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Abstract

Adiabatic modes are solutions in general relativity which are locally indis-
tinguishable from the Friedmann-Lemâıtre-Robertson-Walker metric after an
appropriate transformation. In other words, they are cosmological perturba-
tions which resemble a pure gauge profile. Many adiabatic modes are known
for spatially flat universes, providing model-independent solutions and imply-
ing soft theorems. In this thesis, we generalize the theory of adiabatic modes to
open universes (i.e. universes with negative spatial curvature). The main results
are the open-universe versions of Weinberg’s tensor adiabatic mode in equation
(5.23) and Weinberg’s scalar adiabatic modes in equation (6.19). These modes
are, however, puzzling. While it appears that for the tensor gauge modes are
physical (sub-curvature), it seems that monochromatic scalar modes can never
become adiabatic. This could imply, for single-field inflation in an open uni-
verse, that inflation does not solely produce adiabatic modes and that Malda-
cena’s consistency condition is violated. Future research to get to the bottom
of these issues is suggested.
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Introduction

For the moment, we would like you to imagine a quiet farmland meadow. Sup-
pose that, in the meadow, three different types of flowers appear. Without any
further information, one might expect these flowers to be distributed through-
out the meadow in a random fashion. After all, flower seeds are usually carried
by the wind or by animals, both of which have no precognition of where the
seeds should end up. The meadow, then, might look like the one in figure 1a,
which is one of many random configurations.

One might be surprised to learn if, instead, the different types of flowers are
always grouped together. Then, while one part of the meadow might contain
more flowers than the other, the different flowers always appear in equal pro-
portions, as illustrated in figure 1b. Instead of thinking the scattering of flower
seeds to have proceeded by natural means, it may now seem more likely that
all flowers have some common origin. For example, one might hypothesize that
the flowers were sown there on purpose, as illustrated by figure 1c. Imagine
someone throwing the seeds around the field without too much care, such that
the flowers will not be equally divided. Yet as long as she pulls the seeds from a
bag which contains a mixture of the three different kinds of flower seeds, the dif-
ferent kinds of flowers will grow everywhere more or less in the same proportions.

The meadow and flowers provide a good analogy to the universe as we ob-
serve it. At large scales, the universe looks both homogeneous (meaning that all
points are created equal) and isotropic (meaning that there are no special direc-
tions). Such a smooth universe can be represented by a field of grass (without
flowers), which looks the same everywhere. However, homogeneity and isotropy
are not perfect (of course, planet Earth does not look the same as the sun and
our galaxy looks very different from the vast empty space dividing it from the
next galaxy). Thus, in order to properly describe the universe, we allow for
‘perturbations’ to the density and velocity of the different contents (baryonic
matter, cold dark matter, light and neutrinos) of our cosmos. These perturba-
tions, which are deviations from the average, can then be represented by flowers,
having each kind of flower correspond to perturbations of a different inhabitant
of the universe. Because of perturbations, the universe is not completely boring,
just as the flowers make the meadow a lot more colorful place.
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(a) A random distribution of flowers.

(b) A distribution of flowers in which the different types of flowers always appear in equal proportions.

(c) A person sowing flowers randomly from a mixed bag of seeds, resulting in a distribution of flowers in which the
different types always appear in equal proportions.

Figure 1: Flowers distributed over a meadow. The meadow can be considered analogous to the homogeneous and
isotropic universe, while the flowers can be considered perturbations to this universe of its different content (for
example, red flowers might symbolize baryonic matter, yellow flowers might symbolize photons and blue flowers
might symbolize cold dark matter). In an adiabatic universe, the flowers always appear in equal proportions,
even if for the rest they are distributed randomly. This could be explained by invoking some common origin,
such as the flowers having been sown together.
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Since each different content of the universe has its own dynamics and way
of interacting, one might initially expect the perturbations to be distributed
throughout the universe randomly, or at least such that the perturbations of
different contents don’t have anything to do with each other. This corresponds
to the flower seeds being planted through natural processes. Rather, though,
the different contents everywhere have the same velocity and the perturbations
to the total density always appear in a proportional fashion. Thus, the actual
situation of our universe is described better by the picture where the different
kinds of flowers are always grouped together. When perturbations behave like
this they are called adiabatic, and the study of such perturbations is the topic
of this thesis.

Learning about adiabatic perturbations is very interesting not only because
they are so dominantly present in the universe, but also for many other reasons.
For one thing, they provide model-independent solutions to the cosmological
equations governing perturbations. That is to say that, no matter what the
contents of the universe are, adiabatic perturbations always behave the same.
Since we know what this behavior is, we can reconstruct the perturbations that
dominated the universe in the past from the adiabatic perturbations observed
today. Thus, they provide a way of looking into the past, even all the way back
to the very early universe. Since we do not know much about the contents of
the universe at the time, we have in general no idea how perturbations evolve
through this period. Yet, since adiabatic perturbations always evolve the same,
we can look all the way back to the beginning of this period, when the pertur-
bations were first created.

Another method of probing the very early universe can also be obtained from
knowledge about adiabatic perturbations. According to some theories, all per-
turbations stem from a single substance (a ‘scalar field’) which dominated the
universe during the first fraction of a second. This theory is called single-field
inflations, and if the theory holds true, all perturbations in the universe must be
adiabatic. This is exactly represented by the sowing scenario described in the
analogy: if all contents stem from a common origin, it is small wonder that their
perturbations look so similar. In fact, if ever there was found a non-adiabatic
perturbation, this would disprove single-field inflation altogether. What is more,
properties of adiabatic perturbations can be used to derive certain statistical re-
lations that must hold between perturbations if they were indeed created due
to single-field inflation. Observing a violation of those would also rule out the
popular theory. Altogether, we can conclude that adiabatic perturbations pro-
vide a powerful method of probing the early universe and testing theories about
the origin of perturbations.

Still, we have not really discussed what is so special about adiabatic pertur-
bations. What we consider their defining characteristic, is the fact that they
locally look the same as a coordinate transformation. This sounds a little ab-
stract, but what this means can be seen as follows. Over time, the universe is
constantly expanding. Since the amount of matter in the universe remains more
or less constant, it is diluted and thus the average density of matter becomes
smaller all the time. Consider now one region of the universe where the mat-
ter density is constant but slightly smaller than the average. Then, instead of
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describing this region as having a matter density perturbation, we can describe
it as having the average density at some later time. Thus, in this region, the
matter density perturbation looks exactly the same as a transformation of the
time coordinate. And since all contents of the universe react the same way to
such a transformation, in a region of the universe where all the contents are
locked together (i.e. they perturbations are adiabatic) all the densities look like
the same transformation and thus the whole region of the universe, which is
perturbed, looks exactly like an unperturbed region at some later time.

Of course, the adiabatic perturbations do not look exactly the same as a
coordinate transformation, since then they would not really be perturbations at
all; we would simply have chosen the wrong coordinates to describe the universe,
making it seem perturbed. The difference is in the word locally : we can only
play the trick of the previous paragraph when the perturbations are constant in
a region of universe. Outside of this region, the perturbations will be different.
For example, in a different region the density might be slightly larger than the
average. In that case, we could describe it as a unperturbed region at a time
slightly earlier instead of later. Thus, we cannot describe both regions as being
unperturbed using a single transformation of the time coordinate. Everywhere,
the adiabatic universe looks locally the same as a coordinate transformation,
but what this transformation is differs from place to place. Globally, it does not
look the same as a coordinate transformation.

The theory of adiabatic perturbations is well-developed for universes which
are spatially flat. A property of a spatially flat universe is that the angles of
triangles always add up to 180 degrees. While this agrees with everyday experi-
ence, we still cannot be entirely sure that we live in such a flat universe. Rather,
it may only appear flat because the curvature of our universe is very small. This
is reminiscent of how people once believed the earth to be flat. After all, humans
are only very small compared to the Earth. Living on its surface, the effects of
its curvature are hard to observe. For example, if you draw a triangle on the
surface of the earth, it should not add up to 180 degrees. Yet, for any triangle
we can draw by hand, the deviation will be negligible. Similarly, the curvature
of the universe may become noticeable only at scales which are larger than our
observable universe. It is thus worthwhile to account for the possibility of a
curved universe.

The goal of this thesis is to extend the theory of adiabatic perturbations to
the case of universes with negative curvature (such a universe is called ‘open’,
as it has infinite volume). Instead of the meadow discussed in this introduction,
a more apt analogy would be a grassy hill as illustrated in figure 2. The key
question will be to find out whether perturbations in our universe can still be
described as a local coordinate transformation if there is some negative curva-
ture. That is: do adiabatic perturbations exist in an open universe? And if
they do, what do they look like, and how do they evolve in time? The answers
might surprise you, as the adiabatic modes that we manage to find have some
strange properties.

The plan to this thesis is as follows. In Part I, a review of the already
established theory of adiabatic modes will be provided. In order to do so,
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Figure 2: When dealing with a curved universe, a hill as shown in this figure is
a more fitting analogy than a flat meadow. The goal of this thesis is to find out
whether flowers can also be expected to group together on the hills as they did
in the meadow.

we first provide a pedagogical description of the homogeneous and isotropic
curved universe in Chapter 1. Next, we discuss how perturbations on such a
homogeneous and isotropic background can be described in Chapter 2. When
then all the preliminaries are in place, Chapter 3 is dedicated to adiabatic modes.
In particular, it will be discussed how adiabatic solutions can be found using
perturbation theory in a flat universe and what their use is (in a more technical
and elaborate way than in this introduction). After that, we are ready to try
and generalize these results to the open universe in Part II. While Chapter
4 will focus on how to find adiabatic solutions, Chapter 5 focuses specifically
on the simplest possible tensor mode while Chapter 6 focuses on the simplest
possible scalar mode.In Chapter 7, conclusions to these results will be drawn and
an outlook for possible future research will be sketched. Finally, Part III will
contain appendices in which elaborate and/or boring calculations are located to
support the rest of the work.
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Review

9



Chapter 1

Homogeneity and Isotropy

1.1 Hubble’s Law

When one looks up at the sky, it appears to be more or less isotropic. That is, it
looks the same in one direction as in any other direction. This is particularly true
if we only look at objects that are far away enough from us, i.e. at galaxies and
such rather than at the stars in our own milkyway. While each specific galaxy
is visible only at one spot in the sky, and while some areas may contain more
galaxies than others, the density of galaxies (when averaged over sufficiently
large areas) does not vary much between different directions. What is more,
all these galaxies seem to behave more or less the same. Everywhere we look,
they recede away from us. The way in which they do is caputerd by the famous
Hubble law [17],

v = H0r. (1.1)

Here, v is the magnitude of the velocity of an object relative to us (as mea-
sured through redshift), r is the magnitude of its distance from us, and H0 is
the Hubble constant. Thus, how fast an object moves away from us is pro-
portional to its distance from us, and does not depend on its direction in the sky.

The isotropy of our sky is perhaps most evident when looking at the cosmic
microwave background, which is a faint signal of relic light from the very early
universe. It has been observed very accurately by the Planck satellite (which
was launched in 2009), which is able to associate a temperature to the radia-
tion from different directions, creating a thermal map of the sky (see figure 1.1)
Deviations from the average temperature, which is 2.7 Kelvin, are only of the
order of 10−5 [1], meaning that the sky once more looks pretty smooth.

One conclusion to draw from this would be that Earth is at the center of
the entire universe, from which all matter originates and now moves away (ex-
cept for us). This seems a bit far fetched though, as in all other aspects Earth
appears to be just some random planet that happened to develop life as we
know it. The idea that the universe is not tailor made for mankind is expressed
by the Copernican principle, which states that “humans are not privileged
observers” [30, page 66]. The consequence of this would be that the universe is
isotropic around any point. Whenever we will say the universe is isotropic, this
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Figure 1.1: An image of the cosmic microwave background (CMB) as observed
by the PLANCK satellite. The celestial sphere has been projected onto a plane,
where red regions indicate directions where the cosmic microwave background
looks slightly hotter and blue regions indicate slightly colder directions. Copy-
right ESA and the Planck Collaboration. Obtained from www.esa.int.

is what we mean.

But if the universe is isotropic around every point, there is another conclusion
we can draw: the universe is homogeneous. That is, it looks the same as seen
from any point. It is interesting to note that while isotropy implies homogeneity,
this does not work the other way around. For example, if the whole universe
would be filled with a nonzero constant electric field pointing one way, then not
all directions are the same to an observer. Yet, because this field is observed
in the same way by any observer at any point, this does not stop the universe
from being homogeneous.

At first, homogeneity might sound incompatible with Hubble’s law, which
however has experimental basis. If we perceive all objects in the universe to
move away from us, they cannot also all move away from some other point at
the same time! In fact, Hubble’s law gives the only isotropic distribution of
velocities which looks the same for any observer (that moves with the flow).
This can be seen as follows (which is inspired by [27, pp. 5-6]). Any velocity
distribution1 is specified by some function v(r), where r is the position vector
of the object that we observe to have vector velocity v. For each component of
v, we can write a Taylor expansion

vi(r1, r2, r3) = ci0 + cijrj + cijkrjrk + ..., (1.2)

where ri are the components of r, the c’s are constants, and the dots indicate
terms which are the product of three or more components of r. Note that the
Einstein summation convention is used, so all repeated indices are summed over
implicitly (where latin indices take the values 1, 2, 3).

1Of course, a general velocity distribution can also have time dependence. Since including
this does not change the argument or conclusion, this fact is ignored for the moment.
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Figure 1.2: A raisin bread rising. As it expands, all raisins move away from
each other, in analogy to the isotropic and homogeneous universe. Retrieved
from [6].

Now, if the distribution is homogeneous, this distribution must look the
same to an observer at any other point. Let’s call our position in space for the
moment point A. The point B moves away from us with velocity v(rAB) while
the point C moves away form us with velocity v(rAC). Then, by simple vector
addition, point C moves away from point B with velocity v(rAC) − v(rAB).
Thus, homogeneity dictates

v(rAC)− v(rAB) = v(rBC) = v(rAC − rAB), (1.3)

where the last equality once more follows from vector addition. This equation
is compatible only with the terms linear in the components of r in equation
(1.2). For example, a term with r1r2 is forbidden since in general rAC,1rAC,2 −
rAB,1rAB,2 6= (rAC,1 − rAB,2)(rAC,2 − rAB,2). Thus, we are left with

vi(r) = Hijrj , (1.4)

where Hij is some matrix. When we also require isotropy, v must be in the
same direction as r since any angular velocity could be changed direction using
a rotation (and is thus incompatible with isotropy). Thus, Hij must be propor-
tional to unity (δij)

2. This leaves us indeed with Hubble’s law, v ∝ r.

The situation sketched by Hubble’s law can be visualized by the following
analogy. Consider baking a loaf of raisin bread. When you add yeast to the
dough, the loaf will start rising and its volume will increase. The raisins, which
are fixed in the dough, consequently move away from each other. Each raisin
moves away from each other raisin in a way such that their instantaneous ve-
locities will exactly follow Hubble’s law. The situation is illustrated in figure 1.2.

It now seems very tempting to interpret Hubble’s law as the result of ex-
pansion of our universe. However, our jugling of velocities has so far been very
Newtonian. In order to speak of the expansion of space, we will need to turn
to general relativity, which is currently the most important physical theory at
large scales. While the intuition developed above will remain valuable, we will

2More formally, this can also be shown from equation (1.4) since unity is the only matrix
that commutes with all rotation matrices.
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see that the interpretation of some concepts will need slight revision. In this
section (i.e. Chapter 1), we will develop a general-relativistic description of the
homogeneous and isotropic universe. After that, in Chapter 2, we will go beyond
the assumption of homogeneity and isotropy to give a more realistic description
of our universe.

1.2 Isometries

General relativity describes spacetimes using a metric. Thus, if we want to de-
scribe our universe using general relativity, we must find the proper metric to do
so. As discussed above, the universe can be considered both homogeneous and
isotropic on large enough scales. Conveniently, these symmetries heavily restrict
the form the metric can take. In order to find out what form this is exactly, we
must first understand what homogeneity and isotropy mean precisely in general
relativity.

Although a basic understanding of general relativity will be assumed through-
out this thesis, we will here quickly recap the basic notions needed to discuss
symmetries and their applications. We will consider a spacetime with D dimen-
sions, of which d < D are spatial (and thus D − d temporal). The geometry
of this spacetime is defined by its metric gµν(x), which enables one to calculate
line elements,

ds2 = gµν(x)dxµdxν . (1.5)

The greek indices run over all D dimensions of the spacetime. Through a diffeo-
morphism, general relativity can be expressed in terms of different coordinates:

xµ → x̃µ. (1.6)

While a geometric quantity like the line element remains invariant under this
transformation, the metric does not. Like any tensor, it transforms in a covariant
way,

gµν(x)→ g̃µν(x̃) =
∂xµ

∂x̃ρ
∂xν

∂x̃σ
gρσ(x̃). (1.7)

A derivation of the transformation properties of the metric can be found in
Appendix B. The metric is said to be form-invariant under a diffeomorphism
if

g̃µν(x) = gµν(x). (1.8)

A diffeomorphism that leaves the metric form-invariant is called an isometry.
This is what is usually meant by ‘symmetry’ in general relativity, as the space-
time looks the same before and after the transformation.

It is often simplest to consider only infinitesimally small diffeomorphisms.
Such transformations then take the form

xµ → x̃µ = xµ + εµ(x), (1.9)

where εµ ≡ εξµ with ε � 1. This means that we only regard terms that are
linear in εµ. The vector field ξµ(x) is said to generate the diffeomorphism, as
every point is moved an infinitesimal amount along the vector field. A finite
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diffeomorphism can be obtained by repeated application of infinitesimal ones,
which amounts to moving points along the integral curves traced out by ξµ (see
e.g. [10, app. B]. Since every diffeomorphism that is continuously connected to
unity (as opposed to e.g. reflections, which are discrete) is generated by such a
vector field, limiting ourselves to infinitesimal diffeomorphisms entails no great
loss of generality.

It is shown in Appendix B that we then have

gµν(x)→ g̃µν(x̃) = gµν(x)− 2∇(µεν)(x). (1.10)

Here, the brackets on the indices indicate symmetrization. More precisely, when
used to symmetrize two indices, they are defined by

T(µ1µ2) =
1

2
(Tµ1µ2

+ Tµ2µ1
) . (1.11)

For more details, see Appendix A. Thus, (infinitesimal) isometries are exactly
those generated by

∇(µξν) = 0. (1.12)

This is known as Killing’s equation. Every vector field that satisfies Killing’s
equation is called a Killing vector field (although the ‘field’ is often omitted
for brevity). All isometries which are continuously connected to unity are ob-
tained by moving all points in a spacetime along such a vector field.

In physics, every symmetry is usually associated with a conserved quantity
(as follows from Noether’s theorem, see e.g. [33, sec. 7.6] or [31, sec. 2.2]).
Similarly, each Killing vector satisfies the equation [10, eq. (3.174)]

pµ∇µ(ξνp
ν) = 0, (1.13)

where pµ = mdxµ

dτ is the momentum of a test particle with mass m and proper
time τ . The equation states that momentum along the Killing vector field is
invariant along the geodesic of the test particle, i.e. it is conserved.

Interestingly, a Killing vector field is fully determined by ξµ and ∇µξν at a
single point. Using Killing’s equation, it can be shown that

∇ρ∇σξµ = −Rλρσµξλ., (1.14)

where Rµνρσ is the Riemann tensor. This can be used to express any higher-
order covariant derivative in terms of the Killing vector and its first-order co-
variant derivative. Since these can be used to write down the Taylor series for
the Killing vector field around point x0, we have

ξµ(x) = Aρµ(x;x0)ξρ(x0) +Bρσµ (x;x0)∇ρξσ(x0), (1.15)

where the functions A and B are the same for all Killing vectors (they are de-
termined by the geomtery of the spacetime through the Riemann tensor). At
the point x0, there are at most D linearly independent Killing vectors ξµ (since
µ runs over all D spacetime dimensions, they are vectors in a D-dimenional
vector space, of which there can be at most D independent) and 1

2D(D − 1)
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linearly independent ∇µξν (since this tensor must be antisymmetric, as follows
from Killing’s equation). It follows that there are at most 1

2D(D + 1) linlearly
independent Killing vector fields in any spacetime [35, sec. 13.1].

Spacetimes with 1
2D(D + 1) independent Killing vectors are called maxi-

mally symmetric spaces. Since there is a great deal to say about these, and
since their analysis will significantly help finding the proper metric to describe
our own universe, these special spacetimes get their own section.

1.3 Maximally Symmetric Spaces

In order to get some feeling for what it means for a spacetime to be maximally
symmetric, let’s go back to equation (1.15). When there indeed are 1

2D(D+ 1)
linearly independent solutions to Killing’s equation, this means we can choose
any set of 1

2D(D+ 1) linearly independent vector fields obeying equation (1.15)
to use as a basis for all possible Killing vectors 3. We do this in the simplest way
possible by taking a set of D vector fields with nonzero ξρ(x0) but vanishing
∇ρξσ(x0) and a set of 1

2D(D−1) vector fields with vanishing ξρ(x0) but nonzero
∇ρξσ(x0):

ξ(µ)ν (x0) =δµν ,

∇ρξ(µ)ν (x0) =0,

ξ(µν)ρ (x0) =0,

∇ρξ(µν)σ (x0) =δµρ δ
ν
σ − δνρδµσ .

(1.16)

Here, brackets indicate that the index is a label to differentiate between the
different basis vector fields. The two different sets now allow for a nice inter-
pretation.

The first set of basis vectors, ξ
(µ)
ν (x), span the whole D-dimensional vec-

tor space at any point x (the tangent spaces Tx, to be precise). Thus, we can
use infinitesimal isometries to move the point x to any point in its immediate
neighborhood. This defines our space to be homogeneous [35, page 378]. Since
the procedure can be repeated at the new point, we can use this to move any
point in the space to any other point through isometry (which is an alternate
but equivalent definition of homogeneity [10, page 323]). This formalizes the
earlier definition of homogeneity. It means that the metric is the same at every
point throughout the entire space. While homogeneity is often thought of as
translational symmetry, it is discussed below that this can only be done if we
generalize what we mean exactly by ‘translation’.

3This statement can be explained better using linear algebra. There are 1
2
D(D+1) numbers

defining every ξµ(x) obeying equation (1.15). We can consider this a 1
2
D(D+ 1) dimensional

vector space (closure under addition and scalar multiplication are easily verified). If there are
n linearly independent solutions to Killing’s equation, these can be represented as n linearly
independent vectors in the 1

2
D(D+ 1) space (since we know that every Killing vector satisfies

equation (1.15)). These span a n-dimensional subspace containing all Killing vectors. When
n = 1

2
D(D + 1), this subspace coincides with the whole vector space, and we can thus freely

choose any 1
2
D(D + 1) basis vectors since it is impossible to ‘accidentally’ choose a vector

that is not in the n-dimensional subspace. For smaller n, we would have to be more careful
and check whether our basis vectors actually solve Killing’s equation.
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The second set of basis vectors, ξ
(µν)
ρ (x), leaves the point x0 invariant. Yet,

by taking linear combinations, ∇ρξ(µν)σ (x0) is allowed to take any value. A space
which has Killing vectors for which this holds is defined to be isotropic about
the point x0 [35, page 378]. This formalizes the earlier definition of isotropy.
Isotropic space is often thought of as having rotational symmetry. Indeed, the
isometries generated by this second set of basis vectors can be thought of as
‘rotations’, although this might require abandoning the well-known Euclidean
notion of the concept. To see in what sense they are rotations, let’s consider
the action of these specific isometries more closely. A vector at x0 transforms
under a diffeomorphism xµ → x′µ = xµ + εξ(λτ)µ as

V µ(x0)→ V ′µ(x′0) =
∂x′µ

∂xρ
V ρ(x0 + ε��

���:
0

ξ(λτ)(x0))

=
(

(δµρ + ε∂ρξ
(λτ)µ(x0)

)
V ρ(x0)

= V µ(x0) + εgµσ∇ρξ(λτ)σ (x0)V ρ(x0)

= V µ(x0) + ε

(
gµτ (x0)V λ(x0)− gµλ(x0)V τ (x0)

)
,

(1.17)

where we have used the general law for vector transformations (see e.g. [10, eq.

(2.19)]) and where we have used ∇ρξ(µν)σ (x0) = ∂ρξ
(µν)
σ (x0) since ξ

(µν)
σ (x0) = 0.

Now consider a vector Wµ(x0) that is orthogonal to the change in V µ(x0).
This means

W τ (x0)V λ(x0) = Wλ(x0)V τ (x0). (1.18)

Clearly, one solution is Wµ(x0) = V µ(x0). However, it can also be shown
that this is the unique (nonzero) solution up to scalar multiplication. We can
choose our coordinate basis such that V µ(x0) = δµ0 . Then generally, Wµ(x0) =
c0δ

µ
0 + c1δ

µ
1 + ... for some constants cn. The above equation for λ = 0, τ = 1

then implies c1 = 0. The same can be done for any cn with 0 < n ≤ D. We
conclude Wµ(x0) ∝ V µ(x0). This means that the Killing vectors can be used to
move V µ(x0) any direction it does not already point in (if one direction would
be excluded, Wµ ∝ V µ would not be the only solution). It also follows from
the above that

V ′µ(x0)V ′µ(x0) = Vµ(x0)V µ(x0), (1.19)

i.e. the norm is conserved. It is thus possible to move vectors at x0 around in a
continuous way through isometry, as long as we do not change the norm. This
indeed coincides with the basic concept of ‘rotation’.

So in what sense do the concepts of translation and rotation need generaliza-
tion to suit the formal definitions of homogeneity and isotropy above? We know
that when there is no curvature (Rµνρσ = 0), all higher-order derivatives of ξµ
vanish and we can choose coordinates such that covariant derivatives become
ordinary derivative. We then have

ξµ(x) = ξµ(x0) + xρ∂ρξµ(x0). (1.20)

Assuming gµν = δµν (i.e. Euclidean space), it is clear that the ξ
(µ)
ν generate

ordinary translations (moving every point exactly by ε under an infinitesimal
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diffeomorphism) while the ξ
(µν)
ρ (x) generate the ordinary 1

2D(D − 1) rotations
in the space (see e.g. [10, eq. (3.186)]). However, when there are timelike dimen-
sions, some of the rotations become Lorentz boosts. Furthermore, when there
is curvature, the functions A and B in equation (1.15) can take some nontrivial
form depending on the geometry. Thus, while in a homogeneous curved space

we can still use ξ
(µ)
ν to ‘translate’ x0 by an amount ε, all other points may at the

same time move by some different amount. Similarly, an isotropic space might
be defined by an isometry that does not look exactly like rotations as we know
them in flat space.

The above construction of basis vectors shows that any maximally symmet-
ric space is both homogeneous and isotropic. The inverse is also easily seen to
hold, as homogeneity and isotropy imply the existence of the 1

2D(D+1) Killing
vectors constructed above. Furthermore, it can be proven that a space that is
isotropic about every point is also homogeneous [35, pp. 378-379]. Lastly, it
can be seen that in flat space every vector field satisfying equation (1.20) also
satisfies Killing’s equation (as long as ∂µξν is antisymmetric). Since there as
1
2D(D + 1) such vector fields, it follows that all flat spaces are maximally sym-
metric.

It can be shown that every maximally symmetric space is a so-called space
of constant curvature. This means that the Ricci scalar in constant throughout
the entire space and that the Riemann tensor is

Rλρσν = K(gσρgλν − gνρgλσ), (1.21)

where K is the curvature constant, related to the Ricci scalar by

R = −D(D − 1)K. (1.22)

One of the (for current purposes at least) most important properties of maxi-
mally symmetric spaces is that they are unique. That is to say, all the maxi-
mally symmetric spaces with the same curvature constant and the same metric
signature (i.e. the same number of positive and negative eigenvalues), are re-
lated to each other through a diffeomorphism. Thus, they are really the same,
only represented by different coordinates. An elaborate proof of this can be
found in [35, sec. 13.2].

One last theorem that will be of great import in the next section is about
a space with maximally symmetric subspaces. A D-dimensional space with a
family of M -dimensional subspaces can be described using M coordinates ui

which indicate points within each subspace and D −M coordinates va which
parametrize the different subspaces in the family. The subspaces are then de-
fined to be maximally symmetric if there are 1

2M(M + 1) linearly independent
Killing vectors of dimension M such that the metric is form-invariant under the
infinitesimal diffeomorphism

ui → u′i = ui + εi(u, v),

va → v′a = va,
(1.23)

with εi = εξi as before. It is proven in [35, sec. 13.5] that it is always possible
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to pick the u coordinates such that the metric takes the form

ds2 = gab(v)dvadvb + f(v)g̃ij(u)duiduj , (1.24)

where g̃ij is the metric of an a maximally symmetric space of dimension M .

1.4 Friedmann-Lemâıtre-Robertson-Walker

In this section, the above discussion homogeneity and isotropy is used to finally
write down a metric for our universe.

In the first part of Chapter 1 it was discussed that the sky seems approx-
imately isotropic. In fact, this statement can be seen to be equivalent to the
(approximate) presence of the more abstract notion of isotropy developed in
Section 1.3. First, it must be noted that every isometry of the metric must be
a symmetry of the contents of the universe as well. This is due to the specific
way in which the contents of the universe deform spacetime and is explained in
the beginning of Section 1.5.

It can be proven that isotropy implies a smooth night sky as follows. If
there was some observable that varied over the celestial sphere, we could define
a vector at our position (“x0”, in the language of Section 1) pointing towards
some specific point on the sphere, like for example in the direction where we see
the largest density of stars or the highest temperature in the cosmic microwave
background. However, such a vector could be made to change direction using
the 1

2d(d− 1) independent infinitesimal diffeomorphisms which only act on the
spatial coordinates and which leave x0 invariant. If spacetime is isotropic about
x0, these diffeomorphisms are isometries. Yet, they change some observable,
which must derive either from the geometry or the contents of the universe (as
there is nothing else). An isometry however cannot change these things, and
thus the presence of a vector implies they are not isometries after all. This
means the presence of vectors implies the absence of isotropy, and hence the
presence of isotropy implies the absence of vectors, which means the night sky
must look isotropic in the more intuitive sense discussed is the beginning of this
chapter.

Conversely, the smoothness of the sky implies isotropy. If all observables at
our position would remain invariant under the 1

2d(d − 1) Euclidean rotations,
we could take these to be the spatial part of the diffeomorphisms that leave
x0 invariant (which is obviously the case for rotations). The fact that nothing
changes at x0 implies they can be extended to all other points as isometries
using equation (1.15). While this does not provide the required 1

2D(D − 1)
isometries required for isotropy, it does cover the ‘spatial part’ of the definition.

It is important to be careful here not to draw hasty conclusions. The above
discussion really only concerned spatial three-vector and three-dimensional ro-
tations. While one might expect, with the Copernican principle in mind, that
the whole universe is maximally symmetric, this does not actually agree with
observations. The universe looks invariant under spatial rotations but the same
cannot be said for Lorentz boosts. After all, in a boosted frame the Hubble law
1.1 would no longer hold, since objects in one direction will now appear to move
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faster than objects in another direction. We do thus not know of an isometry
that can change timelike vectors, and we do not observe the universe to be a
fully isotropic spacetime.

Instead, when we said the universe is isotropic, we meant that it posseses
spatial isotropy. More precisely, we can choose our coordinates such that
constant-time hypersurfaces are isotropic. This defines a preferred time coor-
dinate that is sometimes called cosmic time (e.g. in [14]). The fact that we
observe the universe to be spatially isotropic reveals that our frame of reference
is one of the preferred frames defined by this coordinate (i.e. our four-velocity
points along the cosmic time axis)4. Invoking the Copernican principle, we con-
clude that the universe possesses spatial homogeneity as well. The universe
can thus be described as a family of time-ordered spatial subspaces that are
isotropic and homogeneous, parametrized by the cosmic time.

Now, equation (1.24) becomes extremely useful. For D = 4 and M = 3, this
becomes

ds2 = −h(t)dt2 + a(t)2g̃ij(x)dxidxj . (1.25)

We have written the function multiplying the subspace metric as a(t)2 because
it is customary. It must hold that h(t) > 0, and a(t)2gij must have a + + +
signature, since we we want our metric to have − + ++ signature (otherwise,
we do not obtain Minkowsky space in the local Lorentz frame [10, pp. 73-74],
and our theory would in no limit reproduce special relativity.) Here we take
a(t)2 > 0, such that g̃ij must be a Euclidean metric.

It is now possible to redefine the time coordinate to simplify life. We intro-
duce

dt′2 = h(t)dt2. (1.26)

Requiring t′ to be a monotonically increasing function of t (and thus keep the
proper interpretation as time), this means

t′(t) =

∫ t

dt′′
√
h(t′′). (1.27)

Note that the function t′(t) is invertible because of monotony, and thus we can
write f(t(t′)) simply as f(t′). t′ now becomes the new time coordinate and is
renamed accordingly (i.e. the prime is dropped). The new metric is

ds2 = −dt2 + a(t)2g̃ijdx
idxj ≡ −dt2 + a(t)2dσ2, (1.28)

Here, g̃ij is the metric of a maximally symmetric space with line element is dσ2.

The metric describes a family of subspaces with line element a2dσ2. The
space that dσ2 describes is the subspace corresponding to a = 1 and will be
called Σ for convenience. As we consider Σ to be a space on its own, it has its
own covariant derivative and Christoffel symbols. We denote these ∇̄i and Γ̄ijk

4In fact, this is not exactly true. Because of the movement of our solar system around the
center of the milky way and the movement of the earth around the sun, we are not even at
rest relative to this frame. Only after correcting for such movement does the sky look properly
isotropic and does Hubble’s law hold.
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respecively (as opposed to ∇µ and Γλµν for the full spacetime). In Appendix

C.3, it is shown that Γ̄ijk = Γijk, and thus the notation Γ̄ijk is not often used.
Now, it remains to find out what Σ looks like. Since it is maximally symmetric,
we know it is unique up to specification of the curvature constant K.

Qualitatively, one would expect there to be three different kinds of max-
imally symmetric spaces: those with positive curvature (K > 0), those with
negative curvature (K < 0), and those with zero curvature (K = 0). If an
example for each of these can be constructed, we know from uniqueness that
we have obtained all spaces that could ever qualify as spatial subspace for our
universe. It does not matter how we got by these examples, so here we will
simply make an educated guess for each.

