

A Model-Driven Approach to
Smart Contract Development

First external supervisor:

J. van Dalen

Second external supervisor:

A. Beentjes

First supervisor:

dr. F. Dalpiaz

Second supervisor:

dr. M.R. Spruit

Author:

Kees Boogaard

K.Boogaard@students.uu.nl

June, 2018

Utrecht University

Master Thesis

Business Informatics

Abstract

Blockchain technology has provided a platform for the decentralized execution of

smart contracts. A smart contract is an agreement that is automatically executed when

certain conditions have been met. The immutability, decentral nature, and consensus

mechanisms that are characteristic to blockchain technology make the smart contract

and its development cycle a new field of study in software engineering. A novel

economic and defensive thinking is needed to develop workable, secure smart

contracts. Motivated by the need for a novel approach to development, this thesis

proposes a model-driven approach to smart contract development.

Model-Driven Engineering (MDE) is an approach to information system

development in which models and model technologies are applied to raise the level

of abstraction at which developers create and evolve software, with the goal of both

simplifying and formalizing the various activities and tasks that comprise the

Software Development Life Cycle (SDLC). Model-Driven Architecture (MDA) is a

framework for this approach. This thesis aims to apply this framework to create a

method which describes the development phase from domain knowledge to smart

contract foundation.

The creation of a method has two main aims, namely (i) to bridge the semantic

gap between domain knowledge and smart contract by lowering the threshold for

domain experts, and (ii) support developers in creating less vulnerable smart contracts

that accurately represent the problem domain. This is done by constructing a model-

driven method based on existing research that applies MDE to smart contract

development. A literature study into this field yields the requirements and techniques

for the method, which is consequently constructed based on these requirements and

techniques.

The method is evaluated in twofold. First, the value is assessed through a case

study, which shows that the developer benefits from a structured approach and the

reduction of manual programming. Second, by an experiment which shows that

people are better able to comprehend and communicate about models containing

functional aspects of the smart contract if a computational independent model is

included. By doing so it fulfills the aim of lowering the threshold for domain experts

to participate in the smart contract development cycle.

Preface

The process of creating this master thesis started out roughly a year ago when I was

exploring possible topics and fields of interest. After a period of exploration the

decision to do “something with blockchain” marked the start of this research. The

possibilities to innovate and the wide variety of applications were what drew me into

this field of study. Around this time, Deloitte was kind enough to offer me a place to

conduct this research. I aimed to explore the possible impact of blockchain technology

within risk advisory, with a focus on IT assurance. It turned out that this topic had

already been explored, so I shifted my focus from the possible influence of blockchain

technology itself, to an exploration of the actual application of the technology. Since

then, the topic has shifted from information security within smart contracts, to the

application of analysis tools, to the final subject: the smart contract development

process.

This master thesis is the result of nine months of research at Deloitte, during

which I have learned more than I could have imagined I would. Lessons learned both

academic, as well as on the fantastic Deloitte working culture. From this spot, I would

like to express my gratitude to Jordi van Dalen, Arne Beentjes, and all Deloitte Risk

Advisory colleagues for their insights, feedback, and overall contributions to this

thesis. I would also like to thank Fabiano Dalpiaz for his feedback and continuous

guidance throughout this research.

To conclude, I hope this master thesis will present valuable insights to you as

a reader. Enjoy reading!

Table of Contents

Abstract ...

Preface ..

Table of Contents ..

List of Figures ..

List of Tables ...

List of Abbreviations ...

1. Introduction .. 1

1.1 Problem Statement ... 3

1.2 Research Focus.. 5

1.3 Contributions .. 6

1.4 Scope ... 6

1.5 Thesis outline .. 7

2. Research Approach ... 8

2.1 Research Questions .. 8

2.2 Research Paradigm ... 11

2.3 Literature Research Protocol .. 14

3. Theoretical Background .. 16

3.1 Blockchain ... 16

3.1.1 Public Key Cryptography ... 19

3.1.2 Cryptographic Hashing .. 20

3.1.3 Peer-to-peer Networking .. 22

3.1.4 Consensus Mechanisms .. 23

3.2 Smart Contracts .. 27

3.3 Model-Driven Engineering .. 32

3.4 Model-Driven Architecture ... 36

3.5 Model-Driven Engineering Approaches to Smart Contract Development 39

3.5.1 Agent-Based Approach ... 40

3.5.2 Process-Based Approach ... 41

3.5.3 State Machine Approach ... 42

4. Constructing the Method .. 47

4.1 Method Requirements .. 50

4.2 The Computational Independent Model .. 53

4.3 The Platform Independent Model .. 58

4.4 The Platform Specific Model ... 61

4.4.1 States Definition .. 63

4.4.2 Variable Definition .. 63

4.4.3 Patterns ... 64

4.4.4 Transitions ... 65

5. Case Study Evaluation ... 68

5.1 Case Study ... 68

5.2 Case Study Findings ... 78

5.2.1 The Computational Independent Method .. 78

5.2.2 The Platform Independent Model .. 79

5.2.3 The Platform Specific Model ... 79

5.2.4 Overall Findings ... 80

6. Experimental Evaluation ... 81

6.1 Goals, Hypotheses, and Variables ... 81

6.2 Hypotheses ... 82

6.3 Design .. 83

6.4 Subjects ... 84

6.5 Instrumentation and Procedure ... 84

6.6 Data Collection and Results .. 87

6.6.1 Quantitative Data .. 87

6.6.2 Qualitative Data .. 90

7. Conclusions ... 92

8. Discussion .. 98

8.1 Internal Validity ... 98

8.2 External Validity .. 99

8.3 Reliability ... 100

9. Future Work .. 101

10. References .. 102

Appendices .. 110

A. PDD of the Model-Driven Smart Contract Development Method .. 110

B. Finite State Machine Model Lease Contract ... 113

C. Property Lease Smart Contract ... 114

D. Experimental Materials ... 119

i. Information Sheets without the CIM .. 119

ii. Models without the CIM ... 123

iii. Information Sheets with the CIM .. 126

iv. Models with the CIM ... 128

E. Control Sheets Experiment ... 132

F. SPSS Output of the Analyses ... 134

i. Data output prior knowledge.. 134

ii. Data output scenario 1 ... 135

iii. Data output scenario 2 ... 136

iv. Data output efficiency... 137

List of Figures

Figure 1: Tailored Design Science Framework ... 13

Figure 2: A cryptocurrency as a state-transition machine ... 18

Figure 3: Asymmetric encryption [34] ... 19

Figure 4: Digital signatures [36] ... 20

Figure 5: Cryptographic Hashing .. 21

Figure 6: Hashing in a Merkle tree ... 22

Figure 7: The proof-of-work consensus mechanism ... 24

Figure 8: Blockchain and its combined technologies ... 26

Figure 9: Smart contracts on the blockchain [15] .. 28

Figure 10: Smart contract support in different blockchain protocols 30

Figure 11: Spectrum of software development approaches ... 33

Figure 12: Relation between MDE, MDD, and MDA .. 35

Figure 13: MDA principles .. 37

Figure 14: Transformations in MDA ... 38

FIGURE 15: MOF STANDARD .. 39

Figure 16: The process of situational method engineering ... 47

Figure 17: High-level PDD model of the MDA framework ... 49

Figure 18: PDD of the CIM creation and evaluation .. 55

Figure 19: The elements of an FSM ... 58

Figure 20: PDD of creating and evaluating the FSM model ... 59

Figure 21: Betting system example of an FSM model ... 60

Figure 22: PDD Creating the PSM .. 67

Figure 23: Overview of added value of blockchain in the property leasing industry 69

Figure 24: FSM lease contract model .. 76

Figure 25: Comparison of the mean scores in scenario 1 .. 87

Figure 26: Boxplots of the categorized comprehension scores for scenario 1 88

Figure 27: Comparison of the mean scores in scenario 2 .. 89

Figure 28: PDD summary of the model-driven smart contract development method 94

Figure 29: PDD total method part 1 ... 110

Figure 30: PDD total method part 2 ... 111

Figure 31: PDD total method part 3 ... 112

https://d.docs.live.net/1bf7665ef5983ab1/Documenten/Studie/Thesis/Final%20version.docx#_Toc518052583

 List of Tables

Table 1: Comparison between cryptocurrency and fiat currency ... 17

Table 2: The consensus mechanisms of blockchains ... 25

Table 3: Structure of a typical block .. 25

Table 4: Comparison overview of model-driven approaches to smart contract development

.. 46

Table 5: Example ADICO statements ... 54

Table 6: Betting example set of adico statements .. 60

Table 7: Overview of the states, transitions, and conditions .. 61

Table 8: The attributes of the smart contract ... 70

Table 9: ADICO statements .. 72

Table 10: State description .. 73

Table 11: Transition table .. 75

Table 12: Variable definition .. 76

Table 13: Variable, question, metric overview for the experiment .. 82

file:///C:/Users/kees-/Desktop/Thesis_Final_K_Boogaard_3872297.docx%23_Toc518053644
file:///C:/Users/kees-/Desktop/Thesis_Final_K_Boogaard_3872297.docx%23_Toc518053644

List of Abbreviations

ABM Agent-Based Modeling

BPMN Business Process Model and Notation

CIM Computational Independent Model

DAO Decentralized Autonomous Organization

EMF Eclipse Modeling Framework

EVM Ethereum Virtual Machine

FSM Finite State Machine

GQM Goal-Question-Metric

JMI Java Metadata Interface

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MOF MetaObject Facility

OMG Object Management Group

PDD Process-Deliverable Diagram

PIM Platform Independent Model

PoW Proof-of-Work

SDLC Software Development Life Cycle

SME Situational Method Engineering

UML Unified Modeling Language

1

1. Introduction
In the ever-evolving world of computing and technology there are often technologies

which are called revolutionary or ground-breaking. In 2008, the pseudonymous

Satoshi Nakamoto presented the paper “Bitcoin, a peer-to-peer electronic cash

system” [1]. This paper proposed an electronic currency which was not governed by

a centralized authority. A year later the Bitcoin blockchain was released and the

technology which made this decentralized approach possible was coined blockchain

technology. Almost a decade later the net worth of Bitcoin has skyrocketed, other

applications aimed at electronic cash called cryptocurrencies are numerous, and the

Blockchain technology is often referred to as the most disruptive technological

innovation since the internet. This disruption claim is based on the large variety of use

cases in which Blockchain can be applied. These use cases are for instance financial

systems [2], the internet of things [3], and supply chains [4]. Essentially, a blockchain

is an append-only data structure maintained by the nodes of a peer-to-peer network.

It is a decentralized, immutable, and near-real-time way to store data [5]. These

properties are used in cryptocurrencies by using the blockchain as a public ledger

which records all transactions.

The novel way of data storage made possible by blockchain technology has

sprouted numerous other blockchain platforms. Based on the market capitalization,

Bitcoin is the largest platform [6]. The second largest is Ethereum, which is the main

focus of this thesis. While Bitcoin and platforms alike are mainly focused on keeping

a ledger of who owns what in order to create a digital currency, Ethereum is a general

purpose blockchain. This means that the blockchain can understand a general-

purpose programming language and serves as a distributed computing platform. This

allows developers to create applications for the Ethereum blockchain instead of

having to build an entirely new blockchain platform for each use case. Next to the

possibility of creating applications, the Ethereum platform also supports peer-to-peer

currency transfer like Bitcoin does.

The peer-to-peer currency transfer has a major downside: their highly

volatile value. As the popularity of blockchain platforms gained momentum, so did

the speculation mania on the currencies and as of this moment it is highly uncertain if

2

people are buying cryptocurrency in order to use it as a currency or as a speculative

asset [7]. Important instigators of this volatility are the regulators, so governments

who are reacting to this new form of currency [8]. Rumors about possible regulations

can lead to a rise or drop of tens of percent’s an hour. This is especially difficult for a

platform like Ethereum, in which the computations are paid for in currency and the

program commands are activated through transactions. Speculation on Ether, the

currency of Ethereum, could potentially jam the entire network, resulting in contracts

not executing. Ideally, the cryptocurrencies are not used as speculative assets so that

the price in US$ has no effect on the blockchain platforms.

The key component that differentiates Ethereum from most other blockchain

platforms is that it is able to understand a general purpose language. This allows

developers to create programs that run on the blockchain. These programs are called

smart contracts. The term smart contract was introduced by Nick Szabo in 1997, who

describes a smart contract as “a set of promises, specified in digital form, including protocols

within which the parties perform on these promises” [9]. The idea is described as moving

contractual clauses into hardware and software in such a way that breaking the

contract becomes expensive. Szabo did not have a specific system for implementation

in mind, but some trust in a third party was assumed. The idea of smart contracts has

rapidly regained momentum with the emergence of blockchain technology, which

solves the problem of trust through a consensus protocol.

Smart contracts and a blockchain platform that can execute them has a

variety of possible use cases. However, as of this moment the biggest implementations

of smart contracts have been plagued by problems. For instance, the best-known

example in Ethereum is the Decentralized Autonomous Organization (DAO) [10].

This smart contract served as a crowdfunding application and the participants were

able to buy, give away, or retrieve tokens. By exploiting a vulnerability in the code, a

hacker was able to drain 3.6 million ether from the contract, which was worth around

50 million dollars at the time. This shows that not accounting for possible security

threats can be costly in terms of money. However, in the case of the DAO it was not

only in costly in terms of money, but also the reputation and the belief in the Ethereum

platform was damaged. For a platform that is built upon trust in the peers and the

technology, it goes without saying that this is especially detrimental.

3

1.1 Problem Statement

Blockchain technology and smart contracts have experienced a steady increase of

attention from academia and the industry [11][12]. Out of all the blockchain platforms,

Ethereum is the first big outing of a decentralized computing system in which the

nodes execute smart contracts. Before the smart contracts can be appended to the

blockchain, they have to be developed first. The development of smart contracts is

different from classical software development in a number of ways. Two of the biggest

differences and adjacent challenges of smart contracts lay in the immutability and the

availability properties of blockchain technology. The immutability of blockchain

means that once a smart contract is appended to the blockchain, it cannot be modified.

As of this moment, there is no way to patch a buggy smart contract, regardless of its

popularity or how much currency it holds, without reversing the blockchain or

relaunching the smart contract. Next to the pressure of getting it absolutely right the

first attempt, the virtual currencies have real value. This means that if you load money

or currency into a buggy smart contract, you may lose it [13]. The value of the currency

of Ethereum, Ether, has increased tremendously over the course of Ethereum’s

existence and as a result, some smart contracts are now worth millions of dollars [14].

The combination of the worth of the smart contracts with the availability

property of blockchain, meaning that all nodes have access to it, are the reason that

smart contracts and the Ethereum platform are a continuous target for attackers.

Numerous security vulnerabilities have been uncovered. The openly accessible nature

and the large possibility of counterparties attempting to execute a contract maliciously

call for a unique kind of defensive thinking in the development of smart contracts [15].

In 2016, a symbolic execution analysis tool was developed by Luu et al. [16],

which analyzed 19,366 smart contracts deployed on Ethereum. Their results show that

45% of these were vulnerable to at least one security vulnerabilities. Since 2016, the

amount of smart contracts deployed has grown exponentially and although there are

static analysis tools available, it is expected that a lot of these contracts still have

vulnerabilities. Although a large number of these vulnerabilities will not be exploited,

many of them enable cybercriminals to steal digital assets.

Smart contracts differ from normal contracts in the sense that they are self-

executing and are interpreted by computers, not by intermediaries. In this thesis the

4

terms paper contract, normal contract, and classical contract are used interchangeably

to denote non-smart contracts. For non-programmers, it is difficult to express

contracts into code, and vice-versa it is difficult for programmers to fully grasp the

requirements of a contract in the sense that all the domain concepts should be

transferred into a smart contract correctly while accounting for security

vulnerabilities. In a study on a smart contract programming class [15], researchers

found that a unique economic thinking was needed that a traditional programmer

may lack. Logical errors can lead to currency leakage, and its transparency and

availability leads to security vulnerabilities. The study also shows that the learning

curve for the development of smart contracts is steep and that there are a lot of

common pitfalls for inexperienced programmers. Luu et al. state that a lot of the

vulnerabilities in practice are caused by a semantic gap between the assumption

contract writers make about the underlying execution semantics and the actual

semantics of the smart contract system [16], i.e. the code does not work the way the

writer thinks it is going to work.

The problems in smart contract can be viewed from two different

viewpoints, namely from the developers viewpoint and the viewpoint from the

person experienced in creating contracts, the domain expert. The developers have

difficulties transitioning to the novel approach of smart contract development, and

the domain experts do not possess the technological expertise to transition paper

contracts into smart contracts.

To summarize, smart contracts are hard to develop and many of the

deployed contracts have security vulnerabilities. A lot of these issues seem to stem

from a lack of understanding of the programming language Solidity, and by a general

lack of programming knowledge in the smart contract domain. The biggest advantage

of smart contracts is that they, in comparison with traditional financial contracts, carry

the promise of low legal and transactions costs, and can lower the bar of entry for

users. However, through the difficulty of smart contract development, this bar of

entry for users remains at a high level. Furthermore, the value of the blockchain

currencies is highly volatile which can lead to new platforms facilitating smart

contracts in different ways. A lack of formalization in the development process of

smart contract contributes to these problems, so the aim of this research is to formalize

5

the smart contract development process in order to (i) bridge the semantic gap

between domain knowledge and smart contract by lowering the threshold for domain

experts, and (ii) support developers in creating less vulnerable smart contracts that

accurately represent the problem domain.

1.2 Research Focus

There are numerous problems surrounding the relatively novel field of smart contract

development and these problems are fairly diverse in nature. There is no easy way to

pinpoint at which phase of the development the problems are nested. As stated in the

problem statement, the problems range from the transformation of the domain

knowledge to the developers coding vulnerable smart contracts.

As we take a look into earlier work in software development, a lot of the same

problems have arose and numerous solutions have been proposed [17]. Solutions such

as having different approaches to a software engineering project, like the waterfall

model, the incremental model, or the evolutionary model. Furthermore, there have

been attempts at different process models, such as the incremental process model or

concurrent process models [18]. One thing that can be taken away from these attempts

to better the software engineering practice is that they aim to bring structure to the

development process through formalization.

The same can be done in the smart contract development field. Currently,

there are little to no specialized formalized approaches to this development field. This

leads to common pitfalls parallel to those in the overarching field of software

engineering. One of these pitfalls is that the domain concepts are translated to

software technology concepts entirely by mental work of the software developer [19].

This often results in a misalignment of requirements and product. Model-Driven

Engineering (MDE) could assist in resolving this misaligned, while simultaneously

assisting the developer in creating higher quality smart contracts in which

vulnerabilities are accounted for. MDE is an approach to software engineering in

which models and transformation between models are used to assist in the transition

between domain knowledge and software product [20].

By providing the participants in the smart contract development process with

a structured approach, for instance a method, the problems addressed in the problem

6

statement can possibly be alleviated. Therefore, the main aim of this research is to

address the problems surrounding smart contracts by providing a structured method

for its development which applies the concept of MDE to the field of smart contract

development.

1.3 Contributions

The research presented in this thesis adds value to the knowledge base in a number of

ways. First, it presents a holistic definition of the concepts blockchain and smart

contracts, and an overview of the current state of the research into the application of

MDE to smart contracts. Research into blockchain and smart contracts is partly nested

in academia, but for a large part it is done in an online open-source setting in which

willing participants contribute and build upon the work of others without the need

for extensive documentation. For this reason, it is useful to have a scientifically written

overview on the current state of smart contract development.

Second, the smart contract development community is helped by insights

provided in this research. Smart contract developers should aim to create high quality

smart contracts as efficient as possible, so a development method supporting this aim

can contribute to both the quality, as well as the lowering development time. The

application of smart contracts gains momentum and it is expedient for the smart

contract to have as little vulnerabilities as possible, while still representing the domain

it should reflect. The method presented in this research contributes to these goals.

Third, the method facilitates a communication tool for domain experts and

developers to communicate about what domain concepts should be transformed into

technology concepts in a smart contract. This can be a step toward a solution for the

misalignment between domain and smart contract.

1.4 Scope

Blockchain and smart contracts are broad topics in which a lot of research is still to be

done. This research aims solely on the development phase of the smart contract in

order to prevent a generic research project in which all aspects are treated in a shallow

way. This does mean that there is little mentioned in this research on the quality of

blockchains and possible innovations. Ethereum is taken as the blockchain of interest

in this research, simply because it is by far the biggest distributed computing platform

7

as of this moment. An advantage of applying MDE is that when an improved

blockchain platform surfaces, only the transformation rules need to be adjusted in

order to retain the relevance of the method.

The method will be aimed at the development phase of smart contract, so not

on the requirements engineering phase. This process requires a research of its own

and is outside the scope of this thesis. As of this moment, it is not possible to alter

smart contracts as they are launched to the blockchain, so the maintenance phase is

not relevant in this context. However, with MDE, alteration of a contract is made into

an easier process as the documentation gives a better overview of what should be

replaced, added, or deleted.

1.5 Thesis outline

In the second chapter, the research approach is explained, containing the research

questions, the research paradigm, and the literature research protocol for this thesis.

Hereafter in chapter 3, the theoretical foundations of this thesis are described. Based

on the theoretical foundations, chapter 4 will describe the creation of the model-driven

smart contract development method. Chapter 5 will assess this method through a case

study, and chapter 6 will evaluate the comprehension of the models used through an

experiment. The conclusions that this thesis yields will be discussed in chapter 7, and

the validity of the research conducted will be discussed in chapter 8. Lastly, future

research directions are discussed in chapter 9.

8

2. Research Approach

Good research starts with a well-defined research approach. This chapter describes

the research approach for the subject at hand. First, the research questions and sub-

questions are described and elaborated upon. After this, the choice and

instrumentation of the design science paradigm is explained. Lastly, this chapter

describes the literature research protocol used for the collection of knowledge.

2.1 Research Questions

To achieve the goals denoted in the previous chapter, a main research question has

been formulated. This main research question is aimed at adding structure to the

development of smart contracts through MDE. The structured way denoted in the

research question is refers to the formalization of the development process.

RQ: How can smart contract development be supported by Model-Driven Engineering

in a structured way?

To answer this research question, a number of sub-goals need to be achieved. The first

sub-goal is achieving an understanding of the concepts used in this research, namely

blockchain, smart contracts, and MDE. This will be achieved by looking into prior

research on the topics, by means of a literature review on the concepts. This results in

the following research sub-question:

SQ1: How can blockchain, smart contracts, and model-driven engineering be defined

based on prior literature?

With the knowledge resulting from research sub-question 1, an overview of the

concepts is created. With a clear definition and understanding of these concepts, the

next step in this research will be a review into the overlap of these concepts. Based on

initial research, the expectation is that there already have been attempts at combining

smart contract development with MDE, but not yet in a formalized structured way

this thesis intends to provide. The second research sub-question is as follows:

SQ2: What research into the application of Model-Driven Engineering to smart

contract development has already been conducted?

9

The insights of SQ1 and SQ2 will provide an overview of the current state of research

into smart contract development and MDE. Using these insights, a method

engineering process can be initiated. A method engineering approach based on using

existing method fragments will be applied. This means that a method base is created,

and method fragments from this method base are selected based on the requirements

for the smart contract development method. In order to be able to select the most

adequate fragments, the requirements for the method need to be stated. Based on the

requirements and available method fragments, the method engineering process can

proceed to the creation of the method. Method engineering as a concept will be

explained in a later chapter, along with how it is used to create the smart contract

development method. The requirements, activities, and deliverables of the method

will be explored in the third research sub-question:

SQ3: What are the requirements for the model-driven smart contract development

method and what are the activities and deliverables of this method?

The result of SQ3 will be a process deliverable diagram (PDD) that describes the

method of model-driven smart contract development. After this, an evaluation of the

method is necessary to investigate if the method meets the desired goals. The main

goals of this research, stated in chapter 1.2, are (i) to bridge the semantic gap between

domain knowledge and smart contract by lowering the threshold for domain experts,

and (ii) support developers in creating less vulnerable smart contracts that accurately

represent the problem domain. The first goal will be evaluated through a case study

in which the method is demonstrated and the second goal will be evaluated through

an experiment in which the comprehension will be tested. These evaluations are

formulated through the following research sub-questions:

SQ4: : How does the model-driven smart contract development method assist the

developer in the creation of smart contracts?

