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Abstract

Supergravity BPS solutions in six dimensions are richer than their four and five dimensional
counterparts and the full determination of their phase space remains an open problem. We
study here the phase space of supersymmetric solutions of minimal 6D supergravity, which have
a stringy microscopic realization in terms of F-theory. We centre our attention on a class of
solutions with certain isometries, for which an Sp(6,R) group of endomorphisms was discovered
in [1]. This group can be used to generate new backgrounds, and its physical role is still unclear.
We study in particular a solution obtained by acting on AdS3 x S with one of its generators.
The transformation changes the geometry noticeably, giving a singularity and a squashed event
horizon in the new solution, as well as non-trivial asymptotics and metric signature changes.
We show that it is actually a particular limit of a family of solutions with S® x S' horizon
topology and local AdS3 x S near-horizon geometry. On another note, the singularity happens
to be naked for a certain region of the parameter space of the solution. We attempt to give an

explanation to this fact in terms of type IIB superstring theory with negative branes.
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1 Introduction

Solutions of general relativity, particularly black holes, have been extensively studied and understood
in four dimensions. The no-hair theorem states that these objects are fully characterized by three
classical observables: mass, charge and angular momentum, and moreover they are restricted to have
spherical event horizons [2]. Nevertheless, general relativity works for an arbitrary number D of
spacetime dimensions, and it turns out that solutions in D > 4 are more complex. In five dimensions
a black hole with an spherical event horizon, the Myers-Perry black hole, can be constructed [3],
but it was found in [4] that solutions with S? x S! horizon topology, called black rings, are also
possible, and that their existence violates the no-hair theorem. The black ring can be thought of as
a 4D black hole to which one adds an extra compact direction. One can repeat the procedure to
generate black rings in 6D from five dimensional black holes. The result is also called black string
and has horizon topology S3 x S'. As black holes with spherical horizon topology SP~2 exist for
any D > 4 [3], black strings with horizon topology SP~3 x S! can be obtained for any D > 5, and
these can likewise be uplifted adding extra flat dimensions. In general, the scope of solutions of
classical gravity becomes more intricate and is less developed as the number of dimensions increases
[5]. The study of higher dimensional solutions is then interesting by itself, but they also receive
attention in the context of string theory and the AdS/CFT correspondence. The first because it
necessarily lives in more than four dimensions, and the second because it relates the properties of D
dimensional black holes with QFTs in D — 1 dimensions [6].

Gravity can also be made supersymmetric, meaning that it can be described within a theory whose
algebra of transformations contains a number N of fermionic generators or supercharges together
with the Poincaré and internal symmetry generators. This is called supergravity, and necessarily
includes a spin-3/2 partner of the graviton, the gravitino. Multiplets of global SUSY containing
scalars, vectors and spin-1/2 fermions can be added and coupled to the graviton and gravitino
yielding a wide range of possible resulting theories. The fact that consistent interactions for particles
with spin s > 5/2 are not known bounds the number of dimensions and supercharges for which a
supergravity theory can be constructed to be D < 11 and N < 8. In supergravity, solutions can be
characterized by the number of supercharges they conserve compared to the total supersymmetry of
the theory. Solutions that preserve some supersymmetry are called supersymmetric or BPS. In this
thesis we will be interested in the supersymmetric solutions of 6D minimal supergravity, which is
the six dimensional supergravity with the least possible amount of supercharges and fields. The
main reason is that the phase space of BPS solutions in 6D remains less explored than the 4D and
5D ones. In particular, extremal black hole solutions can be made supersymmetric in 4D or 5D
[7, 8] and in 5D the black ring can also be made BPS [9]. In six dimensions, a supersymmetric black
string can be obtained from the uplift of a 5D black hole or black ring [10] and supersymmetric
black tubes with horizon topology S? x S! x S! do exist as well, but it is not known, for instance,
whether the black hole with horizon topology S* can be made BPS or if there exist more objects
with different horizons.

