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Abstract 

In groundwater protection zones two acts apply. Firstly the Dutch Soil Protection Act which regulates 
all soils and groundwater on the basis of Intervention Values. Secondly there is the Dutch Drinking 
Water Act which states that all drinking water must comply with the Drinking Water Quality 
standard. If a contaminant plume is present in the groundwater protection zone the plume itself 
must have a lower concentration than the Intervention Value. However, once the plume starts 
migrating, it must reach the well at a concentration lower than the Drinking Water Quality Standard. 
It is possible that the contaminant plume is under the Intervention Value but reaches the well at 
concentrations above the Drinking Water Quality Standard. Therefore the plume must still be 
mitigated or managed. The question remains, what is the allowable concentration of the 
contaminant at the plume? 
Mostly contaminant concentrations are calculated with analytical solutions to the transport equation 
or with numerical models. However this study has set up four different empirical equations to 
calculate the concentration and arrival time of a plume at a drinking water production well. These 
equations are relatively easy in use compared to the traditional methods and are able to predict the 
concentration with a factor 6 error and the arrival time with an error of 41 days. 
However these empirical equations are only applicable within the prescribed parameter space and 
therefore still have some limitations. 
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1 Introduction 

1.1 Background and problem specification 

About two thirds of drinking water production in the Netherlands has groundwater as its source. 
Roughly 25% of these groundwater production wells are located near a source of a historical (older 
than 1987) chemical contamination and it is uncertain whether this contamination will enter drinking 
water wells (Swartjes et al., 2014). Thirty-one groundwater production wells already have 
contaminant concentrations above the Drinking Water Quality Standard and forty-two wells have 
concentrations between 75% and 100% of the Drinking Water Quality Standard (Wuijts et al., 2014). 
Drinking water companies need to know when a contaminant will enter their well, and at what 
concentration. 
The Dutch Soil Protection Act (Wet bodembescherming), (Ministry of VROM and Ministry of 
Landbouw en Visserij, 1986) provides regulations for all soils and groundwater. According to the 
Dutch Soil Protection Act, soil and groundwater contamination must be mitigated or managed on the 
basis of Intervention Values, when the contamination threatens human health or the ecosystem. 
These Intervention Values indicate the concentration at which the functional properties of a soil are 
(potentially) gravely reduced and remediation must take place (Ministry of VROM, 2013). 
According to the Dutch Drinking Water Act (Drinkwaterwet), (Ministry of VROM, 2009), drinking 
water must meet the European Drinking Water Quality Standards (Council of the European Union, 
1998). The Drinking Water Quality Standards are defined as the maximum allowable concentration of 
a contaminant in drinking water. Importantly, these Drinking Water Quality Standards are much 
stricter than the Intervention Values. While the area around a groundwater well may contain a 
contaminant as long as its concentration is under Intervention Values, the concentration in the well 
must be under the Drinking Water Quality Standard.  
An organic contaminant that migrates towards a well may be diluted and broken down which 
reduces its concentration. If the concentration is reduced to below the Drinking Water Quality 
Standard, then the contaminant does not pose a threat to drinking water quality. However, if the 
contaminant concentration is not reduced to concentrations below the Drinking Water Quality 
Standard, the contaminated groundwater should to be cleaned up or contained or the drinking water 
production well must be closed. 
 
For example, benzene has an Intervention Value of 30µg/L (Ministry of VROM, 2013) and a Drinking 
Water Quality Standard of 1µg/L (Ministry of IenM, 2011). If the concentration of benzene is above 
30µg/L in groundwater, remediation must take place. However, if groundwater concentrations are 
below 30µg/L in the field but above 1µg/L at the well, then there is no obligation for remediation, 
although the water is unsuitable as drinking water. Benzene in groundwater should be reduced – 
taking into account dilution and reduction – to such a concentration that the benzene does not enter 
the well at concentrations above 1µg/L. The question remains, what could the permissible 
concentration at the site of contamination be? 
 
The difference in criteria between the Soil Protection Act and the Drinking Water Act confuses the 
various stakeholders (municipalities, drinking water companies, etc.). To avoid confusion on how to 
act in the presence of chemical groundwater contamination an approach with four Tiers (0-3) was 
suggested by Otte et al. (2007) (figure 1). 
Tier 0 is the initial characterization of chemical groundwater contamination. Tier 0 is aimed at 
identifying the presence of unacceptable risks. These are cases with non-aqueous phase liquids, the 
presence of vulnerable objects (groundwater production wells) and/or a contaminant plume with a 
concentration above the Intervention Value and a plume size of more than 6000m3 (Otte et al., 
2007). 
If one of such unacceptable risks is present then Tier 2 is started. If there is a possible risk or more 
information is required then Tier 1, a general risk assessment, is started. 
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Tier 1 takes the spreading of the plume, and thus an increase in plume size (volume) into account. If 
the plume size grows with more than 1000m3 in a year then the risk is considered to be unacceptable 
(Otte et al., 2007). This growth is determined using look-up tables with prescribed values for natural 
groundwater velocity, hydraulic conductivity and hydraulic gradient. If there is a risk which might be 
unacceptable or more information is required to form a conclusion, then a more site-specific 
assessment is started in Tier 2. 
In Tier 2, site-specific data is used to assess the risk of a contaminant plume (Otte et al., 2007).  
Many analytical solutions for solute transport exist, however, they are not applicable to complex 
scenarios with pumping wells. Therefore numerical models are often used but they require in-depth 
knowledge of hydrology, solute transport processes and transport models. Instead a simple formula 
to calculate the concentration of a contaminant in the well and that can be used by people with a 
basic knowledge of the abovementioned subjects is proposed. This formula takes into account 
natural attenuation processes like dilution, dispersion, retardation and decay. If the formula predicts 
concentrations above the drinking water quality standard in the drinking water production well then 
tier 3 comes into play. Tier 3 consists of site-specific modelling and monitoring. The assessment of 
natural attenuation is also part of Tier 3. Site-specific modelling entails the use of numerical models 
like MODFLOW and MT3DMS. 
In each Tier it is assessed weather the plume migrates towards vulnerable objects and when there is 
an unacceptable risk in one of the Tiers, remediation must be started. 
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Figure 1 Flowchart of the tiered approach 
This flowchart depicts the different tiers in the risk assessment of a contaminant plume. Taken from Otte et al., 2007. 

1.2 Objective 

Often chemical transport is calculated using analytical solutions for the transport equation or using 
numerical models. Analytical solutions often do not apply to field situations since the field situations 
are more complex than the analytical solutions allow. Numerical modelling is often used in field 
situations. Numerical modelling requires in-depth knowledge of the field situation but also about the 
physics involved in chemical transport. Since every contaminant differs, each contaminant needs a 
different set of parameter values. Municipalities often do not have this expert knowledge required 
for developing contaminant-specific numerical models. 
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This study aims to develop empirical formulas that are easy to use for a wide range of chemical 
contaminants. This means that the formulas do not need to be modified for different field situations 
and that anyone with a basic knowledge of chemical transport can apply these. The empirical 
formula will predict the concentration and arrival time of a chemical contaminant depending on 
seven model parameters, like the distance between the well and the plume, the well screen length, 
the hydraulic gradient, the pumping rate, anisotropy, retardation and decay. 
 

1.3 Approach 

In this study empirical formulas were set up by applying multivariate regression analysis on numerical 
model results. A wide range of different situations were modelled on the basis of seven parameters. 
The choices and assumptions made are further described in this chapter and in chapter 2.3 
parameter space. 
In order to develop the empirical formulas a model domain has been determined. The governing 
equations for ground water flow and contaminant transport were made dimensionless in order to 
reduce the number of paramters and to set up a dimensioness model domain. The parameter space 
was chosen in such a way that it covered the range of these (dimensional) parameters in the 
Netherlands. Within this parameter space various scenarios were set up to be modelled in PMWIN. 
PMWIN, or processing modflow for windows, is a 3D numerical model interface made by Simcore 
Software (©1991-2013). It is used to simulate groundwater flow (MODFLOW) and contaminant 
transport (MT3DMS) in complex scenarios and has been well investigated. For this study PMWIN 
version 8.0.40 was used. The PMWIN results were analysed using multivariate regression analysis 
which led to a set of empirical formulas. The set of empirical formulas were used to predict the peak, 
or maximum concentration at the well (C*max), the arrival time of the maximum concentration (t*max), 
half the maximum concentration (C*half) and the time half the maximum concentration was reached 
(t*half). 
It is important to know the peak concentration because then it is easy to see if the Drinking Water 
Quality Standards will be exceeded. It is also important to know when this peak concentration will 
arive since this gives an estimate of the time left to monitor the plume and to take action. The time 
half the maximum concentration is reached is the official arrival time. It is also useful to estimate 
when the contaminant will reach the well and weather the Dinking Water Quality Standard is 
exceeded. 
 
To set up the domain some assumptions were made, which are discussed below. 
 
List of assumptions: 
1. Unconfined aquifer 
2. Homogeneous anisotropic sandy soil 
3. Fully water-saturated conditions 
4. Groundwater flow in a straight line from the contaminant to the well 
5. Only one well 
6. Diffusion is negligible 
7. Scale dependence of dispersion is not taken into account 
8. Equilibrium sorption 
9. Anaerobic decay 
10. Only dissolved phase undergoes decay 
11. There was no chain of decay 
 
Unconfined aquifers are the most vulnerable aquifers since they lack a confining clay layer that slows 
the entry of contaminants into the aquifer. Therefore drinking water wells in unconfined aquifers are 
more vulnerable than the ones in confined aquifers (Wuijts et al., 2014). When the empirical 
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formulas show that a contaminant did not reach the well in an unconfined aquifer, it would not do so 
in a confined aquifer (1). 
 
Aquifers used for extraction of drinking water are sandy aquifers of a heterogeneous and anisotropic 
nature. Anisotropy is the ratio between the horizontal and vertical hydraulic conductivity and 
therefore is a measure of relative ease of flow in the horizontal and vertical direction. Clay lenses 
were not included in the domain resulting in a horizontally homogeneous anisotropic aquifer (2). 
The influence of groundwater table fluctuations on the contaminant was not considered, fully 
saturated conditions were modelled (3). 
Groundwater flow was assumed to be from the contaminant in a straight line towards the well, as a 
worst-case scenario (4).  This means that contaminant transport is only towards the well and in the 
depth direction and thus all other directions can be ignored. 
Next to natural groundwater flow there was radial flow due to the presence of the drinking water 
production well. While groundwater extraction was often done with multiple wells clustered in a 
larger area, the cumulative pumping rates of the wells were superimposed in one well in this study 
(5). 
 
The transport of the contaminant is determined by advection, hydrodynamic dispersion, adsorption 
and decay. 

 Advection is the movement of a solute with the bulk of the groundwater due to groundwater 
flow (Fetter, 1999). Density differences between the solute and water were neglected in this 
study. 

 Hydrodynamic dispersion is the sum of diffusion and mechanical dispersion. In this study 
diffusion is assumed to be negligible compared to mechanical dispersion (6). Mechanical 
dispersion is caused by deviations of the average transport velocity. These deviations are 
caused by differences in pore size, travel length through pores and velocity across a pore. 
Larger pores have a lower velocity and the longer the pathway from A to B the lower the 
apparent velocity will be. Next to that, the velocity across a pore is highest in the middle and 
lowest at the edges. These differences in flow velocity cause a smearing of the plume front 
(Fetter, 1999). Dispersion is scale dependant, however this is not taken into account in this 
study (7) 

 Adsorption is the removal and subsequent release of the solute through temporary sorption 
to mineral grains and organic carbon. Adsorption can be subdivided in equilibrium sorption in 
which an equilibrium value is reached and kinetic sorption in which the process is not fast 
enough to reach equilibrium (Fetter, 1999). In this case linear equilibrium adsorption was 
considered (8). This means that there is a linear relationship between the adsorbed and 
dissolved concentration. Adsorption causes a delay, or retardation, in the breakthrough 
curve. 

 The decay rate depends on, amongst others, the availability of different chemicals like 
oxygen, iron and manganese. In this study only anaerobic decay was considered and the 
decay rate was constant over distance (9). 
Both the adsorbed and the dissolved phase of a contaminant may undergo decay, however 
only solute decay was considered here since decay in the adsorbed phase is negligible (10). 
Many chemicals like benzene follow a chain of decay in which the daughter products are 
contaminants as well. In this study these decay chains, and consequently the daughter 
products, were not considered (11). 
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2 Method 

2.1 PMWIN domain 

The PMWIN domain was based on the size of the average groundwater protection zone (figure 2) 
and was a rectangle with length L, width W and height H (m). X was the horizontal distance (m) 
between the contaminant plume and the well, ΔZ is the vertical distance (m) between the plume and 
the well while ZW gave the well screen length (m).  
The natural groundwater flow was driven by a hydraulic gradient i. The hydraulic gradient was 

calculated with 𝑖 =
ℎ𝑢−ℎ𝑑

𝐿
 where hu is the upstream hydraulic head and hd is the downstream 

hydraulic head (m). The anisotropy, m, was the dimensionless ratio between kx/kz where kx is the 
horizontal hydraulic conductivity and kz is the vertical hydraulic conductivity (m/d). The porosity was 
given by n. The hydraulic gradient, the porosity and the hydraulic conductivity determine the natural 
groundwater velocity. Q was the pumping rate (m3/d) and determined the radial velocity. 
The plume had a volume of VC (m3) and a concentration C (μg/L). ρb was the bulk density of the soil 
(kg/m3) and KD the distribution coefficient (m3/kg). These two parameters, together with the 
porosity, determined the retardation R. αL was the dispersivity (m) and μ the decay rate in (d-1). 
These different parameters will be explained further in the next paragraphs. 
 

 
Figure 2 Model domain 
The rectangular domain holds a contaminant plume close to the surface and a pumping well with a screen length of ZW 

and a pumping rate Q. The domain has length L, width W and height H. There is a horizontal (X) and a vertical (ΔZ) 

distance between the plume and the well. The soil characteristics are the hydraulic conductivity (k), the porosity (n), the 

soil bulk density (ρ
b
), the anisotropy (m), the upstream hydraulic head (hu) and the downstream hydraulic head (hd). The 

contaminant characteristics are the contaminant concentration (C), the dispersivity (αL), the partitioning coefficient (KD), 

the retardation factor (R), the decay rate (μ) and the volume of the contaminant plume (VC). There is a no-flow boundary 

condition at the bottom of the domain and a constant head boundary at the left and right side of the domain. 
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The domain was modelled using PMWIN and was made dimensionless. By using a dimensionless 
model, less parameters variations were needed to reach the same results as a dimensional model. To 
determine the conversion factors for the domain first the stream function and the transport equation 
were made dimensionless. The stream function is used to calculate groundwater flow and the 
transport equation calculates the movement and the concentration of a contaminant. 
 
The dimensionless domain was then implemented in PMWIN (Appendix B). The domain was divided 
into 10 layers, 10 rows and 65 columns (dimensional: 10m×100m×100m). PMWIN automatically 
implemented a no-flow boundary condition at the bottom of the domain to prevent seepage out of 
the domain. At the left and right side of the domain fixed head boundary conditions were applied to 
create a constant head situation and thus a constant hydraulic gradient. 
The grid was refined to by a factor 10 in x and y direction around the contaminant plume and the 
well was placed in a grid cell at distance X and ΔZ with and a pumping rate Q. An observation point 
was placed in every well grid cell to observe the concentration in the well. 
Advection was modelled using the finite difference method with upstream weighing and a Courant 
number of 0.1.  
 

2.2 Governing equations 

Transport in the PMWIN domain was calculated using the stream function (eq. 1, modified from 
Harbaugh et al., 2000). The stream function describes how a change in groundwater flow velocity in 
x, y and z direction and a source/sink term affects the change in storage over time. Since there was a 
steady state situation the change in storage was zero. In this case the sink term was the pumping 
rate per time. 
 
𝜕

𝜕𝑥
(𝑘𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕ℎ

𝜕𝑧
) −

𝑄

𝐿3 =
𝜕

𝜕𝑥
(𝑞𝑥) +

𝜕

𝜕𝑦
(𝑞𝑦) +

𝜕

𝜕𝑧
(𝑞𝑧) −

𝑄

𝐿3 = 0  (eq. 1) 

 
With: 
k is the hydraulic conductivity in x, y and z direction [L/T] 
h is the hydraulic head [L] 
Q is the pumping rate [L3/T] 
L is the length of the domain [L3] 
q is the Darcy velocity in x, y and z direction [L/T]. 𝑞 = 𝑛𝑣 where v is the porewater velocity [L/T] and 

n is the porosity [-] 
 
In order to make the stream function dimensionless x, y and z were divided by L and h was divided by 
hd leading to equation 2. In order to look at the pore water velocity 𝑞 = 𝑛𝑣 was used to replace the 
Darcy velocity with the pore water velocity. 
 
1

𝐿

𝜕

𝜕𝑥∗ (𝑘𝑥
ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑥∗) +
1

𝐿

𝜕

𝜕𝑦∗ (𝑘𝑦
ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑦∗) +
1

𝐿

𝜕

𝜕𝑧∗ (𝑘𝑧
ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑧∗) −
𝑄

𝐿3 =
1

𝐿

𝜕

𝜕𝑥∗
(𝑛𝑣𝑥) +

1

𝐿

𝜕

𝜕𝑦∗ (𝑛𝑣𝑦) +

1

𝐿

𝜕

𝜕𝑧∗
(𝑛𝑣𝑧) −

𝑄

𝐿3 = 0          (eq. 2) 

 
kx, ky and kz were made dimensionless by dividing by kx and the whole equation was multiplied by L 
leading to equation 3. 
 

