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Abstract

The discovery of graphene has drawn a lot of attention to a new phase of condensed matter
systems, Dirac/Weyl semimetals. In these materials, electrons have a linear dispersion relation,
making them a solid-state analogue of relativistic massless particles. Dirac/Weyl materials
in three dimensions are found to be more stable than their 2D counterparts, e.g. graphene.
In this research 1 focus on the role of Coulomb interactions between electrons within these
systems. Using renormalisation group and mean filed theory approaches we investigate how the
interaction influences the system parameters’ flow and breaks the symmetry spontaneously to
create a mass gap.
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Chapter 1

Introduction

Electronic properties of many crystalline solids are successfully captured in their band struc-
tures, the bands of available energy states for electrons in materials, for example, the band
structure that is shown in Fig.1.1. The horizontal axis is labelled momentum states of electrons
and curves depict possible energies for each of the momenta. Band structures are derived by
assuming that electrons are noninteracting and living in a clean crystal. At zero temperature,
the states are filled up to the Fermi energy, e whose location determines electrical properties of
materials. The highest filled band is called valence band and the lowest unfilled band is called
conduction band. The Fermi energy of conductors sits within the band while in insulator it is
in between bands, there is a gap between the valence and conduction band of an insulator. The
density of states at the the Fermi level of an insulator is vanishing, while that of a conductor is
not. [1] [2] Semimetal is a state with properties sitting between a conductor and an insulator.
While there is no gap between conduction and valence bands, like in a conductor, the density of
states at the Fermi level is vanishing like in an insulator. After the discovery of graphene, the
most prominent member of the family, in 2004, Weyl/Dirac Semimetallic materials have been
gaining tremendous attention due to their intriguing electric properties and the large potential
for applications.[3] [4] More generally, Weyl materials are a group of crystalline solids that have
so-called Weyl points in their band structure. A Weyl point is a point in momentum space
where the conduction and valence bands touch and around which quasi-particle excitations are
massless fermions with linear energy dispersion. The electronic behaviours of these materials
are effectively captured by the Weyl Hamiltonian,

H =vpp-d. (1.1)

Here, vp is the speed of the excitations in materials known as the Fermi velocity and p'is their
momentum, while & is the vector of Pauli matrices given by

N (O I Cli B (R 0

Weyl materials are semimetal because there is no energy gap between the conduction and valence
bands and the density of state at the Fermi level vanishes. While many interesting properties are
attributed to the semimetallic feature, driving the system to the different phases brings about
many more possible novel applications. For instance, by gapping the Weyl node, it is possible
to manipulate the valley degree of freedom for information storage and processing. This leads
to the concept of valleytronics, in analogy with the conventional spintronics. [5]
In two dimensional materials, the effective Hamiltonian around the Weyl points can be
written as
H = vp(ps0” + pyo?). (1.3)
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Figure 1.1: Band structure of crystal

The loss of one dimension makes them much more easy to be gapped. By simply adding the
mass term , mv%az , into their Hamiltonian, the Weyl node is removed, a gap is opened in their
spectrum, and they are driven from semimetal to the insulating phase.
In contrast, the three-dimension Weyl semimetal is more robust. The effective Hamiltonian
is given by
H = vp(py0” + pyo? + p.o®). (1.4)

Since the Hamiltonian consists of all three Pauli matrices, addding ﬁiv%w&’ into it does not remove
the Weyl node to open the mass gap but merely shifts its location in momentum space. Three
dimensional Weyl points are protected by topology [5]. In order to gap the three dimension
Weyl node, two Weyl cone must be coupled in such a way that effective Hamiltonian of two
Weyl cones becomes .

H =vpp- B, (1.5)

—

> 0. . . . . o
where 5 = <C(; _&,) is composed of the Pauli matrices with the opposite chiralities. The mass

. . 0 1
term is simply vaQJ B9, where 8° here is ( 2x2
loxa O

realistic models with disorder and/or interactions, for example. In this thesis, we aim to study
the role of Coulomb interaction in 2D and 3D Weyl systems. It is found that weak Coulomb
interaction renormalises parameters of the system while strong coupling is able to remove Weyl
points and open mass gaps spontaneously. The effects of electron-electron interaections in 2D
Weyl materials are investigated in chapter 2, In chapter 3, the same methods will be applied to
discuss interactions in 3D Weyl systems.

) . This mass term might be created in more



Chapter 2

2D Dirac/Weyl Semimetals

In this chapter, we are going to explore the possibility to drive the two-dimensional Weyl
semimetal into the insulating phase due to Coulomb interaction among electrons in the system.
We first review the electronic properties and the emergence of the Weyl Hamiltonian in a sheet of
graphene. Then we look for the field theory of free Weyl electrons and the Coulomb interaction
among them. Finally, we implement field theoretical methods including perturbation theory,
renormalisation group theory and Schwinger-Dyson Equation to study the phase transition in
2D semimetal.

2.1 Electronic properties of graphene

Graphene is a two dimensional honeycomb lattice of carbon atoms. It is spanned by two lattice
generators forming two triangular sublattices A and B as shown in Figure 2.1. When arranged in
the hexagonal lattice of a graphene sheet, most of the electrons are tightly bound to the carbon
atom except an electron in p® orbital. The p? electrons can hop between nearest neighbour sites,
and they are responsible for the electronic properties of graphene. The electronic properties of
graphene are efficiently captured in the tight binding model [6] [17],

H=—tY" al bja+hc (2.1)
(i)

where a;, and b; , are fermionic operators with spin « for sublattice A and B, respectively.
Making use of

1 ik
al = NZCLZ@ thas (2.2)
k

1 .
a; = N;akemi (23)

and the equivalent equations for fermionic operators of sublattice B, we can Fourier transform
the tight binding Hamiltonian to get

t
H = - Nzﬁbkal,abkwrh-& (2.4)
k.«
1 - 0 —téry (O,
- NkZ(ak,a bk,a)(—tqs; o) bk,z (2.5)
,Q
1 T, 0 -t
= qu’k»a(ftqsz 0" ) W (2.6)
k,a
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where ¢ = ZS’ 16 , N is the number of lattice site, and p; = ay , p2 = \égam 59, and
p3 = —?a:& — 9 are nearest neighbour vectors. Diagonalising the Block Hamiltonian (2.6) we
get the spectrum of graphene B

E(k) = £+ |tox] (2.7)

which is plotted in Figure 2.2. Graphene in it pristine state has one electron per unit cell, hence
the Fermi energy is zero. The Fermi burface in a clean graphene is defined by two nonequivalent
points in Brillouin zone, K = 33‘/%(1 # and K’ = —K, where the bands touch. [6] [17] In the low
energy regime, the properties of the system are governed by the excitations around the Fermi
surface. If we expand around K

3
brip = 3 elFHA (2.8)

=1
3 Aﬂﬁ

~ YAt i) (2:9)
=1
3 .

= §a(lpy—px), (2.10)

the tight binding Hamiltonian in momentum space effectively becomes the Weyl Hamiltonian

"= %Z Victpol gat(iz?y-l-m) %at(?yim VUKt (2.11)
pa
- % Z \IIK—i-p,OcUF( ipy?I—pz 7ip%+pz )\IIK‘*‘P@ (2.12)
pa
= N Z \I/K-i-p,oﬂ)F (py( i 0 ) +p:c< )) VK ipo (2'13)
pa
= % > Upavrp -7 Uy (2.14)
pa

with a linear dispersion relation
7 3 2 2 3 41z s
E(K +p)= :l:iam /D2 +ps = :tiat P | = +vp [P | (2.15)

where vp ~ 109m/s is called Fermi velocity [6]. This is true also around the point K’. There
are two Weyl points in graphene’s band structure, both at K and K’ .

Later we are going to apply field theoretical techniques such as perturbation theory, renor-
malisation group analysis and mean field theory to study the phase transition. In the continuum
limit, the Hamiltonian becomes

Az% di

T f)Q‘il(ﬁ)vFﬁ- & U (p) (2.16)

H:

For technical convenience we change into path integral language. In term of coherent states,
the partition function at zero temperature is given by equation (2.17) [7]

Zy = / DI DYe 50l (2.17)
where the free action
AT dp d
o[, U] = /dT/ "I G (L s opp 5) U7 (2.18)
[ ] mzo (27T)2 d’i’
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Figure 2.1: Honeycomb lattice of graphene (adapted from [6])

E(k) = £t |¢k| (eV)
A

r M K T 1

Figure 2.2: Energy spectrum of graphene (adapted from [6])

is written in Euclidean space-time after Wick rotation and results straightforwardly from the
above continuum Hamiltonian. After performing Fourier transformations

_ dw - .

VG = / W5 (5 w)er (2.19)
2
d .