SQ5: How does the model-driven smart contract development method influence the

comprehension of smart contracts?

The answers to the research sub-questions should provide a holistic view of the

creation and evaluation of the model-driven smart contract development method,

10

which will provide a framework to answer the main research question. The sub-

research questions will be answered by using the following approaches:

- Sub-question 1 will be answered by doing a literature review. Smart contract

development is a relatively young field, so the literature research protocol will

be tailored to these circumstances. The literature research protocol can be found

in chapter 2.3. Blockchain, smart contracts, and MDE will be defined separately

in this sub-question and form the basis of this thesis.

- Sub-question 2 will also be answered by doing a literature review, based on

the knowledge gathered from sub-question 1. The literature that treats the

interrelation between the concepts will be discussed in this sub-question. The

attempts to apply MDE to smart contract development will form a method base

from which the method fragments will be selected.

- Sub-question 3 forms the basis for the method by stating the goals of the

method and the available method fragments that can adhere to these goals.

These goals and method fragments form the requirements for the method.

Based on these requirements, a comprehensive description of the model-driven

smart contract development method will be made. The knowledge from

subquestion 1 and 2 will be combined to form a method that spans from the

domain knowledge to the launch of the smart contract.

- Sub question 4 will be answered by applying the method in a case study, thus

demonstrating the method.

- Sub-question 5 will be answered by describing the experiment and its

outcomes. The experiment is aimed at evaluating the part of the method that is

included to bridge the semantic gap between domain knowledge and smart

contract. The experiment follows the goal-question-metric buildup and follows

the experimental design framework.

11

2.2 Research Paradigm

In the Information Systems discipline, research is often characterized by either

behavioural science or design science [21]. The behavioural science paradigm aims to

develop theories that explain or predict the behaviour of people or organization.

Design science is a paradigm that is motivated by the desire to improve the

environment by the introduction of new and innovative artefacts and the processes

for building these artefacts [22]. The environment denotes the problem space in which

the phenomena of interest reside. In IS research, it is composed of people,

organizations, and their existing or planned technologies [23]. Behaviour and design

cannot be seen as two separate paradigms but have an overlap in describing theories

(behaviour) and utility (design) [24]. The motivation for design science is in line with

the motivation for this research, as the aim is to improve the field of smart contract

development by introducing a novel artefact to this field.

Hevner has made an attempt to formalize the design science paradigm

through a three cycle view [25] and a set of seven guidelines, which supports the three

cycle view. The three cycle view consists of the Relevance cycle, the Rigor Cycle, and

the Design Cycle. The Relevance Cycle bridges the contextual environment of the

research project with the design science activities. The Rigor Cycle connects the design

science activities with the knowledge base of scientific foundations, experience, and

expertise that informs the research project. The central Design Cycle iterates between

the core activities of building and evaluating the design artefacts and processes of the

research [25]. The framework strikes a balance between the behavioural and design

paradigms and can be used to understand, execute, and evaluate IS research by

combining the two [24]. The three cycle framework is based upon seven guidelines of

well-designed research, shown in the following list:

1. Design as an artefact. The design science must produce a viable artefact in the

form of a construct, a model, a method, or an instantiation. In this research, the

main goal is the creation of the model-driven smart contract development method,

aiming to mitigate the current problems surrounding the field of smart contract

development.

12

2. Problem relevance. The objective of design science research is to create

solutions to important and relevant business problems. Smart contract

development is a novel topic in which a code-centric approach is often chosen over

a model-centric approach. The creation of a model-driven smart contract method

brings a structure to the development process, potentially preventing loss of funds

through faulty or vulnerable contracts. Furthermore, the model-driven approach

to development supports the communication between participants of the

development process.

3. Design evaluation. The evaluation process in design science research is a

crucial component in which the utility, quality, and efficacy of a design artefact

must be rigorously demonstrated via well-executed evaluation methods. The

utility of the model-driven smart contract development method is demonstrated

through a use case, after which the quality of the method will be evaluated through

an experiment. This way both the utility and the theory behind the method are

accounted for.

4. Research contributions. The design science research should provide a clear

contribution in the areas of the design artefact, the design construction knowledge,

or the design evaluation knowledge. This research contributes by providing a

method for the model-driven development of smart contracts, as well as providing

an evaluation methodology for the comprehension of models. More on the

research contribution is reported in chapter 1.2; Contributions.

5. Research rigor. Rigor is derived from the effective use of a knowledge base,

which consists of theoretical foundations and research methodologies. A literature

study on smart contracts, smart contract development, and MDE is combined with

situational method engineering to create the method. The usefulness of the method

is then assessed through a case study. Furthermore, an experiment is conducted to

investigate the claimed benefits of the method through a number of evaluation

qualities.

6. Design as a search process. In developing an artefact, the research should take

the knowledge base into account and make extensive use of existing grounded

theories and knowledge to create a solution. The artefact will be created using

situational method engineering, in which a method base containing method

13

fragments is used to create a method tailored to the problem at hand. This will be

done on the basis of a literature review.

7. Communication of research. Design science must be presented to both a

technology-oriented as well as a management-oriented audience. By presenting

this research in the form of a thesis, the contents should be understandable for a

variety of audiences. The structure of a thesis allows for every step of the research

process to be comprehensively explained, and for all the concepts to be defined in

a manner the intended audiences can understand.

People:

• Domain experts
• Developers

Organizations:

• Smart contract developers

Technologies:

• Smart contracts
• Software/smart contract

development
documentation

Foundations:

• Blockchain
• Smart contracts
• Conceptual modelling
• Model-driven engineering

Methodologies:

• Design science research
• Model-driven architecture
• Method engineering
• Goal-question-metric

Build:
Model-driven Smart

Contract development
method

Justify:
• Case study
• Experiment

Design
Cycle

Rigor CycleRelevance Cycle

Environment Information Science Research Knowledge Base

Additions to knowledge baseApplication in the appropriate environment

Needs from the industry Applicable knowledge

FIGURE 1: TAILORED DESIGN SCIENCE FRAMEWORK

Figure 1 shows how the seven guidelines fit in the design science research framework.

This framework is tailored toward the creation of the model-driven smart contract

development method. The environment consists of domain experts and developers,

which are involved in the creation of a smart contract. All organizations that make use

of smart contracts in any form can benefit from this model-driven development

method. The technologies used are smart contracts, MDE technologies, and

documentation technologies for the creation of smart contracts.

The foundations for this research lie in blockchain research, smart contract

research, conceptual modelling research, and MDE research. The methodologies

14

applied are design science research, described in this chapter, model-driven

architecture (MDA), described in chapter 3.4, method engineering for creating the

method, described in chapter 4, and the goal-question-metric approach to

experimental research, described in chapter 6.

The knowledge base and the environment jointly contribute to the

information science research in the middle column, in which the artifact is build. The

artifact, the model-driven smart contract development method, is then evaluated

using a case study and an experiment. The design science is not solely aimed at the

creation of an artefact but has to with the systematic creation of knowledge about, and

with, design [26]. The whole process works iteratively, in the sense that every aspect

is revisited throughout this research project and the sole focus is not entirely on the

creation of the artifact.

2.3 Literature Research Protocol

Blockchain and Ethereum are relatively new phenomenon, so a lot of the research on

it is fairly recent. This makes it difficult to determine the relevance of papers based on

for instance the amount of references. For this reason, a 100% structured approach to

the gathering of relevant literature was not the best fit, and therefore a semi-structured

approach was chosen.

The tentative initial set of papers was determined in two different ways. For

the literature on MDE the proceedings of the International Conference on Model

Driven Engineering Languages and Systems (MODELS) were consulted. For the

literature on blockchain and Ethereum, papers were selected based on the citations of

the initial description of Ethereum, the 2014 paper by Gavin Wood [27]. The

assumption here is that literature touching upon the subjects Ethereum and smart

contracts will reference this paper. From the papers found, the relevance was

manually determined.

From the start set, keywords were distilled for both blockchain and Ethereum,

and MDE. The search for peer-reviewed related work on blockchain and Ethereum,

and MDE was done through several online databases, such as Google Scholar, IEEE,

ACM, ScienceDirect, and Springerlink. The keywords used in these queries are as

follows:

15

“Blockchain” “Ethereum” “Smart Contract” “Smart Contract Development”

“Solidity” “Model-Driven Engineering” “Model-Driven Development” “Model-

Driven Architecture” “Transformations” “Model-driven Software Engineering”

“Domain-specific Language” “Code Generation”

Keywords that yielded too many results were used in combination with other

keywords, for instance:

“Smart Contract” AND “Transformations”

A distinction was made between research on smart contract development and

research on the technological specifications of blockchain. Technological

specifications are for instance the throughput and latency of a blockchain platform.

These technological specifications of blockchain are beyond the scope of this thesis.

On the papers found through the queries, both backward- and forward snowballing

has been applied [5]. In backward snowballing, the reference list of a paper is

reviewed and papers are selected through the review of abstracts. In forward

snowballing, papers were selected which cite the initial set papers. Forward

snowballing was used because a lot of papers are relatively new and are only findable

through this method. The final inclusion of papers was done based on the full paper,

and the process was iterated until no new relevant papers were found.

16

3. Theoretical Background

This chapter describes the knowledge discovered through literature research,

described in chapter 2.3. A distinction between three main concepts has been made in

order to create a holistic overview of the concepts that are relevant for this thesis. As

the smart contract has gained tremendous momentum with the emergence of

blockchain, this concept is first explained by describing the main technologies that

enable blockchain platforms in their current form (chapter 3.1). With the

understanding of what blockchain technology is, the smart contract will be defined

and discussed (chapter 3.2). Hereafter, MDE will be discussed (chapter 3.3), as well as

a framework for MDE (chapter 3.4). Lastly, a look into existing research combining

the concepts of blockchain, smart contracts, and MDE will be discussed (chapter 3.5).

3.1 Blockchain

Blockchain is best known as the technology that runs the Bitcoin cryptocurrency. It is

a public ledger system maintaining the integrity of transaction data [28]. The

technology was first applied when this cryptocurrency was launched and described

by the pseudonymous Satoshi Nakamoto [1]. Swan roughly divides the emergence of

blockchain in three phases, namely blockchain 1.0, 2.0, and 3.0 [28]. The first phase is

the blockchain supporting a cryptocurrency, the second phase incorporates smart

contracts, and the third phase lowers the entry level by combining the blockchain with

decentralized apps (dApps). Firstly, the 1.0 as the backbone of blockchain will be

explained to create a thorough understanding of the basics. After this, the second

phase, the application of smart contracts, will be discussed. The third phase is of little

relevance to this research, so will not be discussed further.

So, the first and currently biggest application of blockchain technology is the

Bitcoin cryptocurrency. Cryptocurrencies differ from classical forms of currency in

many areas. Table 1 denotes a comparison between the two, based on [2].

17

TABLE 1: COMPARISON BETWEEN CRYPTOCURRENCY AND FIAT CURRENCY

Characteristics Bitcoin Fiat currency

Issuance/

management

Issuer • Automatically issued by the

system

• Governments

Manager • Managed by P2P network

participants

• Governments

Value Issuance cap • Specified (21 million BTC) • None

Grounds for

value

• Trust in the system • Trust in the government

Money

transfer

Transfer time • 60 minutes on average • Depends on the sum and

distance

Transfer fee • Small amount • Expensive

Privacy Anonymity of

transactions

• Transaction records are clear

but anonymous

• High anonymity

Disclosure of

transactions

• Full disclosure • No disclosure

As can be seen in Table 1, in contrast to the classical fiat currencies, Bitcoin runs

automatically without the interference of a central authority. The near collapse of

banks deemed too big to fail in 2008 showed the world the fragility of the classic

concept of money. Bitcoin is an answer to the non-transparent system of the fiat

currency approach and aims to not only minimize the transaction costs, but to let the

users themselves safeguard the integrity of the currency [29].

Blockchain is the name of the public decentralized transaction ledger on

which the digital currency Bitcoin runs. A ledger, in its essence, is a combination of

two things: a list of accounts who own an amount of something, and a list of

transactions from one account to another. This way a ledger denotes a proof-of-

ownership for a certain good and all the transferals of proof-of-ownership of the

goods, which combined can proof ownership at all times. When keeping track of the

balance of a cryptocurrency these two components alternate, so there is an initial state,

a number of transactions, which in turn result in a new found state. This way the

ledger of a cryptocurrency such as Bitcoin can be seen as a state transition system in

which the blocks denote the transition and the newfound state [27]. This process can

be seen in Figure 2, in which the initial state has 6 accounts owning 10, a transition

with three transactions, which results in the new state. If an account does not yet exist

18

in the initial state (left), it will be created in the newfound state (right), which can be

seen in the creation of account G.

State

A –
B –
C –
D –
E –
F - 10

A -> B : 4
C -> D : 10
F -> G : 5

State
A –

B –
C –

D –
E –
F –
G - 5

Transactions

A -> B : 4
C -> D : 10
F -> G : 5

FIGURE 2: A CRYPTOCURRENCY AS A STATE-TRANSITION MACHINE

Classically, a trusted third party keeps track of a ledger and consensus is reached

through an aristocratic system, like the fiat currency in Table 1. The biggest problem

of cutting out the trusted third party is the question of who will maintain the integrity

of the ledger. The problem of maintaining trust among unknown peers is illustrated

by the Byzantine Generals Problem, a thought experiment which illustrates the pitfalls

and design challenges of attempting to coordinate an action by communicating over

an unreliable link [30]. For instance, in the state transition example in Figure 2 the

transactions are only valid if the balance in the initial state is greater than or equal to

the transaction amount. If a participant in the network were to create invalid

transactions and add them, the state would be corrupted. If this is the case, the

problem of reaching consensus about the state among participants in a network arises.

In an attempt to solve this problem, blockchain was described. Blockchain

combines public-key cryptography, cryptographic hashing, peer-to-peer networking

and consensus mechanisms to create a decentralized autonomous ledger [31]. A basic

understanding of these technologies and their concepts is needed to understand how

a blockchain functions, so the next sections will outline these technologies after which

the combined working in a blockchain will be discussed.

19

3.1.1 Public Key Cryptography

In order to maintain the integrity and confidentiality of accounts while maintaining

availability, a system of encryption and decryption must be applied. Data is encrypted

to be unreadable for unwanted parties and decrypted to be shown to the desired

parties. When using a single key to encrypt and decrypt, the number of keys grows

rapidly as the number of users grows. The problem of handing over a massive amount

of keys was solved by Diffie and Hellman [32], who first proposed the idea of public

key cryptography in 1976. In this cryptographic method a user has two keys: a public

key and a private key. The user may distribute its public key, because a key only

encrypts or decrypts data. The keys work as inverts, so data encrypted by a public key

can be decrypted by a private key and vice-versa. Deducing one key from the other,

however, is effectively impossible [33]. Data can be safely shared as long as the sender

shares his public key in advance and his private key maintains secure. This process is

shown in Figure 3.

Plain text

Public
key

Private
key

Different keys

Encryption

Cypher text Plain text

Decryption

FIGURE 3: ASYMMETRIC ENCRYPTION [34]

Blockchain is not about sending secret messages, so what has asymmetric

cryptography to do with any of it? With the private and public key, a digital signature

can be established. This is a mechanism which works as proof that a message

originates from a sender [35]. In this mechanism, the sender encrypts his data with his

20

private key and sends it to the recipient. The recipient, in turn, can decrypt the data

with the public key, which proves it originated from the sender. This process can be

seen in figure 4.

FIGURE 4: DIGITAL SIGNATURES [36]

In a blockchain the public key functions as an address for the person who owns an

amount of BTC. This address is stored on the blockchain and is publicly available to

everyone with access to the blockchain. The digital signature is used to confirm that

the actual address sent a transaction. The hash value of the transaction is encrypted

with the private key of the sender. Decrypting this should deliver the same hash value

as the hashed transaction, and if not the transaction is invalid. Everyone on the

blockchain has access to the public key/address, so everyone is able to verify the

transactions.

3.1.2 Cryptographic Hashing

Cryptographic hash functions play a fundamental role in modern cryptography. A

hash function maps bitstrings of an arbitrary finite length into strings of a fixed length

called the hash-value, or simply hash. Such a function must be a one-way function,

21

which means the input cannot be deduced from the output. It also must be collision

resistant, which means it is computationally infeasible to find two inputs which

produce the same output [37]. Input will always result in the same output, but a slight

change in the input will produce a completely different hash value. Figure 5 shows

this process, along with 2 examples.

Data Hash-function Hash-value

01234567890 Hash-function ebe596017

01234567891 Hash-function 49330cbe7

By a small change in the data,
the hash-value differs drastically

FIGURE 5: CRYPTOGRAPHIC HASHING

Hash-values, in turn, can also be hashed. In the blockchain, all transactions are hashed.

It is time consuming and computationally expensive to check the entirety of the hash-

list, which is why Merkle trees are used. A Merkle tree is a tree structure and a

generalization of the hash list. Each leaf node is a hash of a block of data (in this case

a transaction), and each non-leaf node is a hash of its children [38]. The hash of the

Merkle tree will alter completely if any data is altered, which is illustrated in Figure 6.

This allows for efficient verification. In the blockchain, this is the mechanism behind

the detection of falsified data, and it guarantees the continuity and creation of

blockchain data through proof-of-work; see chapter 3.1.4.

22

FIGURE 6: HASHING IN A MERKLE TREE

3.1.3 Peer-to-peer Networking

Peer-to-peer denotes a network in which nodes create an autonomous network

wherein data is requested and provided among these nodes on equal footing. A node

is a physical/virtual machine that communicates via TCP/IP and UDP with other

nodes [39]. The role of a node in this network is not fixed as a client or server. This is

in contrast with the classic client-server structure in which one party is in charge of

the provision and preservation of the data. This one leading party is the centralized

server, and the clients request and obtain their data from this centralized server.

By not having a client/server structure, some aspects of the network become

more complex. For instance, how data is distributed and the method of data

transmission between peers is to be considered [40]. In order for a blockchain to

function properly, it is evident that the network is available for all nodes and that

propagation functions fluently. Peer-to-peer networking technology is used as a base

technology to form the distributed network and eliminates a single point of failure

[41]. It also plays a crucial role in the verification and creation of blocks which are

added to the blockchain [42].

23

3.1.4 Consensus Mechanisms

In a classical centralized architecture, a single authoritative database is the source of

information, which defines the true data. In a blockchain, all the nodes have a copy of

the ledger, and together they decide what the true single state of the ledger is [43].

There are a number of mechanisms which enable the nodes in a network to do so.

What most of the consensus mechanisms have in common is that they give the nodes

an incentive to keep track of the state in the form of the currency that the blockchain

holds.

The Bitcoin blockchain currently runs on the proof-of-work mechanism. Proof

of work (PoW) is a mechanism which makes an action more costly. In this scenario the

action to be performed is relatively easy to do and making it more costly means

making it harder to do. For instance, in 2006 it was proposed as a mechanism to be

added to email. Sending spam mail is a relatively easy task, and the proposed

mechanism to be added to email would make sending mail more costly, so that

spamming would no longer be economically attractive [44]. In the blockchain this

process is called mining and is centered about earning a reward. The reward is an

incentive to do computational work in order to verify and control the blockchain. To

earn the reward, every block is accompanied by a computational puzzle: the data

content of the block combined with a nonce must result in hash smaller than a certain

value. A nonce is any given value, and the certain value depicts the difficulty of the

block. A hash function is pseudo-random so it is impossible to deduce the nonce from

the data, so the only way to solve the puzzle is to try all nonce values until the right

result is guessed. Solving the puzzle adds a block to the blockchain, which is called

mining. In Bitcoin this task is designed in such a way that approximately every ten

minutes a new block is added. In figure 7 the proof-of-work mechanism is illustrated.

The nonce is incrementally upped until the calculation result is below a certain

threshold. In this case the calculation result should be below 100000. This threshold

denotes the difficulty of the computational puzzle, the lower the threshold, the harder

the puzzle in theory is. The difficulty is adjusted in such a way that the time it takes

to mine a block stays the same on average.

24

Data Nonce
Hash

function
Calculation result

Data 1
Hash

function
6b86b273

Data 2
Hash

function
d4735e3a

Data 3
Hash

function
4e074085

Data x
Hash

function
000b60ce

FIGURE 7: THE PROOF-OF-WORK CONSENSUS MECHANISM

The first way to earn a reward is to be the quickest to mine a block. However, to ensure

that miners check the quality of blocks, a reward can be taken away if someone proves

the mined block to be faulty. This quality-reward is an incentive for people to check

mined blocks and not flawlessly adopt the latest blocks to earn the speed-reward. If

the nodes mutually accept a block, the collection of transactions in that block is added

to the blockchain, and the process restarts with the transactions that were not included

in the last block. In Bitcoin, the reward started at 50 BTC and halves every 210,000

blocks (approximately four years).

The top 10 largest blockchain protocols, of which Bitcoin is the largest, are all

currently running on the proof-of-work mechanism [42]. Next to usage with malicious

intent, which will be discussed later, the mechanism is dependent on energy

consumption because of its reliance on computational power. This makes it costly to

mine blocks, and as the reward halves every 4 years the incentive to mine is lost over

time. A solution to this is to raise transaction fees, but this means blockchain platforms

still rely heavily on energy consumption. This is why a number of other consensus

mechanisms have been proposed. A number of these mechanisms and the basis for

their consensus are shown in Table 2.

25

TABLE 2: THE CONSENSUS MECHANISMS OF BLOCKCHAINS

Consensus mechanism The consensus is based on

Proof-of-Work (PoW) Computational work

Proof-of-Stake (PoS) Ownership of currency

Proof-of-Activity (PoA) Currency discovery

Federated Byzantines Agreement (FBA) Majority voting system

The first block created through mining is called the genesis block, after which more

blocks are appended. The total series of blocks created through a consensus

mechanism is called a blockchain. Table 3 shows a typical block structure with an

example and explanation of what the element are. All elements, except for the

transactions, are part of the block header. The transactions form the block body.

TABLE 3: STRUCTURE OF A TYPICAL BLOCK

 Element Example Definition

B
lo

ck
 h

ea
d

er

Block version 02000000 Indicates which set of block validation rules

to follow

Parent Block Hash Hash A 256-bit hash value that points to the

previous block

Merkle Tree Root Hash The hash value of all the transactions in the

block

Timestamp 24d95a54 Current timestamp as seconds since 1970-01-

01T00:00UTC

nBits 30c31b18 Current hashing target in compact format

Nonce Fe9f0864 A 4-byte field, which usually starts with 0 and

increases for every hash calculation

Block

body
Transactions

26

With this block structure in mind, a holistic overview of a blockchain can be made,

shown in Figure 8. In this simplified version there are only two transactions per block.

A consensus mechanism makes it possible for the parties to reach a single source of

truth which is delegated over the blockchain network. However, in these mechanisms

there is a reasonable chance that two or more nodes find a valid block almost

simultaneously. In this case the other nodes in the network are working on different

branches of the blockchain [45]. This happens very frequently, so instead of a linear

build-up of blocks, the creation of the blockchain looks more like a tree with a lot of

different branches. To decide what the right branch is two principles are being

enforced: the principle of the longest branch, and the principle of the heaviest branch.

The first one is self-explanatory, the branch with the most blocks will be mined on. In

the case of proof-of-work this works out most of the time as in case of a simultaneous

mining, the next block decide the main branch [46]. If this does not give a definitive

answer to what the main branch is the weight of the branches is decisive factor. Every

block has a certain difficulty based on the threshold of the proof-of-work puzzle. The

sum of these difficulties provides the weight of a branch and the one with the highest

weight is chosen.

FIGURE 8: BLOCKCHAIN AND ITS COMBINED TECHNOLOGIES

27

3.2 Smart Contracts

As introduced in the previous chapter, the blockchain is a great platform to facilitate

trade in the form of cryptocurrencies. Through the immutability provided by the

hashing of transactions, the linking of the blocks created by a consensus mechanism,

and the propagation of the blocks, a central party is deemed unnecessary. A next step

in the application of this technology is the subsidizing of more complex agreements.