𝜕

𝜕𝑥∗ (𝑘𝑥
∗ ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝑘𝑦
∗ ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝑘𝑧
∗ ℎ𝑑

𝐿

𝜕ℎ∗

𝜕𝑧∗) −
𝑄

𝐿2𝑘𝑥
=

𝜕

𝜕𝑥∗ (
𝑛

𝑘𝑥
𝑣𝑥) +

𝜕

𝜕𝑦∗ (
𝑛

𝑘𝑥
𝑣𝑦) +

𝜕

𝜕𝑧∗ (
𝑛

𝑘𝑥
𝑣𝑧) −

𝑄

𝐿2𝑘𝑥
= 0            (eq. 3) 

 
The equation was then multiplied by L/hd to simplify it (eq. 4). 
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𝜕

𝜕𝑥∗ (𝑘𝑥
∗ 𝜕ℎ∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝑘𝑦
∗ 𝜕ℎ∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝑘𝑧
∗ 𝜕ℎ∗

𝜕𝑧∗) −
𝑄

𝐿 𝑘𝑥 ℎ𝑑
=

𝜕

𝜕𝑥∗ (
𝑛𝐿

𝑘𝑥 ℎ𝑑
𝑣𝑥) +

𝜕

𝜕𝑦∗ (
𝑛𝐿

𝑘𝑥 ℎ𝑑
𝑣𝑦) +

𝜕

𝜕𝑧∗ (
𝑛𝐿

𝑘𝑥 ℎ𝑑
𝑣𝑧) −

𝑄

𝐿 𝑘𝑥 ℎ𝑑
= 0      (eq. 4) 

 

According to Darcy’s law  𝑣𝑥 = −
𝑘𝑥

𝑛
 
𝜕ℎ

𝜕𝑥
, 𝑣𝑦 = −

𝑘𝑦

𝑛
 
𝜕ℎ

𝜕𝑦
 and 𝑣𝑧 = −

𝑘𝑧

𝑛
 
𝜕ℎ

𝜕𝑧
. These Darcy velocities were 

made dimensionless following the abovementioned steps leading to 𝑣𝑥 = −
𝑘𝑥

𝑛

ℎ𝑑

𝐿
 
𝜕ℎ∗

𝜕𝑥∗ = −𝑣𝑟𝑒𝑠
𝜕ℎ∗

𝜕𝑥∗ =

𝑣𝑟𝑒𝑠𝑣𝑥
∗, 𝑣𝑦 = −𝑘𝑥

ℎ𝑑

𝐿
𝑘𝑦

∗  
𝜕ℎ∗

𝜕𝑦∗ = 𝑣𝑟𝑒𝑠𝑣𝑦
∗ and 𝑣𝑧 = −𝑘𝑥

ℎ𝑑

𝐿
𝑘𝑧

∗  
𝜕ℎ∗

𝜕𝑧∗ = 𝑣𝑟𝑒𝑠𝑣𝑧
∗ with 𝑣𝑟𝑒𝑠 = 𝑘𝑥

ℎ𝑑

𝑛𝐿
. 

This was implemented in equation 4 and 
𝑄

𝐿 ℎ𝑑 𝑘𝑥
 was substituted by Q* leading to equation 5 which is 

the dimensionless stream function. All the conversions applied can be found in table 1. 
 

𝜕

𝜕𝑥∗ (𝑘𝑥
∗ 𝜕ℎ∗

𝜕𝑥∗) +
𝜕

𝜕𝑦∗ (𝑘𝑦
∗ 𝜕ℎ∗

𝜕𝑦∗) +
𝜕

𝜕𝑧∗ (𝑘𝑧
∗ 𝜕ℎ∗

𝜕𝑧∗) − 𝑄∗ =
𝜕

𝜕𝑥∗
(𝑣𝑟𝑒𝑠 𝑣𝑥

∗) +
𝜕

𝜕𝑦∗ (𝑣𝑟𝑒𝑠 𝑣𝑦
∗) +

𝜕

𝜕𝑧∗
(𝑣𝑟𝑒𝑠 𝑣𝑧

∗) −

𝑄∗ = 0            (eq. 5) 

Table 1 Conversion of stream function to dimensionless stream function 

Dimension Dimensionless Dimension Dimensionless 

x 𝑥∗ =
𝑥

𝐿
  h ℎ∗ =

ℎ

ℎ𝑑
  

y 𝑦∗ =
𝑦

𝐿
  Q/L

3
 𝑄∗ =

𝑄 

𝐿 𝑘𝑥 ℎ𝑑
  

z 𝑧∗ =
𝑧

𝐿
  vy 𝑣𝑦

∗ =
𝑣𝑦

𝑣𝑟𝑒𝑠
  

kx 𝑘𝑥
∗ =

𝑘𝑥

𝑘𝑥
= 1  vz 𝑣𝑧

∗ =
𝑣𝑧

𝑣𝑟𝑒𝑠
  

ky 𝑘𝑦
∗ =

𝑘𝑦

𝑘𝑥
  𝑣𝑟𝑒𝑠 = 𝑘𝑥

ℎ𝑑

𝑛𝐿
   

kz 𝑘𝑧
∗ =

𝑘𝑧

𝑘𝑥
  n 𝑛∗ =

𝑛

𝑛
= 1  

vx 𝑣𝑥
∗ =

𝑣𝑥

𝑣𝑟𝑒𝑠
    

 
Contaminant transport not only depends on the stream function but also on the transport processes 
(eq. 6, modified from Zheng and Wang, 1999). The transport equation describes how concentration 
changes over time and distance under the influence of adsorption, hydrodynamic dispersion, 
advection and decay. 
 

𝑅
𝜕𝐶

𝜕𝑡
+

𝜕 𝑣𝑖 𝐶

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
(𝐷𝑖𝑗

𝜕𝐶

𝜕𝑥𝑗
) − 𝜇𝐶        (eq. 6) 

 

Where 𝐷𝑖𝑗 = (𝐷𝑚 + 𝛼𝑇|𝑣|)𝛿𝑖𝑗 +
(𝛼𝐿−𝛼𝑇)𝑣𝑖𝑣𝑗

|𝑣|
 

 
With: 

R is the retardation factor [-]. 𝑅 = 1 +
𝜌𝑏𝐾𝐷

𝑛
 where ρb is the bulk density [kg/m3], KD is the distribution 

coefficient [m3/kg] and n is the porosity [-] 
C is the concentration [M/L3] 
t is the time [T] 

vi is the pore water velocity [L/T] and expands to 3 terms (

𝑣𝑥

𝑣𝑦

𝑣𝑧

) 

µ is the decay rate coefficient of the dissolved phase [T-1] 
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Dij is the dispersion tensor [L2/T] and expands to 9 terms (

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

) 

Dm is the molecular diffusion [L2/T] 
αT is the transverse dispersivity [L] 
αL is the longitudinal dispersivity [L] 
 

δij is the 3×3 unit matrix (
1 0 0
0 1 0
0 0 1

) 

 

|v| is the length of the velocity vector [L/T] where |𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

 

𝑅
𝜕𝐶

𝜕𝑡
 describes linear equilibrium adsorption of the contaminant to soil and organic carbon particles. 

When R>1 there was adsorption and transport of the contaminant was retarded. Hydrodynamic 

dispersion causes spreading of the contaminant plume, which is described by 
𝜕

𝜕𝑥𝑖
(𝐷𝑖𝑗

𝜕𝐶

𝜕𝑥𝑗
). The larger 

the hydrodynamic dispersion the greater the concentration gradient. Advection is described with 

−
𝜕 𝑣𝑖 𝐶

𝜕𝑥𝑖
 and includes the dependence of groundwater flow velocity. The larger the velocity the 

greater the concentration difference over distance. Finally, – 𝜇𝐶 describes how the concentration 
drops with the decay rate coefficient. The larger the decay rate coefficient the larger the drop in 
concentration. 
 
To make the transport equation dimensionless the conversions from the stream function were used 
for x, y, z and v. Next to that C was made dimensionless by dividing it by the initial concentration C0 

(table 2). Time was made dimensionless by dividing by the residence time 𝑡𝑟𝑒𝑠 =
𝐿

𝑣𝑟𝑒𝑠
. 

Applying these conversions yields equation 7. 
 

𝑅
𝑣𝑟𝑒𝑠

𝐿

𝜕𝐶∗

𝜕𝑡∗ +
𝑣𝑟𝑒𝑠

𝐿

𝜕𝑣𝑖
∗ 𝐶∗

𝜕𝑥𝑖
∗ =

1

𝐿

𝜕

𝜕𝑥𝑖
∗ (

𝐷𝑖𝑗

𝐿

𝜕𝐶∗

𝜕𝑥𝑗
∗) − 𝜇𝐶∗     (eq. 7) 

Table 2 Conversion of transport equation to dimensionless transport equation 

Dimension Dimensionless Dimension Dimensionless 

C 𝐶∗ =
𝐶

𝐶0
  n 𝑛∗ =

𝑛

𝑛
= 1  

t 𝑡∗ =
𝑡

𝑡𝑟𝑒𝑠
=

𝑣𝑟𝑒𝑠 𝑡

𝐿
  x 𝑥∗ =

𝑥

𝐿
  

vx 𝑣𝑥
∗ =

𝑣𝑥

𝑣𝑟𝑒𝑠
  y 𝑦∗ =

𝑦

𝐿
  

vy 𝑣𝑦
∗ =

𝑣𝑦

𝑣𝑟𝑒𝑠
  z 𝑧∗ =

𝑧

𝐿
  

vz 𝑣𝑧
∗ =

𝑣𝑧

𝑣𝑟𝑒𝑠
  µ 𝐷𝑎 = 𝜇∗ =

𝜇 𝐿

𝑣𝑟𝑒𝑠
  

𝑣𝑟𝑒𝑠 = 𝑘𝑥
ℎ𝑑

𝑛𝐿
     

 

By multiplying equation 7 with 
𝐿

𝑣𝑟𝑒𝑠
 and incorporating L-1 in Dij the transport equation was made 

dimensionless (eq. 8). The dimensionless decay rate is the dimensionless Damkohler number. This 
equation is similar in form to the original transport equation. 
 

𝑅
𝜕𝐶∗

𝜕𝑡∗ +
𝜕𝑣𝑖

∗ 𝐶∗

𝜕𝑥𝑖
∗ =

𝜕

𝜕𝑥𝑖
∗ (𝐷𝑖𝑗

∗ 𝜕𝐶∗

𝜕𝑥𝑗
∗) − 𝐷𝑎𝐶∗        (eq. 8) 
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Where 𝐷𝑖𝑗
∗ = (

𝐷𝑚

𝑣𝑟𝑒𝑠 𝐿
+ 𝛼𝑇

∗ |𝑣∗|) 𝛿𝑖𝑗 +
(𝛼𝐿

∗ −𝛼𝑇
∗ )𝑣𝑖

∗𝑣𝑗
∗

|𝑣∗|
 

 
The domain was then made dimensionless by using the abovementioned conversion. This was done 
by dividing all parameters with the unit length, except for the hydraulic heads, by distance L (so 
height H, width W, travel length X, vertical distance ΔZ and well screen length ZW were divided by the 
domain length)(table 3). Bulk density ρb and distribution coefficient KD were not made dimensionless 
since these parameters were only directly included in PMWIN and not in the stream function and 
only indirectly in the transport equation. 

Table 3 Conversion of domain to dimensionless values 

Dimension Dimensionless Dimension Dimensionless 

L 𝐿∗ =
𝐿

𝐿
= 1  ΔZ Δ𝑍∗ =

𝑍

𝐿
  

W 𝑊∗ =
𝑊

𝐿
  ZW 𝑍𝑤

∗ =
𝑍𝑤

𝐿
  

H 𝐻∗ =
𝐻

𝐿
  ρ

b 
n/a 

X 𝑋∗ =
𝑋

𝐿
  KD n/a 

x 𝑥∗ =
𝑥

𝐿
  n 𝑛∗ =

𝑛

𝑛
= 1  

y 𝑦∗ =
𝑦

𝐿
  Q/L

3
 𝑄∗ =

𝑄 

𝐿 𝑘𝑥 ℎ𝑑
  

z 𝑧∗ =
𝑧

𝐿
  h ℎ∗ =

ℎ

ℎ𝑑
  

kx 𝑘𝑥
∗ =

𝑘𝑥

𝑘𝑥
= 1  Vc 𝑉𝑐

∗ =
𝑉𝑐

𝐿3  

ky 𝑘𝑦
∗ =

𝑘𝑦

𝑘𝑥
  C 𝐶∗ =

𝐶

𝐶0
  

kz 𝑘𝑧
∗ =

𝑘𝑧

𝑘𝑥
  µ 𝐷𝑎 = 𝜇∗ =

𝜇 𝐿

𝑣𝑟𝑒𝑠
  

vx 𝑣𝑥
∗ =

𝑣𝑥

𝑣𝑟𝑒𝑠
  t 𝑡∗ =

𝑡

𝑡𝑟𝑒𝑠
=

𝑣𝑟𝑒𝑠 𝑡

𝐿
  

vy 𝑣𝑦
∗ =

𝑣𝑦

𝑣𝑟𝑒𝑠
  𝑣𝑟𝑒𝑠 = 𝑘𝑥

ℎ𝑑

𝑛𝐿
 

 

vz 𝑣𝑧
∗ =

𝑣𝑧

𝑣𝑟𝑒𝑠
    

 

2.3 Parameter space 

In this model 13 parameters, namely the horizontal distance between the contaminant plume and 
the well (X), the domain length (L), the aquifer depth (H), the vertical distance between the 
contaminant an the well (ΔZ), the well screen length (ZW), the hydraulic gradient (i), the pumping rate 
(Q), the anisotropy (m), the contaminant volume (Vc), the contaminant concentration (C), the 
retardation (R), the dispersivity (αL) and the decay rate (µ) could be varied. To model each possible 
combination of these parameters, for five values, would lead to 513= 1,220,703,125 scenarios, which 
is not feasible within the timeframe set for this study. Reduction of the amount of scenarios was 
achieved by reducing the number of variables. This was done by first making the model 
dimensionless and secondly by keeping some variables constant. The number of scenarios was 
further reduced by making a “smart” selection of points within a full factorial design. This however 
will be discussed in chapter 2.4 Scenarios. 
 
Dimensionless model 
By making the model dimensionless, the horizontal distance between the well and the plume (X), the 
aquifer depth (H) and the domain width (W) all became dependent on the domain length (L), 
meaning that a variation in L causes a variation in all these parameters. Therefore L was kept 
constant. An L of 6500m (table 4) was chosen to have a buffer zone of 250m before the plume and 
after the well at the greatest distance X (see parameter space - variables). This buffer zone was used 
to prevent interference from the constant head boundary conditions with the contaminant 
transport. 
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Contaminant transport does not take place in the y-direction, because groundwater flow was from 
the plume straight to the well and therefore the size of W did not matter as long as it was sufficiently 
wide for all the cases. A W of 1000m was chosen (table 4). 
By making the model dimensionless the concentrations became relative to the initial concentration 
of the plume. This means that the initial concentration of the plume was divided by the initial 
concentration of the plume and thus the dimensionless starting concentration was constant at 1 
(table 4). 
This reduced the number of parameters from 13 to 10. 
 
Constant parameters 
Aquifer depths (H) range from 20 to 120 to 330m (rounded off from Schijven et al., 2010). However 
because the depth was <5% of the length of the domain the effect of depth will most likely be 
smaller than that of length. Therefore H was kept constant at a value of 120m (table 4). 
As mentioned in the tiered approach a plume size of over 6000m3 was considered an unacceptable 
risk (Otte et al., 2007), however smaller plume sizes may also form a possible risk and therefore a 
plume size of 1000m3 was chosen (table 4). 
A contaminant plume mostly originates from a surface source and therefore lies near to the surface. 
Thus the plume was located in the top layer in the PMWIN domain. The frequency distribution of the 
depth of the top of the well screen (figure 3) (Zwolsman, 2011) shows that most well screens have a 
depth of 50m below the surface, therefore the top of the well was set at 50m below surface. The 
vertical distance from the plume to the well (ΔZ) was kept as constant as possible but due to 
variations in the well screen length (ZW), ΔZ was subsequently varied as a secondary variable (table 
4). 
 

 
Figure 3 Frequency distribution of the depth of the top of the well (m blow surface) 

Lastly, the dispersivity (αL) was kept constant at 130m as to have Pe=50 (table 4). The Peclet number 
(Pe) is the ratio between advective transport and dispersive transport (Fetter, 1999). With a Pe=50 
there was more advective transport than dispersive transport. 
Only 7 parameters with 5 values remain. This led to 57=78,125 scenarios which was quite a reduction, 
but not enough. 
Keeping values constant led to parameter reduction but it also forms a constraint on the empirical 
formula since it is only applicable within the parameter range provided. This means that the 
empirical formula is only applicable in situations where H=120, Vc=1000m3, ΔZ=50m and αL=130m. 
Future studies may explore the possibilities in varying or changing the value of these constants. 
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Variables 
The 25 year zone, or groundwater protection zone, is defined as a zone in which water particles 
travel 25 years to reach the well (Wuijts et al., 2007). This zone is defined by the act on 
environmental management (Wet Milieubeheer) and subdivided in environmental decrees by the 
Provincial Governments (Ministry of Volksgezondheid en Milieuhygiëne, 1979). This means that a 
tracer will travel 25 years to the well but a non-conservative contaminant will travel longer. In 25 
years a contaminant can be (partly) broken down and thus it will reach the well at a lower 
concentration than a conservative contaminant. Therefore the biggest distance X was taken as the 
maximum length of the 25 year zone. The size of the 25 year zone was taken from so called 
‘gebiedsdossiers’ (WMD-water, 2011, Hoogeveen and Witjes, 2012 and Lodder and Steinweg, 2013), 
the websites of the provinces (maps from Utrecht, Gelderland and Overijssel) and the environmental 
decree Noord-Brabant (provinciale milieu verordening Noord-Brabant, 2010). From these different 
distances a frequency distribution was made (figure 4) to determine the range of variation for the 
horizontal distance between the well and the plume (X). A few runs in PMWIN revealed that 
distances of X greater than 4500m led to arrival times of more than 50 years and were therefore of 
no interest for this study. X was varied from 100, 750, 1600, 2300 to 3050m (table 4).  
 