V() = / & g (5 w)e o (2.20)
2

the free action becomes
B 0 duw Az% do - . . L .
So[¥, V] :/ — p2 (P, w)(—iwl + vpp'- &) V(p,w) (2.21)
— 00 2 |]7|:0 (27T)

from which the Green function which is the main ingredient for field theoretical analysis can be



CHAPTER 2. 2D DIRAC/WEYL SEMIMETALS 10

read off easily and is given by

Go(F, Gw,m) = (W(F,w)¥(q,n)) 2.22)
= 2m)%6(F—q)d( —n)('—zwl—l-vp &)t 2.23
— @n)s(F— )5 n)f:;’l;];’fﬁ; (2.24)
= (27)%6(7 = 7 )d(w — n)Go(p,w) (2:25)

which is true for translationally invariant systems. [8] [11]

2.2 Coulomb interaction

To study the effect of the Coulomb interaction by field theoretical methods, we need to know the
Coulomb interaction action. Starting from the electron-electron Coulomb interaction Hamilto-
nian in the second quantisation formalism it is given by [§]

mt /d’l“l/d’l"z\lf 7“1 TQ)VC(’I"l —7“2)\11(772)\1/(_’1). (2.26)
, Consequently, the action of Coulomb interaction in coordinate space can be written as
Simt = /dT/drl /drglll P )T (P, TWVer(Fy — 7) U (R, TR 7)) (2.27)

where Vo (7) = L\ﬂ is Coulomb potential of which the Fourier tranform reads

4re
Ve(q) = /dT Vo (7)e'T (2.28)
2

= dr/ rd9 ezqrcos(g)
47‘(‘6
e2 :

- = da/ drezqrcos(@)
4dme Jo _
62 T

= 1< ; dO2mé(qeos(0))
27re?

= . 2.2
4re |7 | (2.29)

The positive divergence of the zero mode (|¢] = 0) is compensated by the negative divergence
contributions from positive charges background [9], hence Coulomb potential in a momentum
space is defined by

0 ; q7=0
Vol(q) = {4%'6;' ; otherwise. (2.30)
Performing the Fourier transformation
I (= 1 S T (e i TwT
B r) = (ZW)Q/d B (j,w)e P (2.31)
- 1 S (A DT —iwT
V) = / 45 U (F, )7 (2.32)
1 L
F) = dq wr 2.
Velr) = s [ diVelde (233



CHAPTER 2. 2D DIRAC/WEYL SEMIMETALS 11

on the above interacting action , one gets the Coulomb interaction action in Fourier space

written as
_ 1e? & (o= du, (A dp [N 47 on
SV, W] = 24H/ 2 / 2 2/ 21)2 |7 |
i1 Jwim—oo 2T Jii=0 (27)? Jig=0 (27) |7 |
(1, w1 ) U (o, wa) ¥ (s, ws) W (P, wa) (27)%6 (D1 — Pa — @)
(2m)%6(p2 — Ps + @) (2m)6 (w1 + w2 — w3 — wy) (2.34)

In the following we will discuss effects of Coulomb interaction in two limits, weak and strong.

2.3 Renormalisation group analysis

2.3.1 First order pertubative approximation

In this section, we study the effects of Coulomb interaction in 2D Weyl semimetal by the
renormalisation group analysis. We start with lowest order perturbation theory, the simplest
and crudest approximation, of the interaction. The better approximation will be explored in
the next subsection. The object we are looking at in the renormalisation group analysis, is
the partition function of the system. At zero temperature, the low-energy effective partition
function of graphene with electron-electron Coulomb interaction is given by

= / DU DWeS0l¥¥]=Sine[¥,V] (2.35)
where )

Sol¥ \I/]—/dt/ T G0 o) () (2.36)

- 12 & pwi=oe dw; (A dp; A dqg 27

S0, 9] = H/ / pQ/ g 2n

24me 0 Juim—oo 2T Jigy1=0 (27)? Jjg=0 (27)* |7 |

T (P, w1) (Do, wa) U (P, ws) U (P, wa) (27)*5(F1 — Pa — §)

(27T)2(5(ﬁg — p3 + @(27r)5(w1 + Wwo — w3 — (,U4) (2.37)

The Renormalisation group analysis consists of the following three steps [8]

1. Coarse-Graining and integrating out of high energy modes: The coarse-graining
of the partition function is to separate the fermionic fields of momenta greater than new cut-off
% where b > 1 from the lesser ones, i.e.,

s U (Fw)  E<|pl<A
\Ij(p’w)_{\il<(ﬁ,w) ; O<\ﬁ|<% (2.38)

and

Lo UL (Piw) %<‘ﬁ1<A
LR R Pt I (2:59)

The greater (V- (7, w), ¥~ (7, w)) and lesser fermionic fields (¥~ (p,w), ¥ (p,w)) in the free part
of the action are decoupled, i.e.,

SolW, U] = So[T~, Us] + So[Fe, U] (2.40)
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where
_ ® dw (A dp -
SolTs, o] = / T (7, 0) (it + v 7) U (F.0) (2.41)
> > —00 2 |ﬁ|:A (27‘1’)2 > >
A
* dw [ ap - . Lo o
st v = [0 [ S G (it vrp ) Uefw) (2.42)
—oco 4T |13‘|70( 7T)

,whereas, in the interacting part, they are not, i.e.,

I 0 1e2 o (9= du; ([N d7 2w
Sin[Ve, Ve, U, W] = oo o / (2m)2q |
j=1 Y Wi=—00 |q1=0 q
A
vooodpy <=, A di -
/I”ilzo (27)2 <(Pz,w1)+/|ﬁi|:/; e > (Pi, wi)

dpi o . Adp
U (pi, wi oo Vs (Dis wi

(27)%6(pr — Pa — §)(2m)?0 (2 — s + (7)
( (2.43)

N
2
2
&
+
£
no
!
£
w
!
€
&

The partition function then becomes
7 = /D\TJ<D\II<GSO[\I’<’\II<] /D\TJ>D\II>GSO[\I"\P]GSi”t[\p<’\1}<’\ll>’qj>]
_ /D\I,<D\I;<e—50[‘ff<7‘1’<]zo> <e—5mt[‘I’<7‘I’<,‘T’7>‘1’>]>
/D\I’<D‘1/<6_SO[\II<’\I]<]6<M(ESint[\y<,q]<7q]>&>])>>

/D@<D\I,<eso[‘1’<:‘1’<]e<sint> +5((S51) o~ (Sint)2)+0(SF,, (2.44)

>

Consider the first order perturbation of the partition function in the equation (3.21). Expand
equation (3.20) and apply Wick’s theorem to find the correlation function with respect to the
greater degrees of freedom, the only non-vanishing contributions is given by equation (3.22)

(Sint[ V<, U, U, U ]) = (Sint)s 1 + (Sint)s o (2.45)
where
1 e2 & [wimoe dw; 0 dp; Adg 271' -
Sint)oy = 2 / / / (1, w1)
= 2471—6@-1;[1 Wi=—00 27 |Pi|=0 (27T)2 |q1=0 ( ) ’q ‘
U (P, w2) W < (73, w3) ¥ < (s, wa) (27) 26 (51 — Pa — §)
(27‘1’)25(}72 — p3 + @(27‘(’)(5(0)1 + Wy — w3 — W4) (2.46)
and
1e? & (o= dqu, (% dp; [N df om -
Sin - a4 T\Il p: 9
Sint) .2 2uﬂwm%4@wM@qu“W”
(2m)35(p5 — 1) (w3 — w1)Gos (B3, w3) W < (P, wa) (27) 26 (51 — Pa — )
(2m)?6(P2 — P + @) (2m)6 (w1 + wa — w3 — wy) (2.47)
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2. Rescaling: The free action in equation (3.19) and (Sin)., ; are similar to the original
free action of equation (3.1) and Coulomb interaction action, except that the upper cutoff has
decreased to %. Restoring the cutoff to its original value by rescaling

i = bp

w = bw
\Tf/(ﬁ/, w/) — b_2‘i/<(ﬁ, w) (2'48)
V(W) = bV (Fw)

and dropping all primes, the transformed action then becomes identical to the original one.
3. Renormalisation:

Now, consider (Sint)< 5 ;

o>

‘ . }7 = dw; dp; 2
(Sint)>2 = 23 eH/l /wo(z) /a_()( e 7] < Pen)

=1

47
( m)20(ps — p1)6 (ws — w1)Gos (F3, ws) V< (P, wa) (2m) 26 (F1 — Pia — §)
) 5(ﬁ 3+®(2F) (w1 + w2 — w3 — wa) (2.49)

4 A
=oo dw,/ dp; /b g o -
= 4 (p27002)
1;[ - =0 2m)2 Jig=o 2m)2 |7] ©

iws +vps - C

~.

4 0 dq 27T—
2 —

(2m)°8(ps — 71)d(ws — wi) —"— =5 W (Fh, wa) (20) 0 (P — s — @)
w3 + v [p3 |
(27T)25(172 - ﬁs +q)(2m)0 (w1 + w2 — w3 — w4 (2.50)
w3=00 du.)g dp3 w4=00 dw4 dp4 o’r B
= el — 7l U (P, wa)
47r6 wz=—00 J |p3|= A wy=—00 J |[p4|=0 27T |p3 _p4 ‘
w3 + v o
% U (P4, wa) (2.51)

w3 + 02| |

oQme?  [waToo dw4 dpy = wg=o0  rA dws dps3 1
= 4 2 2 \IJ<(p4,W4) T 5 3= =
7€ Juy=—oo Jipsj=0 27 (27) ws=—oc0 J|a|=2 2T (2m)* D3 — Py |

iws +vps -0

BT T (5, wa 2.52
L) 25)
Qe? [T dwy dpy - . .
= / = p4 k4 <(P1, wa) 2V (B, 1) O (B4, wa) (2.53)
dre J——oo |71]=0 27T

where (54, wy) is defined by

p4 w4 w3=00 / dwg dp3 1 iw?} + Uﬁg -0 (2 54)
’ W3=—00 p?s‘_A 27T 27T ‘p?’ - p4 | OJ3 U2 ’ﬁg |2
Since w=00
/ % =0, (2.55)
w=—00 w? + v? |p3 |
we get
ws=eo (A g dp: 1 p3 - 0
(1) (= _ I VED3 "9
by (p4,¢d4) == / /; A o1 (27_‘_)2 ‘—» = | 2 212 |2 (256)
ws=—oo Jps|=2 P3— D1 | w3 + 02 |ps |