Code that is stored, verified, and executed on a blockchain is called a smart contract

[47]. The idea of a smart contract was proposed by Nick Szabo in 1997 [9]. The main

aim of such a contract is to automatically execute the terms of an agreement once

certain conditions are met. Simply stated, it is a computer program which follows an

if this happens then that structure [48].

Smart contracts stand out from traditional contracts in the sense that they

carry low legal and transactional costs, and can lower the bar of entry for users. The

consumer deals directly with the movement of valuable currency, so the security of

such a contract is very important. If you transact currency into a buggy contract, you

will most likely lose it [15]. On the blockchain, a smart contract holds digital assets

which are released once certain arbitrary conditions are met [49]. For instance, A will

transfer an X amount of currency to B, once he receives X currency from C.

In the context of this research a smart contract is a program that runs on the

blockchain and has its correct execution enforced by the consensus protocol. Although

smart contracts could theoretically serve as entire software applications, most

applications lie in the financial or notary category [50]. These match the old definition

of contracts, in which a contract is a legally binding or valid agreement between two

or more parties. The main objective of such a contract is to fulfill a certain goal and to

safeguard against undesirable outcomes, together referred to as contract robustness

[9]. Other applications of smart contract are for instance games, but these contracts are

far more likely to be developed by people with a far-reaching knowledge of Solidity

than financial or notary contracts [50].

28

FIGURE 9: SMART CONTRACTS ON THE BLOCKCHAIN [15]

A contract consists of a code, an internal storage, and an account balance. The state of

a contract consists of the contract’s balance and the internal storage. The state is

updated every time the contract is invoked. Figure 9 shows such a contract. The users

invoke the contract by sending transactions and data to the contract address, note that

the ‘money’ in Figure 9 can in this case mean any kind of (crypto)currency through a

transaction. The miners treat the contract transactions in the same way normal

transactions are handled. In the contract code, every time the account receives a

message its code activates, allowing it to read and write to internal storage and sent

other messages or create contracts in turn. The contracts should not be seen as

something that will be fulfilled, but more as an autonomous agent that always

executes a specific piece of code when receiving a message, keeping track of its own

balance and their key/value store to keep track of persistent variables.

In most distributed computing networks like the blockchain platforms,

security measures limit the input and output of external data [48]. For certain smart

contracts to function, however, external data is needed. For this reason a distinction

between deterministic and non-deterministic smart contracts is made. A deterministic

smart contract does not depend on information other than information on the

29

blockchain. An example is a lottery contract, in which contenders send an amount to

the contract. When a certain limit or time is reached, the contract executes a function

which randomly picks the winning lottery number and the prize is distributed to a

contender. In this contract, no data is used, except for data and information already

on the blockchain. Logically, this results in a deterministic contract always having the

same output if the input is not changed.

A non-deterministic contract does depend on outside information. This

outside information is called an oracle [48]. An oracle provides information from

outside the system that the system itself cannot acquire. A classic example of this

would be a sports-betting smart contract, in which the oracle is the outcome of the

game/event. The smart contract pays out funds based on the outcome of a game/event

which calls for a trusted party to provide this outcome.

The development and execution of smart contracts can be done with different

blockchain protocols in mind. Bitcoin, for instance, supports a rudimentary scripting

system, but this is not very user-friendly. There have been attempts to design

applications using the Bitcoin scripting language [51] [52], but this seems too difficult

for the average user. It is also very limited regarding the complexity of contracts. With

the limitation of the complexity in mind, NXT was created. NXT has templates which

can be combined to create smart contracts. Templates still limit the complexity of

smart contracts (e.g., not Turing-complete).

Ethereum [49] currently is the most advanced smart contract focused

blockchain platform. This blockchain protocol aims to solve the fundamental

limitations that Bitcoin has with its scripting language. Ethereum was built primarily

with the aim to store and execute smart contracts. This is because Ethereum supports

Turing completeness feature that allows creating more advanced and customized

contracts. Turing-completeness means it could theoretically be used to solve any

computational problem. Ethereum stands out because unlike Bitcoin, it was created

with the aim to not only be a cryptocurrency but to be an alternative protocol for

building decentralized applications, an overview is shown in Figure 10. For this

reason, it has become the blockchain platform on which by far the highest amount of

smart contracts are deployed [14].

30

Complexity of smart contract

Distributed storage
with limited smart
contract support

Distributed computing
with smart contract

support based on
predefined templates

Distributed computing
with a Turing-

complete smart
contract support

FIGURE 10: SMART CONTRACT SUPPORT IN DIFFERENT BLOCKCHAIN PROTOCOLS

On Ethereum the state is comprised of two types of accounts. The externally owned

accounts, controlled by their private keys, and contract accounts, controlled by their

contract code [27]. An externally owned account has no code and can be compared to

normal accounts on a blockchain with an address and a balance. These accounts can

send messages by creating and signing a transaction.

As is the case with Bitcoin, the processing of Ethereum transactions is

distributed and is done through the proof-of-work consensus mechanism. An

essential difference is that in Bitcoin, all transaction require the same amount of

computational power. In Ethereum, the smart contracts call for different amounts of

computational power. To ensure that the miners are rewarded fairly for their

computational efforts, an additional fee was added to Ethereum transactions. This fee

is called gas. Each instruction in the Ethereum bytecode costs a pre-specified amount

of gas. When a contract is invoked, the sender of the transaction must specify how

much gas he is willing to provide for the execution of the contract (gasLimit), as well

as the price for each gas unit (gasPrice). This way the node who does the computation

is rewarded the gasPrice multiplied by the pre-specified amount of gas for the

execution of the contract. If this exceeds the gasLimit, the execution is terminated with

an exception and it will not be added to the blockchain. When such an exception is

thrown, the sender still has to pay the gasLimit he specified to prevent resource-

31

exhaustion attacks. Ethereum can be thought of as a distributed computer platform in

which anyone can run code by paying for the associated gas charges.

The amount of gas is determined through a summation of the bytecode

expressions that are executed in a smart contract. The bytecode is executed on the

nodes through the so-called Ethereum Virtual Machine (EVM). The EVM-bytecode is

the lowest level of abstraction in the Ethereum programming paradigm; however

because this is incredibly hard to read and write by developers, higher level

programming languages have been created for Ethereum. The most widely used is

Solidity, a language library similar to C and javaScript. Solidity is the most supported

and maintained language, but other languages include Serpent, based on python, and

LLL, based on Lisp.

Alharby and van Moorsel did a systematic mapping study into blockchain-

based smart contracts. They identified four key issues, namely, codifying, security,

privacy, and performance issues [53]. For this research, the codifying and security

aspects of smart contracts are especially important. Codifying issues entail difficulties

writing correct smart contracts [15], the inability to modify or terminate smart

contracts [54], a lack of support to identify under-optimized smart contracts [13], and

the complexity of programming languages [55]. These codifying problems in

combination with the necessity to do so correctly because of their publicly available

nature hinder mainstream adoption and acceptance of the technology. The security

issues identified enhance this hindrance, but are more on a technical than a pragmatic

level. This can vary from a dependence of the order or timestamp of a block to the way

exceptions and re-entrancy is handled [16].

A large portion of the problems with smart contracts and smart contract

development could be pinpointed to the lack of formalization of this relatively young

field. The lack of standards and best practices makes smart contract development

prone to problematic practices. Evidence of this is the study into how much smart

contracts are vulnerable to one of the before-mentioned vulnerabilities in which 68%

of the contracts had such a weakness [16]. Among these vulnerable smart contracts is

the decentralized autonomous organization (DAO), a smart contract which aimed to

work as a decentralized hedge fund. An exploited vulnerability in the code allowed a

hacker to extract a massive 60 million dollars from the total of 150 million capital

32

stored in the smart contract. The lack of research in the field of software development

practices in the development phase of the smart contract contributes to a large amount

of faulty smart contracts.

3.3 Model-Driven Engineering

With smart contract development, it is hard to say what happens to the complexity of

software. Currently, the smart contracts are not as complex as regular software

systems, but the Turing-completeness of the Ethereum blockchain provide the

possibility for increasingly complex smart contract applications. An IT environment

is characterized by rapidly changing business requirements, heterogeneous

middleware platforms, and the need to incorporate legacy systems with new

applications and technologies [20]. This can also be said for blockchain environments,

because of their novelty and the rapidly evolving blockchain platforms and their

programming languages. Currently, Ethereum combined with Solidity is the most

used blockchain platform and programming language for smart contracts, but because

of the high volatility, this trend could quickly shift.

In the practice of software engineering, there is a variability in the extent to

which the engineers use models in the development phase. On the one extreme, there

is the model-centric or model-driven development approach, in which models are

used to describe the structure and the behavior of the system, which is then used to

generate source code for the system. On the other extreme, there is no usage of models

at all, and the focus is solely on the code, hence a code-centric approach. The spectrum

of the approaches is shown in Figure 11 [56]. The use of models is applied to lower the

level of abstraction and to separate components of a system. It can lower the

complexity and create a better understanding of the system.

33

FIGURE 11: SPECTRUM OF SOFTWARE DEVELOPMENT APPROACHES

In a volatile development environment in which for instance the platform or the

programming language changes frequently, it has proven to be useful to use a more

model-centric approach to increase the re-use of knowledge [20]. One of the most

important aspects, the business knowledge, can be re-used and only the

implementation of the business knowledge has to be reworked. In a code-centric

approach, the whole process has to be reiterated. Smart contract development is a

relatively novel field, and its development environment is highly volatile. For this

reason, it may be more efficient to look into a model-centric instead of a code only

approach. A methodology aimed at a model-centric approach is Model-Driven

Engineering (MDE) [19]. This is a software engineering approach consisting of the

application of models and model technologies to raise the level of abstraction at which

developers create and evolve software, with the goal of both simplifying and

formalizing the various activities and tasks that comprise the software life cycle [57].

To elaborate further on what models can mean for the development of

software, it is essential to define what a model is. To distinguish models from other

artifacts like requirements and data, Stachowiak [58] defines three criteria to be met

by a model, elaborated on by Ludewig [59]:

- Mapping criterion: There is an original object or phenomenon that is mapped

to the model. This original object or phenomenon is referred to as “the

original”;

34

- Reduction criterion: The model does not map all the properties of the original,

but only the relevant properties. It is, however, needed that the model mirror

at least some of the properties of the original.

- Pragmatic criterion: The model can replace the original for some purpose. This

is referred to as being useful.

These three criteria make the concept of a model very broad. Beizvin even states that

everything can be seen as a model [60]. Kuhne defines models in the context of MDE

as “an artifact formulated in a modeling language, such as UML, describing a system

through the help of various diagram types” [61]. So in the context of this research, a

model is a pragmatic artifact that maps an original object or phenomenon while

creating an abstraction to focus on the properties that are most important.

MDE can be applied to a development process for a variety of reasons. It can

improve the quality assurance of system requirements [62] and add a level of

formalization and standardization to the system development process [63]. With the

models and transformation rules, automation can be applied to generate code [64] or

do model-based simulation to assess the quality [65]. MDE can be implemented to

improve the communication and information sharing between stakeholders and

within the development team [66]. Using models in the development phase can also

ease the porting of solutions to new platforms [67].

In the literature, there exists some ambiguity surrounding concepts in the

model-driven field. In this research, a distinction between three levels is made. First,

MDE serves as the umbrella term for the research area in which the gap between the

problem domain and the software implementation domain is reduced through the

systematic transformation of problem-level abstractions to software implementations

[68]. Abstractions, or models in this context, serve three main purposes: they

generalize specific features of real objects, classify the objects into coherent clusters,

and can aggregate objects into more complex ones [69]. Second, Model-Driven

Development (MDD) is a development approach that uses the abstractions or models

as the primary artifact of the development process. In MDD, automation is used to

generate code from formalized structures or models [19]. Through this automation in

the development process, the software quality could improve, the complexity can be

reduced, and the higher level of abstraction could make development more accessible

35

to a broader audience [57]. In some research, MDE is described as MDD [68], but here

MDD is the application of MDE. MDE describes the entire Software Development

Lifecycle (SDLC), and MDD focuses on the model to implementation transformation.

Third, the Model-Driven Architecture (MDA) is an approach to MDD proposed by the

Object Management Group (OMG). It is a set of standards for the execution of an MDD

process [70]. The relation between these three concepts can be summarized as follows:

MDA is an approach to MDD, which is a subset of MDE (Figure 12).

MDE

MDD

MDA

MDE

FIGURE 12: RELATION BETWEEN MDE, MDD, AND MDA

There are other frameworks for MDD, like the Eclipse Modeling Framework (EMF)

[71] or the Java Metadata Interface (JMI) [72]. MDA is chosen here because in the

literature it is named as a perfect case for explaining MDE concepts, as all the standard

phases of a software development process such as analysis, design, and

implementation are appropriately supported; second, given the importance of the

OMG in the software industry, MDA is currently a reference conceptual framework

adopted in many organizations [69]. Furthermore, the abstract view of the system is

represented through the OMG’s modeling standards, chapter 3.4, which allow

transformations to major open or proprietary execution platforms [56].

36

3.4 Model-Driven Architecture

Model-driven architecture (MDA) is an instantiation of the MDD approach. MDA is a

framework based on UML and other industry standards for visualizing, storing, and

exchanging software designs and models [73]. MDA is model-driven because it

provides a means for using models to direct the course of understanding, design,

construction, deployment, operation, maintenance and modification. All artifacts such

as the requirements specification, architecture descriptions, design descriptions, and

code are regarded as models. It is a framework by the OMG [70] that suggests the use

of models and transformations of these models in the software development process.

Its name is somewhat misleading as it is not an architecture, but a standardized

approach to MDE based on abstraction of platform similarities [74]. The primary goal

of MDA is interoperability between tools and the long-term standardization of models

in popular application domains [75]. MDA distinguishes between the Computational

Independent Model, the Platform Independent Model, the Platform Specific model,

and code:

- Computational Independent Model (CIM): This model describes the business

system and is sometimes referred to as the domain model. It contains no details

of the system and is specified by domain experts, using vocabulary that is

familiar to the practitioners of the domain in question. It often contains the

application’s business functionality and behavior through use case and activity

diagrams, and the actors that interact with the application. This model can be

seen as a contractual element that acts as a reference to check if the

requirements are correctly fulfilled by the other models;

- Platform Independent Model (PIM): This model is a view based on the CIM

in which the system is described from a platform-independent point-of-view.

By doing so, the PIM models the system in a way suitable for different

platforms of similar type. The goal of the PIM is to realize logical data, establish

dependencies and define workflows. It requires that model elements contain

enough information so that logic implementation and code generation can be

made possible;

37

- Platform Specific Model (PSM): In this model, the system-view and its

specification details are tailored for the use on a specific platform. In this model,

the PIM is transformed into a code model, which in turn can be transformed

into source code. The difference between source code and a code model is that

source code is a succession of textual lines, and code models are a structured

representation of the source code;

- Code: In this ‘model’ the PSM is transformed to executable source code tailored

to the PSM’s specified platform.

Figure 13 shows the relation between these four concepts and an example application.

The first phase of an MDA process is gaining the business knowledge and

requirements. However, in many practical applications of the MDA, this phase and

the consequent modeling into the CIM are skipped. The PIM is then taken as an initial

model. This phase is argued to be highly essential and assists in thoroughly

understanding the business knowledge [76]. The introduction of techniques and

models in this phase help close the gap to the stakeholders’ world and way of

thinking.

FIGURE 13: MDA PRINCIPLES

One of the critical features of this framework is the transformation between the

models. Transformation rules describe how a model in a source language (the source

38

model) can be transformed into one or more models in a target language (target

model), as shown in Figure 13. Model transformation relies on a set of mapping rules

between models. These mapping rules are based on knowledge about the application

domain or the implementation technology. MDA provides the foundations to develop

tools that implement these transformations, which in turn can ensure the consistency

and validation of models.

The MDA framework is based on industry standards that are supported by

the OMG. These standards aim to formalize the specification of models through meta-

models and to better the communication about models. The base MDA standards are

the Unified Modeling Language (UML), the Meta Object Facility (MOF) and the XML

Metadata Interchange.

FIGURE 14: TRANSFORMATIONS IN MDA

The Unified Modeling Language is a language for visualizing, specifying, and

documenting software systems [77]. The UML is a result of the best practices in

modeling engineering and can be used to describe complex systems through models

[78]. The graphical representations of models in UML are called UML diagrams,

which can represent different views of a system.

Models can also be used to describe other models, which is called meta-

modeling. The OMG describes a meta-model as “a model that defines a modeling

language and is also expressed using a modeling language” [79]. In theory, there are

endless meta-models, because every model could be described by another model. The

OMG describes the MOF (Figure 15), in which the meta-modeling is limited to the

39

meta-metamodel. The MOF aims to stimulate the development and interoperability

between models and metadata driven systems [79].

FIGURE 15: MOF STANDARD

The MOF is a standard for meta-modeling definitions. The lowest level of this

architecture is the system, which is a real-world instantiation of a user-defined model

(M1 level). This user-defined model is an instance of a meta-model (M2 level), which

in turn is an instance of a meta-metamodel (M3 level). UML can be seen as an example

of a meta-model that is captured in the MOF formalism.

3.5 Model-Driven Engineering Approaches to Smart Contract Development

Smart contracts supported by distributed ledger technology is a novel field, so

research on the topic is not very extensive. However, there have been attempts at

raising the level of abstraction from code-centric to model-centric smart contract

development. In this chapter three of these attempts are described extensively. The

included MDE approaches have one or more modeling language(s) to support the

concerns and viewpoints associated with a smart contract, at least the PIM to PSM

transformations, and mappings are supported through a rationale.

40

3.5.1 Agent-Based Approach

The first approach is described in the paper “From Institutions to Code: Towards

Automated Generation of Smart Contracts” by Frantz and Nowostawski [80]. It is

based on the concept Grammar of Institutions by Crawford and Ostrom [81], which

lies in the area of institutional analysis. This Grammar of Institutions is used to

decompose institutions into rule-based statements. These statements hereafter are

compiled in a structured formalization.

The grammar of institutions finds its roots in agent-based modeling (ABM).

ABM is a computational modeling paradigm in which phenomena are modeled as

dynamical systems of interacting agents [82]. The model consists of a set of agents that

encapsulate the behaviors of the various individuals that make up the system, and the

execution consists of emulating these behaviors [83]. Often the behavior of the agents

is modeled through sets of statements in which the behavior becomes explicit. In this

case, the statements are constructed from five components, jointly abbreviated to

ADICO:

- Attribute: The actor’s characteristics or attributes;

- Deontic: the nature of the statement as an obligation, permission or

prohibition;

- Aim: the action or outcome that the statement regulates;

- Conditions: The contextual conditions under which the statement holds;

- Or else: Describing the consequences associated with non-conformance to the

statement.

Using these components, statements on the execution of the smart contract are made.

In the description of this method, an example of a voting system is given: “People

(Attribute) must (Deontic) vote (I) only once (C).” The statements are then linked by

the structure of nADICO [84], a variant of ADICO in which the institutional functions

are linked by the operators AND, OR, and XOR to create a simple set of prescriptions.

By modeling the relationship of the agents in a rule-based manner, ABM make it

possible to identify interdependencies between different human activities in a system.

The set of prescriptions is then transformed into a contract skeleton which has

to be finished manually. Frantz and Nowatiszki [80] provide a DSL which facilitates

41

the mapping from the statements to the skeleton contract. It is argued that the

provision of a contract skeleton separates the specification task from the

implementation, ensuring no crucial functionality is forgotten. Furthermore, it is

argued that the Grammar of Institutions invites non-technical people to the smart

contract development process.

3.5.2 Process-Based Approach

The second approach is described in the paper “Untrusted Business Process

Monitoring and Execution Using Blockchain” by Weber et. Al. [85]. This approach is

aimed at business processes across organizations. In the paper, the focus is on supply

chains, in which smart contracts are used to address the lack-of-trust problem in

collaborative business processes. A business process specification like the Business

Process Modeling Notation (BPMN) [86] is used as the PIM and it is transformed into

Solidity code in order to provide an automated and immutable transaction history, to

provide a mediator in the process control logic, and to obtain an audit trail for the

complete collaborative business processes.

The translator, which does the transformation, takes a business process

specification as input and generates smart contracts. It is called at design time, so it

may not be known which actor is assigned which role. This is why the output of the

generator is a factory contract which holds all information needed for instantiating the

process. The overall translation is done in two phases. First, the business process is

iterated through, and for all elements a list of the previous and the next elements are

determined. Each element is then translated to Solidity with its respective links. The

transformation is based on workflow patterns, so the business process has to follow

one of five basic control flow patterns or else it cannot be translated. This means not

all elements of for instance BPMN are suited for transformation.

In a later paper [87], Weber et. Al. build upon their work on business processes

to smart contracts. Here, they present another translation method which involves the

transformation from a BPMN model to a petri net, which then is translated to Solidity

code. This manner of transformation negates the need for the business process

specification to follow a certain pattern but does involve more steps.

42

3.5.3 State Machine Approach

The third approach is described in the paper “Designing Secure Ethereum Smart

Contracts: A Finite State Machine Approach” by Mavridou and Laszka [88]. This

approach is based on the observation that smart contracts act as state machines. A

smart contract is in an initial state and a transaction transitions the contract from one

state to the next. The possibility of smart contracts as state machines is also described

in the Solidity specification [89]. The aim of this approach is threefold. First, it aims to

provide a formal model with clear semantics in which smart contracts can be modeled,

which decreases the semantic gap and eliminates issues arising from it. Second, the

clear semantics allows the connection from its framework to formal analysis tools.

Third, the code generator allows developers to implement smart contracts with a

minimal amount of error-prone manual coding.

The PIM in this approach is the Finite State Machine (FSM). This mathematical

model of computation can be in exactly one of a finite number of states at any given

time. The FSM changes state in response to external inputs or to a specified timed

transition. It consists of a list of its states, its initial state, and a collection of conditions

for transitions. The transformation of the FSM to Solidity is partly automated, because

to ensure Solidity code quality, some manual coding might be necessary. Properties

that cannot be modeled in FSM can be added through plugins, which are aimed at

implementing patterns and countering vulnerabilities.

An FSM should contain an initial state, a finite set of states, and a set of

transitions between these states. The transitions are activated once certain conditions,

called guards, are met.

In Table 4, an overview of the three approaches, namely the grammar of

institution approach (ADICO), the collaborative business process approach (BPS), and

the Finite State Machine approach (FSM), is given. In Table 4, the approaches are

compared based on the following metrics, loosely based on the selection criteria

described by Krogstie [90]:

- Based on concept: The approaches have different application domains for the

smart contract. ADICO uses the concept of institutions to describe a smart

contract, where actors have a deontic quality. BPS is based on collaborative

43

business processes with multiple actors who have their subset of tasks. FSM is

based on the smart contract as a state machine. This does not limit the approach

to one certain application domain.

- Approach scope: The distinction between academic and industry is made here.

ADICO and FSM have an academic scope because they do not explicitly

describe an industrial application. BPS is aimed at collaborative business

processes, which are deeply rooted in industry.

- Target users: This metric is about who is going to use the approach. ADICO

claims that their structured natural language allows non-technical users to

participate in the development process, but the final development phases need

to be supported by technical people. BPS is aimed at industry, and the target

users are participants in collaborative business processes. Their users will be

organizations which are collaborating in for instance supply chains. FSM is an

open approach, so the users can vary strongly. The automated generation of

the code can appeal to non-technical, as well as well-grounded developers.

- PIM and PIM structure: This states what the Platform Independent Model of

the approach is. ADICO’s model is a collection of structured natural language

statements which contain the elements described above. BPS is modeled in a

business process specification like BPMN. BPMN is a standard in business

process modeling, so this is a standardized approach. In the follow-up paper,

the BPS is transformed into a petri net, which can be seen as a PIM but also as

a part of the transformation. In this case, we chose the former. FSM uses the

FSM model, which is a variation on the state machine diagram described in

UML. This is also a standardized modeling language.

- Model transformation and direct transformation: This describes if the

transformation from PIM to Solidity is automated, semi-automated, or manual,

and if it with or without an intermediate step. Automated does not need

interference from the developer, semi-automated calls for adjustments of the

output, and manual means no automation in the transformation process. The

ADICO is semi-automated because the model transforms the nADICO

statements into a skeleton contract. The BPS is automated and semi-automated.

