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ABSTRACT

Baroclinic life cycles1 are simulated by a 25 layer primitive equation model with the aim to in-
vestigate the isentropic meridional mass flux (MMF). The development of perturbed fronts with
its associated jet is studied for different model parameters and initial conditions. For equal model
parameters, the developing situation differs for a different initial wave number on the perturbed
front. Wave number 5 develops a wave train with no growth and decay, whereas wave number 6
sustains growing and decaying baroclinic life cycles. The different solutions can be compared to
different phases of the Northern Annular Mode (NAM) index in the real atmosphere by looking
at the isentropic meridional mass fluxes (MMF) and isentropic meridional potential vorticity sub-
stance fluxes (MPF). A perfect translation of the NAM is not found in the model. However, the
different solutions of the model have some similarities with the positive or negative NAM phase.

An increase in the Newtonian cooling coefficient, a parametrisation of radiation, and an de-
crease in the static stability both lead to stronger northward MMF in the midlatitudinal upper
troposphere. An increase in the strength of the jet leads to an increased MMF. A wider and weaker
initial jet leads to a smaller MMF than a smaller and stronger initial jet.

A specific region with a higher Newtonian cooling coefficient leads to the formation of baroclinic
life cycles downstream of the region. Even with a Newtonian cooling coefficient equal to zero and
an initial zonal jet, baroclinic waves can grow due to downstream development.

1 Figure on front page: a snap shot of a model run. In the figure, a typical growth stage of a baroclinic life cycle
is visible. The temperature and temperature gradient are shown on the 850 hPa level. The surface pressure is also
plotted.
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1. INTRODUCTION

1.1 General circulation of the atmosphere

The Sun does not radiate the same amount of energy to every location on Earth. The differential
heating of the surface leads to a higher equilibrium temperature of the surface at the equator than
at the poles. The atmosphere is attempting to reduce this temperature difference. Hadley (1735)
was the first to notice that the imbalance in insolation induces a direct circulation to transport heat
towards the poles. He argued that warm air at the equator rises, because it has a lower density
than the cooler air in the surrounding regions. Higher in the atmosphere, the air flows away to
the north and south and cools down. Above the polar regions, the air becomes denser by radiative
cooling, causing the air to sinks down to the surface where it returns back to the equator.

Furthermore, the air does not follow the meridians, but is deflected to the west at the equator
and to the east at the midlatitudes. The rotation of the Earth causes the deflection the currents to
the right in the northern hemisphere and to the left in the southern hemisphere, which is known
as the Coriolis effect (Lorenz, 1967).

Observations show that the midlatitude westerlies at the Earth’s surface have a prevailing
direction from south to north and not, as Hadley proposed, from north to south (Ferrel, 1859;
Thomson, 1892). An indirect frictionally induced cell at the midlatitudes was added in the theory
of the general circulation to account for these observations. The indirect cell was shallow and was
assumed to circulate below the cell proposed by Hadley.

Later, it was acknowledged that the Hadley circulation cannot reach further than 25◦ to
30◦ (Held and Hou, 1980; Schneider, 2006). The angular momentum per unit mass of a zonal
ring of air is given by M = (Ωa cosφ + [u])a cosφ, where Ω is the angular speed of the Earth,
a is the radius of the Earth, [u] is the zonal mean velocity and φ is the latitude. If the zonal
mean velocity of air at the equator is 0, the conservation of angular momentum implies a zonal
mean velocity of [u] = 91 m s−1 at 25◦, which is higher than observed. The angular momentum
thus cannot be conserved and a drag force is needed to slow down the flow. Held and Hou (1980)
formulated a two layer model of the Hadley circulation. The lower layer is a motionless layer on
top of which a layer with a constant zonal velocity is positioned. In the top layer, the angular
momentum is conserved. Simultaneously, the model maintains thermal wind balance with the
meridional temperature gradient. The zonal mean thermal wind balance is given by (Holton and
Hakim, 2012; van Delden, 2017)

2Ω sinφ
∂[u]

∂z
= − g

θ0

∂[θ]

∂y
(1.1)

where y is the meridional coordinate, z is the vertical coordinate, g is the gravitational acceleration,
θ0 is the reference potential temperature, and [θ] is the zonal mean potential temperature. With
their model, Held and Hou estimated the correct extent of the Hadley circulation.

With the Hadley circulation only reaching the subtropics, the zonal mean general circulation
can be split into three major cells: the Hadley cell, the Ferrel cell and the polar cell. However, the
Ferrel cell is not thermally driven and should have a different mechanism than the other two cells.
In fact, the Ferrel cell is a result of zonally averaging the velocity field. At midlatitudes, heat is
still transported poleward. Most of the transport at midlatitudes is caused by zonal asymmetries,
which are called eddies.



CHAPTER 1 1.2. BAROCLINIC LIFE CYCLES AND STORM TRACKS

Fig. 1.1: The time in days required for an unstable wave in the two-level model to double its amplitude,
given as a function of the vertical wind shear in the basic current and the wavelength. The dotted
line represents the curve vi = 0 for the perturbation analyses of Charney (1947) and Kuo (1952).
Figure and caption taken from Phillips (1954).

1.2 Baroclinic life cycles and storm tracks

In the midlatitudes, large scale eddies are formed by the process of baroclinic instability (Black-
mon, 1976; Lau and Wallace, 1979). Baroclinic instability is associated with a slope difference
between isobaric and isentropic planes (Holton and Hakim, 2012; van Delden, 2017). The latitu-
dinal confined region in which most of the baroclinic instabilities develop, is referred to as storm
tracks (Hoskins and Valdes, 1990). Diabatic processes cause baroclinically unstable regions. The
life cycle of a baroclinic eddy can be simulated in a simplified model and was done by various
groups (e.g. Phillips (1956); Simmons and Hoskins (1978); Chang and Orlanski (1993); Thorncroft
et al. (1993); van Delden (2017)).

The highest baroclinicity, a measure for how baroclinically unstable the atmosphere is, is often
measured by the Eady growth rate (Lindzen and Farrell, 1980)

σBI = 0.31
f

N

∣∣∣∣∂v∂z
∣∣∣∣ (1.2)

where f = 2Ω sinφ is the Coriolis parameter, N is the static stability and v is the horizontal
velocity. The highest baroclinicity is found in the western parts of the Pacific and Atlantic basin
(Hoskins and Valdes, 1990; Novak et al., 2015). The corresponding strong temperature gradient
will be reduced by the formation of a depression, which transports heat northward. Diabatic
heating recovers the baroclinic instablity again and the cycle then repeats (Novak et al., 2017).

By perturbation analysis, the instability of a baroclinic wave can be calculated. Phillips (1954)
calculated the time required for a baroclinic wave to double in amplitude in a two layer model.
The result of his calculation is given in Figure 1.1, where we see that an increasing shear leads to
a higher growth rate. Furthermore, the wave length of the baroclinic wave is important for the
growth rate. Too short waves are always stable and too long waves need excessive shear values to
be unstable.

A more thorough perturbation analysis results in a dispersion relation for baroclinic Rossby
waves. In the context of a two layer model and assuming only waves in x-direction, the dispersion
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relation is given by (van Delden, 2017)

ω(k) = kUM −
β
(
k2 + λ2

)
k (k2 + 2λ2)

±
√
δ (1.3)

where UM is the mean zonal wind speed, k is the total wave number, λ is a parameter that is
related to the inverse of the Rossby deformation radius and in a two layer model given by

λ2 ≡ f20
σ(δp)2

(1.4)

where δp is the difference in pressure between the two model levels and σ is the static stability,
given by

σ = −RT0
p

d ln θ0
dp

(1.5)

where R is the gas constant and T0 is the reference temperature. The parameter δ in Equation 1.3
is given by

δ =
β2λ4

k2 (k2 + 2λ2)
2 −

U2
T k

2
(
2λ2 − k2

)
(k2 + 2λ2)

(1.6)

where UT is the velocity difference between the two model levels. From the dispersion relation,
we can calculate the phase and group speed of the Rossby wave. If UT = 0, the wave is called a
barotropic Rossby wave and the group and phase speed are given by relatively simple relations. In
a baroclinic life cycle, we expect however baroclinic Rossby waves, which have more complicated
relations for the phase and group speed. In this regime, a special case exits where the phase speed
equals the group speed. The criterion for this so called dispersionless case is

UT = ± β

2λ2
(1.7)

which implies that the difference of the zonal mean zonal velocity between 250 hPa and 750 hPa
should be around 5 m s−1 in our model runs.

