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Abstract
The XENON collaboration operates a dark matter detector (XENON100) at Gran Sasso,
Italy. A new detector (XENON1T) is under construction. This thesis reports on
the working and implementation of a position reconstruction method developed for
XENON1T, the definition of several data quality cuts for XENON100 and the first
physics analysis performed with a new data processor for XENON1T, called PAX.

The detectors allow the position of an event to reconstructed in three dimensions.
The χ2

γ position reconstruction algorithm is physically motivated and provides a per-
event error estimation. It is implemented in the data processor for XENON1T and tested
using simulations in a XENON100 configuration. The new implementation performs
better than its main competitor, a Neural Network.

Two data quality cuts are defined to reject poorly position reconstructed events for
the latest calibration run of XENON100. Both cuts are redefined compared to their
previous versions to cope with a higher noise level in the XENON100 detector. A third
cut on the ratio of light seen in the top and bottom of the detector (asymmetry) is also
redefined.

The new data processor PAX is used to study and classify a group of previously
unseen events with very low asymmetry. The events have a very unusual combination of
properties implying that they may be caused by scintillation light in the liquid xenon, a
process very unlikely to happen in XENON100. Further research will be needed to test
this hypothesis.
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Chapter 1

Introduction

Every second roughly one billion dark matter particles travel through the human body.
Together these particles make up 85% of the mass of the entire Universe, yet no one has
ever directly detected a single one.

The above two statements rest on the assumption that dark matter is a particle. An
assumption still unconfirmed by experiment making the search for the particle nature
of dark matter one of the most intriguing current challenges in physics. Even though
there is plenty of evidence for the existence of dark matter on a macroscopic scale its
microscopic nature remains unknown.

Searching for dark matter is no easy task. Even though billions of particles are
expected to travel through a detector every second, their interaction probability is ex-
tremely low. So low in fact that to date only upper limits of this interaction cross section
are known. To detect the faint signals deposited by dark matter particles highly spe-
cialised detectors have to be designed and build. Often buried deep underground they
gather data for years hoping to record an interaction of dark matter.

The XENON collaboration has held the record in setting the lowest dark matter
limits for direct detection for several years. These limits are the result of operating
the XENON100 detector in an underground laboratory in Gran Sasso, Italy. The con-
struction of a new, bigger and more sensitive detector is ongoing and expected to be
completed by the end of 2015. This new detector, XENON1T, will explore a region of
parameter space never probed before. Either setting a new limit roughly two orders of
magnitude below the current best ones or finding dark matter.

This thesis is the result of a year’s work at the Nikhef XENON group, Amsterdam.
Chapter 2 gives an introduction in dark matter theory. Detection principles and detectors
are discussed in Chapter 3. The main focus of this thesis is on position reconstruction
and data quality in the detector. These topics are discussed in Chapter 4 and Chapter 5
respectively. Chapter 6 looks at unusual events seen by using the new data processor on
current data.
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Chapter 2

Dark Matter

The Universe is composed of many different types of matter. Standard model particles
composing stars, planets and other luminous objects only account for a small fraction
of the entire matter content. The largest part of the Universe is composed of matter
that is not visible, called dark matter and dark energy. These rather generic terms refer
to an additional massive component and an additional energy component. Both are
called dark because they are invisible electromagnetically and their microscopic nature
is unknown. Macroscopically the influence of dark matter and energy on the structure
of the universe can be measured.

One of the open questions in physics today is the microscopic nature of dark matter.
Is dark matter composed of particles and if so which particles? How do these parti-
cles interact with Standard Model matter? Cosmology has provided us with models
describing the state of the universe. Based on measurements of the Cosmic Microwave
Background (CMB) by experiments such as WMAP [1] and Planck [2] we now know
the key parameters of the macroscopic properties of the universe such as the energy
density of each of its components. One of the results of these experiments is that they
showed how little baryonic matter the universe contains: less than 5% of the total energy
content. The remaining 95% being composed of dark matter (∼ 25%) and dark energy
(∼ 70%). Figure 2.1 shows a breakdown of the different components of the universe
showing that dark matter and dark energy are the dominant components by far. The
remaining baryonic mass is mostly occupied by free hydrogen and helium with only a
tiny fraction belonging to the heavy elements.

The current model for describing the evolution and content of the universe is called
ΛCDM or Lambda Cold Dark Matter. Sometimes also referred to as the ‘Standard Model
of Cosmology’ and is currently the most accurate model for describing the evolution of
the universe. The name ΛCDM refers to the two major components of the model, a
cosmological constant Λ to model the dark energy density and a Cold Dark Matter part
modelling the dark matter density.

‘Cold’ is this sense refers to the fact that the dark matter particles in this model have
low kinetic energy and move at non-relativistic velocities. ‘Dark’ refers to the fact that
the particles interact extremely weakly electromagnetically or not electromagnetically

3



4 CHAPTER 2. DARK MATTER

Figure 2.1: The matter-energy components of the universe. Percentages are rounded,
measured values in table 2.1

at all.
Exactly how much of these components is present in the Universe is shown in Ta-

ble 2.1 which shows some of the key parameters reported by the Planck Collaboration
in their 2015 paper [2].

Name Value Desciption
ΩΛ 0.692± 0.012 Dark energy fraction
Ωm 0.308± 0.012 Matter fraction
Ωbh

2 0.02226± 0.00023 Baryonic mass
Ωch

2 0.1186± 0.0020 CDM mass
Ωmh2 = Ωbh

2 +Ωch
2 0.1415± 0.0019 Total mass

Table 2.1: ΛCDM parameters by Planck [2], Ωi ≡ ρi
ρc

, h is the reduced Hubble constant
defined as H0 = 100 h (km/s)/Mpc, H0 = 67.74± 0.46 (km/s)/Mpc

Each Ω in Table 2.1 gives an energy density as a fraction of the critical energy density
of the universe. The critical energy density is defined to be the energy density at which
the universe has a flat geometry. Measurements have shown that the actual energy
density is very close to this value yielding a total Ω of 1. These relations are shown in
Equation 2.1. In ΛCDM the total Ω is fixed to one.

1 ≡ Ωtot =
∑
i

Ωi ≡
∑
i

ρi
ρc

(2.1)

Dark matter is non-luminous matter, meaning that it seems not to interact elec-
tromagnetically, else it would be visible to telescopes. It must however be massive to
explain the missing mass and thus interact via gravitation. One of the more popular
hypotheses for the particle nature of dark matter is the WIMP hypothesis, described



2.1. ROTATION CURVES OF GALAXIES 5

in section 2.2. This model proposes that dark matter is composed of Weakly Interact-
ing Massive Particles. These hypothetical, stable, neutral and massive particles have
all the properties to be dark matter candidates. The added property that they also
interact through the weak nuclear force provides a mechanism for their creation in the
early Universe. The weak interaction of these particles can also be exploited to detect
them in experiments. These kind of searches require specialised detectors with a very
low background, the detector type used by the XENON collaboration is discussed in
chapter 3.

2.1 Rotation curves of galaxies
Evidence for the existence of dark matter in fields other than cosmology comes from
astronomy. One of the earliest and most intuitive indications for the existence of dark
matter is the study of rotation curves of spiral galaxies. Their dynamics show that
they must be much more massive than can be inferred based on their luminous mass
alone. These large astronomical objects slowly rotate around their centre of mass. By
measuring Doppler shifts of stars their orbital velocity can be calculated. A rotation
curve gives the orbital velocity of stars as a function of their distance from the galaxies
centre.

By using classical Newtonian dynamics we can calculate this function for a given
mass distribution. By simply balancing the gravitational force with the centripetal force
acting on the stars in the galaxy.

F⃗G = F⃗C ⇒ GM(r)m

r2
=

mv2

r
⇒ v(r) =

√
GM(r)

r
(2.2)

If we now assume that most of the mass of the galaxy is concentrated in the centre,
the rotation curve function is expected to behave as v(r) ∝ 1√

r
.

Figure 2.2 shows that this is not the case when we look at a measurement of the
rotation curve of spiral galaxy M33 by Corbelli [3]. The curve expected from the stellar
disk alone is plotted as the short dashed line. It shows the ∝ 1√

r
dependency for large

radii. The data points do not show this dependency at all and the rotation curve (solid
line) keeps rising even at large radii. Two different components are added to fit the data
points, a contribution for gas present in the galaxy (long dashed line) and one for a halo
contribution (dashed-dotted line).

Rotation curves have also been measured for other galaxies such as the 21 spiral
galaxies measured by Rubin [4] in 1980. Those galaxies, of varying shapes and sizes,
also show a large discrepancy when comparing the measured to the expected curves. All
these galaxies have in common that at large radii the orbital velocity of the stars does
not go to zero as expected but rather remains roughly constant or keeps rising.

The large discrepancy between the measured and predicted rotation curves is resolved
by adding a halo component. This means letting go of our initial assumption that the
mass of the galaxy is concentrated in the centre. If the galaxies mass is distributed to
far larger radii than the visible parts of the galaxy, the rotation curve can describe the
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Figure 2.2: M33 rotation curve by Corbelli [3], the mass from the stellar disk alone can
not account for the observations. A halo component is needed to explain the behaviour
at large radii.

measured curve. For example if M(r) does not go quickly to zero but instead behaves
as M(r) ∝ r for r < rHalo with rHalo being several times the galaxy radius. This would
mean that the galaxy is much more massive than the mass that can be inferred from the
visible stars, gas and dust alone.

The dark matter halo model states that galaxies and even galaxy clusters are sur-
rounded by a halo of dark matter acting on the galaxy gravitationally. This halo extends
far beyond the disk of visible stars and gas.

The existence of dark matter halos is also confirmed by gravitational lensing effects
around galaxy clusters. Gravitational lensing is an effect from general relativity that
is causing massive objects to act as a lens distorting light from very distant objects.
This lensing effect is also influenced by the presence of dark matter, causing a stronger
lensing that can be measured and used to infer the distribution of dark matter around
clusters. One such example is the Bullet Cluster which also favors a particle dark matter
explanation instead of a fluid like mass distribution [5].
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Another explanation for rotation curves of galaxies would require modifying Newto-
nian gravity, turning the ‘missing mass’ problem into a acceleration discrepancy’ prob-
lem. Theories such as Modified Newtonian Dynamics (MOND) attempt to explain ro-
tation curves without the need for dark matter. A detailed review of the pros and cons
of these two theories can be found in [6].

Dark matter is an integral part of modern cosmology and plays an important role
in ΛCDM, its macroscopic influence on matter has been measured and many models for
particle dark matter have been proposed.

2.2 The WIMP hypothesis

There exist many theoretical models for the nature of particle dark matter. One of
the more popular models for particle dark matter has always been the WIMP hypoth-
esis, Weakly Interacting Massive Particles or WIMPs that make up the dark matter
component of the universe.

These WIMP particles were originally created in the early universe and in thermal
equilibrium with other particles due to the extreme high temperatures. As the uni-
verse expands and cools, at some point the temperature (T ) drops below the mass
of the WIMPs (Mχ) causing their number density to drop exponentially following
∝ exp(−Mχ/T ) since WIMPs now annihilate more often than they are created. If
the particles remained in a thermal equilibrium there would be very few WIMPs left
today since their number density drops exponentially to zero. However if the number
density becomes low enough so that probability of two WIMPs annihilating is negligible
then the WIMPs are ‘frozen out’ and remain at a constant number density still present
today.