The maximally symmetric flat space is of course easy to find (since it was
shown in Section 1.3 that every flat space is maximally symmetric): it is just
flat Euclidean space with metric

dσ2
K=0 = δijdx

idxj ≡ dx2 ≡ dr2 + r2dΩ2, (1.29)

where here xi are ordinary Cartesian coordinates. The last equality expresses
the metric in the usual spherical coordinates, where the line element of the unit
two-shere is conveniently written as

dΩ2 = dθ2 + sin2(θ)dφ2. (1.30)

To construct a space of nonzero constant curvature, it is usefull to apply
our intuition about two-dimensional surfaces embedded in a three-dimensional
space. Such a surface that is curved in a constant way is the two-sphere, which
indeed has 1

22 ∗ (2 + 1) = 3 isometries (which are the 1
23 ∗ (3 − 1) rotations in

three-space, which leave the sphere invariant) and is thus maximally symmetric.
It thus seems sensible to consider a three-sphere embedded in four-dimensional
Euclidean space as subspace with nonzero curvature.

The strategy is thus to take an embedding space of the form

ds2 = δijdx
idxj + dz2, (1.31)

where i runs from one to three. We specify the three-sphere in this space by

δijx
ixj + z2 =

1

K
, (1.32)

where K is some constant with dimension one over length squared. In Ap-
pendix D, we work out what the metric on this sphere exactly looks like. In the
coordinates of our choice, we find

ds2 =
1

(1 + 1
4Kx2)2

dx2, (1.33)

where |x| is bounded by 2/
√
|K| for K 6= 0 (see equation (D.15) for more

details). Thus, we have written the metric in a way that is conformal to the
flat metric (1.29)! Since this thesis will be concerned with generalizing results
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from flat space to curved space, this is a convenient choice of coordinates. The
conformal factor will appear so often in this thesis that we give (the square root
of) this function its own symbol,

f(Kx2) ≡ 1

1 + 1
4Kx2

. (1.34)

Note that Kx2 is dimensionless, and thus the same holds for f .

While this metric is manifestly invariant under rotations (i.e. xi → Rijx
j

such that RikR
k
j = δij )), the same cannot be said for translations. In fact,

while the space is homogeneous, the corresponding isometry is provided by
quasitranslations rather than normal translations. These are discussed briefly
in Appendix D, and the Killing vectors are constructed explicitly in Appendix
C.4. In order to get an idea of what quasitranslations are, we present their
Killing vectors here without further discussion:

ξi = (a− 1

4
Kx2)ai +

1

2
Kakxkxi, (1.35)

where the vector ai specifies the quasitranslation (this is the displacement vec-
tor of the origin). Since we have explicitly constructed 1

23(3 − 1) = 6 linearly
independent Killing vectors (the rotations are also treated as Killing vectors in
Appendix C.4), we are certain that we have indeed constructed a maximally
symmetric space. It is thus a space of constant curvature as well. In fact, it
turns out that the constant K is the curvature constant of the space [35, sec.
13.3] (which is of course why we have chosen this particular way of parametriz-
ing the three-sphere).

Since equation (1.32) only has solutions for positive K, it is clear that, us-
ing the sphere, we have constructed the positively curved maximally symmetric
spaces. However, the metric (1.33) is in fact much more inclusive then that. It
is easily verified that when we put K = 0, we find back the metric for flat space
(1.29). What is more, there is nothing to prevent us from putting K < 0. The
Killing vectors found in Appendix C.4 still solve Killing’s equation, and thus
this also describes a maximally symmetric spacetime. Furthermore, K is still
the curvature constant. Thus, we have already found the most general dσ2 that
can occur in equation (1.28). Note that for K ≤ 0 we can no longer interpret
the space as a sphere. The negatively curved space (which is called Lobachevsky
space) can however be embedded in four-dimensional Lorentzian space as a hy-
perboloid [27, p. 16].

It must be noted that while maximally symmetric spaces have a unique
metric, their global properties may differ. The flat metric can describe both
the simply-connected plane (R3) or the topologically less trivial three-torus
(S1 × S1 × S1). Thus, the topology of our universe cannot be determined from
symmetry alone. If K > 0, dσ2 can only describe the three-sphere (or the
non-orientable space RP 3), suggesting that the universe has finite volume (yet
does not have a boundary). Therefore, a universe with K > 0 is usually called
closed. For K < 0, the metric could describe a hyperboloid, which has infinite
volume. Therefore, a universe with K < 0 is usually called open. However,
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it could in principle also describe topologically more complicated spaces that
have, in fact, finite volume [10, p. 331].

We then finally arrive at the most general metric that can describe a (spa-
tially) homogeneous and isotropic universe,

ds2 = −dt2 + a(t)2
δijdx

idxj

(1 + 1
4Kx2)2

≡ −dt2 + a2f2dx2

≡ −dt2 + a(t)2dσ2 ≡ −dt2 + a(t)2g̃ijdx
idxj .

(1.36)

This is the famous Friedmann-Lemâıtre-Robertson-Walker metric, or, as
it will be called in the rest of this thesis, simply the FLRW metric. The func-
tion a(t) is called the scale factor, and it is the only degree of freedom the
spacetime itself has (although its content can, of course, provide more degrees
of freedom). It is a measure of what physical distances correspond to what
distances in the spatial subspaces. The coordinates on dσ2 are usually called
comoving. A comoving distance lcomoving corresponds, at time t, to a physical
distance lphysical(t) = a(t)lcomoving.

Thus, in some sense, the degree of freedom that the scale factor represents
can be thought of the ‘size’ of the universe (although the universe need not
have a finite size). When a(t) is not constant, we can interpret this as either
expansion (ȧ > 0) or collapsing (ȧ < 0) of the universe. We already found such
behavior was suggested by Hubble’s law in the beginning of Section 1. Only we
needed general relativity in order to talk about the expansion of space.

It can be easily verified that the FLRW metric results in Hubble’s law. If
two observers are a comoving distance lcomoving apart, their physical velocity
relative of each other will be

d

dt
lphysical(t) =

d

dt
a(t)lcomoving = H(t)lphysical, (1.37)

where

H(t) =
ȧ(t)

a(t)
(1.38)

is the Hubble parameter (which is sometimes also called Hubble constant,
since it is constant over space). Identifying this with the Hubble constant in
equation (1.1) gives us the original Hubble’s law.

It was stated above that cosmic time defines a class of preferred frames of
reference. Indeed, the FLRW metric is not invariant under Lorentz boosts. Any
observer for whom the constant-time hypersurfaces are isotropic and homoge-
neous (and who can thus construct an FLRW metric as we have done) is said to
be an fundamental observer [30, p. 67]. They are on so-called fundamental
trajectories [35, p. 410], which are defined by xi =constant. As one would
expect, such trajectories are geodesics [35, eq. (14.2.8)]. Galaxies are usually
more or less on fundamental trajectories, although they typically have an addi-
tional velocity of about 100 km s−1 [30, p.67]. The part of the physical velocity
that can be attributed to Hubble’s law is called the Hubble flow [7, p. 7].
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The FLRW metric does not offer a unique way of defining the scale factor,
the curvature constant and the comoving coordinates. The freedom this leaves
is often used to set the scale factor today to unity. The current cosmic time
coordinate is denoted t0, and quantities evaluated at this time are also denoted
with a subscript 0, e.g. a(t0) = a0. We can rescale our quantities as follows,

a′(t) =
a(t)

a0
, (1.39)

x′i = a0x
i, (1.40)

K ′ =
K

a20
. (1.41)

The FLRW metric does not change form under this transformation, as we now
have

ds2 = −dt2 + a′(t)2f(K ′x′2)2dx′2. (1.42)

This alternative parametrization indeed has the nice property that a′0 = 1,
which allows us to interpret comoving lengths as ‘lenghts as they are today’,
making the concept somewhat more tangible. Afterwards, we can simply drop
the primes as the new quantities replace the old ones. While we will often keep
a0 explicit for clarity, it should be clear that we can always set a0 = 1 to slightly
simplify matters.

The game played above can also be reversed. Some authors like te redefine
their coordinates such that they become dimensionless, instead making the scale
factor dimensionfull. This is done by defining k|K| ≡ K and letting

√
|K|xi be

the new coordinate. In that case, the FLRW metric becomes

ds2 = −dt2 +R(t)2
1

(1 + 1
4kx

2)2
dx2, (1.43)

where R(t) = a(t)/
√
|K| is the dimensionfull scale factor. For a flat universe,

k = 0, while closed and open universes are described by k = +1 and k = −1
respectively. Coordinates can then be chosen such that [10, eq. (8.34)]

ds2 = −dt2 +R(t)2(dχ2 + S2
k(χ)dΩ2), (1.44)

where χ is related to the radial coordinate and

Sk(χ) =


sin(χ) for k = +1,

χ for k = 0,

sinh(χ) for k = −1.

(1.45)

Such coordinates will not be used in this thesis.

1.5 The Friedmann Equation

We now know that a homogeneous and isotropic universe has only one geomet-
rical degree of freedom. It would be nice to know how it evolves, for then we
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would be able to actually do cosmology. For this, we will of course need the
Einstein field equations. These can be written as [10, eq. (4.45)]

Rµν −
1

2
Rgµν =

1

M2
p

Tµν , (1.46)

where Rµν is the Ricci tensor, R is the Ricci scalar (i.e. the trace of Rµν) and

Tµν is the energy-momentum tensor. Furthermore, Mp = 1/
√

8πG is the re-
duced Planck mass.

We can obtain some information about the tensors appearing in the Einstein
equations without doing any calculations by considering the symmetries of the
FLRW spacetime. We can change the isometries of the subspaces to isometries
of the full spacetime by leaving the time coordinate t invariant and perform the
proper diffeomorphism on the spatial coordinates xi. Since g̃ij is form-invariant,
and since a(t) and g00 are trivially so, the full metric gµν is too (it is also shown
explicitly that this way of generalizing isometries works at the level of Killing
vectors in Appendix C.4).

It can be verified that a diffeomorphism that leaves the metric form-invariant
also leaves derivatives of the metric form-invariant. Define the function

fµρσ(x) =
∂

∂xµ
gρσ(x). (1.47)

Then, after a diffeomorphism,

f ′µρσ(x′) =
∂

∂x′µ
g′ρσ(x′). (1.48)

If the diffeomorphism is an isometry, then g′ρσ(x′) = gρσ(x′) and thus

f ′µρσ(x′) =
∂

∂x′µ
gρσ(x′) = fµρσ(x), (1.49)

and thus fµρσ is form-invariant as well. Since Christoffel symbols are built using
the metric and its derivatives, and since the Ricci tensor and scalar are built
using the Christoffel symbols and the metric, it follows that the Ricci tensor
and scalar are themselves form-invariant. Thus, the left-hand side of Einstein
field equations (1.46) is form-invariant under isometries. Since the validity of
the equations should not be altered by a diffeomorphism, this implies that the
energy-momentum tensor is form-invariant under isometries as well. This proves
the assumption at the beginning of Section 1.4 that the symmetries of the metric
describing the universe are also symmetries of the content in the universe. Here,
we will use isometries to draw conclusions about the form of both the metric
and the energy-momentum tensor.

One of the isometries we can perform is (non-infinitesimal) rotation, i.e.
xi → Sijx

j where Sij is a matrix in some representation of the group SO(3),

which obey SkiδklS
l
j = δij [10, eq. (1.30)]. Since every spatial index on a tensor

picks up a matrix Sij under the diffeomorphism, we can quickly deduce that

R0i = 0. Any other function would not satisfy SkiR0k = R0i∀Sji ∈ SO(3),
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which is required by form-invariance (spatial coordinates are suppressed for the
moment). Similarly, requiring Rij = SkiS

l
jRkl reveals Rij ∝ δij (by definition

of the SO(3) matrices). We can go further: requiring Rij to be invariant under
quasitranslations suggests Rij ∝ g̃ij , where the proportionality ‘constant’ is a
function of time. In fact, it can be shown generally that any two-tensor in a
maximally symmetric space that is form-invariant under all isometries must be
proportional to the metric [35, sec. 13.4]. Because of the way the isometries are
carried over to the full spacetime, we can effectively consider the spatial parts
of tensors to live in the space Σ, requiring the proportionality.

The implication is that we can write

Rµν(t,x) =


r0(t) 0 0 0

0
0 r1(t)gij(x)
0

 . (1.50)

Note that we have used gij instead of g̃ij , since the two metrics are proportional
to each other anyway as long as we allow the propotionality ‘constant’ to be
time dependent. Since Rµν derives from the metric, both r0 and r1 must be
functions of the scale factor. It can be calculated that [10, eq. (8.45)]

r0(t) = −3
ä(t)

a(t)
, (1.51)

r1(t) =
ä(t)

a(t)
+ 2

(
ȧ(t)

a(t)

)2

+ 2
K

a(t)2
. (1.52)

This gives us the trace

R = gµνRµν = g00r0 + r1g
ijgij = −r0 + 3r1. (1.53)

The implications for Tµν are, in some sense, even more interesting. Just like
we did for Rµν , we can write the energy-momentum tensor as

Tµν(t,x) =


ρ(t) 0 0 0

0
0 p(t)gij(x)
0

 (1.54)

(the reason we chose ρ and p will become clear in a moment). However, this
way of writing the tensor is not covariant at all; the equation only holds in the
reference frame of a fundamental observer. A way to make it covariant is to
invoke the four-velocity

uµ =
dxµ(τ)

dτ
, (1.55)

where dτ is the proper time (dτ2 = −ds2) and xµ(τ) is the worldline of an
observer. It can be considered to parametrize the frame of reference used. Since
the four-velocity is equal to δµ0 for any fundamental observer (since they are
at rest w.r.t. the comoving coordinates and thus xµ = δµ0 and dτ = dt), the
energy-momentum tensor can then be written as

Tµν = (ρ+ p)uµuν + pgµν , (1.56)
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which is manifestly covariant. But energy-momentum tensors of this form are
well-known; it describes a perfect fluid with energy density ρ, isotropic
pressure p and fluid velocity uµ [10, eqs. (1.114) and (8.48)] (we have picked
the symbols ρ and p to adhere to the standard nomenclature). Thus, matter
in a homogeneous and isotropic universe is necessarily a perfect fluid. What
is more, since ui = 0 according to any comoving observer, the fluid is itself
comoving (i.e. at rest in comoving coordinates). Note that, while not the case
here, a perfect fluid can also have a nonconstant velocity field uµ(x).

Now we are finally ready to write down the Einstein equations (for which
we can safely use the frame-dependent formulations of Rµν and Tµν). It should
be clear that the 0i equations have no content. The 00 equation becomes

R00 −
1

2
Rg00 =

1

M2
p

T00

r0 +
1

2
(−r0 + 3r1) =

1

M2
p

ρ

r0 + 3r1 =
2

M2
p

ρ

6

[(
ȧ

a

)2

+
K

a2

]
=

2

M2
p

ρ(
ȧ

a

)2

=
1

3M2
p

ρ− K

a2
,

(1.57)

or, recognizing the Hubble parameter,

H2 =
1

3M2
p

ρ− K

a2
. (1.58)

There is one other linearly independent Einstein equation. The ij equations are

Rij −
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2
Rgij =

1

M2
p

Tij(
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1

2
(−r0 + 3r1)

)
gij =

1

M2
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1

M2
p
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−2
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a
−H2 − K

a2
=

1

M2
p

p

ä

a
=

1

2

(
H2 +

K

a2

)
− 1

2M2
p

p.

(1.59)

The expression between large brackets can be eliminated in favor of ρ using the
Friedmann equation. This gives

ä

a
= − 1

6M2
p

(ρ+ 3p). (1.60)

Together, equations 1.58 and (1.60) are called the Friedmann equations. The
first is the one used most often and is often referred to as the Friedmann equa-
tion [10, p. 336]. The second equation is sometimes called the acceleration

26



equation [28, eq. 2.48]. This is the nomenclature that will be used throughout
this thesis, since referring to a specific equation is easier this way.

There is an interesting way of rewriting the Friedmann equation. We define
the so-called critical density by

ρcrit ≡ 3H2M2
p . (1.61)

This allows us to write a dimenionless density parameter,

Ω ≡ ρ

ρcrit
, (1.62)

such that the Friedmann equation becomes

Ω− 1 =
K

H2a2
. (1.63)

This means that when Ω = 1, i.e. when ρ = ρcrit, the universe is spatially flat
(K = 0). This explains the name ‘critical’. When Ω > 1, the universe is closed,
while when Ω < 1, the universe is open.

There is one more equation we can find from the above. The energy-
momentum tensor is covariantly conserved, meaning

∇νTµν = 0. (1.64)

The equations for µ = i yield no information, for it can be calculated that
∇νT iν = 0 holds automatically. This is to be expected, as it can be interpreted
as a spatial three-vector (which must be zero by isotropy). The equation for
µ = 05 does yield information though. Before working it out, observe that (due
to diagonality of the metric) ∇νTµν = 0 is equivalent to ∇νT νµ = 0. The
tensor Tµν = gµρTρν looks particularly nice. The 00 component picks up a
factor g00 = −1, while in the ij part g̃ij is contracted with its inverse. Thus,
T νµ = diag(−ρ, p, p, p). The covariant divergence of T ν0 then is

∇νT ν0 = ∂νT
ν
0 + ΓννλT

λ
0 − Γλν0T

ν
λ

= −∂0ρ− Γνν0ρ+�
�>

0
Γ0
00ρ− Γii0p

= −ρ̇− Γii0(ρ+ p)−��>
0

Γ0
00ρ

= −ρ̇− 3H(ρ+ p),

(1.65)

where the results of Appendix C.3 have been used for the Christoffel symbols.
Thus, requiring covariant energy conservation means

ρ̇+ 3H(ρ+ p) = 0. (1.66)

This is known as the continuity equation [28, eq. 2.40] [7, 1.3.98]. In general,
ρ and p are not independent variables. They are related by an equation of

5In some sense, one might think of this as a covariant version of energy conservation.
However, the absence of a timelike Killing vector means that energy is in general not conserved
in a FLRW universe.
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state [10, p. 334], which is specific for the kind of energy being described. The
ones we will be dealing with all obey a simple linear relation,

ρ = wp, (1.67)

where w is a constant.

With this in hand, we can solve the continuity equation so that we know how
the matter content of the universe evolves. This, in turn, can be used to solve
the Friedmann equation (as will be done in Section 1.6). Thus, the dynamics of
the universe (i.e. of a(t)) are determined by only three equations: the Friedmann
equation, the continuity equation and the equation of state. However, we have
four equations, as there is also the acceleration equation. One might wonder
if this is even consistent. Rest assured that it is, for these four equations are
not independent of one another. Taking a time derivative of the Friedmann
equation gives

2HḢ =
1

3M2
p

ρ̇+ 2
K

a2
H. (1.68)

Since

Ḣ = ∂t

(
ȧ

a

)
=
ä

a
− ȧ

a2
ȧ =

ä

a
−H2, (1.69)

the equation becomes, after dividing by 2H and moving terms around a bit,

ä

a
= H2 +

K

a2
+

1

6M2
p

ρ̇

H
. (1.70)

On the right hand side, the first two terms can be rewritten in terms of ρ using
the Friedmann equation and the last term can be rewritten in terms of ρ and p
using the continuity equation. It is easily verified that one then indeed obtains
the acceleration equation, and one can thus do without. We can of course also
do without the continuity equation in favor of the acceleration equation, but
this is not the approach taken in this thesis. We will however remember the
acceleration equation, for it is a convenient expression to use when dealing with
second derivatives of the scale factor.

1.6 Solving Friedmann

In this section, we will consider how exactly we can determine the evolution of
the homogeneous and isotropic universe using the equations found in Section
1.5. We will start by considering a singly type of energy, and use the continuity
equation and equation of state to determine how it evolves with the universe.
This in turn can be used to write down an equation for the scale factor alone
(and some constants), which fully determines how the universe evolves.

Substituting the equation of state into the continuity equation gives us a
first-order differential equation,

ρ̇+ 3
ȧ

a
(1 + w)ρ = 0. (1.71)
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This can be rewritten as

1

dt
dρ = −3(1 + w)ρ

da

a

1

dt
. (1.72)

The 1/dt cancels and we can move the ρ to the left-hand side,

dρ

ρ
= −3(1 + w)

da

a
. (1.73)

Integrating both sides gives logarithms and an integration constant. Exponen-
tiating and rewriting the constant such that ρ(t0) ≡ ρ0 gives

ρ = ρ0

(
a

a0

)−3(1+w)

. (1.74)

Before proceeding, let’s consider some typical types of energy that this ρ can
describe. Perhaps the simplest example is ordinary, heavy matter. In the limit
where the pressure exerted by matter is negligible as compared to its energy
density, the matter is called dust. It has w = 0 and thus

ρdust ∝
1

a3
. (1.75)

This has the following easy interpretation. Consider a large comoving cube
in the universe with sides of physical length L0 at t0 (at which time a = 1).
The cube contains a certain amount of matter with total mass M . In the
dust limit, the (average) energy density of the matter in the cube at t0 is
just ρ0 = M/V0 = ML−30 . As the universe evolves, the amount of matter
inside the cube will remain the same because it is at rest w.r.t. the comoving
coordinates (otherwise, the velocity field would define a vector, which is for-
bidden by isotropy). Thus, the energy density is ρ = M/V = ML−3. Since
L = aLcomoving with Lcomoving = L0, this gives ρ(a) = M(aL0)−3 = ρ0a

−3.
When the universe expands, dust is simply diluted.

One might be surprised to learn that the same does not hold for other types
of energy. Consider, for the moment, radiation. While dust has rest mass but
no kinetic energy, radiation is the limit where there is only kinetic energy and no
rest mass. An obvious example of this is electromagnetic radiation (photons),
but relativistic massive particles can often be treated the same way (like e.g.
relativistic neutrinos [30, p. 281]). Radiation has p = 1

3ρ [14, chap. 2, prob. 14.
(a)]. This means

ρrad ∝
1

a4
. (1.76)

This may be interpreted as follows. Since the energy of radiation is proportional
to one over the wavelength (E ∝ λ−1), and since λphysical = aλcomoving, the to-
tal energy in a bunch of radiation goes as E ∝ a−1. Combining this with the
dilation effect that also applies to dust, we find ρ = E/V ∝ a−4.

There is one last type of energy of particular interest. Consider for the
moment w = −1. This implies ρ ∝ a0, i.e. the energy density is constant. Such
energy is called dark energy [14, sec. 2.4.5]. While the negative pressure and
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failure to dilute might seem quite queer, it is estimated to make up about 69%
of the energy in our observable universe [1, table 4]. Since dark energy does not
dilute, it is compelling to think of it as a property of space itself rather then
some entity within the space. Indeed, the easiest way to put dark energy into
your theory is to invoke vacuum energy with T vac

µν = −ρvacgµν , where ρvac is
constant in both time and space. This can also be interpreted in another way.
When we write the Einstein equation (1.46), we can move the vacuum energy
to the left-hand side to find

Rµν −
1

2
Rgµν + Λgµν =

1

M2
p

Tµν , (1.77)

where Λ = 1
M2
p
ρvac is the cosmological constant. While vacuum energy and

cosmological constant are often used interchangeably, the first treats the phe-
nomenon like a property of the matter fields in the universe while the second
rather treats it as a geometrical effect [10, sec. 4.5]. While there are other
dark-energy candidates (where e.g. the energy density has some sort of time
dependence, a class of models often referred to as ‘quintessence’ [14, p. 47,
footnote]), they do not seem as popular [7, p. 21] nor are their basics as easy
to explain.

Now the crux is that for some mixture of contents of the universe, we cannot
solve the Friedmann equation analytically. We then have

ρ =
∑
i

ρi =
∑
i

ρ0i

(
a

a0

)−3(1+wi)
. (1.78)

However, we can often approximate the universe as containing only one type
of energy. In that case, exact solutions are available. First, let’s make the ap-
proximation a bit more plausible. The different types evolve differently. If the
universe (i.e. the scale factor) is small enough, the radiation energy density can
be treated as much larger then the others. When the universe is very large,
both matter and radiation will have diluted away and only dark energy is sig-
nificant. Somewhere in between, dust will be the most important contituent of
the universe. Thus, this approximation will be realistic at some point in the
evolution of the universe, and the whole evolution can be estimated by patching
together these different epochs. Much better results however are obtained using
numerical methods.

First, we will consider the case K = 0, which is the easiest. The Friedmann
equation becomes

ȧ

a
=

1√
3Mp

√
ρ =

ρ0√
3Mp

(
a

a0

)− 3
2 (1+w)

. (1.79)

Writing ȧ = da/dt and putting all a and da on one side and all constants and
dt on the other gives

a
1
2 (1+3w)da =

ρ0a
3
2 (1+w)
0√
3Mp

dt. (1.80)
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This can now be integrated to yield (after multiplying with 1
2 (1 + 3w))

a
3
2 (1+w) = Awa

3
2 (1+w)
0 t+ C, (1.81)

where C is an integration constant and we have defined

Aw ≡
(1 + 3w)ρ0

2
√

3Mp

. (1.82)

Thus, the solution is

a(t) = (Awa
3
2 (1+w)
0 t+ C)

2
3

1
1+w . (1.83)

We have already defined the initial conditions, namely a(t0) = a0 (and ρ(t0) =
ρ0). Thus, C should be a function of those quantities. To determine what
the integration constant looks like, we first put it into a more convenient form.
First, we divide a0 out of the term with the weird power. Next, we’d rather
have a function that is linear in t− t0 instead of just t since this term would be
conveniently zero at t0. Since Awt0 is itself just a constant, this can be pulled
out of the integration constant. We thus get

a(t) = a0(Aw(t− t0) +D)
2
3

1
(1+w) , (1.84)

where D ≡ a
2
3

1
(1+w)

0 C+Awt0. Since D is a function of C, it is itself an integration
constant. The requirement a(t0) = a0 now trivially reveals that D = 1. Thus,
our solotion is

a(t) = a0(Aw(t− t0) + 1)
2
3

1
(1+w) . (1.85)

Before discussing what this solution looks like for different types of energy
we change its form one more time. We can define the time t̄0 ≡ t0−1/Aw. Then
the term between brakets in the solution becomes Aw(t − t̄0). We are free to
callibrate time however we like, so we can define the zero point of our timeline
to be t̄0, i.e. t̄0 = 0. Then,

a(t) = Āwt
2
3

1
(1+w) (1.86)

with Āw = a0A
2
3

1
(1+w)

w . This insightfull way of writing things shows clearly that
the universe thus evolves according to a simple power law. It shows that in the
case of matter domination (i.e. when the universe can be approximated as
only containing dust)

a(t) ∝ t 2
3 , (1.87)

while in the case of radiation domination (i.e. when the universe can be
approximated as only containing radiation)

a(t) ∝
√
t. (1.88)

Furthermore, it is usefull to note that the solution for the Hubble constant is
always proportional to 1/t; one can easily calculate

H(t) =
2

3

1

1 + w

1

t
. (1.89)
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There is one important caveat however. The solution presented above only
works for w 6= −1! This should be clear from the fact that we are dividing
by 1 + w in the exponent. In order to know what the solution is for w = −1,
i.e. for a universe dominated by dark energy, we need to go back to equation
(1.79). This reveals that the Hubble paramter is, in fact, constant (with value
H = ρ0/(

√
3Mp) and thus

ȧ = aH. (1.90)

This is solved by
a(t) = eHt+C , (1.91)

where C is an integration constant (distinct from the C used while finding the
w 6= −1 solution). Requiring a(t0) = a0 quickly reveals

a(t) = a0e
H(t−t0). (1.92)

Note that there is no time where a = 0 to choose as zero point on the timeline.
In fact, there is no preferred time at all in this solution.

The above equation is the solution corresponding to vacuum domination,
where the universe grows exponentially. This has been theorized to have hap-
pened during the first 10−32 seconds of the universe under the name of in-
flation [8, p. 12]. It can be easily verified from equation (1.53) that (since
we assumed K = 0) the Ricci scalar is constant for this solution. Indeed, the
solution corresponds to a spacetime that is maximally symmetric in 3+1 dimen-
sions with positive curvature scalar. It is known as de Sitter space [35, eq.
(13.3.41)] and can be considered to satisfy the ‘perfect’ Copernican principle
where there is no preferred position nor direction in spacetime rather than just
in space [10, p. 324].

In this section, we have only considered solutions of the Friedmann equations
in a flat universe, i.e. for K = 0. We hope that this gives some insight in what
kind of different substances fill the universe and how they affect the evolution
of the universe. Similar calculations for a curved universe are more difficult and
thus will not be included in this thesis (as they have only limited additional
value). Results of such calculations can however be found in [26, sec. 5.3].
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Chapter 2

Linear Perturbation Theory

In Chapter 1, we have reviewed what our universe must look like and how it
evolves assuming spatial homogeneity and isotropy. However, in reality, the
universe only displays these assumptions approximately. We can deal with this
by allowing the quantities we use to describe the universe to deviate slightly
from their background values, which are the values dictated by homogeneity
and isotropy. By treating these deviations perturbatively, i.e. by neglecting
quantities that are the product of too many such deviations, we can simplify
their treatment immensely. Symmetry will still have a helpfull role to play,
which would not be the case in a generic universe.

In this thesis we will only consider linear perturbation theory, i.e. we
will neglect any quantity that is the product of two or more perturbations. This
is most popular and by far the simplest way of doing cosmic perturbation theory
(although higher-order perturbation theory is of course more accurate). This
means all perturbations must obey linear equations of motions, which can be
derived from Einstein’s field equations.

In fact, there are some more very nice properties that make cosmic linear
perturbation theory doable. We can classify perturbations based on how they
transform under rotations, as is done in Section 2.1. Isotropy of the background
dictates that the different modes decouple from ane another. Similarly, homo-
geneity of the background dictates that different eigenmodes of the Laplacian
decouple from one another (in flat space, these are simply the Fourier modes).
This decomposition is discussed in Section 2.2.

Finally, in Section 2.3, we see how the invariance under diffeomorphisms
of general relativity implies that there is no unique way to split the universe
into background and perturbations. This gives rise to the concept of gauge
transformations, and the possibility to choose a gauge which suits your needs.

2.1 Scalars, Vectors and Tensors

As we have seen in Section 1, there are two objects needed to describe the
universe: the metric to describe its geometry, and the energy-momentum tensor
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to describe its contents. They are related through the Einstein field equations
(1.46). We have seen in Section 1.5 what these objects look like in a universe that
is spatially homogeneous and isotropic. We define these to be the background
objects. To allow for small deviations from these symmetries, we perturb these
tensors:

gµν(x) = ḡµν(x) + hµν(x), (2.1)

Tµν(x) = T̄µν(x) + δTµν(x). (2.2)

Here and everywhere else, overbars denote background quantities (except when
used on covariant derivatives and Christoffel symbols).

The results of Section 1.5 reveal that the background metric is just the
FLRW metric, ds2 = −dt2 +a2f2dx2, while the background energy-momentum
tensor is that of a perfect fluid, T̄µν = diag(ρ̄, p̄, p̄, p̄). hµν and δTµν are the
perturbations and can in general be any four-dimensional two-tensor. Since
we are doing linear perturbation theory, any product of components of these
tensors is neglected. This means, for one thing, that the indices on hµν and
δTµν are raised and lowered using only the background metric as opposed to
the full metric. Thus, we have for example,

hµν = gµρhρν = ḡµρhρν +���
�:0

hµρhρν . (2.3)

Note that this way of defining things implies that hµν is not the inverse of hµν .
We do however define ḡµν to be the inverse of ḡµν . This implies that the inverse
of the full metric is

gµν = ḡµν − hµν , (2.4)

since we then have gµρgρν = δµν − hµν + hµν +O(h2) = δµν .

As mentioned briefly before, we would like to collect components of the
perturbations into objects that obey some distinct transformation law under
rotations. This is useful, because we expect objects obeying different observation
laws to decouple from one another. An argument for this is as follows. Assume
that there is some set, P, of objects with distinct linear transformation rules
composed of the components of hµν and δTµν , such that the degrees of freedom of
these objects together are exactly all the perturbative degrees of freedom. These
objects together then form a parametrization of the perturbations. Furthermore,
assume there are subsets Ti of P for i ∈ {1, 2, ..., n} such that all elements of
Ti transform the same under rotations. Since each p ∈ P obeys a distinct such
rule, the union of all Ti’s is exactly P and their intersection is empty. Lastly,
we assume that we can choose the p’s such that the most general equation of
motion we can write is∑

p∈P
Opp =

∑
p1∈T1

Op1p1 +
∑
p2∈T2

Op2p2 + ...+
∑
pn∈Tn

Opnpn = 0. (2.5)

Here, the Op are (differential) operators that obey three conditions. First
of all, they must be composed from background operators and derivatives only.
The second condition is that they must not have (spatial) indices which are
contracted with any indices the objects in P might have, i.e. any components
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of an object p remain unmixed. Thirdly, spatial derivatives can only occur in
the operators in the form of covariant derivatives ∇̄i with contracted indices.
The significance of these conditions is that they ensure us that Opp transforms
exactly the same way as the object p itself (one might say that the operators
are ‘covariant’). The second condition ensures that the structure of p is left
invariant; the operators act like simple multiplications, except for derivatives.
The third condition makes sure the derivatives do not change the transformation
law. Then, since the background is isotropic, we know from the first condition
that the operators themselves do not change under transformation laws.

Thus, under a transformation, (Opp)′ = Opp′. Note that the first condition
is satisfied trivially in linear perturbation theory, as putting perturbed quanti-
ties in the operators would make the terms negligible anyway. The second and
third conditions are the real assumptions, and choosing our parametrization P
such that they must hold for any equation of motion requires some cleverness
(as we will see shortly). When the assumptions hold, we can draw the follow-
ing conclusion. In the equation of motion, the sum over each Ti as a whole
transforms under rotations according to the same transformation law that is
followed by each pi ∈ Ti. Since all these laws are distinct, the only way that the
sum remains zero after a rotation, is if each sum is zero individually. Since the
equation of motion should not depend on the frame of reference that we happen
to be in (the action can be expected to be invariant under the full Poincaré
group), they must be so indeed. Thus, we really have n equations of motion of
the form ∑

p∈Ti

Opp = 0, (2.6)

i.e. the p’s in different Ti’s decouple.