In the first instance, the business process specification is transformed fully

44

automated, given that the specification follows one of five pattern flows. In the

follow-up article, the business process specification is first transformed into a

petri net, after which the transformation is automated, so this is a semi-

automated process. Only this BPS is indirect, because of the transformation to

petri net. The other transformations do not have an intermediate step so are

direct. The FSM transformation process is fully automated. There may be some

manual coding afterwards, but this is to improve the existing code, meaning

that this transformation process is marked as automated.

- Result of the transformation: Here, the output of the transformation process is

described. All the approaches output Solidity code, but the completeness of this

output varies. ADICO outputs a skeleton contract, meaning that it provides a

parts of a contract, which the user then has to manually complete. BPS outputs

a factory contract, meaning that it describes the collaborative workflow and the

different participants can add their own code to this factory contract. Both the

follow-up to BPS and FSM output a complete smart contract. Again, some

manual adjustments might be necessary, but the output could theoretically be

launched onto the blockchain.

Lastly, the advantages and disadvantages are denoted. These are formed from the

viewpoint of creating a smart contract MDA process. To summary:

- The ADICO approach is the only approach using structured natural language.

The formal syntax makes the statements unambiguous, but the formality also

counters the claim that non-technical users will be able to easily employ the

ADICO approach. The ADICO model shows more characteristics of a high-

level programming language than an easily readable structured natural

language. Furthermore, the output of the transformation needs a lot of manual

coding compared to the other approaches. The deontic element in the ADICO

model does explicitly show what a user must, may, or may not do, making the

behavioral aspect of the smart contract explicit. However, it is not explicitly

stated how this deontic aspect would be monitored or implemented.

- The BPS approach, both of them, are tailored for collaborative business

processes, and in this domain, BPMN is a standard model. This means that in

the domain, this approach can be highly applicable. The actors or participants

45

in the process are explicitly stated, and these users get their rights, but the smart

contract functions more as a mediator between these participants than as a

centralized contract. This means it is fit for collaborative business processes but

less suited in other application domains in which the smart contract is used for

more than mediation. In the follow-up of the BPS, the petri net transformation

broadens the possibilities of transforming business process specification into

Solidity, but this process adds an extra layer of complexity. The linear flow of

these business processes make this approach fit for supply chains, but less for

recursive contracts.

- The FSM approach treats smart contracts as finite state machines and has a

logical modeling language for this approach with the finite state machine. It

has a formal syntax, and the transformation into Solidity requires minimal

manual coding before implementation. The downside is that finite state

machines are relatively complex models, and objects and roles are left implicit

in this approach. However, the use of patterns can be used to counteract these

disadvantages, and these patterns can also be used to counter known

vulnerabilities.

46

Fr

an
tz

 &
 N

o
w

o
st

aw
sk

i
W

e
b

e
r

e
t

al

W
e

b
e

r
e

t
al

M

av
ri

d
o

u
 &

 L
as

zk
a

B
as

e
d

 o
n

 C
o

n
ce

p
t

G
ra

m
m

ar
 o

f
In

st
it

u
ti

o
n

s
B

u
si

n
e

ss
 p

ro
ce

ss
e

s
B

u
si

n
e

ss
 p

ro
ce

ss
e

s
Sm

ar
t

co
n

tr
ac

t
as

 s
ta

te
 m

ac
h

in
e

A
p

p
ro

ac
h

 s
co

p
e

A

ca
d

em
ic

In

d
u

st
ry

In

d
u

st
ry

A

ca
d

em
ic

Ta
rg

e
t

u
se

rs

N
o

n
-t

ec
h

n
ic

al
 a

n
d

 t
ec

h
n

ic
al

C

o
lla

b
o

ra
ti

ve
 b

u
si

n
es

se
s

C
o

lla
b

o
ra

ti
ve

 b
u

si
n

es
se

s
N

o
n

 t
ec

h
n

ic
al

P
IM

A

D
IC

O
 s

ta
te

m
en

ts

B
u

si
n

e
ss

 p
ro

ce
ss

 s
p

e
ci

fi
ca

ti
o

n

B
u

si
n

e
ss

 p
ro

ce
ss

 s
p

e
ci

fi
ca

ti
o

n

Fi
n

it
e

St
at

e
M

ac
h

in
e

m
o

d
el

P
IM

 s
tr

u
ct

u
re

St

ru
ct

u
re

d
 n

at
u

ra
l l

an
gu

ag
e

St

an
d

ar
d

 m
o

d
el

St

an
d

ar
d

 m
o

d
el

St

an
d

ar
d

 m
o

d
el

M
o

d
e

l t
ra

n
sf

o
rm

at
io

n

Se
m

i-
au

to
m

at
ed

A

u
to

m
at

ed

Se
m

i-
au

to
m

at
ed

A

u
to

m
at

ed

D
ir

e
ct

 t
ra

n
sf

o
rm

at
io

n

N
o

Ye

s
N

o

Ye
s

R
e

su
lt

 o
f

tr
an

sf
o

rm
at

io
n

Sk

el
et

o
n

 c
o

n
tr

ac
t

Fa
ct

o
ry

 c
o

n
tr

ac
t

Sm
ar

t
co

n
tr

ac
t

Sm
ar

t
co

n
tr

ac
t

A
d

va
n

ta
ge

•

N
at

u
ra

l l
an

gu
ag

e
ca

n
 b

e
in

te
rp

re
te

d
 b

y
n

o
n

-
te

ch
n

ic
al

 u
se

rs
;

•

Fo
rm

al
 s

yn
ta

x
re

d
u

ce
s

am
b

ig
u

it
y;

•

Th
e

d
eo

n
ti

c
as

p
ec

t
m

ak
e

s
th

e
b

eh
av

io
r

ex
p

lic
it

;

•
 B

u
si

n
e

ss
 p

ro
ce

ss

sp
ec

if
ic

at
io

n
s

o
ft

en
 a

lr
ea

d
y

ex
is

t;

•
 A

ct
o

rs
 a

re
 d

is
ti

n
gu

is
h

ed
;

•
 B

P
M

N
 is

 a
 w

id
el

y
u

se
d

st

an
d

ar
d

 in
 in

d
u

st
ry

;

•
 A

u
to

m
at

ed
 t

ra
n

sf
o

rm
at

io
n

;

•
 B

u
si

n
e

ss
 p

ro
ce

ss

sp
ec

if
ic

at
io

n
s

o
ft

en
 a

lr
ea

d
y

ex
is

t;

•
 A

ct
o

rs
 a

re
 d

is
ti

n
gu

is
h

ed
;

•
 B

P
M

N
 is

 a
 w

id
el

y
u

se
d

st

an
d

ar
d

 in
 in

d
u

st
ry

;

•
 A

u
to

m
at

ed
 t

ra
n

sf
o

rm
at

io
n

;

•
 M

in
im

al
 m

an
u

al
 c

o
d

in
g;

•
 F

o
rm

al
 s

yn
ta

x;

•
 N

o
n

-l
in

ea
r

fl
o

w
 t

h
ro

u
gh

 a
 m

o
d

el
;

•
 S

m
ar

t
co

n
tr

ac
t

as
 a

 s
ta

te
 m

ac
h

in
e

m
ak

e
co

n
ce

p
ts

 f
ro

m
 F

SM
 a

n
d

 s
m

ar
t

co
n

tr
ac

t
ea

si
ly

 r
el

at
ab

le
;

•
 U

sa
ge

 o
f

p
at

te
rn

s
ag

ai
n

st

vu
ln

er
ab

ili
ty

;

D
is

ad
va

n
ta

ge

•

C
o

m
p

le
x

w
ay

 t
o

 s
tr

u
ct

u
re

n

at
u

ra
l l

an
gu

ag
e,

 a
lm

o
st

 a

p
ro

gr
am

m
in

g
la

n
gu

ag
e;

•

N
o

t
fu

lly
 a

u
to

m
at

ed
,

d
ev

el
o

p
m

en
t

p
h

as
e

is
 s

ti
ll

m
an

u
al

ly
 e

xe
cu

te
d

;

•

It
 is

 n
o

t
st

at
ed

 h
o

w
 t

h
e

d
eo

n
ti

c
el

e
m

en
t

w
ill

 b
e

ev
al

u
at

ed
.

•
 O

n
ly

 a
 s

u
b

se
t

o
f

b
u

si
n

e
ss

p

ro
ce

ss
 s

p
e

ci
fi

ca
ti

o
n

m

o
d

el
s

ca
n

 b
e

tr
an

sf
o

rm
ed

;

•
 L

in
ea

r
fl

o
w

, w
h

ic
h

 m
ea

n
s

th
at

 m
u

lt
ip

le
 f

lo
w

s
ar

e
h

ar
d

to

 m
ap

 in
 o

n
e

m
o

d
el

;

•
 F

ac
to

ry
 c

o
n

tr
ac

t
is

 n
o

t
ex

ec
u

ta
b

le
 if

 p
ar

ti
ci

p
an

ts
 d

o

n
o

t
co

m
p

ly

•
 L

in
ea

r
fl

o
w

, w
h

ic
h

 m
ea

n
s

th
at

 m
u

lt
ip

le
 f

lo
w

s
ar

e
h

ar
d

to

 m
ap

 in
 o

n
e

m
o

d
el

;

•
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 B

P
S

to

p
et

ri
 n

et
 t

o
 S

o
lid

it
y

is

co
m

p
le

x;

•
 A

im
ed

 s
p

ec
if

ic
al

ly
 a

t
co

lla
b

o
ra

ti
ve

 b
u

si
n

es
s

p
ro

ce
ss

e
s,

 n
eg

at
in

g
o

th
er

u

sa
ge

•
 R

o
le

s
ar

e
n

o
t

ex
p

lic
it

ly
 s

ta
te

d
;

•
 O

b
je

ct
s

ar
e

le
ft

 im
p

lic
it

;

•
 M

o
d

el
in

g
co

m
p

le
te

 a
n

d
 c

o
rr

e
ct

FS
M
’s
 is
 a
 c
o
m
p
le
x
ta
sk

T
A

B
L

E
 4

:
C

O
M

P
A

R
IS

O
N

 O
V

E
R

V
IE

W
 O

F
 M

O
D

E
L

-D
R

IV
E

N
 A

P
P

R
O

A
C

H
E

S
 T

O
 S

M
A

R
T

 C
O

N
T

R
A

C
T

 D
E

V
E

L
O

P
M

E
N

T

47

4. Constructing the Method

In this chapter the method is constructed. This will be done through an approach that

is called method engineering, which is the engineering discipline to design, construct

and adapt methods, techniques and tools for the development of information systems

[91]. A subset of method engineering is situational method engineering (SME), in

which the development method is tailored to the project at hand [92]. In this case the

project at hand is used relatively loosely, as a method for the development of all sorts

of smart contracts is made. SME aims at defining information systems development

methods by reusing and assembling existing method fragments [93]. The term method

fragment originates from [92], in which the analogy with software components is

made. Software components are constructed separately to consequently be combined

to form a cohesive software system. Method fragments are formed and defined

independently and stored in a method base. New methods can be constructed using

these method fragments, using the most appropriate fragments for the situation at

hand. SME aims to tailor methods to a specific project at hand in order to increase the

productivity of the development, and to better the quality of the product of the

method [94]. The SME approach is summarized in Figure 16.

FIGURE 16: THE PROCESS OF SITUATIONAL METHOD ENGINEERING

48

Based on the SME approach, the MDA framework tailored to smart contract

development will be constructed. Distinguishing between the three main components

of an MDA framework is important in the construction of the method. The CIM, PIM,

and PSM are tailored to different goals in the method engineering process. For this

reason, the components are described separately. Following the component

description and methods for modeling the components, the transformation between

the components is described. A crucial assumption in the method is that the domain

knowledge is obtained through a separate process. The domain knowledge creation is

beyond the scope of the method.

To create a holistic view of the model-driven smart contract development

method, the method fragments will be presented as a process-deliverable diagram

(PDD). This is a meta-modeling technique adapted from the UML activity diagram

[95] and the UML class diagram [96]. Explicitly describing the activities and the

deliverables of the method add a level of formality, as well as a grounded definition

of what the method is [97]. The meta-process side of the diagram, the left side, shows

the activities and the transitions. The activities can be decomposed into sub-activities,

thereby creating a hierarchical activity decomposition. The deliverable side of the

diagram, the right side, consists of a concept diagram, which is a variant of the UML

class diagram. The connection between the process and the deliverable side is made

by a dotted arrow, in which it connects the activity with the adjacent deliverable. For

a full specification of the PDD modeling technique, refer to [97]. An important notion

to keep in mind is that the PDD is constructed as a linear model, but the smart contract

development process can be approached iteratively. This means that every subsection

of the process can be revisited and reiterated at different phases of the process. In

Figure 17, the PDD of the entire method is modeled at a very high level. Each of the

components will be discussed separately in the coming sections, creating an elaborate

overview of how the method is to be executed.

49

Create CIM

Create PIM

Create PSM

CIM

PIM

PSM

Tranforms into

Tranforms into

FIGURE 17: HIGH-LEVEL PDD MODEL OF THE MDA FRAMEWORK

First, the requirements and chosen modeling languages for the components of

the method are denoted in chapter 4.1. These requirements are based on the literature

review and the properties of the components of the MDA framework. Hereafter, for

each of the components the chosen modeling technique, the process of creating and

evaluating the model, and the transformation rules are described. To support the

understandability of the description of the models, a small example of a smart contract

is given. This simple smart contract shows a betting smart contract. The description of

this betting contract can be found below:

Example betting system: At the start, a user can place a bet on one of two options

before the outcome of this event is decided. After the outcome of the bet becomes

known, the system either pays out in case of a win or keeps the bet.

In chapter 5, the model-driven smart contract development method is shown in its

entirety through a more elaborate case study.

50

4.1 Method Requirements

To elicit the requirements for the smart contract development method, it is important

to explicitly state the goals of the method. The overall goals are to (i) bridge the

semantic gap by lowering the threshold for domain experts and (ii) to support

developers in the creation of the contract. These goals are a bit high-level but can assist

in creating the requirements on a more elaborate level. The choice for a certain

modeling language is an important one, as the choice of technique affects the set of

phenomena that can be modeled, and may even restrict what the modeler is capable

of observing [98].

A distinction between two main roles is made to create the requirements,

namely the role of domain expert and the role of developer. The domain expert knows

what concepts should be included in the smart contract and the developer has the

know-how to translate these domain concepts into technology concepts. The different

phases of the MDA framework can guide the communication and interoperation

between these two roles in the development process. For each component, it is

described how the different roles make use of the models, and the requirements are

tailored to these roles.

Smart contracts are a novel way to coordinate interaction between

independent entities. A central challenge to a broad application of this opportunity is

the unambiguous and correct specification of the smart contract. The goal of the CIM

is to guide the transition between the domain knowledge and the specification of a

smart contract, without directly focusing on concerns surrounding the

implementation.

For the domain expert, this is the modeling step in which in the domain

concepts that are essential are elicited from the domain knowledge and to formulate

these essential domain concepts in a structured manner. The CIM is a tool for the

domain expert to communicate the domain knowledge to the developer. Therefore,

the CIM should provide a structured manner in which the domain concepts can be

denoted in a clear overview. For the developer, the CIM serves as a blueprint of what

the smart contract should represent regarding behavior. The focus is on the domain

properties and not on the technical details, so the modeling language should be

51

suitable to represent this. The requirements for this model can be summarized as

follows:

The CIM should provide a high-level overview of the smart contract, which maps the

essential domain concepts in a systematic, structured manner and shows the developer all

possible interactions with the smart contract.

Use case modeling is a modeling technique that is often used as a way to map

the domain knowledge without the inclusion of technical details. The choice not to use

this technique in this MDA process is based on the multitude of possible scenarios and

the increasing (unnecessary) complexity of the use case model as the possible

scenarios increase. The domain experts often do not have modeling experience, so

instead of, for instance, use case modeling, an approach which uses text in a structured

manner is more appropriate in this setting.

 As can be read in 3.5.1, the grammar of institutions has been applied for the

model-driven development of smart contracts [81]. Kravic et al. have already laid the

groundwork for the application of the grammar of institutions for the development of

smart contracts, but in their research, it spans the entire development process. Looking

at the requirement goals of creating a structured textual overview of the domain

knowledge and having an overview of the possible interactions the actors have with

the smart contract, the grammar of institutions fulfills the requirements for the

modelling technique of the CIM.

 As defined in chapter 3.3, the PIM describes the functionality and behavior of

the system in a structured way but does not include the technical specification of the

implementation platform. It builds on the CIM, by providing an architecture suited

for various platforms. The PIM aims to abstract away from the technical details to

validate the correctness of the model, to ease the production for various platforms

while maintaining the functional and behavioral specification, and to map the

interoperability and integration between platforms more clearly by using platform

independent terms.

For the developer, the PIM again serves as a blueprint, but now the functional

aspects of the smart contract are included. The developer can create the PIM with the

aim of visualizing what the execution of a smart contract will look like. The domain

52

expert can use the PIM as a way to understand what this execution will be like. This

cumulates to a modeling technique which is detailed enough to enable a developer to

model the full functionality, while simultaneously being high-level enough to give the

domain expert an idea of what the smart contract functionalities are.

In the smart contract programming paradigm, a smart contract is often

explained succinctly by stating that it is a series of if-then statements. The smart

contract follows a certain path of conditions which result in a certain outcome, defined

by an agreement. This way, the programming of smart contract parallels a lot of

characteristics of event-driven programming, in which the flow of the program is

determined by events. Examples of events are for instance user input, variable triggers

like elapsed time, or other programs/contracts triggering it. This leads to the following

summarized requirements:

The PIM should provide a functional and behavioral overview of the smart contract in which

the notion that a smart contract is comprised of states is evident. The model should be

extensive enough for the developer to create a functional overview, and accessible enough for

the domain expert to communicate about this functional overview.

 With these requirements, it makes sense to model the smart contract as a

Finite State Machine. The FSM is a model related to event-driven development in

which the FSM is constructed to represent the behavior of a reactive system. The smart

contract as an FSM gives a clear overview of the conditions, the transitions, and the

possible flows through the smart contract. For this reason, the PIM will be modeled as

an FSM model. As is the case with the CIM, the FSM has already been used in research

into the application of MDE in smart contract development. Mavridou et al. [88] have

described the transformation from FSM to Solidity code, which will be the fundaments

for the description of this method fragment.

The platform-specific model (PSM) is not picked by formulating requirements

but based on the popularity of the programming language. Solidity is by far the most

used programming language on Ethereum and will, therefore, be picked as the PSM.

If other programming languages gain popularity, the transformation rules from the

PIM to the PSM need to be evaluated and adjusted. The domain knowledge

transformed into the PIM, however, will not lose its value by the advent of a new

platform or programming language.

53

4.2 The Computational Independent Model

To tailor to the goals of the CIM, the grammar of institutions is used [81]. As the name

states, this was originally defined to better understand what institutions are. The

grammar of institutions is a structured template for statements in which the behavior

of agents becomes explicit through the interaction participants have with it. By

describing an institution in this manner, one avoids the mistake of treating institutions

as things that exist separate from the behavior of the participants. Similarly,

information systems can be treated as such [80]. In this case, the smart contract poses

as the information system, and without a CIM, it can be designed and developed

without explicitly stating the possible interactions that participants have with it,

which often results in unforeseen usage of the smart contract. Using the grammar of

institutions as the CIM can assist in decomposing a smart contract into rule-based

statements that explicitly state the interactions and behavior it will encompass.

In the usage of the grammar of institutions, the notion that everything is a

model becomes apparent. It is a collection of statements about in this case the smart

contract. These statements contain five components, namely Attributes, Deontic, Aim,

Conditions, and Or else. Together they are referred to as the ADICO format, taking a

letter from each of the components. An ADICO statement can be formally defined as

a tuple (A,D,I,C,O), where:

- A is the attribute: Attribute is a holder for all participant-level variables. It can

range from all participants in a group to a specific subset. If no attribute is

mentioned, the statement applies to all members of a group or all participants

in the smart contract.

- D is the Deontic: The deontic component draws on the modal operations used

in deontic logic to distinguish prescriptive from non-prescriptive statements

[81]. The set of deontic operators consists of permitted, obliged, and forbidden.

If one of the operators is taken as a primitive, the other two can be defined

regarding that primitive. This means that if A is forbidden, one is not permitted

to do A. In the ADICO format, may (permitted), must (obliged), and must not

(forbidden) are used. The deontic component is used to ensure that statements

do not contradict each other.

54

- I is the Aim: The aim is the specific action or outcome to which a system refers.

One condition to this component is that the aim must be physically possible, as

an agent cannot be logically expected to undertake a physically impossible

action or effect a physically impossible outcome.

- C is the Condition: The condition indicates the set of variables that define

when, where, or how a statement applies. If the condition is missing from the

statement, it automatically means that the statement holds at all times.

- O is the Or else: The final component describes what happens in a situation of

non-compliance to the statement. In the grammar of institutions this

component is called a threat and for a threat to be qualified as an or else, it must

meet three qualifications. These qualifications are largely based on legislation

and ask for the or else statement to be (1) backed up by another rule, (2)

enforceable, and (3) to be crafted in an environment for the discussing,

prescribing, and enforcing of rules. In a smart contract environment, the

enforcing of rules happens through distributed consensus.

Statements are made by combining these five components. A distinction is made

between shared strategies, which contain attributes, aim, and condition; norms, which

contain attributes, deontic, aim, and condition; And rules which contain all five of the

components. The or else component needs a complementary statement in which the

consequence is explicitly stated. The components of the ADICO framework can be

summarized by the deliverable side of the PDD shown on the right in Figure 18, the

process of creating the set of ADICO statements is modeled on the left. An example of

a set of statements is shown in Table 5.

TABLE 5: EXAMPLE ADICO STATEMENTS

Example set of ADICO statements

A user (A) must (D) place a bet (I) before the event (C) or else the bet will not be valid (O)

A user (A) may (D) not place a bet (I)

A user (A) must not (D) place a bet (I) after the deadline (C)

The system (A) must (D) register the deadline (I) when the event has happened (C)

The system (A) must (D) register the bet (I) when placed (C)

The system (A) must (D) pay out (I) in case the bet was right (C)

The system (A) must not (D) pay out (I) in case the bet was wrong (C)

55

Evaluate CIM

Create CIM

Define attribute

Define aim

Determine the deontic operator

Define condition

Define or else

Combine to ADICO statement

Add to set of statements

[set complete]

Evaluate correctness of statements

[else]

Check for contradictory statements

Evaluate completeness of set

[else]

[correct, non-contradictory, and complete]

AIM

DEONTIC OPERATOR

CONDITION

OR ELSE COMPONENT

ADICO STATEMENT

SET OF ADICO STATEMENTS

ATTRIBUTE

0..1 1

1

1

1

1

1

1

1

1..*

Define set of attributes SET OF ATTRIBUTES

1..*

1

FIGURE 18: PDD OF THE CIM CREATION AND EVALUATION

As can be seen on the left side of the PDD, the first process is to create the CIM. The

model in this case is the entire set of ADICO statements. To create this, it is wise to

first define a set of attributes, so to consider which actors and subgroups of these

actors are stakeholders in the system. Doing so gives a holistic overview of who is

going to be using the system, and explicitly defining their attributes can ensure that

no viewpoint is overlooked. The deliverable of this definition process is the set of

attributes.

Following the creation of the set of attributes, a recursive sub-process is

started. First, the aim of the attribute is defined. This aim is a specific action or outcome

56

that can be possible within the system. After the aim is formed, the choice of deontic

has to be made. Is the attribute permitted, obliged, or forbidden to do the aim? This is

denoted by may, must, or may not respectively. Then, the condition for the aim to be

executed must be defined. This condition can be any set of variables, ranging from

when a statement holds (when) to how a statement is to be followed (through a

defined process). Lastly, it must be determined if there is an or else component for the

statement. In some cases, there is no consequence to non-compliance to the statement.

These statements are called norms. For other statements, called rules, non-compliance

does have a consequence, and an or else component is necessary. The result of this

sub-process is that the five components, or four if there is no or else statement, are

combined to an ADICO statement, which subsequently is added to the set of ADICO

statements.

