NIR$TVI_std 

 

RECI1_mean<-UAVdataset_NIR$RECI1_mean 

RECI1_min<-UAVdataset_NIR$RECI1_min 

RECI1_max<-UAVdataset_NIR$RECI1_max 

RECI1_std<-UAVdataset_NIR$RECI1_std 

 

RECI2_mean<-UAVdataset_NIR$RECI2_mean 

RECI2_min<-UAVdataset_NIR$RECI2_min 

RECI2_max<-UAVdataset_NIR$RECI2_max 

RECI2_std<-UAVdataset_NIR$RECI2_std 

 

PVI_mean<-UAVdataset_NIR$PVI_mean 

PVI_min<-UAVdataset_NIR$PVI_min 

PVI_max<-UAVdataset_NIR$PVI_max 

PVI_std<-UAVdataset_NIR$PVI_std 

 

SAVI2_mean<-UAVdataset_NIR$SAVI2_mean 

SAVI2_min<-UAVdataset_NIR$SAVI2_min 

SAVI2_max<-UAVdataset_NIR$SAVI2_max 

SAVI2_std<-UAVdataset_NIR$SAVI2_std 

 

TSAVI_mean<-UAVdataset_NIR$TSAVI_mean 

TSAVI_min<-UAVdataset_NIR$TSAVI_min 

TSAVI_max<-UAVdataset_NIR$TSAVI_max 

TSAVI_std<-UAVdataset_NIR$TSAVI_std 

 

ATSAVI_mean<-UAVdataset_NIR$ATSAVI_mean 
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ATSAVI_min<-UAVdataset_NIR$ATSAVI_min 

ATSAVI_max<-UAVdataset_NIR$ATSAVI_max 

ATSAVI_std<-UAVdataset_NIR$ATSAVI_std 

 

RF.model_NIR<-randomForest(fCover~ExG_mean+ExG_min+ExG_max+ExG_std+ExR_mean+ExR_min+ExR_max+ExR_std+ 

                             ExGR_mean+ExGR_min+ExGR_max+ExGR_std+MExG_mean+MExG_min+MExG_max+MExG_std+ 

                             NDI_mean+NDI_min+NDI_max+NDI_std+INDI_mean+INDI_min+INDI_max+INDI_std+ 

                             CIVE_mean+CIVE_min+CIVE_max+CIVE_std+COM1_mean+COM1_min+COM1_max+COM1_std+ 

                             COM2_mean+COM2_min+COM2_max+COM2_std+VEG_mean+VEG_min+VEG_max+VEG_std+ 

                             SR_mean+SR_min+SR_max+SR_std+DVI_mean+DVI_min+DVI_max+DVI_std+ 

                             NDVI_mean+NDVI_min+NDVI_max+NDVI_std+RDVI_mean+RDVI_min+RDVI_max+RDVI_std+ 

                             GNDVI_mean+GNDVI_min+GNDVI_max+GNDVI_std+SAVI_mean+SAVI_min+SAVI_max+SAVI_std+ 

                             MSAVI_mean+MSAVI_min+MSAVI_max+MSAVI_std+GEMI_mean+GEMI_min+GEMI_max+GEMI_std+ 

                             GCI_mean+GCI_min+GCI_max+GCI_std+TVI_mean+TVI_min+TVI_max+TVI_std+ 

                             RECI1_mean+RECI1_min+RECI1_max+RECI1_std+RECI2_mean+RECI2_min+RECI2_max+RECI2_std+ 

                             PVI_mean+PVI_min+PVI_max+PVI_std+SAVI2_mean+SAVI2_min+SAVI2_max+SAVI2_std+ 

                             

TSAVI_mean+TSAVI_min+TSAVI_max+TSAVI_std+ATSAVI_mean+ATSAVI_min+ATSAVI_max+ATSAVI_std, data=UAVdataset_NIR, 

na.action=na.omit) 