Chang and Orlanski (1993) showed that the largest eddy activity is not necessarily in the
regions with highest baroclinicity. In the western ocean basins, baroclinic instability is highest.
Because the group speed is often higher than the phase speed, the eddy energy radiates from
regions with high baroclinicity to regions with a lower baroclinicity, where eddy activity peaks.
Further downstream, the eddies dissipate. This process is called downstream development.

1.3 Northern Annular Mode

Especially in winter time, the strength of the momentum fluxes in baroclinic eddies in the storm
track is highly correlated with the northern annular mode (NAM) index. The NAM-index is a
zonal index, which is determined by the differences in sea-level pressure in the subtropics and the
midlatitudes (Rossby, 1939). Li and Wang (2003) modified the definition of the zonal index to
‘the normalized difference in zonal-averaged sea level pressure anomalies between 35◦N and 65◦N’.
The normalisation was done by division by the standard deviation. These specific latitudes are
taken, because the anticorrelation of the surface pressure anomaly between these latitudes has a
maximum (Lorenz, 1951; Li and Wang, 2003).

In the oscillation of the NAM, we can define two phases. In the positive phase, the surface
pressure is relatively high at low latitudes and relatively low at high latitudes. This phase is
associated with strong surface westerlies. In Northern Europe, the positive NAM phase corresponds
in winter with mild temperatures and more than average precipitation. In the negative phase, the
surface pressure difference between subpolar and subtropics is much smaller than in the positive
phase with relatively high surface pressures at high latitudes and relatively low surface pressures
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at low latitudes. This phase is associated with blocking and corresponds in Northern European
winter with dry and cold weather.

A different representation of the same oscillation as the NAM is the Arctic Oscillation (AO)
(Thompson and Wallace, 1998). The AO is based on the first empirical orthogonal function of
the complete spatial field, whereas the NAM is based on zonal averages. By studying one ocean
basin only instead of the zonal averaged circulation, one can also define regional oscillation indices.
The North Atlantic Oscillation (NAO) is a local oscillation that shows a similar pattern as the
NAM (Walker, 1924; Wallace and Gutzler, 1981). In the early 2000’s, a discussion took place in
the literature on the question whether the preferred index should be the NAM-index or the NAO-
index (Wallace, 2000; Ambaum et al., 2001). Thompson and Wallace (2000) stated that the NAO
and Pacific North America pattern (PNA) are local manifestations of the AO, where the NAO has
the strongest influence on the complete hemisphere. Ambaum et al. (2001) favour the use of the
NAO. In their view, the NAO is more physically relevant and robust for the northern hemisphere
variability than the AO.

In this thesis, we will look at the NAM. By zonally averaging, the general circulation can be
split in a zonal average zonal circulation, a zonal average meridional circulation and asymmetries
on top of those two. Furthermore, we can base a theory for the NAM on physical quantities, such
as zonal averages.

1.4 The isentropic coordinate system

In atmospheric modelling and data analysis, different vertical coordinates are used. The most
common coordinate systems have either z, the real height (in m), or p, the pressure (in hPa),
or θ, the potential temperature (in K) as a vertical coordinate. We will perform most of our
analyses with the isentropic coordinate system. An advantage of the isentropic coordinate system
is the clear distinction between diabatic and adiabatic processes. In adiabatic circumstances, the
potential temperature is conserved, from which follows that mass fluxes are parallel to isentropes.
Diabatic heating or cooling is necessary for cross-isentropic mass fluxes.

In the isentropic coordinate system, the heat transport is manifested as a mass flux. The
isentropic meridional mass flux (MMF) is given by

MMF = vσ (1.8)

where v is the meridional velocity and σ is the isentropic density, which can be calculated by

σ ≡ −1

g

∂p

∂θ
(1.9)

where g is the gravitational acceleration, p is the pressure and θ is the potential temperature.
In Figure 1.2, the zonal mean MMF and zonal mean pressure are plotted averaged over all

January months from 1979–2016 and for all latitudes ranging from 70◦S up to 70◦N. In the figure
we can clearly see the winter Hadley circulation between the equator and 25◦N, with a poleward
branch centring around 340 K and an equatorward return flow between 290 K and 310 K. Only
the winter Hadley cell is visible in the figure. On the summer side of the equator, the Hadley
circulation is very weak. In the midlatitudes on the northern hemisphere, baroclinic eddies cause
a poleward mass flux centred around 300 K and an equatorward return flow with a maximum at
280 K. The eddy activity is the most intense in the winter hemisphere. In the southern hemisphere
summer, the mass fluxes in the midlatitudes are of lower amplitude than the mass fluxes in the
northern hemisphere winter.

Momentum fluxes in the isentropic coordinate system are represented by fluxes of potential
vorticity substance (PVS). The PVS flux has only isentropic components and no cross-isentropic
terms, which means that isentropes are impermeable to PVS. This is known as the ‘impermeability
theorem for potential vorticity substance’. The meridional isentropic potential vorticity substance
flux (MPF) is given by

MPF = vζabs (1.10)
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Fig. 1.2: Ensemble monthly mean, zonal mean isentropic mass flux as a function of potential temperature
(the vertical coordinate) and latitude, for January in the period 1979–2016. Red contours and
shading corresponds to a northward mass flux. Blue contours and shading corresponds to a
southward mass flux. Contours are drawn at 50 kg s−1 K−1 per metre in longitude intervals.
Shading starts at ±5 kg s−1 K−1 per metre in longitude. Black contours represent lines of
constant pressure (isobars), labeled in hPa. Source of the data: ERA-Interim (http://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=pt/). Figure and caption are taken
from van Delden (2017).

where ζabs is the absolute vorticity on an isentrope, given by

ζabs = f + ζrel = f +

(
∂v

∂x
− ∂u

∂y

)
θ

(1.11)

where ζrel is the relative vorticity on an isentrope and u is the eastward velocity.
By using Kelvin’s circulation theorem, which states that absolute circulation is conserved, we

can give a relation between the MPF and the zonal mean zonal wind [u] at a certain latitude φ,
according to

[u]φ(t) ∝
∫ t

t0

[vζabs]φ dt
′ (1.12)

This relation implies that a poleward MPF at latitude φ leads to an increase in the zonal mean
zonal wind at latitude φ. Equatorward MPF leads to a decrease in the zonal mean zonal velocity.

As seen in the previous paragraph, fluxes can be studied by looking at the zonal mean circu-
lation. These total zonal mean fluxes can be split in a mean part and an eddy part according
to

[vX] = [([v] + v∗)([X] +X∗)] = [v][X] + [v∗X∗] (1.13)

where X is a dummy variable which e.g. represents a chemical tracer, mass or absolute vorticity.
The square brackets represent a zonal average, i.e. an average over all longitudes along a latitude
circle. The first term [v][X] is the mean part of the circulation and the second term [v∗X∗] is the
eddy part of the circulation.

1.5 MMF and MPF in reanalysis data

Recent research has shown that the monthly average NAM-index in January is strongly correlated
with the isentropic meridional mass flux in baroclinic waves at 50◦N and on the 307.5 K isentrope
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Fig. 1.3: The monthly mean isentropic meridional mass flux, in the layer between θ = 285 K and θ = 315 K
at 50◦N in January of the years 1979 to 2016, as a function of the monthly mean NAM-index,
as defined by Li and Wang (2003), based on the ERA-Interim reanalysis of January 1979-2016
(http://apps.ecmwf.int/datasets/). The NAM-index and the northward mass flux at 50◦N
are anti-correlated. The square of the correlation coefficient, is 0.62, which means that 62% of the
variance in the data is explained by the straight line. The extreme years, in terms of NAM-index,
are indicated explicitly. The relation between NAM-index and meridional isentropic mass flux
is most robust for extreme positive NAM-index. Figure and caption are taken from van Delden
(2018).

(Figure 1.3). The analyses are performed with ERA-interim reanalysis data (Dee et al., 2011).
In winters in which the NAM-index is strongly negative, the highest mass fluxes are observed.
For winters with a positive NAM-index, the isentropic mass fluxes are much weaker. A reason-
able explanation for this negative correlation is the fact that enhanced poleward mass flux at a
certain latitude φ leads to the presence of more mass northward of latitude φ. More mass leads
automatically to a higher average surface pressure northward of latitude φ and with that to a
decreased difference in surface pressure between high and low latitudes, which can be seen in a low
NAM-index. For reduced mass fluxes, this is exactly opposite and leads thus to a high NAM-index.