The condition for the process of the CIM creation to be finalized is that the set

is complete. This is a relatively subjective condition, because a set could, in theory, be

always more extensive. In this case, the condition complete means that the statements

cover all behavior that is described in the gathered domain knowledge. This should

lead to a correct overview of the behavior of the system, and if not, the process needs

to be re-iterated. Thus, the end of the CIM creation process is marked by the complete

set of ADICO statements deliverable.

The next step in the CIM modeling phase is the evaluation of the model. This

process happens in three steps, namely the evaluation of correctness, the check for

contradictory statements, and lastly, the completeness is evaluated once more. The

correctness of a statement is based on the correct notation of the four or five

components. The description of these components shows how these are to be formed.

A sentence which mixes the components, or uses different terminology is incorrect

and should be adjusted to meet the correctness norms.

If the correctness of all the statements has been established, the set can be

checked for contradictory statements. There can be two different contradictions

distinguished in this check: the contradiction inside an attributes statements and the

contradiction between two different attributes’ statements. When a contradiction is

inside one attributes’ statements, it can be discovered very intuitively using simple

logic. An example of this is when an attribute is permitted to do an aim in the one

statement and forbidden in the next. Between two different attributes it may become

57

more complex and context dependent. An example is when two different attributes

are obliged to fulfill one aim, and the order of this aim is important. Which attribute

fulfills the aim first may influence what happens to the other attributes’ rule. The main

point of this check is to check that statements do not create a paradox in the system’s

execution.

The last check that is done is the completeness check again. In the process of

checking the correctness and checking for contradictions, statements might be

adjusted or removed. It is possible that in this process the completeness of the set of

statements is affected. The same conditions as for the completeness check at the end

of the CIM creation process is applicable. If one of the three quality metrics is not met,

the CIM creation process has to be revisited. If not, the creation of the PIM can start.

The transformation between the CIM, which explicitly states the behavior of the

attributes in the context of the smart contract, and the PIM, which joins this behavior

with the functional aspect of the smart contract, will be elaborated on in the coming

section.

58

4.3 The Platform Independent Model

The next step in the model-driven smart contract development process is the creation

of the platform independent model (PIM). The assumptions made by choosing the

FSM modeling technique is that the smart contract has states, and in these states,

functions allow users or other triggers to change the state. This makes it possible to

model a smart contract as an FSM [31]. An FSM in its essence is made up of a set of

states and a definition of a set of transitions between these states [88]. A formal

definition of the FSM is a tuple (S, S0, T, C), where:

- S is a finite set of states: A state is a particular moment the FSM can be in.

Functions are provided to invoke actions and change between these states.

- S0 is the initial state: The starting state of the FSM;

- T is the set of transitions: A transition forces the FSM to take a set of actions if

the associated conditions, called guards of the transition, are satisfied.

- C is the set of conditions: The conditions or guards which are associated to the

transitions, which when they are met can invoke the change between states.

The states of the FSM are modeled by a circle, the transitions by an arrow, and the

conditions are modeled under the transition name between brackets, shown in Figure

19.

State Transition
 [condition]

FIGURE 19: THE ELEMENTS OF AN FSM

The transitions between the states are a way to show the behavior of the smart

contract. As discussed in the CIM specification, this behavior is something already

modeled in the CIM. This is where the transformation between the CIM and PIM

comes into play. The transitions of the PIM are based on the behavioral definition

given in the set of ADICO statements. This way, the CIM ensures that all the behavior

elicited from the domain knowledge is modeled in the PIM, bridging the gap between

59

the domain knowledge and the PIM. Furthermore, the CIM makes the PIM more

understandable, as its transitions are described in structured natural language form,

often better comprehensible by non-technical people. The transformation is based on

manually transforming the ADICO statements to FSM transitions. Lastly, the set of

ADICO statements can provide a basis for a completeness check of the PIM. If

behavior modeled in the CIM is missing from the PIM, the model is almost certainly

incomplete. The process of creating the FSM is modelled in Figure 20.

Create Finite State Machine Model

Define set of states

Define initial state

Define set of transitions

Define name of the FSM NAME

SET OF STATES

INITIAL STATE

SET OF TRANSITIONS

SET OF ADICO

STATEMENTS

Are defined using

Define final state FINAL STATE

FSM MODEL

1

1

1 1

1

1

Evaluate the Finite State Machine Model

Evaluate correctness

Evaluate completeness

FIGURE 20: PDD OF CREATING AND EVALUATING THE FSM MODEL

60

The order of the processes modeled on the left-hand-side is not a large concern in the

FSM creation process. The set of ADICO statements is used to create a set of

transitions. After the model creation, the FSM is evaluated in two steps. Firstly, the

correctness is evaluated, meaning that it is checked that the model does not contain

mistakes like unwanted transitions between states or unwanted loops. After this the

completeness of the model is evaluated, using the set of ADICO statements as an

indicator for the behavior it should contain. An example FSM is shown below in

Figure 21. The transitions contain numbers between parentheses, based on the ADICO

statements, which are shown in Table 6. An overview of the components containing

the set of states, the set of transitions, and the set of conditions are shown in Table 7.

The ADICO statements from the example in the previous section are used to define

the transitions between the states.

InitialState AwaitingResultBet

Win

Win
[bet = right]

Lose

Lose
[bet = wrong]

Finished

NoPayout

Payout

NoBet
[deadline is reached]

(1)(5)

(2)(3)(4)

(4)

(4)

(6)

(7)

FIGURE 21: BETTING SYSTEM EXAMPLE OF AN FSM MODEL

Example set of ADICO statements

(1) A user (A) must (D) place a bet (I) before the event (C) or else the bet will not be

valid (O)

(2) A user (A) may (D) not place a bet (I)

(3) A user (A) must not (D) place a bet (I) after the deadline (C)

(4) The system (A) must (D) register the deadline (I) when the event has happened (C)

(5) The system (A) must (D) register the bet (I) when placed (C)

(6) The system (A) must (D) pay out (I) in case the bet was right (C)

(7) The system (A) must not (D) pay out (I) in case the bet was wrong (C)

TABLE 6: BETTING EXAMPLE SET OF ADICO STATEMENTS

61

In order to ready the FSM for a transition to a platform, the definition needs to be

extended. This allows for a model to be automatically transformed into a working

smart contract. As the PSM in this MDA framework is Solidity, the extended

properties are largely based on Solidity properties. If in the nearby future another

programming language gains momentum, it would be fairly easy to tailor the

transformation process to this PSM. For now, the transformation to Solidity is

described. First, the Solidity programming language is described in the platform-

specific model section, after which the extension of the PIM and the transformation

from PIM to PSM is described.

4.4 The Platform Specific Model

The PSM in this MDA framework is code written in the programming language

Solidity, the most widely used and supported programming language for smart

contracts. Solidity is a high-level Turing-complete programming language with a

syntax similar to that of JavaScript. It is statically typed, meaning that the type of the

variable is set, and this type is not changed. It supports inheritance, meaning that an

object or class can be based on a parent-object or parent-class, and will display the

same implementation as the parent-object or parent-class. In Solidity, contracts are

structured using functions and classes in a way that resembles object-oriented

programming. It would be too extensive to give a full description of the programming

language in this section, but the necessary basis is described.

To give a basic insight into how the code allows a smart contract to be a state

machine, three component are important to understand. Firstly, the enum, which is a

user-defined type in Solidity. An enum is used to create a list with the set of states.

This enum will be used to keep track of which state the smart contract is in. Secondly,

the functions, which are used to transition between the states. And thirdly, guards or

Set of states Set of transitions Set of conditions

InitialState

AwaitingResult

Win

Lose

Finished

Bet

Win

Lose

NoBet

Payout

NoPayout

Bet is right

Bet is wrong

Deadline is reached

TABLE 7: OVERVIEW OF THE STATES, TRANSITIONS, AND CONDITIONS

62

modifiers, which are used to define the conditions for a transition between states.

Modifiers are defined after which they can be reused throughout the contract,

allowing for the definition of certain patterns. The following simple smart contract

shows how these components are used.

The pragma statement shows which version of Solidity is used, which is important as

it undergoes continuous version updates. The contract is called StateMachine, after

which the enum ‘States’ is declared. This user-defined variable has two states, A and

B. In the next line the starting state is declared. The variable creationTime is declared

next, getting the value now. This means that it represents the time of the launch of the

contract. This is in UNIX time, showing the time elapsed from the 1st of January 1970

in seconds. The function nextState makes a transition from A to B possible. In this case,

this is done by shifting one in the enum States. If necessary, this can be done specific,

by explicitly stating to which state it should transition. However, there are only two

states, so this is not necessary here. The modifier timedTransitions describes the

condition for a transition between A and B, namely the contract being in state A, and

10 days to be passed. This is then used in function a to make the transition from A to

B.

63

The basics of a state-driven Solidity smart contract are an enum containing the states,

functions to transition between these states, and modifiers to create conditions for the

transitions. In its essence, that is what an FSM contains. The transformation between

the PIM and the PSM can be automated in order to create a Solidity smart contract

fundament based on the FSM. The Solidity smart contract begins as a general

template, which has four main components. These four main components are the

states definition, the variables definition, the patterns used in the contract, and the

transitions defined as functions. This way, the smart contract looks as follows:

Contract contractName {

 StatesDefinition

 VariablesDefinition

 Patterns

Transition(t1)

...

 Transition(t|→|)

}

4.4.1 States Definition

The states definition is the set of states combined in an enum. After the definition of

the enum, the initial state is declared. This looks as follows in the smart contract:

 enum States {S0, … , Sn}

 States private state = S0;

The states are already defined in the FSM model, so all the states can automatically be

transformed into the definition of the enum States. The FSM model also shows the

initial state, so this can also be automatically transformed to form the full states

definition.

4.4.2 Variable Definition

Solidity is a statically typed programming language, so all the variables have to be

declared. This happens in the variable definition. All the variables get a type, an access

modifier, and a variable name. It is important that all the variables are declared

64

because they cannot be used if they are not. The variables need to be entered manually

but can be based on the domain concepts mentioned in the CIM. This is also a check

for the completeness of the variable definition: if domain concepts are missing from

the variable definition, it is incomplete.

4.4.3 Patterns

The patterns which can be implemented in the smart contract are often modifiers

which are used throughout the smart contract. For this reason, the patterns are

declared below the variables definition so that implementation is made easy in other

sections of the contract. Some patterns are applicable per function (timed transition),

others are used throughout the entire contract (transition counter). The patterns are a

way to counter the security vulnerabilities described in chapter 3.2. The following

patterns can be used in the smart contract:

Acces control: In certain smart contracts, it is important that not every node in the

network is able to control all the functionalities of a contract. For this reason,

transitions (or functions) can be restricted to be only accessible to a certain address.

The node who launches the contract is marked as the owner and has restrictive rights.

Locking: The reentrancy vulnerability was the cause of the infamous DAO attack. A

function is called within another function and puts the smart contract in an undesired

loop. To counter this vulnerability, a principle called locking can be applied. It is a

modifier which first checks if the contract is locked. If not, it is locked, the transition

is executed, and after execution, it is unlocked again. This way, functions in the

contract cannot be nested within each other in any way.

Transition counter: The transaction-ordering dependence is a vulnerability which

describes that the state and the values of variables stored in an Ethereum contract may

be unpredictable. Due to the decentralized nature, when a user calls a function, he

cannot be sure that the state of the contract does not change before this call is actually

executed. This is a challenge for smart contracts, as multiple users may invoke a

contract at the same time and the order of the execution of these functions is unknown.

A solution to this is to implement a transition counter, which enforces a strict ordering

on function executions. For every invocation of the contract, the user is asked for a

transition number as input. This transition number is incremented with one after each

65

function execution. This way the user can be sure that the function executes before

any other state change happens. This mitigates ordering dependence vulnerabilities

and minimizes exceptions due to unpredictable states.

Timed transitions: Treating the smart contract as a state machine, the timed transition

is a transition that often recurs. This transition does not have input or output but do

have a number specifying the time. If there are a lot of timed transitions in a smart

contract, it is wise to implement this through a modifier. This modifier checks before

every transition if a timed transition must be executed before the transition. If so, the

timed transition will be executed if the time limit has been reached. Writing these

timed transitions manually may lead to vulnerabilities, so using this modifier is

advised to counter unwanted behavior in the contract.

4.4.4 Transitions

Lastly, for every transition, a function is made. In this function, the information from

the PIM is used. A transition has the following layout:

function transitionName (type(input1) input1, ...,

type(input(n) input(n))

 pattern(transition)

 {

 require(state == States.transitionfrom);

 Guards

 Statements

 state = States.transitionto;

 }

There is a check if the contract is in the right state, and hereafter the guards and

statements are fired. The guards are the conditions described in the ADICO statements

and need to be fulfilled in order for the function to be executed. The statements can be

a large variety of expressions. Solidity is a Turing-complete language, which means

that in theory, every computation is possible. For this reason, the statements and

possibly additional guards have to be added manually. After this, the state changes to

66

the next state of the contract. Based on the FSM model, the creation of the functions

can be partly automated. The FSM shows the transitions, what state the transition

originates from, and what state it goes to. The process of creating the smart contract

foundation is shown in Figure 22. The contract needs to be finished manually but

seeing as the smart contract is state-based, the developer only has to program what

happens in the transitions. Next, to only having to program the transitions between

states, the developers also have a complete blueprint of the behavior of the smart

contract.

The two main things that need to be added to the PSM manually in order to

finish the smart contract are contract variables and transition attributes. The contract

variables are needed because Solidity is statically typed and every variable needs to

be defined. If a timed transition is going to take place in the contract, a contract

variable containing, for instance, the creation time needs to be defined. Another

frequently seen contract variable is the Boolean operator, which denote if a condition

is true or false. Contract variables can be discovered by looking at the set of transitions.

The transition attributes formalize the transitions between states. The

transitions are done through functions in Solidity, for which the guard condition,

input, statements, and output needs to be defined. The automatically generated

fundament of the smart contract already denotes the state it comes from and to which

state is goes. In the PDD in Figure 5, the process and deliverables of creating contract

variables and transition attributes is shown. Hereafter the transformation from the

FSM to Solidity is complete. The PDD containing the full method can be found in

Appendix A.

67

Identify transition attributes

Identify name of the transition

Identify guard conditions of the transition

Identify input variables of the transition

Identify statements of the transition

Identify output of the transition

Identify previous state

Identify next state

TRANSITION

Name

Guard condtion

Input variable(s)

Statement(s)

Output var iable(s)

Previous state

Next state

Add to set of updated Transitions SET OF TRANSITION ATTRIBUTES

SET OF TRANSITIONS

[all transitions updated]

[else]

Create contract variables

Identify variable

Define variable name

Define variable type

CONTRACT VARIABLE

Name

Type

[all variables defined]

[else]

UPDATED PIM

Name

Set of states

Initial state

Set of transtions

Set of transtion attributes

Contract variables

FIGURE 22: PDD CREATING THE PSM

68

5. Case Study Evaluation

In this chapter, the model-driven smart contract development framework is assessed

by developing a smart contract, going step-by-step through the method. The findings

of the case study will be discussed at the end of this chapter.

5.1 Case Study

The case chosen for this assessment lies in the domain of property leasing, which is an

ideal industry for the application of blockchain technology and the usage of smart

contracts. Property-related information is increasingly available in digital form, but a

lot of the information is scattered among disparate systems. This leads to a lack of

transparency and efficiency in finding and renting a living space. The application of

blockchain could have an impact on this industry. It can facilitate a common database

in which listings are collated in a central place. Multiple entities can access and modify

a variety of information, and the lack of trust among entities can be resolved through

blockchain properties. Classically, intermediaries are needed, which also become

superfluous. Figure 23 gives an overview of why blockchain and smart contracts are

a viable solution for the property leasing industry.

For property leasing to benefit optimally from the potential benefits of

blockchain, the leasing contracts have to be reworked from paper contracts to smart

contracts. The lease contract is one of the most common paper contracts, so this

reworking has a big impact. For this reason, it is important that the development

process is well thought out and the end product has no deficiencies relative to the

paper contract.

The description of the case study is based on the contents of a paper contract

tailored especially to a rental agreement between a tenant and a landlord, with a third

party who performs maintenance and an initial and final check of the apartment. From

this paper contract, the description of the case can be formed.

69

FIGURE 23: OVERVIEW OF ADDED VALUE OF BLOCKCHAIN IN THE PROPERTY LEASING INDUSTRY

70

From this description, the smart contract development process is started with the

creation of the CIM. Firstly, the attributes of the contract are defined, shown in Table

8.

Attribute Description

Landlord The person who owns the property and rents it out

Tenant The person who wants to lease the property

Property manager The person who checks the state of the apartment

TABLE 8: THE ATTRIBUTES OF THE SMART CONTRACT

With these attributes and the description, the ADICO statements can be formulated.

These ADICO statements can be norms, with the attribute, deontic, aim, and

condition, or it can be rules, with the attribute, deontic, aim, and condition. The set of

statements can be found in Table 9, grouped by attribute.

This contract is between a landlord and a tenant. The landlord owns property,

which will be leased to the tenant. The tenant pays the landlord a monthly rent,

the amount of which is determined at the launch of the contract. The lease period

is one year in which both parties cannot breach the agreement. After one year, the

lease period can be extended, after which both parties can end the contract,

provided that a one-month notice is given.

To safeguard against the tenant not paying the rent or otherwise breaching the

contract, a security deposit of two times the rent is paid at the start of the

contract. Also at the start of the contract, a third party assesses the state of the

property. This also happens at the end of the contract, so that it can be

determined if the tenant is liable for damages. If there are no damages detected,

the tenant will recover its security deposit. If there are damages, these will be

retracted from the security deposit.

As mentioned, the rent is due each month. The tenant has a five-day period in

which this rent can be paid. If the tenant fails to pay within this period, he will be

fined. He then has another five-day period to pay the rent with the additional

fine. After this period, the landlord has the option of terminating the agreement

and the tenant will not get his security deposit back.

71

The next step in the method is the evaluation of the set of ADICO statements. In the

formation of the set, the syntactical correctness has been a main focus, as was the

inclusion of all the domain knowledge. All the statements contain at least an attribute,

deontic, aim, and condition, so the syntactical correctness is guaranteed. The

completeness of the set was assessed in collaboration with domain experts on the

subject of commercial real estate and contractual law. This resulted in the addition of

two statements. It would be redundant to show the entire table two times, so these

statements are incorporated in Table 9. After this, the completeness of the set of

ADICO statements was accepted.

Attribute (A) Deontic (D) aIm (I) Condition (c) Or else (O)

Tenant must pay the security
deposit

 at the start of the
contract

Tenant must pay the rent every month or else the rent is late

Tenant must pay the rent and a
fine

if the rent is late or else the contract can be
terminated

Tenant may end the lease
contract

when the original lease
period ends

or else the lease contract may
be extended

Tenant may give notice before the lease period
ends by forfeiting his
security deposit

Tenant may give one-month
notice to leave
through alternative
pay rent option

if the original lease period
has ended

Landlord must launch the contract at the start of the
contract

Landlord may terminate the
contract

if the rent is ten days late

Landlord may keep the security
deposit

if the rent is ten days late

Landlord may extend the lease
contract

if the lease period ends or else the lease contract will
end

Landlord may end the lease
contract

when original the lease
period ends

or else the lease contract will
be extended

Landlord may terminate the
contract

if notice has been given
and final rent is 10 days
late

Landlord must return the security
deposit to tenant

if the end of the lease has
been reached

Property
manager

must asses state of the
apartment

at the start of the
contract

72

Property
manager

must asses state of the
apartment

at the end of the contract

System must shift to accepting
payments

every month

System must register the rent to
be late

if five days have passed
since the accepting
payment status has been
reached

System must end the lease
contract

if final payment has been
made within 12 months

TABLE 9: ADICO STATEMENTS

From the set of ADICO statements, the transformation to the PIM can be made. The

name of the PIM is “Property leasing finite state machine diagram.” The initial state

can be determined by seeing what happens when the contract is launched. It is

determined that the Landlord launches the contract, so the initial state can be named

“Created.” All possible scenarios of this case will end in the lease contract between the

Landlord and the Tenant being concluded. This state can be named “Finalized.” The

set of states can be elicited from the ADICO statements by looking to what happens

before and after an ADICO statement. For instance, looking at the first statement

“Tenant must pay the security deposit at the start of the contract or else the contract

is not initiated”, the first state is one where the deposit has not been paid, and the next

state is one where the deposit has been paid, with the transition being the payment of

the deposit. Using this method, a set of states and transitions can be formed. These

sets are shown in Tables 10 and 11. There is an element of creativity to the creation of

the sets, as there are multiple ways to model the same set of ADICO statements. An

overload of states is undesirable, so if possible, states should be combined.

State name

Description

Created This is the initial state. The Landlord has created the contract.

PropertyAssessed When the Property manager has assessed the condition of the property, this

state is reached.

Paid This is state in which a payment has been made. This can be the security

deposit, the rent, or the late rent with the additional fine.

AwaitingPay In this state, the monthly rent is due, which means it is reached every month.

Conflict If the Tenant fails to pay the rent within the initial period, this state is

reached. It marks that there is a conflict.

73

PaidExtended This state resembles the state Paid, with the addition that a 12-month period

has passed. This means that the Tenant is now able to give a one-month

notice without losing his security deposit. This will be possible if the

AwaitingPayExtended state has been reached.

AwaitingPay-

Extended

This state resembles the AwaitingPay state, with the addition that a 12-

month period has passed. This means that the Tenant is now able to give a

one-month notice without losing his security deposit. From this state, notice

can be given.

ConflictExtended This state resembles the Conflict state, with the addition that a 12-month

period has passed.

FinalToBePaid This state is reached when a party gives notice that the agreement will be

ending. This can be done by the Tenant or by the Landlord. This state marks

that there is going to be one last payment to do.

LeaseEnd This state is reached when the final payment has been made by the Tenant.

LeaseClosed If the Tenant fails to pay his last payment within the designated time period,

this state can be reached by paying the late rent plus the fine.

Finished This is the final state of the contract. Every possible scenario should lead to

this final state. When reached, the contract is finished and could be deleted.

TABLE 10: STATE DESCRIPTION

Transition Name

Description/ADICO statement it is based on

Create When the Landlord launches the contract, this transition is made. It saves the

contract to the blockchain.

Landlord must launch the contract at the start of the contract

Assess In this transition, the Property manager inspects the condition of the

property at the start of the contract.

Property manager must assess state of the contract at the start of the

contract.

PayDeposit The Tenant pays the security deposit.

Tenant must pay the security deposit at the start of the contract.

RentDue This transition is an automatic one done by the system. When 30 days have

passed, the system automatically changes state from Paid to AwaitingPay.

System must shift to accepting payments every month

PayRent The Tenant is the trigger for this transition, in which he transfers currency to

pay for the rent, transitioning the state to Paid.

Tenant must pay the rent every month or else the rent is late.

74

RentLate If the Tenant fails to pay the rent within the five-day time period, the system

will automatically shift to the next state: Conflict. The condition for this

transition is that five days have passed since the state AwaitingPay has been

reached.

System must register the rent to be late if five days have passed since the

accepting payment status has been reached.

PayLate This transition is triggered by the Tenant, who pays the rent plus a fine for

being late with the rent. If the contract is in the extended period and notice

has been given, this transition leads to LeaseClosed.

Tenant must pay the rent and a fine if the rent is late or else the contract will

be terminated.

EndLease If the contract has run for a period of 12 months, the Tenant or the Landlord

can end the lease. If the final payment has been made within the 12 month

period, the system automatically shifts to the finished state.

The Tenant may end the lease contract when the original lease period ends

or else the lease may be extended.

Landlord may end the lease contract when the original lease period ends or

else the lease contract will be extended.

System must end the lease if final payment has been made within 12 months.

EarlyTerminate The Tenant may give notice before the contract period of 12 months is over,

but he forfeits his security deposit by doing so. The condition for this

transition is that the lease period is under 11 months.

Tenant may give notice before the lease period ends by forfeiting his security

deposit.

Extend When the original lease period of twelve months has passed, the Landlord

may extend the lease period by this transition.

Landlord may extend the lease contract if the lease period ends or else the

contract will end.

GiveNotice When the lease is extended and the rent is due, the Tenant may give notice.

This is done by paying the rent via this transition.

Tenant may give one-month notice to leave through alternative payment if

the original lease period has ended.