 
Figure 4 Frequency distribution of the size of the 25-year zone 

Zwolsman (2011) gives the depth of the top and bottom of each drinking water well screen in the 
Netherlands. From this the well screen length (ZW) was derived and a frequency distribution set up 
(figure 5) which led to a range of variation. The well screen cannot be larger than the height of the 
aquifer, therefore all values above 120m were disregarded. The well screen length was varied from 
10, 30, 50, 70 to 90m (table 4). 
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Figure 5 Frequency distribution of well screen length 

In the domain there was both radial flow due to the pumping wells and natural flow due to a 
hydraulic gradient. In the Netherlands, this hydraulic gradient (i) is around 0.01m/m to 0.001m/m 
(van Rooijen, 1989). Davidson and Wilson (2011) found an i of 0.0033m/m and 0.005m/m in two 
aquifers. This falls within the range given by van Rooijen (1989). An i of 0.001m/m led to a very low 
flow velocity and therefore higher values were chosen. The hydraulic gradient was increased from 

0.0055, 0.0067, 0.0078, 0.0089 to 0.01m/m (table 4). The gradient was calculated as 𝑖 =
ℎ𝑢−ℎ𝑑

𝐿
. The 

downstream hydraulic head (hd) was kept constant at H=120m in order to keep a fully saturated 
domain. hd=120m, L=6500m and i was also known. Then the required upstream hydraulic head (hu) 
was calculated with ℎ𝑢 = (𝑖 𝐿) + ℎ𝑑. Therefore, hu was varied from 155.75, 163.55, 170.7, 177.85 to 
185m (table 4). 
 
The frequency distribution of pumping rates in Dutch drinking water wells (figure 6) (Zwolsman, 
2011) led to a range of pumping rates (Q). Q was increased from 200, 10250, 20100, 30350 to 
40000m3/d (table 4). 
 

 
Figure 6 Frequency distribution of pumping rates in 2010 

Another factor in groundwater flow velocity was the hydraulic conductivity (k) in x, y and z direction. 
Only kz was varied, which means that in the dimensionless situation only the ratio between kx and kz 
was varied. This ratio is also known as the anisotropy (m). kx has a range of 1-100m/d in sandy soils 
(Hendriks, 2010). By looking at the kx value in the soil around 20 unconfined drinking water wells 
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spread over the Netherlands in Dinoloket it (TNO, 2015) became clear that most soils have a kx value 
between 10-100m/d and some have a value between 1-100m/d. To obtain a variation in anisotropy 
(m=kx/kz) from 1, 13.25, 25.5, 37.75 to 50, kz was varied from 20, 1.5, 0.78, 0.52 to 0.4m/d when 
kx=20m/d (table 4). This falls within the range given by Dinoloket. 
 
The retardation (R) was varied by keeping the porosity (n) and the bulk density (ρb) constant and only 
changing the partitioning coefficient (KD). The KD values were obtained from a list of contaminants 
(Otte et al., 2001) taking only those that are soluble in water (S > 1000mg/L) and looking at the 
occurrence of different KD values in a histogram (figure 7). The KD values were calculated from the 
soil organic carbon-water partitioning coefficient (KOC) values using KD=KOC×fOC where fOC=0.028 
(Medina et al., 1981).  
A quick test run in PMWIN revealed that when R was larger than 10 the contamination will reach the 
well after 50 years. Therefore a maximal R value of 10 was chosen to keep the arrival time within 50 
years. This led to the range of R=1, 3.25, 5.5, 7.75 and 10 (table 4). With n=0.35 (Hendriks, 2010 and 
Koorevaar et al., 1983) and ρb=2000kg/m3 these R values were then translated back to the KD values 
that were used in MODLOW. The KD values were 0, 0.00039, 0.00079, 0.0012 and 0.0016m3/kg (table 
4). 
 

 
Figure 7 Frequency distribution of the KD value of dissolved species 

The decay rate (µ) was varied from 0, 0.0013, 0.0025 to 0.0038 to 0.005d-1 (table 4) (as provided by 
the RIVM). Higher decay rates led to excessive concentration reductions and therefore were not 
taken into account. 
 
All these parameters and constants were made dimensionless using the conversion from table 3. A 
full overview of the parameter ranges and constants bot dimensional and dimensionless can be 
found in table 4. The mean values of each parameter are shown in bold and were used as central or 
reference values. 

Table 4 Values of the constants and ranges of the variables 
The bold printed values are the mean values of the parameters 

Constants Value Dimensionless 
constants 

Value 

L 6500m L* 1 

W 1000m W* 0.15 

H 120m H* 0.018 

ΔZ 50m ΔZ* 0.0077 

hd 120m hd* 1 
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ky 2m/d ky* 1 

C 1 C* 1 

VC 1000m
3
 VC* 3.64×10

-9
 

n 0.35 n* 1 

ρ
b 

2000kg/m
3
 n/a n/a 

αL 130 αL* 0.02 

αTy 13 αTy* 0.002 

αTz 13 αTz* 0.002 

 

Variable Range Dimensionless 
variables 

Range 

X 100 – 750 – 1600 – 2300 – 3050 X* 0.015 – 0.11 – 0.24 – 0.35 – 0.47 

ZW 10 – 30 – 50 – 70 – 90m ZW* 0.0015 – 0.0046 – 0.0077 – 0.011 – 0.014 

i  
 
 
hu˚ 

0.0055 – 0.0067 – 0.0078 – 
0.0089 – 0.01m/m 
 
155.75 – 163.55 – 170.7 – 177.85 
– 185m 

 
 
 
hu* 

 
 
 
1.30 – 1.36 – 1.42 – 1.48 – 1.54 

Q 200 – 10250 – 20100 – 30350 – 
40000m

3
/d 

Q* 0.000013 – 0.00066 – 0.0013 – 0.00195 – 
0.0026 

kx 

kz 

 

20 m/d 
20 – 1.5 – 0.78 – 0.52 – 0.4m/d 

kx* 
kz* 
 
m 

1 
1 – 0.075 – 0.04 – 0.026 – 0.02 
 
1 – 13.25 – 25.5 – 37.75 – 50 

KD’ 0 – 0.00039 – 0.00079 – 0.0012 – 
0.0016m

3
/kg 

R 1 – 3.25 – 5.5 – 7.75 – 10 

µ 0 – 0.0013 – 0.0025 – 0.0038 –
0.005d

-1
 

Da 0 – 7.75 – 15.5 – 23.25 – 31 

 

2.4 Scenarios 

Nine test scenarios (table 5) were run to check the model. Scenarios 1 to 3 did not have a pumping 
well and there was a continuous input of a tracer. The scenario outcomes were compared to an 
analytical solution supplied on the website of the University of Illinois (Valocchi et al., 2016) as a 
model check. This analytical solution is applicable in a 1D situation in a semi-infinite domain. To 
achieve the 1D situation the pumping well was removed and the plume covered the whole depth and 
width of the domain. The required input parameters were the dispersion coefficient (D), the pore 
water velocity (v), the input concentration (C0) and the background value or initial concentration 
(which was zero). The results form PMWIN and the model from the University of Illinois should 
overlap as much as possible. 
Scenarios 4 to 9 do had a fully penetrating pump, which led to a varying flow velocity in x and z 
direction, and can only be checked quantitatively. It was expected that the contaminant will reach 
the well at 100 m earlier than the well at 6000 m. An increase in i would lead to faster transport and 
thus earlier arrival. A higher pumping rate will increase the flow velocity but it also increases dilution.  

Table 5 Dimensionless parameter values for the test scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number (the 
dimensionless decay rate). 

Test scenario X* ZW* i Q* m R Da 

1 0.015 0 0.001 0 1 1 0 

2 0.31 0 0.001 0 1 1 0 

3 0.92 0 0.001 0 1 1 0 

4 0.31 1 0.001 0.00032 1 1 0 

5 0.015 1 0.001 0.00032 1 1 0 
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6 0.92 1 0.001 0.00032 1 1 0 

7 0.31 1 0.01 0.00032 1 1 0 

8 0.31 1 0.001 1.3·10
-5

 1 1 0 

9 0.31 1 0.001 0.0026 1 1 0 

 
A Box-Behnken (hereafter BB) design was applied (table 6) to reduce the number of scenarios 
further. This design was developed to decrease the number of scenarios (Cavazzuti, 2013) by 
combining two-level factorial designs and incomplete block designs (Box and Behnken, 1960 and 
Cavazzuti, 2013). By applying criteria of rotatability, the number of scenarios was greatly reduced 
while still remaining representative. The resulting design can be used to set up a quadratic 
polynomial (Box and Behnken, 1960). 
This particular BB design with seven factors consists of boxes, in which four factors were kept 
constant, while the other three factors were varied with their minimum and maximum value until 
every possible combination of the three factor values were varied. Then, in the next box, three other 
factors were varied. This led to seven boxes in which three factors were varied. In the eighth box all 
factors were set to their mean value to form a centre point. Variations on the centre point were 
added to the eighth block as well. For these small variations each parameter was individually varied 
between the maximum and minimum value while the other parameters were kept at their mean 
value. This led to 72 scenarios in the BB design.  
To increase the amount of data points a partial Central Composite design (hereafter CCD) was added 
(table 7). A CCD originally was a full factorial design for two factors with an added central point and 
star points (Cavazzuti, 2013). Since the BB already uses a minimum, mean and maximum these star- 
and central points could be eliminated. This means that only the two remaining values were used to 
form a CCD design leading to 64 scenarios. Using the CCD to increase data points led to a better 
result when using multivariate regression since a line was now plot using five points instead of three. 
In the end, the BB design and the CCD had 136 scenarios instead of 57=78,125 scenarios. 

Table 6 Dimensionless parameter values for the Box-Behnken scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number (the 
dimensionless decay rate). The bold values are varied between their minimum and maximum values in that particular 
box. 

Block BB Scenario X* ZW* i Q* m R Da 

1 1 0.24 0.0077 0.0078 1.3·10
-5

 1 1 15.5 

2 0.24 0.0077 0.0078 0.0026 1 1 15.5 

3 0.24 0.0077 0.0078 1.3·10
-5

 50 1 15.5 

4 0.24 0.0077 0.0078 0.0026 50 1 15.5 

5 0.24 0.0077 0.0078 1.3·10
-5

 1 10 15.5 

6 0.24 0.0077 0.0078 0.0026 1 10 15.5 

7 0.24 0.0077 0.0078 1.3·10
-5

 50 10 15.5 

8 0.24 0.0077 0.0078 0.0026 50 10 15.5 

2 9 0.015 0.0077 0.0078 0.0013 25.5 1 0 

10 0.46 0.0077 0.0078 0.0013 25.5 1 0 

11 0.015 0.0077 0.0078 0.0013 25.5 10 0 

12 0.46 0.0077 0.0078 0.0013 25.5 10 0 

13 0.015 0.0077 0.0078 0.0013 25.5 1 31 

14 0.46 0.0077 0.0078 0.0013 25.5 1 31 

15 0.015 0.0077 0.0078 0.0013 25.5 10 31 

16 0.46 0.0077 0.0078 0.0013 25.5 10 31 

3 17 0.24 0.0015 0.0078 0.0013 1 5.5 0 

18 0.24 0.014 0.0078 0.0013 1 5.5 0 

19 0.24 0.0015 0.0078 0.0013 50 5.5 0 

20 0.24 0.014 0.0078 0.0013 50 5.5 0 

21 0.24 0.0015 0.0078 0.0013 1 5.5 31 
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22 0.24 0.014 0.0078 0.0013 1 5.5 31 

23 0.24 0.0015 0.0078 0.0013 50 5.5 31 

24 0.24 0.014 0.0078 0.0013 50 5.5 31 

4 25 0.015 0.0015 0.0078 1.3·10
-5

 25.5 5.5 15.5 

26 0.46 0.0015 0.0078 1.3·10
-5

 25.5 5.5 15.5 

27 0.015 0.014 0.0078 1.3·10
-5

 25.5 5.5 15.5 

28 0.46 0.014 0.0078 1.3·10
-5

 25.5 5.5 15.5 

29 0.015 0.0015 0.0078 0.0026 25.5 5.5 15.5 

30 0.46 0.0015 0.0078 0.0026 25.5 5.5 15.5 

31 0.015 0.014 0.0078 0.0026 25.5 5.5 15.5 

32 0.46 0.014 0.0078 0.0026 25.5 5.5 15.5 

5 33 0.24 0.0077 0.0055 1.3·10
-5

 25.5 5.5 0 

34 0.24 0.0077 0.01 1.3·10
-5

 25.5 5.5 0 

35 0.24 0.0077 0.0055 0.0026 25.5 5.5 0 

36 0.24 0.0077 0.01 0.0026 25.5 5.5 0 

37 0.24 0.0077 0.0055 1.3·10
-5

 25.5 5.5 31 

38 0.24 0.0077 0.01 1.3·10
-5

 25.5 5.5 31 

39 0.24 0.0077 0.0055 0.0026 25.5 5.5 31 

40 0.24 0.0077 0.01 0.0026 25.5 5.5 31 

6 41 0.015 0.0077 0.0055 0.0013 1 5.5 15.5 

42 0.46 0.0077 0.0055 0.0013 1 5.5 15.5 

43 0.015 0.0077 0.01 0.0013 1 5.5 15.5 

44 0.46 0.0077 0.01 0.0013 1 5.5 15.5 

45 0.015 0.0077 0.0055 0.0013 50 5.5 15.5 

46 0.46 0.0077 0.0055 0.0013 50 5.5 15.5 

47 0.015 0.0077 0.01 0.0013 50 5.5 15.5 

48 0.46 0.0077 0.01 0.0013 50 5.5 15.5 

7 49 0.24 0.0015 0.0055 0.0013 25.5 1 15.5 

50 0.24 0.014 0.0055 0.0013 25.5 1 15.5 

51 0.24 0.0015 0.01 0.0013 25.5 1 15.5 

52 0.24 0.014 0.01 0.0013 25.5 1 15.5 

53 0.24 0.0015 0.0055 0.0013 25.5 10 15.5 

54 0.24 0.014 0.0055 0.0013 25.5 10 15.5 

55 0.24 0.0015 0.01 0.0013 25.5 10 15.5 

56 0.24 0.014 0.01 0.0013 25.5 10 15.5 

8 57 0.24 0.0077 0.0078 0.0013 25.5 5.5 15.5 

58 0.015 0.0077 0.0078 0.0013 25.5 5.5 15.5 

59 0.46 0.0077 0.0078 0.0013 25.5 5.5 15.5 

60 0.24 0.0015 0.0078 0.0013 25.5 5.5 15.5 

61 0.24 0.014 0.0078 0.0013 25.5 5.5 15.5 

62 0.24 0.0077 0.0055 0.0013 25.5 5.5 15.5 

63 0.24 0.0077 0.01 0.0013 25.5 5.5 15.5 

64 0.24 0.0077 0.0078 1.3·10
-5

 25.5 5.5 15.5 

65 0.24 0.0077 0.0078 0.0026 25.5 5.5 15.5 

66 0.24 0.0077 0.0078 0.0013 1 5.5 15.5 

67 0.24 0.0077 0.0078 0.0013 50 5.5 15.5 

68 0.24 0.0077 0.0078 0.0013 25.5 1 15.5 

69 0.24 0.0077 0.0078 0.0013 25.5 10 15.5 

70 0.24 0.0077 0.0078 0.0013 25.5 5.5 0 

71 0.24 0.0077 0.0078 0.0013 25.5 5.5 31 

72 0.24 0.0077 0.0078 0.0013 25.5 1 0 
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Table 7 Dimensionless parameter values for the Central Composite Design scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number (the 
dimensionless decay rate). 

CCD Scenario X* ZW* Q* i m R Da 

73 0.11 0.0046 0.00066 0.0067 13.25 3.25 23.25 

74 0.11 0.0046 0.00066 0.0089 13.25 3.25 7.75 

75 0.11 0.0046 0.00066 0.0067 37.75 3.25 7.75 

76 0.11 0.0046 0.00066 0.0089 37.75 3.25 23.25 

77 0.11 0.0046 0.00066 0.0067 13.25 7.75 7.75 

78 0.11 0.0046 0.00066 0.0089 13.25 7.75 23.25 

79 0.11 0.0046 0.00066 0.0067 37.75 7.75 23.25 

80 0.11 0.0046 0.00066 0.0089 37.75 7.75 7.75 

81 0.11 0.0046 0.00195 0.0067 13.25 3.25 7.75 

82 0.11 0.0046 0.00195 0.0089 13.25 3.25 23.25 

83 0.11 0.0046 0.00195 0.0067 37.75 3.25 23.25 

84 0.11 0.0046 0.00195 0.0089 37.75 3.25 7.75 

85 0.11 0.0046 0.00195 0.0067 13.25 7.75 23.25 

86 0.11 0.0046 0.00195 0.0089 13.25 7.75 7.75 

87 0.11 0.0046 0.00195 0.0067 37.75 7.75 7.75 

88 0.11 0.0046 0.00195 0.0089 37.75 7.75 23.25 

89 0.11 0.011 0.00066 0.0067 13.25 3.25 7.75 

90 0.11 0.011 0.00066 0.0089 13.25 3.25 23.25 

91 0.11 0.011 0.00066 0.0067 37.75 3.25 23.25 

92 0.11 0.011 0.00066 0.0089 37.75 3.25 7.75 

93 0.11 0.011 0.00066 0.0067 13.25 7.75 23.25 

94 0.11 0.011 0.00066 0.0089 13.25 7.75 7.75 

95 0.11 0.011 0.00066 0.0067 37.75 7.75 7.75 

96 0.11 0.011 0.00066 0.0089 37.75 7.75 23.25 

97 0.11 0.011 0.00195 0.0067 13.25 3.25 23.25 

98 0.11 0.011 0.00195 0.0089 13.25 3.25 7.75 

99 0.11 0.011 0.00195 0.0067 37.75 3.25 7.75 

100 0.11 0.011 0.00195 0.0089 37.75 3.25 23.25 

101 0.11 0.011 0.00195 0.0067 13.25 7.75 7.75 

102 0.11 0.011 0.00195 0.0089 13.25 7.75 23.25 

103 0.11 0.011 0.00195 0.0067 37.75 7.75 23.25 

104 0.11 0.011 0.00195 0.0089 37.75 7.75 7.75 

105 0.35 0.0046 0.00066 0.0067 13.25 3.25 7.75 

106 0.35 0.0046 0.00066 0.0089 13.25 3.25 23.25 

107 0.35 0.0046 0.00066 0.0067 37.75 3.25 23.25 

108 0.35 0.0046 0.00066 0.0089 37.75 3.25 7.75 

109 0.35 0.0046 0.00066 0.0067 13.25 7.75 23.25 

110 0.35 0.0046 0.00066 0.0089 13.25 7.75 7.75 

111 0.35 0.0046 0.00066 0.0067 37.75 7.75 7.75 

112 0.35 0.0046 0.00066 0.0089 37.75 7.75 23.25 

113 0.35 0.0046 0.00195 0.0067 13.25 3.25 23.25 

114 0.35 0.0046 0.00195 0.0089 13.25 3.25 7.75 

115 0.35 0.0046 0.00195 0.0067 37.75 3.25 7.75 

116 0.35 0.0046 0.00195 0.0089 37.75 3.25 23.25 

117 0.35 0.0046 0.00195 0.0067 13.25 7.75 7.75 

118 0.35 0.0046 0.00195 0.0089 13.25 7.75 23.25 

119 0.35 0.0046 0.00195 0.0067 37.75 7.75 23.25 

120 0.35 0.0046 0.00195 0.0089 37.75 7.75 7.75 

121 0.35 0.011 0.00066 0.0067 13.25 3.25 23.25 

122 0.35 0.011 0.00066 0.0089 13.25 3.25 7.75 
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123 0.35 0.011 0.00066 0.0067 37.75 3.25 7.75 

124 0.35 0.011 0.00066 0.0089 37.75 3.25 23.25 

125 0.35 0.011 0.00066 0.0067 13.25 7.75 7.75 

126 0.35 0.011 0.00066 0.0089 13.25 7.75 23.25 

127 0.35 0.011 0.00066 0.0067 37.75 7.75 23.25 

128 0.35 0.011 0.00066 0.0089 37.75 7.75 7.75 

129 0.35 0.011 0.00195 0.0067 13.25 3.25 7.75 

130 0.35 0.011 0.00195 0.0089 13.25 3.25 23.25 

131 0.35 0.011 0.00195 0.0067 37.75 3.25 23.25 

132 0.35 0.011 0.00195 0.0089 37.75 3.25 7.75 

133 0.35 0.011 0.00195 0.0067 13.25 7.75 23.25 

134 0.35 0.011 0.00195 0.0089 13.25 7.75 7.75 

135 0.35 0.011 0.00195 0.0067 37.75 7.75 7.75 

136 0.35 0.011 0.00195 0.0089 37.75 7.75 23.25 

 

2.5 Multivariate regression analysis 

To develop the empirical formula, the data obtained from PMWIN were analysed using modelling 
software R. The R Studio interface, version 0.99.491, was used (©2009-2015, RStudio Inc.). The 
complete R-script can be found in appendix C. 
 