The regime of validity of general relativity ends at energies around the Plank scale Ep ~ 10



GeV, which translates to distances of Ip ~ 1073% m or time intervals of tp ~ 107% s. At these
scales the quantum mechanical effects cannot be ignored and one needs a theory of quantum gravity.
String theory is among the most popular candidates, and it not only provides quantum gravity but
also unifies all the interactions of nature in a unique description. There are five different string
theories, all of them living in ten spacetime dimensions, and remarkably their low energy dynamics
are described by 10D supergravities'. It was discovered during the nineties that these so called
superstring theories, together with 11D supergravity, can be effectively seen as different dynamical
limits of an eleven dimensional theory called M-theory [11]. In turn, some string vacua can be given
a non-perturbative description in terms of a twelve dimensional theory called F-theory [12]. The
higher dimensional physics of string theory is related to our 4D experience via the compactification
of the extra dimensions, and in fact one of its main successes took place when it was given a
microscopic description of 4D and 5D supergravity black holes as compactified configurations of 10D
superstring objects called branes, allowing to compute their entropy by counting the microscopic
states [13, 14]. It is clear then that the study of supergravity solutions in various dimensions and
their relations via compactification or uplifting are of huge interest for string theorists. In the case
at hand, 6D minimal supergravity is given in terms of F-theory on an elliptically fibered Calabi-Yau
manifold with base P? [15].

The research pursued in this thesis is based on the characterization made by Gutowski et al. in
[16] of all the supersymmetric solutions of 6D minimal supergravity. In particular, it was discovered
there that when the solutions have certain isometries they can be fully determined by six harmonic
functions. This fact allowed Crichigno et al. in [1] to discover a six dimensional symplectic group
of endomorphisms in the space of solutions, this is, elements of Sp(6,R) transform solutions into
solutions. They can take for example flat space into AdS3 x S2, or the latter into a black string. It
is unclear whether this symmetry has any deeper physical significance or it is just a mathematical
curiosity. It might be interesting to study the orbits of each generator of Sp(6,R), to determine if
this symmetry can give us information about the structure of the phase space. Additionally, one
might be able to obtain new solutions of 6D minimal supergravity acting with these generators on
some known backgrounds. Some work in these directions has been done by Flavio Porri in [17] and
has served as a starting point for this research. Namely, we have studied one solution obtained
there by applying an entropy conserving Sp(6,R) transformation on AdSs x S2. The result has
been found to describe a non asymptotically flat spacetime with a curvature singularity. Moreover,
the original AdS3 x S3 solution has an inert parameter that after the transformation becomes quite
relevant. When it is positive, the new solution has an S3 x S! horizon in the limit in which S* has
zero size. When it is negative there is no horizon, and we try to understand the resulting naked
singularity in terms of negative branes in superstring theory following [18]. When the parameter
vanishes, the transformation amounts to a simple change of coordinates in AdS3 x S3. We show also

how a close look at the non-flat asymptotics suggests that the solution might be a superposition of

'Recall that string theory becomes relevant at the Plank scale, so for many purposes it is enough to consider its
low energy limit, i.e. supergravity.



some object with plane waves radiating to spatial infinity.

The structure of this document is as follows. In section 2 we review the classical black hole
solutions of 4D general relativity and its thermodynamics. We also introduce AdS spacetime and
the three dimensional BTZ black hole. In section 3 we start by introducing global supersymmetry,
and later we gauge it to obtain supergravity. Some simple supergravity theories are reviewed as
examples, and the extremal charged black hole is shown to be a BPS solution. We give some more
details on 10D type IIB supergravity and an important class of its solutions, p-branes, to continue
with superstring theory. We stress the important relation between supergravity p-branes and stringy
Dp-branes and introduce the negative version of the latest. Section 4 is dedicated to 6D minimal
supergravity. After giving an overview of the theory we reproduce [16] in broad lines to obtain its
supersymmetric solutions. The Sp(6,R) group is then introduced, and we finish with a discussion
about the dimensional reduction of the theory. The content so far comprises the “literature” part
of this thesis. Next, in section 5 we show the results obtained in the study of the transformed
AdS3 x S3. Section 6 is an extension of the previous one, in which we act with more Sp(6,R)
elements on the solution at hand in order to uncover its characteristics. We give some conclusions
and suggest future research directions in 7. Finally, appendices A and B provide a brief explanation
of the Hodge dual operator, vielbeins and different types of spinors for completeness, and appendix

C collects the three form field GG expressions for the solutions studied in sections 5 and 6.