Since rotations are a subset of the diffeomorphisms that only leave the time
coordinate invariant, the usual suspects for the different kinds of objects are
scalars, vectors and tensors1 under such diffeomorphisms. More precisely, under
the diffeomorphism xi → x′i, x0 → x0, a scalar transforms as

S(x)→ S′(x′) = S(x), (2.7)

a vector transforms as

V i(x)→ ∂jx
′iV ′j(x′) = V i(x), (2.8)

and a tensor transforms as

T ij(x)→ ∂kx
′i∂lx

′jT ′kl(x′) = T ij(x). (2.9)

The transformation of the different parts of a tensor (such as hµν) under such a
diffeomorphism follow immediately from Appendix B: every spatial index (i.e.
latin) picks up a ∂jx

i, while every temporal index (i.e. 0) remains unaltered.
From this, we conclude that h00 is a scalar, h0i = hi0 is a vector, and hij is a

1Of course, scalars and vectors can also be considered tensors (0-tensors and 1-tensors
respectively). In the current context we reserve the name tensor (with no further specification)
for 2-tensors.
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tensor.

However, this decomposition does not obey the second and third conditions
in the argument above. For example, we could have an equation of motion of
the form ∇̄ih00 + h0i = 0, which indeed mixes the different objects. In order to
find a more appropriate parametrization of the perturbations, we have a look at
some basic vector calculus. The Helmholtz theorem states that we can (under
certain conditions) decompose any vector field uniquely into its divergence and
its curl [16, app. B]. In flat space, this means we can write an arbitrary vector
as vi = wi + ∂iθ, where wi carries the curl of the vector field and ∂iθ carries the
divergence for some scalar θ (the vector wi is then called ‘transverse’ [28, eq.
6.8]). This works because the divergence of a curl is always zero, and similarly
for the curl of a gradient. The constraint equation ∂iw

i = 0 (i.e. the condition
that it is pure curl) means that wi only describes two degrees of freedom, so
together with θ there are still three degrees of freedom in the vector field. Thus,
the objects wi and θ form a valid alternative parametrization of the vector vi.

We now see that we are indeed not able to contract derivatives with the
index on wi (or rather, such a term would not contribute to the equations of
motion anyway). Furthermore, the only way we can make θ transform like a
vector is by putting ∂i in front of it. In that case, we could write an equation
like ∂iθ+wi = 0, but this would not be an equation of motion; while one vector
is pure curl, the other is pure divergence, implying that both are curlless and
divergenceless, making it a constraint equation rather than an equation of mo-
tion. Furthermore, the only background quantity we have is the spatial part of
the metric, but since it is proportional to unity, contracting it with wi would be
not different from scalar multiplication (it does not mix indices). Lastly, as we
here allow for the possibility of spatial curvature, we will decompose vectors as
vi = wi + ∇̄iθ. Here, the vectors will be considered to live on Σ. This implies
θ = ∇̄−2∇̄ivi, where ∇̄−2 is the inverse Laplacian operator on the subspaces.
∇̄−2A(x) has a unique solution (defined by ∇̄2∇̄−2A = A) as long as either the
subspaces are compact or the object A vanishes fast enough at infinity [21, p.
9]. This will be assumed throughout the thesis. Note that, since covariant
derivatives act as ordinary derivatives on scalars, the decomposition still looks
like vi = wi + ∂iθ, only the objects wi and θ are defined differently (such that
∇̄iwi = 0 instead of ∂iw

i = 0, which is different).

We can perform a similar trick with tensors. Basically, we want to start with
a symmetric tensor tij(as both the metric and the energy-momentum tensor are
symmetric), and then extract vectors and scalars until we are left with a tensor
tij∗ that obeys the conditions above. This tensor should obey ∇jtij = 0, sim-
ilarly to the transverse vectors. However, we can also do a contraction with a
background quantity that is not just equivalent to scalar multiplication; we can
take the trace, g̃ijt

ij . To fulfill the conditions, this must yield zero. Such a ten-
sor is called transverse-traceless. In order to get this tensor, we need to extract
one vector (which is more or less ∇jtij), which in turn can be decomposed into
a scalar and a transverse vector. Furthermore, we must extract one scalar for
the trace. For more details of the decomposition, see [21, eq. 1.3].

In the end, we can decompose the metric perturbations such that the full
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metric becomes

ds2 =− (1 + E)dt2 + 2a(∇̄iF +Gi)dtdx
i

+ a2
[
(1 +A)g̃ij + ∇̄i∇̄jB + 2∇̄(iC

V
j) +Dij

]
dxidxj , (2.10)

where
∇̄iGi = ∇̄iCV i = ∇̄iDij = g̃ijD

ij = 0. (2.11)

Or, in other words,

h00 = −E, (2.12)

hi0 = a(∇̄iF +Gi), (2.13)

hij = a2
[
Ag̃ij + ∇̄i∇̄jB + ∇̄iCVj + ∇̄jCVi +Dij

]
. (2.14)

The letters used to indicate the different variables are chosen as to agree with
[29]. The decomposition of perturbations into scalars, transverse vectors and
transverse-traceless tensors is called scalar-vector-tensor decomposition.

Now we can, of course, do the same for the energy-momentum tensor. How-
ever, we are often dealing with perfect fluids. While the energy-momentum
tensor in a homogeneous and isotropic universe necessarily describes a perfect
fluid, not every perfect fluid has to be homogeneous and isotropic. A perfect
fluid is defined by the fact that we can always find a reference frame in which
the fluid appears locally isotropic. That is, Tµν(x0) is invariant under rotations,
implying Tµν = diag(ρ, p, p, p). This can indeed be made covariant by invoking
a four-velocity field which has uµ(x0) = δµ0 . This can be considered the velocity
field of the fluid itself, as in a frame with this velocity the energy-momentum
tensor is diagonal, and thus there are no fluxes of energy and momentum. How-
ever, the four-velocity required to put the energy-momentum tensor in this form
does not need to be the same everywhere; uµ can change from place to place.
The same holds for ρ and p. Thus, the most general perfect fluid is described
by

Tµν(t,x) =

(
ρ(t,x) + p(t,x)

)
uµ(t,x)uν(t,x) + p(t,x)gµν(t,x), (2.15)

where uµuµ = −1. Only when requiring homogeneity and isotropy (around ev-
ery point), as is done in Section 1.5, do we find that all x-dependence (except
for that of the metric) must vanish and that the spatial vector ui = 0, giving
the background energy-momentum tensor.

So, how do we perturb the energy-momentum tensor of a perfect fluid? It is
convenient to remain in the perfect-fluid form and thus perturb the objects uµ,
ρ and p (and, of course, gµν is already perturbed). We write

uµ(t,x) = ūµ + δuµ(t,x), (2.16)

ρ(t,x) = ρ̄(t) + δρ(t,x), (2.17)

p(t,x) = p̄(t) + δp(t,x). (2.18)

Here, we have ūµ = δµ0 (in a comoving frame of reference). ρ̄(t) and p̄ are
the spatial averages of the energy density and isotropic pressure respectively,
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and their evolution is governed by the Friedmann equations (and the equation
of state). There is one last thing to say about the perturbed fluid velocity. A
velocity must always obey uµuµ = −1, i.e. it must be a timelike unit vector.
Since we have, in linear perturbation theory,

uµuµ = (ūµ + δuµ)(ūν + δuν)

= ḡµν ūµūν + hµν ūµūν + 2ḡµν ūµδuν

= −1 + h00 + 2δu0,

(2.19)

we have δu0 = h00/2. Furthermore, since ūi = 0, we have ui = δui. Therefore,
we are in principle free to drop the δ, but in order to remind ourselves of the
perturbative nature of the quantity we choose to retain it. Lastly, we can de-
compose it into a transverse vector and a scalar, ui = ∇̄iδuS + δuVi .

Plugging the above into the equation for perfect fluids, retaining only the
linear-order perturbations, and separating the background energy-momentum
tensor, we find

δT00 = δρ− ρ̄h00, (2.20)

δT0i = −(ρ̄+ p̄)(∇̄iδuS + uVi ) + p̄h0i, (2.21)

δTij = δpḡij + p̄hij . (2.22)

We can compare this to the decomposition of the metric perturbations. We see
that we indeed have one scalar degree of freedom for the 00 part and we have one
scalar and one vector degree of freedom for the 0i part. However, for the ij part,
we only have one scalar degree of freedom, while the metric has one additional
scalar, one additional transverse vector, and one additional transverse-traceless
tensor here. To correct for this, and write down the most general decomposition
of the energy-momentum tensor, we add these degrees of freedom as follows:

δTij = p̄hij + a2
[
δpg̃ij + ∇̄i∇̄jπS + 2∇̄(iπ

V
j) + πTij

]
, (2.23)

where ∇̄iπV i = ∇̄jπTij = πTii = 0.

The π’s make it impossible to go to a frame in which the energy-momentum
tensor is locally isotropic. That is why we call them the anisotropic inertia.
Their values are properties of the specific fluid that is described, and they will
vanish for a perfect fluid. Since we will assume the universe is filled by a perfect
fluid throughout this thesis, they will not be considered henceforth. Lastly,
while this will not be further considered, we note that a more realistic model
of the universe would contain more than one type of energy. In that case, we
can perturb the energy-momentum tensor for each fluid as done above, and take
the total energy-momentum tensor to be the sum. This, then, completes the
scalar-vector-tensor decomposition of the perturbations.

2.2 Eigenfunctions of the Laplacian

In the previous section, we have used the isotropy of the background to find a
parametrization of the cosmic perturbations in which different sectors decouple.
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We can do something similar using the homogeneity of the background. The
reader is probably familiar with Fourier analysis, where an arbitrary function
can be expanded in terms of trigonometric functions. These functions of the
form exp(ik ·x) are exactly eigenfunctions of the flat-space Laplacian operator,
∂i∂

i ≡ ∂2. When applying this procedure to perturbations on a flat background,
modes with a different wave number k decouple from one another. In curved
space, this is generalized as one might expect; instead of expanding in terms of
eigenfunction of the flat-space Laplacian, the eigenfunctions of the curved-space
Laplacian on Σ (i.e. ∇̄2) should be used.

The line of thought behind how to make good use of the homogeneity of
space is very similar to that behind the use of isotropy in Section 2.1. We
assume there is a set of objects P which we can use to parametrize the cosmic
perturbations such that each object has a well-defined linear transformation rule
under quasitranslations. Furthermore, we assume P can be divided into subsets
Ti such that all p ∈ Ti transform the same way under quasitranslations. Next,
we assume the most general equation of motion takes the form∑

p∈P
Opp =

∑
i

∑
p∈Ti

Opp = 0, (2.24)

where the operators are such that Opp transforms the same as p. Since the
equation of motion itself should be invariant under quasitranslations (since the
Einstein-Hilbert action describing general relativity is), it follows that∑

p∈Ti

Opp = 0 (2.25)

for every Ti.

It now remains to find a parametrization P for which the above argument
holds. The operators Op can be composed only of background quantities and
covariant derivatives. We know that the background quantities obey homogene-
ity, so they are invariant under quasitranslations. If Op contains no derivatives,
we can expand our perturbations into any complete set of functions we like and
use this as P to fulfill the above requirements (as we are just multiplying func-
tions by constants), e.g. we could use a Taylor series or a Fourier series. When
we do include covariant derivatives though, the same only holds if the functions
are eigenfunctions; that is, if ∇̄ip = cip for some vector ci.

Now it so happens that, since the Einstein equations are second-order dif-
ferential equations, the equations of motion can be formulated such that spatial
derivatives only occur through the Laplacian [23, intro of sec. 3]. Thus, if we
can expand our perturbations into a complete basis of such eigenfunctions, the
different terms in the expansion will indeed decouple. Such a basis does in fact
exist. Scalars can be expanded in terms of the functions Yk, vectors in Y i

k , and
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tensors in Y ij
k such that

∇̄2Yk = −k2Yk, (2.26)

∇̄2Y i
k = −k2Y i

k , (2.27)

∇̄iY i
k = 0, (2.28)

∇̄2Y ij
k = −k2Y ij

k , (2.29)

Y ij
k = Y ji

k , (2.30)

Y i
k i = 0, (2.31)

∇̄jY j
k i = 0. (2.32)

We will not here write an explicit form of these harmonic functions nor of
the expansions, as we will have no need for them. It should be noted though
that for every k, there can be multiple eigenfunctions (that are all required
in the expansion). While these different parts of the expansion corresponding
to the same k decouple also from each other, the equations governing them
are the same. As an example we mention that the functions Yk are the well-
known spherical harmonics, which can be found in [23, sec. 3.1]. Note that the
coordinate r used in that paper is related to the coordinates used in this thesis
by

sinh r =

√
x2

1− 1
4x2

. (2.33)

In an open universe (K < 0), k is continuous. In order to expand any
function (perturbation), we only need to use so-called sub-curvature modes,
which are the modes for which k2 > |K| (their name is based on the fact that
these modes vary significantly within the curvature radius 1/

√
|K|)2. For a

closed universe (K > 0), since its volume in finite, a discrete set of eigenfunc-
tions is used. k can then take the values (l+4)|K| where l is an integer (including
0) [21, p. 10].

A big advantage of this decoupling, is that our equations of motion become
ordinary differential equations instead of partial differential equations. All spa-
tial derivatives are replaced by the factor k2, and only temporal derivatives
remain. In such an equation, the eigenfunctions (which are generally nonzero)
can be ‘divided out’, so that the equations of motions contain only the co-
efficients of the expansion, their characteristic k, background quantities and
temporal derivatives. For example, one term in the expansion of the tensor Dij

can be D(k, ...)Yk,...ij , where the dots denote possible other variables needed in

the expansion (in order to expand in all functions with eigenvalue −k2). We can
do the same for the one other tensor we have, πTij (this is the only other pertur-
bation that can enter the equation, on grounds of Section 2.1). In the equation
of motion, we can then divide out the Yk,...ij and suppress the argument of the
coefficients to find [21, chap. 2, eq. 4.15]

D̈ + 2HḊ +
1

a2
(
k2 + 2K

)
D =

1

M2
p

p̄πT . (2.34)

2Peculiarly, if we want to expand a general Gaussian field in terms of Laplacian eigenfunc-
tions, we also need super-curvature modes, for which 0 < k2 < |K|, although these modes are
not linearly independent from the sub-curvature modes. For a detailed discussion, see [23].

40



Sometimes, when we want to make clear that we are dealing with coefficients
of the expansion into Laplacian eigenfunctions, or want to make the eigenvalue
explicit, we include a subscript k, i.e. we would write the above equation as

D̈k + 2HḊk +
1

a2
(
k2 + 2K

)
Dk =

1

M2
p

p̄πTk . (2.35)

2.3 Gauges

In order to perform perturbation theory, we need to divide our universe into
background and perturbations. However, since general relativity has diffeomor-
phism invariance, there is no unique way to do this. This can be seen as follows.
Under a general diffeomorphism, the metric transforms in some way,

gµν(x)→ g′µν(x) = gµν(x) + ∆gµν(x). (2.36)

This is nothing but a change of coordinates, which offers an alternate but equiva-
lent description of a physical situation. Now let’s say that we have some specific
background metric in mind, and would like to describe the metric in both co-
ordinate systems in terms of this background and deviations from it. Thus,
we write gµν(x) = ḡµν(x) + hµν(x) and g̃µν(x) = ḡµν(x) + h̃µν(x). Since we
define the background metric to be the same in both coordinate systems, the
perturbations have to account for all the change,

h̃µν(x) = hµν(x) + ∆gµν(x) ≡ hµν(x) + ∆hµν(x). (2.37)

Since we are free to choose what coordinates to use, the perturbations corre-
sponding to a certain state of the universe are not uniquely defined.

It may seem a bit confusing that, all of the sudden, our metric is not uniquely
defined because of diffeomorphism invariance. After all, this invariance is a prop-
erty of general relativity itself, and should thus also be present when dealing
with a non-perturbed universe. The difference is that, when we do not allow for
perturbations, we have a condition that uniquely3 defines our coordinates: we
have a specific metric ḡµν in mind, and we require gµν = ḡµν . While we could
perform a diffeomorphism to obtain another description of the situation that
is equally valid, the condition would be violated. In some sense, we thus have
a preferred set of coordinates (for the FLRW universe, these are the comoving
coordinates in which isotropy and homogeneity are manifest).

However, when we do allow for perturbations, this condition becomes some-
what less rigid. Instead of completely fixing the metric, the requirement now is
gµν = ḡµν + hµν , where the perturbations can be anything, as long as they are
first order in some perturbative parameter ε. We are now able to perform any
diffeomorphism for which ∆gµν is of the same order as hµν without violating
our condition. This exactly holds for the infinitesimal diffeomorphisms already
encountered in Section 1.2, i.e.

xµ → x̃µ = xµ + εµ, (2.38)

3Up to isometries, of course.
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where εµ = εξµ for some vector field ξµ. Thus, εµ is of the same order as
the perturbations (so that products of εµ and hµν or δTµν vanish in linear
perturbation theory). Such a diffeomorphism (where the background is left
invariant) is called a gauge transformation (see [10, sec. 7.1] for a more
rigorous treatment). It is shown in Appendix B that, under it, the metric
perturbations transform as

hµν(x)→ h̃µν(x) = hµν(x)− 2∇(µεν). (2.39)

Of course, there are similar transformation rules for δTµν . These are just the
‘normal’ covariant transformation rules for tensors [10, eq. (2.30)].

A gauge condition is a condition that we impose to limit our freedom to
perform (gauge) transformations, and thus limit the set of coordinate systems
that we are allowed to use. In fact, one can think of the requirements gµν = ḡµν
and gµν = ḡµν +hµν encountered above as gauge conditions, although the word
(in cosmology) usually refers to conditions on hµν and δTµν . ‘Choosing a gauge’
(i.e. defining a specific gauge condition) usually allows one to set certain per-
turbations to zero and simplify problems. We will here define some popular
gauges, although we will refrain from showing they are valid (i.e. any set of per-
turbations can be made to satisfy them by applying gauge transformations). It
should be noted though that, when we do a gauge transformation, we can scalar-
vector-tensor decompose the diffeomorphism parameter εµ into two scalars (ε0
and εS) and one vector (εVi ) (where εi = ∇̄iεS + εVi ). Thus, we expect we can
‘fix’ (i.e. eliminate the degrees of freedom of) two scalars and one vector. In
fact, we can choose whether we set Ci = 0 or Gi = 0. In this thesis, we will
always use Ci = 0. The gauge conditions below are then taken as conditions on
the scalar degrees of freeom only. For more details, the reader is encouraged to
read [34, sec. 5.3].

Newtonian gauge. This gauge is defined by the conditions

B = F = 0. (2.40)

It is then customary to rename E = 2Φ, A = −2Ψ and Dij = γij . Because
Φ and Ψ (which must be equal for physical solutions, see Appendix E) get the
interpretation of Newtonian potentials in the weak-field limit [10, sec. 7.3], this
gauge is often the most intuitive to use. Newtonian gauge will be used predom-
inantly in this thesis.

Comoving gauge. The gauge condition is

B = δuS = 0. (2.41)

For scalar perturbations, the condition δuS = 0 implies that δui = 0. That
means an observer using these coordinates is moving with the fluid (i.e. it
is at rest in this frame), hence the name. Use of this gauge is often (e.g.
in [29] and [24]) in combination with the so-called ADM notation, such that
we write A = 2Rc, E = 2N1, Dij = γij (like in Newtonian gauge) and
∇̄iF + Gi = 1

aNi = 1
a (∇̄iφ + NV

i ). Apart from Newtonian gauge, comoving
gauge is the only gauge that will be considered in this thesis.

42



Synchronous gauge. This gauge is defined by

E = F = 0. (2.42)

Because E = 0, g00 = −1 everywhere. This implies that for all comoving ob-
servers (i.e. dxi = 0) time runs equally fast, allowing for the synchronization of
clocks (and explaining the name).

It should be noted that, instead of imposing a gauge condition, one can also
make gauge-invariant combinations of perturbations and use these to parametrize
the perturbations. Of course, the same reduction in degrees of freedom should
occur (since now all degrees of freedom used to describe the system are actually
physical, i.e. the ‘gauge’ degrees of freedom represented by εµ are eliminated).
Thus, we can write the metric perturbations as two scalars, one vector and
one tensor in this formalism. In this thesis, we will only consider the gauge-
fixing approach (as one will hopefully understand after reading Chapter 3, this
is required in order to find adiabatic modes). For a formulation in terms of
gauge-invariant variables, one can read e.g. [21].
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Chapter 3

Adiabatic Modes and Soft
Theorems

In this chapter, we leave the somewhat more basic cosmological theory behind
us and delve deeper into the specific phenomenon which is studied in part II.
That is, in this chapter, we will study adiabatic modes and their implications.
As will be discussed, an adiabatic mode is a solution of cosmological pertur-
bation theory that can be obtained through symmetry considerations. More
specifically, by exploiting the fact that gauge-fixing conditions (as presented in
Section 2.3) do often not entirely eliminate the freedom to make gauge trans-
formations. Since adiabatic modes provide solutions that do not depend on the
theory governing the contents of the universe, they are extremely useful. What
is more, they can be used to derive so-called soft theorems, which make predic-
tions about cosmic correlation functions.

First, in Section 3.1, we present the derivation and use of the adiabatic
modes found first (i.e. Weinberg’s scalar adiabatic modes). We observe that this
approach can be generalized to obtain an infinite number of adiabatic modes,
and sketch how this could be done in Section 3.2. This is really a preview
of part II of this thesis, where the derivation will be done on a curved FLRW
background. In Section 3.3, we discuss the physical relevance of adiabatic modes
and why it is useful to study them. One of these reasons is their relation to soft
theorems, which are interesting enough to warrant their own section. They will
be discussed last, in Section 3.4.

3.1 Weinberg’s Theorem

The theory of adiabatic modes was first developed by Weinberg in 2003 [36]
(while further explanation can be found in his book [34, sec. 5.4]), assuming
the universe is spatially flat (K = 0) and using Newtonian gauge. He showed
that there are two modes (i.e. solutions to the linearized Einstein equations)
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for which the gauge-invariant1 quantity

R =
1

2
A+HδuS , (3.1)

which is called the “curvature perturbation on comoving hypersurfaces” 2, is
conserved. In Newtonian gauge it is equal to

R|Newtonian gauge = −Ψ +HδuS . (3.2)

One of these modes has R 6= 0 and, in Newtonian gauge,

Φk(t) = Ψk(t) = Rk
[
−1 +

H(t)

a(t)

∫ t

a(t′)dt′
]
, (3.3)

δρk
˙̄ρ

=
δpk

˙̄p
= −δuSk = − Rk

a(t)

∫ t

a(t′)dt′ (3.4)

(while the vector and tensor perturbations are arbitrary, since they decoupled,

and where
∫ t

means that the lower bound of the integral is arbitrary). The
other mode has R = 0 and

Φk(t) = Ψk(t) = Ck
H(t)

a(t)
, (3.5)

δρk
˙̄ρ

=
δpk

˙̄p
= −δuSk = − Ck

a(t)
, (3.6)

for some constant Ck. Here, the subscript k is the magnitude of the wave num-
ber of the mode (see Section 2.2, where the interpretation as wave number
arises since we are assuming flat space). What I will refer to as Weinberg’s
theorem is the statement that these modes always solve the linearized Einstein
equations in the regime k/a� H (i.e. for sufficiently long physical wavelengths,
λphys = aλcomoving = a/k), whatever the content of the universe.

So how did Weinberg prove his theorem? This is where, for the purposes
of this thesis, things get really interesting. Weinberg used a very clever trick.
While it is true that the Newtonian gauge condition limits our possibility to
make gauge transformations, there is in fact still some residual gauge free-
dom. While small gauge transformations, i.e. gauge transformations for
which εµ vanishes at spatial infinity, violate the Newtonian gauge condition,
we are still able to make large gauge transformations, i.e. those for which
limx2→∞ εµ(x) 6= 0 [29, p. 5].

Now, what Weinberg did, is to start with an unperturbed universe. Here,
all the (linearized) Einstein equations are trivially satisfied. Next, he performs
a large gauge transformation of the following form:

ε0(x, t) =
−D
a(t)

∫ t

T

a(t′)dt′, (3.7)

εi(x, t) = −Dxi. (3.8)

1It should be noted that R is gauge invariant only in linear perturbation theory. At higher
orders, the transformations of A and δu don’t necessarily cancel each other out anymore.

2It is called as it is because it reduces to A/2 in comoving gauge (see 2.3). This is the
reason we usually rename A/2 as Rc in comoving gauge; it just means R|comoving gauge.
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The result of this transformation is that we obtain exactly the R 6= 0 mode
with R = D from Weinberg’s theorem. Since general relativity is diffeomor-
phism invariant, we are certain the Einstein equations are still satisfied. Since
the transformations are (because of linear perturbation theory) linear in εµ,
and since the difference between two solutions is also a solution, we can also
perform a diffeomorphism which is the difference between two of the transfor-
mations above but with different T . This will give εi = 0 and ε0 = −C/a,

where C = D
∫ T
T ′
a(t′)dt′. This results in R = 0, while the other perturbations

are exactly the second mode in Weinberg’s theorem. Thus, the R = 0 mode is
found using the same trick. Note, however, that since the diffeomorphisms are
constant in space, the modes we create with it have k = 0. Extending this argu-
ment to all k/a� H and thus finishing the proof of the theorem proceeds below.

Both modes from Weinberg’s theorem satisfy

δρ
˙̄ρ

=
δp
˙̄p

= −δuS . (3.9)

What is more, if the universe is filled with multiple fluids (each with their own
equation of state), these values are all equal

δρα
˙̄ρα

=
δpα
˙̄pα

= −δuSα =
δρβ
˙̄ρβ

=
δpβ
˙̄pβ

= −δuSβ . (3.10)

Since the gauge-invariant quantity

Γα =
δpα
p̄α
− ṗα
p̄α

δρα
˙̄ρα

(3.11)

is thought of as the amplitude of entropy perturbations [21, eq. 3.38], and since
it is zero for any perturbation satisfying the above, they are considered not to
carry any entropy. Borrowing the term from thermodynamics, such modes are
therefore called adiabatic modes. This origin of the name, however, is of small
import to us. It will be shown in Section 4.1 that any perturbation created using
a diffeomorphism obeys

δρ
˙̄ρ

=
δp
˙̄p

= ε0 (3.12)

(which also holds for each fluid individually in the case of a multiple-component
universe) and is thus adiabatic.

Conversely, for any physical adiabatic mode, we can perform the diffeomor-
phism

ε0 = −δρ(x0)
˙̄ρ

= −δp(x0)
˙̄p

(3.13)

to erase all the energy density and pressure perturbations at x0. In fact, as will
become clear in Section 3.2, we can also remove the gradient at x0. We can
however not remove the full adiabatic mode, since a physical mode must go to
zero at spatial infinity while ε0 must be large in order to preserve the gauge.
Yet, as long as we only look locally (i.e. close to x0), any adiabatic mode looks
the same as if it were the the results of some gauge transformation. And that
is exactly how we would encourage you to think about adiabatic modes: as a
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mode that locally looks the same as a coordinate transformation.

Back to the modes found by Weinberg, which we will subsequently refer to
as Weinberg’s first (scalar) adiabatic mode (R 6= 0) and Weinberg’s
second (scalar) adiabatic mode (R = 0). There is still one problem. Since
the modes have been obtained using a gauge transformation, they can just as
easily be gauged away. They are really nothing but a gauge artifact. It is also
clear from the fact that the modes are constant in space that they cannot be
physical. They could never be normalized, and have k = 0, which can straight-
forwardly interpreted as zero momentum (since we are dealing with flat space).
So what are we so excited about? It is the fact that we can extend the gauge
modes to some small but nonzero momentum k → 0 (or, equivalently, we can let
the gauge modes go to zero ‘near infinity’). They then become physical modes
which (locally) resemble gauge modes, only then can we really call them adia-
batic modes. In cosmology, k → 0 in practice means k

a � H, as is explained in
Section 3.3.

This does, however, require some sort of continuity condition. Namely, our
solution of the k = 0 Einstein equations should be the k → 0 limit of some
k 6= 0 solution. It is shown in [36, pp. 7-8] that when the coefficients in the
Einstein equations are continuous around k = 0, then the same will hold for
the solutions. It is also made plausible that this will generally be the case, as k
usually enters the equations only in simple ways. We then only have to worry
about the possibility that some equations ‘vanish’, i.e. that they are trivially
satisfied for k = 0 because of an overall spatial derivative. We see that there are
indeed two such equations (which are written down in Appendix E without any
assumption on the curvature constant and treated more carefully for an open
universe in Section 6.2).

The most relevant physicality condition is often equation (E.8), which can
be rewritten in flat space as

kikj(Φ−Ψ) = 0 (3.14)

(where i 6= j), suggesting Φ = Ψ for any k 6= 0. This is however not necessar-
ily the case for gauge modes, which still satisfy the equation trivially because
k = 0. The equality Φ = Ψ is then not enforced, and this beomces is a con-
straint condition that determines which adiabatic modes can be extended to
finite momentum and thus be made physical. Weinberg, of course, chose his
gauge transformation exactly such that this condition is satisfied. The idea of
extending a pure gauge mode (resulting from a large gauge transformation) to a
physical adiabatic mode when the physicality conditions are solved is illustrated
by figure 3.1.

Note that we have not proven Weinberg’s theorem explicitly here. The
main part that is missing is a derivation of how the different perturbations in
Newtonian gauge transform under a large gauge transformation. Such a proof
is omitted since Weinberg’s theorem can be seen to hold as a corollary to the
more general work done in part II of this thesis, where the assumption K = 0 is
traded for K < 0. While the remaining gauge freedom in Newtonian gauge, and
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Figure 3.1: While modes obtained through a large diffeomorphism are unphys-
ical, a physical adiabatic mode can be obtained by imposing some appropriate
fall-off behavior far away (i.e. outside of the Hubble radius, which is more or
less the observable universe). While the gauge mode automatically solves all
linearized Einstein equations, the same can only be said for the adiabatic mode
if it solves all physicality conditions. Φ(x) is the Newtonian potential, yet for a
physical mode all perturbations must fall off at infinity.

the corresponding transformation rules, are explored in Chapter 4, the existence
of Weinberg’s adiabatic scalar modes is shown explicitly in Section 6.3 by taking
the K → 0 limit.

3.2 Infinitely Many Adiabatic Modes

In Section 3.1 we have discussed how Weinberg found model-independent solu-
tions to the linearized Einstein equations by making clever use of the residual
gauge freedom in Newtonian gauge. However, one can imagine there are many
more large gauge transformations that can be made physical. Indeed, there exist
infinitely many adiabatic modes. This section will discuss the most important
of them and the systematic procedure by which they can be found (which is the
foundation of Chapter 4).

First, though, let’s have a brief discussion on the interpretation of Weinberg’s
first adiabatic mode. What we really did to create it from the background is to
perform a rescaling of the spatial coordinates,

xi → λxi (3.15)

(where λ = 1+D). This must be supplemented with a temporal shift in order to
remain in Newtonian gauge. This tells us that Weinberg’s first adiabatic mode
locally looks the same as a coordinate rescaling. As discussed in Section 3.1, a
physical adiabatic mode has some small but nonzero k, but locally such a mode
cannot be distinguished from a constant (k = 0) mode. After all, the distances
over which such a mode varies will be very large. If the physical wavelength is
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much longer then the Hubble length, it will certainly be impossible to tell the
difference. This has some interesting implications for physics in the presence of
Weinberg’s first adiabatic mode: processes would occur the same if there was
no adiabatic mode but as seen through rescaled coordinates. This is exactly the
basis for soft theorems, as will be discussed in Section 3.4.

After Weinberg’s discovery, people found other adiabatic modes. That is,
they found other physical modes that locally look the same as some coordinate
transformation. Most predominantly, there is the gradient scalar mode, in which
the scalar perturbations are not (locally) constant but linear in xi [29, eq. 2.37]
[12, sec. 3.1] [18, sec. 4] (making the statement ‘adiabatic modes look locally
like a change of coordinates’ even stronger, as discussed in Section 3.1). Such an
adiabatic mode is obtained from a so-called special conformal transformation,

εi = 2bjxjxi − x2bi (3.16)

with constant vector bi. In order for the mode to be extensible to a physical
solution, it must be accompanied with a time-dependent translation. The whole
diffeomorphism then becomes [19, eq. 2.28]

εi = 2bjxjxi − x2bi − 2bi

∫ t dt′

H(t′)
(3.17)

and ε0 = 0. Thus, space with this adiabatic mode locally looks the same as
space without the adiabatic mode, after changing coordinates according to the
diffeomorphism above.

Adiabatic modes are not limited to the scalar sector of perturbation the-
ory. Another adiabatic mode attributable to Weinberg is a tensor mode, which
we will henceforth refer to as Weinberg’s tensor mode. It is obtained in
a fashion similar to Weinberg’s first scalar adiabatic mode, starting with the
diffeomorphism

εi = ωijx
j . (3.18)

If the matrix ωij is proportional to unity (δij), this is a regular rescaling. When
combined with the proper temporal translation (ε0) it can be made physical
and it results in Weinberg’s first adiabatic mode. When it is antisymmetric
(ωij = −ωji), this corresponds to an infinitesimal rotation. Since this is an
isometry (see apppendix C.4), no objects transform and no adiabatic mode is
obtained. However, a matrix that has no antisymmetric part and no part that is
proportional to unity (ωij = ω<ij> ≡ ω(ij) − 1

3ωkkδij , see Appendix A) creates
a tensor mode with [34, pp. 249-250]

γij = −2ω<ij> (3.19)

(while all other perturbations do not transform). The transformation that this
mode locally looks like can be interpreted as a ‘time-independent anisotropic
rescaling’ [29, eq. (2.34)]. Interestingly, there are no vanishing Einstein equa-
tions for tensors, and thus this mode is automatically extensible to a physical
mode.
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The above discussion, and the form of equation (3.18), already seem to
suggest a straightforward way in which more adiabatic modes can be found.
Why don’t we write the diffeomorphism parameter as a general polynomial,

εi = ci + ωikx
k +

1

2!
σiklx

kxl + ... , (3.20)

and then try to figure out what coefficients we should choose to obtain an
adiabatic mode? This is exactly the strategy adopted by Pajer and Jazayeri
in [29]. They first wrote this general Taylor expansion of εi up to third order
in xi and then examined what the constraints on the coefficients are. These
constraints arise from the requirements that the gauge condition should not be
violated and that the resulting modes should be extensible to the physical do-
main. They found the coefficients must have nontrivial time dependence and
the specific form ε0 should take (which can also be Taylor expanded). This way,
they have reproduced all known adiabatic modes (the most important of which
were discussed above), and they have discovered some new adiabatic modes as
well. Among these are vector modes (which decay in an expanding universe but
grow in a contracting universe) and mixed modes (where the diffeomorphism
excites not just the scalar, vector or tensor sector of the perturbations but a
combination of them). In principle, this approach could be used to find an in-
finite amount of adiabatic modes, as one could include an infinite amount of
terms in the Taylor expansion of εi.