 

importance(RF.model_NIR) 

save(RF.model_NIR, file = "RF_NIR.rda") 

plot(RF.model_NIR) 

print(RF.model_NIR) 

 

dataMatrix2<-cbind(ExG_mean, ExG_min, ExG_max, ExG_std, ExR_mean, ExR_min, ExR_max, ExR_std, ExGR_mean, 

                   ExGR_min, ExGR_max, ExGR_std, MExG_mean, MExG_min, MExG_max, MExG_std, NDI_mean, NDI_min, 

                   NDI_max, NDI_std, INDI_mean, INDI_min, INDI_max, INDI_std, CIVE_mean, CIVE_min, CIVE_max, 

                   CIVE_std, COM1_mean, COM1_min, COM1_max, COM1_std, COM2_mean, COM2_min, COM2_max, COM2_std, 

                   VEG_mean, VEG_min, VEG_max, VEG_std, SR_mean,SR_min,SR_max,SR_std,DVI_mean,DVI_min,DVI_max, 

                   DVI_std,NDVI_mean,NDVI_min,NDVI_max,NDVI_std,RDVI_mean,RDVI_min,RDVI_max,RDVI_std, 

                   GNDVI_mean,GNDVI_min,GNDVI_max,GNDVI_std,SAVI_mean,SAVI_min,SAVI_max,SAVI_std, 

                   MSAVI_mean,MSAVI_min,MSAVI_max,MSAVI_std,GEMI_mean,GEMI_min,GEMI_max,GEMI_std, 

                   GCI_mean,GCI_min,GCI_max,GCI_std,TVI_mean,TVI_min,TVI_max,TVI_std, 

                   RECI1_mean,RECI1_min,RECI1_max,RECI1_std,RECI2_mean,RECI2_min,RECI2_max,RECI2_std, 

                   PVI_mean,PVI_min,PVI_max,PVI_std,SAVI2_mean,SAVI2_min,SAVI2_max,SAVI2_std, 

                   TSAVI_mean,TSAVI_min,TSAVI_max,TSAVI_std,ATSAVI_mean,ATSAVI_min,ATSAVI_max,ATSAVI_std) 

 

dataMatrix3<-cbind(SR_mean,SR_min,SR_max,SR_std,DVI_mean,DVI_min,DVI_max, 

                   DVI_std,NDVI_mean,NDVI_min,NDVI_max,NDVI_std,RDVI_mean,RDVI_min,RDVI_max,RDVI_std, 

                   GNDVI_mean,GNDVI_min,GNDVI_max,GNDVI_std,SAVI_mean,SAVI_min,SAVI_max,SAVI_std, 

                   MSAVI_mean,MSAVI_min,MSAVI_max,MSAVI_std,GEMI_mean,GEMI_min,GEMI_max,GEMI_std, 

                   GCI_mean,GCI_min,GCI_max,GCI_std,TVI_mean,TVI_min,TVI_max,TVI_std, 

                   RECI1_mean,RECI1_min,RECI1_max,RECI1_std,RECI2_mean,RECI2_min,RECI2_max,RECI2_std, 

                   PVI_mean,PVI_min,PVI_max,PVI_std,SAVI2_mean,SAVI2_min,SAVI2_max,SAVI2_std, 

                   TSAVI_mean,TSAVI_min,TSAVI_max,TSAVI_std,ATSAVI_mean,ATSAVI_min,ATSAVI_max,ATSAVI_std) 

 

 

dataUAV_NIR<-data.frame(dataMatrix2) 

pred_fCover_UAV_NIR<-predict(RF.model_NIR, dataUAV_NIR) 

write.csv(pred_fCover_UAV_NIR, file = "C:/Users/nikolina/Desktop/GIMA/UAV_fCover_pred_NIR.csv") 

 

# training model only with NIR indices 

RF.model_NIRO<-randomForest(fCover~SR_mean+SR_min+SR_max+SR_std+DVI_mean+DVI_min+DVI_max+DVI_std+ 