Conventions

In this thesis we use natural units for which ¢ = h = kp = 1, but the gravitational constant Gy is
kept explicit. The signature of spacetime is mostly plus, i.e. 7,, = diag(—1,1,...,1). We use the
Finstein summation convention: an index appearing as a subscript and as a superscript is summed

over all its possible values. The components of a p-form « are given by

1

a = Hammupda:“l Ao ANdxtr,

and the volume form of a D dimensional manifold with metric tensor g, is

volp = \/|gldz* A ... A dzP,
with g = det(gu). The Levi-Civitta symbol is defined

+1 if (p1, pa, ..., 1y) is an even permutation of (1,2,...,n)
Eprpoeepn = § —1 if (g1, po, ..., i) is an odd permutation of (1,2,...,n) .

0 otherwise

The exterior derivative on forms acts from the left, i.e. for a = o, da# we have

do = Oya,dx” N dxt.



2 Black holes in general relativity

This thesis is devoted to study gravity solutions in six spacetime dimensions. However, 4D solutions
are more intuitive and have been investigated in detail, as our physical experience takes place in
precisely four dimensions. For this reason the rich 6D geometries are usually interpreted in terms of
their 4D analogues. This chapter reviews the various types of black holes that one can obtain in 4D
general relativity, and by doing this introduces key concepts to be used later. Furthermore, the
black hole solution in the non-dynamical 3D gravity is introduced, together with the cosmological

constant.

2.1 The Schwarzschild black hole

Our starting point is the Einstein-Hilbert action in four dimensions

1
167GN

/d‘*az\/ng + S, (2.1)

that relates the geometry of spacetime with its matter and energy content described by Sy,. Here g

is the determinant of the metric tensor and R the Ricci scalar. One can then define the energy-

2 88y
V=g 09"

obtain the Einstein field equations

momentum tensor T}, = and vary the action with respect to the metric in order to

1
R, — §ng = 8mGNT . (2.2)

When there is no matter or energy, Sy, = 0 and thus 7),, = 0. In that case the trace of Einstein

equations shows that the Ricci scalar vanishes, and (2.2) reduces to
R,, =0. (2.3)

Here we are interested in the Schwarzschild solution of Einstein gravity, which describes the
gravitational field of a point-like massive object. It is thus a solution in empty space, and it must
be static and spherically symmetric. Actually, it is the most general static, spherically symmetric

solution of the vacuum Einstein equations [19]. The metric in Schwarzschild coordinates is
2G\M 2GNM\ 7!
a2 = (1= 20 Y a oy (1- 20 a2 (2.9
r r

where dQ% = d6? + sin? d$? is the metric on a two-sphere of unit radius, and M is the total mass
of the object. A quick look at the metric shows that some of its components blow up at » =0
and r = ry = 2GNM. The latter is not a physical singularity, but just an artifice of our coordinate
choice. This can be seen changing to Krustal-Szekeres or Eddington-Finkelstein coordinates because
for them the metric is regular at r = r;. A singularity can be proved to be physical when it shows

up in a coordinate independent quantity, i.e. a scalar. This is precisely what happens for » = 0



when we look at, for example, the Kretschmann scalar

1278
K =RMP Ry = —= (2.5)

76
The surface of r = ry is the event horizon, a boundary inside which events cannot affect the outer
region. Any observer within this horizon is unable to travel outside, and will reach the singularity
at 7 = 0 in a finite amount of proper time. This can easily be seen from the fact that d; and 0,

change to spacelike and timelike respectively for r < rs.