Cosmology tells us that the annihilation cross section for a thermally created particle
in the early universe must be on the same order as the electroweak scale. This fortunate
coincidence is sometimes referred to as the ‘WIMP miracle’ and is the main reason why
this hypothesis is so popular among theorists.

Any stable, neutral and massive particle that does not interact electromagnetically
can in principle be a dark matter candidate. Adding the additional properties of the
WIMP hypothesis, i.e. a weak scale interaction and a mass in the GeV-TeV range, also
gives the correct relic density from cosmology and allows experimentalists to possibly
detect this particle directly through its weak interaction with ordinary baryonic matter.

Many theoretical models that extend the Standard Model of particle physics (such
as Supersymmetry (SUSY)), naturally have dark matter particles in their model. For
example: in SUSY the neutralino (a hypothetical massive neutrino-like particle) is a
dark matter candidate. For a review on the status of SUSY dark matter candidates
see [7].
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2.3 Searching for particle dark matter
Suppose that dark matter is composed of WIMPs, how would these particles interact
with the ordinary, Standard Model, matter we can observe? If there is such an interac-
tion there are three possible interaction processes, namely the creation, scattering and
annihilation of dark matter with standard model matter. Of these processes the cre-
ation and annihilation modes are referred to as indirect detection, scattering as direct
detection.

�
SM

SM

DM

DM

Figure 2.3: Production

�
DM

DM

SM

SM

Figure 2.4: Annihilation

�
SM

DM

SM

DM

Figure 2.5: Scattering

Figure 2.6: Dark Matter interaction processes, DM ⇒ Dark Matter, SM ⇒ Standard
model Matter. Time on horizontal axis.

Figure 2.6 shows the Feynman diagrams of these three processes. As can be seen
they are rotations of the same process.

In the production process one could try and produce dark matter particles from ordi-
nary matter, in experiments conducted at CERN’s Large Hadron Collider for example.
In these type of collisions the production of dark matter would be indicated by events
with a missing energy since the dark matter particles created would not be detected and
escape the detector unseen. Limits have been published by ATLAS [8].

In the annihilation scenario dark matter annihilates into standard model matter.
Experiments such as the Fermi satellite scan the Universe for unknown peaks or emission
lines that could originate from dark matter annihilations. One recent example is a
3.55 keV X-ray line and a 1-3 GeV γ-ray flux excess seen by the Fermi-LAT [9] telescope.

Direct detection experiments such as XENON are using the scattering process to
look for dark matter. The aim is to have a dark matter particle scatter of standard
model matter and by measuring the recoiling atom or nucleus infer the mass and cross
section of the dark matter particle. As the name suggests the target material used by
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XENON is liquid xenon. This dense cold liquid has several advantageous properties for
use in direct detection experiments as will be discussed in chapter 3.

Direct detection experiments are essentially counting experiments, probing a part
of the mass-cross section parameter space. Due to the very low interaction probability
of dark matter particles these experiments often run for an extended amount of time,
taking data for multiple years.

The interaction rate of WIMPs with the target material can be calculated given
various astrophysical parameters and a few assumptions (such as the WIMP mass).

Given the fact that galaxies have dark matter halos, as hypothesised by measurements
of rotation curves described in section 2.1, we can calculate the flux of dark matter
particles at earth. First we assume the WIMP hypothesis to be true, next we assume
that the dark matter halo of our galaxy is composed of WIMPs in an isotropic and
hydrostatic equilibrium. We use some parameters from the Standard Halo Model for
our galaxy [10].

Name Value Description
ρ0 0.35+0.08

−0.07 GeV/cm3 Local dark matter density
v0 220 km/s Orbital velocity at R0

ve 550.9+32.4
−22.1 km/s Escape velocity at R0

Table 2.2: Parameters from the Milky Way Halo [10]

The dark matter flux can be expressed as Φ =
ρχ
mχ

v, or the local dark matter density
over the WIMP mass times the WIMP velocity. The interaction rate with a given target
consisting of nuclei with atomic mass a, Avogadro’s number NA and WIMP-nucleus
interaction cross section σA2 (σ being the WIMP-nucleon interaction cross section and
A being the atomic number) expressed as given in equation 2.3.

R = Φ(σA2)
NA

a
⇒ R =

ρχ
mχ

v(σA2)
NA

a
(2.3)

To see how small a typical rate actually is we calculate a number for it and choose the
parameters given in table 2.3. Only the mass of the WIMP is completely unknown and
here we assume it to be 100 GeV/c2 (a sensible assumption given the WIMP hypothesis).
The interaction cross section we take to be 10−38 cm2, a typical value for weak scale
processes, though as will be shown later this cross section is orders of magnitude too
large and the resulting rate too optimistic.

Putting these numbers into equation 2.3 we obtain the following number

R = 5, 98 · 10−8 g−1s−1 ⇒ R ∼ 1.8 · 103 kg−1year−1 (2.4)
As can be seen from equation 2.4 this rate is extremely low, even if a detector with

an active volume of 10 kg is left running for a year, only a few thousand interactions of a
WIMP with the target would be expected. Moreover experiments have shown that the
cross section must be several orders of magnitude lower than the typical weak scale cross
section resulting in a rate that is even lower. Current direct detection experiments are
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Name Value Description
ρχ 0.35 GeV/cm3 ρ0 from table 2.2
mχ 100 GeV Assumed
v 220 km/s v0 from table 2.2
σ 10−38 cm2 Typical weak scale cross section
NA 6.02 · 1023 mol−1 Constant
a 131 g/mol Atomic mass of xenon
A 130 Atomic number of xenon

Table 2.3: Parameters to calculate the rate

therefore using large detectors approaching the tonne scale in active detector volume,
taking data for multiple years.

2.3.1 Current limits
Currently there is only one scientific collaboration that claims to have directly detected
dark matter, the DAMA/LIBRA [11] experiment. Many other experiments have however
excluded their signal and have set exclusion limits orders of magnitude lower, excluding
a large part of the parameter space.

Exclusion limits and discovery claims can be plotted together in plots such as the
one in Figure 2.7, this provides a way of comparing results between different detectors
and experiments. A WIMP discovery at a certain mass and cross section appears as an
elliptical shape in these plots, often a 2 sigma confidence region is defined, outlining the
95% probability for the signal to originate from the encompassed area.

In case no discovery is made a limit can be set excluding a region of parameter
space. Above this exclusion limit a signal would have been seen given the conditions of
the experiment. Below this limit remains the unexplored parameter space.

Figure 2.7 shows some of the current limits as well as discovery claims by various
experiments as presented in [12]. As of 2013 LUX [13] holds the record in excluded
parameter space, probing a cross section below 10−46 cm2 for certain WIMP masses.
This is about a factor of 2 better than the current XENON100 detector which held the
record previously. The plot also shows the projected limit of XENON1T in case no
discovery is made. XENON1T is currently under construction and will be commissioned
at the end of 2015. It is expected that with only one week of data taking XENON1T
will have reached the same sensitivity as the LUX 2013 results and after a two year run
will be able to set a limit two orders of magnitude below the current lowest limit.
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Figure 2.7: Exclusion limits and discovery claims from several dark matter direct de-
tection searches. The current lowest limit is the one set by LUX (2013) (solid green
line). The solid blue line at ‘XENON1T (2017)’ is the projected limit for the XENON1T
detector. The elliptical shapes are discovery claims, except for the DAMA (2009) claim
they have all been withdrawn [12].
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Chapter 3

Direct Detection Experiments

Direct detection of dark matter involves recording the interaction of dark matter with
ordinary matter though scattering. Measuring the recoil of a nucleus hit by dark matter
allows the cross section and mass of the incoming particle to be determined. Many
detectors have been designed and build to detect these type of interactions. The detection
principle they use is based on several physical processes. Generated by the deposition
of energy in the detector volume.

Deposition of energy by a particle in the detector can be in the form of a nuclear
or electronic recoil. Meaning the incoming particle scatters directly on the nucleus of
a target atom or interacts with the electron cloud. Due to the very low interaction
probability or cross section of WIMPs we expect only nuclear recoils and no electronic
recoils. Having a detector that can discriminate between the nuclear and electronic
recoils will turn out to be crucial in the search for WIMPs because it allows analysts to
cut away electronic recoil backgrounds caused by various sources.

The process to discriminate between the two interaction types is by measuring dif-
ferent signals generated by the recoil. Three physical processes can occur when energy
is deposited in a material [14]:

1. Phonons, lattice vibrations at 10 meV/ph

2. Scintillation, emitted photons at ∼ 1 keV/γ

3. Ionization, released electrons at ∼ 10 eV/e

Both electronic and nuclear recoils can generate these three signals, but they do so in
different proportions. Having a detector that can measure for example the phonon and
scintillation signal allows the definition of a discrimination parameter. Also note that the
energies involved are very small compared to the energies measured in a typical collider
experiment. The typical recoil energies measured in XENON are on the order of a few
keV, requiring the use of very sensitive detectors operating in a very low-background
(i.e. shielded from any source of radiation) environment.

13
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Figure 3.1 shows various experiments and what signals they use for detection. For
the rest of this chapter I will focus on the XENON detectors which use both scintillation
and ionization signals to discriminate between electronic and nuclear recoil interactions.

Figure 3.1: Discrimination triangle. Showing many direct detection experiments and
what signals they use for detection, from [14].

3.1 Liquid xenon TPCs
A Liquid Xenon (LXe) Time Projection Chamber (TPC) is a detector that uses the
scintillation and the ionization signal of a recoiling atom or nucleus in the detector. In
this way an event can be classified as either a nuclear or electronic recoil. A TPC also
allows one to reconstruct the position of the interaction in three dimensions, thus making
it possible to use the self shielding properties of the very dense xenon liquid allowing
further background subtraction.

A TPC consists of a volume with target material, either a gas, liquid or both. Several
metal meshes at different heights in the TPC allow various electric fields to be applied. In
the case of XENON the TPC is a dual phase TPC, meaning that part of the TPC is filled
with liquid xenon and part with gaseous xenon. Figure 3.2 shows a schematic of a dual
phase xenon TPC. The two panels on the right show the two different event signatures
expected from an electronic and nuclear recoil event. The largest part of the detector is
filled with liquid xenon and contains an electric field to drift the electrons to the top of the
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detector containing the gaseous xenon. In this relatively small upper region of the TPC
a strong electric extraction field is present to accelerate the electrons that have drifted
up from the liquid. This acceleration of electrons through the gaseous xenon causes
scintillation light to be emitted. Above and below the TPC are many photomultiplier
tubes (PMTs) or light sensors that can detect even a single photon coming out of the
TPC. They are arranged in a pattern that allows for the reconstruction of the position
in the (x, y) plane (orthogonal to the electron drift direction). In places where there
are no PMTs, such as the sides of the TPC, material with a very high reflectivity is
used to reflect as much photons as possible. In this way as much light as possible can be
detected in the TPC, allowing for a very low energy threshold. The reflectivity does have
a negative effect on the position reconstruction accuracy as we shall see in Chapter 4.

Figure 3.2: LXe TPC principle. The left panel shows a diagram of a LXe TPC. Shown
are the liquid and gaseous region, the PMTs, the meshes and electric fields. The S1 and
S2 labels show the places where these two signals are generated. The two panels on the
right show the difference in event signature for a gamma (electronic recoil) event versus
a neutron (nuclear recoil) event. The electronic recoil event has a larger S2/S1 ratio.
From [14].