                             NDVI_mean+NDVI_min+NDVI_max+NDVI_std+RDVI_mean+RDVI_min+RDVI_max+RDVI_std+ 

                             GNDVI_mean+GNDVI_min+GNDVI_max+GNDVI_std+SAVI_mean+SAVI_min+SAVI_max+SAVI_std+ 

                             MSAVI_mean+MSAVI_min+MSAVI_max+MSAVI_std+GEMI_mean+GEMI_min+GEMI_max+GEMI_std+ 

                             GCI_mean+GCI_min+GCI_max+GCI_std+TVI_mean+TVI_min+TVI_max+TVI_std+ 

                             RECI1_mean+RECI1_min+RECI1_max+RECI1_std+RECI2_mean+RECI2_min+RECI2_max+RECI2_std+ 

                             PVI_mean+PVI_min+PVI_max+PVI_std+SAVI2_mean+SAVI2_min+SAVI2_max+SAVI2_std+ 

                             

TSAVI_mean+TSAVI_min+TSAVI_max+TSAVI_std+ATSAVI_mean+ATSAVI_min+ATSAVI_max+ATSAVI_std, data=UAVdataset_NIR, 

na.action=na.omit) 

 

importance(RF.model_NIRO) 

save(RF.model_NIRO, file = "RF_NIRO.rda") 

plot(RF.model_NIRO) 

print(RF.model_NIRO) 

 

dataUAV_NIRO<-data.frame(dataMatrix3) 

pred_fCover_UAV_NIRO<-predict(RF.model_NIOR, dataUAV_NIRO) 
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write.csv(pred_fCover_UAV_NIRO, file = "C:/Users/nikolina/Desktop/GIMA/UAV_fCover_pred_NIRO.csv") 

 

 

# obtain fCover values for simulated smartphone photos 

dataset_simulated = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master 

thesis/Smartphone_dataset_simulated.csv", header = TRUE, sep = ";", dec = ",") 

 

ExG_mean<-dataset_simulated$ExG_mean 

ExG_min<-dataset_simulated$ExG_min 

ExG_max<-dataset_simulated$ExG_max 

ExG_std<-dataset_simulated$ExG_std 

 

ExR_mean<-dataset_simulated$ExR_mean 

ExR_min<-dataset_simulated$ExR_min 

ExR_max<-dataset_simulated$ExR_max 

ExR_std<-dataset_simulated$ExR_std 

 

ExGR_mean<-dataset_simulated$ExGR_mean 

ExGR_min<-dataset_simulated$ExGR_min 

ExGR_max<-dataset_simulated$ExGR_max 

ExGR_std<-dataset_simulated$ExGR_std 

 

MExG_mean<-dataset_simulated$MExG_mean 

MExG_min<-dataset_simulated$MExG_min 

MExG_max<-dataset_simulated$MExG_max 

MExG_std<-dataset_simulated$MExG_std 

 

NDI_mean<-dataset_simulated$NDI_mean 

NDI_min<-dataset_simulated$NDI_min 

NDI_max<-dataset_simulated$NDI_max 

NDI_std<-dataset_simulated$NDI_std 

 

INDI_mean<-dataset_simulated$INDI_mean 

INDI_min<-dataset_simulated$INDI_min 

INDI_max<-dataset_simulated$INDI_max 

INDI_std<-dataset_simulated$INDI_std 

 

CIVE_mean<-dataset_simulated$CIVE_mean 

CIVE_min<-dataset_simulated$CIVE_min 

CIVE_max<-dataset_simulated$CIVE_max 

CIVE_std<-dataset_simulated$CIVE_std 

 

COM1_mean<-dataset_simulated$COM1_mean 

COM1_min<-dataset_simulated$COM1_min 

COM1_max<-dataset_simulated$COM1_max 

COM1_std<-dataset_simulated$COM1_std 

 