TerminateContract If the contract is in the conflict state and the Tenant fails to pay within a five-

day period, the Landlord may choose to terminate the contract. This means

the contract ends and the Tenant will not be refunded his security deposit.

 Landlord may terminate the contract if the rent is ten days late.

Landlord may keep the security deposit if the rent is ten days late.

Landlord may terminate the contract if notice has been given and final rent is

10 days late.

ReturnDeposit When the final payment has been made by the Tenant, the Property manager

inspects the state of the property again. If the property is in a similar state as

in the first assessment, the Tenant will receive its security deposit back.

 Property manager must assess the state of the apartment

System must return security deposit if the assessment of the apartment is

similar to the first assessment.

DepositRetract The Property manager assesses the property and compares it to the first

assessment. If there are damages or other expenses caused by the Tenant,

75

these will be retracted from the security deposit. After this, the remainder of

the security deposit is returned to the Tenant.

 Property manager must assess the state of the apartment.

System must register the amount and retract from security deposit if the

assessment has been made.

TABLE 11: TRANSITION TABLE

With the set of states and the set of transitions, an FSM can be constructed. It is

desirable for this FSM to have as little overlapping transitions as possible. This results

in the FSM in Figure 24; an enlarged version can be found in Appendix B. Again, the

correctness and completeness are assessed. The correctness of the model is dependent

on a number of factors. Every state should have a transition, which it has. The model

does not contain unwanted loops, and every scenario leads to the final state. Where it

is applicable, the condition is shown in brackets underneath the transition name. All

the states from the set of states and all the transitions from the set of transitions are

modeled. Every statement from the set of ADICO statements is modeled, which means

that the all the essential behavior is modelled. Thus the model is complete.

With this model, the next step of the MSDM can be initiated. This is extending

the model in order to prepare it for the transformation to the PSM. The easiest way is

go through the ADICO statements and look for nouns which do not describe the

attributes. The contract variables and their types are shown in Table 12.

76

Property-
Assessed

Paid AwaitingPay Conflict

RentDue
[Now > Time + 30 days]

PayRent

PayDeposit

Paid-
Extended

AwaitingPay-
Extended

Extend
[Now > Creationtime + 12 months]

RentDueExtended
[Now > Time + 30 Days]

PayRentExtended

FinalToBe-
Paid

Finished

GiveNotice

RentLate
[Now > TimeLate + 5 days]

PayLate

Conflict-
Extended

PayLate

RentLateExtended
[Now > TimeLate + 5 days]

TerminateContract
[Now > ConflictTime + 5 days]

TerminateContractExtended
[Now > ConflictTime + 5 days]

EarlyTerminate
[Now < CreationTime + 11 months]

LeaseEnd

EndLease
[Now > CreationTime + 12 months]

RentLate
[Now > TimeLate + 5 days]

PayRentFinal

ReturnDeposit
[assess = true]

LeaseClosed

PayLate
[Notice==True]

ReturnDepositExtended
[assess = true]

EndLeaseFinal
[Now < CreationTime + 12 months]

Finite state machine lease contract model

Created Assess

DepositRetract
[asses = false]

DepositRetractExtended
[asses = false]

FIGURE 24: FSM LEASE CONTRACT MODEL

Variable name Variable type

Security deposit Uint

Rent Uint

Fine Uint

CreationTime Uint

Landlord Address

Tenant Address

PropertyManager Address

PayDeposit Bool

Notice Bool

State of the apartment Enum

TABLE 12: VARIABLE DEFINITION

77

The next step is the actual creation of the smart contract. The creation of the contract

can be divided in four main parts, namely the definition of the states, the definition of

the variables, the definition of the patterns used, and the coding of the transitions.

First, the states are declared, which is done using the states from the FSM. The

declaration of the states is fairly easy, taking all the states from the set of states, and

defining them in an enum. Under the declaration of the states, the initial state is

declared. The StatesDefinition is as follows:

 //StatesDefinition

 enum States {Created, PropertyAssessed, Paid, AwaitingPay, Conflict,

PaidExtended, AwaitingPayExtended, ConflictExtended, FinalToBePaid,

LeaseEnd, LeaseClosed, Finished}

 States public state = States.Created;

After this, the variables are declared, with their type, an access modifier, and a name.

The variables definition is as follows:

 uint public securityDeposit;

 uint public rent;

 uint public fine;

 uint public deposit;

 uint monthCounter;

 uint rentCounter;

 uint creationTime;

 bool private payDepositTrue;

 bool private notice;

 bool assess;

 address public landlord;

 address public tenant;

 address public propertymanager;

78

Then, for every transition, a function is made containing a guard in the form of the

state it comes from, and a declaration of what the next state is. Also, for every function

is determined if one or multiple patterns are applied to the function. After this, the

statements and additional guard condition have to be added manually, which does

require a basic level understanding of the Solidity programming language, but this

can be expected of a smart contract developer. By providing the skeleton for the

contract, the risk of completely altering the smart contract in an undesirable manner

is mitigated. The result of the case study in the form of a smart contract skeleton is

shown in Appendix C.

5.2 Case Study Findings

The application of the model-driven smart contract development method to a case has

demonstrated the activities and deliverables of the method. Furthermore, the

instantiation of the method has yielded various findings and discussion points. The

results are discussed per sub-activity, after which the findings and discussion points

on the method as a whole are discussed.

5.2.1 The Computational Independent Method

Finding: The CIM provides a blueprint for the development process by structuring

the requirements and provides a framework for the evaluation of the smart contract.

The grammar of institutions used in the CIM allows the participants in the

development process to structure the requirements and make the interactions actors

have with the smart contract explicit. This provides a schematic which forms a basis

for the remaining development phases. Both the PIM, PSM, and the code should

correctly reflect the ADICO statements. At every step of the process, the set of ADICO

statements can be consulted to ensure the requirements of the smart contract are

fulfilled. As the statements must not be contradictory, the instantiation can, in theory,

also never be contradictory. This results in smart contracts without possible

paradoxical behavior.

79

5.2.2 The Platform Independent Model

Finding: Creating the PIM can be time-costly and laborious.

The process of creating and evaluating the PIM took up more time than initially

thought. The FSM modelling technique is straightforward with states and transitions

between these states. However, in this case it became clear that if not modelled with

caution, the number of states and transitions can easily become very large. This way

the FSM may become cluttered and hard to read.

Finding: The FSM modelling technique is suitable for the incremental construction of

models.

The FSM allows for an incremental construction of the model. In this case study, the

interactions between the landlord and the tenant were modelled first, after which the

property manager was added to the model. Consequently, if other parties or new

clauses were to be added to the smart contract, these can be added to the existing

model with relative ease.

Finding: The PIM can be used to evaluate the possible flows through the smart

contract.

When the FSM model is finished, it can be used to evaluate the smart contract. If

constructed correctly, the FSM gives an easily comprehensible overview of the smart

contract and allows for the evaluation of all the possible flows to the contract.

Combined with the CIM, developers can check if all the needed requirements are

modelled and if there are no unintended flows through the contract are possible.

5.2.3 The Platform Specific Model

Finding: Constructing the smart contract as a FSM makes the smart contract less

vulnerable, but also has a downside.

By applying a state machine approach, the number of functions that can be accessed

and executed are drastically lowered. An advantage to this is that when the tenant

needs to pay his rent, no function can be activated to, for instance, drain the security

deposit. The state machine approach does come with a downside. There can be an

explosion of functions when the number of states increases. The contract in the case

80

study is not extremely complex, but already has a high number of functions to connect

all the states.

Finding: The patterns in combination with the state machine approach mitigate a

large part of the smart contract vulnerabilities.

As stated in the previous finding, the state machine approach mitigates vulnerabilities

by reducing the number of functions that can be executed. The described patterns

amplify this effect. The application of the patterns is not time-costly, because they are

declared as modifiers once and then easily applied throughout the smart contract.

Finding: The manual coding process is relatively easy, but can be time-costly.

This finding logically follows the downside of approaching the smart contract as a

state machine. Every transition between states needs to be manually coded as a

function. These functions are not complex because only the conditions for the

transitions need to be added, but with an increasingly large amount of transitions this

can become time-costly.

5.2.4 Overall Findings

Finding: The method facilitates a structured, formalized approach to smart contract

development.

This is a logical finding, but the case study has shown that the method has clear

activities and deliverables, which form a guidance in the creation of a smart contract.

The method can be followed linearly, but as it was found in this case study, sub-

activities can be revisited with relative ease in order to make the method a more

incremental approach.

Finding: The method can be time-costly.

As stated in the finding on the PIM, the creation of the models can be a time-costly

process. Based on this case study, the conclusion that a model-driven approach to

smart contract development is more efficient is a bit premature. However, as the

method is time-costly, it does yield the CIM and the PIM, which can both be used to

evaluate the completeness of the smart contract. Furthermore, these deliverables

provide a basis for the re-use of the business knowledge.

81

6. Experimental Evaluation

In this chapter, the model-driven smart contract development method is evaluated by

conducting an experiment aimed at evaluating the added value of the CIM to the

method. The goal-question-metric approach is used to define the metrics and the

execution and results are described in detail.

6.1 Goals, Hypotheses, and Variables

Embedding metrics into a goal-oriented framework is widely regarded as a good

practice [99]. The Goal-Question-Metric (GQM) approach is such a framework. It is a

top-down approach developed by Basili [100] and later extended by Rombach [101].

Top-down means that first specific goals are stated, then questions whose answers

will help attain the goals are asked. Lastly, the metrics are defined to provide a scheme

for measuring.

Goals in the GQM are preferably documented in a structured way using the

following template: Goals are defined for a purpose (e.g., understanding, improving,

controlling), for the object under study (e.g., process, product), from a perspective

(e.g., user, developer), and within certain context characteristics (e.g., involved

persons, environment, resources, organisations). The addition of a CIM to the MDA

framework is to better communication and understanding between people in the

development process, about the models with a higher computational rich load.

Following the template for goal definition that is suggested in [102], the goal

of this experiment can be summarized as follows:

Analyze the Finite State Machine modelling technique

For the purpose of evaluation

With respect to comprehension and efficiency

From the point of view of the researcher

In the context of participants comprehending FSM models

From this goal, the main goal of the experiment at hand can be distilled. The

goal of the experiment is to evaluate if the comprehension of Finite State Machine

models is influenced by the addition of a CIM from the viewpoint of the users who do

82

not have a development background. After the goal is determined, questions are

needed to instantiate the goal of the experiment. These questions help attain the goal

and are formulated as follows:

Q1: Which technique leads to the highest comprehension of the Finite State Machine

modelling language?

Q2: Which technique is most efficient in understanding the Finite State Machine

modelling language?

 With the goal and the questions defined, the last step in the GQM is determining what

metrics are best suited for answering the questions. The metrics for this experiment

are the comprehension score, the comprehension score broken down in categories,

and the time. The experiment is summarized in Table 13..

Variable Question Metric(s)

Comprehension Which technique leads to the highest

comprehension of the FSM?

Comprehension score

 Categorized

comprehension scores

Efficiency Which technique is the most

efficient in understanding the FSM

Time

TABLE 13: VARIABLE, QUESTION, METRIC OVERVIEW FOR THE EXPERIMENT

6.2 Hypotheses

Using the goal, the questions and the metrics, hypotheses can be formulated. The

hypotheses are defined by following the guidance from the literature, which states

that the CIM can increase comprehension and provide a framework for the

communication of the PIM. They are formed using the h0 h1 style.

Hypothesis 10 : There is no significant difference between subjects comprehending an

FSM model with a textual description and subjects comprehending an FSM model

with a CIM with respect to their comprehension score.

Hypothesis 11 : There is a significant difference between subjects comprehending an

FSM model with a textual description and subjects comprehending an FSM model

with a CIM with respect to their comprehension score.

83

Hypothesis 20 : There is no significant difference between subjects comprehending an

FSM model with a textual description and subjects comprehending an FSM model

with a CIM with respect to their efficiency.

Hypothesis 21 : There is a significant difference between subjects comprehending an

FSM model with a textual description and subjects comprehending an FSM model

with a CIM with respect to their efficiency.

6.3 Design

The design used for this experiment is the static group comparison. The static group

comparison is a design in which a group who has experienced a treatment is compared

to a group who has not experienced said treatment to establish the effect of the

treatment [103]. The treatment in this experiment is the addition of a CIM to assist in

comprehending the PIM.

Giannatasio states that the most important threats to a static-group

comparison design are the selection bias and the interaction between subjects [104].

The threat of selection bias means that when two groups are formed, one group has

an advantage over the other group, skewing the results. The selection bias was

mitigated by randomly dividing the participants among the two groups, with the

assumption that all participants had equal knowledge at the start of the experiment.

The threat of interaction between subjects means that participants that have already

partaken in the experiment communicate the workings to participants who have not,

giving those participants an advantage over the other participants. The subjects were

requested not to talk about the experiment until all participants had finished the

experiment in order to mitigate the threat of interaction between participants.

The experiment is executed in a single instance, so there is no pre-test. This

approach is chosen to mitigate the effect of testing on the experiment. Testing and

retesting often influences participants behavior [105]. As smart contracts are a

relatively novel concept, the participants might encounter the concept in this form for

the first time at the experiment. Testing after a period of time might influence how

they perceive the smart contract, which is an unwanted effect on the experiment. A

commentary on this design is that there is no baseline to compare the influence of the

treatment to. However, by selecting and randomizing a heterogeneous group of

84

participants (elaborated on in the next section), one might assume that the treatment

is the cause of a potential difference in the results.

6.4 Subjects

This thesis is written during an internship project at Deloitte Risk Advisory. The

participants were all employees of this department. This provides a satisfying level of

assurance that the measured outcome is an effect of the treatment and not an effect of

the heterogeneity of the participant pool and differences between the two

experimental groups. All the subjects have had similar education, have affinity with

IT, and work with information systems on a daily basis. However, none of them have

experience with developing smart contracts, which was checked before the

experiment in order to rule out unfair advantages due to preexisting knowledge. The

level of experience in conceptual modeling and modeling language was also

registered. In order for the groups to be homogenous, the prior knowledge should

have no effect on the comprehension score. This will be analyzed in the results. There

was a total of 16 participants in this experiment, equally divided among the two

subject groups.

6.5 Instrumentation and Procedure

Each participant in either group received an introductory coversheet which stated all

the materials needed for the experiment and described the tasks to be executed. After

a check was done if all the materials were present, the participant was asked to start

reading. The materials for this experiment can be found in Appendix D. The reading

part of the experiment comprised the following components for both versions:

• An introduction to finite state machines, in which the FSM modeling

technique is explained;

• A description of the lease contract, in which the case for the smart contract is

explained;

• A finite state machine model based on the case description.

85

The version for the treatment group had the following additional components:

• An introduction to ADICO, which is a description of the CIM modeling

method;

• ADICO statements, which is a CIM which complements the finite state

machine model (PIM) provided.

There was no designated reading time, allowing the participants to read at their own

pace. To see if the participants had read and understood the materials, a cloze test for

comprehension was used. This is a test with statements in which concepts have been

blanked out. It was not used for further evaluation as the difficulty was low, but it

served as a comprehension check and ensured that the participant had a sufficient

understanding of all the materials presented to them.

After a participant had finished reading and had shown a sufficient

understanding of the concepts, the comprehension task started. Two scenarios of the

finite state machine model were shown to the participant. These scenarios were

marked with a red line in the FSM model the participants had already received. The

participant is then asked to describe the steps shown in the scenario in as much detail

as they can. Participants were explicitly asked to write down their answers as

extensive as they can, leaving no knowledge implicit. This was done to ensure that

their full comprehension becomes visible in their answer. The model in experiment B

was accompanied by the ADICO statements, with the number of the statements

corresponding to the number shown above the transition names. It was verbally

confirmed that the participants understood this connection so that the participants

would not ignore the CIM while describing the scenarios.

The FSM model was a variation on the FSM created in the use case in chapter

5. Two parties, namely the landlord and the tenant, have a rental agreement denoted

in the smart contract. In the comprehension task, both groups were shown the same

two scenarios in which the flow through the FSM was indicated by a red marking. The

FSM in the scenarios was the same, only the marked scenarios differed. The first

scenario showed a desirable flow through the FSM in which the actors did not trigger

conditions which warranted punishment or fines. The second scenario had a flow

through the model in which unwanted behavior such as not paying on time was

86

displayed. By having two flows through the FSM that show different behavior

through the model, the comprehension of the complete FSM has been attempted to be

measured. The scenarios used in the experiment can be found in Appendix D2 and

D4.

The participant’s answers were scored using a control sheet in which

components were all scored with one point. The control sheet used can be found in

Appendix E. For every participant, the points were summed and divided by the total

points, creating the comprehension score. This score is based on the recall, in which

the relevant items are divided by the total number of items [106]. The recall is eligible

in this context, because the participants’ description were comprised of true positives

and rarely false positives, or negatives. The time that the participants took to finish

the scenario description was also measured. This was done in order to get an insight

in the efficiency of the participants.

The experiment was performed in the same setting for each of the participants.

The reading parts were provided in print and the FSM models were displayed on a 22

inch monitor on which all the components of the models were clearly visible. This way

the participants were able to consult the information provided, while simultaneously

comprehending the FSM models. A separate laptop was provided on which the

participants could type their answers. All participants were able to do the experiment

in a calm setting without getting disturbed while the experiment was in progress.

In addition to the quantitative measurement of the comprehension score and

the efficiency, a qualitative evaluation of the participant’s abilities was made. This is

done because comprehension is a hard metric to measure by just looking at the

numbers. By doing an additional observation, an explanation can be formed about the

participants’ scores and can be assessed if the measurement instrument used for this

experiment is reliable. The data was collected through post-experiment interviews in

which the researcher sat down with the participant and verbally discussed their

answers to the comprehension tasks. When the participant had left out components

or had made a mistake, the reason for this was sought after in order to ensure that the

measured comprehension score was a valid representation of the participants’ actual

comprehension.

87

6.6 Data Collection and Results

6.6.1 Quantitative Data

All analyses described in this chapter were done in IBM SPSS statistics version 24, the

output of the analyses can be found in Appendix F. The first analysis that was

conducted was the effect of participants’ prior knowledge on the comprehension

score. This has been evaluated through an independent samples T-test and showed no

significant result (p = .885 for scenario 1 and p = .777 for scenario 2). This means that

having prior knowledge on conceptual modelling did not have an effect on the

participants’ comprehension score, so the assumption can be made that all

participants were equally capable.

Hereafter, the comprehension score was analyzed. The comprehension score

is the result of scoring the participants’ description of the scenarios against the control

sheet. The participants could acquire 42 points for 42 components they could have

mentioned in the scenario description. The comprehension scores calculated as

percentages for scenario 1 and 2 are displayed in figure 25.

FIGURE 25: COMPARISON OF THE MEAN SCORES IN SCENARIO 1

In both scenarios, the group with the CIM scored higher. To see if the difference in

scores was a significant effect of the condition, two independent sample T-test were

conducted in which the scores of the group without the CIM were compared to the

88

scores with the CIM. For scenario 1, there was a significant difference between the

comprehension score of the group without the CIM (M=50, SD=16.6) and the

comprehension score of the group with the CIM (M=69.3, SD=12.6); t(14) = -2.629, p =

0.020, N = 16. For scenario 2, the T-test also shows that there was a significant

difference between the comprehension score of the group without the CIM (M=46.6,

SD=20.1) and the group that used the CIM (M=71.0, SD=10.5); t(14) = -3.041, p = 0.009,

N = 16. This result suggests that people are better able to comprehend an FSM when

using a CIM than when they are not using a CIM. This means that for both scenarios,

the null hypothesis of hypothesis one is rejected, and the alternative hypothesis is

accepted.

Hereafter, the comprehension score was divided in five categories, namely the

actor, action, construct, consequence, and condition category. The participants’ scores

for each of these categories were then calculated as a percentage of the total possible

scores. The results for the scores in scenario 1 visualized as boxplots are shown in

Figure 26.

FIGURE 26: BOXPLOTS OF THE CATEGORIZED COMPREHENSION SCORES FOR SCENARIO 1

As one can tell from the boxplots, the group with the CIM scores, on average, higher

on all the different components. Five independent sample T-tests showed that of the

89

five components, only the actor component showed a significant difference between

the group without the CIM (M=33.8, SD=21.3) and the group with the CIM (M=66.3,

SD=18.5); t(14) = -3.596, p = 0.003, N = 16. This suggests that people interpreting an

FSM with a CIM are better able to denote which actor is responsible for an action than

people without a CIM. The other components showed no significant difference

between the two groups.

The same was done for the comprehension score of scenario 2. The results of

these categorized comprehension scores can be found in Figure 27.

FIGURE 27: COMPARISON OF THE MEAN SCORES IN SCENARIO 2

The second scenario shows the same trend as in scenario 1. The group that

comprehended the FSM with the CIM scores relatively better on average on the total

score, as well as on all the component scores. Again, five independent samples T-tests

were conducted to establish if the effect was significant or not. For the five components

in the second scenario, three effects were found. There was a significant difference in

the actor score between participants without the CIM (M=35.2, SD 28.1) and

participants with the CIM (M=64.8, SD=19.7); t(14) = -2.435, p = 0.029, N = 16. There

was a significant difference in the action score between participants without the CIM

(M=56.8, SD=20.5) and participants with the CIM (M=80.7, SD=11.3); t(14) = -2.885, p =

0.012, N = 16. And there was a significant difference between the condition score

between participants without the CIM (M=45.0, SD=23.3) and participants with the

CIM (M=75.0, SD=23.3); t(14) = -2.575, p = 0.022, N = 16. These results suggest that

90

people interpreting an FSM with a CIM are better able to comprehend the actors, the

actions, and the conditions of the FSM than people who do not utilize a CIM. For the

construct and consequence components, there was no significant result found.

After the analyses of the comprehension scores, the efficiency of both groups

was analyzed. An independent samples T-test showed that there was no significant

difference in time used between the group comprehending with the CIM and the

group comprehending without the CIM. This means that the treatment had no effect

on the efficiency, so the null hypothesis of hypotheses 2 is accepted. Additionally, a

Pearson’s correlation test was used to analyze if time had an effect on the

comprehension score. This showed a moderate correlation between the time in

seconds used for comprehending scenario 1 and the comprehension score of scenario

1, but this correlation was not significant (r = .453, p = .078, N = 16). A Pearson’s

correlation test showed a similar correlation between the time in seconds used for

comprehending scenario 2 and the comprehension score of scenario 2, but this also

was no significant result (r = .436, p = .094, N = 16). For both scenarios, there was a

moderate positive correlation between time and comprehension score meaning that if

participants took longer, they scored higher. However, both of these results were not

significant. A possible reason for this is the relative low number of participants. This

does mean the results do not yield any real conclusions.

6.6.2 Qualitative Data

With the knowledge gathered from the quantitative data of this experiment, the

qualitative data can provide further insights into the results. The answers of the

participants were reviewed in which the participants were asked about missing

components in their answers. From these small interviews, it became apparent that

there were two main reasons that participants left out information in their answers,

which became most apparent for the actor category.

The first reason was that participants left certain information implicit with the

expectation that it would be redundant to include them in their answer. An example

in which this frequently happened was naming the actor who paid the rent. A lot of

participants who left this out indicated that they did not name this actor because they

assumed it was evident that the tenant paid the rent. “Who else would pay the rent?”.

91

The second reason was that participants simply did not knew who the actor was. If

the measurement instrument was reliable, the second reason would be the explanation

for almost all the missing information in the participants’ answer, correctly reflecting

the participants’ understanding. Unfortunately, the qualitative data shows that this is

not the case.

However, there was a difference visible between the two scenarios. The first

reason, namely participants leaving their comprehension implicit, was more frequent

in the first scenario in which the tenant paying the rent is a recurring transition. The

second reason, namely not knowing the answer, was more frequent in the second

scenario in which some transitions were wrongly interpreted to be executed by

another actor. The results of the second scenario therefore can be seen as more reliable

in the effects it showed, compared to the effects displayed by the results of the first

scenario.

As the FSM has no explicit information on who performs the action, this

should be derived solely from context. In the scenario in which the contract was

working out as it should, this did not seem to be a problem, and all participants could

show who triggered which transition. In scenario 2 however, in which undesirable

behavior for the contract is displayed, the agency was less clear to the participants

without the CIM.