By looking at the longitudinal dependence of the MMF, we can distinguish two different regimes.
In Figure 1.4, a Hovmöller diagram of the total MMF in the layer between 300 K and 315 K at
50◦N is given for the January months of 2007 and 2010. The NAM index was very positive in
January 2007 and very negative in January 2010. In the beginning of January 2007, the MMF
bulges have a high propagation speed to the east. The most intense signal is found over the Pacific
and Atlantic basin. Over the Eurasian continent, the MMF is lower than over the ocean basins.
The corresponding zonal averaged MMF is low in this period. From day 19, the MMF bulges slow
down and become more stationary. The shift in propagation speed corresponds to a shift to a
more negative phase of the NAM index. The slow down of the eastward waves originate from the
Pacific region and this information is transported eastward to the Atlantic basin. The pattern in
January 2010 is more like the pattern at the end of January 2007, with a relatively low eastward
propagation speed. The corresponding zonal averaged MMF is high for this month. A negative
NAM phase thus corresponds to a stationary MMF pattern, with high zonal averaged MMF. The
positive NAM phase corresponds to a transient MMF pattern, with low zonal averaged MMF.

The positive and negative NAM phases can also be distinguished in the MPF pattern, see
Figure 1.5. The zonal average eddy MPF is plotted for January 2007 and January 2010. In the

9



CHAPTER 1 1.5. MMF AND MPF IN REANALYSIS DATA

(a) January 2007 (b) January 2010

Fig. 1.4: Total meridional isentropic mass flux at 50◦N in the layer between 300 K and 315 K. The isentropic
mass flux is given in kg m−1 K−1 s−1. Red contours correspond to northward mass transport,
blue contours to southward mass transport. The contour interval is 3000 kg m−1 K−1 s−1 and
shading starts at 1000 kg m−1 K−1 s−1. The MMF is plotted for the months Januay 2007 (a)
and January 2010 (b). The data is taken from the ERA-interim reanalysis.

(a) January 2007 (b) January 2010

Fig. 1.5: Monthly mean, zonal mean eddy isentropic PVS-flux in January 2007 (a) and in January 2010 (b)
(van Delden, 2018). The eddy MPF is given in 10−5 m s−2. Red shading corresponds to northward
eddy MPF, which in adiabatic circumstances should lead to acceleration of the zonal mean zonal
wind. Blue shading corresponds to southward eddy MPF, which in adiabatic circumstances
should lead to deceleration of the zonal mean zonal wind. Also shown is the monthly mean,
zonal mean pressure distribution (black contours, labeled in hPa) and the dynamical tropopause
(green), which corresponds to the 2 potential vorticity units contour.
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Fig. 1.6: Scatter plot of the monthly mean values of the zonal mean eddy MPF, at 315 K and 50◦N, in
January (1979–2017), and the corresponding zonal mean meridional gradient of relative vorticity,
at 315 K and 50◦N, calculated by taking the difference of the relative vorticity at 45◦N and 55◦N
and dividing by the distance between these two parallels. The meridional gradient of planetary
vorticity at 50◦N is β = 14.7 · 10−12 m−1 s−1. The red dots represent the 5 months with extreme
positive NAM-index (van Delden, 2018, Figure 11). The blue dots represent the 5 months with
extreme negative NAM-index (van Delden, 2018, Figure 11). The correlation coefficient of the
linear fit to all the dots is 0.64. Figure and caption taken from van Delden (2018).

positive NAM month, the northward eddy MPF is spread over a larger latitudinal band, namely
from 30 – 60◦N, than in the negative NAM month, where it is confined to a 30 – 50◦N. North and
south of the northward eddy MPF bulge, the eddy MPF is southward. According to Equation 1.12,
northward MPF accelerates the zonal mean zonal wind, whereas southward MPF decelerates the
zonal mean zonal wind. In both months the zonal mean zonal wind is accelerated by the eddies
in the midlatitudes and the zonal mean zonal wind is decelerated by the eddies at high and
low latitudes. We should note, however, that most of the eddy MPF activity takes place in the
stratosphere. In the rest of this thesis, we will look at tropospheric processes. The strong signals
as found in the reanalysis data are therefore not expected in our analyses.

A remarkable relation between the MPF and the vorticity gradient was found by van Delden
(2018). Normal turbulence theory prescribes a negative correlation between a flux of some sub-
stance with its gradient. Fluxes are down-gradient in this theory. In Figure 1.6, the relation
between the zonal mean eddy MPF and the meridional gradient of relative vorticity are given for
January (1979–2017). On the horizontal axis, the relative vorticity is given. To obtain the absolute
vorticity, the latitudinal variation in the Coriolis parameter, β, should be added to the values given
on the horizontal axis. The absolute vorticity gradient is positive for all January months and the
correlation between these two variables is positive. By looking at the positive NAM months, the
correlation is stronger than for the negative months. The up-gradient transport of eddy MPF is
associated with a phenomenon called negative viscosity (Starr, 1968).

1.6 Research questions

We want to study the processes that determine the isentropic meridional mass fluxes and with
that we want to understand the causes of the high and low NAM phases. Because most of the
meridional mass transport in the midlatitudes is caused by baroclinic eddies, we will look at
meridional mass fluxes in baroclinic eddies. We will especially study the poleward branch of the
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MMF. In the isentropic coordinate system, the poleward branch of the midlatitude MMF can be
analysed properly without taking into account diabatic effects. The equatorward return flow ‘hits’
the Earth’s surface and is captured in the underworld. Only diabatic effects lead to cross isentropic
fluxes, which return the flow to the equator.

For this thesis, we will simulate baroclinic life cycles with an idealised model. In different
simulations, we tune a variety of model parameters and initial conditions to study the sensitivity
of the modelled baroclinic waves to the different parameters. The sensitivity study helps us in
understanding the physical processes behind the variation of the Northern Annular Mode. With a
reference to Figure 1.2, we want to understand all fluxes that are visible in the data. Which fluxes
are caused by baroclinic eddy activity? Which processes cause a high MMF?

In Chapter 2, a more elaborate description of the model is given. In Chapter 3, the results
of different model runs are shown. Chapter 4 discusses the implication of the results and the
restrictions of the model used. Finally, Chapter 5 gives the conclusions of this research and gives
an outlook to further research.

12



2. MODEL DESCRIPTION

To simulate the life cycle of a baroclinic wave, we used a primitive equation model. The basis of
the model is a closed set of equations, which is referred to as primitive equations. The model is
written in σ-coordinates, where the levels are expressed as a fraction of the surface pressure. σ runs
from 0 to 1, where σ = 0 corresponds to p = 0 and σ = 1 corresponds to p = ps. In this grid point
model, the convergence of meridians to the north is neglected, which implies that the grid spacing is
constant over the complete domain. The model is simplified to a β-plane model, where the Coriolis
parameter is approximated by f = f0 + βy. f0 and β are taken at the central latitude φ0 = 45◦N
with a value of f0 = 2Ω sin(45◦) ≈ 1.035 · 10−4 s−1and β = 2Ω/a cos(45◦) ≈ 1.625 · 10−11 m−1 s−1,
where Ω is the angular speed of the Earth’s rotation and a is the radius of the Earth. The model
equations are written in flux form and are in adiabatic conditions given by (van Delden, 2017)

∂ps
∂t

+
∂psu

∂x
+
∂psv

∂y
+ ps

∂

∂σ

(
dσ

dt

)
= 0 (2.1)

∂Φ

∂σ
= −RT

σ
(2.2)

∂psθ

∂t
= −

(
∂psuθ

∂x
+
∂psvθ

∂y

)
− ∂

∂σ

(
psθ

dσ

dt

)
+
psJ

Π
(2.3)

∂psu

∂t
= −

(
∂psu

2

∂x
+
∂psuv

∂y

)
− ∂

∂σ

(
psu

dσ

dt

)
+ (f0 + βy) psv −

(
ps
∂Φ

∂x
+RT

∂ps
∂x

)
(2.4)

∂psv

∂t
= −

(
∂psuv

∂x
+
∂psv

2

∂y

)
− ∂

∂σ

(
psu

dσ

dt

)
− (f0 + βy) psu−

(
ps
∂Φ

∂y
+RT

∂ps
∂y

)
(2.5)

∂ps
∂t

= −
∫ 1

0

∂psu

∂x
+
∂psv

∂y
dσ (2.6)

In this set of equations, the horizontal velocity (u and v), the vertical velocity (dσ/dt), the geopo-
tential (Φ), the surface pressure (ps) and the potential temperature (θ) are the variables to be
updated at every time step by the model. The potential temperature can be calculated according
to

θ = T

(
p

pref

)κ
(2.7)

where T is the temperature, pref = 1000 hPa and κ = R/cp ≈ 0.286, the gas constant over the
heat capacity at constant pressure. The term psJ/Π in Equation (2.3) is the diabatic term, where
J is the diabatic heating per unit mass per unit time and Π is the Exner function given by

Π = cp

(
p

pref

)κ
(2.8)

The diabatic heating and cooling in the model is given by a simple parametrisation of radiative
flux divergence as

∂T

∂t
= −αN (T − TR) (2.9)

where αN is the Newtonian cooling coefficient and TR is the radiative determined temperature,
which is the initial model state. The inverse of the Newtonian cooling coefficient gives a time scale
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on which the system returns back to the original state. The real time scale of a baroclinic life cycle
is 5 – 10 days, which corresponds to a Newtonian cooling coefficient in the order of 10−6 s−1.