The form of the integrand in (3.31) suggests that (1 (54, wy) can be written as (D (5y, wy) =
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Yopa - @, and
U g asM
Y, = —— Tr(py - XY (P, wa)) (2.57)
2 |pal
‘”3200/ dws dps 1 1 vrTr((py - &) (Ps - 7)) (2.58)
wi—oo Jimi=4 27 @m2 2| 1B —Fa | wd + 02 s |
“)3:00/ dwg dpy 1 1 wpTe((p5 - pa)l + i(p3 X py) - &) (2.59)
wz=—00 J |ps|=2 2m (2m)? 2 |p4\2 |P3 — P w3 + v? [pP3 |
wg=00 / dws dpy 1 1 20ppP3 - P4 (2.60)
wz=—00 J [ps|=4 2 (2m)? 2\p4\2|p3—p4|w3 v? |ps \2
A w3z=00
d 3= 1
- / a9 5l s vre 1y 2] o0 )/ duog = (2.61)
o=0  Jimi=2 0 |’ Py — Pl Jugm—eo  wd+ 02 |P5 |
Making use of the formula
W= 1
/ dw = (2.62)
w=oo W2+ VZ|F|° v [Pl
we obtain
T A = ==
d 0
ps\—— (W) |Pal” [P35 — pa| - v [Pl
=4 (2 o o o I ’
o=0 Jimi=g (2) |p4|¢|p3|2+|p4|2—2|p31|p4|cos<9>
- / d0/ 195 ] dps m cos(6) (2.65)
(2m)3 '
6=0 - .
7sl= 1Bl | |\/ + 1, — 2 cos(6)
" A dps mcos(6) [P |7
_ / a0 ST [ 4 P (0 + O( AL (2.66)
0=0 Jips=2 (2m)%  |pul |73 D3]
A 2 > |2
dp3 s 1 ’p4|
/|*3|2 (2m)% 2 [ps| -~ |l
1 A
~ — (In(A) —In(=) ). 2.68
o () - m(3)) (2.68)

We can summarise this in

AN 27 [“4=% % dwy diy - I
In(A) —In(~-) / / S th g V< (P, wa) (P4 - 7))V < (P, wa).
b’') Ame Ju——oo Jip=0 2m (2m)2
(2.69)
62

Tneop which measures the strength of
Coulomb interaction relative to the kinetic energy of electrons near Weyl points, including the
spin degree of freedom and dropping all indices we get

Sudsn= [ /]51 ol (5 () - () )76 wew). 210)

We then substitute Eq. (3.46) into the partition function, Eq. (3.21), and find that, up to first
order perturbation theory, the Fermi velocity in the free action is renormalised, i.e.,

o= [ [ e | (e + 5 () -w(5)) ) 77 wepe) 2

m 0271' 27T

<Sint>>72 = E

We define the dimensionless interaction parameter o =
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Figure 2.3: Diagrammatic representation of the polarisation function

We define a scale dependent Fermi velocity, vp(A), which from Eq. (3.47) obeys [12] [16]

vp (2) — up(A) + ‘”FT(A) <ln(A) o <lb‘>> (2.72)

(ya (%) — UF(A) _owF(A) (2 73)
(ln (%) —In(A)) 4
dvp(A)  avp(A) €
dln(A) 4 32me (2:74)
Additionally, we find the absence of charge renormalisation [6]
de?
) ~° (2.75)
which leads to an interaction renormalisation
da dvp(A)
V() T Y dn(n)
da dvp(A)
or M) Ay T T )
da a?
= —. 2.
dn(A) ~ 4 (276)

The beta function of the interaction parameter is positive , 8, = a?/4, and vanishes when a = 0.
In low energy limit, the interaction parameter flows to zero. The interaction is suppressed and
the quasiparticle excitations are still free and massless. [6]

2.3.2 Random phase approximation

Usually, the first order perturbation theory is not a good approximation. The quantum effect
from loop diagrams always plays a significant role so we will consider loop corrections in this
subsection. However, there are infinitely many possible loop diagrams that can be written
down, the problem then becomes intractable. In order to proceed, we will assume that only a
particular type of diagram contributes to the interaction. Here, we look at the large number
of fermion flavours limit where the problem can be simplified. In this limit, only diagrams as
shown in Figure 2.4 that have the polarisation function as a building block dominate the other
diagrams. This approximation is known as the Random Phase approximation (RPA). There
are infinitely many but manageable diagrams.

1. Polarisation function

To study the correction from RPA approximation, we first need to calculate the polarisation
function. In 2D, the polarisation function is given by [18]

S dv dq - o
M f) = N [ Z Tt (Gof + 2v +w)Goldv)

/dv di o (v +w) topk+ Q)G iv+opg-§
T s
21 (2m)2  \ (v +w)? + 0Bk + 7 2 2+ k(7]

(2.77)
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e = O+ OO+ OO0
e+ O

Figure 2.4: Diagrammatic representation of the RPA potential (adapted from [6])

where N is the number of fermion favours. In graphene, for instance, there are 2 spin degrees
of freedom for each K and K’ valleys, so in total N = 4. [17]
To proceed, consider that

[(i(u+w) +op(k+q) - ) (iv + vpd- 5)] = v tw) +ivp(v+w)q G +opk+q) - F
0+ Q) -G+i((k+q) xq) -7
Taking the trace, we get
T ([ + @)+ op(E+ @) - @) iv +0p7-5)]) = —2(v+w)+ 20} E+D) -7
- 2 {1/(1/ Fw) —vR(E+q) - cj} (2.78)

The polarisation function then becomes

2N/d1/ dq V(Ver)va( +q)-q . (2.79)
(w2t oplk+ 7 D)2+ R |7 )

Making use of the Feynman trick

- = d 2.
35, Tara e (250
here A = (v 4 w)? + 02|k + ¢ |2 and B = v2 + 0% |7 |?,
we get
. z=1 —v2(k L2
M(w, k) = —2N/d” 4q / dx Ay be) —vpk+d) 4 p
2m (27)2 Jumo  (2((v +w)2 +0hlE+T[2) + (1 —2) (2 + 0% |T]?))?
=1 _ 22 (F -q
_ _2N/du dq / i v(v+w) —vn(k+q)-q
27 (2m)?

" S 12
=0 {(:cw—i—y)Q + v4(zk + )% + 2(1 — z)(w? —|—v%\k¢]2)}

Changing variables v — v —aw and ¢ — ¢ — zk leads to

M(w, k) = —QN/dV = /x:1dx(y_$w)(v+w—xw)—vF(EJr g — k) - (§— k)
) - 2
2 (2m)° Jao (12 + 0312 + 2(1 - 2) (w2 + vIRP)
o N/dV dq /”’:1 dxy2—xw2+x2w2+v%a;\l;\2 v%|q? — 2%0% k|2
= 2
[u2+v%|ﬂ2+x(1—:U)(w2—|—v%|/~c| )]

and furthermore using
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/Ood 1 o 1
AP BY T 2 AR

o0 1 1
d —
/0 142+ B2 ~ AVB

we get

H(w E) _ / / U%‘MQ (1_‘T)
’ 42 om0 (OBIGR + 2(1 — 2)(w? + vBIR )
_ k:2 1—
— 7]\2[ dx/ qdq/ ”F‘| ( ) _
Ar? Ji—o =0 (V3]G + x(1 — z)(w? + v}|k[2))3/2
1

—N k|2 =
= 3 = dz/x(1 — x)
T Jw? + vd|k[2 Je=0

_N 1|2
= L . (2.81)

16 w2 4 w2 |2

Note that the polarisation function is linearly proportional to N, meaning it dominates in the
large fermion flavour limit. [10] [11]

2. Random phase approximation analysis
Summing all diagrams in Figure 2.4, Coulomb interaction (vy = 1) is modified and given by [8]

1
VRPA(G ) = —
Ve D) — (P, n)
2me?
Sl ol (2.82)
16~/7%+|p1?

Note that VEP4 (5, n) is an even function in 7 and all components of p = (DasDy)-
Using the RPA potential to calculate the self energy and by virtue of renormalisation group
analysis, the limit of integral is from A/b to A

- A dn dp -
RPA _ an ap RPA
LAk w) = /|n|,ﬁ1—A 2r (22 ——Go(k+p,w+n)VE(pn). (2.83)

—

Since k and w are small compare to p and 7, we can Taylor expand Go(k 4+ p,w + 1) up to the
first order in k and w

, . DGy 8Go (7,
GolF+pw+n) = Go(@in) +w Op" + 3 ke Op
i€,y
R i 2@'772 2p- G >
= Go(p, +w< — —
oI AC R T R PR P+ PP
2sz7’] 0']61_7 2U]p]pz
+ k; 7—% — — 2.84
2R\ GErrr L i 2 G e ) 28

Since VRPA(ﬁ, n) is even, all terms in Eq.(3.69) that are odd in 7, p,, and p, give no contributions
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to the integral of the RPA self-energy. The RPA self energy the becomes

A -
ERPA(k’,W) _ / ;ZJ 2dp2
nl,p1=4 27 (2m)

1 _ 2in?
. <n2 IR (P Iﬁl2)2>

;03 20p;pi A
I ki j% iPj VERPA(;
Z Z 7+ [p2 Z (2 + |[p2)? (7, m)

1ET,Y JEZY jET,Y
/ Adn dp < i 212 >
p— _— PR (JJ _
mllp=4 27 (2m)% | \n? + (P12 (n® + [P1?)?
Z oiki  2ky0upapy  2kioypype  2kyoupapy
Lo At P17 P+ 1?7 (P + [pl?)?