A particle traversing the TPC and interacting with a xenon atom will generate a
scintillation and ionization signal. A phonon signal is also generated but is lost as heat
(phonon signals are only used by solid detectors). The scintillation photons will travel
through the detector and are detected by the PMTs. This is the first signal (light
signal or S1). The freed electrons will drift towards the top of the TPC and are further
accelerated in the gaseous region, resulting in a second light signal due to proportional
scintillation in the gas phase (charge signal or S2). The ratio in energy between the S1
and S2 signals can be used to discriminate between electronic and nuclear recoil. The
drift time, the time it takes the electrons to drift from the interaction vertex to the
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gas-liquid interface, is a measure of the depth (or z-coordinate) of the vertex. The drift
time separation of S1 and S2 is also illustrated in Figure 3.2. The position of the S2
signal in the plane orthogonal to the electron drift direction can be reconstructed by
studying the hit pattern of the S2 in the top PMT array. The array is directly above the
S2 signal and by measuring how much light each PMT has seen the (x, y) position of the
S2 can be calculated. The location of the original vertex is assumed to have the same
(x, y) coordinate because the electric drift field is uniform, causing the released electrons
to drift vertically upward. Position reconstruction is a major part of this thesis and will
be discussed in detail in Chaper 4

So far the detection principle discussed can be applied to any noble gas dual phase
TPC. Their are several reasons why XENON chose to use xenon instead of for example
the much cheaper argon. Xenon is a noble gas with very good scintillation properties.
Most importantly it is transparent to its own scintillation light. The scintillation photons
in xenon are not produced by exited xenon atoms decaying to a ground state but rather
emitted when xenon dimers (Xe2) that were formed after the recoil decay. These dimers
have different energy levels and thus emit photons that are not absorbed by normal
xenon atoms.

Secondly xenon is also a very heavy element and in liquid form has a mass density
of almost 3000 kg/m3. This means that particles such as gammas only travel a short
distance before they are stopped. This self shielding property of xenon is useful in
separating WIMP signals from background. Since a WIMP is expected to only interact
once within the detector its distribution in the TPC volume should be uniform. But
background signals originating from outside the detector are expected to be stopped close
to the edge of the TPC. This means that a fiducial volume can be defined where a certain
percentage of background events is excluded. Xenon also has no natural radioactive
isotopes causing background signals from the xenon itself.

3.1.1 XENON100
XENON100 [15] is the detector currently being operated by the XENON Collaboration
and will soon be replaced by the new XENON1T detector. XENON100 has been in
operation since 2008 and has set world leading exclusion limits on the WIMP cross
section. XENON100 consists of a dual phase liquid/gas xenon TPC contained in a
cryostat surrounded by shielding material. The number 100 in the name refers to the
order of magnitude of the TPC volume. For the main science runs 161 kg of xenon was
used. Similarly XENON1T will use several tonnes of xenon.

Figure 3.3 shows a diagram and photo of the detector and its shielding. The dia-
gram shows the various detector components. The shielding is built up in layers, using
both copper, polyethylene, lead and water to stop background signals from entering the
detector. All these materials are screened for radio purity and low radioactivity lead is
used as the inner layer of the lead shielding.

The detector is housed at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy.
This laboratory is located underground in the Gran Sasso mountains and houses many
experimental setups requiring a low background, mostly neutrino and dark matter
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Figure 3.3: A Schematic of the XENON100 detector. In the very centre is the TPC,
surrounded by the cryostat and various layers of shielding. A photo shows the cryostat
outside the shield attached to the shield door on the right. Figure from [15].

physics experiments. Also XENON1T is being constructed there. The advantage of
being underground is the reduced flux from cosmic particles. The muon flux in the
underground lab of LNGS is about a factor 106 lower than the muon flux at sea level.
Even though muons can be easily identified in the detector, neutrons induced by a muon
interacting near the detector can not. Since neutrons also cause nuclear recoils in the
detector that can be mistaken for WIMP signals it is very important to have as little
neutron events as possible inside the TPC. Fortunately neutrons will often scatter mul-
tiple times in the TPC causing multiple S1 and S2 signals, this provides a way to cut
these events from the data sample during analysis.

Compared to detectors commonly seen in particle physics XENON100 is very small.
The TPC height and diameter are both 30 cm. Figure 3.4 shows the two PMT arrays
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in XENON100, the difference in patterns is due to the fact that the top PMT array is
used for position reconstruction while the bottom array is optimized for maximum light
collection.

Figure 3.4: Two photos of the PMT arrays of XENON100. The top panel shows the top
PMT array, the PMTs in this array have been ordered in a radial pattern to allow for
better radial position reconstruction. The bottom photo shows the bottom PMT array,
these PMTs are packed in a close grid pattern to maximize light collection efficiency.
from [15].

3.1.2 XENON1T
Currently under construction XENON1T is the latest addition to the XENON series
of detectors, it is also a dual phase TPC containing xenon. Compared to XENON100
it is roughly ten times larger in TPC volume, ten times more sensitive to light and
features a water Cerenkov detector to veto muon events. This muon veto replaces the
layers of shielding that are used by XENON100. It functions as a sub detector and is
in fact a large light tight water tank monitored by multiple PMTs. Inside this tank
the cryostat containing the TPC is suspended. A muon traversing the water tank will



3.1. LIQUID XENON TPCS 19

generate Cerenkov radiation that will be seen by the PMTs. An event in the TPC can
thus be vetoed if at the same time there is also signal in the muon veto.

Figure 3.5 shows a drawing of the water tank containing the cryostat and TPC.

Figure 3.5: A drawing of the water tank of XENON1T containing the support structure
holding the cryostat with the TPC. The water tank is over three storeys high.

The TPC of XENON1T is about three times as high as the one in XENON100,
giving a maximum drift length for the electrons of 1 meter. XENON1T uses round
PMTs instead of square ones. Both PMT arrays are organized in a hexagonal pattern
to ensure maximum light collection.
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Chapter 4

Position Reconstruction

Position reconstruction is a crucial part of the dark matter analysis. It allows cutting
away background events at the edges of the detector and making accurate position
dependent corrections. The depth or z-coordinate of the interaction is calculated from
the drift time and is independent from the position reconstruction presented here. To
determine the depth of an event requires both an S1 and an S2 signal while an (x, y)
position can be calculated for each S2 separately.

The drift time is a very good estimator for the depth and the z-coordinate can be
determined much more accurately than the (x, y) position. Typically the depth of the
interaction is known to ∼ 0.3 mm whereas the (x, y) position is known to ∼ 3 mm
precision.

The S2 hit pattern is used to reconstruct the (x, y) position. It is a list of values
for each S2 peak and tells how many photoelectrons (pe) were seen by which PMT.
The number of pe is directly proportional to the number of photons entering the PMT
by multiplying the number of pe by the quantum efficiency (QE) of the PMT. QEs in
XENON100 are typically around 30 %.

Figure 4.1 shows a typical XENON100 hit pattern. The top panels show the hit
pattern in both the top and bottom PMT array for a single S1 signal. In this case the
S1 is only seen in the bottom array, this is mainly due to the reflectivity of the liquid-gas
interface causing most of the S1 photons to be reflected down to the bottom array.

The bottom two panels show the hit pattern of an S2 signal. In the top array a
signal is seen that is localized. From this pattern the position will be calculated. The S2
signal is typically much larger than the accompanying S1 signal and many of the photons
generated also reach the bottom of the TPC. As can be seen in the figure, the bottom
hit pattern of the S2 is much more uniform and the information about the position of
the S2 is lost. This bottom hit pattern is used the calculate the total energy of the S2,
the top pattern is not used for energy calculation since large S2s often saturate one or
more PMTs in the top array.

Note that the outer ring of PMTs in the PMT patterns in Figure 4.1 are not inside
the TPC but directly outside and thus optically separated. This region is also filled
with liquid xenon and is used as and active veto. Events in the TPC are rejected if
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a coincident signal is seen by these veto PMTs because such events are very probably
background events. For example a neutron scattering once in the veto and once in the
TPC.

In XENON100 several PMTs have broken since the detector was commissioned, this
includes four PMTs in the top array. This has an effect on position reconstruction as
will be shown in Subsection 4.3.

Figure 4.1: Typical hit pattern in XENON100. The left and right panels show the top
and bottom PMT array respectively. The top panels show an S1 hit pattern and the
bottom panels an S2 hit pattern. Colors indicate the amount of photoelectrons seen in
the PMT. The black marker shows the position of the S2 top hitpattern as reconstructed
by the Neural Network. From [15].

4.1 Reconstruction algorithms

Determining an (x, y) position for all S2 peaks found in an event can be done in several
different ways. The most naive way of obtaining a position from an S2 hit pattern is
by looking at the position of the PMT receiving the most signal, the ‘maximum PMT’
method. This method also has the lowest resolution since (in the case of XENON100)
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it can only give 98 (minus 4 dead PMTs) unique positions, namely the positions of the
live PMTs in the array. One step up is to compute the charge weighted sum of the
hit pattern. This method has a resolution of ∼ 1 cm, also it is biased towards the
centre of the TPC. Especially at large radii (close to the edge of the TPC) events are
biased towards the centre since the hit pattern will always lie within the TPC. The
main position reconstruction method used in XENON100 is a Neural Network, this has
a resolution of ∼ 3 mm and no bias is seen in Monte Carlo events.

It would also be very helpful if a position reconstruction algorithm provided a way of
quantifying the uncertainty in the reconstructed position. Having an accurate position
reconstruction with a quantified uncertainty will (together with a z coordinate from the
drift time) allow us to maximally use the fiducialization of the detector volume and
position dependent corrections.

4.1.1 Light-Collection Efficiency
Many position reconstruction algorithms that go beyond a simple weighted sum or max-
imum PMT location have to take into account the detector geometry. Since the TPC
walls are made of Teflon to reflect as many photons as possible the geometry influences
how photons are distributed.

To find the probability of a photon to reach a certain PMT from a certain origin Light
Collection Efficiency (LCE) maps are used. These maps are the result of simulations
of the TPC. Given the geometry of the detector a photon can be traced through the
TPC. For each PMT in the top array an LCE map is made. For all (x, y) positions on a
regular grid (grid spacing of 2.5 mm) at the gas-liquid interface photons are isotropically
emitted and some hit the specific PMT.

Figure 4.2: Left panel: Interpolated LCE map for PMT 86 showing the relative probabil-
ity of a photon from position (x, y) to arrive at the PMT. Right panel: The interpolated
total LCE map of all top PMTs combined showing the absolute probability of a photon
from position (x, y) to be seen by any PMT.
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Figure 4.2 shows an LCE map for both a specific PMT and the total LCE. The
specific map shows the probability for a detected photon originating from position (x, y)
to be seen by PMT 86. The probability is of course maximal when the photon is emitted
directly below the PMT since it covers the largest solid angle. Note that due to the
reflectivity of the TPC and the detector geometry the LCE map is non-trivial and has
to be simulated. It is not possible to calculate the LCE analytically. The total LCE in
Figure 4.2 shows that the probability for a photon produced at the gas-liquid interface
to be detected by any top PMT is ∼ 16%. It also shows the positions of the PMTs in
the top array where this probability is slightly higher. The individual LCE maps are
used for the position reconstruction, since by sampling from the LCE maps an expected
or Monte Carlo hit pattern can be constructed for an event originating from a certain
position.