In the results above, the agent category was taken as the prime example of the

discrepancy between the results of the quantitative results and the qualitative results.

However, there were other examples in which the participants left out components of

an answer for another reason than that they did not comprehend the correctly. As the

categories are a subset of the comprehension score, the effects measured on these

results are subject to the same threat. As the second scenario was less prone to a

discrepancy between the quantitative and the qualitative results, there still is a level

of validity to the described effects. However, when discussing these effects, it should

be noted that the measurement instrument was not 100% reliable.

92

7. Conclusions

This thesis has presented a model-driven smart contract development approach in

which the requirements of a smart contract are stepwise developed into a skeleton

Solidity smart contract. This development method is an attempt to answer the main

research question.

RQ: How can smart contract development be supported by model-driven engineering

in a structured way?

This main research question has been deconstructed into smaller parts, which all

provide valuable insights into model-driven smart contract development. These

obtained insights will be presented in this chapter. To arrive at an answer to the main

research question, the sub-questions will be treated and answered shortly. Most

questions have been answered more elaborately in a chapter of this thesis, so the

relevant chapters for a more extensive answer will be given.

SQ1: How can blockchain, smart contracts, and model-driven engineering be defined

based on prior literature?

The aim of this first sub-question is to provide an insight into the concepts blockchain,

smart contracts, and MDE. Blockchain can be summarized as an immutable, append-

only, decentralized database. The blockchain technology is a combination of

cryptography, peer-to-peer networking, and consensus protocols. Its properties can

facilitate major innovations, but do not come without vulnerabilities. The same goes

for the smart contract, which can be defined as code that is stored and executed on the

blockchain. The idea of a smart contract stems from 1997, but blockchain technology

has provided a platform for the actual execution of these applications. Again, this

novel technology provides opportunities but also has novel pitfalls which should be

accounted for in the usage of this technology. A more comprehensive definition of

blockchain and smart contracts is given in chapters 3.1 and 3.2.

MDE is a more established concept that has been applied in many fields. In

this methodology for software engineering, or engineering in general, the focus shifts

from a code-centric to a model-centric approach to development. Possible advantages

of this approach are lowering the difficulty threshold and the re-use of knowledge in

93

volatile development environments. There are a number of frameworks and methods

for MDE. MDA is such a framework, which provides a model-driven foundation for

the development process. The MDA framework consists of the computational

independent model, the platform independent model, and the platform specific

model. These different models abstract from a systems’ implementation by providing

different levels of behavioral, functional, and technical detail. These concepts are

described in more detail in chapter 3.3.

SQ2: What research into the application of model-driven engineering to smart contract

development has already been conducted?

This sub-question combines the concepts defined in the first sub-question. Three main

approaches to the MDD of smart contracts have been identified in literature. The

agent-based approach in which the behavior of a system is modeled with the grammar

of institutions [80], the process-based approach in which BPMN is used to create a

basis for a smart contract between trustless parties [85], and the state machine

approach in which the smart contract is modeled as an FSM [88]. These approaches

are extensively described and compared in chapter 3.5.

SQ3: What are the requirements for the model-driven smart contract development

method?

For this sub-question, the knowledge gathered in sub-questions 1 and 2 was used. The

aim was to elicit the requirements based on the definitions made in sub-question 1

and to tailor these requirements to the available approaches already described in

literature. As the MDA framework was applied, a distinction was made between the

CIM, the PIM, and the PSM. The PSM in the context of this research was already

decided to be the Solidity programming language, as this is by far the most widely

used language for smart contracts. The full requirements are discussed in chapter 4.1,

but the requirements can be summarized as follows:

CIM: The CIM should provide high-level overview of the smart contract, which maps

the essential domain concepts in a systematic, structured manner and shows the

developer all possible interactions with the smart contract.

94

PIM: The PIM should provide a functional and behavioral overview of the smart

contract in which the notion that a smart contract is comprised of states is evident. The

model should be extensive enough for the developer to create a functional overview,

and accessible enough for the domain expert to communicate about this functional

overview.

SQ4: What are the activities and deliverables of the model-driven smart contract

development method?

The requirements denoted in sub-questions 3 form the requirements for this sub-

question. Based on the approaches described in sub-question 2, a method base was

created, and from this method base, the fragments best fulfilling the requirements

were selected. For the CIM, the agent-based approach with the grammar of

institutions was selected, because of the structured approach to describing the domain

knowledge, while still being approachable to less technical people. For the PIM, the

state machine approach was selected, because of its clear syntactical elements, its clear

semantics, and the possibility to transform the FSM into a smart contract skeleton. The

activities and deliverables of the smart contract development method are described in

detail in chapter 4 but can be summarized as shown in Figure 27.

Create and evaluate CIM

Create and evaluate PIM

Create and evaluate PSM

ADICO STATEMENTS

FSM MODEL

SOLIDITY CODE

Tranforms into

Tranforms into

FIGURE 28: PDD SUMMARY OF THE MODEL-DRIVEN SMART CONTRACT DEVELOPMENT METHOD

95

SQ5: How does the model-driven smart contract development method assist the

developer in the creation of smart contracts?

The first four sub-questions have resulted in the creation of the model-driven smart

contract development method. Sub-question five and six are aimed at evaluating this

method. The first evaluation is from the viewpoint of the developer and was done by

assessing the method through a case study. This case study yields a number of

conclusions.

For starters, the case study shows that the method provides the developer of

the smart contract with a structured approach. By doing so, it is clear which steps need

to be followed in order to create a smart contract. Not having a structured approach

to development can lead to requirements not being fulfilled and can impede the

preservation of business knowledge. The method also provides a structured approach

to the translation of domain knowledge to smart contract requirements. This way, the

developer does not have to rely entirely on his or her own mental representation of

the domain knowledge, but is provided with a checklist of requirements instead.

Furthermore, the model-driven smart contract development method may

assist the developer in creating less vulnerable smart contracts. First, the FSM is

transformed into a skeleton contract in which the notion of a smart contract as a state

machine is used. Having the smart contract be in a single state at a time mitigates the

risk of having other functionalities of that smart contract tempered with at that

moment. Furthermore, patterns can be applied which counter the reentrancy

vulnerability and transaction-ordering dependency vulnerability, allow a form of

access control and can assist in a timed transition. By providing a skeleton smart

contract, the manual programming is kept at a minimum, and this programming is

aimed solely on translating the transitions into code.

The case study also showed that the method can become time-costly. The

construction and evaluation of the models can be a laborious process which increases

with the complexity of the smart contract. However, the time invested does yield

artifacts like the CIM and the PIM which can be used to asses the quality of the smart

contract. An overview of all the findings from the case study can be found in chapter

5.2.

96

SQ6: How does the model-driven smart contract development method influence the

comprehension of smart contracts?

The second evaluation of the method was done by conducting an experiment. The

results of the qualitative analysis show that the measurement instrument might not

be fully reliable and the results may be skewed by the participants own interpretations

on what can be left implicit and what not. Therefore, the conclusions to this sub-

questions need to be read with the limitations of the experiment in mind.

The main conclusion that can be drawn from this experiment is that the

comprehension of FSM is higher when a CIM is provided. This legitimizes the

addition of the CIM to the model-driven smart contract method as a comprehension

tool for the domain expert. It is important for people with domain knowledge to be

included in the smart contract development process and the addition of the CIM

assists in this inclusion.

The results of the experiment show that people are better able to interpret

concepts that are left implicit in the syntax of the FSM. The actor who triggers the

transition, for instance, is better recognized as a CIM is provided. When a scenario

gets more complex, the inclusion of a CIM also significantly betters the comprehension

in terms of actions and conditions for those actions. This shows that the CIM is not

only a tool to understand the FSM, but can also be used to make implicit information

explicit.

More general conclusions from this experiment are that the FSM modeling

language does not have a very steep learning curve, as the participants were all able

to understand the FSM with a relatively simple explanation. However, in order to

effectively communicate about what happens in the FSM, it helps to have a CIM

containing information about the behavior of the system. Most participants were able

to understand what happens in an FSM but were struggling to put this in writing

when asked to. In these cases, the CIM can provide a framework to communicate what

is happening in the FSM. Time and prior knowledge did not turn out to have an effect

on the comprehension of FSM models. However, a non-significant positive correlation

does suggest that when participants use more time to comprehend, the

comprehension score increases.

97

RQ: How can smart contract development be supported by model-driven engineering

in a structured way?

The answer to the main research question comes in the form of the model-driven smart

contract development method presented in this research. The application of the MDA

framework in the smart contract development environment (i) lowers the threshold of

participation for domain experts in the development cycle, (ii) provides a structured

manner for the developer to develop a smart contract based on domain knowledge,

and (iii) lowers the chance of manual programming mistakes and smart contract

vulnerabilities by providing the developer with a skeleton smart contract and patterns

which can be used to mitigate smart contract vulnerabilities.

The components of the model-driven smart contract development method

holistically form a structured method in which each of the components serves a

purpose. The CIM forms a bridge between the domain knowledge and requirements

for the smart contract, and it improves the comprehension of and communication

about the FSM. The PIM captures the requirements and includes the functional aspects

of the smart contract, which can be used as a blueprint for the PSM. And lastly, the

PSM is the actual implementation of the smart contracts in which the state machine

approach and the patterns are applied to minimize the vulnerability of the smart

contract. The model-driven smart contract development method is an addition to the

knowledge base as smart contract development needs a unique form of economic and

defensive thinking, which is facilitated through the described method. The time-

costliness may currently be a disadvantage, but the construction of the different

artifacts may prove useful when the business knowledge can be re-used when porting

smart contracts to other blockchain platforms.

98

8. Discussion

This research has been conducted with the aim of answering the main research

question in the best manner possible. However, research is always prone to certain

limitations and threats to the validity of research. In this chapter, we will reflect upon

the threats to the validity and discuss the limitations in order to show how the quality

of this research has been ensured. When evaluating research, a distinction between

three main criteria can be made, namely internal validity, external validity, and

reliability [107]. In the coming sections, these concepts and how they relate to this

research are explored.

8.1 Internal Validity

Research can be called internally valid if the relations described between constructs

are valid. In this research, an extensive literature research has been conducted in order

to define the concepts and to determine if there is a relationship between the concepts

to create the model-driven smart contract development method. To the best of our

knowledge, all available knowledge has been applied to construct the method, but

research on smart contracts is relatively new, and there is a high output of new

research scattered in multiple venues. The method, however, is not prone to such

rapid change, as all concepts used in the creation of the method find their foundation

in earlier work than smart contracts development.

The method has been evaluated by both a case study and an experiment. By

constructing the method with knowledge gained through a literature review and

evaluating it through a case study and an experiment, the application of triangulation

has been attempted. Triangulation refers to the use of multiple methods to develop a

comprehensive understanding of phenomena [108]. By doing so, both the practical

working of the method, as well as the underlying assumption on comprehension have

been evaluated. However, the evaluation approaches do have their limitations.

The case study has an important limitation by not having actual smart contract

developers involved in the execution. As smart contract development is a novel field,

there is a lack of experts which are therefore missing from the case study. This does

mean that the creator of the method performed the case study, and subsequently

interpreted the findings of this case study. It would be better if the actual stakeholders

99

at whom the method is aimed would be involved in a case study, yielding well-

founded insights from their perspective.

The experimental evaluation is also prone to validity threats. To counter the

influence of events that occur between measurements, maturation, and the effects of

testing, the choice for a static group comparison was made. This has as a consequence

that selection bias and the capabilities of participants can have a large effect on the

outcome. The relatively small number of participants only makes this threat larger.

However, in chapter 6.4 it is described how participants were homogenous in terms

of characteristics, the number of participants in each group was equal, and

participants were randomly assigned over the two groups in order to mitigate these

threats. The results of the experiment showed the most important threat to the validity

of the experimental evaluation, namely the instrumentation. The results showed that

the measurement instrument might not correctly reflect the participants’

comprehension. This would mean the entire experiment can be deemed invalid.

However, in assessing the validity of the instrumentation, results also showed that for

the second scenario there was far littler discrepancy between the quantitative and

qualitative data. Both scenarios showed similar results, meaning that it would be too

blunt to disqualify all the conclusions drawn from the experimental evaluation.

8.2 External Validity

The external validity of research refers to the extent to which the results are

generalizable to other contexts. The model-driven smart contract development

method is aimed at a wide variety of smart contract development projects. The only

condition for its implementation is that the smart contract will have the structure of a

state machine. This means the method itself is externally valid in terms of

applicability.

If functionality needs to be added to a smart contract, this can be done

relatively easily by adding ADICO statements to the existing documentation, and

subsequently adding the new states to the existing FSM. This means that the model is

externally valid in terms of scalability.

The evaluation of the methods finds the most threats to external validity in

this research. The case study serves as a demonstration but did not include validation

100

from external sources. This means it could be prone to researcher bias, as the same

researcher who constructed the method, validated it in its entirety. To counter this, an

experiment was conducted in which assumptions made in the construction of the

method were validated. The biggest threat to the external validity in the experiment

comes from the subject group. This group was homogeneous in order to make a valid

comparison, but the heterogeneity lowers the generalizability. The participants were

all higher-educated and have an affinity with IT systems and processes. However, the

participants did not have any prior knowledge of smart contract development and the

modeling methods presented to them, which somewhat mitigates this threat to the

validity. The participants in the experiment showed that the modelling languages do

not have a steep learning curve, making the method valid in terms of usability.

However, not including actual stakeholders in the case study makes it that this threat

is not completely mitigated.

8.3 Reliability

Reliability can be can be defined as the extent to which results are consistent over time

and an accurate representation of the total population under study [109]. In order to

guarantee the reliability of the study, a thorough documentation of the research

approach has been made, which can be found in chapter 2. In the process of

constructing the method, all choices have been made on the basis of existing

frameworks like the MDA. The evaluation of the method has also been thoroughly

documented in chapter 6, as to ensure the reliability.

To ensure that in the experimental evaluation the measurement instrument

was reliable, an additional measurement of the comprehension has been done through

post-experiment interviews. This additional evaluation showed that the

comprehension metric was prone to invalidity caused by the assumptions of the

participants. The reliability of the experimental evaluation therefore becomes

somewhat dubious.

101

9. Future Work

This research present the model-driven smart contract development method as its

main artifact. The research presented in this thesis can be extended upon in several

directions in the future. First, the focus in this research was on both gathering

requirements, constructing, and evaluating the model-driven smart contract

development method. Although there has been an evaluation, the context of this

research leaves a gap in terms of further evaluation of the components. Future

research could fill this gap by doing a more extensive experiment or applying the

method in practice with domain experts and smart contract developers. In a more

extensive experiment with for instance a more heterogeneous pool of participants or

a before-after treatment, the benefits of the method may become even more apparent.

Lessons learned from further evaluation could also extend the method in ways the

current evaluation did not allow for.

Second, the method in its current form is not specialized or tailored to a

specific application domain. Future research could specialize the method, allowing for

fully automated transformations between the methods’ models. These domains may

become more apparent as the usage of smart contracts becomes a more mainstream

practice. Further research can also be done into specific components of the method.

For instance, if the PSM is studied intensively, automated ways to evaluate a contracts’

security vulnerabilities can be identified.

Third, this research is focused on Ethereum in combination with Solidity. At

the moment of writing this is by far the most widely used combination of

programming language and execution platform, but in the highly volatile

environment of blockchain platforms, this might rapidly change. Future research

could focus on the transformations from the PIM as described in this research to

several PSMs. By applying the method to multiple PSMs, the true advantage of a

model-driven approach will become apparent, as the re-usage of knowledge allows

the developer to quickly adapt to whatever platform will gain momentum.

102

10. References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic payment system,” J. Gen.

Philos. Sci., vol. 39, no. 1, pp. 53–67, 2008.

[2] Nomura Research Institute, “Survey on Blockchain Technologies and Related

Services,” Res. Rep., no. March, pp. 1–78, 2016.

[3] M. Conoscenti, A. Vetro, and J. C. De Martin, “Blockchain for the Internet of

Things: A systematic literature review,” Proc. IEEE/ACS Int. Conf. Comput. Syst.

Appl. AICCSA, pp. 1–6, 2017.

[4] A. Bahga and V. K. Madisetti, “Blockchain Platform for Industrial Internet of

Things,” J. Softw. Eng. Appl., vol. 09, no. 10, pp. 533–546, 2016.

[5] D. Drescher, Blockchain basics: A non-technical introduction in 25 steps. 2017.

[6] “Cryptocurrency Market Capitalizations.” [Online]. Available:

http://www.coinmarketcap.com/.

[7] C. Caginalp and G. Caginalp, “Valuation, liquidity price, and stability of

cryptocurrencies,” Proc. Natl. Acad. Sci., vol. 115, no. 6, pp. 1131–1134, 2018.

[8] A. Nelson, “Cryptocurrency Regulation in 2018: Where the World Stands

Right Now,” Bitcoin Mag., 2018.

[9] N. Szabo, “Smart Contracts: Building Blocks for Digital Markets,” 1997.

[10] F. Kinley, “A $50 MILLION HACK JUST SHOWED THAT THE DAO WAS

ALL TOO HUMAN,” Wired.com, 2016.

[11] M. Alharby and A. van Moorsel, “Blockchain Based Smart Contracts : A

Systematic Mapping Study,” Comput. Sci. Inf. Technol. (CS IT), pp. 125–140,

2017.

[12] D. W. Cearley, M. J. Walker, B. Burke, and S. Searle, “Top 10 Strategic

Technology Trends for 2017: A Gartner Trend Insight Report Insight From the

Analyst Strategic Technology Trends — Threat or Opportunity?,” no. March,

2017.

[13] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts

devour your money,” SANER 2017 - 24th IEEE Int. Conf. Softw. Anal. Evol.

Reengineering, pp. 442–446, 2017.

[14] “Etherscan.” [Online]. Available: http://www.etherscan.io/.

103

[15] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step

towards creating a safe smart contract: Lessons and insights from a

cryptocurrency lab,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 9604 LNCS, pp. 79–94, 2016.

[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart

Contracts Smarter,” Proc. 2016 ACM SIGSAC Conf. Comput. Commun. Secur. -

CCS’16, pp. 254–269, 2016.

[17] R. S. Pressman, Software Engineering: A Practicioner’s Approach. 2001.

[18] W. Scacchi, “Process Models in Software Engineering,” Encycl. Softw. Eng., no.

May, pp. 1–24, 2001.

[19] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, Model-Driven Software

Development: Technology, Engineering, Management. 2006.

[20] M. Afonso, R. Vogel, and J. Teixeira, “From code centric to model centric

software engineering: Practical case study of MDD infusion in a systems

integration company,” Proc. - Jt. Meet. 4th Work. Model. Dev. Comput. Syst. 3rd

Int. Work. Model. Methodol. Pervasive Embed. Software, MBD/MOMPES 2006, pp.

125–134, 2006.

[21] S. T. March and G. F. Smith, “Design and natural science research on

information technology,” Decis. Support Syst., vol. 15, pp. 251–266, 1995.

[22] H. A. Simon, The sciences of the artificial, (third edition), vol. 33, no. 5. 1997.

[23] M. Silver, M. Markus, and C. Beath, “The information technology interaction

model: A foundation for the MBA core course,” MIS Q., pp. 361–390, 1995.

[24] A. Hevner, S. March, and J. Park, “Design Science in Information Systems

Research,” MIS Q. Manag. Inf. Syst., vol. 28, no. 1, pp. 75–105, 2004.

[25] A. R. Hevner, “A Three Cycle View of Design Science Research,” Scand. J. Inf.

Syst., vol. 19, no. 2, pp. 87–92, 2007.

[26] R. Baskerville, “What design science is not,” Eur. J. Inf. Syst., vol. 17, no. 5, pp.

441–443, 2008.

[27] A. N. S. Contract and D. A. Platform, “Ethereum: A Next-Generation Smart

Contract and Decentralized Application Platform,” 2009.

[28] M. Swan, Blockchain: Blueprint for a New Economy. 2015.

[29] J. Leibowitz, “Bitcoin: A 21st Century Currency Explained By a Wall Street

Veteran - CoinDesk,” Coindesk, 2016. [Online]. Available:

http://www.coindesk.com/bitcoin-explained-global-currency-wall-street-

veteran/. [Accessed: 09-Nov-2017].

104

[30] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”

ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[31] C. Dannen, Introducing ethereum and solidity: Foundations of cryptocurrency and

blockchain programming for beginners. 2017.

[32] W. Diffie, W. Diffie, and M. E. Hellman, “New Directions in Cryptography,”

IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976.

[33] H. J. Highland, “Security in computing,” Comput. Secur., vol. 16, no. 3, p. 181,

1997.

[34] Benjamine, “Encryption.” 2017.

[35] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.

120–126, 1978.

[36] B. K. Yi, “Digital signatures,” Computer, 2006. [Online]. Available:

http://www.revasolutions.com/EXPERTISE/PROCESS-

MANAGEMENT/DIGITAL-SIGNATURES/.

[37] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography, vol. 19964964. 1996.

[38] R. C. Merkle, “One way hash functions and DES,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 435

LNCS, pp. 428–446, 1990.

[39] L. P. Prieto, M. J. Rodríguez-Triana, M. Kusmin, and M. Laanpere, “Smart

school multimodal dataset and challenges,” CEUR Workshop Proc., vol. 1828,

pp. 53–59, 2017.

[40] G. Fox, “Peer-to-peer networks,” Comput. Sci. Eng., vol. 3, no. 3, pp. 75–77,

2001.

[41] H. Yan, “Distributed File Systems,” Most, pp. 1–12, 2008.

[42] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends,” Proc. - 2017 IEEE

6th Int. Congr. Big Data, BigData Congr. 2017, no. October, pp. 557–564, 2017.

[43] M. Biella and V. Zinetti, “Blockchain Technology and Applications from a

Financial Perspective,” Unicredit, 2016.

[44] D. Liu and J. Camp, “Proof of Work can Work,” p. 16, 2006.

[45] I.-C. Lin and T.-C. Liao, “A Survey of Blockchain Security Issues and

Challenges,” Int. J. Netw. Secur., vol. 1919, no. 55, pp. 653–659, 2017.

105

[46] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the

Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[47] Josh Stark, “Making Sense of Blockchain Smart Contracts,” Coindesk.Com, 2016.

[Online]. Available: http://www.coindesk.com/making-sense-smart-contracts/.

[Accessed: 24-Nov-2017].

[48] V. Morabito, “Business Innovation Through Blockchain,” pp. 101–124, 2017.

[49] W. P. Government of Canada, “White Paper,” Aborig. Policy Stud., vol. 1, no. 1,

pp. 1–36, 2011.

[50] M. Bartoletti and L. Pompianu, “An Empirical analysis of smart contracts:

Platforms, applications, and design patterns,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10323

LNCS, pp. 494–509, 2017.

[51] M. Andrychowicz, S. Dziembowski, D. Malinowski, and Ł. Mazurek, “Secure

multiparty computations on bitcoin,” Proc. - IEEE Symp. Secur. Priv., vol. 59,

no. 4, pp. 443–458, 2014.

[52] I. Bentov and R. Kumaresan, “How to use Bitcoin to design fair protocols,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 8617 LNCS, no. PART 2, pp. 421–439, 2014.

[53] M. Alharby and A. van Moorsel, “Blockchain Based Smart Contracts : A

Systematic Mapping Study,” Comput. Sci. Inf. Technol. (CS IT), vol. 4, no. 4, pp.

125–140, 2017.

[54] B. Marino and A. Juels, “Setting standards for altering and undoing smart

contracts,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 9718, pp. 151–166, 2016.

[55] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, “Evaluation of logic-

based smart contracts for blockchain systems,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 9718, J. J. Alferes, L. Bertossi, G. Governatori, P. Fodor,

and D. Roman, Eds. Cham: Springer International Publishing, 2016, pp. 167–

183.

[56] A. Brown, “An introduction to Model Driven Architecture,” Dev. Work. Libr.,

no. Part I, pp. 1–16, 2004.

[57] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and

the ugly,” IBM Syst. J., vol. 45, no. 3, pp. 451–461, 2006.

[58] H. Stachowiak, Allgemeine Modelltheorie. 1973.