(n* + |p1*)?

/A dn dp < i 2in? >
= — —_— w —
=4 2 (2m)? n?+1p12  (n* + [p?)?

oik; 2ky0,p2 2kyoypy, RPA, ~
+ - - 14 pin
(anw G+ R GF + |72 7

_ _/A dn _dj M(n2+!ﬂ2—2n2)
il p1=2 2 (2m)2 (? + [p1%)?
. <axkx<n2 + 1712) + ayky (0 + |71%) — 2k,0,p2 — 2kyayp§>

(n? + [p1?)?
_ _/A dn_dp M( !ﬁ]2—n2>
nl =4 2m (2)? (% + [p1?)?

n (O-IkxT]Q + O'ykjyn2 + O'xijpg + O'yk}yp% — k?xO'xpg. — kyO’yPi)

_ 2kyoypypy )] VRPA(ﬁ 7)

€T,y

VEPA(5, )

VEPA(5, )

(n* + |p1*)?

Since p, and p, are equivalent in the integral, one can simplify to

RPA /7T _ A @ dp iw \I7|2—772 G-k 772 RPA /=
2w = /|n|,mg2w<2w>2[ (o) * k((nQHﬂ?)?)]V )

Introducing three-vectors q = (qo, 7) = (1, p), we have in spherical coordinate gy = |q| cos 6 and
|p'| = |q|sinf, and obtain

A . ——
SRPAR w) = —/ dq [ i ((3052 6 — sin? 9) + Tqé(cos2 0) | VEPA(B n) (2.85)

|q|:% (277)3 W
where , ) )
2me 16)\/N Ne
VRPA = — _ ) . 286
(7:m) Are|p| + 2me NP2 |q|sinf(1 + Asinf) 327e (2.86)
16+/n2+(p12
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This yields,

A . = 7
o . 16\/N
SRPA R W) = / dq [ i (cos 6 — sin® 0) + U—k(cos2 0)] 63/

\ 4 (2m)3 | |qf? lq|? |q|sinO(1 + Asin )
2 2 . S5 7
_ lq d|q\ sin 9d0d¢ iw (cos? 0 — sin 6) + k;(cos2 )
lal=2 Jo=0 Jo=0 Gl q/?
16)\/N

|| sinf(1 + Asinf)

8 A dlgl\ A [T [ cos’0 —sin? 0 R cos? 0
= —== — | = | —iw| ——7——-" |+ k| —m— ) |-
Nt lal=2 lda| ] 2 Jo—o (1+ Asin®) (1+ Asin®)

Making use of the integral formulas [11]

A [T 20 _sin20 222 gl 24T Sa<1
Fop=2 / ap? 0= ) QW X x (2.87)
2 Jo—o (14 Asinf) o In A+ VA1) —24% 5 A>1
P _)\/’T cos? 0 B Vl’\ 1)\—1—1—2)\ ;A< (2.88)
AT (1+Asing) | ¥¥=1 1(A+W2 D-1+5& ; A>1 '
and performing the integral in |q|, we get
. 8 A .
RPA _ _ = i 7 -
S (kw) = N2 [ln(A) In ( b)} [ iwFy )+ 0 kFL)\] .
Inserting back vr leads to
. 8 A .
RPA _ . -
SRPAR,w) = ——— [m(A) I <b>] [—MFO,A +upd kFM} . (2.89)

The effect of the self-energy on the Green’s function is encoded in Dyson’s equation which can
be written as

Gk, w) = Gyt (k,w) — BFPA(K, w).

Assume that, generically, interacting Green’s function G (E, w) and free Green’s function, GO(E, w)
are given by . .
G (k,w) = Z7YA/b)[~iw + Z(A/b)vp(A/b)G - k |

Gyt (k,w) = Z7HA) [—iw + Z(AN)wp(A)G - k ],
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respectively. Z is called quasi-particle residue, and Z(A ~ 1/a) = 1, so

-

—iw 4+ Z(A/b)vp(A/b)T - K ) R 8 A
Z(A/lf) = —zw+vF(A)a-k+N—7r2 [ln(A)—ln (b)}

X [—ino,)\ + UF(A)O_"- EFL)\}

S (1 + Fo,ANi7r2 [m(A) —In (2)])
+5 - kup(A) (1 * F“Nin? [ID(A) - (j;)D

] {—iw+5.§vF(A)x

N—

== <l=

N——

H
_l_
k
>/
E
z
|
=

(1 g o - ()]}

{—zw+o kup(A) x

A
In(A) —In | — .
Inserting back Z(A), the left right hand side of the above equation becomes

(14 Faga @ -m@N [ du
R.H.S = ( N Z(A) ’ ){—zw+0~ka(A) <1+F0/\N2[ID(A (2)])

y (1 + Fm% [m(A) “In (2)] _ FO,A% [m(A) > (2.90)

Comparing both side of the above equation, we get

%

X
e e N e NI
_l_
ps
)/

E
=
S—
|
—
=
/\/\/\@p@p/—\

)
ik
){ b5 Toplh) x
)
)

,_\
4
=
>/
E
s
|
=)

<1 + F1,,\i7r In(A) —

sl ol ol o=

N — 7 N~

=
R

N N2

vr(A/b) = v (A) {1 + (Fia—F ”Ni {m(/\) o <‘;>} } , (2.91)

vp(A/b) —vp(A)
[In(A) —In ()]
dvp(A) 8

din(A) ~  Nn? (

F >\ — Iy, is positive for all A, hence the beta function of Fermi velocity is negative , 5, =

N7r2 (F1»— Fox)vr(A). In the low energy limit, the Fermi velocity increases toward the speed

of light and the interaction parameter which is inversely proportional to Fermi velocity flows to

weak coupling. The interaction is suppressed and the quasiparticle excitations are still free and
massless . [11] [6]

8
=vp(A)(Fiy — FO,A)77r

F1 A FO,)\)’UF(A).



CHAPTER 2. 2D DIRAC/WEYL SEMIMETALS 21

2.4 Strong coupling

From the renormalisation group analysis, we find a significant result of the low energy behaviour
of interacting electrons in 2D Weyl/Dirac materials. If the number of species of electrons is large
or the interaction between electrons is very weak, the interaction between low-energy electrons
is effectively suppressed and they behave as free and massless quasiparticles. What happen to
the system with small number of electron flavours and strong coupling? Will the interaction in
this regime be strong enough to generate a gap spontaneously? This is the topic of this section.

The possibility of spontaneous gap generation due to Coulomb interaction in 2D Dirac/Weyl
materials, especially graphene, has been analysed extensively.[21][22][23][24][25][26][27] In this
section, We will study this problem by finding the non-trivial solution of the so-called Schwinger-
Dyson equation of the following action:

[T, W, 4] — /dtdi[\lf(a?, DL i YU ) — Ao(F, = = 0, ) T(E, 1)U (Z, 1)

dt
3A0(f, Z, t) aAo(f, Z, t)

2 it = e 7
dtd*xdz~y Ao(T, z,t) - v Ao(T, 2, 1) + 0% 0%

Our original action can be recovered by integrating out Ay and the two dimensional free prop-
agator of Ay field in Fourier space is indeed the Coulomb potential in momentum space

27e?

4melp]’

Schwinger-Dyson equation is a self-consistent equation relating the interacting Green function
to the interaction of the system. The derivation of Schwinger-Dyson equation for the above
action is given in Appendix A.

D(p,w) = (Ao(=P, —w) Ao (P, w)) = (2.92)

2.4.1 Excitonic mass generation

We are looking for the possibility of spontaneous mass generation due to interaction, so we
assume that there is a mass term in the interacting Green function

G Yd,0) = —ia+ 7 - @+ A(|d|)o”. (2.93)

For simplicity, we assume that mass A only depends on the magnitude of the momentum and
all parameter renormalisations are neglected. The Ay field propagator is given by the Random
phase approximation in the on-shell dynamical approximation, namely

27e?