The advection, pressure gradient and Coriolis term are approximated with the MacCormack
scheme, which is a predictor–corrector scheme (Mendez-Nunez and Carroll, 1993). The surface
pressure equation is solved using centred differences in space and the same predictor–corrector
scheme as in the MacCormack scheme in time (van Delden, 2017). The model time step is 10
seconds. Every three hours of model time, the fields of ps, psu, psv and psθ are smoothed using a
horizontal five-point smoother.

The simulations are performed with a primitive equation model with 25 layers in the vertical
(PeN25-model). The horizontal domain has the shape of a channel of 360◦ in longitude with
periodic boundary conditions in east-west direction and 90◦ in latitude with open boundaries on the
north and south side. The horizontal spacing is divided in 288 points in x-direction (∆x = 1.25◦)
and in 101 points in y-direction (∆y = 0.9◦).

In the initial situation the geopotential is given by (van Delden, 2017)

Φ(x, y, p, t = 0) = Φ0(p)− yscalef0U0 tanh

(
y − y0
yscale

)
cos

(
πp

2p0

)
(2.10)

where Φ0 is the geopotential at y = y0, the central latitude, yscale is the width of the temperature
front and the associated jet and U0 the maximum wind speed in the associated jet. The surface
pressure is initially prescribed as a homogeneous field with a value of 1000 hPa. The geopotential
at y = y0 can be calculated from the integration of the hydrostatic equation. To be able to perform
this integration, we need the temperature at the central latitude T0, which is given by

T0(z) = T0(z = 0)− Γ0z (2.11)

where T0(z = 0) = 285 K and Γ0 is the temperature lapse rate. In the model, the temperature
lapse rate is a model parameter which is constant during a model run.

Fig. 2.1: Geostrophic zonal wind with U0 = 50 m s−1 and yscale = 500 km, and potential temperature,
according to thermal wind balance, as a function of latitude and pressure at initial time in the
model. Labels are indicated in m s−1 and K, respectively. Figure and (modified) caption taken
from van Delden (2017).
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From the geostrophic balance, the geostrophic jet can be calculated from the geopotential
according to

ug(x, y, p, t = 0) = U0 cos

(
πp

2p0

)(
1− tanh2

(
y − y0
yscale

))
(2.12)

The temperature at every latitude can be calculated by using the thermal wind equation.
Figure 2.1 gives the initial distribution of the potential temperature θ and zonal wind u in the
model.

The zonal structure of the initial flow field is perturbed by making the reference latitude
dependent on longitude, according to

φ0(x) = φ00 + C sin

(
2πkx

Lx

)
(2.13)

where φ0 is latitude around which the front is centred, C is the latitudinal extent of the meandering
front and k is the initial wave number. The initial wave number gives the number of waves in the
complete domain of the model in the initial meandering front and is a model parameter that can
be set at the beginning of the model run.

To sum up, the parameters in the model that are tunable are the temperature lapse rate Γ0,
the width of the front yscale, the strength of the jet U0, the Newtonian cooling coefficient αN and
the initial wave number k. For this thesis, several model runs are performed with different initial
conditions and different model parameters.

The raw model output, which is vertically calculated at σ-levels, is interpolated to pressure or
isentropic levels for analysis. If the vertical coordinate is pressure, the velocities, geopotential and
potential temperature at each level are saved. If the vertical coordinate is potential temperature,
the velocities, isentropic density and pressure are saved at all levels. The analysis of the results is
discussed in Chapter 3.
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3. RESULTS

3.1 Initial conditions

We performed different runs with the 25 level model with different initial conditions. The model
parameters were the same during all runs: Γ = 6.5 K km−1, αN = 1.0 · 10−6 s−1, yscale = 500 km,
U0 = 50 m s−1. The difference is the initial zonal wave number k. A first remarkable result that
follows from the simulation, is that the initial condition of the model is important for the solution.

Although all runs are initially baroclinically unstable, the runs behave differently after the first
development of a baroclinic wave. In Figure 3.1, the surface pressure, potential temperature and
wind vectors at the 850 hPa level are plotted for k = 5 and k = 6 at day 21.75. In the run with
k = 5 (Figure 3.1a), a wave train of low pressure systems develops after the first few baroclinic
life cycles. Eventually, the wave number doubles to 10. The final situation is an approximately
statistically stable situation, in which the low pressure systems are advected eastward. During the
advection no growth and decay of new baroclinic unstable situations occurs. In the run with k = 6
(Figure 3.1b), new waves grow in amplitude. A new low pressure system grows and the established
low pressure system decays. The process of growth and decay is visible during the complete model
run. The run with k = 4 has, after an initial development of baroclinic life cycles, also a doubling
of the initial wave number, which is similar as in k = 5. During the run with k = 7, new baroclinic
life cycles develop. The mass fluxes corresponding to these life cycles are weaker than for k = 6.

In Table 3.1, the wave lengths corresponding to the different wave numbers k are given. In
Figure 3.2, the results of the stability analysis of Phillips (1954) is shown with the parameters
used in the 25 layer primitive equation model. Furthermore, the condition of the model is given at
different times for the runs with k = 5 and k = 6. Initially, all model solutions are unstable with a
shear of 3.2 m s−1 km−1 averaged between 250 hPa and 750 hPa. After the first few baroclinic life
cycles, the shear has decreased to 1.4 m s−1 km−1 averaged between 250 hPa and 750 hPa. Wave
numbers k = 6 and k = 7 seem still unstable during the complete model run, where k = 6 is the
fastest growing mode. However, according to the theory of Phillips, the shear is too low to have an
unstable situation. An explanation for the disagreement between the theory and the results could
be that Phillips’ theory, which is designed for a two layer model, is not one-to-one translatable to
a 25 layer model. Wave numbers k = 4 and k = 5 are doubled during the model runs. The wave
numbers k = 8 and k = 10 have a too short wave length for unstable solutions.

To study the MMF in the runs with k = 5 and k = 6 in more detail, a time average of the
zonal average total isentropic mass flux is plotted in Figure 3.3. We see that around 300 K and
45◦N a bulge of northward mass flux is visible in all simulations. The northward mass transport is
compensated by a southward mass transport in the lowest layer of the atmosphere. The circulation

Wave number k Wave length

4 8.8 · 103 km
5 7.1 · 103 km
6 5.9 · 103 km
7 5.1 · 103 km
8 4.4 · 103 km
10 3.5 · 103 km

Tab. 3.1: The wave lengths of the baroclinic waves corresponding to the different wave numbers.
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Fig. 3.1: Surface pressure (red and brown contours), potential temperature (red and blue shading) at the
850 hPa level and wind vectors at the 850 hPa level at day 21.75 in a part of the domain. The
surface pressure is plotted in hPa with a contour interval of 2 hPa, where red contours are used for
p ≤ 1000 hPa and brown contours are used for p ≥ 1002 hPa. Red shading is used for θ ≥ 295 K
and blue shading is used for θ ≤ 285 K. In these runs, Γ0 = 6.5 K km−1, yscale = 500 km,
U0 = 50 m s−2 and αN = 1.0 · 10−6 s−1. The initial wave number k is different for both runs.
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Fig. 3.2: The time in days required for an unstable wave in the two-level model to double its amplitude,
given as a function of the vertical wind shear in the basic current and the wavelength as calculated
from citetphillips1956 with the parameters used in our PeN25 model. The dots represent the state
of the PeN model during a certain run and time. The upper red dots are the conditions at t = 3
hours for k = 5 and k = 6, the lower blue dots are averages over t = 1200 − 1500 hours for k = 5
and k = 6. A dot for the wave length corresponding to k = 10 is also given, because the k = 5
run doubles its wave length.