First, a data frame was created using the information from tables 6 and 7. Then a multivariate 
regression was fit through the different combinations of outputs and all the parameters. So the 
influence of the dimensionless horizontal distance between the well and the plume (X*), the 
dimensionless well screen length (ZW*),the hydraulic gradient (i), the dimensionless pumping rate 
(Q*), the anisotropy (m), the retardation (R), and the dimensionless decay rate (Da), the square of 
each of these parameters and their multiplications on C*max, C*half, t*max and t*half was analysed. This 
led to a formula in which all factors, their squares and their combinations were included. However, 
not all parameters in the formulas were significant. By applying AIC (Akaike Information Criterion), 
the significance of different parameters was tested (Akaike, 1974) to develop the least parsimonious 
formula. This way a different formula was developed for C*max, C*half, t*max and t*half. 
Because Q* and m had a large range of variation, they were transformed on a natural logarithmic 
scale. For the same reason C*max, C*half, t*max and t*half were transformed on a natural logarithmic and 
square root scale. Because the lowest value for Da was zero, Da was transformed on a root scale 
instead of a natural logarithmic scale. 
 
The resulting empirical formulas were tested by comparing their results with the PMWIN results and 
by making a Bland-Altman plot. A Bland-Altman plot is a plot of the difference between two methods 
(PMWIN points minus empirical formula points) against the average of two methods (PMWIN points 
plus empirical formula divided by 2)(Bland and Altman, 1986). 
Furthermore, a sensitivity analysis was carried out by varying the factors one by one within their 
range. C*max, C*half, t*max and t*half were the most sensitive to the parameter that lead to a large 
variation in C*max, C*half, t*max and t*half. 
 
The empirical formulas are only applicable in situations that fit within the parameter space. 
Extrapolation is not advisable since the predictions are faulty. 
 
The empirical formulas outcomes were also tested with a 3D analytical transport equation. However 
since this analytical solution did not take wells into account some adjustments had to be made. The 
empirical formulas were extrapolated to situations where the pumping rate was very small and there 
was no anisotropy. 
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The analytical solution was set up for an instantaneous point source and included advection, 
dispersion, and decay (eq. 9) (adjusted from Bear, 1988). Initially there was no contaminant present 
in the soil. At t=0 a mass M0 was added at x=0, y=0 and z=0. In this case M0=vxAC0. 
 

𝐶 =
𝑣𝑥 𝐴 𝐶0

𝑛 𝑅 √𝐷𝑥𝐷𝑦𝐷𝑧(
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3
2
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(𝑥−
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)

2
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𝑅

−
𝑦2

4 𝐷𝑦 𝑡

𝑅

−
𝑧2

4 𝐷𝑧 𝑡

𝑅

−
𝜇𝑡

𝑅
)    (eq. 9) 

 
Where 𝐷𝑥 ≈ 𝛼𝐿  𝑣𝑥, 𝐷𝑦 ≈ 𝛼𝐿  𝑣𝑦 and 𝐷𝑧 ≈ 𝛼𝐿  𝑣𝑧 assuming that dispersion is much larger than 

diffusion.  
 
Since there was no well there was only groundwater flow in the x-direction, and thus only transport 
in the x-direction, the y and z terms can be removed. Dispersion on the other hand does happen in y 
and z-direction. 
In order to compare the empirical formula and the analytical solution the analytical solution was 
made dimensionless (eq.10) with the conversions from table 3. 
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𝑣𝑥

∗ 𝐴
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)     (eq. 10) 

 
Where 𝐷𝑥 = 𝛼𝐿

∗ 𝑣𝑥
∗, 𝐷𝑦 = 𝛼𝑇

∗  𝑣𝑦
∗ and 𝐷𝑧 = 𝛼𝑇

∗  𝑣𝑧
∗ 

 
By using t*max (from the extrapolated empirical formula) as input time, C*max was calculated at a 
given distance X*. Taking the natural logarithm of this result allowed comparison between the 
empirical formula and the analytical solution. The analytical solution would never fit the empirical 
equation due to the simplifications and extrapolation applied. 
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3 Results 

3.1 PMWIN 

Breakthrough curves for the different test scenarios are shown in figure 8. The maximum 
concentration and half the maximum concentration are shown in tables 8, 9 and 10. The time when 
the above-mentioned concentrations were reached also was noted. 
 
The first three test scenarios show that it takes longer for the plume to reach 6000 m than it takes to 
reach 2000 and 100 m. After arriving the concentrations increase to a maximum concentration of 1. 
At 100 m the concentration rapidly increases to 1 while at a larger distance it takes more time. 

Table 8 Concentrations and arrival times from the test scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor, Da is the Damkohler number (the 
dimensionless decay rate), C*half is half the maximum concentration, t*half is the arrival time, C*max is the maximum 
concentration and t*max is the time the maximum concentration is reached. 

Test scenario X* ZW* i Q* m R Da C*half t*half C*max t*max 

1 0.015 0 0.001 0 1 1 0 0.50 0.23 1.00 1.00 

2 0.31 0 0.001 0 1 1 0 0.50 5.67 1.00 16.42 

3 0.92 0 0.001 0 1 1 0 0.48 17.49 0.98 28.06 

4 0.31 1 0.001 0.00032 1 1 0 3.29·10
-2

 5.13 6.58·10
-2

 8.55 

5 0.015 1 0.001 0.00032 1 1 0 9.17·10
-2

 0.35 1.83·10
-1

 4.42 

6 0.92 1 0.001 0.00032 1 1 0 1.47·10
-2

 15.45 2.94·10
-2

 20.06 

7 0.31 1 0.01 0.00032 1 1 0 2.61·10
-2

 0.65 5.21·10
-2

 2.06 

8 0.31 1 0.001 1.3·10
-5

 1 1 0 1.46·10
-2

 5.50 2.92·10
-2

 8.85 

9 0.31 1 0.001 0.0026 1 1 0 3.56·10
-2

 4.46 7.12·10
-2

 7.96 

 
The analytical solution from the website from the University of Illinois (Valocchi et al., 2016) (figure 
8) nearly coincides with the PMWIN results. Since the analytical solution required dimensional input 
the PMWIN outcomes were converted to dimensional outcomes. When the outcomes of both 
methods (roughly) coincide, it means that the dimensionless model outcome coincides with the 
dimensional analytical solution input and therefore the conversion is correct.  
 

 
Figure 8 The breakthrough curves of scenarios 1 to 3 compared to the analytical solution 
The lines denoted with PMWIN are the breakthrough curves modelled with PMWIN while the lines denoted with Illinois 
are the breakthrough curves calculated by the analytical solution of the University of Illinois (Valocchi et al., 2016). 
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In scenarios 4 to 9 the larger the horizontal distance between the plume and the well, the lower the 
maximum concentration was and the more elongated the plume got (figure 9, scenarios 4, 5 and 6). 
An increase in the hydraulic gradient led to an earlier arrival but to a small concentration drop as well 
(scenario 7). When the pumping rate was increased the plume arrived slightly earlier at the well and 
the maximum concentration was slightly higher, while a decrease of the pumping rate led to a 
slightly later arrival time and a slight drop in maximum concentration (scenarios 8 and 9).  
 

 
Figure 9 Breakthrough curves of test scenarios 4 to 9 
In scenarios 4, 5 and 6 the horizontal distance between the well and the plume was varied. In scenario 7 the hydraulic 
gradient was increased and in scenarios 8 and 9 the pumping rate was varied. 

Overall, in the BB scenarios, an increase in distance always led to an increase in arrival time and a 
decrease in concentration.  A change in well screen length did not show a clear effect on arrival time 
and concentration. An increase in hydraulic gradient always led to a decrease in arrival time and 
sometimes to an increase in concentration depending on the other variables. An increase in pumping 
rate always led to a decrease in arrival time and almost always to an increase in concentration. A 
change in anisotropy did not led to a clear change in arrival time or concentration. An increase in 
retardation always led to an increase in arrival time. Finally an increase in decay rate led to a 
decrease in arrival time and concentration 
 
The effect of the parameters on arrival time and concentration in the CCD was less clear since all 
parameters were varied at the same time and the variation was not as structured as in the BB (table 
10). Variations in well screen length, hydraulic gradient and anisotropy did not led to a clear change 
in arrival time or concentration. Variations in distance led to an increase in arrival time and a 
decrease in concentration while an increase in pumping rate led to an opposite pattern. When the 
pumping rate was increased there was a decrease in arrival time and an increase in concentration. 
An increase in retardation led to an increase in arrival time and an increase in decay rate led to a 
decrease in arrival time and concentration. 

Table 9 Concentrations and arrival times from the Box-Behnken scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor, Da is the Damkohler number (the 
dimensionless decay rate), C*half is half the maximum concentration, t*half is the arrival time, C*max is the maximum 
concentration and t*max is the time the maximum concentration is reached. The bold values are varied between their 
minimum and maximum values in that particular box. 

Block 
BB 

Scenario X* ZW* i Q* m R Da C*half t*half C*max t*max 

1 

1 0.24 0.0077 0.0078 1.3·10
-5

 1 1 15.5 6.77·10
-6

 0.29 1.35·10
-5

 0.74 

2 0.24 0.0077 0.0078 0.0026 1 1 15.5 8.31·10
-5

 0.25 1.66·10
-4

 0.69 
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3 0.24 0.0077 0.0078 1.3·10
-5

 50 1 15.5 5.27·10
-6

 0.29 1.05·10
-5

 0.74 

4 0.24 0.0077 0.0078 0.0026 50 1 15.5 4.40·10
-5

 0.24 8.80·10
-5

 0.69 

5 0.24 0.0077 0.0078 1.3·10
-5

 1 10 15.5 4.09·10
-6

 1.02 8.18·10
-6

 1.47 

6 0.24 0.0077 0.0078 0.0026 1 10 15.5 5.45·10
-5

 0.94 1.09·10
-4

 1.33 

7 0.24 0.0077 0.0078 1.3·10
-5

 50 10 15.5 3.18·10
-6

 1.02 6.36·10
-6

 1.47 

8 0.24 0.0077 0.0078 0.0026 50 10 15.5 2.86·10
-5

 0.88 5.72·10
-5

 1.27 

2 

9 0.015 0.0077 0.0078 0.0013 25.5 1 0 1.01·10
-2

 0.11 2.03·10
-2

 0.58 

10 0.46 0.0077 0.0078 0.0013 25.5 1 0 1.10·10
-2

 0.97 2.19·10
-2

 1.38 

11 0.015 0.0077 0.0078 0.0013 25.5 10 0 6.19·10
-3

 0.25 1.24·10
-2

 0.59 

12 0.46 0.0077 0.0078 0.0013 25.5 10 0 5.70·10
-4

 3.13 1.14·10
-3

 4.41 

13 0.015 0.0077 0.0078 0.0013 25.5 1 31 1.53·10
-3

 0.03 3.06·10
-3

 0.21 

14 0.46 0.0077 0.0078 0.0013 25.5 1 31 2.58·10
-10

 0.73 5.16·10
-10

 0.85 

15 0.015 0.0077 0.0078 0.0013 25.5 10 31 1.52·10
-3

 0.11 3.04·10
-3

 0.58 

16 0.46 0.0077 0.0078 0.0013 25.5 10 31 2.25·10
-10

 1.31 4.51·10
-10

 1.75 

3 

17 0.24 0.0015 0.0078 0.0013 1 5.5 0 1.46·10
-2

 1.05 2.92·10
-2

 1.59 

18 0.24 0.014 0.0078 0.0013 1 5.5 0 1.37·10
-2

 1.06 2.73·10
-2

 1.59 

19 0.24 0.0015 0.0078 0.0013 50 5.5 0 6.63·10
-3

 1.07 1.33·10
-2

 1.68 

20 0.24 0.014 0.0078 0.0013 50 5.5 0 6.06·10
-3

 1.09 1.21·10
-2

 1.65 

21 0.24 0.0015 0.0078 0.0013 1 5.5 31 1.83·10
-6

 0.61 3.65·10
-6

 0.85 

22 0.24 0.014 0.0078 0.0013 1 5.5 31 1.73·10
-6

 0.60 3.47·10
-6

 0.85 

23 0.24 0.0015 0.0078 0.0013 50 5.5 31 7.53·10
-7

 0.63 1.51·10
-6

 0.85 

24 0.24 0.014 0.0078 0.0013 50 5.5 31 7.53·10
-7

 0.60 1.51·10
-6

 0.85 

4 

25 0.015 0.0015 0.0078 1.3·10
-5

 25.5 5.5 15.5 5.30·10
-4

 0.13 1.06·10
-3

 0.58 

26 0.46 0.0015 0.0078 1.3·10
-5

 25.5 5.5 15.5 4.52·10
-8

 1.17 9.04·10
-8

 1.59 

27 0.015 0.014 0.0078 1.3·10
-5

 25.5 5.5 15.5 1.34·10
-4

 0.14 2.68·10
-4

 0.58 

28 0.46 0.014 0.0078 1.3·10
-5

 25.5 5.5 15.5 3.14·10
-8

 1.19 6.28·10
-8

 1.59 

29 0.015 0.0015 0.0078 0.0026 25.5 5.5 15.5 6.14·10
-3

 0.08 1.23·10
-2

 0.48 

30 0.46 0.0015 0.0078 0.0026 25.5 5.5 15.5 2.48·10
-7

 1.13 4.96·10
-7

 1.49 

31 0.015 0.014 0.0078 0.0026 25.5 5.5 15.5 4.86·10
-5

 0.09 9.72·10
-5

 0.58 

32 0.46 0.014 0.0078 0.0026 25.5 5.5 15.5 5.34·10
-10

 1.19 1.07·10
-9

 1.59 

5 

33 0.24 0.0077 0.0055 1.3·10
-5

 25.5 5.5 0 1.36·10
-3

 1.53 2.71·10
-3

 2.36 

34 0.24 0.0077 0.01 1.3·10
-5

 25.5 5.5 0 2.48·10
-3

 1.01 4.96·10
-3

 1.59 

35 0.24 0.0077 0.0055 0.0026 25.5 5.5 0 5.47·10
-3

 1.37 1.09·10
-2

 2.12 

36 0.24 0.0077 0.01 0.0026 25.5 5.5 0 9.53·10
-3

 0.97 1.91·10
-2

 1.42 

37 0.24 0.0077 0.0055 1.3·10
-5

 25.5 5.5 31 9.91·10
-9

 0.78 1.98·10
-8

 1.00 

38 0.24 0.0077 0.01 1.3·10
-5

 25.5 5.5 31 4.58·10
-7

 0.48 9.17·10
-7

 0.83 

39 0.24 0.0077 0.0055 0.0026 25.5 5.5 31 2.25·10
-7

 0.66 4.50·10
-7

 0.88 

40 0.24 0.0077 0.01 0.0026 25.5 5.5 31 4.04·10
-6

 0.41 8.08·10
-6

 0.83 

6 

41 0.015 0.0077 0.0055 0.0013 1 5.5 15.5 3.08·10
-2

 0.08 6.16·10
-2

 0.58 

42 0.46 0.0077 0.0055 0.0013 1 5.5 15.5 2.10·10
-8

 1.32 4.19·10
-8

 1.75 

43 0.015 0.0077 0.01 0.0013 1 5.5 15.5 3.66·10
-2

 0.06 7.32·10
-2

 0.59 

44 0.46 0.0077 0.01 0.0013 1 5.5 15.5 1.65·10
-6

 0.99 3.30·10
-6

 1.38 

45 0.015 0.0077 0.0055 0.0013 50 5.5 15.5 1.11·10
-3

 0.12 2.22·10
-3

 0.58 

46 0.46 0.0077 0.0055 0.0013 50 5.5 15.5 1.30·10
-8

 1.29 2.60·10
-8

 1.70 

47 0.015 0.0077 0.01 0.0013 50 5.5 15.5 1.38·10
-3

 0.11 2.77·10
-3

 0.58 

48 0.46 0.0077 0.01 0.0013 50 5.5 15.5 8.43·10
-7

 0.99 1.69·10
-6

 1.38 

7 

49 0.24 0.0015 0.0055 0.0013 25.5 1 15.5 9.01·10
-6

 0.48 1.80·10
-5

 0.74 

50 0.24 0.014 0.0055 0.0013 25.5 1 15.5 8.72·10
-6

 0.29 1.74·10
-5

 0.74 

51 0.24 0.0015 0.01 0.0013 25.5 1 15.5 8.27·10
-5

 0.23 1.65·10
-4

 0.69 

52 0.24 0.014 0.01 0.0013 25.5 1 15.5 7.72·10
-5

 0.23 1.54·10
-4

 0.69 

53 0.24 0.0015 0.0055 0.0013 25.5 10 15.5 1.12·10
-5

 1.10 2.24·10
-5

 1.54 

54 0.24 0.014 0.0055 0.0013 25.5 10 15.5 5.20·10
-6

 1.09 1.04·10
-5

 1.54 

55 0.24 0.0015 0.01 0.0013 25.5 10 15.5 5.65·10
-5

 0.85 1.13·10
-4

 1.22 

56 0.24 0.014 0.01 0.0013 25.5 10 15.5 5.13·10
-5

 0.85 1.03·10
-4

 1.22 

8 57 0.24 0.0077 0.0078 0.0013 25.5 5.5 15.5 2.73·10
-5

 0.62 5.46·10
-5

 0.96 
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58 0.015 0.0077 0.0078 0.0013 25.5 5.5 15.5 2.85·10
-3