4.1.2 Previous position reconstruction algorithms in XENON100
The data processor of XENON100, xerawdp (XENON raw data processor), uses three
different algorithms for position reconstruction: a Neural Network (NN), χ2 method and
a Support Vector Machine (SVM). Each of these algorithms takes an S2 hit pattern as
input and gives an (x, y) reconstructed position as output. The χ2 method also needs a
simulated Light-Collection Efficiency (LCE) map as input, as output this algorithm also
provides a goodness-of-fit parameter called χ2 to quantify how well the event was recon-
structed. Cutting on high χ2 events is one of the ways to exclude poorly reconstructed
events from analysis as will be shown in Chapter 5.

Secondly the χ2 algorithm can calculate this χ2 value not only for its own recon-
structed position but also for other positions, such as the position reconstructed by the
Neural Network. It is in fact this value, the χ2 of the NN, generated by the χ2 method
that is used as a quality parameter in the analysis since the NN itself only provides a
(x, y) position.

The NN and SVM are both trained machine-learning algorithms. They are trained
using the hitpatterns obtained in Monte Carlo simulations that account for the detector
geometry and reflections of light inside the TPC (information that is also contained in
the LCE maps). At a certain known (x, y) position isotropically emitted photons are
simulated and the hit pattern is stored. These hit patterns can then be reconstructed by
the various position reconstruction algorithms and the reconstructed position compared
to the true position.

NN is the main algorithm used in analysis since it proved the most accurate when
tested on MC data. Figure 4.3 shows a way to quantify the performance of the three
algorithms on MC data. For each hit pattern the true position is known. The figure
shows the euclidean distance between the true and reconstructed position for 105 events.
Confirming that the Neural Network has a lower position reconstruction error on average.
The accuracy of a Neural Network depends on its training. If the events used in training
are not representative of the events that are later reconstructed the Neural Network will
not work properly. In this sense such a method is a black box. Other methods such as
the χ2 method do have a physical motivation as explained in section 4.2.
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Figure 4.3: Comparison of reconstructed event positions to the MC truth position
with three reconstruction algorithms implemented in xerawdp; the Neural Network,
χ2 method and Support Vector Machine. This result was the main motivation to choose
the Neural Network as the main position reconstruction algorithm in XENON100.

4.1.3 Position reconstruction in XENON1T
Position reconstruction in XENON1T is implemented as part of a new data processor
called PAX; the Processor for Analyzing XENON. PAX is a software tool developed
mainly at Nikhef, its main use is to process the raw data produced by the XENON1T
detector. It produces output that is used by analysts in their physics analysis. PAX
can also run different detector configurations such as a XENON100 configuration. This
allows developers to check and validate the workings of PAX on XENON100 data. In
chapter 6 I’ll run a PAX analysis on XENON100 data to try and classify unusual events.
PAX currently contains four position reconstruction algorithms: the maximum PMT
method, weighted sum position, the XENON100 Neural Network and a new χ2 algorithm
(called χ2

γ ). The last two algorithms work only for the XENON100 configuration but
the χ2

γ method can be run on XENON1T provided that an LCE map for its TPC is
made. The goal of the new implementation of the χ2

γ method is to provide a physically
motivated position reconstruction method for XENON1T data.

4.2 χ2
γ Reconstruction

The χ2
γ method is based on the calculation of a test statistic given a hit pattern and

simulated LCE map. The minimum function value will yield the reconstructed position



26 CHAPTER 4. POSITION RECONSTRUCTION

and the function value itself is a goodness-of-fit parameter called χ2
γ .

In short a χ2 statistic will allow to compare data to model values, a lower χ2 meaning
a better fit. In our case we compare an S2 hit pattern (number of photons seen by each
top PMT) to the expected pattern if the event originated from position (x, y), finding
the (x, y) which gives the best agreement yields the reconstructed position. However,
an S2 hit pattern has to be modelled with Poisson statistics since there are generally a
low number of counts in a PMT. In this case a χ2 statistic will not accurately model the
data as described by Mighell [16].

Fortunately a modified χ2 statistic exists for low counts, this is the modified χ2

distribution called χ2
γ as proposed by Mighell [16].

As noted before, the method uses an LCE map, this simulated map gives the proba-
bility for a PMT in the top array to receive a photon out of the total photons detected
in the top array from position (x, y), pi(x, y), where i is the PMT index and runs from
1 to 98. One complication is that the LCE map is not continuous but simulated on a
grid. To provide the reconstruction algorithm with a continuous LCE, interpolation is
used.

Converting the number of photoelectrons seen by PMTi (Npe,i) to the number of
photons seen by PMTi (ni) is done by using the Quantum Efficiency (QEi) of the given
PMT.

ni =
Npe,i

QEi
. (4.1)

Summing ni over all contributing top PMTs gives the total number of photons seen:

N top
ph =

∑
i∈PMTs

ni. (4.2)

Now the test statistic, from the χ2
γ distribution, is calculated as follows:

T (x, y) =
∑

i∈PMTs

(ni + min(ni, 1)−N top
ph pi(x, y))

2

σ2
i

, (4.3)

with σ2
i given by:

σ2
i = n2

i [(
σ2
QE,i

QE2
i

)2 + (
σgain,i
gaini

)2] +N top
ph pi(x, y) + 1. (4.4)

σ2
i includes the uncertainties in the PMT properties related to the gain (with uncer-

tainty σgain) and QE (with uncertainty σQE).
The adaptation of equations 4.3 and 4.4 from the original distribution proposed by

Mighell is made by Yuan Mei [17] who implemented the χ2 method in XENON100.
To distinguish between the implementation in Xerawdp and this new implementation

in PAX I’ll use χ2 to denote the Xerawdp (old) implementation and χ2
γ to denote the

(new) implementation in PAX.
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Note that the sum over PMTs in equation 4.3 involves only live PMTs. If a PMT
is broken and cannot physically give a signal it will not be used in the computation of
T (x, y) since the signal it would have given is not known. A live PMT that does not
see any light however is used since seeing no light also provides information about the
position of the event. This summing of the set of live PMTs also means that even if
PMTs are added or removed per event the method still works (provided that all PMTs
have an LCE map). This feature is not present in the Neural Network which is trained
for a specific PMT pattern. If a PMT fails the network needs to be retrained. The χ2

γ

method stills works even at positions close to the broken PMT.
The LCE map values are normalized on the top PMT array. If a PMT is added or

removed the values are renormalized to ensure correct calculation of T (x, y):

∑
i∈PMTs

pi(x, y) ≡ 1. (4.5)

T (x, y) is a continuous function but is only defined inside the TPC. At radii larger
than the TPC radius its function values are set to infinity to assure the minimizer only
reconstructs inside the TPC (T (x, y) ≡ +∞ | x2 + y2 ≥ R2

TPC).

Figure 4.4: Calculation of T (x, y) for a typical hit pattern. Blue dots denote PMT
locations, the numbers the amount of pe seen. The green dot labelled ‘Minimum’ shows
the location of the minimum function value. The black circle denotes the TPC radius,
T (x, y) is +∞ outside it, but for this plot set to 0.
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Figure 4.4 shows an example of T (x, y) being calculated for a typical hit pattern.
The blue points are PMT positions where photons are seen, the number denotes how
many photoelectrons. The heat map shows the function values of T (x, y). The green
point at ‘Minimum’ denotes the minimum function value.

Finding the global minimum of T (x, y) given a certain hit pattern will yield the
reconstructed position. The challenge for a good position reconstruction algorithm is to
find the global minimum of this function accurately and fast.

Secondly, the value of T (x, y) at the reconstructed position is the goodness of fit
parameter (χ2

γ). As noted before also other reconstruction algorithms can use the χ2
γ

method to calculate a goodness-of-fit for their reconstructed position. In this case only
a single function evaluation has to be made, namely T (x, y) at the desired position.
Suppose the Neural Network reconstructs an event at (xNN , yNN ) the corresponding χ2

γ

value is then directly calculated as T (xNN , yNN ).
The last feature of using a χ2

γ method is the ability to compute a confidence region
at a desired confidence level. All values of T (x, y) that are increased by 2.3 describe the
1σ confidence contour. For an increase of 6.18 the 2σ confidence contour is obtained.
Figure 4.5 shows an example of these confidence contours surrounding the reconstructed
position. The heat map shows the T (x, y) function values zoomed in and centred on
the reconstructed position. The minimizer start and end point are also plotted. The
contours may have various shapes depending on the hit pattern and position in the
TPC. The 1σ contours are often roughly circular but the 2σ contours often have more
indistinct shapes.

Figure 4.5: Example of the 1σ and 2σ confidence contours around a reconstructed posi-
tion. The heat map shows the T (x, y) function values. The green dot ‘Minimum’ shows
the found minimum value. ‘Start’ denotes the starting position of the minimizer.
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4.2.1 Description of the χ2
γ position reconstruction in PAX

The χ2
γ implementation exists as a plugin in PAX that calculates the position of each S2

peak with an energy above a certain user-defined threshold. Besides the x and y position
also the goodness-of-fit (χ2

γ) and number of degrees of freedom (ndf) are stored.
The plugin can also append a χ2

γ value and ndf to already calculated (x, y) positions
by other reconstruction algorithms. Such as the position of the charge weighted sum of
the hit pattern or the Neural Network.

PAX is written in the Python programming language and uses many high level
modules (or libraries) for its computation such as SciPy [18]. The biggest advantage
being that it allows for very fast code development that lets the developers focus on the
physics instead of coding details. The biggest drawback being the sacrifice in speed.

To get continuous LCE map values SciPy interpolation is used (specifically a rectan-
gular bivariate spline approximation). This ensures that T (x, y) is a continuous function.

To minimize the function the plugin uses a SciPy minimizer using the Powell [19]
method. The starting position for the minimizer or seed is the position as reconstructed
by the Neural Network. In case there is no Neural Network reconstruction present for
the specific peak the charge weighted sum position of the hit pattern is used.

Currently the per-event errors or confidence contours are not calculated since they
require to much computation time. A first step towards a solution is to calculate the
radial confidence level only since the fiducial volume is rotation symmetric.

The plugin currently uses the XENON100 LCE maps and PMT mapping, these are
loaded via a configuration file and can be swapped for XENON1T equivalents in the
future. To use the χ2

γ method on XENON1T data, only the new LCE maps and PMT
properties need to be changed.

4.3 Performance
Currently the plugin is optimized for accuracy, meaning that the minimizer makes sev-
eral function evaluations (∼ 50 per peak), meaning many LCE map lookups and many
interpolations. Currently the LCE map lookups (and subsequent interpolation) are the
dominant factor in the speed of the plugin, a reconstruction of one S2 peak now takes
∼ 100 ms.

The accuracy of the position reconstruction plugins is determined by reconstruc-
tion of Monte Carlo events. The position reconstruction error is the Euclidean dis-
tance between the known and reconstructed position. Figure 4.3 showed the accuracy
for the different position reconstruction algorithms in Xerawdp, the data processor for
XENON100. Now the same plot is made for the position reconstruction algorithms in
PAX. The new implementation of χ2

γ , the XENON100 neural network (which will only
work for a XENON100 setup since it is trained on a specific PMT pattern), charge
weighted sum position and maximum PMT position are used. The Support Vector Ma-
chine method that is part of Xerawdp is not implemented in PAX and not used here.
The Monte Carlo events are the same as the ones used in Figure 4.3 and were part of
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the validation sample of the Neural Network.
Figure 4.6 shows the absolute position reconstruction error for each of these algo-

rithms using PAX. The Neural Network and χ2
γ method both show very similar results to

their implementations in the XENON100 data processor shown in Figure 4.3. This was
expected from the Neural Network since its implementation is straightforward and its
output deterministic. The fact that also χ2

γ shows similar behaviour is less trivial since
its reconstruction depends on different interpolation and minimization algorithms. The
weighted sum and maximum PMT methods show very poor results with errors extending
beyond 1 cm.