Something interesting happens if we take a negative mass, i.e. M < 0. In this case r; < 0 so
there is no horizon enclosing the singularity: we have a so called naked singularity. There is a broadly
accepted hypothesis called cosmic censorship conjecture (CCC) that states that all singularities
formed by gravitational collapse (this excludes the Big Bang) must be hidden inside event horizons
[20], and thus naked singularities are not physical. Our naked singularity occurs for negative mass,
so it is easy to see that it is pathological. In general, spacetimes with naked singularities are linked
to these non-physically reasonable phenomena like the violation of some energy condition or the
requirement of exotic initial conditions. However, the problem of finding a mathematical proof
for the CCC (or instead ruling it out) is still open, partly because a precise formulation of the

conjecture has not been found.

A related topic is that of closed timelike curves (CTCs). If a spacetime admits timelike trajectories
that can close, it would imply the possibility of an observer to travel backwards in time, with all its
problematic implications for causality. For this reason, although CTCs are mathematically possible
in general relativity, there is a hypothesis similar to the CCC stating that “the laws of physics do not
allow the appearance of closed timelike curves” [21]. It is called chronology protection conjecture
(CPC).

Back to black holes, there is a remarkable analogy between their dynamical laws and the laws of
thermodynamics. First it was thought to be just an analogy, because classically black holes are
not thermodynamical systems, but the study of quantum effects revealed that they actually emit
radiation at a temperature [22] -

Ty = 5 (2.6)
with s the surface gravity of the event horizon, which is defined by x”V,x? = kx? evaluated on it.
In that equation, x is the Killing vector field for which the event horizon is a Killing horizon. The
second law of thermodynamics applied to systems with black holes gives an expression for their

entropy, which is
A

S = T (2.7)
where A is the area of the event horizon. This is the Bekenstein-Hawking entropy. In usual statistical
mechanics, the entropy is a measure of the different microstates compatible with a given macrostate.
What we are studying are macroscopic description of black holes, and the question of what is

their microscopic description is one of the most important in theoretical physics nowadays. As we

10



mentioned in the introduction, string theory provides a microscopic picture for black holes in terms
of objects called branes. Remarkably, the entropy calculated by counting these brane microstates

coincides with the one given in (2.7).

2.2 Einstein-Maxwell theory

An interesting extension of the Schwarzschild solution occurs if we give the massive object a
non-zero electric or magnetic charge. These charges fill the entire space with a field that has an
associated energy, such that Sy, does not vanish any more. The proper framework to describe this
situation is Einstein-Maxwell theory, whose action is (2.1) with Sy, given by Maxwell’s theory of

electromagnetism minimally coupled to gravity:

1 1
Sm =7 /d4x\/—gFH,,F‘”’ = —2/F A *F. (2.8)

where we have used differential forms notation in the second equality, as well as the Hodge star

operator *, defined in appendix A. The Maxwell equations written with differential forms are,
dF =0, d+F =0, (2.9)
If a one-form gauge potential A is used such that
F =dA, (2.10)

the homogeneous Maxwell equation is automatically satisfied. Gauge freedom implies that A can be
chosen up to an exact form, because A — A + dA does not change the field strength F'. Notice that

the equations of motion are invariant under the so called duality transformations, which are

(:;) =G (:;) with G € GL(2,R)% (2.11)

The action is not invariant, but transforms as Sy, — det(G)Sy,. These transformations mix the
electric and magnetic parts of the fields.

We can add a one-form source J to the theory, such that the action becomes

1
Sm:—z/(F/\*F—I—A/\*J). (2.12)

The Maxwell equations are then
dF =0, dx F = xJ, (2.13)

and we can see that duality invariance is spoiled. The electric charge contained inside a closed

2 Actually, there is a restriction to elements of Sp(2,R) C GL(2,R) in a Lorentzian manifold. The reason is that
after a transformation one has F’ and (xF)’, and consistency requires *(F') = (+F)’, which is only possible if the
transformation is symplectic.