The paper by Pajer and Jazayeri [29], however, assumes the universe to be
spatially flat (K = 0), and the same assumption is behind all the adiabatic
modes presented in this chapter. The goal of this thesis is to reproduce their
analysis in the case of nonzero curvature, and especially to find whether Wein-
berg’s adiabatic modes also exist when dropping the flatness assumption. Part
II is dedicated to this, and the results might surprise the reader. First, however,
we discuss some additional motivation for the search for adiabatic modes.

3.3 Physical Relevance of Adiabatic Modes

In the previous sections, we have defined what adiabatic modes are, we have
shown how they can be obtained and we have given some examples. Still, the
whole discussion so far may seem like a rather academic endeavor with little
real-world application. In this section we will argue that the study of adiabatic
modes is, in fact, essential to obtain a good understanding of the universe we
all live in. For one thing, adiabatic modes are related to soft theorems. These
are relations between cosmic correlation functions. Since there is a lot to say
about these, they get a section of their own. We discuss them in Section 3.4
and focus here on their further use in explaining cosmic observations.

One of the most interesting properties of adiabatic modes is that they are
model-independent solutions of the linearized Einstein equations. That is
to say, in the limit k → 0, the linearized Einstein equations are always solved by
them, whatever the contents of the universe may be. Since we are not sure about
what’s been going on in the universe at all times (in the early universe, the av-
erage energy of particles was much higher than any we have ever probed), that
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is very nice. For any adiabatic mode we observe, we know its time dependence,
and thus we can trace it back in time up to the moment it became adiabatic.
This way, we can partly reconstruct what went on in the early universe.

This is especially interesting in the context of inflation [8]. As mentioned
briefly before in Section 1.6, this is a hypothesized period of accelerated expan-
sion right after the big bang. Such expansion must be caused by a type of energy
with equation of state p < − 1

3ρ. Many theories trying to explain where this
energy came from (and where it went, as we don’t see it anymore) impose the
existence of one or more fundamental scalar fields. The energy is then contained
in the potential of these fields. At the end of inflation all this energy must be
converted into more conventional types of energy, otherwise inflation will never
end. This is called reheating, and it is quite unknown how this took place, as
knowing anything about it would require information about how the scalar fields
couple to other fields. And after that, who knows what other mysterious events
might have occurred. It is thus, in general, hard to test inflationary theory us-
ing current-day observations. Adiabatic modes give us some hope that we might.

The good news is that, if inflation produces adiabatic modes, this allows us
to trace back many of the perturbations observed today. A perturbation can
become adiabatic only if k → 0, but in practice this means k/a � H. During
inflation, H is constant, and a increases exponentially. Thus, by the and of
inflation, modes of a wide range of comoving wavenumbers k will be ‘outside’ of
the Hubble radius. By the Hubble radius, we mean 1/H. Since we have set
the speed of light c = 1, this can be rewritten (more manifestly as a distance) as
c/H. Remembering Hubble’s law (1.1), we see that this is exactly the distance
at which comoving objects move away from us at the speed of light3. Thus,
light beyond this distance cannot reach us, and therefore the Hubble radius de-
fines roughly the observable universe4. Since λphysical = aλcomoving = a/k, the
condition k/a� H is equivalent to λphysical � 1

H (which we mean by ‘outside’
of the Hubble radius).

While Weinberg’s theorem was proven for k → 0, this can be considered to
be equivalent to k/a� H because the observable universe is the largest length
scale accessible to us. For if λphysical is much larger than the Hubble radius,
it will more or less be constant over the whole observable universe. Since ev-
erything outside of the observable universe is inaccessible to us anyway, we are
unable to tell at what scale the mode will start to vary significantly. In other
words, if λphysical � 1/H, all we can tell is that the wavelength is very large, but
we cannot tell how large. Thus, for our purposes, it is as large as a wavelength
can get, and it is operationally equivalent to k → 0. Adiabatic modes look
locally like a change of coordinates, but for k/a� H the mode is more or less
constant within the observable universe and thus it will even globally be indistin-
guishable from a change of coordinates. These ideas are illustrated by figure 3.2.

3Note that this is no ‘real’ velocity. The cause is not movement of the objects itself,
but rather the fact that the space separating you from the objects is increasing due to the
expansion of the universe. They are at rest with respect to the comoving coordinates and
their velocity is thus timelike, as it should be.

4Light can, of course, reach us if the expansion slows down later on.
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Figure 3.2: Modes for which k
a � H have a physical wavelength which is much

larger than the Hubble radius. The consequence is that the mode becomes
more or less constant throughout the observable universe. Thus, in the k

a � H
domain, we cannot distinguish between larger and shorter wavelengths and thus
the condition is operationally equivalent to k → 0. Furthermore, and adiabatic
mode that is constant throughout the observable universe is, for our purposes,
not only locally but also globally indistinguishable from a change of coordinates.

Once a mode is made adiabatic during inflation, it will remain so as long as
it remains outside of the Hubble radius. After all, whatever the configuration
of the universe, it will remain a solution. It will thus remain unaltered. After
inflation ends, we assume the universe will be filled with matter and radiation.
As discussed in Section 1.6, for flat space, H will be proportional to 1/t, while

the scale factor is proportional to t
1
3 for radiation domination and t

2
3 for matter

domination. In both cases, H will decay faster than 1
a (and the same will hold

for a mixture of radiation and matter, or for fluids with 0 < p < ρ/3, since in

both cases one can expect t
1
3 . a . t

2
3 and H ∼ 1

t ). Thus, it will only be a
matter of time until k/a� H. While large modes can still be adiabatic today,
smaller modes have reentered the Hubble radius at some earlier time. Yet, this
will generally be well after reheating, during a part of cosmological history that
we know much more about (after electron positron annihilation was complete
and we assume the universe to be filled only with cold dark matter, baryonic
plasma, photons and neutrinos). Thus, it is possible to evolve them in time up
to the moment we observe them, and hence we can also trace them back in time.
A pedagogical, analytical treatment of this evolution can be found in [34, chap.
6]. For more accurate results, however, so-called Boltzmann codes are used to
solve the relevant (Boltzmann) equations numerically, such as e.g. CLASS [9]
and CAMB [22]. As discussed in Section 3.1, Weinberg’s adiabatic modes are
characterized by their R. We can reconstruct the Rs with which the adiabatic
modes were created, and the statistical properties of the different Rs at different
wave numbers can tell us something about the primordial universe.

We however still haven’t answered the question whether adiabatic modes
are actually produced. While we know they are just one of many solutions
in the long-wavelength regime after electron positron annihilation, they might
be picked out during some period before that. This can be checked observa-
tionally. Using the methods described above, it can be calculated what the
cosmic microwave background would look like if all modes were adiabatic. Such
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Figure 3.3: Cosmic microwave background anisotropy power spectra that would
be caused by adiabatic initial conditions and by the cold dark matter/baryon
density (CDI), neutrino density (NDI) and neutrino velocity (CVI) isocurvature
modes. Obtained from [2, fig. 21].

an analysis of the data obtained by the Planck satellite, which surveyed the
sky in the microwave bandwidth, was performed in [2]. They define adiabatic
and non-adiabatic modes (which they refer to as isocurvature modes) at a late
enough time such that the universe is considered to only contain cold dark mat-
ter, baryons, photons and neutrinos. For adiabatic modes all components are
‘tied together’. Because they derive from a diffeomorphism (see Section 4.1 for
a derivation), the components (labeled by α) all satisfy

δρα
˙̄ρα

=
δpα
˙̄pα

= −δuSα =
δρ
˙̄ρ

=
δp
˙̄p

= −δuS . (3.21)

Deviation from this is a sign of isocurvature. They identify four such possible
non-decaying isocurvature modes: deviations of the density of baryons, cold
dark matter and neutrinos, and of the neutrino velocity. In practice, the cold
dark matter and baryon isocurvature modes are indistinguishable and together
abbreviated as CDI. The neutrino density and neutrino velocity isocurvature
modes are abbreviated as NDI and NVI respectively.

The authors of [2] have performed a statistical analysis of the anisotropies
in the cosmic microwave spectrum. For more details on such an analysis, see
e.g. [14, sec. 8.5]. In Figure 3.3, the different power spectrum profiles that
the adiabatic and isocurvature modes would create are shown. In the observed
spectrum, the amount by which the different modes contribute can be expressed
in the amount of ‘power’ they bring in. The quantity αRR is the fraction of
power due purely to adiabatic modes5. If it is one, the primordial modes probed

5More exactly, this is the power due to the correlation between adiabatic modes, which
explains why the subscript contains two Rs. Alternatively, power can be brought in by corre-
lation between isocurvature modes (αII) of by correlation between adiabatic and isocurvature
modes (αRI).
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by the survey were completely adiabatic.

Now here is the interesting thing: in a more recent paper with new data
from the Planck satellite, αRR has been determined to be unity up to a few
percent (at 95% confidence level) [4, Table 16]. Thus, the primordial modes were
almost exclusively adiabatic. If any isocurvature was created, there was not a
lot of it. This is a very significant observation. While all the different fluids in
the universe could, in principle, go their own way, their fluctuations are very
much in sync with one another. If you observe (at large scales) a lot of baryonic
matter in one place, there will be relatively many photons and neutrinos as well.
They are all ‘locked together’. One might therefore think that, even if all these
different fluids look different today, they share a common primordial origin.

Such a line of thought seems to suggest an inflationary scenario with only
one scalar field. After all, if all perturbations stem from fluctuations of a single
degree of freedom, they will automatically be tied together. More rigorously,
it is shown in [34, eqs. 10.1.22, 10.1.23] that the scalar sector in a single-field
inflation scenario only has two independent solutions. Since Weinberg’s theo-
rem tells us that, in the k/a � H regime, his two adiabatic modes must be
solutions, we can conclude all solutions are adiabatic for k → 06 . Thus, has
the Planck satellite provided evidence for single-field inflation? No, this would
be too rash a conclusion. First of all, the data does not fully exclude the exis-
tence of primordial isocurvature modes. Furthermore, there is at least one other
scenario in which adiabatic modes could have been created primordially. If the
universe went through a phase of local equilibrium, and if there were no con-
served quantities (such as electric charge) at the time, any non-adiabatic modes
would become adiabatic [38]. Thus, even if all primordial modes are adiabatic,
this does not exclude multi-field inflation because such a phase might have oc-
curred shortly after reheating. Yet, if the existence of even a little isocurvature
is verified, this rules out single-field inflation altogether. Thus, primordial adi-
abaticity is an important test of inflation.

The reader might be confused by the counting argument presented above for
single-field inflation. It is true that Weinberg’s adiabatic modes must always be
solutions in the k → 0 limit, but doesn’t the same hold for the other adiabatic
modes? After all, we claimed there to be infinitely many of them. The secret
is in how modes behave exactly (and become adiabatic) when we take k → 0.
Consider a mode with comoving wavenumber k and amplitude A(t). Since we
are dealing with flat space for now, this is simply a Fourier mode that decouples
from all other Fourier modes (see Section 2.2). The spatial dependence of such
a mode is

A(t)eik·xcomoving = A(t) + iA(t)k · xcomoving −A(t)(k · xcomoving)2 + ... . (3.22)

6Skeptical readers might point out that, even during inflation, the fields that we observe
today (such as the electromagnetic field and matter fields) were around, even if they did not
contain a lot of energy, which must be coupled to the inflation field one way or another (since,
at the end of inflation during reheating, the energy must be transferred from the inflation
field to other fields). Thus, the counting argument might not be entirely valid. However, it
is proven in [37] that as long as the energy density in these other fields is small at the time,
single-field inflation will still only produce adiabatic modes.
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Note that this expansion can be done for any cosmological perturbation, so we
do not specify which quantity it is here. We write k = |k| and

x =
|xcomoving|

a

xcomoving

|xcomoving|
· k
k
≡ |xphysical|x̂physical · k̂, (3.23)

i.e. x is the the physical distance along the direction of k. Since the Hubble
radius approximates the observable universe, and since we cannot do physics
outside of it, we can take 0 < x < 1

H as the range. Then, the above expansion
becomes

A(t) + iA(t)
k

a
x−A(t)

(
k

a
x

)2

+ ... , (3.24)

where the dots indicate higher powers of k
ax.

It is then clear that in the limit k
a � H, the mode becomes constant in

space. This is exactly the form of Weinberg’s adiabatic modes, and thus these
modes provide two solutions for A(t) in this limit. Yet, shouldn’t the other
adiabatic modes also provide solutions for A(t)? After all, they derive from
large diffeomorphism and thus cannot have k 6= 0. The point is that the other
adiabatic modes all have higher powers in x. For example, the gradient scalar
mode presented in Section 3.2 is linear in x. So, if there is a limit such that the
above physical mode only has the term linear in x, it can be approximated using
this adiabatic mode and the time dependence of the adiabatic mode would be
a solution of A(t) in this limit.

However, such a limit does not exist, as the constant term is always there
(the linear term only becomes dominant for k

a > H, but then the higher-order
terms are even more important). Similar arguments hold for all other adiabatic
modes. None of them are eigenfunctions of the Laplacian (in Fourier space, they
are represented by derivatives of the Dirac delta function, while the Weinberg
adiabatic mode is the Dirac delta function itself). Note that this does not mean
that these adiabatic modes are unphysical. Consider a scalar mode that is linear
throughout the observable universe and quickly goes to zero outside of it: for
our purposes, it looks the same as the gradient scalar mode, yet it is physical
and can be described as a linear combination of Fourier modes. Weinberg’s
adiabatic modes are the only adiabatic modes of definite k and thus are the
only ones that provide model-independent solutions for modes of k → 0.

3.4 Soft Theorems

In Section 3.3 we have discussed some of the physical implications and relevance
of adiabatic modes. There is however one more important reason to study adia-
batic modes: they are intimately connected to the subject of soft theorems and
consistency conditions, which provide yet another method of testing single-field
inflation. Before discussing these though, we need to quickly introduce the con-
cept of correlation functions.

As discussed in Section 3.3, the adiabatic modes generated during the pri-
mordial universe are all characterized by their R, which is constant in time for
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both Weinberg’s first and second adiabatic modes. Each mode of wavenumber
k which was outside of the Hubble radius during the generation of adiabaticity
has been adiabatic with fixed R until it left the Hubble radius again. Since, for
the wavelengths that we study, we can evolve what we observe today back in
time until this moment, we can reconstruct the primordial Rk for each k. These
are the prime observables that we can use to probe the primordial universe.

However, since it is usually assumed that the fundamental theory of nature
is fully Poincaré invariant, there is no way of predicting what such perturbations
would look like. The dominant theory of the origin of perturbations is inflation.
The scalar fields driving inflation have a quantum nature, and because of the
accelerating expansion the quantum fluctuations of the field(s) are blowed up to
macroscopic proportions [8, Lecture 2]. But rather than predicting what these
perturbations look like, inflation can only tell us something about the statistics
of perturbations.

What this means is that our (primordial) universe is only one of many that
could have been produced by inflation. The thing characterizing inflation is
then not the universe that it produced, but rather the distribution of possible
universes from which our universe was pulled. This might seem worrisome. Af-
ter all, we only have one single universe, and a distribution can never be probed
significantly by witnessing one event. But there is hope of testing inflationary
theory yet. Because of causality, it is reasonable to assume that the quantum
fluctuations in parts of the universe sufficiently far away from each other have
nothing to do with each other. That is, they are uncorrelated.

This allows us to think of the situation as follows. If we divide the universe
into regions of volume V , where V is large enough such that the inflationary
quantum fluctuations in any region can be expected to be uncorrelated with
those in any other region, then we can effectively think of each of these regions
as a separate ‘universe’, i.e. a separate realization of the inflationary distribu-
tion. Thus, by probing several such regions, we can learn something about this
distribution and thus test theories of inflation. This idea is made more exact
by the ergodic theorem, which states that the ensemble average of (products
of) perturbations (i.e. the average over the primordial distribution) is the same
as the spatial average in the limit that the average is taken over an infinite
volume [34, app. D].

This allows us to define the expectation value of a perturbation O by 〈O(x)〉,
which can be interpreted both as the ensemble average for O at point x (i.e. the
average of the perturbation at this specific point in all different possible uni-
verses) and the quantity O(x) in our universe averaged over x7. Since we will be
assuming statistical homogeneity and isotropy throughout, which means
that expectation values are invariant under both translations and rotations, the
x can often remain implicit. Statistical homogeneity and isotropy follow from
the assumption that the background is homogeneous and isotropic and that the
underlying theory in Poincaré invariant [28, sec. 8.1], since the distributions

7Note that they are only the same in the limit where the average is taken over an infinite
volume. In universes with finite volume (such as a closed universe), the equality can never be
made exact.

56



can be considered to characterize the theory8.

We will be dealing only with the perturbation R. Since perturbations are
deviations from an average, we can certainly expect

〈R〉 = 0, (3.25)

which is probably understood most easily by thinking about spatial averages.
Information about the distribution can be obtained by taking the expectation
value of products of perturbations. Such expectation values are called corre-
lation functions, as they indicate the correlation between random variables.
Prime example is the two-point correlation function

ξR(r) ≡ 〈R(x)R(x + r)〉 , (3.26)

where the dependence is only on r ≡ |r| because of statistical homogeneity and
isotropy. A Gaussian distribution is fully characterized by this quantity. The
expectation value of any odd number of R then vanishes, while any even cor-
relation function factorizes into two-point functions (which is similar to ‘Wick
contracting’ in quantum field theory, see e.g. [31, sec. 4.3]). In inflationary
scenarios, these correlation functions (which have lost their quantum nature
nowadays [7, sec. 6.1]) derive from quantum field theoretical scattering ampli-
tudes [8, sec. 12.2].

Usually, the Fourier transforms of correlation functions are considered. We
define this as

Rk =

∫
d3xe−ik·xR(x), (3.27)

and thus we can calculate the Fourier version of the two-point function

〈RkRk′〉 =

∫
d3xd3re−ik·xe−ik

′·(x+r) 〈R(x)R(x + r)〉

=

∫
d3xe−ix·(k+k′)

∫
d3re−ik·rξR(r)

= (2π)3δ(3)(k + k′)PR(k).

(3.28)

Here, we introduced the power spectrum defined by

PR(k) =

∫
d3re−ik·xξR(r), (3.29)

i.e. it is the Fourier transform of the correlation function. Be aware that the
precise definition of the power spectrum depends on the convention used for
the factors (2π)3 in the Fourier transformation, as is nicely clarified in [8, Ap.
A6]. Note the Dirac delta function δ(3)(k + k′), which can be interpreted as
momentum conservation. In fact, it can be shown that any Fourier space n-
point function has an overall momentum conserving delta function [28, sec.
8.1]. This allows for the notation

〈Rk1Rk2 ...Rkn〉 = (2π)3δ(3)(k1 + k2 + ...+ kn) 〈Rk1Rk2 ...Rkn〉
′
, (3.30)

8In fact, statistical homogeneity is required to prove the ergodic theorem, and was thus
already assumed implicitly.
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according to which PR = 〈RkRk′〉′.

Now that we have introduced correlation functions, we are ready to intro-
duce soft theorems. The first soft theorem was introduced by Maldacena as a
consistency condition for his calculation of the three-point function in single-
field inflation [24]. It relates the three-point function in the squeezed limit
to the two-point function. Momentum conservation implies that, for the two-
point function, one of the momenta in a correlation function can never be much
smaller or larger than the other. This is different for the three-point function.
When one of the wavenumbers is much smaller than the others, this is called the
squeezed limit. Modes (or, in slightly different context, particles) with small mo-
menta often called ‘soft’, and therefore the relation of a correlation function in
the squeezed limit to other correlation functions is often called a soft theorem.

The consistency condition is derived as follows. The two-point function
generated by single-field inflation can be calculated by working in comoving
gauge, such that the inflation field is unperturbed andR is the only scalar degree
of freedom in the theory. The action is expanded to second order for R and
subsequently the field is quantized. This allows the calculation of the two-point
function during inflation (in this approach, the so-called slow-roll approximation
is used, which means that the Hubble parameter varies only slowly). Now, the
logic is that as soon as the physical momentum becomes larger than the Hubble
length, the modes become adiabatic and thus constant. They will evolve no
longer. Thus, the primordial power spectrum is approximately given by the
power spectrum at the moment when the wavelength was of the same length as
the Hubble radius. The calculation is done in [24, sec. 2] by Maldacena and
pedagogically presented in [8, sec. 12.2], giving the result

PR(k) =
H2

2k3
H2

φ̇2

∣∣∣
k
a=H

, (3.31)

where φ is the unperturbed inflation field.

Now, when a third mode also enters the correlation function with momentum
much smaller than that of the other two modes, it will have become adiabatic
(i.e. become larger than the Hubble radius) at a time much earlier than the
other two. It will no longer evolve and will only have the effect of a ‘back-
ground wave’ on the correlation between the modes of larger momentum. Since
the adiabatic mode can be treated in this limit as equivalent to a coordinate
transformation, the result will be a coordinate transformation on the two-point
function. In comoving gauge, the Weinberg adiabatic modes are nothing but a
spatial rescaling (ε0 = 0, as will be made clear in Section 4.3). This alters the
momentum and through this, the time at which their wavelengths are equal to
the Hubble radius (that is, in the power spectrum, the condition k/a = H is
altered). This logic leads to the consistency condition [19, eq. (1.1)]

lim
q→0
〈RqRk1

Rk2
〉′ = −(ns − 1)PR(q)PR(k1), (3.32)

where q = |q|. ns − 1 is the spectral tilt defined by PR(k) ∝ k3+(ns−1) [28, eq.
(8.19)]. When ns = 1, the power spectrum is said to be scale invariant: it is
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then invariant under spatial rescaling. Indeed, since the effect of the short mode
Rq is to rescale the correlation of the other two, it is expected not to correlate
in the case of scale invariance. This is nicely demonstrated by the above soft
theorem.

The result (3.32) was written down first by Maldacena [24, eq. 4.7] and sub-
sequently shown to hold beyond the slow-roll approximation by Creminelli and
Zaldarriaga [13]. In [11] the ‘background-wave argument’ put forward by Crem-
inelli and Zaldarriaga is further formalized, and the result is shown explicitly
to hold using the effective field theory of inflation in the slow-roll approxima-
tion. In the background-wave argument, it is assumed that the long mode is
constant over space (i.e. it is a Weinberg adiabatic mode). Corrections at first
order in q/|k1| to this were found by Creminelli, Noreña and Simonović [12, eq.
(54)] by accounting for the gradient of the mode. After all, while the constant
background wave is equivalent to a spatial rescaling, the constant gradient part
of the wave is equivalent to a special conformal transformation, as discussed
in Section 3.2. In the language of equation (3.24), the A(t) dictated by Wein-
berg’s theorem in the k → 0 limit remains unaltered when the term linear in
k is not thrown away, and thus the whole background wave argument runs the
same (only now the background wave is equivalent to a rescaling and a spe-
cial conformal transformation). In the same paper, the consistency condition is
generalized to a soft theorem relating any N -point function to a N − 1-point
function.

Although the background wave picture provides an intuitive way of thinking
about soft theorems and it has been the origin of the first consistency condi-
tion, soft theorems have now been derived using other strategies (which are
often easier to generalize). For example, Hinterbichler, Hui and Khoury have
found consistency relations to constrain the qn behaviour of N + 1-point cor-
relation functions (containing both tensor modes and scalar modes) in terms
of N -point functions. The result was obtained by thinking of adiabatic modes
as a nonlinearly realized symmetry and finding the corresponding Ward identi-
ties [19]9. While the n = 0 relation reduces to the Maldacena result, the n = 1
relation describes the correction found by Creminelli, Noreña and Simonović.
Another approach was taken by Assassi, Baumann and Green, who derived Mal-
dacena’s consistency condition by inserting a quantum-mechanical complete set
of states, providing a handle on how the condition would be violated by extra
inflationary degrees of freedom and making the analogy with soft-photon physics
explicit [5]. As a last example, the Maldacena consistency condition has been
derived through a ‘wave functional of the universe’ approach by Pimentel [32].

Soft theorems are not the topic of this thesis, and therefore no detailed
derivation will be provided here. We do discuss them however since they em-
phasize the importance of adiabaticity. For only if long-wavelength modes are
adiabatic during inflation can we know for certain that the modes ‘freeze out’
at some point, allowing us to treat limq→0Rq as a background wave. What’s
more, the adiabatic nature subsequently allows us to ‘remove’ the background

9in this sense, R can be thought of as a Goldstone boson, although there are some subtleties
in generalizing this concept from particle physics. For a discussion, see the introduction of [29].
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wave with a coordinate transformation. An important question in this thesis
will be whether the same procedure can be applied in an open (K < 0) universe:
is there some limit in which physical modes become adiabatic, such that they
freeze out (or at least, such that their temporal behavior is known), and allowing
us to treat them as a coordinate transformation? The search for curved-space
consistency conditions is an important motivation for the study of adiabatic
modes in the open universe.

60



Part II

Finding Adiabatic Modes in
Curved Space
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In Part II of this thesis, we will search for adiabatic modes in an open uni-
verse, which is a universe where there is nonzero spatial curvature with curvature
constant K < 0. While adiabatic modes have been examined extensively, to the
best of my knowledge all research so far has assumed the universe to be spatially
flat. It is certainly true that the universe is not very curved, yet it has not been
excluded that it is. The curvature density parameter

ΩK =
−K
H2

0a
2
0

(3.33)

has been determined to satisfy |ΩK | < 0.5% [3, Table 5] (where the sum of all
density parameters is close to one). This implies that

1/
√
|K| & 141/H0, (3.34)

i.e. the curvature radius (which is the distance over which effects of curvature
become relevant) is at least fourteen times the Hubble radius (which is more or
less the observable universe). While this might seem to imply that curvature
effects are generally hard to detect within our observable universe, it certainly
does not imply that such effects vanish completely. Often the parameter Kx2

pops up. This quantity can grow up to K/H2
0 within our observable universe,

and thus suggests that measurable quantities can get order 10−3 corrections.
Such quantities may certainly become relevant future high-precision measure-
ments, and thus considering the effects of nonzero curvature is certainly war-
ranted. What’s more, knowledge of adiabatic modes in curved universes may
be relevant in a flat universe too: processes which occur on the background of
a curvature perturbation can be dealt with as if occurring in a curved universe,
an idea which is captured by double-soft theorems [25].

In Chapter 4, the general theory required for finding adiabatic modes in
an open universe is developed. In particular, the Newtonian gauge is defined
and it is examined what subclass of gauge transformations do not violate the
gauge condition. In Chapter 5, we generalize Weinberg’s tensor mode by working
perturbatively in Kx2, finding that the obtained gauge mode is already physical.
In Chapter 6, we generalize Weinberg’s scalar adiabatic modes. It turns out that
monochromatic scalar modes never become adiabatic.
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Chapter 4

Preserving the Gauge

This chapter is the essential first step towards finding adiabatic modes on a
curved FLRW background. It is discussed in Chapter 1 what it means for space
to be curved, while in Chapter 3 it is discussed what adiabatic modes are. An
extensive and systematic treatment of adiabatic modes has been performed by
Pajer and Jazayeri [29], yet like all who came before them they assumed the
universe is spatially flat. While no deviation from flatness has been found yet
in our universe, it is interesting to examine whether adiabatic modes also exist
when the curvature is small. Finding this out is the goal of part II of this thesis.

Mimicking Pajer and Jazayeri, we first examine how exactly the different
perturbations defined in Chapter 2 transform when performing an infinitesi-
mal diffeomorphism This is done in Section 4.1. Next, we will consider what
conditions a gauge transformation must meet in order to preserve the gauge
used. This will be done for Newtonian gauge in Section 4.2 and for comoving
gauge in Section 4.3. In Section 4.5, the gauge transformation parameter is
Taylor expanded, and the gauge preservation is translated into conditions on
the expansion coefficients using an integration constant technique.

4.1 Transformation Rules

In this section, we examine how the perturbations in our universe transform un-
der a general diffeomorphism. This is necessary in order to determine whether a
diffeomorphism violates any gauge conditions. We consider both perturbations
to the metric and the energy-momentum tensor.

Transformation of Metric Perturbations

It is described in Appendix B how the perturbations to a general metric trans-
form under infinitesimal diffeomorphisms. We can use this to find out how the
perturbations in our universe transform. This metric we use to describe our
universe is the perturbed (curved) FLRW metric,

gµν(x) = ḡµν(x) + hµν(x), (4.1)
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where ḡµν is the background FLRW metric given by

ḡµνdx
µdxν = −dt2 + a2f2dx2. (4.2)

The function f is defined as

f(Kx2) =
1

1 + 1
4Kx2

. (4.3)

This metric is motivated and described in detail in Section 1.4, and properties
of this metric (and of the function f) are given in Appendix C.

We perform the infinitesimal diffeomorphism

xi → x̃i = xi + εi. (4.4)

We will calculate the transformation of perturbations both as a function of εi

(index upstairs) and for εi (index downstairs). While it is somewhat customary
to work with the indices downstairs, as is done e.g. in [29], it turns out to be
more convenient to put them upstairs in the case of nonzero curvature (K 6= 0).
The downstairs expressions are retained for the sake of easy comparison.

Using formula (B.7), we can find the transformation rules for our metric
perturbations. For the time-time component, we have

∆h00 = −ελ∂λ(−1)− 2(−1)δλ0∂0ε
λ = 2ε̇0 = −2ε̇0. (4.5)

For the vectorial part of the metric (time-space), we find

∆h0i =− ελ∂λ(0)− (−1)δλ0∂iε
λ − a2f2δλi∂0ελ

=∂iε
0 − a2f2ε̇i.

(4.6)

When we put the indices downstairs this becomes

∆h0i = −a2f2∂0(a−2f−2εi) + ∂i(−ε0) = −ε̇i − ∂iε0 + 2Hεi. (4.7)

The tensorial part of the metric (space-space) is the most complicated one,
being

∆hij =− ελ∂λ(ḡij)− ḡki∂jεk − ḡkj∂iεk

=− ε0∂0ḡij − εk∂kḡij − 2ḡk(i∂j)ε
k

=− 2Hε0ḡij +Kfxkεkḡij − 2ḡk(i∂j)ε
k.

(4.8)

Using ∂jε
k = ∂j ḡ

klεl = ḡkl∂jεl −Kxjfḡklεl, it is found that the expression for
lowered indices is

∆hij = 2Hε0ḡij +Kxkεkfδij − 2∂(iεj) − 2Kfx(iεj). (4.9)

Comparing these results to the flat-space results [29, eqs. (2.10 - 2.12)], we see
that curvature does not change ∆h00 or ∆h0i in terms of ε with lower indices.
For ∆hij however, we get two terms which are exclusive to K 6= 0. But when
we put K = 0, it correctly reproduces to the flat-space result,

∆hij |K=0 = 2a2Hδijε0 − 2∂(iεj). (4.10)
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Note that we could use these results to determine how the different metric
perturbations defined in Section 2.1 transform (by scalar-vector-tensor decom-
posing the right hand sides of the above equations). It is however easier to
gauge fix first, since this means there are less perturbations we need to deal
with. Since inverting the Laplace operator is quite a bit harder in curved space
than in flat space, this truly is worthwhile.

Transformations of Energy-Momentum Perturbations

The transformation laws for the matter fields are found more easily than those
of the metric. From the equation for the energy-momentum tensor (2.15), it is
manifest that ρ and p are scalars while uµ is a vector. The transformation rules
or scalars and vectors are described in Appendix B. Thus, the transformations
are straight forward.

Under a diffeomorphism,

ρ(x)→ ρ̃(x̃) = ρ̃(x+ ε) = ρ(x), (4.11)

and thus
ρ̃(x) =ρ(x− ε)

=ρ(x)− εµ∂µρ(x)

=ρ(x)− ε0 ˙̄ρ(t) +O(εδρ).

(4.12)

Since we define the background value ρ̄ to remain unchanged under the diffeo-
morphism, and since the same arguments hold for p, we thus find the transfor-
mation rules

∆δρ
˙̄ρ

=
∆δp

˙̄ρ
= −ε0 = ε0 (4.13)

(which reveals that any modes obtained this way are indeed ‘adiabatic’ in the
thermodynamic sense, see Section 3.1).

The transformation rule for the vector uµ is

ũµ =(δρµ − ∂µερ)(1− ελ∂λ)uρ

=uµ − uρ∂µερ − ελ∂λuµ +O(ε2).
(4.14)

Since ui = δui is already of linear order in perturbation theory, and since
u0 = −1 + h00/2, this reduces (up to linear order) to

ũµ = uµ + ∂µε
0. (4.15)

Thus,
∂i∆δu

S + ∆uVi = ∂iε
0, (4.16)

which (since one term is pure divergence and the other is pure curl) must give

∂i∆δu
S =∂iε

0, (4.17)

∆uVi =0. (4.18)
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It is now very tempting to conclude ∆δuS = ε0. However, since we allow for
large diffeomorphisms (which do not vanish at infinity), this is not necessarily
true. Yet, in this thesis, we will for simplicity assume the universe is filled by
some scalar field φ with no internal symmetries. We are then required to impose
the constraint equation [29, eq. 4.2]

∂iδu
S = −∂i

δφ
˙̄φ
. (4.19)

If we want our adiabatic mode to be physical, then both δuS and δφ vanish at
infinity. Thus, this equation implies

δuS = −δφ
˙̄φ
. (4.20)

Since φ is a scalar, it transforms the same under diffeomorphisms as the objects
in equation (4.13). Thus, we can safely conclude

∆δuS = ε0 = −ε0. (4.21)

Things change, however, when the scalar field is endowed with shift symmetry.
We can then combine a diffeomorphism with a transformation φ→ φ+ c, where
c is some constant. This increases the freedom of δuS . In fact, in flat space, this
gives rise to an adiabatic mode that is absent for a generic non-shift symmetric
scalar field. Studying this mode in curved space may provide a topic for future
research. For more discussion on the implications of shift symmetry for adiabatic
modes see [29, sec. 4.1] and [15].