25 30 35 40 45 50 55 60 65
Latitude (degrees)

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

Po
te

nt
ia

l t
em

pe
ra

tu
re

 (K
)

200

300

400

500

600

700

800

900

50

100

50
100 100

200300
300

(a) k = 5

25 30 35 40 45 50 55 60 65
Latitude (degrees)

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

Po
te

nt
ia

l t
em

pe
ra

tu
re

 (K
)

200

300

400

500

600

700

800

900

50

100
50

50
100

200
300400

400

(b) k = 6

Fig. 3.3: Zonal mean time mean total isentropic mass flux (red and blue contours) and zonal mean
pressure (black contours) for different initial wave numbers. The zonal mean isentropic mass flux
is plotted in kg m−1 K−1 s−1. Red is northward flux, blue is southward flux. The shading starts
at 10 kg m−1 K−1 s−1. The zonal mean pressure is plotted in hPa. The time average is taken
over model days 30 – 60. The model parameters are the same as in Figure 3.1.

18



CHAPTER 3 3.1. INITIAL CONDITIONS

0 5 10 15 20 25 30 35 40 45 50 55
Time (days)

40

0

40

80

120

160

Ise
nt

ro
pi

c 
m

as
s f

lu
x

Mean MMF
Eddy MMF
Integrated total MMF

(a) k = 5

0 5 10 15 20 25 30 35 40 45 50 55
Time (days)

40

0

40

80

120

160

Ise
nt

ro
pi

c 
m

as
s f

lu
x

Mean MMF
Eddy MMF
Integrated total MMF

(b) k = 6

Fig. 3.4: Zonal mean isentropic mass flux at 307.5 K and 45◦N. The isentropic mass flux is split into a
mean part (red) and an eddy part (blue), both given in kg m−1 K−1 s−1. In black, the integrated
total isentropic mass flux is given in 107 kg m−1 K−1. Positive values correspond to northward
mass transport, negative values to southward mass transport. The model parameters are the
same as in Figure 3.1.

and the magnitude of the mass fluxes are comparable to the MMF found in the reanalysis data as
shown in Figure 1.3. In the more statistically stable situation, model days 30 – 60, the northward
mass flux is higher in the run with k = 5. The northward mass transport is, however, spread over
a larger range of latitudes for k = 6.

By looking at time series (Figure 3.4), the difference between the runs can be visualised. The
mean MMF is negatively correlated with the eddy MMF. For k = 5, the model run starts with
3 events of 8 – 9 days in which a northward eddy MMF reduces the baroclinicity. After these 3
events, both the mean and eddy MMF are approximately constant. The constant MMF belongs
to the state in which almost no growth and decay of low pressure systems occurs. During this
stage, the MMF is necessary to compensate the restoring mechanism of the Newtonian cooling.
The compensation occurs at the same rate as the restoration, so no net baroclinicity is built up.

After an initial stage in the run with k = 6, the baroclinicity is recovered enough to sustain
growth and decay of low pressure systems. The eddy MMF has northward pulses with a period
of 4 – 5 days and the mean MMF compensates this with southward pulses, which are smaller in
amplitude. The amplitude of the oscillation slowly decays towards the end of the run. The cyclic
behaviour between baroclinicity and MMF, or in pressure coordinates heat flux, was studied by
Ambaum and Novak (2014), who compared this behaviour with a simple predator-prey model.

The longitudinal dependence of the MMF is shown in a Hovmöller diagram in Figure 3.5. We
see that the solution is translational symmetric. The difference between k = 5 and k = 6 becomes
very clear after the initial ‘start up’ phase. Two regimes seem to exist. In Figure 3.5a, the doubling
of the initial wave number is clearly visible. This regime consists of relatively fast propagating
waves with a constant amplitude. No growth and decay of baroclinic life cycles is visible in the
Hovmöller diagram. A positive NAM-phase shows a similar pattern (see Figure 1.4a), with fast
propagating low pressure systems. The second regime (Figure 3.5b) shows a regime with a more
stationary pattern. Baroclinic life cycles grow and decay with a time period of about 4 days
and have a lower eastward propagation speed. This regime shows similarities with the negative
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Fig. 3.5: Total meridional isentropic mass flux at 307.5 K and 45◦N. The isentropic mass flux is given
in kg m−1 K−1 s−1. Red contours correspond to northward mass transport, blue contours to
southward mass transport. The contour interval is 1000 kg m−1 K−1 s−1 and shading starts at
500 kg m−1 K−1 s−1. The model parameters are the same as in Figure 3.1.

NAM-phase (see Figure 1.4b), where large bursts of MMF occur at specific locations.
For initial wave number k = 6, we see clearly a different phase speed and group speed. The

phase speed is cx = 5.7 m s−1 and the group speeds is cg,x = 12.6 m s−1. The fact that the group
speed is higher than the phase speed is in accordance with the theory given in Section 1.2. The
exact values can however not be reproduced by the two layer theory. The phase and group speeds
are equal for all levels in the atmosphere. The level at which cx = [u] is called the steering level.
In the run with k = 6, the steering level is at the central latitude found just above the 290 K
isentrope.

For k = 5, final situation gives a phase speed of cx = 5.1 m s−1. The group speeds seems equal
to the phase speed, as there is no group visible travelling with a different speed. According to
the barotropic theory, the group speed and phase speed are equal if the model solution meets the
condition in Equation 1.7. UT is calculated as the difference in zonal mean zonal velocity between
250 hPa and 750 hPa. Initially, UT ≈ 30 m s−1. However, the shear decreases relatively quick to
final values between 10 and 14 m s−1 for the different model runs. The dispersionless condition,
which needs UT to be around 5 m s−1, is not exactly met. However, the solutions of the phase
speed and group speed are real between t = 1200 hours and t = 1500 hours for k = 5 , whereas
the solutions contain an imaginary part for k = 6. The imaginary part of the Rossby wave speed
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CHAPTER 3 3.2. NEWTONIAN COOLING

gives an explanation for the instability of the Rossby wave for k = 6. The absence of an imaginary
part then gives an explanation for the baroclinically stable regime in the run with k = 5.

In Figure 3.6, a time average of the zonal average of eddy potential vorticity substance flux is
plotted for model days 10 – 30 and days 30 – 60. By comparing Figures 3.6a and 3.6b, we see that
the eddy PVS fluxes are higher for k = 5 than for k = 6. According to Equation 1.12, the zonal
mean zonal velocity [u] increases as a consequence of momentum convergence when the MPF is
positive (northward) and decreases as a consequence of momentum divergence when the MPF is
negative (southward). We see that the MPF is positive on the south side of the jet and negative
on the north side of the jet. This dipole causes a southward shift of the jet, because the jet is
accelerated on the south side and decelerated on the north side. The dipole is stronger for k = 5
than for k = 6. In Figures 3.6c and 3.6d, it can be identified that, at the 295 K isentrope, the jet
is located more southward for k = 5 than for k = 6.

3.2 Newtonian cooling

In the previous section, all model parameters were kept constant and the only variation between
model runs was the different initial wave number k. In this section, we will look at variations
between model runs with a different Newtonian cooling coefficient αN . In the standard runs
(Section 3.1), the Newtonian cooling coefficient was equal to αN = 1.0·10−6 s−1, which corresponds
to a response time of the system of 11.6 days. In Figure 3.7, the time average of the zonal average
MMF is plotted for αN = 0.5 · 10−6 s−1 and for αN = 2.0 · 10−6 s−1. It is clear that the MMF
is larger for a higher value of the Newtonian cooling coefficient, which is consistent with reality
where a stronger diabatic forcing leads to a higher MMF. The Newtonian cooling forces the system
back to its original situation, which is baroclinically unstable. High αN corresponds to a short
time scale, which leads to a stronger forcing than for low αN . This is consistent with the signal in
Figure 3.7.

If the Newtonian cooling coefficient is too low, the system is not able to return to a baroclinically
unstable situation. The system then is baroclinically stable and no new baroclinic life cycles
develop. For higher αN , the development of new baroclinic waves is maintained. However, the
maximum strength of the MMF-peaks slowly decreases in Figure 3.4b for αN = 1.0 · 10−6 s−1.
Probably, a longer run would eventually evolve to the wave train without MMF bursts, but this is
not verified. If αN is a factor 2 higher, the peak height is constant in time, which probably could
sustain the growth and decay of baroclinic life cycles for a long time.

3.3 Static stability

In Figure 3.8, the static stability is changed for different runs. These runs are performed on a
smaller domain than all other results presented in this chapter. The domain spans over 60◦ in
x-direction (∆x = 0.83◦) and from 10.5◦N until 79.5◦N in y-direction (∆y = 0.6◦).

We see that for a lower static stability (high temperature lapse rate), the isobars are closer
together than for a high static stability. The northward MMF is larger for a lower static stability.
In the isentropic coordinate system, the maximum of the northward MMF bulge remains at the
same height for both runs. However, in isobaric coordinates, the maximum of the northward MMF
bulge is higher in the atmosphere for a lower static stability.