Figure 4.6: Absolute position reconstruction error for the four position reconstruction
algorithms in PAX running a XENON100 configuration. This uses 105 full Monte Carlo
events. These Monte Carlo events correspond to S2 signals of 500 pe and were also used
to make Figure 4.3.

One question arising from Figure 4.6 is whether or not the χ2
γ method can ever be

better than the Neural Network. Intuitively the answer is yes since the χ2
γ method is

the model motivated by the underlying physics. Since the Neural Network is a function
approximator it is expected to approximate (and thus never be better) than the χ2

γ

method.
To test the above assumption a different Monte Carlo is used to test the position

reconstruction algorithms in PAX. Figure 4.3 used Monte Carlo events that were the
result of simulating photons in the detector. Since an LCE map exists the probabilities
of photons arriving at various PMTs are known. This makes it possible to construct a hit
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pattern by sampling from the LCE map. In this case the hit pattern would be the result
of a perfect Monte Carlo simulation. Any reconstruction errors in this case are caused
by intrinsic uncertainties in the reconstruction algorithm. Such as the interpolation of
the LCE map, the accuracy of the minimizer or uncertainties in the PMT properties.
Another benefit of sampling from the LCE map is that hit patterns for different energy
S2s can be made, whereas the full Monte Carlo provides only one energy.

Figure 4.7 shows the result of reconstructing 105 MC hit patterns sampled from
the LCE map, simulating 500 pe S2s similar to the energy of the full Monte Carlo
events. Each hit pattern is reconstructed by the four reconstruction algorithms currently
implemented in PAX. The new χ2

γ method, the XENON100 Neural Network, the charge
weighted sum and the maximum PMT. As can be seen the χ2

γ method has the lowest
error followed by the Neural Network. The weighted sum and maximum PMT methods
do not come close to their result. By using the LCE MC hit patterns the χ2

γ method is
better than the neural net. This result is more in line with the original assumption of
the Neural Network being an approximator for the χ2

γ method, but is hard to explain
after having seen Figure 4.3. One explanation could be that the hit pattern sampled
from the LCE map is the result of a perfect Monte Carlo. It results in lower errors since
it corresponds to an idealised scenario.

Figure 4.7: Absolute position reconstruction error for all position reconstruction algo-
rithms in PAX running a XENON100 configuration. Using 105 Monte Carlo hit patterns
sampled directly from the LCE maps corresponding to 500 pe S2 signals. The different
Monte Carlo results in a much lower position reconstruction error compared to Fig-
ure 4.6.
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When XENON1T is nearing completion, LCE maps will be made and Monte Carlo
studies performed by the collaboration. This allows us to test the various reconstruction
algorithms as was done in XENON100. For the remainder of this chapter the LCE map
Monte Carlo will be used.

4.3.1 Local position reconstruction errors
Figure 4.7 also shows that the tail of the χ2

γ reconstruction is higher at very large errors
than the tail of the Neural Network reconstruction. This behaviour can be explained by
looking at Figure 4.8 and Figure 4.9. These two figures show the same 105 reconstructed
S2 peaks (of 500 pe) as in Figure 4.7. Each bin shows the average position reconstruction
error of events in the bin (binned by true position). The arrow in each bin points to the
mean reconstructed position of the events in the bin. In this way any bias can be seen.
The PMT positions are marked by green squares, dead PMTs are marked in red.

Figure 4.8: Errors on reconstructed positions of the χ2
γ method. Hit patterns of 105 S2

peaks of 500 pe are simulated by sampling from the LCE map and reconstructed. Events
are binned in the (x, y) plane, colors show the mean position reconstruction error in the
bin. Arrows are the mean bias of the events in the bin. PMTs are marked by green
squares, dead PMTs in red. The black circle denotes the TPC radius, the grey circle
denotes the maximum extend of the fiducial volume used by XENON100.
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Figure 4.8 shows the results for the χ2
γ method. Across most of the x, y-plane small

errors between 1-3 mm are seen. Also at the positions of the four dead PMTs events are
properly reconstructed. Near the edge of the TPC larger errors are seen. These explain
the tail of the distribution in Figure 4.7. These edge effects are caused by the minimizer
and can occur when the minimizer tries to reconstruct outside the TPC radius. Near all
live PMTs the reconstruction error is slightly larger. This may be an effect due to the
physical size of the PMTs (∼ 2.5 cm).

Figure 4.9 shows the results for the Neural Net. The errors are higher but more
uniform. The Neural Network also reconstructs near dead PMTs since it was retrained
for this specific PMT pattern. In the majority of the (x, y) plane however, position
reconstruction errors of the χ2

γ method are smaller then those reported by the Neural
Net in Figure 4.9 favoring the χ2

γ method. The Neural Network has slightly larger errors
overall and was is retrained to cope with the broken PMTs.

Figure 4.9: Errors on reconstructed positions of the Neural Network. Same labels etc.
as in Figure 4.8.

Figures 4.8 and 4.9 show the errors from the true positions. Appendix A shows several
more of these plots for different energy S2 peaks and for the other two algorithms used.

At higher energies both the Neural Network and χ2
γ method become more accurate.

At lower energies they are less accurate. In all cases the χ2
γ method is the most accurate
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of all four algorithms.
As another performance check the so called leakage events are investigated. A leak-

age event is defined as an event that originates from one side of the fiducial volume and
is reconstructed on the other side. Leak-in meaning an outside event is reconstructed
inside. Leak-out is the opposite process. Figure 4.10 shows the leakage for the recon-
structed events by the χ2

γ method. In this case ∼ 7% of the events that originate outside
the fiducial volume are reconstructed inside. Table 4.1 shows the percentages for all
algorithms used. The χ2

γ and Neural Network showing similar figures. As can be seen
the inward bias of the weighted sum reconstruction is so large that almost all events are
reconstructed inside the TPC. Even more than leak in with the Max PMT method.

Figure 4.10: Radial errors on 105 reconstructed S2 peaks of 500 pe by the χ2
γ method.

The vertical black line represents the maximum radial extent of the XENON100 fiducial
volume. The events marked in red are events that occur outside of the fiducial volume
but are reconstructed inside. Events marked in blue occur inside the fiducial volume but
are reconstructed outside. The red line being the reconstructed fiducial volume line.

The final feature of the χ2
γ method is the determination of confidence contours per

reconstructed position. Figure 4.5 showed that these contours can be roughly circular
but also that they can have a more indistinct shape. To provide a measure of how large
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Algorithm Leak-in (%) Leak-out (%)
χ2
γ 7 1

Neural Network 6 1
Weighted Sum 97 0
Max PMT 92 0

Table 4.1: Percentage of leakage events for the different position reconstruction algo-
rithms.

these confidence regions are the area is calculated for 103 events. Both 1σ and 2σ areas
are shown in Figure 4.11. The figure shows how the area of the contours is roughly
constant, slightly increasing towards larger radii.

Figure 4.11: The area of the 1σ and 2σ contours as function of the radius squared.
Results of 103 events (500 pe S2s).
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Chapter 5

Data Quality Analysis

Chapter 4 explained in detail how position reconstruction works. This chapter shows
several ways of using the position of events for data quality. It contains the work on
three data quality cuts for the XENON100 run 14 analysis. Run 14 was started on May
2014 and will probably continue until the detector is decommissioned. Run 14 is not a
science run to search for dark matter but is a calibration run used for studies on detector
response and new sources.

XENON100 is essentially a counting experiment. The detector, shielded against as
much radiation as possible, is left to record data for a certain period of time. The events
that found are (mostly) background events from various sources that are still present in
or around the detector. By placing radioactive sources of known type and strength close
to the detector calibration data can be collected. This calibration data is then used to
quantify how the detector responds and which physics events generate what signals.

Background models can be made for the electronic recoil events by using data from
gamma sources. Neutron sources provide a model for nuclear recoils modelling WIMP
interactions. The most important sources are:

1. Americium-beryllium (AmBe): a neutron source that is used to model the WIMP
interactions. The emitted neutrons have a typical energy of a few MeV, extending
up to 10 MeV.

2. Cobalt-60 (60Co): a β/γ source modelling the electronic background. Emitted
photons have energies of ∼ 1 MeV.

3. Yttrium-beryllium (YBe): a low energy neutron source first used in run 14. The
emitted neutrons have exactly 152 keV energy. This source is especially useful
to calibrate the detector at very low energies. The data is used in the low-mass
WIMP analysis.

In the following sections AmBe data is often used to define quality cuts that can
later be used in analysis. A cut selects events based on a certain requirement. Such as
the S2 energy that needs to be in a certain range for the event to be accepted. For more
complicated cuts a cut parameter is defined (often as a function of other parameters).
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A data quality cut selects good events and rejects bad events. ‘Good’ and ‘bad’ have
different meanings depending on the cut. In the case of the first two cuts in this chapter
a bad event means an event that has a poor (x, y) reconstruction. In the third case it
means an event of which the main S2 has an unusually high or low asymmetry.

A sample of AmBe data, often on the order of 106 events, is used to define a quality
cut. To these events a certain pre-selection is applied to remove nonphysical events from
the sample. The following pre-selection is applied to all data used in this chapter:

1. Radial or fiducial volume cuts: The outermost regions of the TPC are excluded.
The radial cut removes events at a radial position larger than 150 mm excluding
the outermost 3 mm of the TPC. The fiducial volume cut defines an ellipsoidal
inner volume containing 34 kg of liquid xenon. This fiducial cut is also used in the
dark matter analysis.

2. S2 Energy range: The main S2 of the event has to have an energy of at least 150 pe
and not more than 5000 pe.

3. S1 coincidence: The main S1 of the event has to be seen by at least two PMTs.

4. S1 noise and S1 entropy: Cut on noisy S1 peaks based on per-PMT noise.

5. S2 Top signal: The main S2 of the event has to deposit energy in the top PMT
array.

6. Multiple scatter cuts: Remove an event if the second largest S2 has an energy
above a certain threshold.

Using the event sample obtained after applying the pre-selection a two dimensional
histogram is made of the cut parameter versus the main S2 total energy. This histogram
is than binned in energy bins of 100 pe. Each bin is fitted using an appropriate function.
A quantile is than calculated given the desired acceptance of the cut. This results in the
cut value (value above which the event is cut) for the specific energy bin. After repeating
the process for all energy bins a continuous cut value can be constructed by fitting the
cut values.

5.1 χ2 Data quality cut
The χ2 referred to in this chapter is different from the χ2 used in Chapter 4. In this
chapter the χ2 for a certain S2 peak is defined as the goodness-of-fit of the position
found by the Neural Network. This value is then divided by the top array coincidence
(the number of PMTs in the top array contributing to the signal) minus one. This is the
reduced χ2 or χ2/ndf (ndf = number of degrees of freedom).

χ2/ndf ≡ Neural Network position goodness of fit
Number of contributing PMTs in top array − 1

(5.1)
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The goal of this data quality cut is to exclude poorly reconstructed events from the
data sample. This is done by defining a certain maximum reduced χ2 value above which
an event is cut. Events with a high reduced χ2 are often multiple scatter events that
can not be properly reconstructed by the position reconstruction algorithms.