D(F.w) = VEPAG w0 = |71) = (4 +f7r62N)H

(2.94)

Plugging these propagators into the Schwinger-Dyson with the approximation that the vertex
function ~ is unity equation we get

dp d ome? ot 5T Ao

—m+5-a+A(\a|)gz__¢a+5.5+/ b e Wto Pt (!ﬂ)g
(2m)? 27 (47‘(’64-7\/57{8 N) p+al ¥ + [p1% + A(|p])

(2.95)

The coefficient of o* gives the self-consistent mass equation [6]

. dp dw 2me? A(|pl)
Allg :/ 2.96
ViD= | Gmear (4me + 252X s 21" + 1P + ABI)? (29
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that we are going to analyse. Integrating out w to get

AP e A(7)
s = / P2 (inc 4 52 51 0l VI + AP 240

Assuming that the angular dependence of |p4-d| is weak, and the only role of A in the /|p]? + A2
is to introduce the infrared cut-off, Ag, to the integral (the latter assumption is called bifurcation
approximation). A(|d@] < Ag) = Ap and for |@| > Ag we get

A dp e? —la al —
Aa) = / dp 1 2 (9(|ﬁl @) _ 6(al |ﬁ|> A(|p))

20 (P2 (e 4 SN} A I a B

B /A dp 1 2me? 1 A(Ip) /'E dp 1 2me® 1 A(Jp)
@ (2m)2 2 (mHLQgN ) P[] A, (2m)22 (4m+Lf§N ) lal |l

A |a]
A A
/ d|pIA (Ip1) +/ d|p|A (Lﬁl), (2.98)
1] 1P Ao [
where A = L 2T ___ The integral equation (2.98) is equivalent to the following differen-

dr (4w5+7ﬂ’{g2N )

tial equation

d*A(a) dA(a)
2 2 Ala) = 2.
" — 5 +2a—- +AA(a) =0 (2.99)
with boundary conditions:
dA(a)
2 —
G —0, (2.100)
a=Ag
A
(ad @) | A(a)> ~0. (2.101)
da
a=A
Here, we set |@| = a. To show that, we rearrage Eq. (2.99) to be
d [ 5dA(a)
— = —AA(a). 2.102
i (@) = ra@ (2102)

Then, performing integration to get

<a2dAdia)> — <“2dAdc(;l)> LA = —/piAO dpAA(p) (2.103)

Setting the second term on the left hand side of the equation to be the first boundary condition,
and the remaining term is
dA 1 [
Jdo 1 / dpAA(p). (2.104)
P

da a Jp—n,

Rearraging Eq.(2.99) in another way, namely

*Aa)  dA(a)  dA(a) A
i e _EA(G)’ (2.105)

d% <adézc(ba)> _ _dﬁd((;) _ 2A(a), (2.106)
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Figure 2.5: phase diagram of 2D Dirac/Weyl materials in the & — N plane

and integrate both side of this equation to get

(905 -
a=A

A
- [ aam. (2o
a—A a p

A A A
42 + Ala) (o929 _ Ay - / dp A(p). (2.108)
da A A da a D
The square bracket on the left hand side provides the second boundary condition,
oL Afa) + Ala) = /Ad AA(p) (2.109)
da S pp p)- ’

We arrive at the integral equation (2.98) by subtracting Eq.(2.105) from Eq.(2.109) the non-
trivial solution of differential equation (2.99) satisfying boundary conditions Eq.(2.100) and
Eq.(2.101) is given by [25] [23]

Ag/2 (m ( a ) >
! In| &) tarctanvdr—1], 2.110
sin(arctan v4\ — 1)\/a St 9 n Ao arctan v4\ — 1 ( )

with the restriction that

Aa) =

7”42_1 In (AA> + 2arctan vV4AX — 1 = 7. (2.111)
0
Equivalently,
Ap = Aexp [—\/4% (77 — 2arctan V4 — 1)] . (2.112)

This non-trivial real solution exists when \ is at least at critical value A\, = 1/4,

1 2me? 1
A= — e > (2.113)

41 (47T€—|— %)

which implies that
16

T 32— 21N’

There exist a critical flavours of electron, N, = %, at which a, — co. 2D Weyl/Dirac systems

a> o (2.114)

with N > N, are always in their semimetallic state. A phase diagram in the o — N plane is
shown in Figure.2.5
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Figure 2.6: Momentum dependence of the mass gap for A = 0.20 (red), A = 0.25 (green), and
A =0.30 (blue)

A(p)

Figure 2.7: Momentum dependence of the mass gap for A = 0.40 (blue), A = 0.50 (red) from
numerical (dotted) and analytical (dashed) calculations

In the case of graphene, for instance, where N = 4, a, ~ 1.125. [23] The value of « for a
sheet of pristine graphene is 2.16, hence suspended graphene is theoretically an insulator, not a
semimetal. [25] Furthermore, the Schwinger-Dyson equation (2.97) is solved numerically with-
out any approximations. The numerical results of the momentum dependent gap for different
values of A\ are presented in Figure 2.6. We find that the critical value, A., is in agreement with
the analytical analysis. However, as depicted in Figure.2.7, the analytical method underesti-
mates the spontaneous mass gap of the electrons. The larger the value of A\, the more the two
methods differ.



Chapter 3

3D Weyl Semimetals

In the last chapter, we studied the possibility of a semimetal to insulator phase transition in
2D Dirac/Weyl semimetals induced by Coulomb interaction. Now we will do the analogous
calculations for three-dimensional Weyl semimetals.

3.1 Model
Free Weyl electrons in three dimension are described by
AN,
S, ¥ :/ \Iz (P, w)(—iwl + vpp- &) ¥(p,w) (3.1)
|B1=0 271'

where p'= (pz, py, p-) and & = (04, 0y,0;), Pauli matrices. The Green’s function is given by

Go(, Gw,n) = (¥(P,w)¥(q,n)) (3.2)
= 2n)26(p—q)o(w— n)(‘—iwl +ﬂvﬁﬂ- &)t (3.3)
= @)% — )8 — )T (3.4)

w? + o2 | |?
= (2n)°8(7 — 7 )d(w — n)Go (7, w). (3.5)

The electron-electron interaction in the second quantisation formalism reads

/ dr, / Ay B (7 ) B () Vol — ) U (7) B () (3.6)

where

6 62

V 1' - ,—ar
olf) = 4re ]F] a—0t 4me |7 c

is the Coulomb potential of which the Fourier transform is given by

Vel@ = [ dr V(e (3.7)

27
= lim — / / sin 0d# / d¢ glar cosf—ar
a—0+t 4me
= lim 2me? / / d cos feidr cosf—ar
a—0t 4me
= lim 2me” / dr (e(iq_“)T—e(_iq_a)r>
a—0+t 4meiq Jy

. 2me? < 1 1 )
= lim — | —= +—
a—0+ 4meiq iq—a —ig—a
o2

eq?’

25
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Assuming that the positive divergence of the zero mode Coulomb interaction is compensated
by the negative divergence from the positive’s charged background [9], the Coulomb potential
in a momentum space reads

0o g=0
Vo(q) = { 2 . (3.8)

~— ; otherwise,
€lq |

and the interacting part of the action in configuration space is given by

mt /dt/drl/drg\ll 7“1, ’I”Q, )Vc(T_ﬁ —172)\11(172,15)\1/(771,25). (3.9)

Performing the Fourier transformation

U(7t) = (2;)3 / dp U (j,w)e  PrHiwt (3.10)
U(Ft) = (2;)3 / dp W (7, w)eP Tt (3.11)
wwzzé;/@wmff (3.12)

on the action Eq. (3.9), one obtains the Coulomb interaction action according to

_ le Wi=% iy, dp; [N 47 1
St 0, T =||/ / /
A% V] 2 wi= =0 (2m)3 Jig=o 2m)% | |?

‘i’(plvwl)‘l’(m’W?)‘I’(P&w:s)‘l’(m,w4)(2ﬂ)35(ﬁ1 —P1—4q)
(27)36 (2 — p3 + @) (27)8 (w1 + wo — w3 — wy). (3.13)

We repeat the steps of two dimension in Chapter 2 to study the phase diagram of three
dimensional Weyl semimetals.

3.2 Renormalisation group analysis

3.2.1 First order pertubative approximation

The object we are looking at, in the renormalisation group analysis, is the partition function
of the system. At zero temperature, the partition function of Weyl electrons with Coulomb
interaction is given by

= / DU DWe 50 ¥I=Sim [V, 7] (3.14)

where So[¥, ] and S;,,:[¥, ¥] are given above.

The renormalisation group analysis consists of the three steps [8]

1. Coarse-Graining and integrating out of high energy modes: The First step of
coarse-graining of the partition function is to separate the fermionic fields of momenta greater
than new cut-off & (b > 1) from the lesser ones, i.e.,

N £ 2N (A7) I %<‘151<A
“ﬁm‘{@dﬁm CO<lp<? (3.15)

and

Lo U (Pw) S <Pl <A
TR P I (.16
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The greater (¥ (7, w), U~ (7, w)) and lesser fermionic fields (¥ (p,w), ¥ (p,w)) in the free part
of the action are decoupled, i.e.,

So[W, U] = So[Us, U] + So[P., U] (3.17)

where

A —
dw p = . oo "
So[T~, T / / 2p3\P>(p,w)(—zw +upp- 7) Vs (P w) (3.18)
=2 (27

U (p,w)(—iw + vpp- 7) e (p,w), (3.19)

A
= * dw [ dp
Sol¥, ¥l = /oo 2 /ﬂ=0 (2m)3

whereas, in the interacting part, they are not, i.e.,

_ _ Wi=00 clwZ
Simt[Ue, U, U5, U] = H/ (

4 A - A -
b dpi S dp; .
e+ [ P )
i=3 </|ﬁz'|0 (27)? e il =% (2m)? o

(2m)°6(p1 — pa — ) (2m)*0(P2 — 3 + )
(2m)6 (w1 + w2 — w3 — wy). (3.20)

The partition function then becomes

7 = /D@<D\I;<e50[‘1’<,‘1’<]/D@>D\p>650[‘1’>,‘1’>]€sz[‘I’<,‘I’<7‘I’>,‘I’>}
_ /D\I;<D\I;<€—SO[‘T/<7‘1’<]ZO> <e—3mt[‘I’<,\I/<,\if,>‘1’>]>
/D\I’<D‘1/<6_SO[\P<’\I]<]€<IH(ESint[\y<,q}<7q]>&>])>>

/D@<D\I;<€So[‘1’<:‘1’<]e<sint> +5((S51) 5 —(Sint)3 )JFO(SZBM) (3.21)