3.4 Front width and strength

To study the influence of the front parameters, runs with different front widths and strengths are
performed. By enhancing the front width yscale, the total temperature gradient at the surface
becomes larger. A wider baroclinic zone exists. In Figures 3.9a and 3.9b, the strength of the jet
U0 is kept constant, but the width of the front is changed. A narrower front leads to a smaller
baroclinic zone. For a wider front, both the total slope and the steepness of the slope are larger.
The latitudinal band over which the MMF is spread is wider and the centre of the northward MMF
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(a) k = 5, day 10 – 30
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(b) k = 6, day 10 – 30

bla

25 30 35 40 45 50 55 60 65
Latitude (degrees)

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

Po
te

nt
ia

l t
em

pe
ra

tu
re

 (K
)

 5

1015

200

300

400

500

600

700

800

900

2
6

8

2

2

2 2

6

8

12

12

20

(c) k = 5, day 30 – 60
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(d) k = 6, day 30 – 60

Fig. 3.6: Zonal mean time mean eddy PVS flux (red and blue contours), zonal mean pressure (black
contours) and zonal mean zonal velocity (dashed contours) for different initial wave numbers and
different time frames. The zonal mean PVS flux is plotted in 10−6 m s−2. Red is northward flux,
blue is southward flux. The shading starts at 1 m s−2. The zonal mean pressure is plotted in
hPa and the zonal mean zonal velocity is plotted in m s−1. The model parameters are the same
as in Figure 3.1.
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(a) αN = 0.5 · 10−6 s−1
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(b) αN = 2.0 · 10−6 s−1

Fig. 3.7: Zonal mean time mean total isentropic mass flux (red and blue contours) and zonal mean
pressure (black contours) for different initial wave numbers. The zonal mean isentropic mass flux
is plotted in kg m−1 K−1 s−1. Red is northward flux, blue is southward flux. The shading starts
at 10 kg m−1 K−1 s−1. The zonal mean pressure is plotted in hPa. The time average is taken
over model days 30 – 60. In these runs, Γ0 = 6.5 K km−1, yscale = 500 km, U0 = 50 m s−2 and
k = 6. The Newtonian cooling coefficient αN is different for both runs.

bulge is higher in the atmosphere. The strength of the maximum MMF seems not influenced by
the width of the baroclinic zone.

In Figures 3.9c and 3.9d, the slope of the isentropes is kept constant, by keeping the product
yscaleU0 constant. Figure 3.9c shows a wider front (yscale = 600 km) with a weaker jet (U0 =
41.67 m s−1), whereas Figure 3.9d shows a narrower front (yscale = 400 km) and a stronger jet
(U0 = 62.5 m s−1). We see that the northward MMF is stronger for a narrower and stronger
jet. The latitudinal extent as well as the depth of both MMF bulges is similar. Although the
baroclinicity is similar in both model runs, the mass flux is strongly influenced by different jet
structure. This can be explained by the Eady growth rate (Equation 1.2). By comparing the runs
in Figure 3.9c and 3.9d, f and N are similar, but dU0/dz is larger in Figure 3.9d. The Eady growth
rate is thus larger for the stronger jet, which causes a larger MMF than in the weaker jet.

3.5 Longitudinal variations

In all previous sections of this chapter, the boundary conditions were homogeneous. The initial
conditions had a translational symmetry that was not broken by the boundaries. In this section,
the Newtonian cooling coefficient αN is not constant over the complete domain. Between 40◦ and
100◦ it is four times as high as in the rest of the domain, see Figure 3.10a. During the first 25 days,
the system sustains the symmetry. From day 30 the initial growth of baroclinic life cycles still
occurs at various latitudes. However, the strongest baroclinic life cycle development occurs in the
region with a higher αN . The baroclinic wave travels eastward to a region where the baroclinicity
is recovered at a lower rate. However, the energy of the first decayed life cycle is radiated eastward
and is used for the development for the next baroclinic life cycle (Chang and Orlanski, 1993).
Downstream of the first baroclinic life cycle, new life cycles grow, decay, are advected and repeat
this cycle.
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(a) Γ0 = 6.0 K km−1
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(b) Γ0 = 7.0 K km−1

Fig. 3.8: Zonal mean time mean total isentropic mass flux (red and blue contours) and zonal mean pressure
(black contours) for different values of the temperature lapse rate. The zonal mean isentropic
mass flux is plotted in kg m−1 K−1 s−1. Red is northward flux, blue is southward flux. The
shading starts at 10 kg m−1 K−1 s−1. The zonal mean pressure is plotted in hPa. The time
average is taken over model days 30 – 60. In these runs, αN = 6.0 · 10−6 s−1, yscale = 500 km,
U0 = 50 m s−2 and k = 6. The temperature lapse rate Γ0 is different for both runs.

The model run shown in Figure 3.10b, is initialised with a straight zonal front without a
superposed wave. Between 40◦ and 100◦, the Newtonian cooling coefficient is αN = 2.0 · 10−6 s−1.
In the rest of the domain, the Newtonian cooling coefficient is equal to zero. The first development
of growing baroclinic wave activity occurs after about 10 days. The growth is on the east side of
the region where a non-zero Newtonian cooling coefficient is. The growth occurs thus in a region
without any direct forcing. The next baroclinic life cycle grows again downstream of the previous
one. The energy to grow baroclinic life cycles is thus advected eastward with the group speed of
the Rossby waves, which is a higher speed than the phase speed of an individual wave. Between
day 20 and 40, the strongest baroclinic life cycles grow and decay. The Rossby wave train that
is formed in the domain has a wave number 6. This wave number is thus a wave number that is
preferred by the system and the wave number with the largest growth rate.

3.6 Correlations between variables

The eddy MMF is the most important part of the total MMF in the baroclinic mass circulation.
The eddy MMF seems to be driven by the eddy MPF. In Figure 3.11, the eddy MPF at 39.6◦N
and 307.5 K is plotted against the eddy MMF at 39.6◦N and 307.5 K. Every point in the figure
corresponds to a different model run, which is time averaged over a time period of 50 days, starting
at day 12.5. A moderate positive correlation is found between these two variables around the centre
of the jet. If the eddy MPF is almost equal to zero, the eddy MMF is very low. Higher eddy MPF
at 39.6◦N cause a higher MMF at 39.6◦N. The relation between these variables is different than in
the ERA-interim reanalysis, where a negative correlation is found (van Delden, 2018).

As seen in Figure 1.6, the eddy MPF fluxes can be up-gradient. To test the flux-gradient
relation in the model solution, a time average (day 12.5 to 62.5) of the eddy MPF at 39.6◦N and
the average meridional gradient in absolute vorticity between 34.2◦N and 45.0◦N is given for all

24



CHAPTER 3 3.6. CORRELATIONS BETWEEN VARIABLES

25 30 35 40 45 50 55 60 65
Latitude (degrees)

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

Po
te

nt
ia

l t
em

pe
ra

tu
re

 (K
)

200

300

400

500

600

700

800

900

50

100

50 100
200300

300

(a) k = 5, yscale = 400 km, U0 = 50 m s−1
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(b) k = 5, yscale = 600 km, U0 = 50 m s−1
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(c) k = 6, yscale = 600 km, U0 = 41.67 m s−1
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(d) k = 6, yscale = 400 km, U0 = 62.5 m s−1

Fig. 3.9: Zonal mean time mean total isentropic mass flux (red and blue contours) and zonal mean pressure
(black contours) for different initial wave numbers. The zonal mean isentropic mass flux is plotted
in kg m−1 K−1 s−1. Red is northward flux, blue is southward flux. The shading starts at
10 kg m−1 K−1 s−1. The zonal mean pressure is plotted in hPa. The time average is taken over
model days 30 – 60. In these runs, Γ0 = 6.5 K km−1 and αN = 1.0 · 10−6 s−1. The initial wave
number k and the front parameters (yscale and U0) differ for the different runs.
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model runs in Figure 3.12. These specific latitudes are taken to catch the northward branch of
the MPF. The eddy MPF is taken in the centre of the latitudinal band for the absolute vorticity
gradient. In all model runs, the eddy vorticity flux is positive (which means northward), whereas
the gradient is positive (increasing in northward direction) as well. Furthermore, a higher absolute
vorticity gradient is causing a higher eddy MPF. The model shows thus a similar pattern as seen
in the ERA-interim reanalysis data.
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Fig. 3.10: Total meridional isentropic mass flux at 307.5 K and 45◦N. The isentropic mass flux is given
in kg m−1 K−1 s−1. Red contours correspond to northward mass transport, blue contours to
southward mass transport. The contour interval is 1000 kg m−1 K−1 s−1 and shading starts at
500 kg m−1 K−1 s−1. In this runs, Γ0 = 6.5 K km−1, yscale = 500 km and U0 = 50 m s−2.
The Newtonian cooling coefficient is dependent on longitude and has the value αN = 2.0 ·
10−6 s−1 between 40◦ and 100◦. At all other longitudes, αN = 0.5 · 10−6 s−1 in Figure 3.10a
and αN = 0 s−1 in Figure 3.10b. In Figure 3.10a, the intial wave number is k = 6. The solution
of Figure 3.10b is initialised with a straight zonal front ( k = 0).
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Fig. 3.11: The eddy MPF at 39.6◦N and
307.5 K plotted against the eddy
MMF at 45◦N and 307.5 K. Every
point is the time average of a dif-
ferent model run between day 12.5
and day 62.5. The positive correla-
tion between both variables is mod-
erate (r = 0.42).