The cut value is defined in such a way as to cut a fixed percentage of the event.
The cut is defined to have an acceptance of 99.5%, meaning the worst 0.5% of the
sample is cut. This data quality is cut also dependent on the energy of the S2. The
need for defining an energy dependent cut in this way arises from the fact that position
reconstruction is less accurate for lower energy events. To keep a fixed percentage of the
events, the acceptance percentage, the cut value has to be higher at the low energy end.
In earlier runs several χ2 cuts have been used with different cut values, table 5.1 gives an
overview. For the standard analysis a constant cut value is used, the S2-only analysis (a
low-mass dark matter analysis, using only S2 signals) first used an S2 energy dependent
value, mainly because the S2 range used is much smaller and this is the region where the
χ2 varies most. Above 1000 pe the χ2 is mostly flat with only a small linear dependence.

Analysis Cut Value Acceptance
Run 08 and 10 χ2/ndf < 7 99.2 %
Run 12 χ2/ndf < 6 99.44 %
S2-Only χ2/ndf < 1.9− 4.3 logES2 + 0.73

√
ES2 − 0.0085ES2 98 %

Table 5.1: Previous χ2 cuts, ES2 being the total energy of the main S2 peak in the event.

Figure 5.1: Goodness-of-fit of the Neural Network reconstructed position expressed as
χ2/ndf versus the main S2 energy (S2sTot[0]). The color axis shows the number of
counts. The main population rises at low energy. At χ2 = 0 a second population is
visible.

Figure 5.1 shows the expected distribution. The average χ2/ndf is roughly constant
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for large energies and only rises at low energy. The population at very low energy and
χ2/ndf = 0 is unexpected. Figure 5.2 shows the (x, y) position of these events. These
events practically all originate from the same (x, y) position indicating a hotspot at
(−2.5 mm,−103.5 mm). They can be explained as an artefact of the neural net position
reconstruction and also affect other cuts as will be shown in section 5.2.

Figure 5.2: (x, y) position of all events in
Figure 5.1 with χ2/ndf < 1. The color
axis shows the number of counts. Events
in the whole TPC are shown (no fiducial
volume cut). A hotspot can be seen at
position (−2.5 mm,−103.5 mm), within
the fiducial volume.

Figure 5.3: Histogram of χ2/ndf in
energy range 453 pe < S2 Energy <
552 pe. Data is fitted with a Gaussian
convoluted with an exponential.

Next the histogram in Figure 5.1 is sliced vertically and the distribution in each
energy bin is fitted using a Gaussian convoluted with an exponential. The first bin
(lowest χ2 value) of each slice is not used in the fit to ensure that the result is not
influenced by the χ2 = 0 population. The fit function describes the data well, with a
χ2/ndf (of the fit to data) all below 2. Figure 5.3 shows an example slice from Figure 5.1.

For each slice the 99.5% quantile level from the fit is calculated and this cut value,
together with its error, is put into a new histogram. The error is estimated by propa-
gating the errors of the fit. Figure 5.4 shows the resulting cut. At higher energy a more
flat cut value of ∼ 4.5 is seen, at low energy the cut value rises because the position
reconstruction is less accurate here. For S2 energies above 5000 pe the cut value at
5000 pe can be used.

The fit function in Figure 5.4 is the following:

f(x) = 32.1− 5.79log(x) + 0.488
√
x− 0.00266x. (5.2)

Providing the following data quality cut for an event with main S2 energy (ES2):

χ2/ndf < 32.1− 5.79log(ES2) + 0.488
√

ES2 − 0.00266ES2. (5.3)

A last check is made to see what events are in the low S2 energy range and have a high
χ2/ndf value, since the χ2 cut is a cut on poorly reconstructed events, the hit patterns
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Figure 5.4: Cut values versus S2 total energy (S2sTot[0]). The data points show the
99.5% quantile levels for each energy bin. The fit provides a continuous cut value. The
fitfunction is an ad hoc function used to describe the data: f(x) = 32.1− 5.79log(x) +
0.488

√
x− 0.00266x

are checked. The event window is 150 pe < S2 Energy < 250 pe and 6.5 < χ2/ndf < 7.5,
these events have a high χ2/ndf but are still below the cut value and should thus be
properly reconstructed for this cut to be useful. Figure 5.5 shows two hit patterns. When
looking at the top hit patterns (left panels) the black marker (reconstructed position)
is in agreement with the position of the event as seen by eye. The energy of the top
hit patterns however is much lower than we would expect from S2 signals in the given
energy range. This is explained when we look at the bottom hit patterns. Both events
in Figure 5.5 show a very large contribution from PMT 167 and, to a lesser extent,
PMT 166 to the event. During run 14 these PMTs were found to be very noisy. In this
case they contribute energy to a low energy S2 causing its total energy to be larger and
polluting the data sample.

5.1.1 Redefining the cut
One way of coping with noisy PMTs in the bottom array is by redefining the cut versus
the S2 top energy alone. Repeating the entire analysis in exactly the same way, the
following cut is obtained.

χ2/ndf < 10.07− 0.7568log(ES2,T op)− 0.02179
√

ES2,T op + 0.0005446ES2,T op. (5.4)

For energies larger than 2350 pe, the constant cut value of 4.427 is used. Figure 5.6
shows the difference with the previous cut. At low energy the cut value does not rise as
steeply as it did when taking the total energy of the S2 which is effectively shifted to
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Figure 5.5: Hit patterns of high χ2/ndf , low energy events. Color axis shows the number
of pe seen. These events are properly reconstructed S2s with a large energy contribution
from a noisy PMT.

the left. Concluding that the pollution caused by events with high energy contributions
from noisy PMTs is gone.

Figure 5.6: Cut values versus S2 total top energy (S2sTotTop[0]). The redefined cut is
lower because the event sample is cleaner. There are no noise contributions from the
bottom PMT array.
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5.2 Position discrepancy cut
The position discrepancy cut is another way to cut on poorly reconstructed events. This
cut removes an event if the various position reconstruction algorithms disagree on the
position of the S2 by more than the cut value. The cut parameter, called ‘posparam’, is
defined as:

posparam ≡
√

(xNN − xχ2)2 + (xNN − xSVM )2 + (yNN − yχ2)2 + (yNN − ySVM )2.

(5.5)
With NN, Chi and SVM being the Neural Network, χ2 method and Support Vector

Machine respectively.

Figure 5.7: Position discrepancy versus main S2 energy (S2sTot[0]) in run 14 AmBe
data. The color axis shows the number of counts.

The same event sample is used as before. Figure 5.7 shows posparam versus the
main S2 energy. At lower energies the position discrepancy rises as lower energy S2s are
harder to reconstruct. Some artefacts are seen in the lowest energy bin at a posparam
value of ∼ 4.5, these events show up as the bright green and red bins in Figure 5.7.
Figure 5.8 shows the distribution of posparam in the first energy bin (158-257 pe). The
distribution is fitted with an exponentially modified Gaussian and shows the outliers
seen in Figure 5.7. These events originate from the same detector hot spot as seen in the
χ2 cut analysis. The (x, y) position of these outlying events are shown in Figure 5.10.

Again the solution lies in the redefinition of this cut with respect to the S2 energy in
the top array only. This is a more natural choice since the position reconstruction only
relates to the top hit pattern and thus only the energy deposited in the top array. Since
all noisy PMTs are in the bottom array we will have a clean sample. There will be no
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Figure 5.8: The first energy bin of Fig-
ure 5.7, showing the posparam distribution
fitted by an exponentially modified Gaus-
sian. Three bins are clear outliers, their
(x, y) position is plotted in Figure 5.10.

Figure 5.9: The first energy bin of Fig-
ure 5.11. A much cleaner sample than in
Figure 5.8, no outliers are seen.

Figure 5.10: (x, y) position of events with 3 < posparam < 5 and main S2 energy
< 200 pe. The color axis shows the number of counts. Zoomed in around the only hot
spot.

pollution from lower energy events that end up in the event sample because a bottom
PMT is increasing the recorded S2 total energy. Figure 5.11 shows posparam versus
the S2 Total Top energy. Figure 5.9 shows a vertical slice in the same energy region as
Figure 5.8, the outlier events due to the hot spot are gone and the fit function now fits
the data well.

Now an energy dependent cut value with a specific acceptance can be obtained by
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Figure 5.11: Posparam versus the main
S2 energy (S2sTot[0]) in the bottom ar-
ray. The color axis shows the number of
counts.

Figure 5.12: Cut values of posparam at
the 99.5% acceptance, defined on the S2
Total Top energy. For energies larger than
2600 pe the value at 2600 pe is used.

taking the quantile at the desired acceptance as was also done for the χ2 data quality
cut. An acceptance of 99.5% is used again. Figure 5.12 shows the resulting cut values.
The continuous value is given by the fitted function:

posparam < 12.7+1.61log(ES2,T op)−1.083
√
ES2,T op+0.0176ES2,T op−1.78·10−06E2

S2,T op.
(5.6)
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5.3 Asymmetry cut
A cut on the asymmetry of the main S2 in an event can remove events that originate
from the gaseous region of the detector. These events have a very high asymmetry S2
since they occur above the liquid level. Noise caused by PMTs in the bottom array
pollutes the event sample with very low asymmetry events that can also be cut with an
asymmetry cut. Chapter 6 looks at a population of low S2 signals that are not due to
noise of PMTs. The S2 asymmetry is defined as:

S2 Asymmetry ≡ S2 Total Top energy − S2 Total Bottom energy
S2 Total energy . (5.7)

This section defines a cut that only keeps S2s with a ‘correct’ asymmetry. This cut
exists in the run 12 analysis and is updated here for run 14. The run 12 cut is simply:

−0.2 < S2 Asymmetry < 0.25. (5.8)

The S2 asymmetry is compared for three different data sets, the ‘noise free’ run 12
AmBe data, run 14 AmBe data and reprocessed AmBe data where the five most noisy
PMTs are removed from data processing.

Figure 5.13 shows the asymmetry in run 12 (left panel) and run 14 (right panel). Both
panels show the expected distribution at asymmetry ∼ 0.1. For a certain energy bin the
asymmetry is distributed as a Gaussian. The distribution gets wider at lower energies.
In run 14 there is a second population at very low asymmetry and low energy. The low
asymmetry S2s are the result of a normal S2 with a very large energy contribution from
a noisy PMT in the bottom array causing its asymmetry to drop.

Figure 5.13: S2 Asymmetry versus S2 Energy (cS2sTot[0]) in run 12 (left) and run 14
(right). The color axis shows the number of events.

En example of such an event is given in Figure 5.14. This shows the event summary
of a run 14 AmBe event with an asymmetry below −0.7 and a main S2 energy below
300 pe. In this particular event PMT 166 and PMT 167 give off a periodic noise through
most of the event window. From 150 to 400 µs they are continuously on, distorting the
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sum waveform and causing the peak finder to find many false positives. The main S2
will thus have a large energy contribution from these two malfunctioning PMTs which
are in the bottom of the TPC; resulting in a very low asymmetry.

Figure 5.14: Sum waveform (top panel) and per-channel hits (bottom panel) for a typical
low energy, low asymmetry event as seen in the low asymmetry population of Figure 5.13.
The vertical blue and green bands show the found S1s and S2s respectively. The hor-
izontal yellow line in the bottom panel shows that a PMT is continuously giving off
signal.

Figure 5.15 shows the asymmetry of the reprocessed data. Here the low asymmetry
population has disappeared leading to the conclusion that the five removed PMTs are
the cause of the low asymmetry events.