>

Consider the first order perturbation of the partition function in Eq. (3.21). Expand
Eq.(3.20) and apply Wick’s theorem to find the correlation function with respect to the greater
degrees of freedom. The only non-vanishing contributions is

<Sint[qj<a \Ij<’ \Ij>’ \Ij>]>> = <S'L'nt>>71 + <Sint>>72 (322)

1e2 & pwi=oo dw; 5 dp; A dg 1 =
Soon = 51 / ] g
mt/>,1 2 € 11;11 wi=—oo 2T |7i|=0 (27T)3 lg1=0 (27T) [ ‘

U (P, w2) Vo (3, w3) W < (P4, wa) (27) 6 (51 — P — q)
(2W)3(5(ﬁ2 — p3 + (7)(271’)(5((4)1 + Wy — w3 — W4), (3.23)

where

and

A
le Wi=® duw; (v dpy (N d@ 1 -
(Sint) = 2;— / / / —— V< (P2, w2)
>,2 2 € H o1 15:|=0 (27r)3 | (27r)3 |q ’

i=17Wi=—00 71=0
(2m)?6 (s — P1)0(ws — w1)Gos (D3, w3) V< (P, wa) (27)26(p1 — Pu — @)
(2m)38(Fa — P + @) (27)5 (w1 + wo — w3 — wy). (3.24)
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2. Rescaling: So[¥_, V_] together with (Sint) 1 are similar to the original action, except
that the upper cutoff has decreased to %. Restoring the cutoff to its original value by rescaling

P’ by’

w' = bw
V(W) = bT(w) (3.25)
V(5 W) = b0 _(pw)

and dropping all primes, the transformed action then becomes identical to the original one.
3. Renormalisation:
Now, consider (Sin:)

>2 9
12 0 (9= qu, (% dp. (% df 1 -
(Sint)oy = 225 / / / LB w)
e 2¢ 1;[1 wimoo 2 im0 27) Jigmo (200 |7 P77
(27m)38 (P — p1)0(ws — w1)Gos (73, w3) W < (Fa, wa) (27)*0(p1 — Pa — §)
7)°0(P2 — P3 + §)(2m)d (w1 + w2 — w3 — wy .
(2m)?5( +q)(2m)0 (w1 + ) (3.26)
2 4 wW; =00 A - A o
e i dw; /b dp; /b dq 1 -
= — — U (P2, w2)
€ H wim—oo 27 Jigi=o (2m)3 Jig=o 2m)3 g2 °
o o w3 + v J . R o
(2m)28(7s — F1)0(ws — w1>3—2p“2\11 (71, w1) (27)%0 (51 — 71 — )
W3 v |P3 |
7)20(p2 — 3 + q)(27m)0 (w1 + wo — w3 — wy .
(2 )36 ( + q)(27)0 (w1 + ) (3.27)
=00 / dws dp3 wi=% 5 du, dpy SR S
= Py N _ P4, W
wz=—00 J |ps|=2 2m ( 3 wg=—00 J |P4|=0 2m (27T)3 \p3—P4 ’2 -
iws +vps - a 5
R ERTIEa 5 V< (P, wa) (3.28)
wg v? [P |
Wa=eo dwy dpy = . o
= / Rk ‘I’<(p47w4)2(1)(p4,w4)‘11<(p4,w4) (3.29)
wy=—00 J |P4]|=0 2r (2m)3
where X (54, wy) is defined by
w3=00 d d 1 . — =
= (5, wa) / e 3 M R A (3.30)
w3=—00 P3|—A |p3 — P4 ’ w3 +v |p |
u‘)300/' du)3 dp3 1 Uppg J (3 31)
wy=—c0 J|ps|=2 2 )2 |ps — pa ! w? + 02 |ps \

The form of the integrand in (3.31) suggests that (1 (54, wy) can be written as XD (5, wy) =
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Zvﬁ4 . O_", and

S, = L T 02()(p4,w4)) (3.32)
2 |pu|”
Y W N S 0 SN
v i @) 205l 173 — s [P w0 |75 |7
P dw3 dp3 1 1 opTr((p3 - pa)l +i(Ps X Pa) - 6) (3.34)
wy=—o0 Jlpsl= 2™ (2m) 2 || |3 — fiaf? Wi + 0215 |
/ws:oo/ de, dp3 1 1 20ppP3 - Py (3.35)
wy=—o0 psl—% )* 21pul? [Py — pal® wF + 02 [ps |
_ _/¢ T [ dcosa/A 171 dps vr 73] 7] cos(6) (3.36)
om0 Jomo e A

w3=00 1
/ dws W2 4 02
w3=—00 3+ v? |P3 ’

Making use of the formula

W=oo 1 T
dw = 3.37
/w:—oo w22 || vr Pl (3:37)
we obtain
¢=2m T A - 2 >
5, = / do dcose/ 75l dps vr Ipa| Ipa] cos(6) 7 (3.38)
$=0 6=0 =2 M)t |yl ps — pal® or [Pl
T A = 12
- _QW/ dcose/ 75| df3 — f;os(e)q _ (3.39)
6=0 =4 Cm)Y (| (155% + [5al* — 2173 [a] cos(6))
T A
= —27r/ dcos@/ PsI” dps m cos(6) (3.40)
0=0 =t GO g P (1 2 - 2eos(0))
T A =
d
- _gﬂ/ dcos 0 Py meostt) (1 oloul )+0(|’i|) (3.41)
0=0 msi=4 (2m)* [Pl | 3| 155
T A 2
- 47r/ dcose/ dpy_mweos™6 P ) (3.42)
=0 |s|=4 2m)*  [ps] \p3!
A 3" =12
d 0
= [ T +o<”i4'2> (3.43)
=4 M)l 3] 175
81 /A dps 7 !ﬁl
_ or T L o(Pa 3.44
3 Sy @ Il P 340
1 A
~ <1n(A)—ln(b)). (3.45)

We summarises this in

1 AN €2 (=% 1% dwy dpy -
Sint) 5 = —= (In(A) = In(2)) & P8 (s, wa) (B - &)W < (g, i)
< t>>,2 67T2 (n( ) n(b)> € L4ZOO /p4| —o 27_[_ (271') (p4 W4)(p4 U) <(p4 ("-)4)
(3.46)

we then substitute Eq. (3.46) into the partition function Eq. (3.21), and find that Fermi velocity
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is renormalised, i.e.,

0= s _<(ﬁ,w)[<vF+62<ln(A)—ln(2)>>ﬁ'5] (G w). (347

=0 27 (2m)3 672

A scale dependent Fermi velocity, vg(A), in three dimension obeys [14]

2
vp <2) =vp(A) + oy <ln(A) —1In <2)> , (3.48)
VEp (A) — UF(A) N 62
(In (%) — ln(A)) T 6m2e’ (349)
o), -

dIn(A) 672 3

In addition to velocity renormalisation, the dielectric constant of 3D Weyl materials is also
renormalised.[10] The diagrammatic representation of this contribution is shown in Figure.3.1,
and it can be calculated straightforwardly from polarisation function.The polarisation function
of N species Weyl fermions is defined by

M(w, k) = N/;l; (;3) T‘r(Gg(E+ _]V—Fw)Go(q_’,y))

_ N/du dqur z(u—l—w)—i—vp(lt}—q‘).aw—l—qu;z . (3.51)
2m (2m) (V+w)?2+oklk+q 2 v2+0%7 |
Using
Te ([(i(v +w) + op(h + @) - )iv +opi §)|) = —2w(+w) +20pE+) 7
- 2 {y(y +w) — vk + Q) .q} (3.52)
we obtain 2
2N/d” dq vl tw) - f< D7 (3.53)
(v +w)? +oplk+7 )2+ 0% 17 )
Making use of the Feynman trick
1 =l 1
—_— = d 3.54
AB LO @A+ (1—2)B)? (3:54)
here A = (V+w)2+v%\/¥+(f|2 and B =12 + 0% |7 |
We get
- dv dg [*! v(v+w) —v2(k+§) - ¢
M, k) = _2N/27r(27r)3/ de R . 2 4 4217 [2)2
e=0  (2((v+w)+oplk+72)+ 1 —2)( +op|7]7)
_ _2N/dy dq /xﬂdx viv+w) —vi(k+q) - ¢
27 (27)3

. N 2
=0 [(xw )2+ oz + @2+ 2(1 — ) (W2 + v%|k|2)]

Changing variables v — v —axw and ¢ — ¢ — ok leads to
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M) = —2v [ 52 /mdﬁy—mﬂyw—m)—vF<k+q—xk> (7o)
2m (27)° Jomo [,,2+U2|q12+x(1—x )(w? + v |E[2) }
/dl/ dq /xld v? — xw? +x2w2+va|k‘]2va|q727x UF|E|2
= = — T .
27 (2 _ 2y
™ (27)° Jaso (12 + 03112 + 2(1 — 2) (w2 + v} |4]2)]
Furthermore, we use
/°° J z? T 1
T Z
(A22+ B2~ 2/43B
/ d 1 T 1
T Z
oo (A22+ B2 2/AB3
and obtain
- dg (=1 UF’MZ (1—2x)
H(w,k) = _N/(Q)?’/ d 2 ~ 2 3/2. (355)
TP Jao  (RIG + a(1 - 2)(w? + vE[EP))