26 28 30 32 34 36
Absolute vorticity gradient (10^-12 s^-1 m^-1)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ed
dy

 M
PF

 (1
0^

-5
 m

 s^
-2

)

Fig. 3.12: The eddy MPF at 39.6◦N and
307.5 K plotted against the average
meridional gradient in absolute vor-
ticity between 34.2◦N and 45.0◦N at
307.5 K. Every point is the time aver-
age of a different model run between
day 12.5 and day 62.5. The positive
correlation between both variables is
strong (r = 0.72).
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4. DISCUSSION

By comparing all results, the importance of the different parameters can be discussed. The initial
wave number of the perturbation on the front is an important parameter. Different wave lengths
give a different instability. The most preferred modes give large pulses of northward mass flux,
whereas some wave numbers are not unstable at all and result in a small and constant mass
flux caused by the fact that Newtonian cooling coefficient creates baroclinicity that needs to be
‘removed’ from the system.

The most important parameter that drives the northward MMF bulge at 45◦N and 307.5 K
is the Newtonian cooling coefficient. A doubling of this parameter almost leads to a doubling in
MMF. A high Newtonian cooling creates a baroclinically unstable situation in a short time period.
The baroclinicity has to be reduced by strong baroclinic life cycles that are associated with high
MMF.

The static stability and front strength and width are also of some influence on the MMF, but
this influence is much weaker than the influence of the Newtonian cooling coefficient.

4.1 Comparison to ERA-interim

The model results shown in Chapter 3 can be compared to reanalysis data from ERA-interim
discussed in Section 1.5. As already seen in Section 3.1, the large scale features of the MMF in
the model is similar to the MMF in reanalysis data. In the midlatitudes a northward branch of
MMF is located around the 300 K isentrope. The order of magnitude of the maximum MMF
in the model is comparable to the maximum MMF in the reanalysis data with values of about
100 kg s−1 m−1 K−1.

As already shortly discussed in Section 3.1, the runs with a different initial wave number show
different regimes. In reanalysis data, the different regimes are also visible. The model is a more
idealistic situation than reality and maintains the translational symmetry. However, the solution
with intial wave number k = 5 has some similarities with the positive NAM phase that occurred in
the beginning of January 2007. Both contain relatively fast eastward propagating Rossby waves.
The solution with intial wave number k = 6 shows similarities with the negative NAM phase. Both
patterns are more stationary with preferred locations for northward MMF and preferred locations
for southward MMF.

The MPF in the model (Figure 3.6) show also a similar pattern as in the reanalysis data
(Figure 1.5). Around 40◦N, the MPF is northward and at higher latitudes, the MPF is southward.
In the low NAM regime, the northward MPF is more concentrated in the subtropics, where it
reaches until 50◦N, than in the positive NAM regime, where it reaches until 60◦N. The MPF
patterns in the solution have a northward MPF centred around 40◦N and a southward MPF centred
around 55◦N. A large difference between a positive and negative NAM phase is not found in the
model. However, the positive NAM phase is associated with stronger MPF than the negative phase.
Wave number k = 5 leads to stronger MPF fluxes in the model and can therefore be associated
with a more positive NAM phase. The southward shift in the jet is also larger in this solution.
The magnitude of the MPF in the model solutions is lower than in the reanalysis data. This could
be caused by the fact that the model simulates the tropospheric baroclinic life cycles, whereas the
largest MPF signal in the reanalysis is visible in the lower stratosphere. The lower magnitude
results furthermore in a smaller shift in the jet. The idealistic situation in the model forces the jet
to the central latitude, which is a complete different setup compared to the real atmosphere.



CHAPTER 4 4.2. MODEL RESTRICTIONS

4.2 Model restrictions

As we have seen, the model solutions result in realistic values for the MMF in the midlatitudes.
The differences between the different model runs are however smaller than the difference that can
be observed in the real atmosphere comparing different years. The ‘positive NAM’ and ‘negative
NAM’ phases in the model are closer together than the positive NAM winters and the negative
NAM winters in the reanalysis data. In reality the jet stream is more confined in a positive
NAM phase. It can have two ‘branches’ in the negative NAM phase, one in the subpolar region
and one in the subtropic region, which are jet streaks located at the troughs and ridges of the
meandering Rossby wave. In the model, the jet is forced around 45◦N and has no opportunity to
meander strongly. The Newtonian cooling keeps the frontal zone at the central latitude, causing
automatically a smaller spread in jet stream position. The forced location of the jet stream could
explain the relatively small differences in total mass flux between the runs with a different initial
wave number.

The model is a very idealistic display of reality. The boundary conditions are zonally symmetric
and the initial conditions are already very baroclinically unstable in most runs. However, the run
with a zonal front (see Section 3.5), shows that a complete zonal initial condition also results in
baroclinic instability with a preferred wave number of k = 6.

The model furthermore only simulates the baroclinic zone. Any influences of the tropical Hadley
circulation or the stratosphere are ignored. Even with this simplifications, the simulated MMF is
comparable to the realistic values. A question that however cannot be answered is the influence
of the Hadley circulation on the strength of the MMF. In reality, a part of the northward branch
of the MMF originates from the Hadley circulation. The second part originates from the low level
equatorward MMF caused by the baroclinic life cycles in cold air outbreaks. In the model, the
Newtonian cooling forces the system back to the original state and delivers enough mass to the
subtropical region for the circulation.
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5. CONCLUSION

We have simulated the baroclinic life cycle with a 25 layer primitive equation model. In different
model runs, the solution for various initial conditions and model parameters is calculated.

If the model has exactly similar boundary conditions, the solutions are still sensitive to different
initial conditions. Certain initial wave numbers are preferred by the model. The fastest growing
mode in our model is the mode with k = 6. This mode has development of baroclinic waves during
the entire model period with corresponding peaks in the northward MMF at 45◦N and 307.5 K.
The model solution for k = 6 shows similarities with the negative phase in the NAM-index in
reanalysis data. The modes k = 4 and k = 5 end as a ‘wave train’ with a doubling in wave
number. The MMF is constant in time and the atmosphere seems to be marginally stable. These
modes show patterns similar to the positive NAM-index phase seen in the reanalysis data.

An important parameter for the strength of the MMF is the Newtonian cooling coefficient
αN , the force that restores the initial baroclinically unstable situation. A high αN results in high
northward MMF at 45◦N and 307.5 K. A more stable atmosphere, with a lower temperature lapse
rate, decreases the MMF. Increasing the strength of the jet associated with the temperature front,
the MMF is also increased.

All model results with constant model parameters result in translational symmetric solutions.
Breaking the translational symmetry by prescribing a specific region with a higher Newtonian
cooling coefficient, results in the development of baroclinic life cycles downstream of the region
with high baroclinicity. A relatively narrow region with an enhanced baroclinic forcing is able to
develop new life cycles downstream, even if a zonally symmetric condition is prescribed.

5.1 Outlook

The model is simplistic and further implementations can be done in the future. One of them
is simulating a larger domain and prescribing with a seasonal cycle. On the large domain, the
equilibrium temperature prescribed by James (1994) can be used. In Appendix A, some calculation
are given for the inclusion of the seasonal cycle in the model using the equilibrium temperature
distribution by James (1994).

A further interesting test for the model, would be to include a Hadley circulation. With this
implementation, the flow of mass around 30◦N can be simulated. A part of the downwelling at
the northern end of the Hadley circulation flows northward to the poles and a part flows back
to the equator. In isentropic coordinates, these northward and southward flows are at the same
height (see Figure 1.3). By simulation the life cycle, one can investigate the amount of mass that
is pumped in the midlatitude circulation by the Hadley circulation.