4.2 Newtonian Gauge

In this section, we fix the gauge to Newtonian gauge. Then, using the transfor-
mation rule (4.9), we can check what gauge transformations leave the Newtonian
gauge condition intact. These are exactly the gauge transformations that we
can use to find adiabatic modes (in Newtonian gauge). The result will be a
condition on the diffeomorphism parameter εµ, which we will try to solve only
in Section 4.5.

The Newtonian gauge condition has been defined already in Section 2.3. For
clarity, we once more define it to be

F = B = Ci = 0, (4.22)

where it is customary to rename E as 2Φ and A as −2Ψ, which are now in-
terpreted as Newtonian potentials, and Dij as γij , which contains the graviton
degrees of freedom. The metric thus is

ds2 = −(1 + 2Φ)dt2 + 2aGidtdx
i + a2 [(1− 2Ψ)g̃ij + γij ] dx

idxj . (4.23)

We now want to check whether there are diffeomorphisms that keep us within
Newtonian gauge, i.e. such that we can still write the metric as above.
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The transformations are

∆h00 =2ε̇0 = −2∆Φ, (4.24)

∆h0i =∂iε
0 − a2f2ε̇i = a∆Gi, (4.25)

∆hij =− 2Hε0ḡij +Kfxkεkḡij − 2ḡk(i∂j)ε
k

=− 2∆Ψḡij + a2∆γij (4.26)

For this transformation to keep the metric in Newtonian gauge, we must be
able to solve these equations for the ∆ objects such that they have the same
properties as the original objects in equation (4.23) (i.e. such that O′ = O+∆O
inherits these properties). That is, ∆Φ and ∆Ψ must be scalars, ∆Gi must be a
transverse vector and ∆γij must be a transverse traceless tensor. For simplicity,
we will henceforth drop the ∆ in front of the objects (which can be interpreted
as the metric prior to the transformation being unperturbed, but this does not
matter).

Thus, the equations we will be dealing with are

−2Φ =2ε̇0, (4.27)

aGi =∂iε
0 − a2f2ε̇i, (4.28)

−2Ψḡij + a2γij =− 2Hε0ḡij +Kfxkεkḡij − 2ḡk(i∂j)ε
k. (4.29)

Note that we choose to work with εi instead of εi. The main reason for this is
the importance of equation (4.29), which becomes messy when lower indices are
used.

Obviously, the (00) equation (4.27) gives Φ = −ε̇0. Since this is a scalar
for all diffeomorphisms, the equation puts no conditions on gauge-preserving
diffeomorphisms. The other equations are more involved.

We can solve for the (0i) equation (4.28) to find

Gi =
1

a
∂iε

0 − af2ε̇i. (4.30)

The condition on ε we can find from this equation is ∇iGi = 0. This means
ḡij∇iGj = a−2f−2δij∇iGj = 0, and thus the condition is equivalent to ∇iGi =
0. This gives

∇iGi =∂iGi − ΓkiiGk (4.31)

=
(
∂i − Γikk

)
Gi (4.32)

=

(
∂i −

1

2
Kfxi

)
Gi = 0. (4.33)

Here, we have used equation (C.26). Using the identity (C.17), this can be
rewritten as

∂i (fGi) = 0 (4.34)

or
∂i
(
f∂iε

0 − a2f3ε̇i
)

= 0. (4.35)
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This shows that, for gauge preserving diffeomorphisms, ε0 is not fully indepen-
dent of εi. Our strategy when finding adiabatic modes will be to choose an εi,
and accompany it by a suitable ε0 such that this condition holds. However, ε0

is not fixed entirely by this condition (for large gauge transformations). In flat
space, the relation becomes

∇2ε0 = a2∂iε̇
i for K = 0, (4.36)

or

∇2ε0 = −a2∂i
(
a−2ε̇i

)
= 2H∂iεi − ∂iε̇i for K = 0, (4.37)

which agrees with existing flat-space results in [29, eq. 2.17].

The right-hand side of equation (4.29) contains γij , which is traceless. This
allows us to easily solve for the scalar Ψ by taking the trace of the equation,

ḡijhij = −6Ψ = −6Hε0 + 3Kfxkεk − 2∂kε
k

→− 2Ψḡij = −2Hε0ḡij +Kfxkεkḡij −
2

3
ḡij∂kε

k. (4.38)

We can use this to solve for the tensor mode as

a2γij = hij + 2Ψḡij =
2

3
ḡij∂kε

k − 2ḡk(i∂j)ε
k

→γij = f2
(

2

3
δij∂k − δki∂j − δkj∂i

)
εk. (4.39)

We will consider γij to be a tensor on the space Σ with metric g̃ij , and thus

γij = g̃ikγkj =
1

f2
γij

=
2

3
δij∂kε

k − ∂iεj − ∂jεi,
(4.40)

which is a somewhat more convenient expression.

We see that γij is indeed traceless (by construction). But to remain in
Newtonian gauge, it must also also be transverse. That is, ∇iγij = ∇iγij = 0.
That is,

∇iγij =∂iγ
i
j + Γiikγ

k
j − Γkijγ

i
k

=∂iγ
i
j −

3

2
Kfxkγkj +

1

2
Kf

(
xiδjk + xjδik − xkδij

)
f2γik

=∂iγ
i
j −

3

2
Kf3xiγij +

1

2
Kf3xj��*

0
γii +Kf���

��:0
x[iδk]jγik

=

(
∂i −

3

2
Kfxi

)
γij = 0,

(4.41)

where we have used both the tracelessness and the symmetry of γij . Further-
more, we have used equation (C.27) for the trace over the Christoffel symbol.
Lastly, we can use equation (C.17) to write this condition on εi in its final,
beautiful form

∂i
(
f3γij

)
= 0. (4.42)
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For future reference, we here summarize the different transformation rules
for the Newtonian gauge:

Φ = −ε̇0,

Ψ = Hε0 +

(
1

3
∂k −

1

2
Kfxk

)
εk = Hε0 − 1

3f3
∂k
(
f3εk

)
,

Gi =
1

a
∂iε

0 − af2ε̇i,

γij =
2

3
δij∂kε

k − ∂iεj − ∂jεi,

−δρ
˙̄ρ

= −δp
˙̄p

= δuS = ε0,

uVi = 0.

(4.43)

4.3 Comoving Gauge

In this section, we go to comoving gauge and examine what the conditions are
for diffeomorphisms to remain in comoving gauge. An important difference with
Newtonian gauge is that we need not only look at the transformation rules of
the metric, but also of the energy-momentum tensor. We will find that the
most important result found in Newtonian gauge (in Section 4.2) is shared by
comoving gauge.

Following the definition in Section 2.3, we have the comoving-gauge condition

B = δu = Ci = 0, (4.44)

and (using ADM notation) we rename E = 2N1, ∂iF+Gi = 1
aNi = 1

a (∂iφ+NV
i ),

Dij = γij (like in Newtonian gauge) and A = 2Rc. The metric then becomes

ds2 = −(1 + 2N1)dt2 + 2Nidx
idt+ a2 [(1 + 2Rc)g̃ij + γij ] . (4.45)

Just like in Newtonian gauge, γij is transverse-traceless. As opposed to Newto-
nian gauge though, Ni need not be transverse. Thus, there is one condition less
to remain in the gauge.

The transformations of the metric perturbations are

∆h00 =2ε̇0 = −2∆N1, (4.46)

∆h0i =∂iε
0 − a2f2ε̇i = ∆Ni, (4.47)

∆hij =− 2Hε0ḡij +Kfxkεkḡij − 2ḡk(i∂j)ε
k

=2a2∆Rcḡij + a2∆γij . (4.48)

Because the transformation rules are the same if hµν is zero before the trans-
formation as when this is would not be the case, we once more drop the ∆’s.
Solving for them proceeds in a way that is extremely similar to Newtonian
gauge. However, there is one simplifying matter. Combining equation (4.21)
with the condition δuS = 0 reveals that, in order to remain in the comoving
gauge (for a generic scalar field), we must have

ε0 = 0. (4.49)
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Using this, we simply copy (4.43) with the proper adjustments to find

N1 = 0,

Rc = −
(

1

3
∂k −

1

2
Kfxk

)
εk = − 1

3f3
∂k
(
f3εk

)
,

Ni = −af2ε̇i,

γij =
2

3
δij∂kε

k − ∂iεj − ∂jεi,

−δρ
˙̄ρ

= −δp
˙̄p

= δuS = 0,

uVi = 0.

(4.50)

The only of this objects on which comoving gauge imposes a special condition
is γij , which must be transverse. Thus, this condition is

∇̄iγij = 0, (4.51)

which is exactly the same condition on εi as we have found in Newtonian gauge.
The only difference between the gauges is the constraint on ε0, which is ex-
tremely simple in comoving gauge, making it a convenient gauge. However,
since Newtonian gauge is important in the literature (most notably, it is the
gauge which Weinberg used to derive his theorem, see Section 3.1), we will fo-
cus on that gauge. Conveniently, though, one of the prime equations we need
to solve in both cases is the same. This is further examined in Section 4.5.

4.4 Conditions for Adiabatic Modes

In this thesis, we focus on solving the gauge-preservation condition ∇̄iγij , which

constrains the spatial gauge parameters, εi. After all, this condition occurs both
in Newtonian gauge and comoving gauge, making it a universally important
condition. Solving the constraint is done systematically, using integration con-
stants, in Section 4.5. However, there are more conditions involved with finding
adiabatic mode. For one, we also need a proper ε0 to accompany the spatial
diffeomorphism. While it is trivially zero in comoving gauge, this is not true in
Newtonian gauage, where the condition is more complicated. It must certainly
be chosen such that the vector Gi is transverse (i.e. ∇̄iGi = 0). However, in
this thesis, we will focus on finding tensor and scalar adiabatic modes, and thus
we will typically choose ε0 such that Gi = 0. This implies ∂iε

0 = a2f2ε̇i. In
Chapter 5, where we look for the simples possible tensor adiabatic mode, this
condition is solved by setting ε0 = 0 and εi = εi(x). In Chapter 6, εi is allowed
time dependence and ε0 becomes less trivial. In any case, solving the condition
Gi = 0 is not very complicated and does not lend itself for a more general treat-
ment. Therefore, we do not further consider the condition in this chapter.

Other conditions which must be solved by the diffeomorphisms are the so-
called physicality conditions (which were discussed for flat universes in Section
3.1). Any mode obtained by a diffeomorphism is sure to solve all the Linearized
Einstein equations (because the unperturbed universe does, and general relativ-
ity is diffeomorphism covariant). However, such a mode is just a gauge artifact.
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We are interested in extending it to a physical mode, which we then call adi-
abatic. However, we must then check that such a physical mode, in the limit
where it closely resembles the gauge mode, also solves the linearized Einstein
equations. While most equations can be expected to be continuous with respect
to this, things become more complicated when there are derivatives involved.
Generally, when the spatial derivative of A is equal to the spatial derivative of
B, this implies A = B if they both vanish at infinity (such that no integration
constants are allowed). While physical modes must vanish at infinity, the same
needs not hold for the gauge modes. Thus, only gauge modes for which, in such
an equation, A = B holds are extensible to physical adiabatic modes. Therefor,
such conditions are called physicality conditions.

The only physicality conditions occur in the scalar sector. Thus, we need
not concern ourselves with them when looking for pure tensor modes. Yet, in
Chapter 6, where we look for a pure scalar mode, they are important. The phys-
icality conditions are derived for Newtonian gauge from the linearized Einstein
equations in Appendix E. The most important of them is

Φ = Ψ, (4.52)

making it clear why we tend to think of both as the Newtonian potential. The
other is

Φ̇ +HΦ =

(
Ḣ − K

a2

)
∂iδu

S . (4.53)

However, just as with the condition Gi = 0, the conditions are not very compli-
cated and do not warrant a general treatment. Thus, they will not be further
considered in this chapter.

It should now be clear what the conditions are that we have to deal with in
order to find adiabatic modes. Since the transverseness condition of the tensor is
the most complicated of all, and since the resulting framework is rather general
(it could be used for finding other tensor or mixed adiabatic modes), we will
deal with solving it in this chapter before proceeding to the search for specific
adiabatic modes.

4.5 Integration Constants

We have seen in both the Newtonian and the comoving gauge that our dif-
feomorphisms need to obey the same condition ∇̄iγij in order to preserve the
gauge. In this section, we will examine what the diffeomorphisms look like that
solve these using an integration constant strategy.

We have used equation (C.17) to express the gauge-preserving condition on
εi as

∂i
(
f3γij

)
= 0, (4.54)

where, as a reminder,

γij =
2

3
δij∂kε

k − 2∂(iε
j). (4.55)
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We solve this equation by introducing an integration “constant”,

f3γij = Mij . (4.56)

Here, the “constant”, which is actually a function of x, must satisfy the condi-
tions

Mij =Mji, (4.57)

Mii =∂iMij = 0. (4.58)

While the symmetry and tracelessness are inherited from γij , the transverseness
is required in order to solve the gauge-preserving condition.

This can be rewritten as

γij = f−3Mij , (4.59)

or more explicitly,

2

3
δij∂kε

k − ∂iεj − ∂jεi = (1 +
1

4
Kx2)3Mij . (4.60)

Now, part of the freedom we have in choosing our solution parametrized by Mij .
Note that in the flat-space case this equation becomes

γij = γij = Mij for K = 0, (4.61)

The equation corresponding to Mij = 0 is

2

3
δij∂kε

k − ∂iεj − ∂jεi = 0, (4.62)

and this is exactly the conformal Killing equation [19, eq. (2.7)]. This re-
veals that pure gauge modes that are obtained by conformal transformations
(such as, for example, dilations, which corresponds to Weinberg’s first scalar
adiabatic mode when accompanied by a time-dependent time translation) exist
within Newtonian gauge both when there is and when there isn’t spatial curva-
ture. Whether they can be extended to finite momentum remains to be checked.

A more elaborate analysis of what solutions are allowed can be obtained
by solving equation (4.59) order-by-order in x. This analysis is simplified by
working up to first order in Kx2, because then we can write

γij = (1 +
1

4
Kx2)3Mij = (1 +

3

4
Kx2)Mij +O

(
(Kx2)2

)
. (4.63)

Since Kx2 reaches its maximum within the observable universe at the Hub-
ble radius, x2 = 1/H2, where it is at order 10−3 or smaller (today), such a
perturbative approach is certainly justified as a first analysis.

Effect on First Orders in x

First, to get a feel for what’s going on, we work with Mij = m
(0)
ij a constant.

In this case, γij must be quadratic in x (while we would need sixth-order terms
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when we work non-perturbatively in Kx2). Since γij is composed of single

spatial derivatives working on εi, this means we are choosing our diffeomorphism
εi to be at most third order in x. The expansion is defined as follows:

εi = ci + ωilx
l +

1

2
σiklx

kxl +
1

6
µijklx

jxkxl. (4.64)

Here, we choose σikl = σi(kl) and µijkl = µi(jkl), which we can do because
the antisymmetric parts do not contribute to εi anyway. The symbols used as
coefficients have been chosen as to match the paper by Pajer and Jazayeri [29].
From the expansion, we find

∂jε
i = ωij + σijlx

l +
1

2
µijklx

kxl, (4.65)

and thus

γij =
2

3
δijωmm − 2ω(ij) +

(
2

3
δijσmml − 2σ(ij)l

)
xl

+
1

2

(
2

3
δijµmmkl − 2µ(ij)kl

)
xkxl.

(4.66)

The right-hand side of equation (4.63) is m
(0)
ij + 3

4Km
(0)
ij δklx

kxl. Thus,
equating the polynomial coefficients gives

2

3
δijωmm − 2ω(ij) =m

(0)
ij , (4.67)

2

3
δijσmml − 2σ(ij)l =0, (4.68)

1

3
δijµmmkl − µ(ij)kl =

3

4
Km

(0)
ij δkl. (4.69)

The first equation does not constrain the allowed diffeomorphisms. We can

choose whatever ωij we like, and calculate what the m
(0)
ij is corresponding to it.

m
(0)
ij must be symmetric and traceless, but these conditions are automatically

satisfied by the left-hand side of the equation and thus impose nothing on ωij .
The second equation is exactly the equation we would get for σijk when we put

Mij = 0. The third equation can be rewritten by eliminating m
(0)
ij from the

system of equations, giving

2

3
δijµmmkl − 2µ(ij)kl = K

(
δijωmm − 3ω(ij)

)
δkl. (4.70)

Note that this condition is weaker than the conditions obtained for Mij = 0,
as this would require both sides of the equations to be zero. Thus, we have
constrained the set of gauge-preserving diffeomorphisms by imposing a relation
between the first-order and third-order coefficients of εi.

Now let’s consider what happens when we allow Mij to also have a second-
order term,

Mij = m
(0)
ij +

1

2
m

(2)
ijklx

kxl. (4.71)
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Here, m(2) is symmetric in the last two indices. Note that this does not force εi

to have a fifth-order term, as m
(2)
ijkl = 0 is still an allowed solution. But to see

what it does force on εi, we return to the equation obtained from equating the
second-order coefficients (i.e. equation (4.69)). Now, this equation becomes

1

3
δijµmmkl − µ(ij)kl =

1

2
m

(2)
ijkl +

3

4
Km

(0)
ij δkl. (4.72)

Once more eliminating m(0) and solving for m(2) gives

m
(2)
ijkl =

2

3
δijµmmkl − 2µ(ij)kl −K

(
δijωmm − 3ω(ij)

)
δkl. (4.73)

Like before, we can argue that we can pick any µ and ω. The integration con-
stant is then determined by these coefficients, and not the other way around.
However, there is an extra condition that m(2) must satisfy that did not play a
role before, and thus not all µ and ω are allowed.

While symmetry and tracelessness in the first two indices are still trivially
satisfied, the transversality of the integration constant is not. Because ∂jMij =

0, we have m
(2)
ikkj = 0 (in fact, by symmetry, it is traceless in all two indices

except for the last two). This means

m
(2)
ikkj =

2

3
δikµmmkj − µikkj − µkikj −K

(
δikωmm −

3

2
ωik −

3

2
ωki

)
δkj

=
2

3
µmmij − µijkk − µkkij −K

(
δijωmm −

3

2
ωij −

3

2
ωji

)
=− 1

3
µmmij − µijmm −K

(
δijωmm − 3ω(ij)

)
= 0,

(4.74)

or

µijkk +
1

3
µkkij = −K

(
δijωkk − 3ω(ij)

)
. (4.75)

When we put K = 0, this exactly agrees with the most general condition on µ
found in flat space [29, eq. (2.27)].

General Order in x

Now that we have seen explicitly what the effect of the integration constant is
at first and third order, we are ready for a more general treatment to see it
has a very similar effect at every order. We write both εi and Mij as a general
Taylor expansion (in a new way that will turn out to be convenient),

εi =c
(0)
i +

∑
n=1

1

n
c
(n)
ik1...kn

xk1 ...xkn , (4.76)

Mij =m
(0)
ij +

∑
n=1

m
(n)
ijk1...kn

xk1 ...xkn . (4.77)

Then, from equating the different terms in the polynomials in equation (4.63),
we find the analogue of equation (4.74),

m
(n)
ijk1...kn

=
2

3
δijc

(n+1)
mmk1...kn

− 2c
(n+1)
(ij)k1...kn

− 3

4
Km

(n−2)
ij(k1...kn−2

δkn−1kn). (4.78)
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When we enforce the transversality condition, this gives

m
(n)
immk1...kn−1

=− c(n+1)
immk1...kn−2

− 1

3
c
(n+1)
mmik1...kn−1

− 3

2n
Km

(n−2)
i(k1...kn−1)

= 0,

(4.79)
where use has been made also of the transversality condition on m(n−2). We can
now use this equation, which holds for n > 1, to fill in the equation for m(n−2)

back into the equation for m(n). In principle, this leads to a regress, as m(n−2)

refers to m(n−4) in turn. Thus, only when m(0) and m(1) are known, all the other
coefficients can be found by filling in the equation recursively (ad infinitum).
However, since we work perturbatively, we can neglect the K2 terms1. Thus,
no recursion occurs, and we find

c
(n+1)
immk1...kn−1

+
1

3
c
(n+1)
mmik1...kn−1

=

− 3

2n
K

(
2

3
c
(n−1)
mm(k1...kn−2

δkn−1)i − c
(n−1)
(k1|i|k2...kn−1)

− c(n−1)ik1...kn−1

)
.

(4.80)

This can be rewritten, using symmetry properties, as

c
(n+2)
immk1...kn

+
1

3
c
(n+2)
mmik1...kn

=

− 3

2(n+ 1)
K

−c(n)ik1...kn
+

1

n

n∑
j=1

[
2

3
c
(n)
mmk1...kj−1kj+1...kn

δikj − c
(n)
kjik1...kj−1kj+1...kn

] ,

(4.81)
which holds for all n > 0. While equation (4.81) may not look very nice, it is the
final grand result of this analysis. As long as the Taylor expansion coefficients
of εi satisfy this relation, ∇iγij = 0 (to first order in Kx2 ).

In Chapter 5, we we only consider the relation that is imposed between ω
and µ. The idea will be to start with ω at order O(K0), forcing µ to be at order
O(K). However, one could also take the approach of setting all coefficients up
to order n in xi to zero and having the nth coefficient at order O(K0). Then,
this would force the order n + 2 coefficient to be of order O(K). Thus, even
when working linearly in Kx2, the machinery developed in this section allows
for finding more tensor modes than is actually done in this thesis.

1In any actual perturbation, the indices are contracted with xi’s, and each order in K is
effectively Kx2, allowing perturbative treatment.
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Chapter 5

Pure Tensor

In this chapter, we use the machinery developed in Chapter 4 (and Section 4.5 in
particular) to generalize Weinberg’s tensor adiabatic mode to the open universe.
Since Weinberg’s tensor mode is time-independent (with ε0 = 0), we attempt
to find a similarly time-independent mode. The calculation is performed to
first order in Kx2 in Section 5.1 and the resulting tensor mode can be found
in equation (5.23). Next, a non-trivial check of the result is performed by
verifying that the mode solves the Linearized Einstein equations in Section
5.2. Surprisingly, we find that the tensor mode we found is already physical,
without the need to extend the gauge mode to the physical domain in order to
get an adiabatic mode. In Section 5.3, we therefore check whether the time-
independent adiabatic tensor more still exists at second order in Kx2. It is
verified explicitly that it does, with the resulting tensor mode in equation (5.64).
Finally, in the same section, a brief discussion on the (non-)existence of the
time-independent tensor mode is offered.

5.1 Generalizing Weinberg’s Tensor Mode

In this section, we try to generalize Weinberg’s tensor adiabatic mode (εi =
ωijx

j , with no time dependence, ωij = ω(ij) and ωmm = 0 [34, sec. 5.4]), which
is the simplest pure tensor mode in flat space. Our strategy is to require the
only nonzero term at O(K0) in the expansion of εi to be ωij . To make it satisfy
the ∇̄iγij = 0 equation, µijkl must be nonzero at linear order in K, such that
it satisfies equation (4.75), i.e.

µijkk +
1

3
µkkij = −K

(
δijωkk − 3ω(ij)

)
. (5.1)

Defining µ ≡ Kµ′, we have

εi = ωil(t)x
l +

1

6
Kµ′ijkl(t)x

jxkxl, (5.2)

where both ω and µ′ are of order O(K0). Before proceeding further, it will be
useful to study the solutions to equation (5.1).

The only tensorial building blocks we have for µ are ω and the 3-space
metric, which is proportional to the Kronecker delta. Thus, we will be working

76



with ω and δ, which the equation itself also seems to suggest. Since only the
symmetrical part of ω occurs in the equations, it will be convenient to define
ω̄ij = ω(ij) and use this instead. We thus look for solutions of the form ω̄ijδkl,
but such a term does by itself not respect the symmetry in the last three indices
of µ. Instead, we symmetrize, which can be done in two unique ways, giving us
the most general ansatz

µ′ijkl = n1δi(jω̄kl) + n2ω̄i(jδkl). (5.3)

Now we calculate the relevant traces,

δm(mω̄ij) =
5

3
ω̄ij ,

δi(jω̄mm) =
1

3
δijω̄mm +

2

3
ω̄ij ,

ω̄m(mδij) =
1

3
δijω̄mm +

2

3
ω̄ij ,

ω̄i(jδmm) =
5

3
ω̄ij .

(5.4)

Note that the trace over the first two indices of the first term is equal to the
trace over the last two indices of the last term, and vice versa. We can plug this
into the right-hand side of equation (5.1), which gives

(n1 +
n2
3

)
1

3
δijω̄mm +

(
(n1 +

n2
3

)
2

3
+ (n2 +

n1
3

)
5

3

)
ω̄ij = −δijω̄mm + 3ω̄ij ,

(5.5)

or, equating terms,

3n1 + n2 =− 9, (5.6)

11n1 + 17n2 =27. (5.7)

This system of equations is solved by

n1 =− 9

2
, (5.8)

n2 =
9

2
. (5.9)

Now, since we are looking for a pure tensor mode, we want the scalar and
vector perturbations to be zero. φ = 0 is obtained by setting ε0 = ε0(x) (no time
dependence). The easiest way now to put the other perturbations to zero is to
choose ε0 = 0. This is how Weinberg obtained his tensor mode in flat space,
and thus it is this choice that we consider to be the curved-space equivalent
of Weinberg’s tensor mode. This choice immediately gives εi = εi(x) from the
requirement Gi = 2

a∂iε
0 − 2af2ε̇i = 0. Now, we are left with the equation

Ψ = 0 =− 1

2
Kfxkεk +

1

3
∂kε

k

=− 1

2
Kxkωklx

l +
1

3
ωmm +

1

6
µmmklx

kxl.

(5.10)
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At zeroth order, this simply requires that ω is traceless, which is the same as
for the flat-space Weinberg mode. At first order, it suggests

µ′mmij = 3ω(ij). (5.11)

This last equation is incompatible with the solution found for µ′ above. But
since we now have the condition ωmm = 0, one of the equations found before no
longer applies. To be precise, equation (5.6) is replaced by

5n1 + 2n2 = 9, (5.12)

which becomes a new exactly solvable system of equations together with equa-
tion (5.7). The system is solved by

n1 =
11

7
, (5.13)

n2 =
4

7
, (5.14)

and thus the generalization of Weinberg’s adiabatic mode is obtained by the
diffeomorphism

εi =ωilx
l +

1

42
K
(
11δi(jω̄kl) + 4ω̄i(jδkl)

)
xjxkxl,

ωkk =0, ω̄ij = ω(ij), ωij = constant.
(5.15)

So what does the tensor mode γij now look like? When we use the notation

A<ij> = A(ij) −
1

3
δijAkk (5.16)

for the symmetric traceless part of a tensor, we can write

γij = −2f2∂<iε
j> (5.17)

(where γij , which was used before, equals −2∂<iε
j>). We can easily calculate

∂jε
i =ωij +

3

42
K
(
11δi(jω̄kl) + 4ω̄i(jδkl)

)
xkxl

=ωij +
1

42
K (11δijω̄kl + 22δikω̄lj + 4ω̄ijδkl + 8ω̄ikδlj)x

kxl

=ωij +
2

21
ω̄ijKx2 +

11

42
Kδijω̄klx

kxl +
1

42
K
(
22ω̄kjx

i + 8ω̄ikx
j
)
xk.

(5.18)
Since ω is traceless, we have

ω<ij> = ω̄<ij> = ω̄ij . (5.19)

Furthermore, since the Kronecker delta is ‘pure trace’, δ<ij> = 0. Thus,

∂<iε
j> =ω̄ij

(
1 +

2

21
Kx2

)
+

30

42
Kω̄k<jx

i>xk

=ω̄ij

(
1 +

2

21
Kx2

)
+

5

7
Kω̄k<jx

i>xk

=ω̄ij

(
1 +

2

21
Kx2

)
+

5

14
Kω̄kix

jxk +
5

14
Kω̄kjx

ixk − 5

21
Kδijω̄klx

kxl.

(5.20)
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At first order in Kx2,

f2 =
1(

1 + 1
4Kx2

)2 =
1

1 + 1
2Kx2

= 1− 1

2
Kx2, (5.21)

and thus the tensor mode is

γij =ω̄ij

(
−2 +

17

21
Kx2

)
− 10

7
Kω̄k<jx

i>xk

=ω̄ij

(
−2 +

17

21
Kx2

)
− 10

14
Kω̄kix

jxk − 10

14
Kω̄kjx

ixk +
10

21
Kδijω̄klx

kxl..

(5.22)

We see that only the symmetric part of ω enters the actual mode. We
can interpret this as follows. When ω is antisymmetric, the diffeomorphism
xi → xi + ωikx

k is an infinitesimal rotation. The background space however
is invariant under rotations (it is isotropic), and thus we cannot obtain any
perturbation this way. Therefore it is better to define the diffeomorphism that
generates the tensor mode such that ω is symmetric.

In summary, then, the generalization of Weinberg’s tensor adiabatic mode is

εi =ωilx
l +

1

42
K
(
11δi(jωkl) + 4ωi(jδkl)

)
xjxkxl

γij =ωij

(
−2 +

17

21
Kx2

)
− 10

7
Kωk<ix

j>xk

ωij =ω<ij> = const.

(5.23)

5.2 Checking: Einstein Equations

To convince ourselves that the pure tensor mode found above is correct, we check
whether it solves Einstein’s equations (as it should, by diffeomorphism invari-
ance of general relativity). The Einstein equation for γij is found in [21, chap.
II, eq. (4.15)], equation (4.15), and reads (in the absence of anisotropic stress,
which is valid since we have found in Section 4.1 that all adiabatic perturbations
are of the perfect-fluid form)

γ̈ij + 2Hγ̇ij +
1

a2
(
−∇̄2 + 2K

)
γij = 0. (5.24)

Since the mode is time-independent, it solves the equation if

∇̄2γij = g̃kl∇̄k∇̄lγij =
1

f2
∇̄k∇̄kγij = 2Kγij . (5.25)

We are working perturbatively in Kx2, and thus cannot expect the function
γij that we have found to be exactly the k2 = −2K Laplacian eigenvalue. After
all, it seems very likely that higher-order terms in Kx2 would be presence if
we had not thrown them away, since non-perturbative treatment of equation
(4.75) would couple the linear term in εi, which is ωij , to the fifth-order term
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in εi through a factor K2. Since this full solution would also only be specified
by ωij , it would also be time independent. Thus, this solution should also obey
∇̄2γij = 2Kγij . The Laplacian contains a term ∂2 which would certainly make
the (Kx2)2 term contribute to the Kx2 in ∇̄2γij . Thus, neglecting the second-
order term means that the first-order term will be ‘missing’ a contribution, and
thus we can only expect the eigenvalue equation to hold at zeroth order in Kx2.
Thus, this is the level at which we will validate the Einstein equation, and it
is the best we can do. Since one K enters through Kx2 and one K enters as
eigenvalue, working at zeroth order in Kx2 is effectively working at first order
in K, which is slightly easier to track. Working at this order certainly simplifies
life, as it allows us to calculate the right-hand side of equation (5.25) trivially
to be

2Kγij = −4Kωij +O(K2). (5.26)

The left-hand side is slightly more involved, but fortunately simplifies. Be-
cause ωij is a constant, ∂kγij only contains terms of order K. Since the Christof-
fel symbols (as given in equation (C.19)) are also of order K, all the terms in
∇̄kγij are of order K. Thus, the Christoffel symbols from the first covariant
derivative do not contribute at first order and

∇̄2γij = f−2
(
∂k∇̄kγij − Γ · ∇̄ · γ

)
= ∂k∇̄kγij +O(K2) (5.27)

(where Γ · ∇̄ · γ is only schematic). Calculating the covariant derivative gives

∇̄kγij =∂kγij − Γlkiγlj − Γlkjγil

=∂kγij −
1

2
Kf

((
xlδki − xiδlk − xkδli

)
γlj + (i↔ j)

)
=∂kγij −

1

2
K

(
xlδkiγjl − xiγjk − xkγij + (i↔ j)

)
+O(K2)

=∂kγij −K
(
xlδk(iγj)l − x(iγj)k − xkγij

)
.

(5.28)

When we now fill in the equation for γij ,

∇̄kγij =K

(
34

21
xkωij −

10

7
ωk<ix

j> − 10

7
xlωl<iδj>k + 2xlδk(iωj)l − 2x(iωj)k − 2xkωij

)
=K

(
− 8

21
xkωij −

24

7
x(iωj)k +

4

7
xlωl(iδj)k +

20

21
xlωlkδij

)
.

(5.29)
This formula allows us to easily check that the tensor mode is indeed transverse,
as it should be by construction,

∇̄kγki =K

(
− 8

21
xkωki −

12

7
xkωik −

12

7
xi���:

0ωkk +
2

7
xlωliδkk +

2

7
xlωlkδik +

20

21
xlωlkδki

)
=

1

21
Kωikx

k

(
− 8− 36 + 18 + 6 + 20

)
= 0.

(5.30)
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Now we can finally calculate the Laplacian of the tensor mode to check whether
it indeed solves the equation of motion,

∇̄2γij =∂k∇̄kγij

=Kωij

(
− 8

7
− 24

7
+

4

7

)
+

20

21
���:

0ωkkδij

=− 28

7
Kωij = −4Kωij = 2Kγij .

(5.31)

Furthermore, as an extra check, it can be easily verified using the metric
transformation rules in Section 4.1 directly that for the diffeomorphism under
consideration ∆h00 = ∆h0i = 0 (since ε0 = ε̇i = 0) while ∆hij = a2γij , where
γij is as calculated above. Since these rules were written down before defining
a gauge, and since transverseness is also the gauge condition of comoving gauge
on γij , we clearly see that the tensor adiabatic mode is valid for both Newtonian
gauge and comoving gauge.