 0.10 5.70·10
-3

 0.59 

59 0.46 0.0077 0.0078 0.0013 25.5 5.5 15.5 1.64·10
-7

 1.12 3.28·10
-7

 1.54 

60 0.24 0.0015 0.0078 0.0013 25.5 5.5 15.5 3.13·10
-5

 0.64 6.27·10
-5

 1.01 

61 0.24 0.014 0.0078 0.0013 25.5 5.5 15.5 2.91·10
-5

 0.62 5.83·10
-5

 0.96 

62 0.24 0.0077 0.0055 0.0013 25.5 5.5 15.5 7.21·10
-6

 0.71 1.44·10
-5

 1.06 

63 0.24 0.0077 0.01 0.0013 25.5 5.5 15.5 6.46·10
-5

 0.57 1.29·10
-4

 0.90 

64 0.24 0.0077 0.0078 1.3·10
-5

 25.5 5.5 15.5 4.69·10
-6

 0.68 9.38·10
-6

 1.01 

65 0.24 0.0077 0.0078 0.0026 25.5 5.5 15.5 4.02·10
-5

 0.61 8.05·10
-5

 0.96 

66 0.24 0.0077 0.0078 0.0013 1 5.5 15.5 6.31·10
-5

 0.62 1.26·10
-4

 1.01 

67 0.24 0.0077 0.0078 0.0013 50 5.5 15.5 2.49·10
-5

 0.62 4.98·10
-5

 0.96 

68 0.24 0.0077 0.0078 0.0013 25.5 1 15.5 3.10·10
-5

 0.25 6.20·10
-5

 0.69 

69 0.24 0.0077 0.0078 0.0013 25.5 10 15.5 1.98·10
-5

 0.94 3.97·10
-5

 1.38 

70 0.24 0.0077 0.0078 0.0013 25.5 5.5 0 6.69·10
-3

 1.10 1.34·10
-2

 1.70 

71 0.24 0.0077 0.0078 0.0013 25.5 5.5 31 7.52·10
-7

 0.60 1.50·10
-6

 0.85 

72 0.24 0.0077 0.0078 0.0013 25.5 1 0 1.47·10
-2

 0.56 2.93·10
-2

 0.90 

Table 10 Concentrations and arrival times from the Central Composite Design scenarios 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor, Da is the Damkohler number (the 
dimensionless decay rate), C*half is half the maximum concentration, t*half is the arrival time, C*max is the maximum 
concentration and t*max is the time the maximum concentration is reached. 

CCD 
Scenario X* ZW* Q* i m R Da C*half t*half C*max t*max 

73 0.11 0.0046 0.00066 0.0067 13.25 3.25 23.25 1.29·10
-4

 0.22 2.58·10
-4

 0.64 

74 0.11 0.0046 0.00066 0.0089 13.25 3.25 7.75 2.57·10
-3

 0.31 5.13·10
-3

 0.69 

75 0.11 0.0046 0.00066 0.0067 37.75 3.25 7.75 8.18·10
-5

 0.22 1.64·10
-4

 0.64 

76 0.11 0.0046 0.00066 0.0089 37.75 3.25 23.25 1.56·10
-4

 0.20 3.11·10
-4

 0.64 

77 0.11 0.0046 0.00066 0.0067 13.25 7.75 7.75 1.31·10
-3

 0.58 2.62·10
-3

 0.96 

78 0.11 0.0046 0.00066 0.0089 13.25 7.75 23.25 2.36·10
-4

 0.37 4.72·10
-4

 0.74 

79 0.11 0.0046 0.00066 0.0067 37.75 7.75 23.25 7.81·10
-5

 0.41 1.56·10
-4

 0.74 

80 0.11 0.0046 0.00066 0.0089 37.75 7.75 7.75 1.23·10
-3

 0.52 2.47·10
-3

 0.85 

81 0.11 0.0046 0.00195 0.0067 13.25 3.25 7.75 2.81·10
-3

 0.33 5.63·10
-3

 0.69 

82 0.11 0.0046 0.00195 0.0089 13.25 3.25 23.25 4.38·10
-4

 0.19 8.75·10
-4

 0.64 

83 0.11 0.0046 0.00195 0.0067 37.75 3.25 23.25 1.70·10
-4

 0.20 3.40·10
-4

 0.64 

84 0.11 0.0046 0.00195 0.0089 37.75 3.25 7.75 2.69·10
-3

 0.29 5.38·10
-3

 0.64 

85 0.11 0.0046 0.00195 0.0067 13.25 7.75 23.25 2.22·10
-4

 0.39 4.44·10
-4

 0.74 

86 0.11 0.0046 0.00195 0.0089 13.25 7.75 7.75 3.10·10
-3

 0.48 6.20·10
-3

 0.85 

87 0.11 0.0046 0.00195 0.0067 37.75 7.75 7.75 1.39·10
-3

 0.52 2.78·10
-3

 0.90 

88 0.11 0.0046 0.00195 0.0089 37.75 7.75 23.25 2.89·10
-4

 0.34 5.78·10
-4

 0.69 

89 0.11 0.011 0.00066 0.0067 13.25 3.25 7.75 1.48·10
-3

 0.36 2.96·10
-3

 0.69 

90 0.11 0.011 0.00066 0.0089 13.25 3.25 23.25 1.90·10
-4

 0.21 3.80·10
-4

 0.64 

91 0.11 0.011 0.00066 0.0067 37.75 3.25 23.25 6.52·10
-5

 0.23 1.30·10
-4

 0.64 

92 0.11 0.011 0.00066 0.0089 37.75 3.25 7.75 1.37·10
-3

 0.32 2.75·10
-3

 0.69 

93 0.11 0.011 0.00066 0.0067 13.25 7.75 23.25 9.64·10
-5

 0.43 1.93·10
-4

 0.74 

94 0.11 0.011 0.00066 0.0089 13.25 7.75 7.75 1.55·10
-3

 0.52 3.10·10
-3

 0.85 

95 0.11 0.011 0.00066 0.0067 37.75 7.75 7.75 6.80·10
-4

 0.59 1.36·10
-3

 0.96 

96 0.11 0.011 0.00066 0.0089 37.75 7.75 23.25 4.02·10
-5

 0.38 8.04·10
-5

 0.74 

97 0.11 0.011 0.00195 0.0067 13.25 3.25 23.25 2.08·10
-4

 0.21 4.17·10
-4

 0.64 

98 0.11 0.011 0.00195 0.0089 13.25 3.25 7.75 3.52·10
-3

 0.30 7.04·10
-3

 0.69 

99 0.11 0.011 0.00195 0.0067 37.75 3.25 7.75 1.68·10
-3

 0.33 3.36·10
-3

 0.69 

100 0.11 0.011 0.00195 0.0089 37.75 3.25 23.25 2.58·10
-4

 0.19 5.15·10
-4

 0.64 

101 0.11 0.011 0.00195 0.0067 13.25 7.75 7.75 1.82·10
-3

 0.55 3.63·10
-3

 0.90 

102 0.11 0.011 0.00195 0.0089 13.25 7.75 23.25 3.66·10
-4

 0.35 7.31·10
-4

 0.69 

103 0.11 0.011 0.00195 0.0067 37.75 7.75 23.25 1.42·10
-4

 0.38 2.84·10
-4

 0.74 

104 0.11 0.011 0.00195 0.0089 37.75 7.75 7.75 1.75·10
-3

 0.49 3.51·10
-3

 0.85 
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105 0.35 0.0046 0.00066 0.0067 13.25 3.25 7.75 3.31·10
-5

 0.87 6.62·10
-5

 1.27 

106 0.35 0.0046 0.00066 0.0089 13.25 3.25 23.25 2.81·10
-7

 0.66 5.62·10
-7

 0.90 

107 0.35 0.0046 0.00066 0.0067 37.75 3.25 23.25 3.29·10
-8

 0.74 6.59·10
-8

 1.01 

108 0.35 0.0046 0.00066 0.0089 37.75 3.25 7.75 8.00·10
-5

 0.76 1.60·10
-4

 1.11 

109 0.35 0.0046 0.00066 0.0067 13.25 7.75 23.25 3.43·10
-8

 1.03 6.87·10
-8

 1.43 

110 0.35 0.0046 0.00066 0.0089 13.25 7.75 7.75 5.87·10
-5

 1.30 1.17·10
-4

 1.75 

111 0.35 0.0046 0.00066 0.0067 37.75 7.75 7.75 1.59·10
-5

 1.51 3.17·10
-5

 2.07 

112 0.35 0.0046 0.00066 0.0089 37.75 7.75 23.25 2.02·10
-7

 0.90 4.04·10
-7

 1.27 

113 0.35 0.0046 0.00195 0.0067 13.25 3.25 23.25 7.31·10
-8

 0.75 1.46·10
-7

 0.96 

114 0.35 0.0046 0.00195 0.0089 13.25 3.25 7.75 1.52·10
-4

 0.74 3.03·10
-4

 1.11 

115 0.35 0.0046 0.00195 0.0067 37.75 3.25 7.75 4.63·10
-5

 0.85 9.26·10
-5

 1.22 

116 0.35 0.0046 0.00195 0.0089 37.75 3.25 23.25 4.48·10
-7

 0.67 8.96·10
-7

 0.90 

117 0.35 0.0046 0.00195 0.0067 13.25 7.75 7.75 3.14·10
-5

 1.46 6.27·10
-5

 2.02 

118 0.35 0.0046 0.00195 0.0089 13.25 7.75 23.25 4.32·10
-7

 0.90 8.64·10
-7

 1.27 

119 0.35 0.0046 0.00195 0.0067 37.75 7.75 23.25 6.31·10
-8

 1.00 1.26·10
-7

 1.38 

120 0.35 0.0046 0.00195 0.0089 37.75 7.75 7.75 8.05·10
-5

 1.25 1.61·10
-4

 1.75 

121 0.35 0.011 0.00066 0.0067 13.25 3.25 23.25 3.32·10
-8

 0.74 6.64·10
-8

 1.01 

122 0.35 0.011 0.00066 0.0089 13.25 3.25 7.75 8.43·10
-5

 0.76 1.69·10
-4

 1.11 

123 0.35 0.011 0.00066 0.0067 37.75 3.25 7.75 2.51·10
-5

 0.87 5.02·10
-5

 1.27 

124 0.35 0.011 0.00066 0.0089 37.75 3.25 23.25 8.38·10
-10

 1.03 1.68·10
-9

 1.27 

125 0.35 0.011 0.00066 0.0067 13.25 7.75 7.75 1.65·10
-5

 1.52 3.30·10
-5

 2.07 

126 0.35 0.011 0.00066 0.0089 13.25 7.75 23.25 2.10·10
-7

 0.89 4.19·10
-7

 1.27 

127 0.35 0.011 0.00066 0.0067 37.75 7.75 23.25 2.68·10
-8

 1.01 5.36·10
-8

 1.38 

128 0.35 0.011 0.00066 0.0089 37.75 7.75 7.75 4.46·10
-5

 1.30 8.92·10
-5

 1.81 

129 0.35 0.011 0.00195 0.0067 13.25 3.25 7.75 4.88·10
-5

 0.85 9.76·10
-5

 1.22 

130 0.35 0.011 0.00195 0.0089 13.25 3.25 23.25 4.57·10
-7

 0.65 9.13·10
-7

 0.90 

131 0.35 0.011 0.00195 0.0067 37.75 3.25 23.25 7.30·10
-8

 0.72 1.46·10
-7

 0.96 

132 0.35 0.011 0.00195 0.0089 37.75 3.25 7.75 1.22·10
-4

 0.73 2.44·10
-4

 1.11 

133 0.35 0.011 0.00195 0.0067 13.25 7.75 23.25 6.02·10
-8

 1.01 1.20·10
-7

 1.38 

134 0.35 0.011 0.00195 0.0089 13.25 7.75 7.75 8.53·10
-5

 1.27 1.71·10
-4

 1.77 

135 0.35 0.011 0.00195 0.0067 37.75 7.75 7.75 2.62·10
-5

 1.43 5.24·10
-5

 1.96 

136 0.35 0.011 0.00195 0.0089 37.75 7.75 23.25 3.79·10
-7

 0.87 7.57·10
-7

 1.27 

 
3.2 Empirical formula 

The Ln(C*max) concentration is calculated with equation 11 and depends on X*, i, Ln(Q), Ln(m), Da, 
X*2, ZW*2, Da2, X*·i, X*·Ln(m) and X*·Da. 
 
𝐿𝑛(𝐶𝑚𝑎𝑥

∗ ) = 1.252 − 18.55 𝑋∗ + 43.29 𝑖 + 0.3901 𝐿𝑛(𝑄∗) − 0.7015 𝐿𝑛(𝑚) − 0.1943 𝐷𝑎 −
9.33 𝑋∗2 − 4643 𝑍𝑊

∗2 + 0.005047 𝐷𝑎2 + 1673 𝑋∗ 𝑖 + 1.525 𝑋∗ 𝐿𝑛(𝑚) − 1.061 𝑋∗ 𝐷𝑎  
(eq. 11) 

 
Comparing the Ln(C*max) empirical formula predictions with the Ln(C*max) PMWIN results leads to a 
1:1 trend with some off points (figure 10A). The Bland-Altman plot reveals that the PMWIN results 
and the empirical equation results were in the same range since the mean difference between the 
methods was very close zero (there was no bias of one of the methods). The lines of agreement 
(dotted lines that are the mean difference ± 1.96×standard deviation) were quite narrow (mean 
difference ±1.68) and only few points lie outside these lines which indicates little variation between 
the methods. Most points that fall outside the lines of agreement show an overestimation of 
Ln(C*max) for the empirical formula compared to the PMWIN results. These outliers are not 
specifically linked to one or two parameter variations but appear to be random. However, the 
outliers in figure 10A are the same as the outliers in figure 10B. The data points were scattered 
evenly and the range of the difference between the two methods was consistent across the mean of 
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the two methods, which means that there was no difference between the methods dependant on 
the magnitude of Ln(C*max) (figure 10B). 
 
Figure 11 and 12 show that an increase in X*, Ln(m) and Da leads to a decrease in Ln(C*max) while an 
increase in ZW*, Q* and i leads to an increase in Ln(C*max) R has no effect on Ln(C*max). A change in 
most parameters mostly leads to a small change in Ln(C*max) (Ln(C*max)±2.3), but a change in X* and 
Da lead to a large change in Ln(C*max) (Ln(C*max) ±6.9). Therefore Ln(C*max) was most sensitive for X* 
and Da. 
 
The confidence interval (red dotted line in figure 12) gives the confidence of the position of the 
empirical formula while the prediction interval (green dotted line in figure 12) gives the range in 
which future predictions may fall. The prediction interval lies 1.8 (on a natural logarithmic scale) 
above and below the empirical formula, while the confidence interval has a much narrower range. 
This means that future observations will fall within the range of the empirical formula result ±1.8 (on 
a natural logarithmic scale). While the PMWIN data points (dots in figure 11) do not always lie within 
the confidence interval they do lie within the prediction interval. This means that the range of 
deviation of the empirical formula does encompass the PMWIN points. 
 

 
Figure 10 Comparison of results and Bland-Altman plot for Log(C*max) 
A. The comparison between the PMWIN and empirical formula results for Log(C*max). The solid line is the y=x line and the 
dotted line gives ±1.96*standard deviation. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean difference and the dotted line gives ±1.96*standard deviation. 
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Figure 11 Sensitivity analysis for Log(C*max) 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
one parameter was varied at a time (from its minimum to its maximum value),, the rest was kept at their mean value 
(table 4). R did not have an influence on Log(C*max) and was therefore not included. 
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Figure 12 Influence of X*, ZW*, i, Log(Q*), Log(m), R and Da on Log(C*max) 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
the parameter on the x-axis was varied, all other parameters were kept on their mean value (table 4). The solid line is the 
empirical formula, the red line the confidence interval and the green line the prediction interval. C*max=Cmax/C0 
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The √t*max depends on X*, i, Ln(Q*), R, Da, X*2, i2, Da2, X*·i, X*·R, X*·Da, i·R, i·Da, Ln(Q*)·Da and R·Da. 
 