Another addition to the model is a more realistic radiation model. The radiation part is
now parametrised very simple by a constant Newtonian cooling coefficient. With a more realistic
radiation model the diabatic processes can be studied in more detail.

The addition of orography in the model is a fourth implementation that can give more insight
in the processes that play a role in reality in the formation and location of baroclinic waves.



Appendix A

SUGGESTED ADDITIONS TO THE MODEL

In this Appendix, an initial geopotential for the PeN-model is derived using the potential
temperature given by James (1994). The potential temperature as a function of latitude is given
by Eq. (4.16) in James:

θ = θ0 +
∆θNS

2
sinφ+ ∆θEP

(
3 sin2 φ− 1

)
(A.1)

where ∆θNS is the difference in temperature between the North and South Pole. The temper-
ature difference can be varied to include the seasonal cycle in the model. More about the varying
∆θNS can be found in Section A.3. ∆θEP represents the equator to pole temperature difference,
which is by James (1994) set at 40 K. θ0 is the global average radiative equilibrium temperature,
which is set at 255 K in James (1994). In our model, θ0 = θ0(z) to get the height dependence in
the model, given by (van Delden, 2017)

θ0(z) = θ0(0)− Γ0

(
p0
p

)κ
z (A.2)

where Γ can be tuned, but is standard set to 6.5 K/km.

A.1 β-plane model

Firstly, we can calculate the meridional gradient of the temperature distribution

∂T

∂y
=

1

a

(
p

p0

)κ
∂θ

∂φ
=

1

a

(
p

p0

)κ(
∆θNS

2
cosφ+ 6∆θEP sinφ cosφ

)
(A.3)

The thermal wind balance reads

∂ug
∂p

=
R

pf0

∂T

∂y
(A.4)

By integrating Equation A.4 over p, we obtain the geostrophic flow

ug =

[(
p

p0

)κ
− 1

]
cp
af0

(
∆θNS

2
cosφ+ 6∆θEP sinφ cosφ

)
(A.5)

where f0 is the Coriolis parameter at 45◦N. In Figure A.1, the geostrophic wind profile according
to Equation A.5 is plotted for the northern hemisphere. This formula gives one jet in the northern
hemisphere, with a wind maximum at 45◦N at the top of the atmosphere with a strength of about
200 m/s, which is very strong.

By using the geostrophic wind and the relation −f0ug = ∂Φ/∂y, we can calculate the geopo-
tential

Φ = Φ0 + cp

[
1−

(
p

p0

)κ](
∆θNS

2
sinφ+ 3∆θEP sin2 φ

)
(A.6)

This geopotential has also a large variation over the northern hemisphere. At 900 hPa, Φ(0◦) −
Φ(90◦) = 17 · 103 m2 s−2, whereas this difference in the example in Section 10.7 of van Delden
(2017) is 8 · 102 m2 s−2.
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Fig. A.1: The geostrophic wind distribution on the northern hemisphere according to Equation A.5.
The values used for this plot are p0 = 1000 hPa, ∆θNS = −10 K (situation in January) and
∆θEP = −40 K. The highest level plotted is at 50 hPa.

A.2 Reducing temperature gradient at height

Because the geopotential from Equation A.6 gives too high geostrophic wind speeds in the jet, we
need to reconsider the chosen initial condition. The starting point is still the given temperature
gradient by James (Equation A.1). However, now we will reduce the temperature gradient at
height. The height dependence of this reduction is introduced as

∂θ0
∂φ

=
∆θTOA
π/2

(
1 + cos

(
πp

p0

))
(A.7)

with ∆θTOA the reduction in temperature gradient at the top of the atmosphere.
By choosing the latitude-dependent terms in the temperature height independent, we obtain a

new temperature distribution

θ(φ, p) = θ0(0)

[
1 +

Γ0R

g
ln

(
p

p0

)](
p0
p

)κ
+

50φ

π/2

[
1 + cos

(
πp

p0

)]
+

∆θNS
2

sinφ+ ∆θEP
(
3 sin2 φ− 1

) (A.8)

With the new temperature distribution, we obtain a new geostrophic wind relation, given by

ug(φ, p) =
2R∆θTOA
af0π

[
Ci

(
πp

p0

)
− Ci (π) + ln

(
p

p0

)]
+

R

2af0
[∆θNS cosφ+ 6∆θEP sin 2φ] ln

(
p

p0

) (A.9)

where Ci(x) is the cosine integral function. The corresponding geostrophic wind profile is plotted
in Figure A.2. The maximum of the geostrophic wind is now significantly lower than in Figure A.1.
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Fig. A.2: The geostrophic wind distribution (in m/s) on the northern hemisphere according to Equa-
tion A.9. The values used for this plot are p0 = 1000 hPa, ∆θNS = −10 K (situation in
January), ∆θEP = −40 K and ∆θTOA = 80 K. The highest level plotted is at 50 hPa.

A disadvantage of the new equation is that we obtain high easterly winds at high altitude above
the poles and the equator.

The geopotential corresponding to the sketched situation is given by

Φ(φ, p) = −RT0 ln

(
p

p0

)
− 2Rφ∆θTOA

π

[
Ci

(
πp

p0

)
− Ci (π) + ln

(
p

p0

)]
+
R

2
[∆θNS sinφ+ 3∆θEP cos 2φ] ln

(
p

p0

) (A.10)

The geopotential height (Z = Φ/g) is plotted in Figure A.3.

A.2.1 Extra addition

The geostrophic wind had large negative values at height above the poles and equator. By adding
an extra factor to the meridional gradient of θ0, we can prevent this. The gradient of θ0 now
becomes

∂θ0
∂φ

=
∆θTOA
π/2

(
1 + cos

(
πp

p0

))
(1− cos 4φ) (A.11)

By calculating the geostrophic wind, we obtain the following relation

ug(φ, p) =
∆θTOAR

af0π

[
(cos 4φ− 1) (Ci(π) + ln(p0)) + 2 sin2 2φ

(
Ci

(
pπ

p0

)
+ ln(p)

)]
+

R

2af0
(∆θNS cosφ+ 6∆θEP sin 2φ) ln

(
p

p0

) (A.12)

which is shown in Figure A.4.
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Fig. A.3: The geopotential height in km on the northern hemisphere according to Equation A.10. The
values used for this plot are p0 = 1000 hPa, T0 = 255 K, ∆θNS = −10 K (situation in January),
∆θEP = −40 K and ∆θTOA = 80 K.

Fig. A.4: The geostrophic wind distribution (in m/s) on the northern hemisphere according to Equa-
tion A.12. The values used for this plot are p0 = 1000 hPa, ∆θNS = −10 K (situation in
January), ∆θEP = −40 K and ∆θTOA = 80 K. The highest level plotted is at 50 hPa.
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Fig. A.5: The geopotential height in km on the northern hemisphere according to Equation A.13. The
values used for this plot are p0 = 1000 hPa, T0 = 255 K, ∆θNS = −10 K (situation in January),
∆θEP = −40 K and ∆θTOA = 80 K.

The corresponding geopotential is given by

Φ(φ, p) = −RT0 ln

(
p

p0

)
− R

2

[
∆θNS sinφ+ 6∆θEP sin2 φ

]
ln

(
p

p0

)
−R∆θTOA

4π

[
Ci

(
πp

p0

)
− Ci (π) + ln

(
p

p0

)]
(sin 4φ− 4φ)

(A.13)

which is ploted in Figure A.5

A.3 The seasonal cycle in the model

In this section, we try to obtain a first guess for the seasonal cycle by finding a function for ∆θNS .
For this the winter and summer temperatures for both poles are estimated at -40◦C and 0◦C,
respectively, for the north pole and -60◦C and -30◦C, respectively, for the south pole1.

We assume that the lowest temperature at the north pole and the highest temperature at the
south pole is reached at 15 January (day 15). By furthermore assuming a sinusoidal profile for the
temperature difference, ∆θNS is given by

∆θNS(t) = 25− 35 cos

(
2π

365
(t− 15)

)
(A.14)

with t the day of the year.
This equation is a first draft for the seasonal cycle. A plot of the corresponding radiative

equilibrium temperature is shown in Figure A.6. A more advanced equation can be used by e.g.
using reanalysis data of an averaged surface air temperature above 80◦N and 80◦S throughout the
year.

1 http://polardiscovery.whoi.edu/poles/weather.html

36



CHAPTER 5 A.3. THE SEASONAL CYCLE IN THE MODEL

Fig. A.6: The radiative equilibrium temperature θe at the surface, using θ0 = 255 K, ∆θEP = −40 K and
Equation A.14, plotted for all latitudes and a year of time.
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