After binning the energy axis the distributions in each bin are fitted with a Gaussian.
For each bin the mean and standard deviation is determined. Figure 5.16 shows the result
of all obtained values. As can be seen the run 12 asymmetry mean is constant. In run 14
the mean drops at lower energy due to the presence of the low asymmetry population.
When removing the noisy PMTs the mean is constant again but at a higher value. This
is caused by the fact that there are now less PMTs in the bottom array and relatively
more light is collected at the top causing a shift in the mean asymmetry. Fortunately
the sigmas are the same for all data sets. Thus to update the run 12 cut for use in
run 14 (with the excluded PMTs) only a shift of the cut value is needed and no energy
dependence need be introduced.

Figure 5.17 shows how the shift in asymmetry is calculated. Of both energy depen-
dent mean distributions the mean is determined and the difference between these two
values is taken to be the shift. The updated asymmetry cut for run 14 with noisy PMTs
excluded thus become:

−0.1581 < S2 Asymmetry < 0.2919. (5.9)
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Figure 5.15: S2 Asymmetry versus S2 Energy (cS2Tot[0]) in the reprocessed run 14 data
with excluded PMTs. Color axis shows number of events.

Figure 5.16: Means (left panel) and sigmas (right panel) of each energy bins for the
three data sets.

After investigating the S2 asymmetry in run 14 AmBe data a population with very
low asymmetry is seen at low energy. After selecting events from the population and
looking at wave forms it was concluded that these events have a very high noise contri-
bution from specific PMTs (mostly PMT 147, 149, 152, 166 and 167). Since these PMTs
are all in the bottom array, the affected events have a low asymmetry.

In reprocessed run 14 AmBe data the low asymmetry events are gone as shown in
Figure 5.15. The mean asymmetry is shifted up because less light is being seen in the
bottom array due to the removed PMTs.
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Figure 5.17: Shift of the asymmetry relative to run 12 due to the removes PMTs.
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Chapter 6

Low Asymmetry S2s

In Chapter 4 and Chapter 5 PAX was mentioned several times, first as the framework
that contained the new position reconstruction plugin for XENON1T, secondly as a data
processor that is better able to handle data containing noise. In this chapter PAX is
used to look at XENON100 data to try and explain a low asymmetry population seen in
the S2 asymmetry of run 14 as described in Chapter 5. This analysis is the first analysis
done fully with PAX and some surprising events were found.

For each data set analysed by PAX the original XENON100 raw data of that set is
reprocessed. This means that instead of merely looking at waveforms of specific events as
done in Chapter 5 the reprocessed events are stored in an output file. This file contains
the reprocessed events with all their properties to be used in the analysis.

Different data sets of XENON100 data are reprocessed. Starting with a clean sample
of AmBe data in run 10. During run 10 (the main science run of XENON100) the detector
had little noise and its behaviour during this period is well understood. Therefore it is
a good starting point for the analysis as no surprises are expected. After investigating
an AmBe run 10 data set, also AmBe run 14 and a dark matter data set from run 10
are looked at.

6.1 Event selection

In this analysis the following event selection is used:

1. The event has to have at least one S1 and at least one S2.

2. The largest S1 has to occur before the largest S2 in time.

3. The largest S1 and largest S2 signal have to be in the TPC, not in the veto.

4. The largest S2 energy is between 150 and 5000 pe.

5. The number of S2 peaks is less than 10.

51
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These are minimal cuts to ensure none-physical events are cut. Most of the cuts are
self explanatory. The energy range for S2 peaks is typical for AmBe data. The multiple
scatter cut (number of S2 peaks < 10) is arbitrary. It is low enough to cut events with
very many S2 peaks indicating a very high energy deposition. Also it is high enough to
allow some single electron S2 peaks (small ∼ 20 pe S2 peaks caused by a single electron
extracted in the gas) and not drop the statistics too much.

6.2 Clean AmBe data
For the clean data sample I selected a run 10 AmBe file, containing 150000 events and
with a live time of 7650 seconds. After applying the event selection described above
23576 events remain. Figure 6.1 shows a density plot of these events, S2 Bottom hit
pattern spread versus S2 asymmetry. Hit pattern spread is defined as the weighted
standard deviation of the distances from the charge weighted sum to each PMT in the
hit pattern. It quantifies how local (low spread) or extended (high spread) a hit pattern
is. In the case of Figure 6.1 the spread of the largest S2 peak in the event seen by the
bottom PMT array is calculated.

Figure 6.1: Density plot of 23576 S2 peaks in run 10 AmBe data, spread versus asymme-
try. Two populations can be identified: a population at the known S2 asymmetry and
a population at very low asymmetry. This second population has a low spread meaning
a very local distribution of energy.

In Figure 6.1 two populations are visible: a main population with an asymmetry of
about 0.1, this is known to be the mean S2 asymmetry of ’proper’ events as was shown
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in Chapter 5. There is also a small population (∼ 1% of the selected events) with very
low asymmetry.

These low asymmetry events are usually cut in the standard analysis (see Chapter 5).
These events also have a lower bottom hit pattern spread then the main population. The
main population has a bottom hit pattern spread of 6 to 7 cm, meaning the S2 energy
is very widely distributed on the bottom PMT array as is normal for S2s. The low
asymmetry population shows a smaller bottom hit pattern spread, meaning the energy
of these S2s is more locally concentrated in the bottom array.

To try and understand Figure 6.1 and classify the low asymmetry events an extra
dimension is added. Instead of a density plot Figure 6.2 shows a scatter plot. On the
color axis the log of the drift time is plotted.

Figure 6.2: Scatter plot of 23576 S2 peaks in run 10 AmBe data, spread vs asymmetry.
Drift time on color axis. Events in the low asymmetry population have very short drift
times.

Figure 6.2 shows that the low asymmetry population S2’s have very short drift times
between 1 and 10 µs, indicating the event occurs close to the top of the TPC. This seems
to contradict the fact that the S2 has a low asymmetry and has a localized bottom hit
pattern.

Next the low asymmetry population is isolated by cutting on asymmetry. Events that
have an asymmetry smaller than −0.4 and larger than −0.98 are selected. The small
region lower than −0.98 is not selected to exclude none-physical events with asymmetry
exactly −1.

After this selection 203 events remain. Small populations away from a known main
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population are sometimes the result of detector artefacts (such as the hot spot seen in
Chapter 5) or of other none-physical nature. So first we check where these events are
located in (x, y) space. Since the events have low bottom hit pattern spread a charge
weighted sum of the bottom hit pattern should give a relatively good position reconstruc-
tion (though a charge weighted sum is biased towards the centre as seen in Chapter 4),
at least good enough to see whether or not the events are distributed uniformly or are
caused by a hotspot or other detector artefact. Also note that since we are looking at
the bottom PMT array no Neural Net reconstruction is possible. The χ2

γ method can
not help us here either since there exist no LCE maps for the bottom PMTs.

Figure 6.3: Spatial distribution of the low asymmetry population. The red dot marks
the AmBe source causing the events. The inner black circle indicates the TPC radius.
An explanation for the lack of events close to the TPC edge is because the bottom PMT
array does not extend out to the TPC edge and the reconstruction used has a radial bias
towards the centre.

Figure 6.3 shows the reconstructed positions of the 203 low asymmetry events using
the bottom PMT array. The figure shows that the events are distributed uniformly
with slightly more events on the left (−x) half consistent with the position of the AmBe
source.

As a last check before turning to the waveforms of the low asymmetry events Fig-
ure 6.4 shows the drift time, S1 area and S2 area spectra of the events. Of course these
three histograms have low statistics and are only meant to give an indication. What we
can see from Figure 6.4 is that all events have drift times less than 8 µs (in a normal
event this would mean that the event happened ∼ 1.5 cm deep. Also we can see that
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in these events the S1 has a higher energy than the corresponding S2, inconsistent with
regular events.

Figure 6.4: Spectra of the drift time, S1 area and S2 area of the low asymmetry events
respectively.

From the previous Figures we summarise that the low asymmetry population consists
of events where the main S2 has deposited most of its energy locally in the bottom PMT
array. The events have a short drift time and in most cases the S1 energy is larger than
the S2 energy. The main question being: Where in the TPC (i.e. from what (x, y, z)
position) do these events originate? The drift time (and our current knowledge of the
workings of the TPC) suggest close to the top, however the spread and asymmetry seem
to suggest an S2 close to the bottom of the TPC.

6.2.1 Waveforms
The last step taken is to look at the waveforms and hit patterns of the events themselves.
Three events will be discussed here.

For each of the three events two event summaries are shown, one full and one zoomed
in on the main S1 and main S2. All these waveforms are also in Appendix B. Each of
the event summaries has several panels.

The four panels in the top row show (from left to right):

1. The main S1 peak (linear scale)

2. The hit pattern of the main S1 in the bottom PMT array

3. The hit pattern of the main S2 in the bottom PMT array

4. The main S2 peak (linear scale)

The middle panel shows the sum waveform of all PMTs in a 400 µs time window
(with the amplitude on a log scale). The bottom panel shows all hits in the event as red
dots in time versus PMT channel. The channels are divided into three groups for the
bottom, top and veto PMTs respectively.

Figure 6.5 shows an event with an S1 of 2797 pe and an S2 of 1329 pe about 2
µs apart. The shape of the peaks is consistent with the classification (the S2 is not
a misidentified S1 for example). Looking at the channel information (bottom panel of
Figure 6.5) we see that the S2 has a low asymmetry since most of the hits are in the



56 CHAPTER 6. LOW ASYMMETRY S2S

Figure 6.5: Typical low asymmetry event, full (left plot) and zoomed in (right plot).
Large version in Appendix B.

bottom PMT channels and few are in the top. By looking at the hit patterns we confirm
that the S2 bottom hit pattern is local since most of the energy is in a few PMTs at the
top right. The S1 bottom hit pattern shows the same location consistent with a very
short drift time between the S1 and S2 signal. Both the localized S2 bottom hit pattern
and the asymmetry suggest a signal from deep in the TPC. The drift time suggests the
S2 right after the S1 with similar hit pattern in the bottom PMT array. This event also
has a small (20 pe) second S2 roughly 50 µs after the S1, if this single electron S2 is
caused by the S1 then this drift time may be more related to the depth of the S1 than
the main S2. However even a drift time of ∼ 50 µs is not deep enough (50µs drift time
∼ 8 cm depth) to explain the asymmetry and the single electron S2 may well be caused
by one of the earlier peaks.

Figure 6.6: Veto low asymmetry event, full (left plot) and zoomed in (right plot). Large
version in Appendix B.

The event in Figure 6.6 shows a main S1 of 1034 pe and a main S2 of 165 pe about
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4 µs apart. The same type of event as in Figure 6.5. Again we see a low S2 asymmetry,
very localized S2 bottom hit pattern correlated with the S1 bottom hit pattern and a
short drift time. The event also has a second S2 at ∼ 170 µs, close to the maximum drift
time possible in the TPC consistent with a deep S1. The S2 in this event has a double
peak structure. Each of the peaks looks more S1 like, but if they are S1s the event has
no large S2 which is uncommon since there is a big S1 signal. The main S1 also extends
into the veto region of the detector. The fact that the S1 is seen in both the TPC and
veto excludes alpha decays as a possible source of these events since an alpha particle
cannot penetrate the TPC wall.

Figure 6.7: Misidentified low asymmetry event, full (left plot) and zoomed in (right
plot). Large version in Appendix B.