COM2_mean<-dataset_simulated$COM2_mean 

COM2_min<-dataset_simulated$COM2_min 

COM2_max<-dataset_simulated$COM2_max 

COM2_std<-dataset_simulated$COM2_std 

 

VEG_mean<-dataset_simulated$VEG_mean 

VEG_min<-dataset_simulated$VEG_min 

VEG_max<-dataset_simulated$VEG_max 

VEG_std<-dataset_simulated$VEG_std 

 

dataMatrix3<-cbind(ExG_mean, ExG_min, ExG_max, ExG_std, ExR_mean, ExR_min, ExR_max, ExR_std, ExGR_mean, 

                   ExGR_min, ExGR_max, ExGR_std, MExG_mean, MExG_min, MExG_max, MExG_std, NDI_mean, NDI_min, 

                   NDI_max, NDI_std, INDI_mean, INDI_min, INDI_max, INDI_std, CIVE_mean, CIVE_min, CIVE_max, 

                   CIVE_std, COM1_mean, COM1_min, COM1_max, COM1_std, COM2_mean, COM2_min, COM2_max, COM2_std, 

                   VEG_mean, VEG_min, VEG_max, VEG_std) 

 

dataSmartphone_simulated<-data.frame(dataMatrix3) 

pred_fCover_sim<-predict(RF.model, dataSmartphone_simulated) 

write.csv(pred_fCover_sim, file = "C:/Users/nikolina/Desktop/GIMA/SM_sim_fCover_pred.csv") 
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Appendix E 

# import data 

dataset_w = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master thesis/Wheat_simulated.csv", header = 

TRUE, sep = ";", dec = ",") 

dataset_m = read.csv("C:/Users/nikolina/Desktop/GIMA/Module 7 - Master thesis/Maize_simulated.csv", header = 

TRUE, sep = ";", dec = ",") 

 

# assign names to variables 

fCover_wheat <- dataset_w$fCover 

fCover_maize <- dataset_m$fCover 

 

# estimate fCover for wheat using different combinations of samples 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 1, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[1]) 

mean2 <- mean(fCover_fieldW[2]) 

mean3 <- mean(fCover_fieldW[3]) 

mean4 <- mean(fCover_fieldW[4]) 

mean5 <- mean(fCover_fieldW[5]) 

mean6 <- mean(fCover_fieldW[6]) 

mean7 <- mean(fCover_fieldW[7]) 

mean8 <- mean(fCover_fieldW[8]) 

mean9 <- mean(fCover_fieldW[9]) 

mean10 <- mean(fCover_fieldW[10]) 

result1 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 4, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result2 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 8, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result3 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 15, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result4 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 23, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 
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mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result5 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 30, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result6 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 38, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result7 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 45, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result8 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 53, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result9 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 60, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 
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mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result10 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 68, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result11 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldW <- replicate(10, sample(fCover_wheat, 75, replace = FALSE)) 

mean1 <- mean(fCover_fieldW[,1]) 

mean2 <- mean(fCover_fieldW[,2]) 

mean3 <- mean(fCover_fieldW[,3]) 

mean4 <- mean(fCover_fieldW[,4]) 

mean5 <- mean(fCover_fieldW[,5]) 

mean6 <- mean(fCover_fieldW[,6]) 

mean7 <- mean(fCover_fieldW[,7]) 

mean8 <- mean(fCover_fieldW[,8]) 

mean9 <- mean(fCover_fieldW[,9]) 

mean10 <- mean(fCover_fieldW[,10]) 

result12 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

result <- cbind(result1, result2, result3, result4, result5, result6, result7, result8, result9, result10, 

result11, result12) 

write.csv(result, file = "C:/Users/nikolina/Desktop/GIMA/Wheat_simulated_sampled.csv") 

 