√𝑡𝑚𝑎𝑥
∗ = 0.9014 + 2.019 𝑋∗ − 87.95 𝑖 − 0.02001 𝐿𝑛(𝑄∗) + 0.06196 𝑅 − 0.05957 √𝐷𝑎 −

0.6373 𝑋∗2 + 4325 𝑖2 − 0.001197 𝑅2 +  0.002629 𝐷𝑎 − 70.01 𝑋∗ 𝑖 + 0.1266 𝑋∗ 𝑅 −

0.1753 𝑋∗ √𝐷𝑎 − 2.949 𝑖 𝑅 + 9.159 𝑖 √𝐷𝑎 + 0.003023 𝐿𝑛(𝑄∗)√𝐷𝑎 − 0.004874 𝑅 √𝐷𝑎 
          (eq. 12) 

 
Comparing the √t*max empirical formula predictions with the √t*max PMWIN results leads to a 1:1 
trend with some off points (figure 13A). The Bland-Altman plot reveals that the √t*max PMWIN results 
and the √t*max empirical equation results were in the same range since the mean difference between 
the methods was very close to zero (there was no bias of one of the methods). The lines of 
agreement were quite narrow (mean difference ±0.075) and only few points lie outside these lines 
which indicates little variation between the methods. These outliers are not specifically linked to one 
or two parameter variations but appear to be random. The data points were scattered evenly and 
the range of difference between the methods was consistent across the mean of the two methods, 
which means that there was no difference between the methods dependant on the magnitude of 
√t*max (figure 13B). 
Figure 14 and 15 show that an increase i, Ln(Q*) and Da leads to a decrease in √t*max while an 
increase in X* and R leads to an increase in √t*max. ZW* and m have no effect on √t*max . A variation in 
most parameters only leads to a small change in √t*max (less than √t*max ±0.01), but a change in X*, R 
and Da lead to a large change in √t*max (more than √t*max ±0.025). Therefor √t*max was most sensitive 
for X*, R and Da. 
 
For √t*max the prediction interval lies 0.082 (on a square root scale) above and below the empirical 
formula, while the confidence has a much narrower range. While the PMWIN data points (dots in 
figure 15) do not always lie within the confidence interval they do lie within the prediction interval. 
This means that the range of deviation of the empirical formula does encompass the PMWIN points. 
 

 
Figure 13 Comparison of results and Bland-Altman plot for √t*max 
A. The comparison between the PMWIN and empirical formula results for Sqrt(t*max). The solid line is the y=x line and 
the dotted line gives ±1.96*standard deviation. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean difference and the dotted line gives ±1.96*standard deviation. 
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Figure 14 Sensitivity analysis for √t*max 

In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
one parameter was varied at a time (from its minimum to its maximum value), the rest was kept at their mean value 
(table 4).  Zw* and m did not have an influence on √t*max and were therefore not included. 
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Figure 15 Influence of X*, ZW*, i, Log(Q*), m, R and Da on √t*max 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
the parameter on the x-axis was varied, all other parameters were kept on their mean value (table 4). The solid line is the 

empirical formula, the red line the confidence interval and the green line the prediction interval. 𝒕𝒎𝒂𝒙
∗ =

𝒌𝒙 𝒉𝒅 𝒕𝒎𝒂𝒙

𝒏 𝑳𝟐  
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The Ln(C*half) concentration is given by equation 13 and it depends on X*, i, Ln(Q), Ln(m), Da, X*2, 
ZW*2, Da2, X*·i, X*·Ln(m) and X*·Da. 
 

𝐿𝑛(𝐶ℎ𝑎𝑙𝑓
∗ ) = 0.5572 − 18.53 𝑋∗ + 43.12 𝑖 + 0.3901 𝐿𝑛(𝑄∗) − 0.7018 𝐿𝑛(𝑚) − 0.1942 𝐷𝑎 −

9.345 𝑋∗2 − 4645 𝑍𝑊
∗2 + 0.005047 𝐷𝑎2 + 1673 𝑋∗ 𝑖 + 1.525 𝑋∗ 𝐿𝑛(𝑚) − 1.061 𝑋∗ 𝐷𝑎 

          (eq. 13) 
 
Comparing the Ln(C*half) empirical formula predictions with the Ln(C*half) PMWIN results leads to a 
1:1 trend with some off points (figure 16A). The Bland-Altman plot reveals that the Ln(C*half) PMWIN 
results and the Ln(C*half) empirical equation results were in the same range since the mean difference 
between the methods was very close to zero (there was no bias of one of the methods). The lines of 
agreement were quite narrow (mean difference ±1.7) and only few points lie outside these lines 
which indicates little variation between the methods. Most points that fall outside the lines of 
agreement show an overestimation of Ln(C*half) for the empirical formula compared to the PMWIN 
results. These outliers are not specifically linked to one or two parameter variations but appear to be 
random. The data points were scattered evenly and the range of difference between the methods 
was consistent across the mean of the methods, which means that there was no difference between 
the methods dependant on the magnitude of Ln(C*half) (figure 16B). 
Figure 17 and 18 show that an increase X*, Ln(m) and Da leads to a decrease in Ln(C*half) while an 
increase in ZW*, Q* and i leads to an increase in Ln(C*half). R has no effect on Ln(C*half). A change in 
most parameters mostly leads to a small change in Ln(C*half) (Ln(C*half) ±2.3), but a change in X* and 
Da lead to a large change in Ln(C*half) (Ln(C*half) ±6.9). Therefore Ln(C*half) was most sensitive for X* 
and Da. 
 
For Ln(C*half) the prediction interval lies 1.8 (on a natural logarithmic scale) above and below the 
empirical formula, while the confidence has a much narrower range. While the PMWIN data points 
(dots in figure 18) do not always lie within the confidence interval they do lie within the prediction 
interval. This means that the range of deviation of the empirical formula does encompass the 
PMWIN points. 
 

 
Figure 16 Comparison of results and Bland-Altman plot for Log(C*half) 
A. The comparison between the PMWIN and empirical formula results for Log(C*half). The solid line is the y=x line and the 
dotted line gives ±1.96*standard deviation. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean difference and the dotted line gives ±1.96*standard deviation. 
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Figure 17 Sensitivity analysis for Log(C*half) 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
one parameter was varied at a time (from its minimum to its maximum value), the rest was kept at their mean value 
(table 4). R did not have an influence on Log(C*half) and was therefore not included.  
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Figure 18 Influence of X*, ZW*, i, Log(Q*), Log(m), R and Da on Log(C*half) 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
the parameter on the x-axis was varied, all other parameters were kept on their mean value (table 4). The solid line is the 
empirical formula, the red line the confidence interval and the green line the prediction interval.C*half=Chalf/C0 
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The √t*half depends on Ln(X*), i, Ln(Q*), R, Da, Ln( X*)2, Ln(Q*)2, R2, Da2, Ln(X*)·i, Ln(X*)·R, Ln(X*)·Da 
and R·Da. 
 

√𝑡ℎ𝑎𝑙𝑓
∗ = 1.246 + 0.585 𝐿𝑛(𝑋∗) − 40.24 𝑖 − 0.07178 𝐿𝑛(𝑄∗) + 0.1037 𝑅 − 0.02029 𝐷𝑎 +

0.06524 𝐿𝑛(𝑋∗)2 − 0.003687 𝐿𝑛(𝑄∗)2 − 0.002363 𝑅2 + 0.0004749 𝐷𝑎2 −
8.924 𝐿𝑛(𝑋∗) 𝑖 + 0.01051 𝐿𝑛(𝑋∗) 𝑅 − 0.001512 𝐿𝑛(𝑋∗) 𝐷𝑎 − 0.001 𝑅 𝐷𝑎   (eq. 14) 

 
Comparing the √t*half empirical formula predictions with the √t*half PMWIN results leads to a 1:1 
trend with some off points (figure 19A). The Bland-Altman plot reveals that the √t*half PMWIN results 
and the √t*half empirical equation results were in the same range since the mean difference between 
the methods was very close to zero (there was no bias of one of the methods). The lines of 
agreement were quite narrow (mean difference ±0.078) and only few points lie outside these lines 
which indicates little variation between the methods. Most points that fall outside the lines of 
agreement show an overestimation of √t*half for the PMWIN results compared to the empirical 
formula. These outliers are not specifically linked to one or two parameter variations but appear to 
be random. The data points were scattered evenly and the range of difference between the methods 
was consistent across the mean of the methods, which means that there was no difference between 
the methods dependant on the magnitude of √t*half (figure 19B). 
Figure 20 and 21 show that an increase, Ln(Q*) and Da leads to a decrease in √t*half while an increase 
in Ln(X*) and R leads to an increase in √t*half. ZW* and m have no effect on √t*half. A variation in most 
parameters only leads to a small change in √t*half (less than √t*half ±0.1), but a change in Ln(X*), R and 
Da lead to a large change in √t*half (more than √t*half ±0.25). Therefor √t*half was most sensitive for 
Ln(X*), R and Da. 
 
For √t*half the prediction interval lies 0.084 (on a square root scale) above and below the empirical 
formula, while the confidence has a much narrower range. While the PMWIN data points (dots in 
figure 21) do not always lie within the confidence interval they do lie within the prediction interval. 
This means that the range of deviation of the empirical formula does encompass the PMWIN points. 
 

 
Figure 19 Comparison of results and Bland-Altman plot for √t*half 

A. The comparison between the PMWIN and empirical formula results for Sqrt(t*half). The solid line is the y=x line and the 
dotted line gives ±1.96*standard deviation. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean difference and the dotted line gives ±1.96*standard deviation. 
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Figure 20 Sensitivity analysis for √t*half 

In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
one parameter was varied at a time (from its minimum to its maximum value), the rest was kept at their mean value 
(table 4).  Zw* and m did not have an influence on √t*half and were therefore not included.  
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Figure 21 Influence of X*, ZW*, i, Log(Q*), m, R and Da on √t*half 
In which X* is the horizontal distance from the plume to the well, ZW* is the well screen length, i is the hydraulic 
gradient, Q* is the pumping rate, m is the anisotropy, R is the retardation factor and Da is the Damkohler number. Only 
the parameter on the x-axis was varied, all other parameters were kept on their mean value (table 4). The solid line is the 

empirical formula, the red line the confidence interval and the green line the prediction interval. 𝒕𝒉𝒂𝒍𝒇
∗ =

𝒌𝒙 𝒉𝒅 𝒕𝒉𝒂𝒍𝒇

𝒏 𝑳𝟐  
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Figure 22 shows the comparison between the empirical formula and the analytical 3D solution. The 
solid line is the 1:1 line. The analytical solution gives higher concentrations than the empirical 
equation which becomes apparent when looking at the displacement of the mean of the two 
methods (-1.1 on a logarithmic scale) in the Bland-Altman plot (figure 18B, the solid line). The 
deviation between the two methods increased the lower the concentrations were. 
When omitting all scenarios where R=1 there was less deviation between the empirical formula and 
the analytical solution (figure 23) but the bias increased (-1.6 on a logarithmic scale). However the 
deviation between the two concentrations still increases the lower the concentrations were. 
 

 
Figure 22 Comparison of results and Bland-Altman plot for Log(C*max) 
A. The comparison between the PMWIN and empirical formula results for Log(C*max). The solid line is the y=x line. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean difference and the dotted line gives ±1.96*standard deviation. 

 
Figure 23 Comparison of results and Bland-Altman plot for Log(C*max) with R>1 
A. The comparison between the PMWIN and empirical formula results for Log(C*max). The solid line is the y=x line. 
B. The Bland-Altman plot which shows the mean of the PMWIN and empirical formula results ((PMWIN result + empirical 
formula result)/2) on the x-axis and the difference (PMWIN result – empirical formula result) on the y-axis. The solid line 
gives the mean of the difference and the dotted line gives ±1.96*standard deviation. 
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To check the empirical formula it was also compared with field data from a study near Pratteln in 
Switzerland (Goldscheider et al., 2008). In this study uranine was used as a tracer to check if heavy 
metal contaminants in a drinking water production well originated from a waste incineration site. 
The distance between the incineration site and the well was 760m and the hydraulic gradient was 
0.006m/m. Groundwater flow was from the incineration site past the pumping well and not directly 
to the well. The unconfined aquifer was about 20 to 30m thick, with a saturated zone of 5 to 10m 
tick. Since it was a gravel aquifer, the high hydraulic conductivity (0.03m/s=2592m/d) led to a high 
flow velocity of vx,max=127m/d. The prevailing groundwater flow velocity was between 63 and 76m/d. 
The pumping rate of the extraction well varied over time, but was averaged at Q=21.2l/s=1832m3/d. 
The study did not supply the well length and the anisotropy, therefore ZW=10m and m=1 was 
assumed. 1kg of uranine was diluted in 10L of water and injected into the ground, after that it was 
flushed with 120L of water. This led to C0=833333μg/L. Uranine is a tracer and therefore R=1 and 
μ=0d-1. The maximum concentration of 0.33μg/L reached the well after 10-12d (Goldscheider et al., 
2008). 
Inserting the dimensionless values (X*=0.117, ZW=0.0015, Q*=0.00172 and Da=0) into the formulas 
for C*max and t*max led to Ln(C*max)=-2.11 and √t*max=0.914. A Ln(C*max) of -2.11 is the same as 
C*max=0.1212. Since C*max==Cmax/C0 thus Cmax=C*max x C0=0.1212 x 833,333=101,4μg/L. The maximum 
concentration at the well is 0.33μg/L while the formula predicts a maximum concentration of 
101,446μg/L. The concentration reduction is much larger than predicted and falls outside the 
prediction interval of the formula. However this may be due to the flow direction. Only 0.93% of the 
uranine mass was recovered in the pumping well because the plume only grazed the well 
(Goldscheider et al., 2008). The concentration at the edge of the plume is much lower than the 
concentration at the centre and thus the apparent reduction is larger than it really is. To calculate the 

√t*max, first the vres needs to be calculated where 𝑣𝑟𝑒𝑠 = 𝑘𝑥
ℎ𝑑

𝑛𝐿
 . The porosity is set at 0.2 for model 

purposes in the paper therefore vres=19.92m/d. A √t*max=0.914 is the same as t*max=0.8354 and 
t*max=tmax/vres. Therefore tmax=t*max x vres=0.8354 x 19.92=16.7 days. The predicted and actual tmax 
differ a little bit, but this may be caused by the difference in soil type and flow velocities.  
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4 Discussion 

4.1 Discussion results 

The larger the distance between the well and the plume the longer the time for dilution, dispersion, 
adsorption and decay is. Therefore the larger the distance the more the concentration may decrease. 
When the anisotropy is increased, the horizontal hydraulic conductivity is larger than the vertical 
hydraulic conductivity, which leads to a decrease in vertical flow and thus a decrease in vertical 
transport. Therefore, the concentration will decrease faster with a larger anisotropy. Finally the 
larger the decay rate is the larger the reduction in concentration will be. 
An increase in well screen length, pumping rate and hydraulic gradient leads to an increase in 
concentration. When the pumping rate or the hydraulic gradient is increased the flow velocity 
increases leading to faster transport. The faster the transport the smaller the effect of adsorption 
and decay and thus the concentration at the well becomes higher. The effect of dilution due to radial 
flow around the well should lower the concentration, but this is not the visible trend in this study, 
therefore the effect of dilution is smaller than that of the increase in flow velocity due to an increase 
in pumping rate. An increase in the well screen length leads to a larger area through which water is 
pumped and will thus capture more of the contaminant.  
Concentration is not dependant on retardation according to the PMWIN results and the empirical 
formulas. While a larger retardation factor leads to a later arrival of the plume the drop in 
concentration it causes is negligible. This is not as expected since an increase in retardation allows for 
more time for dispersion and decay. 
The effect of hydraulic gradient and decay separately is increased when these parameters are 
combined with distance. The larger the distance the more time there is for decay and the bigger the 
effect of flow velocity on the concentration will be. When the distance is increased the anisotropy no 
longer causes a decrease in concentration but rather an increase. When the distance between the 
well and the plume is larger the bigger the role of horizontal transport will be compared to vertical 
transport. A high anisotropy causes a preference for horizontal groundwater flow and contaminant 
transport, compared to vertical groundwater flow and contaminant transport. At longer distances, 
when horizontal transport is more significant, the anisotropy will increase the concentration due to 
the preferential flow field, while at smaller distance the vertical transport will be constrained by the 
anisotropy leading to a decrease in concentration.   
The concentration is most sensitive to a change in travel distance and decay rate. 
 
An increase in hydraulic gradient and the pumping rate both led to a decrease of travel time. This is 
due to the increase in groundwater flow velocity both parameters cause. Another parameter to 
decrease the travel time is the decay rate. An increase in the decay rate makes the breakthrough 
curve more asymmetrical, with an earlier maximum concentration and longer tailing. The larger the 
concentration, the more will be decayed. Therefore the diluted front of the plume will be reduced 
less than the peak concentration at the centre or at the tail. This means that the centre and tail of 
the plume now have a lower concentration that the front and therefore there is an earlier arrival of 
the maximum concentration. 
An increase in distance and retardation has the opposite effect on travel time. The larger the 
distance the longer a contaminant will take to travel. An increase in retardation means that more of 
the contaminant is adsorbed, to be released at a later time. This causes a delay in travel time. 
The size of the well screen and the anisotropy do not have an effect on the travel time. The well 
screen size and anisotropy both affect the vertical flow rate and since they have no effect on travel 
time this means that the vertical flow rate is negligible compared to the horizontal flow rate. 
This effect of the individual parameters on travel time is both visible in the PMWIN results and in the 
empirical equation.  
The individual effect of hydraulic gradient, retardation and decay is increased when they are coupled 
with distance. A larger distance will lead to a bigger effect of flow velocity and allow for more time 
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for retardation and decay. The effect of decay on travel time is increased when retardation is 
increased. An increase in retardation increases the travel time and thus leaves more time for decay. 
The effect of retardation and decay on t*max are reversed the larger the hydraulic gradient is. An 
increase in flow velocity causes faster transport and thus less time for retardation and decay. An 
increase in pumping rate also leads to the reversal of the effect of decay on t*max as it increases the 
flow velocity as well.  
The travel time is most sensitive to a change in travel distance, retardation and decay rate. 
When the distance is larger than 3km the pollutant will not arrive at the well within 50 years at 
concentrations above detection limit, unless it is a tracer (R=1, μ=0d-1). The same goes for a hydraulic 
gradient under 0.0055m/m, a retardation above 10 and a decay rate above 0.005d-1. 
The prediction intervals show that the actual concentration may deviate a factor 6 from the one 
calculated by the empirical formula. This difference is acceptable. The time only deviates about 41 
days. 
 