Since we have explicitly checked that the tensor mode solves the linearized
Einstein equation and does not violate any gauge condition, we can be quite
confident that no technical error was made deriving it.

5.3 To Second Order and Beyond

The tensor mode (5.23) that we have found in Section 5.1 is in principle a pure
gauge mode. The usual prescription to obtain an adiabatic mode is to find some
physical solution which can be made to resemble the gauge mode arbitrarily
closely in some limit. However, something strange is going on here. While the
mode we have found appears to diverge at infinity because the part that is of
order Kx2 does, this seems to be only a perturbative feature. If we work non-
perturbatively, any nonzero mode must be an infinite series of consecutive terms
of ever higher order in Kx2 in order to satisfy equation (4.63) (which would then
couple ωij to all expansion parameters with an even number of indices). Since
we chose ε0 = 0 and thus made our mode time independent, the linearized
Einstein equation (5.24) dictates that the tensor mode must obey

∇̄2γij = 2Kγij . (5.32)

Thus, the infinite series must be exactly one of the Laplacian eigenfunctions
with eigenvalue −k2 = 2K = −2|K|.

Here is the odd thing: this eigenfunction is a perfectly physical sub-curvature
mode (which are the Laplacian eigenfunctions with k2 > |K|, and which form a
complete basis to expand any mode vanishing at infinity as discussed in Section
2.2). In an analogy to flat space, instead of having a gauge mode at k = 0,
it already has some finite wavelength. This while there usually is quite some
fuss with physicality conditions to extend the gauge mode to nonzero k! While
one might find it convenient that it is now very easy to identify which specific
physical modes are adiabatic, this is actually very suspect. For if a mode is
equivalent to a gauge artifact, it should not be considered physical. Yet, the set
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of physical modes and the set of gauge modes appear to overlap here.

These considerations give rise to the suspicion that at the non-perturbative
level, there is no time-independent tensor adiabatic mode. Just as we have
thought of the Kx2 term in equation (4.63) as imposing a condition relating the
nth coefficient in εi to the n+ 2th, we can think of the K2x4 term as imposing
a relation between the nth and n + 4th terms. Yet, the Kx2 term also relates
the n + 2th term to the n + 4th term, effectively relating the nth term to the
n + 4th term. Perhaps, then, these conditions are contradictory. This would
mean that no gauge-preserving gauge transformation with ε0 = 0 and γij 6= 0
exists, and the apparent existence of a time-independent tensor mode vanishes
beyond perturbative treatment in Kx2.

As a first attempt to see whether this is true, one can see what happens when
we keep treating the problem perturbatively but also retain O

(
(Kx2)2

)
. If in-

consistency already appears at this order, we can be certain that the adiabatic
nature of the tensor mode is only a perturbative feature. However, it turns out
that the time-independent tensor mode also exists at this order. Even though
we obtain three equations for two variables, a solution for the mode exists. Ap-
parently, the equation obtained from imposing Ψ = 0 together with ε0 = 0 is not
independent from the equations obtained from the gauge-preservation condition
∇̄iγij = 0. An explicit construction of the tensor mode at second order follows
below, after which we have a brief discussion about how to interpret the result.

We expand equation (4.63) as

γij =

[
1 +

3

4
Kx2 +

3

16
(Kx2)2 +O

(
(Kx2)3

)]
Mij . (5.33)

We can equate terms at same order in x as done before to obtain the equations

γ
i (0)
j = M

(0)
ij , (5.34)

γ
i (2)
j = M

(2)
ij +

3

4
Kx2M

(0)
ij , (5.35)

γ
i (4)
j = M

(4)
ij +

3

4
Kx2M

(2)
ij +

3

16
(Kx2)2M

(0)
ij , (5.36)

where (n) means nth order in x. The first two equations are exactly the same
as those found before, the third one is new. To see its implication it is easiest
to take ∂i of both sides and use the property ∂iMij = 0,

∂iγ
i (4)
j =

3

2
KxiM

(2)
ij +

3

4
K2x2xiM

(0)
ij . (5.37)

The first two equations relating γij and Mij can be used to eliminate Mij now

entirely in terms of γij to find

∂iγ
i (4)
j =

3

2
Kxiγ

i (2)
j − 3

8
K2x2xiγ

i (0)
j . (5.38)

Writing

εi = ωijx
j +

1

3
Kµ′ijklx

jxkxl +
1

5
K2τ ′ijklmnx

jxkxlxmxn (5.39)
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(where the definition of µ′ differs a factor two with the one used previously but
is more convenient for current purposes, and where the prime signifies that we
have extracted the appropriate power of K), we have

∂iε
j = ωijKµ

′
ijklx

kxlK2τ ′ijklmnx
kxlxmxn (5.40)

and thus

γij = −2∂<iε
j> = −2ω<ij> − 2Kµ′<ij>klx

kxl − 2K2τ ′<ij>klmnx
kxlxmxn.

(5.41)
Thus, equation (5.38) becomes

−8K2τ ′<ij>iklmx
kxlxm = −3K2µ′<ij>klx

ixkxl+
3

4
K2ω<i(j>δkl)x

ixkxl, (5.42)

or

τ ′<ij>jklmx
kxlxm =

3

8

(
µ′<ik>lm −

1

4
ω<i(k>δlm)

)
xkxlxm. (5.43)

Now, the contraction with the different x’s on the right-hand side imposes
some additional symmetrization conditions. Here things become rather confus-
ing, since different symmetrization operations generally do not commute and
thus one has to be careful the handle them in the right order (starting with the
condition imposed last and ending with the one imposed first). Let’s start with
µiklm, which is symmetric in the last three indices; this is the condition imposed
first and thus to take care of last, and in that sense similar to the other term at
the right hand side of the above equation. Due to the contraction with the x’s,
the part that we need in the equality is

µ′<i(k>lm) =
1

3
(µ′<ik>lm + µ′<il>km + µ′<im>kl)

=
1

6
(µ′iklm + µ′kilm + µ′ilkm + µ′likm + µ′imkl + µ′mikl)

− 1

9

(
µ′jjlmδik + µ′jjkmδil + µ′jjklδim

)
=

1

3
µ′iklm +

1

6
(µ′iklm + µ′kilm + µ′likm + µ′mikl)

− 1

9

(
µ′jjlmδik + µ′jjkmδil + µ′jjklδim

)
=

1

3
µ′iklm +

2

3
µ′(iklm) −

1

3
δi(kµ

′
|jj|lm)

(5.44)

Filling in the solution for µ found in Section 5.1, which for our slightly-different
definition is

µ′ijkl =
11

14
δi(jωkl) +

4

14
ωi(jδkl), (5.45)

gives (using the identities (5.4))

µ′jjkl = ωkl

(
11

14
· 5

3
+

4

14
· 2

3

)
=

3

2
ωkl. (5.46)
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Furthermore, µ′(ijkl) = 15
14ω(ijδkl). Putting it all together, we get

µ′<i(k>lm) =

(
1

3
· 11

14
− 1

3
· 3

2

)
δi(kωlm) +

1

3
· 4

14
ωi(kδlm) +

2

3
· 15

14
ω(ikδlm)

= − 5

21
δi(kωlm) +

2

21
ωi(kδlm) +

5

7
ω(ikδlm)

=

(
2

21
+

5

21

)
ωi(kδlm) +

(
5

7
− 10

21

)
ω(ikδlm)

=
1

3
ωi(kδlm) +

5

21
ω(ikδlm)

(5.47)
where we we have used the identity δi(jωkl) + ωi(jδkl) = 2ω(ijδkl).

Mimicking the procedure for µ, the ω<i(k>δlm) after the proper symmetriza-
tion due to the contraction in equation (5.43) is

ω<i((k>δlm)) =
1

3
ωi(kδlm) +

2

3
ω(ikδlm) −

1

3
δi(kω|j(j|δlm))

=
1

3
ωi(kδlm) +

2

3
ω(ikδlm) −

2

9
δi(kωlm)

=
5

9
ωi(kδlm) +

2

9
ω(ikδlm).

(5.48)

We are aware that the notation with multiple symmetrization brackets is ex-
tremely confusing. One must be careful to keep track of the order in which the
symmetrizations must be handled. It is easiest to think about what happens
above by defining σijkl = ωi(kδlm), which is an object that is symmetric in the
last three indices, after which the results for µ′ijkl can be used straightforwardly
(making it manifest how to handle the ‘original’ symmetrization). Furthermore,
we can rewrite the left-hand side of equation (5.43) as

τ ′<ij>jklm =
1

2
τ ′ijjklm +

1

2
τ ′jijklm −

1

3
τ ′nnjklmδij =

1

2
τ ′ijjklm +

1

6
τ ′jjiklm. (5.49)

We can now combine the results into equation (5.43) to obtain

1

2
τ ′ijjklm +

1

6
τ ′jjiklm =

3

8

[(
5

21
− 1

4
· 2

9

)
ω(ikδlm) +

(
1

3
− 1

4
· 5

9

)
ωi(kδlm)

]
=

1

8

[(
5

7
− 1

6

)
ω(ikδlm) +

(
1− 5

12

)
ωi(kδlm)

]
=

23

336
ω(ikδlm) +

7

96
ωi(kδlm)

(5.50)
or

τ ′ijjklm =
23

168
ω(ikδlm) −

1

3
τ ′jjiklm +

7

48
ωi(kδlm). (5.51)

The transversality equation for γij is not the only equation we impose. After

all, we are looking for a time-independent scalar mode. For ε0 = 0, the condition
Ψ = 0 becomes

1

3
∂kε

k − 1

2
Kfxkεk = 0. (5.52)
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Using f = 1− 1
4Kx2 +O

(
(Kx2)

)
and filling in the expansion of εi gives

1

3
ωii +K

[
1

3
µiikl −

1

2
ωkl

]
xkxl

+K2

[
1

3
τ ′iiklmn −

1

6
µ′klmn +

1

8
ωklδmn

]
xkxlxmxn +O

(
(Kx2)3

)
= 0

(5.53)

The equation must vanish order-by-order in x. The first two resulting equations
are exactly the same as when doing linear perturbation theory, as expected
(forcing ωkk = 0, of which we make (implicit) use often in this section). Together
with the fact that the equations up to first order in Kx2 obtained from the
transversality condition were also the same as before justifies us using the result
for µ as found in Section 5.1; otherwise we have will never be able to solve all
equations at the same time. The vanishing of the term that is fourth-order in
x implies

τ ′iiklmn =
1

2
µ′(klmn) −

3

8
ω(klδmn). (5.54)

The symmetrization over all indices makes it particularly easy to fill in equation
(5.45) and thus we find

τ ′jjiklm =
9

56
ω(ikδlm) (5.55)

Combining equations (5.55) and (5.51) (plugging the first into the second)
now gives the system of equations

τ ′ijjklm =
1

12
ω(ikδlm) +

7

48
ωi(kδlm) =

3

16
ωi(kδlm) +

1

24
δi(kωlm),

τ ′jjiklm =
9

56
ω(ikδlm).

(5.56)

The question, then, is whether this system has a solution. Due to our limited
building blocks and because of symmetry, there is only one ansatz we can make
for the solution of τ ′:

τ ′ijklmn = n1ωi(jδklδmn) + n2δi(jδklωmn). (5.57)

It then seems the system of equations is overdeterminated. Taking traces can
only give linear combinations of ωi(kδlm) and ω(ikδlm) (or, equivalently, ωi(kδlm)

and δi(kωlm); these are just two different bases which span the same vector
space, allowing us to use them interchangeably). Matching terms will give three
equations for n1 and n2: two for the first equation in (5.56) and one for the
second (since ω(ikδlm) is the only term that can occur due to symmetry). Yet,
the system might be solvable if some of the equations are not independent. To
check this, we should calculate some more traces (which is mostly an exercises
in combinatorics):

ωj(jδikδlm) =
1

5�
�*0

ωjjδ(ikδlm) +
4

5
ωj(i|δj|kδlm)

=
4

5
ω(ikδlm),

(5.58)

δj(jδklωlm) =
1

5�
�>

3
δjjδ(ikωlm) +

2

5
δj(iδ|j|kωlm) +

2

5
δj(iδklωm)j

=
7

5
ω(ikδlm),

(5.59)
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ωi(jδjkδlm) =
2

5
ωijδj(kδlm) +

1

5
ωi(kδlm)��>

3
δjj +

2

5
ωi(kδl|jδj|m)

=
7

5
ωi(kδlm),

(5.60)

δi(jδjkωlm) = (
2

5
· 1

4
· 2)δi(kδlm)��>

0
ωjj + (

2

5
· 1

4
· 2)δi(jωkl)��>

3
δjj

+ (
2

5
· 1

2
)δijδj(kωlm) + (

2

5
· 1

2
)δijωj(kδlm) + (

2

5
· 3

4
· 2

3
)δi(kδl|jωj|m)

= δi(kωlm) +
1

5
ωi(kδlm).

(5.61)
Thus, the system of equations (5.56) becomes

7

5
n1 +

1

5
n2 =

3

16
,

n2 =
1

24
,

4

5
n1 +

7

5
n2 =

9

56

(5.62)

This system of equations is solved by

(n1, n2) =

(
43

336
,

1

24

)
, (5.63)

and thus we must conclude that the time-independent adiabatic tensor mode
also exists at second order in perturbation theory as advertised. More explicitly,
the adiabatic mode is given by

εi = ωikx
k +

1

42
K
(
11δi(jωkl) + 4ωi(jδkl)

)
xjxkxl

+
1

1680
K2
(
43ωi(jδklδmn) + 70δi(jδklωmn)

)
xjxkxlxmxn

γij = −2∂<iεk>

ωij = ω<ij>

(5.64)

It seems surprising that the different equations are not independent. What
happens is reminiscent of what happened at first order, where Ψ = 0 implied
ωjj = 0, making one of the equations that followed from ∇̄iγij = 0 vanish.
Here, the exact reason why this happens is not as clear, but it evidently does.
This makes one wonder whether the same will occur at every order in Kx2,
such that the time-independent adiabatic tensor mode exists non-perturbatively.
Perhaps this is caused by the common origin of the two equations. Writing
things covariantly, we have (see Appendix B and Section 4.2)

− 2∇(iεj) = −2Ψḡij + a2γij (5.65)

For ε0 = 0, the Christoffel symbols do not have to sum over the 0 component,
and since Γ̄ijk = Γijk, this becomes

− 2∇̄(iεj) = −2Ψḡij + a2γij . (5.66)
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The requirement Ψ = 0 is then equivalent to the equation (using γkk = 0)

∇̄kεk = 0, (5.67)

while the requirement ∇̄iγij is equivalent to

∇̄iγij = 2g̃ij∂
iΨ− 1

a2
(
∇̄2εj + ∇̄j∇̄iεi

)
= 0. (5.68)

If the condition Ψ = 0 is enforced, then it becomes

∇̄2εj = 0. (5.69)

This shows how (for ε0 = 0) the different conditions mix. Furthermore, it seems
likely that the system of equations

∇̄iεi = 0

∇̄2εi = 0
(5.70)

always has solutions (with nonzero ∇̄<iεj>). Attempting to solve them in a
general way is however beyond the scope of this thesis.

In conclusion, we are not certain whether the time-independent adiabatic
tensor mode exists non-perturbatively. We do know that it exists up to second
order in Kx2 (containing corrections up to order K/(aH)2 to the flat-space
result within the observable universe), yet there remains the possibility that
the calculations become inconsistent at some higher order in Kx2. This does
seem unlikely though, as we have observed already at two orders that the three
imposed equations are not independent, allowing one to solve for the two param-
eters which characterize each order. This seems to indicate a deeper relation
between the different conditions which might then hold at every order. It is
beyond the scope of this thesis to clarify the precise relation or to find the
full non-perturbative tensor mode. Another question is whether time-dependent
adiabatic tensor modes exist. Since the ∇̄iγij equations (which do not depend

on the choice for ε0) seem to imply the Ψ = 0 equation for ε0 = 0, this seems to
suggest ε0 = 0 is the only valid choice, meaning the tensor mode must be time
independent. Yet this too requires more careful analysis.

If the time-independent tensor mode indeed exists non-perturbatively, we
must accept that adiabatic modes can be sub-curvature. Since these are the
‘finite momentum’ modes in an open universe, this seems strange and calls for
further investigation and interpretation.
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Chapter 6

Pure Scalar

In this section, we try to generalize Weinberg’s scalar adiabatic mode, which is
probably the simplest and most useful adiabatic mode of all (in flat space, at
least). We start in Section 6.1 by mimicking Weinberg’s method of obtaining
his scalar adiabatic modes, as described in Section 3.1. This means we simply
rescale our coordinates and check the necessary physicality conditions. Next, we
double check our adiabatic solution in Section 6.2 against the linearized Einstein
equations. As a last check for consistency, we show that our solution reduces
to Weinberg’s solution in Section 6.3. Before going into general discussion, we
present a concrete example of what the adiabatic mode looks like when the
background is dominated by radiation in Section 6.4. Lastly, we observe that
there are some difficulties in making the found scalar mode physical. This
problem and its possible consequences are discussed in Section 6.5.

6.1 A Simple Rescaling

Weinberg obtained if flat-space scalar adiabatic modes by performing a rescal-
ing of the spatial coordinates. While he allowed for this rescaling to be time
dependent, he discovered that it had to be constant [36]. Furthermore, he ac-
companied it with an appropriate temporal diffeomorphism. We will mimick
this procedure in this section for the open universe, for which case we find that
the rescaling should not be time independent. Note that the machinery devel-
oped in Section 4.5 is not required here as for (isotropic) rescalings we have
γij = 0 (otherwise, it would not be a pure scalar mode), and thus the condition

∇̄iγij = 0 is trivially satisfied.

Time-dependent (isotropic) rescalings are diffeomorphism of the form

εi = λ(t)xi (6.1)

(such that xi → (1 + λ)xi). Then we have

∂jε
i = λδij . (6.2)

It is then readily verified that

γij = f2
(

2

3
δij∂kε

k − ∂iεj − ∂jεi
)

= f2λ

(
2

3
δijδkk − 2δij

)
= 0. (6.3)
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Furthermore, we choose ε0 such that the vector perturbations are also zero (and
the mode is a pure scalar),

Gi =
2

a
∂iε

0 − 2af2ε̇i =
2

a
∂iε

0 − 2af2λ̇xi = 0. (6.4)

This is solved by

ε0 = −2
a2

K
fλ̇+D(t), (6.5)

where D is an integration ‘constant’.

In order to make this mode physical, it must satisfy the physicality condi-
tions. These are found in Appendix E (see also Section 4.4) to be

Φ = Ψ (6.6)

and

Ψ̇ +HΦ =

(
Ḣ − K

a2

)
δu. (6.7)

The relevant perturbations are given by (see equations (4.43))

δu =ε0, (6.8)

Φ =− ε̇0, (6.9)

Ψ =Hε0 − 1

2
Kfxkεk +

1

3
∂kε

k. (6.10)

Thus, the second physicality condition becomes

Ḣε0 +Hε̇0 − 1

2
Kfxk ε̇k +

1

3
∂k ε̇

k −Hε̇0 = Ḣε0 − K

a2
ε0, (6.11)

which reduces to
K

a2
ε0 − 1

2
Kfxk ε̇k +

1

3
∂k ε̇

k = 0. (6.12)

The εk bit can be simplified a bit when filled in,

−1

2
Kfxkεk +

1

3
∂kε

k =λ(1− 1

2
Kx2f) = λ

(
1−

1
2Kx2

1 + 1
4Kx2

)
=λ

1 + 1
4Kx2 − 1

2Kx2

1 + 1
4Kx2

=

(
1− 1

4
Kx2

)
fλ.

(6.13)

Thus, the equation becomes(
−2 + (1− 1

4
Kx2)

)
fλ̇+

K

a2
D = 0. (6.14)

This is solved by

D =
a2

K

(
1 +

1

4
Kx2

)
fλ̇ =

a2λ̇

K
. (6.15)
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The result of this is that the temporal part of of the diffeomorphism takes the
simple form

ε0 =
a2

K
λ̇(1− 2f)

=
a2

K
λ̇

(
1− 2

1 + 1
4Kx2

)
=
a2

K
λ̇

1 + 1
4Kx2 − 2
1
4Kx2

=− a2

K

(
1− 1

4
Kx2

)
fλ̇.

(6.16)

We then have

ε̇0 = − 1

K

(
1− 1

4
Kx2

)
f∂t(a

2λ̇) = −a
2

K
f

(
1− 1

4
Kx2

)
(2Hλ̇+ λ̈). (6.17)

We can write the first physicality condition as

Φ−Ψ =− ε̇0 −Hε0 −
(
−1

2
Kfxkεk +

1

3
∂kε

k

)
=
a2

K
f

(
1− 1

4
Kx2

)
λ̈+ 3

a2H

K
f

(
1− 1

4
Kx2

)
λ̇− f

(
1− 1

4
Kx2

)
λ = 0.

(6.18)

Simply dividing out the factor a2

K f
(
1− 1

4Kx2
)

then gives us the final constraint
equation on λ(t). Since it is a second-order differential equation, we are dealing
with two distinct adiabatic modes. This is no surprise, as Weinberg also found
two. It is shown in Section 6.3 that the solutions for λ indeed become Weinberg’s
first and second scalar adiabatic mode for K → 0, even if we cannot solve the
differential equation analytically (for arbitrary a(t)). Combining the differential
equation with the equations for the perturbations (together fully specifying the
scalar adiabatic mode) gives

λ̈+ 3Hλ̇− K

a2
λ = 0,

Φ = Ψ =
1− 1

4Kx2

1 + 1
4Kx2

a2
(

1

a2
λ− H

K
λ̇

)
,

δρ
˙̄ρ

=
δp
˙̄p

= −δuS =
1

K

1− 1
4Kx2

1 + 1
4Kx2

a2λ̇,

R ≡ −Ψ +HδuS = −
1− 1

4Kx2

1 + 1
4Kx2

λ,

(6.19)

which is the final result of this section.

6.2 Checking: Einstein Equations

In this section, we check whether the two adiabatic scalar modes specified by
(6.19) indeed satisfy all the linearized Einstein equations. These equations are
given, in Newtonian gauge, by (E.22). If the diffeomorphism that underlies the
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adiabatic mode has been performed correctly, we can be quite certain that the
equations are all satisfied because of diffeomorphism invariance of general rela-
tivity (after all, we know that the unperturbed universe solves all of Einstein’s
field equations). Yet, checking explicitly that the equations are solved for the
mode that we found is a way of testing the validity of all steps that came be-
fore. After all, if we performed some miscalculation somewhere, this is a nice,
independent way of finding out.

We start with the second equation in (E.22). This is a physicality condition
which we have used to find the scalar mode in Section (6.1):

Φ̇ +HΦ =

(
Ḣ − K

a2

)
δuS . (6.20)

It thus should hold trivially. However, we check it explicitly once more here as
a consistency check. Also, it will result in a differential equation for ε0 (rather
than for λ) which is convenient to use for the checking of the remaining Einstein
equations.

For an adiabatic mode, we can plug in (4.43) to turn the equation into a
second differential equation for ε0,

ε̈0 +Hε̇0 +

(
Ḣ − K

a2

)
ε0 = 0. (6.21)

Since we are solving a homogeneous temporal differential equation, we can ignore
all spatial dependence of ε0. Since the temporal part of ε0 is contained by an
overall factor a2λ̇ (see equation (6.16)), and since we would like to write down
a differential equation for λ, we calculate the objects

1

a2
d

dt
(a2λ̇) = λ̈+ 2Hλ̇, (6.22)

1

a2
d2

dt2
(a2λ̇) =

...
λ + 4Hλ̈+ (4H2 + 2Ḣ)λ̇. (6.23)

We then find the differential equation

...
λ + 5Hλ̈+

(
6H2 + 3Ḣ − K

a2

)
λ̇ = 0. (6.24)

We now want to check whether it is automatically solved when λ obeys the
differential equation in (6.19). First, we take the derivative of this equation,
which gives

...
λ + 3Hλ̈+

(
3Ḣ − K

a2

)
λ̇+ 2H

K

a2
λ = 0. (6.25)

We subtract this equation from (6.24) to find

2Hλ̈+ 6H2λ̇− 2H
K

a2
λ = 0. (6.26)

Since this is just 2H times the differential equation in (6.19), it follows trivially
that any λ solving this equation also solves equation (6.24).
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Next, we check the two remaining Einstein equations (which do not provide
a physicality condition since they contain no overall derivative). We take an
approach similar to the one above and rewrite both of them in terms of ε0. As
a result, we obtain two differential equations for ε0,

3Hε̈0 +

(
3H2 +

k2 − 3K

a2

)
ε̇0 +

˙̄ρ

2M2
p

ε0 = 0, (6.27)

...
ε 0 + 4Hε̈0 +

(
2Ḣ + 3H2 − K

a2

)
ε̇0 −

˙̄p

2M2
p

ε0 = 0. (6.28)

Since we encounter k2, which is minus the eigenvalue of the Laplacian of ε0 (and
all other nonzero objects in the scalar mode), we must first calculate what it is.

Since the spatial dependence of ε0 factors out, we are really calculating the
Laplacian of the function

1− 1
4Kx2

1 + 1
4Kx2

= (1− 1

4
Kx2)f. (6.29)

This proceeds as follows:

∇̄2ε0 = g̃ij∇̄i∇̄jε0 = f−2∇̄i∂iε0. (6.30)

Neglecting for the moment to write the time-dependent part of ε0, its spatial
derivative is

∂iε
0 = ∂i(

1

4
Kx2)

[
−1

1 + 1
4Kx2

−
1− 1

4Kx2

(1 + 1
4Kx2)2

]
=

1

2
Kf2xi

[(
−1− 1

4
Kx2

)
−
(

1− 1

4
Kx2

)]
= −Kf2xi.

(6.31)

We can then calculate, using equations (C.26) and (C.2),

∇̄i∂iε0 = ∂i∂iε
0 − Γjii∂jε

0

= ∂i
(
−Kxif2

)
− 1

2
Kfxj

(
−Kxjf2

)
= −Kf2∂ixi −Kxi∂if2 +

1

2
f3K62x2

= −3Kf2 + f3K2x2 +
1

2
f3K2x2

= −3Kf2
(

1− 1

2
fKx2

)
= −3Kf3

(
(1 +

1

4
Kx2)− 1

2
Kx2

)
= −3Kf3

(
1− 1

4
Kx2

)
.

(6.32)

92



And thus,

∇̄2ε0 = −3Kf

(
1− 1

4
Kx2

)
= −3K

1− 1
4Kx2

1 + 1
4Kx2

= −3Kε0,

(6.33)

leading finally to the conclusion that k2 = 3K.

Let’s start by checking equation (6.27). Using k2 = 3K, the term with K
conveniently cancels. Furthermore, we can use the Friedmann equation (1.58)
to write

ρ̄

3M2
p

= H2 +
K

a2
. (6.34)

This gives
˙̄ρ

3M2
p

= 2HḢ − 2H
K

a2
. (6.35)

Multiplying by 3/2 gives

˙̄ρ

2M2
p

= 3H

(
Ḣ − K

a2

)
. (6.36)

Thus, the equation becomes

3Hε̈0 + 3H2ε̇0 + 3H

(
Ḣ − K

a2

)
ε0 = 0. (6.37)

This is simply 3H times equation (6.21), which we checked to hold for the scalar
mode above. Thus, this Einstein equation is indeed satisfied.

To find out whether equation (6.28) also holds, we first subtract (6.27). Since
we just saw that this equation indeed holds for the scalar mode, (6.28) will hold
if the resulting equation holds. This resulting equation is

...
ε 0 +Hε̈0 + (2Ḣ − K

a2
)ε̇0 −

˙̄ρ+ ˙̄p

2M2
p

= 0. (6.38)

This can be easily checked to equal the derivative of equation (6.21) (which we
know holds) if

˙̄ρ+ ˙̄p

2M2
p

= −Ḧ − 2H
K

a2
. (6.39)

Thus, if this is the case, we know this Einstein equation is also solved by the
scalar mode. In order to find out, we use the continuity equation (1.66) to write

ρ̄+ p̄

2M2
p

=
−1

3H

˙̄ρ

2M2
p

. (6.40)

Thus,
˙̄ρ+ ˙̄p

2M2
p

=
Ḣ

3H2

˙̄ρ

2M2
p

− 1

3H

¨̄ρ

2M2
p

=
1

3H

(
Ḣ

H

˙̄ρ

2M2
p

−
¨̄ρ

2M2
p

)
.

(6.41)
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Now we can apply equation (6.36). By calculating its derivative we find

¨̄ρ

2M2
p

= 3Ḣ2 + 3HḦ − 3Ḣ
K

a2
+ 6H2K

a2

= 3H

[
Ḣ2

H
+ Ḧ +

K

a2

(
2H − Ḣ

H

)]
.

(6.42)

Plugging this result together with (6.36) itself then gives

˙̄ρ+ ˙̄p

2M2
p

=
Ḣ

H

(
Ḣ − K

a2

)
− Ḣ2

H
− Ḧ − 2H

K

a2
+
Ḣ

H

K

a2

= −Ḧ − 2H
K

a2
.

(6.43)

Thus, this Einstein equation holds as well.

In conclusion, the gauge mode that we have found satisfies all Einstein equa-
tions and physicality conditions. Thus, we can conclude that the procedure in
Section 6.1 was most probably applied correctly and the gauge mode can safely
be extended to the physical domain by giving it some appropriate fall-off at
infinity.

6.3 Flat-Space Limit

When we take the flat-space limit K → 0 for the scalar adiabatic mode above,
we should regain the scalar modes that have already been found in the flat-
space analysis. Because we have assumed δu = ε0 (see Section 4.1), the time-
dependent scalar mode (which was found by [29] for the special case of shift-
symmetric scalar fields) should be absent. We do however correctly obtain both
of Weinberg’s scalar adiabatic modes.

The chief difficulty with taking the flat-space limit lies in the 1
K appearing in

the solution for Φ = Ψ (and the matter fields, see equations (6.19)). One might
be surprised by the presence of these terms, as 1/K is ill-defined for K = 0.
This is however not a problem, since these quantities are defined differently for
K = 0. This is a result of equation (6.4), the solution of which does not reduce
to the K = 0 solution when taking K → 0:

ε0 =

{
1
K

1− 1
4Kx2

1+ 1
4Kx2 a

2λ̇ K 6= 0

−λ
a K = 0

(6.44)

The appearance of 1
K can be dealt with by considering the differential equa-

tion on λ in equation (6.19). Multiplying the whole equation by a3, it can be
recast in the form

d

dt

(
a3λ̇
)

= aKλ. (6.45)

This reveals to us that

λ̇(t) =
K

a(t)3

∫ t

dt′a(t′)λ(t′) +
C

a(t)3
, (6.46)
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where C is an integration constant. When we plug this back into the scalar
mode (6.19) we find

Φ = Ψ =
1− 1

4Kx2

1 + 1
4Kx2

(
λ− H

a

∫ t

dt′a(t′)λ(t′)− CH

aK

)
, (6.47)

where dependence on t has been suppressed for convenience.

Now we assume λ(t) = λ0(t) +O(K) where limK→0 λ = λ0
1. Plugging this

into the differential equation for λ and taking K → 0 then gives the solution

λ0(t) = c1 + c2

∫ t

dt′
1

a(t′)3
. (6.48)

We must note now that the introduced integration constant c2 is not new. When
we match

lim
K→0

λ̇(t) = λ̇0(t), (6.49)

it is revealed that
c2 = lim

K→0
C. (6.50)

Therefore, we will write C = c2 + Kc3 + O(K2), where both constants are of
order O(K0). Now, we are able to write down the general solution

Φ = Ψ =c1

(
1− H

a

∫ t

dt′a(t′)

)
+ c2

(∫ t

dt′
1

a(t′)3
− H

a

∫ t

dt′a(t′)

∫ t′

dt′′
1

a(t′′)3

)

− 1

K

c2H

a
− c3H

a
+O(K).

(6.51)

We now observe that, in order for the K → 0 limit to exist for the Newtonian
potentials, it is required that c2 = 0. This gives us the final solution,

lim
K→0

Φ = lim
K→0

Ψ = c1

(
1− H

a

∫ t

dt′a(t′)

)
− c3

H

a
. (6.52)

Now we can also easily find the other scalar perturbations in the flat-space limit,

lim
K→0

δρ
˙̄ρ

= lim
K→0

δp
˙̄p

= − lim
K→0

δuS =
c1
a

∫ t

dt′a(t′) +
c3
a

(6.53)

lim
K→0

R = −c1 (6.54)

We recognize that the first solution, multiplied by c1, is the flat-space Wein-
berg’s first scalar adiabatic mode. Indeed, it arises from λ = constant = −R, as
we would expect. Similarly, the second solution, multiplied by c3, is Weinberg’s
second scalar adiabatic mode. When all constants except for c3 are zero, we
have λ = εi = 0 while ε0 = c3/a. Note that, even though λ = 0 in the K → 0

1Requiring the convergence of matter fields as K → 0, it can be shown that there are no
solutions for λ with poles in K.
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Figure 6.1: Adiabatic scalar mode in radiation dominatione: λ(t).

limit, that does not mean that the diffeomorphism generated by c3 is an empty
one. This is because ε0 contains 1

K , making terms that are linear in K relevant
in the K → 0 limit.

Thus, in the limit K → 0, we obtain exactly the same scalar adiabatic modes
as for K = 0. In combination with the validation of the Einstein equations
in Section 6.2, this gives us some confidence that our treatment of the scalar
adiabatic mode has been correct.

6.4 Example: Radiation Dominated

It is possible to solve the differential equation for λ(t) in (6.19), which governs
the time dependence of the scalar adiabatic mode, exactly using the Mathe-
matica software package [20] in some specific cases. In this section we focus
on finding the scalar mode for a radiation-dominated universe, i.e. a universe
where p = 1

3ρ. This is for the purpose of providing an explicit example of
how the time dependence of the scalar can look and what kind of solutions
the differential equation for λ(t) has. The results are reported in this section,
the Mathematica notebook in which the calculations are actually performed is
provided in Appendix F. In this notebook, it is also explicitly verified that the
mode solves the linearized scalar Einstein equations in a radiation dominated
universe, providing an extra consistency check.