# estimate fCover for maize using different combinations of samples 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 1, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[1]) 

mean2 <- mean(fCover_fieldM[2]) 

mean3 <- mean(fCover_fieldM[3]) 

mean4 <- mean(fCover_fieldM[4]) 

mean5 <- mean(fCover_fieldM[5]) 

mean6 <- mean(fCover_fieldM[6]) 

mean7 <- mean(fCover_fieldM[7]) 

mean8 <- mean(fCover_fieldM[8]) 

mean9 <- mean(fCover_fieldM[9]) 

mean10 <- mean(fCover_fieldM[10]) 

result1 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 4, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result2 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 9, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 



62 
 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result3 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 17, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result4 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 26, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result5 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 35, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result6 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 44, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result7 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 52, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result8 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 61, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 
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mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result9 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 70, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result10 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 78, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result11 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

fCover_fieldM <- replicate(10, sample(fCover_maize, 87, replace = FALSE)) 

mean1 <- mean(fCover_fieldM[,1]) 

mean2 <- mean(fCover_fieldM[,2]) 

mean3 <- mean(fCover_fieldM[,3]) 

mean4 <- mean(fCover_fieldM[,4]) 

mean5 <- mean(fCover_fieldM[,5]) 

mean6 <- mean(fCover_fieldM[,6]) 

mean7 <- mean(fCover_fieldM[,7]) 

mean8 <- mean(fCover_fieldM[,8]) 

mean9 <- mean(fCover_fieldM[,9]) 

mean10 <- mean(fCover_fieldM[,10]) 

result12 <- rbind(mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8, mean9, mean10) 

 

result <- cbind(result1, result2, result3, result4, result5, result6, result7, result8, result9, result10, 

result11, result12) 

write.csv(result, file = "C:/Users/nikolina/Desktop/GIMA/Maize_simulated_sampled.csv") 
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Appendix F 

ID Lava Okapia Samsung Galaxy Symphony Samsung Tablet Difference 

1 0,49 0,53 0,58 0,61 0,56 0,12 

2 0,13 0,14 0,2 0,19 0,15 0,07 

3 0,12 0,13 0,16 0,2 0,14 0,08 

4 0,42 0,41 0,43 0,5 0,45 0,09 

5 0,15 0,14 0,18 0,2 0,2 0,06 

6 0,32 0,22 0,31 0,55 0,1 0,45 

7 0,03 0,03 0,03 0,03 0,03 0 

8 0,26 0,23 0,27 0,26 0,21 0,06 

9 0,19 0,2 0,21 0,17 0,19 0,04 

10 0,37 0,35 0,44 0,43 0,44 0,09 

11 0,21 0,21 0,21 0,22 0,2 0,02 

12 0,05 0,04 0,06 0,05 0,06 0,02 

13 0,55 0,64 0,67 0,7 0,69 0,15 

14 0,52 0,55 0,56 0,47 0,46 0,1 

15 0,28 0,31 0,24 0,17 0,28 0,14 

16 0,15 0,14 0,15 0,11 0,11 0,04 

17 0,29 0,34 0,39 0,33 0,29 0,1 

18 0,32 0,33 0,45 0,36 0,32 0,13 

19 0,02 0,03 0,03 0,03 0,03 0,01 

20 0,1 0,09 0,12 0,1 0,07 0,05 

21 0,03 0,04 0,03 0,03 0,02 0,02 

22 0,12 0,11 0,13 0,09 0,1 0,04 

23 0,46 0,44 0,5 0,38 0,36 0,14 

24 0,54 0,57 0,67 0,53 0,53 0,14 

25 0,22 0,2 0,23 0,2 0,22 0,03 

26 0,15 0,15 0,14 0,16 0,14 0,02 

27 0,12 0,12 0,11 0,13 0,13 0,02 

28 0,18 0,2 0,19 0,19 0,18 0,02 

29 0,1 0,1 0,1 0,1 0,1 0 

30 0,55 0,57 0,57 0,58 0,51 0,07 

31 0,2 0,21 0,22 0,19 0,16 0,06 

32 0,39 0,37 0,37 0,3 0,34 0,09 

33 0,34 0,36 0,36 0,26 0,48 0,22 

 