106

[59] J. Ludewig, “Models in software engineering – an introduction,” Softw Syst

Model Digit. Object Identifier, vol. 2, pp. 5–14, 2003.

[60] J. Bèzivin, F. Jouault, and P. Valduriez, “On the need for megamodels,” Work.

Best Pract. Model. Softw. Dev. 19th Annu. ACM Conf. Object-Oriented Program.

Syst. Lang. Appl., no. 1, pp. 1–9, 2004.

[61] T. Kühne, “Matters of (meta-) modeling,” Softw. Syst. Model., vol. 5, no. 4, pp.

369–385, 2006.

[62] T. Bloomfield, “MDA, meta-modelling and model transformation: Introducing

new technology into the defence industry,” in European Conference on Model

Driven Architecture-Foundations and Applications, 2005, pp. 9–18.

[63] D. Shirtz, M. Kazakov, and Y. Shaham-Gafni, “Adopting model driven

development in a large financial organization,” in European Conference on Model

Driven Architecture-Foundations and Applications, 2007, pp. 172–183.

[64] J. C. A. Ferreira, “MDAI: Model based design in automobile industry,” in

Industrial Informatics, 2009. INDIN 2009. 7th IEEE International Conference on,

2009, pp. 434–439.

[65] P. Baker, S. Loh, and F. Weil, “Model-Driven engineering in a large industrial

context—motorola case study,” in International Conference on Model Driven

Engineering Languages and Systems, 2005, pp. 476–491.

[66] A. MacDonald, D. Russell, and B. Atchison, “Model-driven development

within a legacy system: an industry experience report,” in Software Engineering

Conference, 2005. Proceedings. 2005 Australian, 2005, pp. 14–22.

[67] A. Mattsson, B. Lundell, B. Lings, and B. Fitzgerald, “Experiences from

representing software architecture in a large industrial project using model

driven development,” in Proceedings of the Second Workshop on SHAring and

Reusing architectural Knowledge Architecture, Rationale, and Design Intent, 2007, p.

6.

[68] R. France and B. Rumpe, “Model-Driven Development of Complex Software:

A Research Roadmap,” Futur. Softw. Eng. 2007 ICSE., no. May 2007, pp. 37–54,

2007.

[69] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in

Practice, vol. 1, no. 1. 2012.

[70] OMG, “OMG MDA Guide rev. 2.0,” OMG Doc. ormsc, vol. 2.0, no. June, pp. 1–

15, 2014.

[71] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and J. G. Timothy, Eclipse

Modeling Framework: A Developer’s Guide. 2003.

107

[72] JMI, “Java Metadata Interface (JMI),” Sun Microsystems, Inc., 2002.

[73] M. P. Singh, “Ontology for commitments in multiagent systems: toward a

unification of normative concepts,” Artif. Intell. Law, vol. 7, no. 1, pp. 97–113,

1999.

[74] S. Cook, Domain-Specific modeling and model driven architecture. 2004.

[75] R. Paige, “Model-driven software development. By Thomas Stahl and Markus

Volter. Published by John Wiley & Sons, New York, 2006. ISBN: 0470025700,

444 pages. Price £33.99. Soft Cover,” Softw. Testing, Verif. Reliab., vol. 18, no. 4,

pp. 251–252, 2008.

[76] N. Debnath, M. C. Leonardi, M. V. Mauco, G. Montejano, and D. Riesco,

“Improving model driven architecture with requirements models,” Proc. - Int.

Conf. Inf. Technol. New Gener. ITNG 2008, pp. 21–26, 2008.

[77] Object Management Group, “Unified Modeling Language v2.5.1,” no.

December, 2017.

[78] S. J. Meller, MDA Distilled: Principles of Model-Driven Architecture. Addison-

Wesley, 2004.

[79] Object Management Group, “META OBJECT FACILITY SPECIFICATION

VERSION 2.5.1,” 2016. .

[80] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards

automated generation of smart contracts,” Proc. - IEEE 1st Int. Work. Found.

Appl. Self-Systems, FAS-W 2016, pp. 210–215, 2016.

[81] S. E. S. C. E. Ostrom, “A Grammar of Institutions Sue E . S . Crawford ; Elinor

Ostrom,” Polit. Sci., vol. 89, no. 3, pp. 582–600, 2007.

[82] D. Helbing and S. Balietti, “How to Do Agent-Based Simulations in the

Future : From Modeling Social Mechanisms to Emergent Phenomena and

Interactive Systems Design Why Develop and Use Agent-Based Models ?,”

Time, no. 11-6–24, pp. 1–55, 2011.

[83] H. V. Parunak, R. Savit, and R. L. Riolo, “Agent-based modeling vs. equation-

based modeling: A case study and users’ guide,” Proc. Multi-agent Syst. Agent-

based Simul., pp. 10–25, 1998.

[84] C. K. Frantz et al., “PRIMA 2013: Principles and Practice of Multi-Agent

Systems,” vol. 8291, no. December, 2013.

[85] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling,

“Untrusted Business Process Monitoring and Execution,” Int. Conf. Bus. Process

Manag., pp. 329–347, 2016.

108

[86] Object Management Group, “BPMN 2.0 specification,” 2011. [Online].

Available: https://www.omg.org/spec/BPMN/2.0/.

[87] I. Weber and G. Governatori, “Using Blockchain to Enable Untrusted Business

Process Monitoring and Execution,” no. June 2016, pp. 1–16.

[88] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart Contracts: A

Finite State Machine Based Approach,” 2017.

[89] Ethereum, “Solidity specification.” [Online]. Available:

http://solidity.readthedocs.io/en/v0.4.24/.

[90] J. Krogstie, “Quality of Conceptual Models in Model Driven Software

Engineering,” Concept. Model. Perspect., pp. 185–198, 2017.

[91] S. Brinkkemper, “Method engineering: Engineering of information systems

development methods and tools,” Inf. Softw. Technol., vol. 38, no. 4 SPEC. ISS.,

pp. 275–280, 1996.

[92] F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineering for

Information System Project Approaches, vol. 55, no. September. 1994.

[93] J. Ralyte, C. Rolland, J. Ralyté, and C. Rolland, “An assembly process model

for method engineering To cite this version : HAL Id : hal-00707078 An

assembly process model for method engineering,” 2012.

[94] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a Generic Model for

Situational Method Engineering Generic Process Model for Situational Method

Engineering,” Adv. Inf. Syst. Eng., pp. 95–110, 2003.

[95] M. Dumas and A. H. M. Hofstede, “UML Activity Diagrams as a Workflow

Specification Language,” Proc. 4th Int. Conf. Unified Model. Lang. Model. Lang.

Concepts, Tools, pp. 76–90, 2001.

[96] H. C. Purchase, L. Colpoys, D. Carrington, and M. McGill, “UML class

diagrams: an empirical study of comprehension,” vol. 9, no. December, pp.

149–178, 2003.

[97] I. van de Weerd and S. Brinkkemper, “Meta-Modeling for Situational Analysis

and Design Methods,” Handb. Res. Mod. Syst. Anal. Des. Technol. Appl., pp. 35–

54, 2008.

[98] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A Roadmap,

IEEE,” Foundations, vol. 1, pp. 35–46.

[99] D. Hutchison and J. C. Mitchell, Dependability Metrics Advanced Lectures. 1973.

[100] V. R. Basili, “Applying the Goal/Question/Metric paradigm in the experience

factory,” Softw. Qual. Assur. Meas. A Worldw. Perspect., vol. 7, no. 4, pp. 21–44,

1993.

109

[101] V. R. Basili, G. Caldiera, and D. Rombach, “The goal question metric

approach,” Encycl. Softw. Eng., vol. 1, 1994.

[102] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering, vol. 9783642290. 2012.

[103] J. C. Campbell, D. T.; Stanley, “Experimental and Quasi-Experimental Designs

for Research,” Handb. Res. teaching., pp. 1–71, 1963.

[104] N. A. Giannatasio, “Threats to validity of research designs,” Handb. Res.

methods public Adm., pp. 145–165, 1998.

[105] E. Babbie, The Practice of Social Research. Wadsworth Cengage Learning, 2013.

[106] K. M. Ting, “Precision and Recall BT - Encyclopedia of Machine Learning,” C.

Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, p. 781.

[107] N. Golofshani, “Understanding reliability and validity in qualitative research,”

Qual. Rep., vol. 8, no. 4, pp. 597–607, 2003.

[108] M. Q. Patton, “Enhancing the quality and credibility of qualitative analysis.,”

Health Serv. Res., vol. 34, no. 5 Pt 2, pp. 1189–208, 1999.

[109] M. Bashir, M. T. Afzal, and M. Azeem, “Reliability and Validity of Qualitative

and Operational Research Paradigm,” Pakistan J. Stat. Oper. Res., vol. 4, no. 1, p.

35, 2008.

110

Appendices

A. PDD of the Model-Driven Smart Contract Development Method

1

Gather domain knowledge

Evaluate CIM

Create CIM

Define attribute

Define aim

Determine the deontic operator

Define condition

Define or else

Combine to ADICO statement

Add to set of statements

[set complete]

Evaluate correctness of statements

[else]

Check for contradictory statements

Evaluate completeness of set

[else]

[correct, non-contradictory, and complete]

AIM

DEONTIC OPERATOR

CONDITION

OR ELSE COMPONENT

ADICO STATEMENT

SET OF ADICO STATEMENTS

ATTRIBUTE

0..1 1

1

1

1

1

1

1

1

1

1..*

Define set of attributes SET OF ATTRIBUTES

1..*

1

FIGURE 29: PDD TOTAL METHOD PART 1

Continued on the next page.

111

Create Finite State Machine Model

Define set of states

Define initial state

Define set of transitions

Define name of the FSM NAME

SET OF STATES

INITIAL STATE

SET OF TRANSITIONS

Define final state FINAL STATE

FSM MODEL

1

1

1 1

1

1

Evaluate the Finite State Machine Model

Evaluate correctness

Evaluate completeness

Create contract variables

Identify variable

Define variable name

Define variable type

CONTRACT VARIABLE

Name

Type

[all variables defined]

[else]

FIGURE 30: PDD TOTAL METHOD PART 2

Continued on the next page.

112

Identify transition attributes

Identify name of the transition

Identify guard conditions of the transition

Identify input variables of the transition

Identify statements of the transition

Identify output of the transition

Identify previous state

Identify next state

TRANSITION

Name

Guard condtion

Input variable(s)

Statement(s)

Output var iable(s)

Previous state

Next state

Add to set of updated Transitions SET OF TRANSITION ATTRIBUTES

SET OF TRANSITIONS

[all transitions updated]

[else]

UPDATED PIM

Name

Set of states

Initial state

Set of transtions

Set of transtion attributes

Contract variables

Transformation to PSM SOLIDITY SMART CONTRACT

FIGURE 31: PDD TOTAL METHOD PART 3

113

B. Finite State Machine Model Lease Contract

114

C. Property Lease Smart Contract

pragma solidity ^0.4.0;

contract PropertyLease {

 //StatesDefinition

 enum States {Created, PropertyAssessed, Paid, AwaitingPay, Conflict,

PaidExtended, AwaitingPayExtended, ConflictExtended, FinalToBePaid,

LeaseEnd, LeaseClosed, Finished}

 States public state = States.Created;

 //VariablesDefinition

 uint public securityDeposit;

 uint public rent;

 uint public fine;

 uint public deposit;

 uint monthCounter;

 uint rentCounter;

 uint creationTime;

 bool private payDepositTrue;

 bool private notice;

 bool assess;

 address public landlord;

 address public tenant;

 address public propertymanager;

 // Locking

 bool private locked = false ;

 modifier locking {

 require (! locked);

 locked = true ;

 _;

 locked = false ;

 }

 // Transition counter

 uint private transitionCounter = 0;

 modifier transitionCounting (uint nextTransitionNumber) {

 require (nextTransitionNumber == transitionCounter);

 transitionCounter += 1;

 _;

 }

115

 // Timed transtion

 modifier timedTransitions {

 if ((state == States.Paid) && (now >= rentCounter + 30 days))

 {state = States.AwaitingPay;}

 if ((state == States.AwaitingPay) && (now >= rentCounter + 35

days))

 {state = States.Conflict;}

 if ((state == States.PaidExtended) && (now >= rentCounter + 30

days))

 {state = States.AwaitingPayExtended;}

 if ((state == States.AwaitingPayExtended) && (now >= rentCounter

+ 35 days))

 {state = States.ConflictExtended;}

 _;

 }

 //Constructor function

 function PropertyLease(uint inputRent, uint inputFine) public {

 landlord = msg.sender;

 rent = inputRent;

 fine = inputFine;

 creationTime = now;

 securityDeposit = 2 * inputRent;

 }

 function Assess (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Created);

 // Statements

 state == States.PropertyAssessed;

 }

 function PayDeposit (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.PropertyAssessed);

 // Statements

 state == States.Paid;

 }

 function RentDue (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.Paid);

 // Statements

 state == States.AwaitingPay;

 }

 function RentDueExtended (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.PaidExtended);

 // Statements

116

 state == States.AwaitingPayExtended; }

 function PayRent (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.AwaitingPay);

 // Statements

 state == States.Paid;

 }

 function PayRentExtended (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.AwaitingPayExtended);

 // Statements

 state == States.PaidExtended;

 }

 function PayRentFinal (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.FinalToBePaid);

 // Statements

 state == States.LeaseEnd;

 }

 function RentLate (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.AwaitingPay);

 // Statements

 state == States.Conflict;

 }

 function RentLateExtended (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.AwaitingPayExtended);

 // Statements

 state == States.ConflictExtended;

 }

 function PayLate (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Conflict);

 // Statements

 state == States.Paid;

 }

 function PayLateExtended (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Conflict);

 // Statements

 state == States.Paid;

 }

117

 function PayLateFinal (uint nextTransitionNumber) payable

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.ConflictExtended);

 require (notice == true);

 // Statements

 state == States.Paid;

 }

 function TerminateContract (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.Conflict);

 // Statements

 state == States.Finished;

 }

 function TerminateContractExtended (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 timedTransitions

 { require (state == States.ConflictExtended);

 // Statements

 state == States.Finished;

 }

 function Extend (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Paid);

 // Statements

 state == States.PaidExtended;

 }

 function EarlyTerminate (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Paid);

 // Statements

 state == States.FinalToBePaid;

 }

 function EndLease (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.Paid);

 // Statements

 state == States.LeaseEnd;

 }

 function GiveNotice (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.AwaitingPayExtended);

 // Statements

 state == States.FinalToBePaid;

 }

118

 function ReturnDeposit (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.LeaseEnd);

 require (assess = true);

 // Statements

 state == States.Finished;

 }

 function DepositRetract (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.LeaseEnd);

 require (assess = false);

 // Statements

 state == States.Finished;

 }

 function ReturnDepositLate (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.LeaseClosed);

 require (assess = true);

 // Statements

 state == States.Finished;

 }

 function DepositRetractLate (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.LeaseClosed);

 require (assess = false);

 // Statements

 state == States.Finished;

 }

 function EndLeaseFinal (uint nextTransitionNumber)

 locking

 transitionCounting (nextTransitionNumber)

 { require (state == States.LeaseEnd);

 // Statements

 state == States.Finished;

 }

}

119

D. Experimental Materials

i. Information Sheets without the CIM

Cover sheet A

Thank you for participating in this experiment. Before we start, please make sure you have the

following materials in front of you:

- Sheet 1: Cover sheet

- Sheet 2: Introduction to Finite State Machines

- Sheet 3: Description of the lease contract

- Sheet 4: Finite State Machine of the lease contract

- Sheet 5: Fill in the blanks

- A sheet or laptop to write down your answers

- Scenario 1

- Scenario 2

Please read the introduction to Finite State Machines modeling first (Sheet 2). When you are done,

read the description of the case (Sheet 3. Then have a look at the lease contract model (Sheet 4).

Task 1: The task is described on sheet 5, try to fill in the blanks using sheet 1 – 4 as information

sources.

TASK 2: Have a look at the model named Scenario 1. In this version of the lease contract model, a

scenario is highlighted by a red line. If a transition is used more than once, the red number shows

how many times it was used. Use the finite state machine model description and the description of

the case. Try to explain in your own words what the steps of the scenario are. Aim to be as complete

as you can be, meaning that you try to describe every state and transition in as much detail as you

can. When you are done with scenario 1, do the same for scenario 2.

120

Introduction to finite state machines

In this experiment, you are going to analyse a finite state machine (FSM) model. This type of model is

used to represent the behaviour of a system. FSMs show that, at any moment, a system is in a

particular state. In such state, the system responds to certain stimuli or input, which lead to a change

of the state. This change of state is called a transition.

Depending on what stimulus or input the system gets, different transitions are followed (triggered),

leading to different states. An FSM begins in an initial state, and the state evolves following the

transitions that start from that state, depending on the stimulus/input. To make this concept clearer,

FSMs are represented graphically, as shown in the following Figure.

InitialState AwaitingResultBet

Win

Win
[bet = right]

Lose

Lose
[bet = wrong]

Finished

NoPayout

Payout

A simple betting system is modelled. A circle stands for a state of the system. The arrows between the

circles stand for transitions between the states. All the states and transitions have names, written in

text.

The system starts in the initial state. A user makes a bet, transitioning the system to the state

‘AwaitingResult’. The system will stay in this state until the result of the bet is in. After this, there are

two options, either the user was right and wins the bet, or the user was wrong and loses the bet. Being

wrong or right is a condition, which are written between [brackets] under the transition name.

Conditions need to hold in order to enable a transition. Depending on what condition holds the system

changes to a certain condition. In this case being right leads to the state ‘Win’ and consequently to

the transition Payout, after which the system reaches the state ‘Finished’, the final state. Not all

transitions have conditions; for instance, the bet transition is activated by the users’ input.

So a model has at least an initial state, a final state, and a transition between these states. Circles are

states, arrows are transitions between states, and conditions for transitions are shown between

brackets under the transition name.

State

 Transition
 [condition]

121

Description of the contract

Have a look at the lease contract model. This represents an agreement between a landlord and a

tenant through a smart contract. Instead of using a paper contract, the agreement is made

electronically and by doing so, becomes a smart contract. Therefore, it can be modelled as a finite

state machine. The situation is as follows:

First, the landlord launches the contract, after which the tenant pays a security deposit which

corresponds to two months of rent. This security deposit is a safeguard against (i) possible damages

to the property and (ii) the tenant not adhering to the terms of the agreement. The landlord and the

tenant agree on an initial rental period of one year, with an option to extend the contract

afterwards. If the tenant wants to terminate the agreement early, he/she loses his/her security

deposit. After the initial period is over, if the lease renewal option is used, the agreement can be

terminated each month. In this extended renting period, the tenant shall give a one-month notice if

he wants to end the lease.

The rent is due every 30 days. The tenant has five days to pay the rent. After five days, the tenant

gets a fine for his negligence. He then has another five days to pay the rent and the fine. If he does

not pay this rent and fine after ten days of the original rent due date, the landlord has the right to

terminate the agreement, and the tenant will not receive his security deposit back. In every other

scenario, the rent can be late, but it has to be paid within a period of time with a fine, or else the

landlord has the same rights.

122

Fill in the blanks

In this test, the materials you have in front of you are described through a number of statements.

Some words in the statements have been blanked out. Using the materials, try to fill in the blanks.

A finite state machine models the behavior of a system by showing transitions between (1) _______.

Some transitions have a (2) ___________ which needs to be fulfilled in order for the transition to

happen, this is shown between brackets in the FSM. The FSM lease contract is a contract between

two parties, namely the Landlord and the (3) _________. The first transition that can happen is the

transition from the initial state ‘Created’ to the state () _________. This happens through the

transition (5) ________, which is activated by the Tenant, who pays the (6) ___________. The final

state of the FSM lease contract is the state (7) __________.

123

ii. Models without the CIM

124

125

126

iii. Information Sheets with the CIM

Cover sheet B

Thank you for participating in this experiment. Before we start, please make sure you have the

following materials in front of you:

- Sheet 1: Cover sheet

- Sheet 2: Introduction to Finite State Machines

- Sheet 3: Description of the lease contract

- Sheet 4: Finite State Machine of the lease contract

- Sheet 5: ADICO statements of the lease contract

- Sheet 6: Fill in the blanks

- A sheet or laptop to write down your answers

- Scenario 1

- Scenario 2

Please read the introduction to Finite State Machines modeling first (Sheet 2). When you are done,

read the description of the case (Sheet 3. Then have a look at the lease contract model (Sheet 4) and

the ADICO statements (sheet 5).

Task 1: The task is described on sheet 6, try to fill in the blanks using sheet 1 – 5 as information

sources.

TASK 2: Have a look at the model named Scenario 1. In this version of the lease contract model, a

scenario is highlighted by a red line. If a transition is used more than once, the red number shows

how many times it was used. Use the finite state machine model description, the description of the

case and the ADICO statements. Try to explain in your own words what the steps of the scenario are.

Aim to be as complete as you can be, meaning that you try to describe every state and transition in

as much detail as you can. When you are done with scenario 1, do the same for scenario 2.

127

Fill in the blanks

In this test, the materials you have in front of you are described through a number of statements.

Some words in the statements have been blanked out. Using the materials, try to fill in the blanks.

A finite state machine models the behavior of a system by showing transitions between (1) _______.

Some transitions have a (2) ___________ which needs to be fulfilled in order for the transition to

happen, this is shown between brackets in the FSM. The FSM lease contract is a contract between

two parties, namely the Landlord and the (3) _________. The first transition that can happen is the

transition from the initial state ‘Created’ to the state () _________. This happens through the

transition (5) ________, which is activated by the Tenant, who pays the (6) ___________. The final

state of the FSM lease contract is the state (7) __________.

The components of an ADICO statement are an attribute, a deontic, an aim, a (8) _________, and an

or else. The ADICO statements and the (9) ________ are connected, because the transitions are

numbered (shown between parentheses), which relate to the numbers shown in the ADICO

statement table.

128

iv. Models with the CIM

129

130

131

132

E. Control Sheets Experiment

Scenario 1:

The landlord (1) has created (2) the contract (3).

The tenant (4) pays (5) security deposit (6) to get to the state paid (7).

The system (8) transitions through transition rentDue (9) to the state Awaitingpay

(10) after 30 days (11).

The tenant (12) pays (13) the rent (14) on time (15) to get to the state paid (16). This

happens 12 times/ one year (17).

The Landlord (18) extends (19) after 12 months have passed (20) to get to the state

PaidExtended (21).

The system (22) transitions through transition rentDue (23) to the state AwaitingPay

(24) after 30 days (25).

The tenant (26) pays (27) the rent (28) on time (29) to get to the state paid (30). This

happens 3 times (31).

The tenant (32) gives notice (33) to get to the state finaltobepaid (34).

The tenant (35) pays (36) the rent (37) for the final time to get to the state leaseend

(38) .

The landlord (39) returns (40) the deposit (41) to finish the contract (42).

Yellow = Actor, Green = Action, Blue = Construct, Purple = Consequence, Red =

Condition

133

Scenario 2:

The landlord (1) has created (2) the contract (3).

The tenant (4) pays (5) a security deposit (6) to get to the state paid (7).

The system (8) transitions through transition rentDue (9) to the state Awaitingpay

(10) after 30 days (11).

The tenant (12) pays (13) the rent (14) on time (15) to get to the state paid (16). This

happens twice (17).

The tenant (18) has not paid within five days (19), so the system (20) transitions

through rentLate (21) to the state conflict (22).

The tenant (23) pays (24) the rent and a fine (25) to get to the state paid (26).

The tenant (27) makes the transition earlyterminate (28) with the contract being

younger than 12 months (29) to get to the state finaltobepaid (30).

The tenant (31) fails to pay (32) within five days (33), so the system (34) transitions

through RentLate (35) to get to the state ConflictExtended (36).

 The Landlord (37) terminates (38) the contract (39) without returning the security

deposit (40) to get to the state finished/ to finalize the contract (41).

Yellow = Actor, Green = Action, Blue = Construct, Purple = Consequence, Red =

Condition

134

F. SPSS Output of the Analyses

i. Data output prior knowledge

T-test

135

ii. Data output scenario 1

T-test

136

iii. Data output scenario 2

T-test

137

iv. Data output efficiency

T-test

Correlation test