We find two solutions for λ(t). The general solution is a superposition of the
two, giving

λ(t) =
C1√

t
(
−3KMpt+ 2

√
3ρ0
) +

C2 arctan

(√
−3KMp

t

(
−3KMpt+ 2

√
3ρ0
))

√
−3KMpt

(
−3KMpt+ 2

√
3ρ0
) ,

(6.55)
where ρ0 is the unperturbed energy density in the universe at t0 (which is defined
by a(t0) = 1 and can be taken to be ‘today’) and C1 and C2 are dimensionless
integration constants. Φ = Ψ is then obtained from (6.19). The expression
becomes a bit involved so we will not write it here. A (qualitative) plot of the
mode however is provided by figure 6.2.
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Solution 1

Solution 2
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Figure 6.2: Adiabatic scalar mode in radiation domination: Φ(t).

6.5 Scalar Modes are Unphysical

We have seen in Section 6.2 that the generalized versions of Weinberg’s first and
second adiabatic modes satisfy

k2 = 3K = −3|K|, (6.56)

where k2 is minus the Laplacian eigenvalue of all the scalar perturbations. This
eigenvalue corresponds to an unphysical mode, which should be clear from the
fact that the corresponding eigenfunction

1− 1
4Kx2

1 + 1
4Kx2

(6.57)

diverges at infinity (remember that, in the coordinates we use, ‘infinity’ is at
x2 = −4/K, see equation (D.15) and the discussion preceding it). Of course,
this does not immediately pose a problem. The scalar mode is just a large gauge
transformation, and these are usually unphysical. Since the mode satisfies all
physicality conditions, they can be extended to physical adiabatic modes by
giving them an appropriate falloff behavior outside of the observable universe
(as illustrated by figure 3.1).

There is however a problem with this scalar mode that is not present in the
flat-space case (i.e. for Weinberg’s scalar adiabatic modes). It is discussed and
shown in [23] that in an open universe, only sub-curvature modes are needed
to expand any physical perturbation (as was also mentioned in Section 2.2).
These modes vary significantly within the curvature scale 1/

√
|K| and have

k2 > |K|. In contrast, super-curvature modes are more or less constant all
through the curvature scale and fall off outside of it. These are functions for
which 0 < k2 < |K|, and while they are not linearly independent from the
sub-curvature modes, they are needed to generate the most general Gaussian
random field. For k2 = 0, the eigenfunction is constant throughout space (just
like for flat space). Yet, eigenfunctions with k2 < 0 are a different story: these
are modes which diverge at infinity, just like a Laplacian eigenfunction in flat
space exp(ik · x) increases exponentially for imaginary k.

The distinction between sub-curvature and super-curvature modes, which is
completely absent in a flat universe, is a little confusing. We have discussed in
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Section 2.2 that the different Laplacian eigenfunction components of perturba-
tions decouple. Yet this does not mean that super-curvature modes decouple
from the sub-curvature modes. After all, we can expand each super-curvature
mode in terms of sub-curvature modes. Thus, to describe any perturbation,
we only need to specify the time-dependence of every eigenfunction coefficient
with k2 > |K|. Therefore, we will think of a ‘monochromatic’ perturbation as
a perturbation that is in a pure sub-curvature mode. A pure super-curvature
mode is then not monochromatic in this sense, since it composed of different
sub-curvature modes.

Thus, the largest monochromatic perturbation that we could ever observe
in an open universe has k2 → |K|+. This corresponds to how, in flat space,
the largest monochromatic mode has k2 → 0+. In flat space, a k2 = 0 mode
corresponds to a pure gauge mode and thus these largest modes can be treated
as adiabatic modes: the closer we take k2 to zero, the better the mode is ap-
proximated by a coordinate transformation. Yet, in flat space, the Weinberg
scalar adiabatic mode analogue does not have k2 = |K| and can thus not be
approximated by such a monochromatic mode. Since the scalar mode sits at
k2 = −3|K|, there is a gap between even the largest monochromatic mode and
the scalar mode. Thus, there exists no limit in which monochromatic physical
modes can be approximated with arbitrary accuracy by the gauge mode de-
scribed in this chapter.

This does, of course, not mean that the gauge mode cannot be approximated
by some physical mode. That is, there are still adiabatic modes. These can be
created trivially by having the perturbation behave spatially exactly the same
as the gauge mode up to some coordinate distance |x|max from the origin, and
having it go to zero beyond there 2. The approximation will be especially good if
|x|max � 1/H3(using a = a0 = 1), such that deviations will only appear beyond
the observable universe. Within the observable universe, the time dependence
of the perturbation as seen within the Hubble radius will then be approximately
solved by the one dictated in this chapter (equation (6.19)) (although this time
dependence does not need to be the only solution of the linearized Einstein
equations for a perturbation with this spatial profile). A perturbation with this
specific spatial dependence within the Hubble radius and this time dependence
is then the adiabatic mode.

Yet, the fact that such a mode will not be monochromatic makes it not as
useful as its flat-space analogue. After all, it are monochromatic modes which
decouple and which can thus be ‘isolated’ easily from others. A monochromatic
mode on a perturbed background (i.e. when other Laplacian eigenfunctions are
also ‘excited’) will evolve the same as a monochromatic mode on an unperturbed

2This might cause some of the derivatives of the mode to be discontinuous. If one considers
this to be problematic, there are smoother ways of making the gauge mode physical, like
multiplying it by a factor exp(−(x/xmax)2).

3More accurately, |x|max � lH where lH is the Hubble radius in our specific coordinates.
This distance can be found by equating comoving distance from the origin to the physical

Hubble radius,
∫ lH
0 a0dσ = 1/H. Using 1/

√
|K| & 141/H (which is valid nowadays), it is

found that the effect of curvature in the Hubble radius is so small that lH ≈ 1/H, and thus
we use this value as not to overcomplicate the main text.
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background. Since adiabatic modes are shown to be solutions by performing
a diffeomorphism starting with an unperturbed universe, only monochromatic
adiabatic modes are certain to be a solution under any circumstances. The fact
that the adiabatic scalar mode seems to locally satisfy k2 = 3|K| may mean
that it also decouples ‘locally’ (since any physics within the Hubble radius will
not be aware of what is going on far beyond at xmax). It is however still unclear
what kind of conclusions we can draw.

The question of the status of the scalar adiabatic mode is especially inter-
esting with respect to single-field inflation. We have explained in Section 3.1
that, in a flat universe, inflation can only produce adiabatic modes because all
long modes become adiabatic. Due to the non-monochromatic nature of scalar
adiabatic modes in an open universe it is unclear whether similar arguments
can be made. Perhaps it is possible to expand perturbations in terms of the
spatial profiles of the adiabatic modes (with different xmax) and the ‘remaining’
sub-curvature modes (since the adiabatic modes are just a linear combination
of sub-curvature modes which are the ‘basis vectors’, one can imagine doing a
‘change of basis’). If, then, there is indeed some form of local decoupling, it
might be argued that the coefficients corresponding to adiabatic modes in the
expansion have the same time dependence as the modes found in this chapter
(since single-field inflation only allows for two solutions).

Something else which one needs to consider are soft theorems. While Mal-
dacena’s consistency condition [24], as presented in Section 3.4, depends on
the adiabatic nature of k → 0 modes, we cannot do something similar in an
open universe. After all, we cannot take the limit k2 → −3|K| for physical
modes. This implies that in an open universe there are corrections. The con-
sistency conditions carries three length scales: λlong is the wavelength of the

k → 0 mode, λshort is the wavelength of the other modes, and a/
√
K is the

(physical) curvature scale. While the Maldacena consistency condition is only
valid up to corrections of order λshort/λlong (or the same quantity squared,
if one also includes the corrections due to the constant gradient (see Section
3.4) [12, eq. (54)], open-universe corrections can be either of order

√
Kλlong/a

or
√
Kλshort/a.

Since λlong should be at least the Hubble radius to be considered adiabatic,

and since the curvature length is at least ∼ 103 times as long,
√
Kλlong/a must

be smaller or equal to 10−3. While these corrections might be of the same order
as λshort/λlong (for sufficiently large λshort), corrections of order

√
Kλshort/a will

be much smaller than those of order λshort/λlong already present. It remains for
future research to find what kind of corrections appear. If the result would be
that corrections are of order

√
Kλlong/a only, violation of Maldacena’s consis-

tency condition might indicate that the universe has nonzero curvature (or it
could mean that no single-field inflation has occurred). Otherwise, we cannot
expect deviation due to curvature to be detectable.

One might think that there is perhaps another scalar adiabatic mode with
a more convenient Laplacian eigenvalue. However, it can be shown that every
scalar adiabatic mode has the same eigenvalue k2 = −3|K|. The argument is
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as follows. Consider the physicality condition (4.53). Using equation (6.36), we
can rewrite 3H times this as

3HΨ̇ + 3H2Ψ =
˙̄ρ

2M2
p

δuS . (6.58)

When we add this equation to the first linearized Einstein equation in (E.22),
we get

1

a2
(
3K − k2

)
Ψ =

˙̄ρ

2M2
p

(
δρ
˙̄ρ

+ δuS
)
. (6.59)

For an adiabatic mode, δρ/ ˙̄ρ = −ε0 while δuS = −ε0 (see equations (4.43)) and
thus, the right-hand side equals zero. The conclusion can then only be that
k2 = 3K = −3|K|.

For now, we must conclude that it is far from certain whether the adiabatic
modes we have found have any physical implications. It is, in fact, quite inter-
esting if they don’t; for if single-field inflation does not generate an adiabatic
universe, any observation of non-adiabaticity might indicate that we do not live
in a flat universe, and the Maldacena consistency condition might be violated.
Of course, it could also indicate that single-field inflation never happened. A
proper analysis of the consequences of curvature for single-field inflation might
provide some qualitative predictions for the adiabaticity, which could be com-
pared to the predictions by non-single-field scenarios, perhaps providing a hand-
hold to differentiate them.
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Chapter 7

Conclusion

In this thesis, we have investigated the existence of adiabatic modes in an open
universe (i.e. a universe with curvature scalar K < 0). To this end, we have first
reviewed cosmological perturbation theory and the theory of adiabatic modes
in a flat universe in Part I. In Part II, we started by examining the general
conditions which a coordinate transformation must fulfill in order to provide an
adiabatic mode. This machinery has been used to find a tensor adiabatic mode
and a scalar adiabatic mode, which are the generalizations of Weinberg’s tensor
adiabatic mode and Weinberg’s scalar adiabatic modes [34, sec. 5.4] respec-
tively. These are the main results of this thesis, and can be found in equations
(5.23) and (6.19).

These adiabatic modes are found to differ from their flat-space counterparts
in a few significant ways. For instance, both of them are not constant in space.
This has the significant implication that their eigenvalue for the Laplacian op-
erator −k2 is nonzero. Calculating these eigenvalues gives k2 = 2|K| for the
tensor and k2 = −3|K| for the scalar. This implies that the tensor mode is a
physical sub-curvature mode (defined by k2 > |K|) while the scalar mode cannot
be obtained as (the limit of) a physical monochromatic mode. Since consistency
conditions are usually relations between correlation functions of monochromatic
perturbations, in which one of the perturbations in the larger correlation func-
tion is an adiabatic mode, we can conclude the following:

• In an open universe, there are soft theorems in which a tensor mode be-
comes ‘soft’, which is then to mean k2 = 2|K|.

• In an open universe, no soft theorems in which a scalar becomes soft exists.

• In a flat universe, double-soft theorems (in which one scalar is very long
and acts as an effective spatial curvature and one intermediately long mode
is adiabatic against this background [25]) only exist when the intermedi-
ately long mode is a tensor mode.

There are also consequences for the generation of adiabaticity by single-field
inflation. In a flat universe all the monochromatic perturbations for which the
physical wavelength is longer than the Hubble radius at the end of inflation
must be adiabatic. Yet, such k2 → 0 modes are no longer adiabatic in an open
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universe (which holds both in the scalar and the tensor sector). It is thus un-
clear to what extent single-field inflation would result in an adiabatic universe.
While tensor modes will in general become non-adiabatic when their ‘wave-
length’ becomes too long, there is no k2 at all for which scalar perturbations are
guaranteed to be adiabatic.

The obtained results are intriguing and call for further investigation. Some
of the open questions that require answering are:

• Does the time-independent adiabatic tensor mode also exist non-perturbatively
in Kx2? While the results in Section 5.3 seem to suggest so, it has only
been verified explicitly up to second order in Kx2. There are reasons to
expect that the gauge-preservation condition ∇̄iγij and the Ψ = 0 con-
dition for time-independent modes are not independent. Understanding
this relation might provide the insight necessary to construct the tensor
non-perturbatively or to prove that it always exists. Alternatively, an
explicit construction for the nth order part of the tensor (mimicking the
procedure in Chapter 5 in a way that does not depend on the order of the
parameters considered) might settle the matter. Until then, the existence
of the adiabatic time-independent tensor mode beyond second order in
Kx2 should be considered tentative.

• Do time-dependent tensor adiabatic modes exist? Such a mode would
perhaps have a more ‘convenient’ Laplacian eigenvalue which is manifestly
unphysical (see next bullet point). Yet, if the Ψ = 0 equation for time-
independent tensor modes is indeed implied by the gauge-preservation
condition, this might make ε0 = 0 the only consistent choice, which would
mean that any pure tensor mode is time independent.

• If the time-independent tensor mode exists, how should we interpret the
fact that it is sub-curvature (i.e. ‘finite momentum’)? The sub-curvature
nature of the adiabatic mode is a puzzling feature as physical modes should
not result from gauge transformations. We might have to change our
notion of ‘large gauge transformations’ in the case of nonzero curvature.
Alternatively, we might have to reconsider whether pure sub-curvature
modes are ‘physical’; in flat space, only superpositions of monochromatic
waves vanish at infinity and can thus truly be considered physical. Yet,
the construction of sub-curvature modes in [23, sec. 3] seems to suggest
that they fall off at infinity (unlike their flat-space counterparts), and thus
it seems not very likely that we can consider the tensor gauge mode to be
unphysical.

• What are the soft theorems for tensors in an open universe? Usually, in
soft theorems, the limit k2 → 0 is taken. Yet, for a tensor mode in an
open universe, this seems to be the wrong limit: it only becomes adiabatic
when k2 = 2|K|. Calculation of soft theorems and checking to what extent
they differ from the flat-space ones would be interesting.

• What are the corrections to scalar soft theorems (and in particular, Mal-
dacena’s consistency condition) in an open universe? One could try to
calculate this explicitly by examining the deviation from adiabaticity of
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k2 → 0 modes within the Hubble radius. Similarly, corrections to double-
soft theorems could be calculated.

• What are the consequences of these results for single-field inflation? To
what extent can we expect single-field inflation to produce adiabatic modes
in an open universe? Finding a way to expand an arbitrary perturbation
in terms of adiabatic modes might help doing such an analysis. If not even
single-field inflation generates purely adiabatic modes in an open universe,
we cannot expect the open universe to look perfectly adiabatic.

Quantitative results with respect to the last three questions would be extremely
interesting, as they are about measurable effects. Potentially, they could provide
a method for probing the curvature of the universe. A problem is that such ef-
fects would generally be hard to discern from effects that might be caused by the
non-existence of single-field inflation. Both single-field inflation in an open uni-
verse and multi-field inflation in a flat universe may generate non-adiabaticity,
and similarly both scenarios could lead to a violation of established consistency
conditions. Both deviation from adiabaticity and violation of consistency con-
ditions would still be very significant observations though, as it would disprove
at least one popular theory about the universe.

As a final note, we would like to mention that the analysis in this thesis
could probably be extended to closed universes (K > 0) without too much
trouble. One should however take into account that the topology of the universe
would change drastically, imposing periodicity conditions on all solutions. The
eigenvalues of the Laplacian would become discretized, potentially making it
hard to take any limit in which a physical solution becomes similar to a gauge
mode. This might mean that adiabatic modes do not exist, or it would at least
complicate their formulation. For the rest, the search for gauge modes should
certainly proceed along the same lines as presented in Part II of this thesis.
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Part III

Appendices
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Appendix A

Conventions

Einstein summation is assumed throughout this thesis (i.e. any repeated index
is summed over). While Greek indices run over all spacetime dimensions, i.e.
0, 1, 2, 3 (where 0 corresponds to the temporal direction), latin indices only run
over spatial dimensions, i.e. 1, 2, 3. A (− + ++) metric signature is used (i.e.
a timelike interval is characterized by negative ds2, where ds is the interval as
measured by the metric).

In this thesis, we are dealing with a background metric (the FLRW metric,
see Section 1.4) of the form

ds2 = −dt2 + a(t)2dσ2, (A.1)

where ds2 is the metric of the universe and dσ2 is the metric on the space Σ
(which has three spacelike dimensions). We use the convention of considering
any quantity which has latin indices (which run over 1, 2, 3 and which will ap-
pear when doing perturbation theory, see Section 2.1) to live in Σ rather than on
the spatial part of the whole space (which is ‘a2Σ’). This means that the indices
are raised and lowered with the metric of Σ, which is denoted dσ2 = g̃ijdx

idxj .
Because we are dealing with two separate spaces, we need to differentiate be-
tween the covariant derivatives and Christoffel symbols of the two. We use the
convention that

∇µ, Γµνρ (A.2)

correspond to the full space (i.e. the universe) while

∇̄µ, Γ̄ijk (A.3)

correspond to Σ. Because it turns out in Appendix C.3 that Γ̄ijk = Γijk, we
often use the second rather than the first for simplicity even when dealing with
Σ. The same does not hold for the covariant derivatives.

Symmetrization throughout this thesis is defined by

T(µ1...µn) =
1

n!

∑
(k1,...,kn)∈Pn

Tµk1 ...µkn , (A.4)
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where Pn is the set of all n! permutations of the numbers 1 through n (e.g.
P2 = {(1, 2), (2, 1)}). In our definition, it does not matter whether indices are
upstairs or downstairs, e.g.

∂(iε
j) =

1

2!

(
∂iε

j + ∂jε
i
)
. (A.5)

Furthermore, when indices are enclosed by two |’s, this means that they must
not be included in the symmetrization. For example,

T(µ1|µ2|µ3) =
1

2!
(Tµ1µ2µ3

+ Tµ3µ2µ3
) . (A.6)

The symmetric-traceless part of a two-tensor is defined by

T<µν> = T(µν) −
1

3
δµνTλλ, (A.7)

such that T<µν> = T<νµ> and T<µµ> = 0.

Throughout the thesis, natural units are used, i.e. units such that c = ~ = 1.
Only the Planck mass Mp is retained, and thus every dimensional quantity is
a multiple of some power of Mp (at least, for the quantities considered in this
thesis, where e.g. electric charge is not considered; otherwise, one might also
put the electron charge to −1). Thus, dimensional analysis can be used to check
equations for consistency.
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Appendix B

Transformation of the
Metric

In this appendix, the basic transformation rules of the metric under infinitesimal
diffeomorphisms. This is used subsequently to derive how metric perturbations
transform under a gauge transformation (where the ‘background metric’ is de-
fined to remain invariant while the infinitesimal perturbations, of the same order
as the diffeomorphism, do transform).

The metric, i.e. the line element, is a property of the space it describes and
thus does not change when we choose new coordinates. Thus, when we perform
the infinitesimal diffeomorphism

xµ → x̃µ = xµ + εµ(x), (B.1)

the metric tensor transforms as gµν(x)→ g̃(x̃)µν where

ds2 = gµν(x)dxµdxν =g̃µν(x̃)dx̃µdx̃ν

= gρσ(x)
dxρ

dx̃µ
dxσ

dx̃ν
dx̃µdx̃ν

=gρσ(x̃− ε)dx̃
ρ − dερ

dx̃µ
dx̃σ − dεσ

dx̃ν
dx̃µdx̃ν

(B.2)

Comparing these lines, using the usual notation ∂µ = d
dxµ , renaming x̃ to x and

Taylor expanding to first order in ε gives

g̃µν(x) =(δρµ − ∂µερ)(δσν − ∂νεσ)(1− ελ∂λ)gρσ(x)

=gµν(x)− gµλ∂nuελ − gνλ∂µελ − ελ∂λgµν +O(ε2).
(B.3)

Note that this result can be rewritten as

g̃µν(x) = gµν(x)− 2∇(µεν), (B.4)

where 2∇(µεν) = Lεgµν is the Lie derivative of the metric, as in accordance with
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e.g. [10, eq. B.21]. This can be seen by computing

2∇(µεν) = 2∂(µεν) − 2Γλ(µν)ελ

= 2∂(µεν) − gλρ
(
∂µgρν + ∂νgρµ) − ∂ρgµν

)
gλρελ

= ∂µ[gλνε
λ]− ελ[∂µgλν ]∂ν [gλµε

λ]− ελ[∂νgλµ] + ελ∂λgµν

= gλν∂µε
λ + gλµ∂νε

λ + ελ∂λgµν ,

(B.5)

where the definition of the covariant derivative and Christoffel symbols have
been used and the product rule for differentiation.

We now consider a perturbed metric, gµν = ḡµν + hµν , where ḡµν is the
background metric and hµν is an infinitesimal perturbation to it. As discussed
in Section 2.3, requiring the non-infinitesimal part of the metric to be of a spe-
cific form (i.e. to be ḡµν) defines the coordinates up to infinitesimal coordinate
transformations. Only when εµ and hµν are of the same order, can we do a co-
ordinate transformation where the non-infinitesimal background metric remains
the same. Then, all of the change in the metric can be ‘blamed’ on the per-
turbations. Plugging the decomposition of the metric into equation (B.3), and
remembering that we should not keep O(ε2), O(h2) and O(εh)), we get

ḡµν + h̃µν =(δρµ − ∂µερ)(δσν − ∂νεσ)(1− ελ∂λ) (ḡρσ + hρσ)

=ḡµν + hµν − ελ∂λḡµν − 2gλ(µ∂ν)ε
λ. (B.6)

When we write h̃µν = hµν + ∆hµν , our final transformation rule for metric
perturbations is

∆hµν = −ελ∂λḡµν − ḡλµ∂νελ − ḡλν∂µελ. (B.7)
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Appendix C

Properties of the
Background Metric

As derived in Section 1.4, the unique homogeneous and isotropic background
metric is the FLRW metric

ds2 ≡ gµν(t, x)dxµdxν = −dt2 + a(t)2dσ2, (C.1)

where
dσ2 ≡ g̃ij(Kx2)dxidxj = f(Kx2)2δijdx

idxj (C.2)

defines the spatial subspaces which foliate the universe’s spacetime. The space
on which we can consider dσ2 to be the metric is called Σ, which has curvature
constant K. The function f is defined by

f(Kx2) =
1

1 + 1
4Kx2

. (C.3)

Note that the space is bounded by |x| < 2√
−K .

Since the space of interest in this thesis is often Σ instead of the full spacetime
specified by ds2, one should differentiate between objects defined both. While
it should be clear from the definitions of tensors in which of the two spaces they
live, different symbols are used for the covariant derivatives and their Christoffel
symbols. The covariant derivative on the full FLRW spacetime is here defined
by

∇σTµ1µ2...µk
ν1ν2...νl

=∂σT
µ1µ2...µk
ν1ν2...νl

+ Γµ1

σλT
λµ2...µk
ν1...νl

+ Γµ2

σλT
µ1λ...µk
ν1ν2...νl

+ ...

− Γλσν1T
µ1µ2...µk
λν2...νl

− Γλσν2T
µ1µ2...µk
ν1λ...νl

− ... ,

(C.4)

where Tµ1µ2...µk
ν1ν2...νl

is a four-dimensional k + l-tensor (transforming covariantly
under diffeomorphisms xµ → x′µ) and Γρµν are the Christoffel symbols of the
FLRW space. The covariant derivative on the subspaces is defined similarly by

∇̄sT i1i2...ikj1j2...jl
=∂sT

i1i2...ik
j1j2...jl

+ Γ̄i1spT
pi2...ik
j1...jl

+ Γ̄i2spT
i1p...ik
j1j2...jl

+ ...

− Γ̄psj1T
i1i2...ik
pj2...jl

− Γ̄psj2T
i1i2...ik
j1p...jl

− ... ,

(C.5)
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where now T i1i2...ikj1j2...jl
is a three-dimensional k + l-tensor (transforming covari-

antly under diffeomorphisms xi → x′i) and Γ̄kij are the Christoffel symbols of
the subspaces. The Christoffel symbols are defined and calculated in Appendix
C.3. For a discussion of covariant derivatives and a derivation of the form of
the Christoffel symbols, see e.g. [10, sec. 3.2].

In this appendix, some of the properties of this metric are examined. The
main purpose of this is to reduce the number of calculations in the main body of
the text. Also, since these properties are of import to most parts of this thesis,
it is convenient to have them collected here.

C.1 Raising and Lowering Indices

In this appendix it is derived how the indices on tensors are lowered and raised,
both for tensors living in the full FLRW spacetime or in the spatial subspaces.

The full metric can be written as

ds2 = −dt2 + a2f2dx2. (C.6)

Thus, the indices of tensors living in the full spacetime are raised and lowered
quite easily,

T0 =g0µT
µ = −T 0, (C.7)

Ti =giµT
µ = a2f2T i. (C.8)

A tensor defined on the space Σ with metric

dσ2 = f2dx2 (C.9)

is raised and lowered by
Si = g̃ijS

j = f2Si (C.10)

Note that the action would be the same on any other index that both the tensors
S and T might have. For simplicity, only one index is used here.

C.2 Derivatives of f and Metric

Since derivatives of the function f(Kx2) will appear all to often in this thesis,
they are calculated in this section for easy reference. First, it is convenient to
define

f ′(Kx2) ≡ df(Kx2)

d(Kx2)
= −1

4
f(Kx2)2. (C.11)

This gives
∂if =f ′∂i(Kx2) = Kf ′δjk∂i(x

jxk)

=Kf ′δjk(xjδki + xkδji ) = 2Kf ′xi

=− 1

2
Kf2xi.

(C.12)
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From this result we find easily that

∂if
2 = 2f∂if = −Kf3xi. (C.13)

This in turn can be used to calculate the spatial derivatives of the (full) metric,

∂igjk = ∂if
2(a2δjk) = −Kf3xia2δjk = −Kxifgjk. (C.14)

Since a2 factors out above, the same holds for the metric of the spatial subspaces,

∂ig̃jk = −Kxifg̃jk. (C.15)

Temporal derivatives are found in a similar fashion,

∂tgij = 2aȧf2δij = 2Hgij . (C.16)

A last useful derivative identity is the following:

1

fn
∂i (fnO) =

(
∂i −

n

2
Kfxi

)
O. (C.17)

Here, O can be anything. Its validity is easily proven using the product rule
and ∂if

n = nfn−1∂if = −n2Kf
n+1xi.

C.3 Christoffel Symbols

In this appendix, the Christoffel symbols of the full metric (Γρµν) and of the

subspaces (Γ̄kij) are calculated for easy reference. Christoffel symbols are defined
by [10, eq. 3.27]

Γρµν = gρλ (∂µgνλ + ∂νgµλ − ∂λgµν) . (C.18)

Note that these are always symmetric in the two lower indices.

Let’s start with the Christoffel symbols of the FLRW spacetime. Those with
only spatial indices yield

Γkij =
1

2
gkλ (∂igjλ + ∂jgiλ − ∂λgij)

=− 1

2
Kfgkλ

(
xigjλ + xjgiλ − xλgij

)
=− 1

2
Kf

(
xiδkj + xjδki − xl(a−2f−2δkl)(a2f2δij

)
=

1

2
Kf

(
xkδij − xiδjk − xjδik

)
(C.19)

(where use has been made of gµρg
ρν = δρµ). Furthermore, we can calculate

Γ0
ij =

1

2
g0λ (∂igjλ + ∂jgiλ − ∂λgij)

= −1

2

(
∂i��*

0
g0j + ∂j��*

0
g0i − δij∂0(a2f2)

)
= ȧaf2δij = Hgij .

(C.20)
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The other symbols with two spatial indices are

Γi0j =
1

2
giλ
(
∂0gλj + ∂jgλ0 − ∂λ��*

0
g0j

)
=

1

2

1

a2
1

f2

(
∂0gij + ∂j��*

0
gi0

)
=

1

2

1

a2
1

f2
(2ȧaf2)δij

= Hδij .

(C.21)

Christoffel symbols with a single spatial index should be zero, since these indices
transform when we perform a rotation on the space. Since the space itself is
isotropic, it must be invariant and thus can only be zero. For completeness, this
is shown explicitly here,

Γ0
0i =

1

2
g0λ

(
∂0giλ + ∂ig0λ − ∂λ��*

0
g0i

)
= −1

2

(
∂0��*

0
gi0 + ∂i(−1)

)
= 0,

(C.22)

and

Γi00 =
1

2
giλ (2∂0g0λ − ∂λg00)

=
1

2

1

a2
1

f2

(
2∂0��*

0
g0i − ∂i(−1)

)
= 0.

(C.23)

Lastly, the Christoffel symbols without spatial indices are also zero,

Γ0
00 =

1

2
g0λ (2∂0g0λ − ∂λg00)

= −1

2
∂0g00 = −1

2
∂0(−1) = 0.

(C.24)

Calculation of the Christoffel symbols of the metric g̃ij is now trivial. In
equation (C.19), there is not one term where an index of 0 enters and the scale
factor that gij has but g̃ij does not have cancels out everywhere against the
inverse metric. Thus,

Γ̄kij = Γkij . (C.25)

Since the spatial Christoffel symbols on dσ2 are the same as those on ds2, the
symbol Γ̄ will not be used anywhere in this thesis except for in this appendix.
After all, accidentally using the wrong one will not result in an error. Further-
more, it should usually be clear on what space the calculations are done since
the vectors used live in only one of the spaces and since each space has its own
symbol for the covariant derivative.

Often, we want to calculate the covariant divergence of spatial vectors (i.e.
living in the space Σ), i.e. ∇̄iV i = g̃ij∇̄iVj = a−2f−2δij∇̄iVj . This involves
either Γ̄kii or Γ̄iik (depending on whether the index of the vector is upstairs and
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downstairs), and thus it will be useful to calculate these here in advance:

Γ̄kii =
1

2
Kf

(
xkδii − 2xiδik

)
=

1

2
Kf(3xk − 2xk)

=
1

2
Kfxk.

(C.26)

Γ̄iik =
1

2
Kf

(
xiδik − xiδik − xkδii

)
=

1

2
Kf(−3xk)

=− 3

2
Kfxk.

(C.27)

C.4 Killing Vectors

In this section, Killing’s equation is solved for the spatial metric dσ2. The
equation is

∇̄(iξj) = 0. (C.28)

For every Killing vector ξi that solves this equation, the spatial metric will have
an infinitesimal isometry of the form

xi → xi + εi ≡ xi + εξi. (C.29)

It follows that the full metric then has the infinitesimal isometry

t→ t,

xi → xi + εi ≡ xi.
(C.30)

The four-dimensional Killing vector corresponding to this isometry is

ξ̃µ = (0, ξi). (C.31)

It can also be seen directly from Killing’s equation that a Killing vector in
the subspaces is also a Killing vector in the full space if carried over this way.
Using (see Appendix C.1)

ξ̃µ = (0, a2ξµ), (C.32)

we find
∇(µξ̃ν) = ∂(µξ̃ν) − Γλµνξλ

= ∂(µξ̃ν) − Γkµνξk.
(C.33)

For µ = i, ν = j, i.e. only spatial indices, we find ∇(iξ̃j) = ∇̄(iξj) = 0 since

ξ̃i = ξi and Γkij = Γ̄kij (see Appendix C.3). For µ = 0, ν = i we find

∇(0ξ̃i) =
1

2
∂0ξ̃j + ∂i�

�7
0

ξ̃0 − Γj0iξ̃j

=
1

2
∂0(a2ξi)−Ha2ξi = 0.

(C.34)
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Furthermore, ∇0ξ̃0 = 0 trivially since all the components of ξ̃ and Christoffel
symbols involved are zero individually. Thus, ∇(µξ̃ν) = 0, i.e. ξ̃µ is a Killing
vector if ξi is. This makes looking for Killing vectors of the subspaces extra
worthwhile.

Filling in the Christoffel symbols (and multiplying by two), Killing’s equation
becomes

∂iξj + ∂jξi +Kf
(
xiξj + xjξi − δijxkξk

)
= 0. (C.35)

As discussed in Section 1.2, this space should be both isotropic and homoge-
neous. Isotropy motivates guessing Killing vectors that correspond to rotations
in flat Euclidean space (see e.g. [10, pp. 138-139]),

ξi = ωijx
j , ωij = −ωji . (C.36)

It is easily verified that this indeed works. We have ξi = f2ωijx
j and thus

∂iξj = f2(ωji −Kxifω
j
kx

k). This gives 2∂(iξj) = −Kfxiξj −Kfxjξi, which ex-
actly cancels against the next two terms in Killing’s equation. The last term is
δijf

2ωkj x
kxj and vanishes because an antisymmetric tensor is contracted with a

symmetric one. Thus, Killing’s equation is satisfied and there is indeed symme-
try under spatial rotations. Note that there are three independent components
in an antisymmetric two-tensor of dimension three, and thus there are three of
these rotations (as there should be, of course).

Since the subspaces are supposed to be maximally symmetric, they should be
homogeneous. Thus, we expect there to be a Killing vector that is translation-
like. These are dubbed quasitranslations. In particular, when K → 0, the sub-
spaces become flat and these quasitranslations should reduce to regular trans-
lations,

ξiK=0 = ai (C.37)

for some constant vector ai. Thus, each quasitranslation should be a function
of ai. There cannot be more than three linearly independent quasi-translations
(nor any other Killing vectors), since there are already three rotations and a
maximally symmetric space of dimension three has only six isometries (see Sec-
tion 1.2). Since there are three numbers in ai, there cannot be any other numbers
specifying a quasitranslation. Suppressing dependence on xi and K, this means
ξi = ξi(a)

What is more, the sum of two Killing vectors must itself be a Killing vector.
Since the sum of two quasitranslations can never be a rotation (as is clear at
K = 0) it must be another quasitranslation. Thus,

ξi(a) + ξi(b) = ξi(c(a, b)). (C.38)

At K = 0, this equation implies ci = ai + bi. At finite K, there can in principle
be other terms present, like Kakbk(ai+bi). Let’s for the moment assume this is
not the case, such that we have ξi(a)+ξi(b) = ξ(a+b). This is only an educated
guess. It will be proven correct once we use it to find explicit Killing vectors.