We want to use

/ dq 1 1 T(n—d/2) (1\"%
(2m)d (¢ + B)*  4nd/2  T(n) B ’
to integrate dq. However, this formula is not well-defined for our case, d = 3 and n = 3/2. To

proceed further, we calculate the integral for n = 3/2 and d = 3 — ¢ and expand the result
around J = 0 using

2
'(3/2—d/2) :F(5/2):g—7+0(6), (3.56)
and 5
Mﬂ:1+§mA+0®% (3.57)
where v /= 0.5772 known as FEuler-Mascheroni constant. We obtain
o N E2 z=1 ) 2
M(w, k) = — | |2/ der{~—v+In i = +0(0) pz(1 —x)
dvpm® Jy—o 0 z(1 — z)(w? + vi|k|?)
NIk ==t (2 .
= — i / dz{ = —y+Invk —Inz(l —z) — In(w? + vE|E[?) 4+ O©0) p 2(1 — )
4’[)F7T2 =0 0
NIk (= ST N|k?
= 1 1-— —
Top? (/x dx{ n(w” + vkl )} z(l— ) 41)F7r20
NIk 5 ozay NIKP
= M _ M
24vpm? n(w” + vr k%) 41}F7T2C
_ N|k[* 22072
= 2dupn? (hl(w +urlk| )_6C>
where .
= 2
C= dx (5 —y+Invi —Inz(l—z)+ 0(5)> z(1l—x) (3.58)
=0

which diverges when § = 0. We introduce momentum cut-off, A, such that

6C = lim In(vEA?). (3.59)
A—o0
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Figure 3.1: Feynman diagram contributing to dielectric constant renormalisation

The polarisation function II(w, E) of 3D Weyl semimetals diverges logarithmically,

o NIEP W+ oplk]

II k)= 3.60
Aw, ) 24vpm? v A2 (3.60)
Setting vy = 1, we get
. ONE[?, W+ k2
I (w, k) = Y In R (3.61)
The dielectric constant renormalisation is given by
. e2 2 A .
AwF) = -N (- / dz// 47 Tr[Go(F + 4,v +w)Go(@v)]  (3.62)
€| k|? —o0 lg1=A/b
5 \ 2
e . -
= - <_5|E’2> <HA(w’k)_HA/b(wak)>
e\ NEP
= | -—— In(A) —In(A/b
) Taupmr ) I AD)
1 e? 2aN
= ———<¢——(In(A)—In(A/b
o e ) -mam))
from which we can conclude that a scale dependent dielectric constant, ¢(A), obeys [10]
1 1 2aN
= 1-— In(A) —In(A/b 3.63
= (1 5 e —man) (3.63)
d 1 2aN
dlnAe  3me (3.64)
de 2aN
TmA = 3. © (3.65)
As a result, the interaction parameter gets renormalised and obeys [14]
da d e?
dlnA  dlnA <47TEUF> (3.66)

B e2<1 d 1.1 d 1>
4 \vpdlnAe edlnAvp
e? [ 2aN 2a

- 47r<37revp+37revp>
20/

= 37(N+1)
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We find that the beta function of the interaction parameter of 3D Weyl semimetals is also
positive and vanishes when o = 0, so the interaction parameter flows to zero in the low energy
limit. The interaction is suppressed and the quasiparticle excitations are free and massless .

3.3 Random phase approximation analysis

In the large number of fermion flavours limit, the higher order perturbation theory is dominated
by RPA loop diagrams. Coulomb interaction is modified and given by

1
VEPA(G ) = —
Ve L (P) — (7, )
1
= . (3.67)
€|pl2/e? — gﬁg In +\15‘|
VEPA(5 1) is an even function in 1 and all components of p' = (Pa, Py, P2)-
The RPA self-energy is given by
A _
. dn d .
SRPAFw) = = [ ST GolE + R VA, (3.68)
nlim=4 27 (27)

Since k and w is small compare to p and 7, we can Taylor expand GO(E + p,w +1n) up to the
first order in k and w

- R 0Go (P, 0Go (P,
Go(F+7w+n) = Go(fn) +w Op + 3 ke Op
1€x,y
| i 21'772 2p- G >
oI A O T T GE PR G+ PP
—2ipin ;0i 205p;ipi
+ TR o e 2 ey | G0
P N P S P D En

Because of the even function VP4 (p, 1), all terms in Go(g + p,w + n) that are odd in 7, p,,
Dy, and p, are zero. Moreover, p;, py, and p, are equivalent in the integral. This can be used
to simplify the RPA self energy to

RPA( .\ _ _ A dn dp iw p* —n? P 772"‘%@2 RPA/ =
o) /mm 27r<2>[ (oFre) * ""<<n2+\ﬁ12>2 =)

Introducing three-vectors q = (qo, 7) = (1, p), we have in spherical coordinate gy = |q| cos 6 and
|p'| = |q|sinf, and obtain

VEPA(F,n).

(3.70)

A , .
- dq |—iw . g-k 1 .
SRPA(E w) = — /|q—A 2n) [‘q|2 ((30520 — sin? 0) + P (cos® 0 + 3 sin? 9)
=%

To proceed further, we expand the RPA potential

VEPA(p ) = ( o ~ (1 i ~ e . (3.7

2 2 2
1= 525 m ) [P e (g-) i (1+52%) e
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Figure 3.2: phase diagram of 3D Weyl semimetals in the a — N plane

This yields

A : . 2
- d — -k 1
SRPAR w) = — 4 | cos® 6§ —sin? 0 —i—LcoszO—i——siHQQ e/e
1 2 2 2
jal=4 (2m)* | lal al 3 (1 + 1’;;:2) Iq|2 sinZ 6

_ _(3;2051/51” [111(1\) —In (jb\)] 5. (3.72)

Inserting back v leads to

from which we find that a scale dependent Fermi velocity obeys

ERPA(E, w) _

dop(A) 1 e? /e
dln(A) _6?(1Jr eng> vr(A).

12em2

The beta function of the Fermi velocity is negative. In the low energy limit, the Fermi velocity
increases towards the speed of light and the interaction parameter flows towards weak coupling.
The interaction is suppressed and the quasiparticle excitations are still free and massless .

3.4 Strong coupling

From the renormalisation group analysis, we find that effects of Coulomb interaction on 3D
Weyl semimetals are exactly the same as on their 2D counterparts. It is reasonable to look for
the semimetal-insulator phase transition in 3D. We are looking for the possibility of spontaneous
mass generation in three dimensional Weyl semimetal due to electron-electron interaction. Dif-
ferent from 2D materials, two valleys of Weyl semimetals must be coupled to generate mass, so
we assume that the interacting Green function can be written as

G @, a) = —ialyy + 33+ A(@))8°, (3.74)
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0 _ 0 12><2 —‘_ O_" 0
(%) 56 %)

We assume that the mass A only depends on the magnitude of the momentum and all parameter
renormalisations are neglected. The A field propagator is given by the on-shell random phase
approximated potential, namely

where

e? /e
(1_ N 1, flzﬂ) ‘]312'

12em2

D(p,w) = V(G0 =[p]) =

(3.76)

Plugging these propagators into the Schwinger-Dyson equation with the approximation that
the vertex function -y is unity equation we get

—iadgus + B-a+ A(@)B° = —iolyu+fG-a
- / ap_do e’/ iw+ 8- 5+ A(A)8°
(2m)? 27 (1 _ 1622N2 n \ﬂera\) 7+ a2 w? 4 P12 + A(]p])?

The coefficient of 59 gives the self-consistent mass equation

[ d e A(p)
() - | @r)? 2r (1 gy Vg o gpe < e+ A0

12em?

Integrating out w to get

i ap 1 e’/e A(#)
A(lal) = h |
(| D / (27r)2 2 (1 _ 1622N21 f\p+a|) |}7+ 6|2 |]7|2 T A(|]7D2 (3 78)
. 2 2/871'26
= [ |p2d|p) [ sin6dd | do
/ /0 /0 (1— S In f*/'ﬂ““'m"“'ms‘)) (712 + |2 + 2/71|d] cos )
A(lp)
p1? + A(lp1)?
Using
/7T sin 6 ”
0 [“5"2 + |a@)? + 2|p]|a] cos@] [1 — zIn(v2+/[p2 + @2 + 2[pi|d] 0059)}
1 a —
- Z|5Hﬁ|{ln —2+21n [2(Jd - \ﬂ)ﬂ] ~ln|-2+zln [2(|a|+|ﬁ|)2]] } (3.79)

we obtain

Aal) = /dﬂf@fﬂ{ —2+‘§":1n[2<\ar+rm>2}”

Ad)
OV YN (350)

which is solved numerically. A phase diagram in the o — N plane is shown in Figure.3.2, we
find that the critical value of N, is 23 above which semimetal-insulator phase transition does
not happen.

~24 %2 (ya\—rm?}] -




Chapter 4

Conclusion

In this thesis, We have investigated the role of Coulomb interaction in 2D and 3D Dirac/Weyl
Semimetals. Dirac/Weyl Semimetals are materials in which electrons have a linear dispersion
relation. They are solid-state analogue of relativistic massless Dirac particles. Graphene is the
first experimentally observed Weyl semimetal, before their 3D counterparts which are less stable
were realised. Coulomb interaction is an instantaneous interaction by photons and live in 3
dimension. Its strength is characterised by the dimensionless coupling parameter a = €2 /4mevp
which is the ratio of coulomb potential energy to the kinetic energy. It is marginal in the RG
sense, meaning it might get stronger or weaker in the low energy limit . Thus we have studied
its effects in both weak and strong regimes by perturbation theory and mean field theory,
respectively.