The event in Figure 6.7 has a main S1 of 4477 pe and a main S2 of 282 pe with a
2 µs drift time. Again a low asymmetry, localized S2 bottom hit pattern correlated with
the S1 bottom hit pattern is observed. This event also has several small S2s at very long
drift times. Looking at the top right panel of Figure 6.7 (the main S2 on a linear scale)
it seems that this particular S2 peak is actually a misidentified S1 peak.

In summary there are several possible hypotheses for the origin of these events.

1. A detector anomaly: If true, the events are only expected to be present in this run
or data set.

2. The S2s are misidentified S1s: This could explain some events (such as in Fig-
ure 6.7) but not all (the event in Figure 6.5).

3. The S2s do come from deep in the TPC: This implies they are generated in the
liquid and are the result of scintillation on or near the bottom screening mesh or
cathode (these are two of the metal meshes inside the TPC to which voltages are
applied to create the electric fields). This should not be possible in XENON100
due to the electric field strength being too low.

4. …
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In the next section hypothesis 1 is tested by checking different data sets taken a few
years later. To exclude the possibility of AmBe being the sole cause of these events a dark
matter data set is also used. If hypothesis 3 is correct then the S2s should be created by
the electric drift field instead of the extraction field that normally produces the S2 signal.
Therefore these events are not expected to occur in a detector configuration where the
drift field is much lower or even off, while the extraction field is at its nominal value.
Fortunately there exist data sets with lower cathode voltages (weaker drift field) and a
nominal extraction field in run 14.

6.3 Comparing other sources
In this section the above analysis is repeated on two AmBe run 14 files and on a dark
matter (DM, background only) run 10 file. The low asymmetry events described above
seem to imply a signal from deep down in the TPC, inconsistent with an S2 created
in the gaseous xenon. If the signals seen are from the liquid region we should see a
difference when changing the cathode voltage. The following two AmBe run 14 files are
taken ∼ 6 hours apart, the first file with nominal run 14 conditions (14 kV cathode),
the second file with the same configuration except for the cathode voltage which is at
5.4 kV. A dark matter run 10 file was processed to see if the population is still present
there and not due to the AmBe source. The noise in the run 14 AmBe data seen in
Chapter 5 is practically gone since PAX filters out bad PMT channels. Thus making
the low asymmetry events also visible in run 14 data.

1. AmBe run 14, xe100_140918_0450 (14 kV cathode voltage)

2. AmBe run 14, xe100_140918_1109 (5.4 kV cathode voltage)

3. DM run 10, xe100_110401_2058

After event selection the following events remain:

Source Total events Live time (s) Selected Low Fraction Rate
AmBe (14kV) 150000 6435.3 16952 287 0.017 0.0446
AmBe (5.4kV) 150000 6330.7 17351 6 0.0003 0.0009
DM 52302 85055.9 1414 229 0.162 0.0027

Table 6.1: Table showing the analysis results on three data sets. For each data set the
source, number of events and live time is given. ‘Selected’ are the events passing the
event selection. ‘Low’ gives the number of events with asymmetry < −0.4. ‘Fraction’
is the fraction ‘Low’/‘Selected’. ‘Rate’ gives the number of low asymmetry events per
second.

Figure 6.8 shows the S2 bottom hit pattern spread versus the S2 asymmetry as was
also done in Figure 6.1 for the run 10 data. The left plot shows the results for AmBe
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Figure 6.8: S2 asymmetry versus bottom hit pattern spread for AmBe run 14 data. The
left plot shows the results with the nominal 14 kV cathode. The right plot shows the
results with the low cathode voltage of 5.4 kV.

run 14 under nominal conditions, the right plot for the data set with a lower cathode
voltage.

Figure 6.9 shows the result for the dark matter data file. The left panel shows the
density plot, the right panel the scatter plot.

Figure 6.9: S2 asymmetry versus bottom hit pattern spread in DM run 10 data. The
left plot shows the density plot. The right plot shows the scatter plot with drift times.

The 14 kV AmBe data shows a similar result as in AmBe run 10 (in which the cathode
was at 16 kV) showing that the low asymmetry population is also present in data more
than three years later under different detector conditions, making the hypothesis that
the events are the result of some detector artefact unlikely. However when we look at the
data taken with a cathode voltage of 5.4 kV the population disappears almost completely
leaving only six events. The main populations are in both cases very much the same
leading to the conclusion that only the low asymmetry events were affected. This result
implies that these S2 signals are correlated to the drift field in the TPC. Together with
the asymmetry and bottom hit pattern spread this points to the signal being generated
in the liquid region of the TPC volume, near the bottom.
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The DM data also shows a low asymmetry population as AmBe. In this DM data
file the fraction of low asymmetry events is much higher than in AmBe. More than
16 % of the events passing the event selection are made up of these low asymmetry
events. As noted before they are cut during the analysis and don’t influence the final
dark matter analysis result, but the events are nevertheless part of a background that is
not understood.

To check if the positions of these events are in line with expectation they are plotted
in Figure 6.10. This figure gives the (x, y) positions of the low asymmetry events in
the AmBe (14 kV) and the DM data set. The AmBe events are distributed closer to
the AmBe source as expected. The dark matter data set shows the expected uniform
distribution when no source is present.

Figure 6.10: Position of the low asymmetry events in AmBe (14kV) (left plot) and DM
(right plot).

The waveforms of the low asymmetry events in the AmBe run 14 and the dark matter
data set look very similar to the ones seen in the run 10 set. Several more waveforms
from the dark matter data are shown in Appendix B. They show the same event types
as described in the waveforms from the AmBe run 10 file.

6.4 Hypotheses
The main questions raised in this chapter are: Where (i.e. from what (x, y, z) in the
TPC) do these low asymmetry events come from? Also and after examining several
waveforms: Are these these are genuine S2 peaks or not. Summarising the unusual
combination of properties of the low asymmetry events:

1. The S2s have a very low asymmetry (< −0.5).

2. The S2s have a very low bottom hitpattern spread (S2 energy localized in the
bottom PMT array).
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3. The event has a very short drift time (< 10 µs).

4. The S1 has a higher energy than the S2.

5. The events seem to require a high cathode voltage (i.e. disappear at low cathode
voltage).

6. The events are present in both AmBe and DM data. (In DM data they occupy
16% of the events that pass event selection defined in this chapter.)

Since the population disappears at low cathode voltage the low asymmetry popula-
tion seems to come from the liquid part of the TPC. The asymmetry would then suggest
the events are from very deep in the TPC, the presence of events with a second S2
after almost the maximum drift time further supports this. The events look like what
one would expect from possible cathode effects or scintillation at the bottom screening
mesh. However this seems unlikely because the electric field between cathode and bot-
tom screening mesh is not strong enough, the field of 14 kV over 12 mm (11.7 kV/cm) is
an order of magnitude lower than the measured value in the paper ’Measurements of pro-
portional scintillation and electron multiplication in liquid xenon using thin wires’ [20]
which reports a value of 412+10

−133 kV/cm for proportional scintillation in liquid xenon.
At positions very close to the wires of the screening mesh (where the E-field is much
stronger) this process could occur, also given the large uncertainty on the required value.
Electric field simulations of XENON100 have been performed but not accurately near
the bottom screening mesh. For now the origin of the low asymmetry events remains
unknown.

Further investigation of these events requires more data as a first step. At the time
of writing this thesis, it is not yet possible to analyze very large data sets processed by
PAX. Another step would be to try various combinations of electric field configurations
and possibly construct a turn-on curve to determine at what field strength these events
start to occur.
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Chapter 7

Conclusion and Discussion

Chapter 4 showed how a new position reconstruction algorithm was implemented in PAX,
the data processor for the new XENON1T detector. This algorithm was based on the
same principle as an existing algorithm in Xerawdp, the data processor of XENON100.
The algorithm is physically motivated and can be used to assign an error on a per-
event basis. The new implementation was tested on Monte Carlo data to determine the
position reconstruction error. When using Monte Carlo hit patterns sampled from the
LCE maps the new position reconstruction algorithm performed excellent, with a lower
absolute position reconstruction error than its main competitor, a Neural Network. In
PMT arrays that contain dead PMTs the χ2

γ method also works without any modification
whereas a Neural Network must be retrained.

Various data quality cuts were defined in Chapter 5. These cuts are part of the run
14 analysis of XENON100. Run 14 is one of the last runs of the XENON100 detector
and a proving ground for several new techniques and analyses for XENON1T. Run 14
does not contain any dark matter data but only data of various calibration sources. At
the beginning of this run and its analysis much was still unknown about the detector
behaviour during the run. Noise turned out to be a much larger issue than anticipated.
The noise issues resulted in the removal of several PMTs from the data. Partly due
to the cuts defined in Chapter 5. The χ2 cut and position discrepancy cut were also
improved by redefining them as a function of the S2 energy seen in the top array instead
of the total S2 energy. The noisy data turned out to be an excellent showcase for PAX’s
peak finding routines and gave a glimpse of how data analysis with PAX can be done.

Chapter 6 showed how the new data processor for XENON1T, PAX, was used for
its first analysis. When trying to classify a population of very low asymmetry S2 peaks
some unexpected events were found. Present in different data sets over several years these
events seem to point to S2 signals from the liquid xenon. The strongest evidence being
that these events are affected by the electric drift field and not by the extraction field as
would be expected from an S2. Though theoretically unlikely no other explanation for
these events has yet been found.
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7.1 Outlook
When XENON1T is commissioned the new position reconstruction algorithm described
in Chapter 4 can be used. The generation of the TPC specific LCE map for XENON1T
is the only missing piece. To further improve the position reconstructions usefulness a
clever way needs to be found to calculate the per-event errors (i.e. confidence contours),
this feature is still to be implemented as only a proof of concept was given in this thesis.

Run 14 data is now much better understood than a year ago. The data will be used
in studies on the detector response. From this point on XENON100 will exclude 5 more
PMTs from analysis due to noise.

An explanation for the low asymmetry events found in Chapter 6 will require more
statistics and data. When large scale analysis is possible on data reprocessed by PAX,
the analysis could be repeated. Another way of classifying these events would be to
take data at various different cathode voltages. Or search for these events in XENON1T
which has a different field configuration.
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Appendix A

MC Position Reconstruction plots

Figure A.1: Binned position reconstruction errors for 105 150 pe S2 events. Similar to
Figure 4.8.
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Figure A.2: Binned position reconstruction errors for 105 500 pe S2 events. Similar to
Figure 4.8.



69

Figure A.3: Binned position reconstruction errors for 105 1000 pe S2 events. Similar to
Figure 4.8.
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Appendix B

Waveforms

Several waveforms of events from AmBe run 10 data and Dark Matter run 10 data are
shown here. These waveforms all show low asymmetry events as discussed in Chapter 6.
For each event the full event summary display is plotted followed by a zoomed in version
which shows the main S1 and S2 peak in more detail.
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Figure B.1: Low S2 event from AmBe run 10 data.
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Figure B.2: Low S2 event, zoomed in on Figure B.1.
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Figure B.3: Low S2 event from AmBe run 10 data.
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Figure B.4: Low S2 event, zoomed in on Figure B.3.
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Figure B.5: Low S2 event from AmBe run 10 data.
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Figure B.6: Low S2 event, zoomed in on Figure B.5
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Figure B.7: Low S2 event from DM run 10 data.
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Figure B.8: Low S2 event, zoomed in on Figure B.7
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Figure B.9: Low S2 event from DM run 10 data.
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Figure B.10: Low S2 event, zoomed in on Figure B.9
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Figure B.11: Low S2 event from DM run 10 data.
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Figure B.12: Low S2 event, zoomed in on Figure B.11
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