This condition means that ξi(a) must be linear in ai, since both zeroth-order
terms and higher-order terms will not obey it (not that this is very similar to
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the argument made to obtain equation (1.4)). Furthermore, ξi must have one
free index. The objects we can use to construct ξi(a) with indices are ai, xi

and the metric g̃ij . However, since the metric is proportional to δij , contracting
one of its indices will give us nothing new. Thus, we can have a term with
ai and a term with xi. The second term must still be linear in ai though.
The only way to contract the index is aixi. Furthermore, both terms can be
multiplied by functions that depend on K and xi. Thus, our guess is that the
quasitranslations are of the form

ξi(a,K, x) = f(Kx2)−2F (Kx2)ai +Kf(Kx2)−2G(Kx2)akxkxi. (C.39)

The factors f−2 have been extracted from the functions F and G for computa-
tional convenience (since they disappear when lowering the index, as is required
for Killing’s equation). Note that the factor K in front of G is required to ob-
tain equation (C.37) (just like this requires FK=0 = 1). Since K and xi are the
only dimensionfull quantities to be used in F and G, and since Kx2 is the only
dimensionless quantity that can be composed of these, F and G can only be
functions of this particular combination (otherwise they might not be dimen-
sionless and the dimensions of the Killing vector would be off).

Writing ∂F (Kx2)
∂Kx2 = F ′, and similarly for G, we get

∂iξj = 2KF ′xiaj + 2K2G′akxkxixj +KGaixj +KGakxkδij (C.40)

and
Kfxiξj = KfFxiaj +K2fGakxkxixj . (C.41)

Thus, Killing’s equation becomes

2Kx(iaj)
[
2F ′ +G+ fF

]
+2K2akxkxixj

[
2G′ + fG

]
+Kakxkδij

[
2G−Kx2fG− fF

]
= 0.

(C.42)

This can only hold if all the terms between square brackets are zero individually.
Using the differentiation properties of f in Appendix C.2, we immediately see
that the vanishing of the second term implies G = gf2, where g is an integration
constant. The vanishing of the third term then gives

F = (
2

f
−Kx2) = (2[1 +

1

4
Kx2]−Kx2)G = 2g(1− 1

4
Kx2)f2. (C.43)

It is easily checked that indeed the first term also vanishes for this solution.
Lastly, requiring FK=0 = 1 implies g = 1

2 .

Thus, the Killing vectors generating quasitranslations are

ξi(a,Kx2) = (1− 1

4
Kx2)ai +

1

2
Kakxkxi. (C.44)

Note that, in the end, it does not matter what guesses have been made to arrive
at this equation. The only thing that matters is that it solves Killing’s equation,
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and that there are three of them. Thus, all the Killing vectors have been found.
Since non of them are linearly dependent, this proves that the space described
by dσ2 is indeed maximally symmetric.
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Appendix D

Constant Curvature Space

In this appendix, we derive the metric of a maximally symmetric three-dimensional
Euclidean space. Our strategy is to start with a four-dimensional flat Euclidean
space, and hope that the metric of a three-sphere embedded in this sphere
is indeed the maximally symmetric space we are looking for. Because of the
uniqueness of maximally symmetric spaces, making an educated guess is fine,
as long as we check that the resultant space is indeed of the maximally sym-
metric form. While the sphere is a maximally symmetric space with constant
curvature, it can be analytically continued to flat space and negatively curved
space.

We consider an Euclidean embedding space with metric

ds2 = δijdx
ixj + dz2, (D.1)

where i runs form one to three. A three-sphere in this space is specified by the
equation

δijx
ixj + z2 =

1

K
. (D.2)

This constant might seem like a weird way to parametrize a sphere (why not
replace 1/K by a2 instead, where a is a constant with the interpretation of the
radius of the circle?), but this way of doing things will turn out to be convenient.
Differentiating the formula defining the sphere gives us

dz = −δijx
idxj

z
. (D.3)

We can use this to eliminate dz2 from equation D.1 so that we are left with a
metric on the sphere itself, with coordinates xi (in two dimensions, these rec-
tilinear coordinates can be thought of as describing the sphere by projecting
all points unto the equitorial plane). We can consider these three-vectors, and
write them x. This also enables the notation of dot products, δijx

iyj = x · y.
Note that, since equation (D.2) has two roots for z, each point x denotes two
distinct points on the sphere (in two dimensions, x = 0 corresponds to both the
north and south poles).
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We can now write the metric on the three-sphere as

ds2 = dx2 +
(x · dx)2

1
K − x2

, (D.4)

where z has been eliminated using equation (D.2). This equation also reveals
the condition |x| ≤ 1/

√
K. Thus, the coordinates we use describe exactly a ball

(i.e. a three-disc) (similarly, the equatorial plane in two dimensions is a 2-disc,
i.e. a circle and its interior). This suggests the use of spherical coordinates,

x1 = r cosφ sin θ,

x2 = r sinφ sin θ,

x3 = r cos θ.

(D.5)

This implies x2 = r2, and differentiating this equation gives us x · dx = rdr.
Furthermore, dx2 is simply the three-dimensional Euclidean line element as in
equation (1.29), dr2 + r2dΩ2. Thus, in these coordinates the metric becomes

ds2 = dr2
(

1 +
r2

1
K − r2

)
+ r2dΩ2. (D.6)

This can be rewritten in a more convenient way using

1 +
r2

1
K − r2

= 1 +
Kr2

1−Kr2
=

1−Kr2 +Kr2

1−Kr2
=

1

1−Kr2
, (D.7)

giving

ds2 =
dr2

1−Kr2
+ r2dΩ2. (D.8)

While this is a beautifull way to write the metric, we will apply one last coor-
dinate transformation. We define a new radial coordinate, r′, by

r =
r′

1 + 1
4Kr

′2 . (D.9)

From this we get

dr =
dr′

1 + 1
4Kr

′2 −
1
2Kr

′2dr′

(1 + 1
4Kr

′2)2
= dr′

1 + 1
4Kr

′2 − 1
2Kr

′2

(1 + 1
4Kr

′2)2

= dr′
1− 1

4Kr
′2

(1 + 1
4Kr

′2)2
.

(D.10)

This implies

dr2

1−Kr2
= dr′2

(1− 1
4Kr

′2)2

( 1
4Kr

′2)4
1

1−K r′2

(1+ 1
4Kr

′2)2

=
dr′2

(1 + 1
4Kr

′2)2��
���

���
��:1

(1− 1
4Kr

′2)2

(1 + 1
4Kr

′2)2 −Kr′2

(D.11)
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We now replace r in the metric by r′ and drop the prime for convenience. This
gives us

ds2 =
1

(1 + 1
4Kr

2)
(dr2 + r2dΩ2). (D.12)

What is more, we can now easily return to rectilinear coordinates (which are
often more convenient to use), giving

ds2 =
1

(1 + 1
4Kx2)2

dx2. (D.13)

It still remains to check whether this educated guess is indeed a maxi-
mally symmetric space. It follows immediately from the invariance under four-
dimensional rotations of both equation (D.1) and equation (D.2), of which there
are 1

24(4− 1) = 6. Since the space only needs 1
23(3− 1) = 6 continuous symme-

tries to be maximally symmetric, this immediately follows. It is however useful
to know what these six isometries actually look like in term of the coordinates
used. While the metric is manifestly invariant under three-dimensional rotations
(this is especially clear from equations (D.4) and (D.13) since dot products are
invariant under rotations), it does not seem invariant under translations. It
however is homogeneous. As discussed in Section 1.3, the ‘translations’ in a
curved space may look a bit different then xi → xi + ai. So what does it look
like in this space?

One way to derive the explicit symmetries is to start from the four-dimensional
rotations of the embedding space. While rotations around the z-axis are simply
three-dimensional rotations of x, the rotations that do not leave the z-coordinate
invariant are the quasitranslations that make the three-dimensional space ho-
mogeneous. This strategy is applied by [35, eq. (13.3.17)]. However, the coor-
dinates used here are different and it is not entirely clear what the infinitesimal
transformations look like. Instead we solve the Killing equation directly. It is
shown in Appendix C.4 that the Killing vectors that generate quasitranslations
are

ξi(a,Kx2) = (1− 1

4
Kx2)ai +

1

2
Kakxkxi, (D.14)

where ai is the vector by which the origin in displaced. Note that this approach
is the ultimate proof that our space of constant curvature is indeed maximally
symmetric, as we have six linearly independent vector fields that solve Killing’s
equation (the Killing vectors for rotations are also found in Appendix C.4).

It can be shown that the curvature constant of the space we have found is
exactly K [35, sec. 13.3], which is of course the reason why we parametrized
the sphere as we did in equation D.2. Since this equation only has solutions for
positive K, it follows that we have found the spaces of constant curvature for
which the curvature is positive. However, the metric we have found describes a
space in its own right that does no longer depend on its embedding. Therefore,
we are able to analytically continue the metric D.13 to different values of K.
We see immediately that for K = 0, we obtain the flat metric (1.29) as would
be expected on ground of this argument. Indeed, the explicit construction of
the Killing vectors in Appendix C.4 does in no way depend on the sign of K.
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Thus, whatever the sign of K, the space we have found has six linearly indepen-
dent Killing vectors and is thus maximally symmetric. We conclude that metric
(D.13) is the unique metric (up to coordinate transformations) which describes a
maximally symmetric three-dimensional Euclidean space of curvature constant
K for each (real) value of K.

Note that, in the coordinates we started our considerations with, we had the
condition x2 < 1

K , since we were describing sphere. For K ≤ 0, we can drop
this condition, and our coordinates can run all the way to infinity. Curiously,
the coordinates we have adopted now are bounded by 2/

√
|K| for both positive

and negative values of K. For K > 0, equation (D.9) with r = 1√
K

is solved by

r′ = 2/
√
K. For K < 0, r in the same equation becomes infinite r′ = 2/

√
−K.

When K → 0, the limits move to infinity. Indeed, for K = 0, transformation
(D.9) is not a transformation at all. Thus, we conclude

|x|


< 2√

|K|
for K < 0

≤ 2√
|K|

for K > 0

<∞ for K = 0.

(D.15)
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Appendix E

Linearized Einstein
Equations for Scalars

In this appendix, we write up the linearized Einstein equations for the scalar
sector of linear cosmological perturbation theory. Rather then deriving them
ourselves, we follow the cosmological review written by Mukhanov, Feldman
and Brandenberger [26].

The equations are written in terms of gauge-invariant variables in [26, eq.
(5.14-5.16)]. This can be translated to the variables defined in Section 2.1 by
(using [26, eqs. (2.9), (2.12), (2.14), (3.13), (5.11) and (5.12)]

O′ ≡ d

dη
O = a

d

dt
O = aȮ, (E.1)

H ≡ a

a′
= aH, (E.2)

Ψ =
1

2
A+ aH(F − 1

2
aḂ), (E.3)

Φ =
1

2
E − a(Ḟ +HF ) +

1

2
a2(B̈ + 2HḂ), (E.4)

δε(gi) = δρ+ a ˙̄ρ(
1

2
aḂ − F ), (E.5)

δp(gi) = δp+ a ˙̄p(
1

2
aḂ − F ), (E.6)

δu
(gi)
i = ∂i

(
−δuS + aF − 1

2
a2Ḃ

)
(E.7)

(furthermore, they use O0 where we use Ō and D ≡ Φ−Ψ).

The space-space Einstein equations [26, eq. (5.16)] has most terms pro-
portional to the Kronecker delta, δij . Only one term is not diagonal. Thus,
requiring the equation to hold at i 6= j, reveals

γik∇̄k∇̄j(Φ−Ψ) = 0 for i 6= j. (E.8)
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Using equation C.19, and writing D = Φ−Ψ, this becomes

a−2f−2∇̄i∂jD = 0

(∂i∂j − Γkij∂k)D = 0(
∂i∂j +

1

2
Kf(xkδij − xiδjk − xjδik)∂k

)
D = 0(

∂i∂j +
1

2
Kf(���

0

δijx
k∂k − xi∂j − xj∂i)

)
D = 0(

∂i∂j −
1

2
Kf

(
xi∂j + xj∂i

))
D = 0(

∂(i −Kfx(i
)
∂j)D = 0

(E.9)

(where the cancelation occurs since i 6= j). Using equation (C.17), this can be
rewritten as

∂(i
(
f2∂j)D

)
= 0, (E.10)

or
∂i
(
f2∂jD)

)
= −∂j

(
f2∂iD

)
. (E.11)

Let us write the vector field f2∂jD as gi(t,x). Since we are dealing with
a scalar perturbation, the vector index cannot come from some vector per-
turbation. Thus, the index must come from a background vector. Since our
background is isotropic, there is no such vector and the index must come from
xi (or, equivalently, from the derivative of some spatial function). Thus, we
can write gi(t,x) = g(t,x)xi from some scalar function g. But, since this scalar
function does not carry an index, all the xs in its spatial dependence must be
contracted. Again, the only object this can be done with, is another xi. Thus,
gi(t,x) = g(t,x2)xi. Now, we can calculate

∂igj = (∂ig)xj + g∂ix
j =

dg

dx2
xixj + gδij . (E.12)

But this quantity is automatically symmetric! Thus, ∂(igj) = 0 implies ∂igj = 0.

We thus find the equation

∂i
(
f2∂jD)

)
= 0. (E.13)

This can be solved using integration constants (although a little different from
the strategy in Section 4.5, where only the divergence had to vanish),

f2∂iD = Ci, (E.14)

where ∂iCj = 0. This implies

∂iD = f−2Ci =

(
1 +

1

2
Kx2 +

1

16
(Kx2)2

)
Ci. (E.15)

The only solution for this is of the form

D = a+ bxi + cx2xi + dx4xi. (E.16)
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Now, in order for Φ and Ψ to be physical, they must go to zero at spatial infinity.
Furthermore, since they are perturbations, their averages should be zero. The
only way to achieve this through the above form is

D = 0. (E.17)

Thus, we obtain a physicality condition, a constraint equation which any
physical solution to the linearized Einstein equations must obey:

Φ = Ψ. (E.18)

Using this identification, the scalar Einstein equations become [26, eqs (5.17
- 5.19)]

−3HΦ̇ +

(
3K − k2

a2
− 3H2

)
Φ =

δε(gi)

2M2
p

,

∂i

(
Φ̇ +HΦ

)
=

(
K

a2
− Ḣ

)
δu

(gi)
i ,

Φ̈ + 4HΦ̇ +

(
2Ḣ + 3H2 − K

a2

)
Φ =

1

2M2
p

δp(gi)

(E.19)

,where I have used ρ̄+ p̄ = 2Mp(K/a
2 − Ḣ), which follows from the continuity

equation and the Friedmann equation, and ∇̄2 → −k2 since the different eigen-
modes decouple anyway. Also, it should be noted that to derive these equations,
one should be careful with the differentiating with respect to comoving time. In
particular,

H′ = a
d

dt
(aH) = a2Ḣ + a2H2 (E.20)

and

Φ′′ = a
d

dt
(aΦ̇) = a2Φ̈ + a2HΦ̇. (E.21)

We see now that the second equation provides another physicality condition,
since it implies Φ̇ +HΦ = (K/a2− Ḣ)δuS for physical solution, while this does
not need to be the case for solutions that do not vanish at infinity.

Since we will mostly be dealing with Newtonian gauge in this thesis, we write
the linearized scalar Einstein equations here in Newtonian gauge as well. These
are easily obtained from (E.19) by filling in the Newtonian gauge condition
(4.22)1, which gives

−3HΦ̇ +

(
3K − k2

a2
− 3H2

)
Φ =

δρ

2M2
p

,

∂i

(
Φ̇ +HΦ

)
=

(
Ḣ − K

a2

)
∂iδu

S ,

Φ̈ + 3HΦ̇ +

(
2Ḣ + 3H2 − K

a2

)
Φ =

1

2M2
p

δp

(E.22)

Note that the second of these equations then also becomes a physicality condi-
tion, since ∂iA = ∂iB implies A = B when A and B fall off at infinity.

1One might find it peculiar that δu
(gi)
i = −∂iδuS (rather than being positive). This has

to do with the fact that Mukhanov, Feldman and Brandenberger use a (+ − −−) metric
convention. Since uµ is the ‘fundamental’ object that is independent of convention, our uµ is
minus their uµ.
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Appendix F

Mathematica Notebook

In Section 6.4, an example of what the found scalar gauge mode looks like in a
radiation-dominated universe is provided. This mode was found by first solving
for the scale factor a(t) of the background universe and subsequently solving
the differential equation for λ(t) in (6.19), which then let’s us find the time de-
pendence of the scalar mode. Rather then solving all these equations by hand,
the Mathematica software package [20] has been used.

The same Mathematica notebook that has been used to find the scalar mode
has also been used to check whether different versions of the linearized scalar
Einstein equations (as found from [21] and [26] and manipulated in different
ways) are really equivalent (making sure that no mistakes have been made).
This also allows for checking explicitly whether the scalar mode solves the Ein-
stein equations. It is found that it indeed does, making us ever more certain
that the procedure in Section 6.1 has been performed correctly.

For completeness, the Mathematica notebook in which all these calculations
have been performed is supplied in this appendix. It begins on the next page.
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Adiabatic Scalar Mode in Curved 
Universe

This Mathematica notebook is written by Guus Avis as a supplement to his master thesis in theoreti-
cal physics at Utrecht University.
It serves two distinct purposes:
1) Finding what the open-universe versions of Weinberg’s scalar adiabatic modes look like in the 
case of radiation domination (in order to provide an explicit example).
2) Checking whether the different versions of the linearized Einstein equations in the scalar sector, 
as found in the works by Kodama and Sasaki (1984) and Mukhanov, Feldman and Brandenberger 
(1992), and as further processed by me (Guus) and Sadra Jazayeri,  all agree with one another.
Note that the two purposes overlap in the end, as the scalar adiabatic mode found at 1) is checked 
against the different versions of the Einstein equations of 2).

Indeed, all the versions of the Einstein equations are in the end equivalent (in a radiation-domi-
nated universe), and are solved by the scalar mode. 

For readers who are interested in the solutions yet do not wish to delve through this notebook, the 
solutions for λ(t) (which generates the scalar adiabatic mode) and the Newtonian potential ϕ are 
provided here.

In[86]:= λ[t] /. Solution // Simplify

Out[86]= -
AdiabaticC1 Mpl

t -3 K Mpl t + 2 3 ρ0 

-

AdiabaticC2 ArcTanh 3
K Mpl t

3 K Mpl t-2 3 ρ0



3 K Mpl t 3 K Mpl t - 2 3 ρ0 

In[87]:= ϕ[t] /. Solution // Simplify

Out[87]=

2 AdiabaticC1 K Mpl t 3 K Mpl t - 2 3 ρ0 
3/2

ρ0

K t
+ AdiabaticC2 t

9 -K Mpl
7/2 t3 + 24 -K Mpl

3/2 t ρ0 + 15 3 K2 t2 -K Mpl
5 ρ0 + 4 3 -K Mpl ρ0

3 +

2 AdiabaticC2  3 K Mpl t - 2 ρ0  t -3 K Mpl t + 2 3 ρ0  ρ0

ArcTanh 3
K Mpl t

3 K Mpl t - 2 3 ρ0
  2 -K Mpl

3/2 t2 3 K Mpl t - 2 3 ρ0 
3
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Preliminaries

Preamble

In[3]:= Needs["Notation`"];

Symbolize[ParsedBoxWrapper[SubscriptBox["_","_"]]] ;

(*This makes sure we can use subscripted variables as a single symbolic*)

$Assumptions = cssq>0, K<0, ρ0>0, k≠0 , a[t]>0, t>0, a'[t] ≠ 0, Mpl > 0;

Definitions

In[6]:= ClearAlla, H, K, w, ρ, p, PlotSos, Mp, Mpl

w =
1

3
; (*w = 1

3
: radiation dominated. Currently only works

properly for this value!!! Other (not-yet working) options: w =

0: matter dominated. w = -1: dark energy dominated.*)

cssq = w; (* cs2, speed of sound. For adiabatic modes, it is equal to w.*)

p[t_] := w ρ[t]; (*equation of state *)

H[t_] =
a'[t]

a[t]
;

(*Mpl=1; *)(*Working completely unitless.*)

PlotSol = K  -1, ρ0  1, Mpl  1;

(* Specific numbers to be used for plotting functions. Here

I have just used easy numbers, not necessarily accurate ones.*)

Eliminating Higher-Order Derivatives of a(t)

In[12]:= ClearAll[AccelEq]

a''[t_] =.

AccelEq = H'[t] == -
3

2
(1 + w) H[t]2 -

1

2
(1 + 3 w)

K

a[t]2
;

(*This form of the acceleration equation can be derived from

the Friedmann and continuity equations (has been done by hand).*)

a''[t_] = a''[t] /. Solve[AccelEq, a''[t]][[1]] // Simplify ;

(* This makes sure no second derivates will occur. *)

a'''[t_] = D[a''[t], t] // Simplify;

a''''[t_] = D[a'''[t], t] // Simplify;

(*Make sure even higher-order derivatives are also properly dealt with.*)

Unset: Assignment on Derivative for a′′[t_] not found.

Out[13]= $Failed

2     Einstein_Check.nb
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Defining Custom Functions

In[18]:= (* The function below makes sure the coefficient of the second

derivative in a second order differential equation is 1. This

`normalization' allows for fair comparison between equations.*)

normalize[eqn_, fct_] :=

Collect[

DivideSides[

SubtractSides[eqn, eqn[[2]]]

, Subtract[

SubtractSides[eqn, eqn[[2]] ] [[1]] /. {fct[t]  0, fct'[t]  0, fct''[t]  1},

SubtractSides[eqn, eqn[[2]]] [[1]] /. {fct[t]  0, fct'[t]  0, fct''[t]  0}]]

, {fct''[t], fct'[t], fct[t]}]
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Homogeneous and Isotropic Universe

Solving Friedmann

In[19]:= ClearAll[Friedmann, Continuity, FriedSol, FriedC1, FriedC2]

Friedmann = H[t]  -
ρ[t]

3 Mpl2
-

K

a[t]2
; (*Needed to select H>0 solution. *)

Continuity = ρ'[t] + 3 H[t] (ρ[t] + p[t])  0;

(*Friedmann Equation and Continuity Equation

together fully specify evolution of unperturbed universe *)

FriedSol = DSolve[{Friedmann(*/.K0*), Continuity}, {a, ρ}, {t, 0, ∞}][[2]] /.

C[1]  FriedC1 * Mpl
4 /. C[2] 

FriedC2

Mpl2
(*FriedSol contains the

general solution (with abstract integration constants C[1] and C[2],

which are renamed FriedC1 and FriedC2 to avoid ambiguity when other differential

equations are introduced). [[2]] selects the solution with a>0.*)

Out[22]= ρ  Function{t},
9 FriedC1 Mpl

4 

FriedC1 Mpl
4

K Mpl
2 - 3 K t2 -

2 3 t FriedC2

Mpl
2 + 3  FriedC2

Mpl
2 

2 2
,

a  Function{t}, 
FriedC1 Mpl

4

3 K Mpl
2

- K t2 -
2 3 t FriedC2

Mpl
2

+ 3
FriedC2

Mpl
2

2
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Plugging in Integration Constants (only one remaining: ρ0)

In[23]:= ClearAll[asol, ρsol, FriedC2Rule, FriedC1Rule, ρ, ρ0, tin, t0, FriedSolFull ]

tin = t /. Solve[a[t]  0 /. FriedSol, t][[1]] ;

(*We only need to consider t>tin, otherwise a(t) becomes imaginary*)

t0 = t /. Solve[a[t]  1 /. FriedSol, t][[1]] ;(*This is the time at which a=1*)

FriedC2Rule = Solve[tin  0, FriedC2][[1]] ;(*Setting a(0)=0*)

FriedC1Rule = Solve[ρ[t0]  ρ0 /. FriedSol, FriedC1][[1]] /. FriedC2Rule ;

(*Setting ρ(a=1)=ρ0*)

FriedC2Rule = FriedC2Rule /. FriedC1Rule;

FriedSolFull = Join[FriedSol /. FriedC2Rule /. FriedC1Rule, FriedC1Rule, FriedC2Rule] ;

(*Rules needed to fill in the integration

constants. Combines the above conditions. *)

plota = Plot[a[t] /. FriedSolFull /. PlotSol,

{t, 0, 3 t0 /. FriedSolFull /. PlotSol}, PlotStyle  Red, PlotLabels  "a"];

plotρ = Plot[ρ[t] /. FriedSolFull /. PlotSol, {t, 0, 3 t0 /. FriedSolFull /. PlotSol},

PlotStyle  Blue , PlotLabels  "ρ"];

Show[

plota,

plotρ]

Out[32]=
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Switch to Conformal Time (as check)

Finding t(η)

In[33]:= ClearAll[ηsol, tsol]

ηsol[t_] = Simplify
0

t T

a[T]
/. FriedSolFull, t > 0;

tsol[η_] = Simplify[t /. Solve[η  ηsol[t], t][[1]]]

Plot[tsol[η] /. PlotSol, {η, 0, 10}, PlotLabel  "t(η)"]

Out[35]= -
2 ρ0 Sinh

-K η

2

2

3 K Mpl

Out[36]=

2 4 6 8 10

500

1000

1500

2000

2500

t(η)

Finding a(η)

Comparing to Analytical Solutions

In[39]:= ClearAll[aan, tan]

aan[η] =
ρ0

-3 K Mpl2
Sinhη -K ;

tan[η] =
1

-K

ρ0

3 Mpl2
Coshη -K  - 1;

(*These are the analytical solutions for w=1/3, K<0, η(0) = a(0) = 0*)

FullSimplify[aan[η]  asol[η], η > 0]

FullSimplify[tan[η]  tsol[η], η > 0]

Out[42]= True

Out[43]= True
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Deriving Adiabatic Mode Time Dependence

Solving the equation

In[44]:= ClearAll[AdiabaticEq, λ, λSol, AdiabaticC1, AdiabaticC2]

AdiabaticEq = λ''[t] + 3 H[t] λ'[t] -
K

a[t]2
λ[t]  0;

(*This is the equation we derived for WAM I *)

λSol = DSolve[AdiabaticEq /. FriedSolFull, λ, t][[1]] /. C[1]  -I * AdiabaticC1 * Mpl /.

C[2] 
1

2
AdiabaticC2 // Simplify

(* We name the integration constants to avoid confusion,

and make them dimensionless by taking out appropriate powers of Mpl. *)

Out[46]= λ  Function{t},

-
 - AdiabaticC1 Mpl

t -3 K Mpl t + 2 3 ρ0 

-

2 ArcTanh 3 -
K Mpl t

-3 K Mpl t+2 3 ρ0

 AdiabaticC2

3 K Mpl t 3 K Mpl t - 2 3 ρ0  2



Defining Bardeen Potential

In[47]:= ClearAll[ϕtoλ, ϕSol]

ϕtoλ = ϕ  Functiont, λ[t] - λ'[t]
a[t] a'[t]

K
;

ϕSol = ϕtoλ /. FriedSolFull /. λSol // Simplify;

Combining Solutions

In[50]:= ClearAll[Solution]

Solution = Join[FriedSolFull, λSol, ϕSol];

(*Should we fill in some boundary conditions? *)

Einstein_Check.nb    7

Printed by Wolfram Mathematica Student Edition



Plotting Solutions

In[52]:= Adiabaticλ1 = Plot[λ[t] /. Solution /. PlotSol /. AdiabaticC1  1 /. AdiabaticC2  0,

{t, 0, 5 t0 /. Solution /. PlotSol}, PlotStyle  Red, PlotLabels  "Solution 1"];

Adiabaticλ2 = Plot[λ[t] /. Solution /. PlotSol /. AdiabaticC1  0 /. AdiabaticC2  1,

{t, 0, 5 t0 /. Solution /. PlotSol}, PlotStyle  Blue, PlotLabels  "Solution 2"];

Show[Adiabaticλ1, Adiabaticλ2]

Out[54]=

In[55]:= Adiabaticϕ1 = Plot[ϕ[t] /. Solution /. PlotSol /. AdiabaticC1  1 /. AdiabaticC2  0,

{t, 0, 5 t0 /. Solution /. PlotSol}, PlotStyle  Red, PlotLabels  "Solution 1"];

Adiabaticϕ2 = Plot[ϕ[t] /. Solution /. PlotSol /. AdiabaticC1  0 /. AdiabaticC2  1,

{t, 0, 5 t0 /. Solution /. PlotSol}, PlotStyle  Blue, PlotLabels  "Solution 2"];

Show[Adiabaticϕ1, Adiabaticϕ2]

Out[57]=

Einstein Equation from Sasaki

Equations in Sasaki

In[58]:= ClearAll[SasakiEq1, SasakiEq2, SasakiEqA, SasakiEqϕ, Btoϕ, A, B]

SasakiEq1 = a[t] D[A[t], t] +
1

a[t] H[t]
 (2 - 3 - 3 w) K + 3 (cssq - w) (a[t] H[t])2  A[t] - cssq k B[t]  0;

SasakiEq2 = a[t] D[B[t], t] + 2 a[t] H[t] B[t] + k A[t]  0;

(*These are the two equations in Sasaki,

in terms of gauge-invariant expressions \mathcal A and \mathcal B.*)
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Combining Equations

In[61]:= SasakiEqB = Collect[SasakiEq1 /. DSolve[SasakiEq2, A, t][[1]], {B[t], B'[t], B''[t]}];

(*Reduce the two first-

order differential equations above to one second-order for \mathcal B. *)

Btoϕ = B  Functiont,
1

a[t] H[t]
ϕ[t]; (*This substitution

can be made since the identity holds up to spatial dependence. *)

SasakiEqϕ = Collect[SasakiEqB /. Btoϕ, {ϕ[t], ϕ'[t], ϕ''[t]}];

(*This is the final equation for ϕ from Sasaki. *)

Checking Adiabatic Mode against Equation

First Solution

In[64]:= SasakiEqϕ /. Solution /. AdiabaticC1  1 /. AdiabaticC2  0 /. k  3 K // Simplify

Out[64]= True

Second Solution

In[65]:= SasakiEqϕ /. Solution /. AdiabaticC1  0 /. AdiabaticC2  1 /. k  3 K // Simplify

Out[65]= True

Einstein Equation from Sadra (Mukhanov)

Setting Up the equation

In[66]:= ClearAll[SadraEqϕ]

SadraEqϕ = Collect-3 H[t]2 ϕ[t] - 3 H[t] ϕ'[t] +
3 K

a[t]2
-

k2

a[t]2
ϕ[t] 

1

cssq
ϕ''[t] + 4 H[t] ϕ'[t] + 3 H[t]2 + 2 H'[t] -

K

a[t]2
ϕ[t] //

Simplify, {ϕ''[t], ϕ'[t], ϕ[t]};
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In[68]:= SasakiEqϕ // Simplify

SadraEqϕ // Simplify

GuusEqϕ // Simplify

Out[68]= k2 - 12 K ϕ[t] + 3 a[t] (5 a′[t] ϕ′[t] + a[t] ϕ′′[t])  0

Out[69]= k2 - 12 K ϕ[t] + 3 a[t] (5 a′[t] ϕ′[t] + a[t] ϕ′′[t])  0

Out[70]= GuusEqϕ

Checking Equivalence to Sasaki

In[71]:= SasakiEqϕ  SadraEqϕ // Simplify

Out[71]= True

Checking Adiabatic Mode against Equation

First Solution

In[72]:= SadraEqϕ /. Solution /. AdiabaticC1  1 /. AdiabaticC2  0 /. k  3 K // Simplify

Out[72]= True

Second Solution

In[73]:= SadraEqϕ /. Solution /. AdiabaticC1  0 /. AdiabaticC2  1 /. k  3 K // Simplify

Out[73]= True

Checking Guus’ Equations
In[74]:= (*In this section, I check the equations I had

already derived by hand against the Mathematica results.*)

Defining the equations I found by hand from Sasaki

In[75]:= ClearAll[GuusEqϕ, GuusEqB]

GuusEqB = B''[t] +
1

a[t]2 H[t]
(-1 - 3 w) K + 3 (cssq - w + 1) (a[t] H[t])2 B'[t] +

2

a[t]2

(-1 - 3 w) K + 3 (cssq - w) (a[t] H[t])2 + a[t]2 H[t]2 + H'[t] +
1

2
cssq k2 B[t]  0;

GuusEqϕ = ϕ''[t] +
-1 - 3 w

a[t]2 H[t]
K + 3 H[t] cssq - w +

1

3
- 2

H'[t]

H[t]
ϕ'[t] +

-1 - 3 w

a[t]2
K + 3 (cssq - w) H[t]2 1 -

H'[t]

H[t]2
+ 2

H'[t]

H[t]

2

-
H''[t]

H[t]
+ cssq

k

a[t]

2

ϕ[t]  0;

10     Einstein_Check.nb
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Defining the equation I got by hand from Sadra

In[78]:= ClearAll[GuusSadraEqϕ]

GuusSadraEqϕ = ϕ''[t] + (4 + 3 cssq) H[t] ϕ'[t] +

3 (1 + cssq) H[t]2 + 2 H'[t] -
K

a[t]2
(1 + 3 cssq) + cssq

k2

a[t]2
ϕ[t]  0;

Checking whether they agree with Mathematica

In[80]:= GuusEqB  SasakiEqB // Simplify;

normalize[GuusEqB, B][[1]]  normalize[SasakiEqB, B][[1]] // Simplify

(*For some reason,

this works but the above does not. Some error in Mathematica probably. *)

GuusEqϕ == GuusEqB /. Btoϕ // Simplify

GuusEqϕ  SasakiEqϕ // Simplify

GuusSadraEqϕ  SadraEqϕ // Simplify

GuusEqϕ  SadraEqϕ // Simplify

Out[81]= True

Out[82]= True

Out[83]= True

Out[84]= True

Out[85]= True
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