First, we investigated the effects of weak interaction. In the low energy sector they are
obtained from renormalisation group analysis by integrating out the higher energy modes, and
absorb the result into the parameters of the theory. In this cases, they are Fermi velocity,
vr, and dielectric constant, e. We have done the calculation for the first order perturbation
theory, and the random phase approximation, where all higher order corrections of a particular
type of diagrams namely the poralisation function are included in the Coulomb potential. This
approximation is more accurate for the systems with more Weyl fermion flavour because the
polarisation function is linearly proportional to the number of fermion flavours , N. In the large
N limit, this class of diagram dominates the others. The RPA Coulomb potential depends on
both a and N. It is found that, in 2D Weyl semimetals, the first order perturbation theory
renormalises the Fermi velocity while the dielectric constant is kept constant. Lowering the
energy scale increases vy and consequently « decrease when energy scale is lowered. The
interaction is weaker and weaker and get suppressed in the end. Even though, results from
RPA approximation look more complicated, the situation does not change. In low energy limit,
the Fermi velocity approaches the speed of light. interactions are suppressed. The quasiparticles
are effectively free and massless. For 3D Weyl semimetals, In addition to velocity and coupling
parameter renormalisations, the dielectric constant is also renormalised. It gets larger when the
energy scale decreases. Since « is inversely proportional to the product of € and vg which is
very large in low energy scale, the interaction is again suppressed.

Next, we looked at the strong coupling effects using mean field theory. We examined the
possibility to open the gap when Coulomb interaction is included by self-consistently solving
the Schwinger-Dyson equation which is an integral equation relating the Green function to the
interaction. We solve this equation both analytically and numerically for 2D. It is found that
mass is not constant but momentum dependence. It is spontaneously generated when « is
larger than critical value a. and N is smaller than its critical value reaches N.. When N is
larger than its critical value, the gap cannot be opened no matter how strong interaction is.
The critical line divides two different phase of Weyl systems in 2D. Above the line is insulating
phase and below is semimetal. Critical values a, and N, from both numerical and analytical
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methods are in agreement while the analytical solution underestimate the value of mass. The
gap is underestimated by the analytical method. For the 3D Weyl semimetals, the presence of
a logarithmic divergence in the RPA potential render the integral equation too difficult to solve
analytically. We only perform numerical calculations and find the same feature as in 2D. the
mass can be induced spontaneously in the system with lesser fermion flavours than its critical
value when the interaction is strong enough. The mass is momentum dependent and more likely
to be created than in 2D.

Spontaneously mass can be induced by Coulomb interaction in both 2D and 3D Weyls
semimetals but only at specific value of a and N, it is very unlikely to happen. From our
analysis we conclude that both in 2D and 3D Weyl semimetals a mass can spontaneously be
generated. The critical value of a, and N, are within a realistic range. It has to be noted,
however, that so far no experimental evidence, especially in graphene has been found. [20] [21]



Appendix A

Schwinger-Dyson Equation

In this appendix, we are going to derive the Schwinger-Dyson equation. We follow ref.[13].
Given the partition function

Z[J, n, 77] — /DAOD\I’D\IIG_S[\IJ7\II7AO]_I d.fd’?’{AO(f,t)J(f,t)+\if(f,t)77(f,t)+7_](a_f,t)‘lf(f,t)}’ (Al)

its the total derivative is vanishing

0 = /DAOD\I/D\P 675[\1/,\11,A0]7fda’:’dt{Ao(f,t)J(f,t)+\fl(f,t)n(9’c’,t)+f)(f,t)\11(:6‘,t)}

oW (g, 1)
_ 5S - - . i L
= DAyDYDVY (| — U U A =S[00, Ao~ [ dZdt{ Ao (&,t) J (Z,t)+ ¥ (Z,t)n(Z,t)+7(Z,t) ¥ (Z,t) }
[ paoon( 0003
= —/d*dta(*—*)a(t—t') A g ) (-0 0 0 +n(&,t)
- raT =y at ~"PONVE )\ @) T ed@ )o@

0(F =)ot —t') | Z[J,n. n]

d o e ;
— _<dt,_ZUF0'Vg>G(y—x,t/_t)J7n?n)

1 4]

- 210, 71G — 2t — t: T, o
Z[J,n,ﬁ]éJ(g’,t')( [, MG = 2.t t,J,n,n))+5(:r 7)ot — 1)
5

6.J (¢, t')

da ., - L _ L, _ 4 o
= - (dt’ — Upd - Vg) Gy — @t —t;J,n,0) — Gy —@,t' —t;J,n,7) + (T — 7)ot —t').

Making use of the relation between effective action I' and the propagator,

_ 5T
G-y =35 (U(2)) 0 (U(x))’ (#-2)
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to compute

sy — 52T !
oIty T T8I \ S (R(G, 1) 6 (U(@ 1))

_ /d*dt" (Ao (4, t")) d 5T -
B J(F, 1) 6 (Ao(a, t")) \ 6 ((¥, 1) 6 (¥(Z,t))

= / dadvdwdt”dt"” at"" D(i@ — g, t" — t)G(§ — v, — ")

5T
_ G —»_—»7t////_t
(5 <A0(ﬁ, t”)) § (111(17, t’”)> § <\I/(U7, t””)>> (U) X )
= / dadvdadt”dt" dt"" D (@ — §,t" — t)G(] — 7,t' — ")
ol

,l—}‘ ,u—}' t/// t””;ﬁ, t//)G(w— :L—:’ t//// _ t)
So,
( — WG g) G — 7t —t) — /dudvdwdt”dt”'dt””D( Gt —)C(F — T, — ")
V(0,87 ) G F = 1)+ 6(F — ot~ )
= (dt/ — vpd - Vg) /d:ﬂdtG(gj T, t— t)G—l(f — It 75/////) -
d

Fdudvdwdtdt” dt" dt"" D (i — g, t" —t")G(§ — U, t' — ")y (T, 0, 8" " i, ") x

—

Q
8

(ZU’ _ 775//// _ t)G_l(f —Zt— t””’) /dxdtd( )(S(t —t )G— (j’ —Zt— t/////)

= - % — WF0 - 637) §(F— 20t —t"") + G- 2t — ") -

/ dadvdt"dt" D(a@ — g, t" — t\G(g — 0,t —t")y(v, 2, " " i, t").

Then, performimg Fourier transformation, we get

d_‘ dw d 1,4 i (T — 2 —iw (£ — !

d(f d(;5 dm dX RN o —id (T—i) it —t — —im-(G—0)+ix (' —t""
/ (2m)? 2 (2m)2 2n / dididt"dt’"” D(g, ¢)e DG i, y)e I o

/dﬁdwd?dpdé’dT(_,F . 5.7)
(2m)2 27 (27)2 27 (27)2 o |\ W, 03 8,7 )¢
dﬁ dw . - 1, = 10 (— 2 —iw (E — ¢
= / (%)Q% [(—zw+vFg.m -G 1(p7w)} et (§=2)—iw (' =t"") 4
/ q_'dqb dm dX dp dw dr dp ds dr
(2m)2 27 (27)2 27 (27)2 27 (27)2 27 (27)2 27
e—zu~(q+§')+zt”(¢+7’)e—w~(p—m)+zt”’(w—x)e—zr~z+zpt’””e—iﬂ-(ﬁ’z—(j')-l—it’(x—(b)
dﬁ dw . . 1,5 D (T— ) — i (2 — 11
= / (27r)2§ [(—zw—|—vFU.]5) -G l(p,w)] et (J—2)—iw(' —t"") |
/ dq @ dp dioJ dr @
(2m)% 27 (27)2 27 (27)2 27
o i Eript"" =i (=) +it' (w—¢)

—ipTtiwt” —iEipt"" —isitirt”

—dudvdt” dt" D(q, ¢)G (1, x)v(P, 7, w, p; §,T) X
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Notice that this equation holds true iff 7= p'— ¢ and p = w — ¢, we get

dp dw . -, 1= i (F—2)—iw(t — """
0= /(27r)227r[(—lw+UF0'ﬁ)—G (7,w)] PR

A7 dé di dw . B o o
/ (271')2 o (271')2 27_‘_D(q’ qb)G(p,W)’}/(p, q—Dp,Ww, ¢ — W; —¢q, _d)) X

ei(q_’_ﬁ)‘(g—g)—i(qb—w) (' "

dﬁ dw _ N oy A N 11
_ - -~ o = _ 1/> ip-(§—2) —iw(t'—t"""")
/d(y 2)d(t — ") [/ o 3 [(—iw+vpd-p)— G ' (pw)]e +

/ di dp dp dw
(2m)2 27 (27)2 27

D(q, )G (p,w)y (0,7 — Pw, ¢ — w; =, —¢) X

ei((f—ﬁ) .(g'—f)—i(¢_w) (t/—t/”//)] e_id' (?7_5) +ia(t' _t/////)

_ / djdes [(—iw + vpG - ) — G (F.w)] 67— @)5(w — a) +

dp d
/ 2]? 25 (D@ O)GF P, T~ P, & — i =0, —0) x (7= P~ D3(0 —w — )

27)
dp dw

= (—ia+vpd-ad)— G (d, )+ /
This gives the Schwinger-Dyson equation
dp  dw

G (@, 0) = (—ia+vpd - @) + / W%D(ﬁ+ a,w+ a)G(p,w)y(p,d,w,a; —p — @, —w — ).
(A.3)
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