4.2 Comparison 

When comparing the empirical formula with the analytical 3D solution the empirical formula shows 
an underestimation of the concentration (+1.1 on a logarithmic scale) compared to analytical 3D 
solution. This overestimation can be caused by the difference in complexity of both methods. Next to 
that the empirical equation was extrapolated to a situation with a very small pumping rate while the 
analytical solution does not account for pumping wells. As discussed above, the higher the pumping 
rate, the higher the concentration. Thus even the small pumping rate may lead to an increase in 
concentration compared to having no pumping well at all. 
The comparison of the empirical formula with a field study showed that the empirical formula 
overestimated the concentration and arrival time. The predicted concentration was a factor 1000 
higher and the arrival time was 7 days longer. However this overestimation may be caused by the 
flow direction which is not directly  from the plume to the well but at an angle past the well. 
 

4.3 Restrictions 

These empirical formulas are only applicable within the parameter space and the list of assumptions. 
When the natural groundwater flow is at an angle with the well, as it was in the abovementioned 
study, the predicted concentration in the well will be higher than the actual concentration since the 
travel pathway and travel time will be longer and the center of the plume will not reach the well. The 
formulas are not applicable when groundwater flow is away from the well. 
Another assumption is that of the unconfined homogeneous aquifer. Though the presence of clay 
lenses and confining layers may lower the concentration and increase the arrival time it would be 
interesting to see to what extent they affect concentration and arrival time. 
 
Not only the assumptions, but the constants influence the formula outcomes as well. The dispersivity 
was chosen at a value of 130m. This means that there is relatively more advection than dispersion. 
To see what happens when dispersion plays a larger role, future studies could lower the αL value. 
In this study the top of the well screen is mostly kept at 50m below the contaminant plume, however 
some contaminants are at the same height as the well screen and will therefore travel faster and 
reach the well at higher concentrations than predicted by the formulas. 
Other constants like the volume of the plume could be changed but this is not necessary. As 
mentioned in the tiered approach; if a contaminant has a volume of more than 6000m3 soil 
remediation measures must be taken. If the plume size is lower than 1000m3 the formulas predict a 
higher concentration and later arrival time at the well and therefore will be on the safe side. 
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5 Conclusion and recommendations 

Four empirical formulas were developed to predict the maximum concentration, half the maximum 
concentration, the arrival time of the maximum concentration and the arrival time of half the 
maximum concentration. These formulas are dependent on the distance between the plume and the 
well, the well screen length, the hydraulic gradient, the pumping rate, the anisotropy, the retardation 
factor and the decay rate. The concentration is influenced by all parameters except the retardation 
factor and is most sensitive to a change in distance and decay rate. The arrival time is influenced by 
all parameters except the well screen length and anisotropy. It is most sensitive to a change in 
distance, retardation and decay rate. 
The empirical formulas for maximum concentration and half the maximum concentration allow the 
prediction of the contaminant concentrations in the drinking water abstraction well with a factor 6 
error. The predicted concentration can then be made dimensional and compared with the Drinking 
Water Quality Standard. The empirical formulas for arrival time of the maximum concentration and 
the arrival time of half the maximum concentration predict the arrival time of said concentrations 
within an error of 41 days. 
 
The empirical formula predictions and the PMWIN model results show a good correlation but a 
comparison with a 3D analytical solution shows an overestimation (+1.5 on a log scale) by the 
empirical formulas. When comparing the empirical formulas with a field study there was a 
discrepancy between the formula predictions and the field measurements. This discrepancy was 
roughly a factor 1000 for the maximum concentration and 7 days for the arrival time of the 
maximum concentration. The discrepancy of the arrival time falls within the error but the 
discrepancy of the maximum concentration is very large. This may be caused by the deviating 
circumstances, like the flow direction. 
The empirical formulas are only applicable when the parameters are within their prescribed range 
and the conditions do not differ from the assumed conditions. This means that the empirical 
equation is applicable in fully saturated unconfined sand aquifers with groundwater flow from the 
plume in a straight line to the well. The contaminant only undergoes anaerobic decay and 
equilibrium sorption and the adsorbed phase does not decay. Any deviation of the assumed 
circumstances leads to a faulty prediction of the empirical formulas. 
This is a restriction to the use of the empirical formulas and therefore future studies may consider a 
larger range of parameters, or different assumed circumstances. Some examples of what future 
studies may consider are the effect of a lower dispersivity, the presence of clay lenses or confining 
layers, the position of the top of the well screen and the direction of the groundwater flow to 
increase the applicability of the formulas. This study only considers advection dominated transport 
and by decreasing the dispersivity, dispersion becomes more significant. Aquifers in the Netherlands 
are never homogeneous and often have clay lenses and confining layers therefore it they may be 
added to the empirical formula in the future. As shown with the comparison with the field study, a 
groundwater flow direction that is not in a straight line from the plume to the well will lead to 
deviating concentrations and arrival times than the formulas predict. Therefore it is advisable to 
include this in future studies. 
When a contaminant is at a greater distance than 3km from the well, has a retardation factor of 
more than 10 and a decay rate above 0.005d-1 it will not reach the well within 50 years above the 
detection limit unless it is a tracer. Only conservative tracers injected more than 3 km from the well 
would reach it. 
 
The empirical formulas are user friendly and require little in-depth knowledge of groundwater 
hydrology and contaminant transport. To increase the user friendliness of the formulas they might be 
combined in a tool. In this tool the parameters can be supplied. Behind the screens the parameters 
are then made dimensionless and the formulas are solved. The dimensional concentration at the well 
and arrival time will then be given back to the user as a result.  
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A – List of phreatic aquifers in the Netherlands 

Ameland Buren Ellecom Hertenbos Nieuwe Marktstraat T Klooster 

Ameland Hollum Epe Hoenderloo Mix Noordbargeres Terschelling 

Amersfoort Berg Gasselte Hoge Hexel Oirschot Terwisscha 

Amersfoortseweg Goor Hoogeveen Olden Eibergen Tilburg middeldiep 

Beilen Groenekan Kruidhaars Oosterbeek Tilburg ondiep 

Cothen Groote Heide Laren Mix Pinkenberg Tull En T Waal 

Dalen Grubbenvorst Leidsche Rijn Prinsenbosch Van Heek 

De Haere Harderwijk I Lieshout Putten Vlieland Bokkendal 

De Pol Hasselo Linschoten Rodenmors Vorden 

Diepenveen Havelterberg Lochem Ruinerwold Wierden 

Dinxperlo Hanik Manderveen Someren Woudenberg 

Eemdijk Herikerberg Muntberg Speuld Zutphen Vierakker 

Eerbeek     
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B – Reproducing the MODFLOW and MT3DMS model 

 
This appendix contains an explanation on how to recreate the MODFLOW and MT3DMS model used. 
It is split up in a MODFLOW part and a MT3DMS part. 
 
MODFLOW 

1. Create a model 
2. Assign data 

2.1 Grid 
2.2 Parameters 
2.3 MODFLOW 

3. Run simulation 
4. Check results 

MTR3MS 
1. Assign model data 

2.1 MT3DMS 
2. Run simulation 
3. Check results 
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Reproducing MODFLOW 

1. Create a model 
To make a new model select the “New Model” option under File. Choose the location where you 
want to save the model and name it. The model name cannot contain any spaces. 
 
2. Assign data 
2.2 Grid 
Under the tab grid the outline of the model is created.  
 
 Select “Mesh size” and fill in the “Model Grid and Coordinate System” dialog box 

 
The model has 12 layers and a total thickness of 0.0018. The model top elevation is 0.0018. 
The model has 10 rows and an extent of 0.15 
The model has 65 columns and an extent of 1 
Leave the vertical exaggeration on 20 and press OK 

You now see the grid in the editor. Leave the editor by pressing the “Leave Editor” button  and 
save changes 
 
 Then select “Layer properties” to assign a layer type in the layer property dialog box. 
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Set all layers except the first to type 3 (Confined/Unconfined). Set the first layer to type 1 
(Unconfined) and press OK. 
 
 Select “Cell Status” and then “IBOUND” to set boundary conditions. Again you see the gird in the 
editor. 
Select the top left gird cell and open the dialog box by right clicking the cell. Assign a value of -1 and 

press OK. Select the “Cell-by-cell duplication” button  and select the left most row with the 
arrow keys. Then select the top right cell with the mouse and select the right most row with the 
arrow keys. Turn of the duplication button. 

To apply this to all the layers select the “Layer copy” button  and duplicate to all layers by 
viewing all layers with the page down key. 
This way the left most row and the right most row have a constand head boundary condition. 
The edges of the domain automatically have a no –flow boundary condition unless supplied 
otherwise. 
Leave the editor and save the changes. 
 
 Select “Cell Status” and then “ICBUND” to set boundary conditions.  
In the editor select “Reset Matrix” under Value and fill in 1. Then check “Apply to entire model” and 
press Ok. 
Leave the editor and save the changes. 
 
 Select “Top of layers” to assign an upper height to all layers. 
In the editor select “Reset Matrix” under Value and fill in 0.0018 and then check “Apply to current 
layer” and press Ok. The second layer must have a value of 0.00015 lower and so on until you reach 
the bottom layer 
Leave the editor and save the changes 
 
 Select “Bottom of layers” to assign a bottom height to all layers. 
Assign the top layer a value of 0.0165 by using reset matrix. The second layer must have a value of 
0.00015 lower and so on until you reach the bottom layer. 
Leave the editor and save the changes. 
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 Select “Mesh size” once again to make the grid finer. 

 
Select the 5th row and the 3rd column and right click. Under refinement fill in 10 for both rows and 
columns. The individual cells will now be split up in 10×10 cells. Press OK. 
Do the same for the 6th row and the 4th column. 
Now select the 5th column and only fill in 10 columns under refinement. 
Now the cells have a 10×10×10 size around the contamination plume and a 10×10×100 size around 
the wells. 
Leave the editor and save changes 
 
2.2 Parameters 
Under the parameter tab values for time. flow parameters and soil parameters 
 
 Select “Time” to assign periods. period length and number of time steps 

  
Set simulation time unit to undefined and uncheck auto update period length. Activate 10 periods by 
checking the boxes. The first period is the spin-up time of the model to reach steady-state flow. This 
period can have a short number of time steps but have many time steps. 
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Using 𝑡∗ =
𝑣𝑟𝑒𝑠 𝑡

𝐿
 the conversion from dimensions to dimensionless is made. Period one has a 

duration of 1 day and the other time steps have a length of 10 years. 
For period 1 assign a period length of 0.00016 and 800 time steps. For the other periods assign a 
period length of 0.59 and 20 time steps.  
Also select a steady-state flow simulation as simulation type and press OK. 
 
 Select “Initial hydraulic head” to prescribe a hydraulic gradient. 
In the editor use reset matrix assign a value of 1 to the entire model. Then select the top left cell and 

right click it to assign a value of 1.05. Use the “Cell-by-cell duplication” button  and select the left 
most row with the arrow keys. Turn of the duplication button. 

To apply this to all the layers select the “Layer copy” button  and duplicate to all layers by 
viewing all layers with the page down key. Now i=0.001. 
Leave the editor and save the changes. 
 
 Select “Horizontal hydraulic conductivity” to give a kx value. 
In the editor use reset matrix assign a value of 1 to the entire model. 
Leave the editor and save the changes. 
 
 Select “Vertical hydraulic conductivity” to give a kz value. 
In the editor use reset matrix assign a value of 1 to the entire model. Now m=1. 
Leave the editor and save the changes. 
 
 Select “Porosity” to give a n value. 
In the editor use reset matrix assign a value of 0.35 to the entire model. 
Leave the editor and save the changes. 
 
 Select “Bulk density” and then “Cell-by-cell” to give a ρb value. 
In the editor use reset matrix assign a value of 2000 to the entire model. 
Leave the editor and save the changes. 
 
2.3 MODFLOW 
Under the Models tab MODFLOW can be selected. Here extra packages can be selected 
 
 Select “Well” in “Flow packages” to add a well to the model. 
Select the cell at the 28th row and the 14th row and the 60th column in the 6th layer and give it a value 
of -0.00032/5 (Q=200 m3/d over 5 layers). Do the same for the next 4 layers to create a well of 50 m 
in length. 

Then press the Change Stress Period button  and copy all data from stress period 1 to the other 
stress periods and press close. 
Leave the editor to save the changes. 
 
3. Run model 
To run the model select “run…” in “MODFLOW”. This opens the run Modflow dialog box. 
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The first time the model is run all the boxes under generate should be checked. Under options the 
don’t generate MODPATH files anyway option should be checked as well. Press OK. This will open the 
command prompt. Once the model is run press any key to leave the command prompt. 
 
4. Check results 
To check the hydraulic head select “2D-visualization” under the Tools tab.  

 
Choose the MODFLOW tab and select the Hydraulic Head and press OK. Now the editor will open 
showing the domain and the hydraulic heads. By looking through the different time steps you can 
check whether the hydraulic head is in steady state. If not the number of time steps of the first time 
period should be increased. 
 

Reproducing MT3DMS 

1. Assign data 
1.1 MT3DMS 
 Select “Simulation Settings” under the tab “MT3DMS” in the tab “Models”. 
Check a box to activate one species and name it. For the simulation type select constant density 
transport from the dropdown menu. For the reaction type select first-order irreversible reaction. This 
way the species can undergo decay. Press OK 
 
 Select “Initial concentration” to set initial conditions. 
Using reset matrix assign the whole model a value of 0. Since there is a spin-up time for the hydraulic 
head there is no concentration in the first time step. 
Leave the editor and save the changes 
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 Select “Advection” to activate the advection package. 

 
Choose the finite difference method as the solution scheme and select upstream weighting as the 
weighting scheme. Take a courant number of 0.1. Press OK 
 
 Select “Dispersion” to give dispersivity values. 

 
TRPT= αTy/αL and TRPV= αTz/αL. Give both a value of 0.1 in all layers and then press OK. In the editor 
use reset matrix to assign a value of 0.02 to the entire model. 
Leave the editor and save the changes. 
 
 Select “Chemical reaction” to give values for the decay rate and the distribution coefficient. 

 



x 
 

Select the correct species and press edit. In the editor select reset matrix and select linear isotherm 
(equilibrium) as the type of sorption. Fill in the KD value next to the distribution coefficient and the 
decay rate next to the first-order reaction rate coefficient for the dissolved phase. Always leave the 
first-order reaction rate coefficient for the sorbed phase as 0. Press OK and then duplicate all values 
for the other layers with the layer copy button. 
Leave the editor and save the changes 
 
 Select “Sink/Source Concentrations” and the “Time-Variant Specified-Concentration” to add a the 
contaminant. 
Select the species and press edit to go to the editor. Right click the cell at row 14 and column 8 in the 
first layer and give it a value 1 at Flag. The specified concentration is 0 at time step 1. Press Ok and 

then press the Change Stress Period button  to select period 2. Again right click the same cell and 
give it a flag of 1 and a specified concentration of 1. Do the same for time periods 3 to 8 but give a 
specified concentration of 0 as to create a plume instead of a continuous input of contaminant. 
 
 Select “Concentration Observation” to add observation points to view the concentration in the 
well. 

 
Add an observation point. Name in 100m and give it the coordinates (0.0545. 0.0755). In layer 
proportions give the layer with the well proportion 1 and the others proportion 0. 
Add a second observation point. Name it 3050m and give it the coordinates (0.5. 0.0755). Again give 
the layers in which the well is located proportion 1 and the rest proportion 0. 
Add the last well. Name it 6000m and give it the coordinates (0.9615. 0.0755). Again give the layers 
in which the well is located proportion 1 and the rest proportion 0. 
Activate the observation point in which the well is located and press OK. 
 
 Select “Output control” to change the output times. 
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Go to the tab output times and press output time in the table. A new dialog box will open. 

 
Give the interval a value which is 1% of the maximum value to get an output frequency of 102. Press 
Ok and press Ok again. 
 
2. Run model 
To run MT3DMS select “Run…” and the run MT3DMS dialog box opens. 

 
Make sure all the boxes under generate are checked. Press OK. This will open the command prompt. 
Once the model is run press any key to leave the command prompt. 
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3. Check results 
To see the breakthrough curves select “MT3DMS” under “Models” . then select “View” and finally 
“Concentration-time curves…” and select the species. Press OK. The Data tab shows a table with all 
calculated concentrations at the activated observation point. To save the table press Save Table. The 
tab Chart shows the breakthrough curve at the observation point. 
 
To see the concentration plume in the different layers at different times select “2-D Visualization” 
under “Tools”. Select the MT3DMS/SEAWAT tab and choose the right species. Press OK. This will 
open the editor. 
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C – R-script 

# read data 
par(mfrow=c(1,1)) 
par(mar=c(4,4,2,2)) 
tracer=0 
setwd("C:/Users/tan_i/Documents/Scriptie M/R") 
obs <- read.table("RdataNew.txt", header = T, sep = "\t") 
pairs(obs,gap=0.5) 
 
#subset centre  
obsX <- subset(obs, Scenario==181:184 & Zwstar>0.0015, select=c(Scenario:tmax)) 
obsZw <- subset(obs, Scenario==181:188 & Xstar==0.24 & i==0.0078 & Qstar==0.0   013, 
select=c(Scenario:tmax)) 
obsi <- subset(obs, Scenario==181:188 & Xstar==0.24 & Zwstar==0.0077 &  
                 Qstar==0.0013 & m==25.5, select=c(Scenario:tmax)) 
obsQ <- subset(obs, Scenario>180 & Xstar==0.24 & Zwstar==0.0077 & i==0.0078 &  
                 m==25.5 & R==5.5 & Da==15.5, select=c(Scenario:tmax)) 
obsm <- subset(obs, Scenario>180 & Xstar==0.24 & Zwstar==0.0077 & i==0.0078 &  
                 Qstar==0.0013 & R==5.5 & Da==15.5, select=c(Scenario:tmax)) 
obsR <- subset(obs, Scenario>180 & Xstar==0.24 & Zwstar==0.0077 & i==0.0078 &  
                 Qstar==0.0013 & m==25.5 & Da==15.5, select=c(Scenario:tmax)) 
obsDa <- subset(obs, Scenario>180 & Xstar==0.24 & Zwstar==0.0077 & i==0.0078 &  
                  Qstar==0.0013 & m==25.5 & R==5.5, select=c(Scenario:tmax)) 
 
############################################################################# 
# stepwise regression Cmax 
modCmax <-lm(log(Cmax) ~ (Xstar+Zwstar+i+log(Qstar)+log(m)+R+Da)^2+ 
               I(Xstar^2)+I(Zwstar^2)+I(i^2)+I((log(Qstar))^2)+I((log(m))^2)+ 
               I(R^2)+I(Da^2), data =obs) 
modCmax1<-step(modCmax, direction = "both", k = 3.84,trace=tracer) 
plot(fitted(modCmax1),resid(modCmax1)) 
abline(h=0) 
qqnorm(resid(modCmax1)) 
qqline(resid(modCmax1)) 
anova(modCmax1) 
summary(modCmax1) 
 
# Residuals 
Cmax <- na.omit(obs$Cmax) 
Cmax.fit <- fitted(modCmax1) 
plot(log(Cmax), Cmax.fit, xlab="Ln C*max PMWIN", ylab="Ln C*max R",  
     xlim=c(-25,0), ylim=c(-25,0))  
abline(0,1) 
abline(2,1, lty=2) 
abline(-2,1, lty=2) 
legend("topleft", legend="A") 
 
# Bland-Altman plot 
mean <- (log(Cmax)+Cmax.fit)/2 
diffs <- log(Cmax)-Cmax.fit 
mdiff <- mean(diffs) 
sddiff <- sd(diffs) 
plot(mean, diffs, xlab="Mean", ylab="Difference") 
abline(h=mdiff) 
abline(h = mdiff + 1.96 * sddiff, lty = 2) 
abline(h = mdiff - 1.96 * sddiff, lty = 2) 
legend("topleft", legend="B") 
 
# data frame Cmax, Xstar 
newobs <- data.frame(Xstar=seq(0.015, 0.47, by=0.005), 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#Xstar 
with (obsX, plot(Xstar, log(Cmax), xlim=c(0,0.47), ylim=c(-30,0), xlab="X*",  
                 ylab="Ln C*max")) 
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with (newobs, {  
  matlines(Xstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Xstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("bottomleft", legend=c("PMWIN points","Empirical formula",  
                              "Confidence interval","Prediction interval"),  
       col=c("black","black","red","green"), pch=c(1,NA,NA,NA), 
       lty=c(NA, 1, 2, 2, 2), text.font=) 
legend("topleft", legend="A") 
 
# data frame Cmax, Zwstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=seq(0.0015, 0.014, by=0.0005), 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#Zwstar 
with (obsZw, plot(Zwstar, log(Cmax), xlim=c(0.0015, 0.014), ylim=c(-30,0),  
                  xlab="Zw*", ylab="Ln C*max")) 
with (newobs, {  
  matlines(Zwstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Zwstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="B") 
 
# data frame Cmax, i 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=seq(0.0055, 0.01, by=0.0005), 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#i 
with (obsi, plot(i, log(Cmax), xlim=c(0.0055, 0.01), ylim=c(-30,0), xlab="i",  
                 ylab="Ln C*max")) 
with (newobs, {  
  matlines(i, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(i, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="C") 
 
# data frame Cmax, Qstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=seq(0.000013, 0.0026, by=0.000005), 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#Qstar 
with (obsQ, plot(log(Qstar), log(Cmax), xlim=c(-5,-2.5), ylim=c(-30,0),  
                 xlab="Ln Q*", ylab="Ln C*max")) 
with (newobs, {  
  matlines(log(Qstar), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(Qstar), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="D") 
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# data frame Cmax, m 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=seq(1, 50, by=0.5), 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#m 
with (obsm, plot(log(m), log(Cmax), xlim=c(0,2), ylim=c(-30,0), xlab="Ln m",  
                 ylab="Ln C*max")) 
with (newobs, {  
  matlines(log(m), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(m), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="E") 
 
# data frame Cmax, R 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=seq(1, 10, by=0.5), 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#R 
with (obsR, plot(R, log(Cmax), xlim=c(1,10), ylim=c(-30,0),  
                 xlab="R", ylab="Ln C*max")) 
with (newobs, {  
  matlines(R, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(R, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="F") 
 
# data frame Cmax, Da 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=seq(0, 31, by=0.5)) 
newobs <- within (newobs, { 
  conf <- predict (modCmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modCmax1, newdata=newobs, interval="prediction") 
}) 
#Da 
with (obsDa, plot(Da, log(Cmax), xlim=c(0, 31), ylim=c(-30,0), xlab="Da*", 
                  ylab="Ln C*max")) 
with (newobs, {  
  matlines(Da, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Da, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="G") 
 
############################################################################# 
# stepwise regression tmax 
modtmax <-lm(sqrt(tmax) ~ (Xstar+Zwstar+i+log(Qstar)+m+R+(sqrt(Da)))^2+ 
               I(Xstar^2)+I(Zwstar^2)+I(i^2)+I((log(Qstar))^2)+I(m^2)+ 
               I(R^2)+I((sqrt(Da))^2), data =obs) 
modtmax1<-step(modtmax, direction = "both", k = 3.84,trace=tracer) 
plot(fitted(modtmax1),resid(modtmax1)) 
abline(h=0) 
qqnorm(resid(modtmax1)) 
qqline(resid(modtmax1)) 
anova(modtmax1) 
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summary(modtmax1) 
 
# Residuals 
tmax <- na.omit(obs$tmax) 
tmax.fit <- fitted(modtmax1) 
plot(sqrt(tmax), tmax.fit, xlab="Sqrt t*max PMWIN", ylab="Sqrt t*max R",  
     xlim=c(0.4,2.2), ylim=c(0.4,2.2))  
abline(0,1) 
abline(0.1,1, lty=2) 
abline(-0.1,1, lty=2) 
legend("topleft", legend="A") 
 
# Bland-Altman plot 
mean <- (sqrt(tmax)+tmax.fit)/2 
diffs <- sqrt(tmax)-tmax.fit 
mdiff <- mean(diffs) 
sddiff <- sd(diffs) 
plot(mean, diffs, xlab="Mean", ylab="Difference") 
abline(h=mdiff) 
abline(h = mdiff + 1.96 * sddiff, lty = 2) 
abline(h = mdiff - 1.96 * sddiff, lty = 2) 
legend("topleft", legend="B") 
 
# data frame tmax, Xstar 
newobs <- data.frame(Xstar=seq(0.015, 0.47, by=0.005), 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#Xstar 
with (obsX, plot(Xstar, sqrt(tmax), xlim=c(0,0.47), ylim=c(0,1.5), xlab="X*",  
                 ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(Xstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Xstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("bottomright", legend=c("PMWIN points","Empirical formula",  
                               "Confidence interval","Prediction interval"),  
       col=c("black","black","red","green"), pch=c(1,NA,NA,NA), 
       lty=c(NA, 1, 2, 2, 2), text.font=) 
legend("topleft", legend="A") 
 
# data frame tmax, Zwstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=seq(0.0015, 0.014, by=0.0005), 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#Zwstar 
with (obsZw, plot(Zwstar, sqrt(tmax), xlim=c(0.0015, 0.014), ylim=c(0,1.5),  
                  xlab="Zw*", ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(Zwstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Zwstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="B") 
 
# data frame tmax, i 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=seq(0.0055, 0.01, by=0.0005), 
                     Qstar=0.0013, 
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                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#i 
with (obsi, plot(i, sqrt(tmax), xlim=c(0.0055, 0.01), ylim=c(0,1.5), xlab="i",  
                 ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(i, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(i, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="C") 
 
# data frame tmax, Qstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=seq(0.000013, 0.0026, by=0.000005), 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#Qstar 
with (obsQ, plot(log(Qstar), sqrt(tmax), xlim=c(-5, -2.5), ylim=c(0,1.5),  
                 xlab="Ln Q*", ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(log(Qstar), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(Qstar), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="D") 
 
# data frame tmax, m 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=seq(1, 50, by=0.5), 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#m 
with (obsm, plot(m, sqrt(tmax), xlim=c(1, 50), ylim=c(0,1.5), xlab="m",  
                 ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(m, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(m, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="E") 
 
# data frame tmax, R 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=seq(1, 10, by=0.5), 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#R 
with (obsR, plot(R, sqrt(tmax), xlim=c(1,10), ylim=c(0,1.5),  
                 xlab="R", ylab="Sqrt t*max")) 
with (newobs, {  
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  matlines(R, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(R, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="F") 
 
# data frame tmax, Da 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=seq(0, 31, by=0.5)) 
newobs <- within (newobs, { 
  conf <- predict (modtmax1, newdata=newobs, interval="confidence") 
  pred <- predict (modtmax1, newdata=newobs, interval="prediction") 
}) 
#Da 
with (obsDa, plot(sqrt(Da), sqrt(tmax), xlim=c(0,6), ylim=c(0,1.5), xlab="Da*",  
                  ylab="Sqrt t*max")) 
with (newobs, {  
  matlines(sqrt(Da), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(sqrt(Da), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="G") 
 
############################################################################# 
# stepwise regression Chalf 
modChalf <-lm(log(Chalf) ~ (Xstar+Zwstar+i+log(Qstar)+log(m)+R+Da)^2+ 
                I(Xstar^2)+I(Zwstar^2)+I(i^2)+I((log(Qstar))^2)+I((log(m))^2)+ 
                I(R^2)+I(Da^2), data =obs) 
modChalf1<-step(modChalf, direction = "both", k = 3.84,trace=tracer) 
plot(fitted(modChalf1),resid(modChalf1)) 
abline(h=0) 
qqnorm(resid(modChalf1)) 
qqline(resid(modChalf1)) 
anova(modChalf1) 
summary(modChalf1) 
 
# Residuals 
Chalf <- na.omit(obs$Chalf) 
Chalf.fit <- fitted(modChalf1) 
plot(log(Chalf), Chalf.fit, xlab="Ln C*half PMWIN", ylab="Ln C*half R",  
     xlim=c(-25,0), ylim=c(-25,0)) 
abline(0,1) 
abline(2,1, lty=2) 
abline(-2,1, lty=2) 
legend("topleft", legend="A") 
 
# Bland-Altman plot 
mean <- (log(Chalf)+Chalf.fit)/2 
diffs <- log(Chalf)-Chalf.fit 
mdiff <- mean(diffs) 
sddiff <- sd(diffs) 
plot(mean, diffs, xlab="Mean", ylab="Difference") 
abline(h=mdiff) 
abline(h = mdiff + 1.96 * sddiff, lty = 2) 
abline(h = mdiff - 1.96 * sddiff, lty = 2) 
legend("topleft", legend="B") 
 
# data frame Chalf, Xstar 
newobs <- data.frame(Xstar=seq(0.015, 0.47, by=0.005), 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#Xstar 
with (obsX, plot(Xstar, log(Chalf), xlim=c(0,0.47), ylim=c(-10,0), xlab="X*",  
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                 ylab="Ln C*half")) 
with (newobs, {  
  matlines(Xstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Xstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("bottomleft", legend=c("PMWIN points","Empirical formula",  
                              "Confidence interval","Prediction interval"),  
       col=c("black","black","red","green"), pch=c(1,NA,NA,NA), 
       lty=c(NA, 1, 2, 2, 2), text.font=) 
legend("topleft", legend="A") 
 
# data frame Chalf, Zwstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=seq(0.0015, 0.014, by=0.0005), 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#Zwstar 
with (obsZw, plot(Zwstar, log(Chalf), xlim=c(0.0015, 0.014), ylim=c(-10,0),  
                  xlab="Zw*", ylab="Ln C*half")) 
with (newobs, {  
  matlines(Zwstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Zwstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="B") 
 
# data frame Chalf, i 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=seq(0.0055, 0.01, by=0.0005), 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#i 
with (obsi, plot(i, log(Chalf), xlim=c(0.0055, 0.01), ylim=c(-10,0), xlab="i",  
                 ylab="Ln C*half")) 
with (newobs, {  
  matlines(i, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(i, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="C") 
 
# data frame Chalf, Qstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=seq(0.000013, 0.0026, by=0.000005), 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#Qstar 
with (obsQ, plot(log(Qstar), log(Chalf), xlim=c(-5,-2.5), ylim=c(-10,0),  
                 xlab="Ln Q*", ylab="Ln C*half")) 
with (newobs, {  
  matlines(log(Qstar), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(Qstar), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="D") 
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# data frame Chalf, m 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=seq(1, 50, by=0.5), 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#m 
with (obsm, plot(log(m), log(Chalf), xlim=c(1,2), ylim=c(-10,0), xlab="Ln m",  
                 ylab="Ln C*half")) 
with (newobs, {  
  matlines(log(m), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(m), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="E") 
 
# data frame Chalf, R 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=seq(1, 10, by=0.5), 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#R 
with (obsR, plot(R, log(Chalf), xlim=c(1,10), ylim=c(-10,0),  
                 xlab="R", ylab="Ln C*half")) 
with (newobs, {  
  matlines(R, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(R, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="F") 
 
# data frame Chalf, Da 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=seq(0, 31, by=0.5)) 
newobs <- within (newobs, { 
  conf <- predict (modChalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modChalf1, newdata=newobs, interval="prediction") 
}) 
#Da 
with (obsDa, plot(Da, log(Chalf), xlim=c(0,31), ylim=c(-10,0), xlab="Da*",  
                  ylab="Ln C*half")) 
with (newobs, {  
  matlines(Da, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Da, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="G") 
 
############################################################################# 
# stepwise regression thalf 
modthalf <-lm(sqrt(thalf) ~ (log(Xstar)+Zwstar+i+log(Qstar)+m+R+Da)^2+ 
               I((log(Xstar))^2)+I(Zwstar^2)+I(i^2)+I((log(Qstar))^2)+I(m^2)+ 
               I(R^2)+I(Da^2), data =obs) 
modthalf1<-step(modthalf, direction = "both", k = 3.84,trace=tracer) 
plot(fitted(modthalf1),resid(modthalf1)) 
abline(h=0) 
qqnorm(resid(modthalf1)) 
qqline(resid(modthalf1)) 
anova(modthalf1) 
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summary(modthalf1) 
 
# Residuals 
thalf <- na.omit(obs$thalf) 
thalf.fit <- fitted(modthalf1) 
plot(sqrt(thalf), thalf.fit, xlab="Sqrt t*half PMWIN", ylab="Sqrt t*half R",  
     xlim=c(0,2), ylim=c(0,2))  
abline(0,1) 
abline(0.1,1, lty=2) 
abline(-0.1,1, lty=2) 
legend("topleft", legend="A") 
 
# Bland-Altman plot 
mean <- (sqrt(thalf)+thalf.fit)/2 
diffs <- sqrt(thalf)-thalf.fit 
mdiff <- mean(diffs) 
sddiff <- sd(diffs) 
plot(mean, diffs, xlab="Mean", ylab="Difference") 
abline(h=mdiff) 
abline(h = mdiff + 1.96 * sddiff, lty = 2) 
abline(h = mdiff - 1.96 * sddiff, lty = 2) 
legend("topleft", legend="B") 
 
# data frame thalf, Xstar 
newobs <- data.frame(Xstar=seq(0.015, 0.47, by=0.005), 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#Xstar 
with (obsX, plot(log(Xstar), sqrt(thalf), xlim=c(-2,-0.25), ylim=c(0,1.5),  
                 xlab="Ln X*", ylab="t*half")) 
with (newobs, {  
  matlines(log(Xstar), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(Xstar), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend=c("PMWIN points","Empirical formula",  
                           "Confidence interval","Prediction interval"),  
       col=c("black","black","red","green"), pch=c(1,NA,NA,NA), 
       lty=c(NA, 1, 2, 2, 2), text.font=) 
legend("bottomright", legend="A") 
 
# data frame thalf, Zwstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=seq(0.0015, 0.014, by=0.00005), 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#Zwstar 
with (obsZw, plot(Zwstar, sqrt(thalf), xlim=c(0.0015, 0.014), ylim=c(0,1.5),  
                  xlab="Zw*", ylab="t*half")) 
with (newobs, {  
  matlines(Zwstar, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Zwstar, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="B") 
 
# data frame thalf, i 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=seq(0.0055, 0.01, by=0.0005), 
                     Qstar=0.0013, 
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                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#i 
with (obsi, plot(i, sqrt(thalf), xlim=c(0.0055, 0.01), ylim=c(0,1.5), xlab="i",  
                 ylab="t*half")) 
with (newobs, {  
  matlines(i, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(i, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="C") 
 
# data frame thalf, Qstar 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=seq(0.000013, 0.0026, by=0.000005), 
                     m=25.5, 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#Qstar 
with (obsQ, plot(log(Qstar), sqrt(thalf), xlim=c(-5,-2.5), ylim=c(0,1.5),  
                 xlab="Ln Q*", ylab="t*half")) 
with (newobs, {  
  matlines(log(Qstar), conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(log(Qstar), pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="D") 
 
# data frame thalf, m 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=seq(1, 50, by=0.5), 
                     R=5.5, 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#m 
with (obsm, plot(m, sqrt(thalf), xlim=c(1, 50), ylim=c(0,1.5), xlab="m",  
                 ylab="t*half")) 
with (newobs, {  
  matlines(m, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(m, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="E") 
 
# data frame thalf, R 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=seq(1, 10, by=0.5), 
                     Da=15.5) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#R 
with (obsR, plot(R, sqrt(thalf), xlim=c(1,10), ylim=c(0,1.5),  
                 xlab="R", ylab="t*half")) 
with (newobs, {  
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  matlines(R, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(R, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="F") 
 
# data frame thalf, Da 
newobs <- data.frame(Xstar=0.24, 
                     Zwstar=0.0077, 
                     i=0.0078, 
                     Qstar=0.0013, 
                     m=25.5, 
                     R=5.5, 
                     Da=seq(0, 31, by=0.805)) 
newobs <- within (newobs, { 
  conf <- predict (modthalf1, newdata=newobs, interval="confidence") 
  pred <- predict (modthalf1, newdata=newobs, interval="prediction") 
}) 
#Da 
with (obsDa, plot(Da, sqrt(thalf), xlim=c(0,31), ylim=c(0,1.5), xlab="Da*",  
                  ylab="t*half")) 
with (newobs, {  
  matlines(Da, conf, col=c(1,2,2), lty=c(1,2,2)) 
  matlines(Da, pred, col=c(1,3,3), lty=c(1,2,2)) 
}) 
legend("topleft", legend="G") 
 