11



surface 0B is obtained integrating the flux through that surface:

1

- F. 92.14
vl (2.14)

Similarly one would expect to get a magnetic charge by doing

1

p:aaB ]

(2.15)

but application of Stoke’s theorem and the homogeneous Maxwell equation in (2.13) yields p = 0.
This can be bypassed if we subtract a point zg from B, obtaining a so called Dirac monopole. In
this case Stoke’s theorem cannot be applied because 0B is no longer the boundary of a submanifold,
and even though we have dF' =0 in B\ {z¢}, (2.15) can yield a non-zero result. What is happening
is, in physical terms, that in order to have a non-zero magnetic charge we need to introduce a source
of magnetic field in our manifold. Wherever there is a source of this kind dF = 0 is not satisfied
because our theory does not consider magnetic sources. Hence, in order to avoid the breakdown of
the theory we must remove from the manifold the point in which the source is sitting.

Take now a sphere of radius R > 0 centred around the monopole. One can then write a local
expression for A in an open patch on the surface of this sphere. If we try to extend this patch to
cover all of the sphere we will find that it is possible except for a point [23], exactly in the same
way that a single coordinate patch cannot map to the full surface. This is a consequence of our
space being topologically non-trivial after removing the central point, just like the possibility of
covering the sphere with one coordinate patch is spoiled by its non-trivial topology. Note that this
situation occurs for every radius R > 0, so we actually have a line stretching from the monopole to
infinity in which the gauge potential A is not well defined. It is called the Dirac string, and it will
be important later in section 4.4.

The Dirac string singularity is just an artefact of the local coordinate representation of the gauge
potential, but the actual A is not singular at those points. This implies that the string must not be
detectable, which yields interesting consequences. If a charged particle travels around a closed path

7, its wavefunction v (z) picks a phase

b(z) — exp (z fi A>¢(x). (2.16)

This phase change could be detected in the interference pattern of particles encircling the Dirac

string. If the string must be “invisible” the requirement on this phase change is
?{A =2mn with n € Z, (2.17)
~

when v wraps around it. Using Stoke’s theorem this integral measures the magnetic flux carried by
the string, and we see that it must be quantized. This is the Dirac quantization condition, which

implies that electric and magnetic charges take discrete values.

12



2.2.1 The Reissner-Nordstrom black hole

The field strength sourced by a point-like ¢ electric and p magnetic charge sitting at » = 0
is F}, = —q/r? and Fyy = psinf with all other independent components to zero. Deriving
the associated energy-momentum tensor and solving the Einstein equations we get the Reissner-

Nordstrém solution, whose line element is (for Q* = ¢* + p?)

2GN M 2 2GNM 2\ !
d32:—<1— Gf +G1:2Q >dt2+<1— Gf +G1:2Q> dr? + r?dS3. (2.18)

It is, as the Schwarzschild one, a spherically symmetric and static solution, and it also has a
singularity at » = 0. Other important surfaces are those for which the gy component of (2.18)

vanishes, which happens at radii

re = GNM £ /GEM? — GnQ2. (2.19)
There are three different cases (assuming M > 0):

e GNM? > @Q?: The two roots r4 are real and are called outer and inner horizon, respectively.
The outer one is the event horizon, from which light cannot escape, and the inner one is the
so called Cauchy horizon. Notice that the norms of 9; and 0, change sign at both horizons, so

in this case the singularity can be avoided by an observer.

e GnM? = Q?: There is only one root at » = GnM. This is the extremal Reissner-Nordstrom

black hole, to be studied with more detail in the following section.

e GnM? < @Q?: The roots are imaginary so there are no horizons. We have a naked singularity,
just like for the negative mass Schwarzschild black hole. Then, according to CCC there exists
a bound on the charge that a physical black hole can have, which is Q% < GnM?2.

2.2.2 The extremal Reissner-Nordstrom black hole

Let us focus our attention on the extremal case. When GxM? = Q2 one can rewrite (2.18) as

2 -2
ds® = — <1 — Gljf”) dt? + <1 — Gljf”) dr? + r2dQ3. (2.20)

With a coordinate change to p = r — GnM we shift the horizon to p = 0 and transform this line

element into

GNM 2 GNM\?
ds? = — <1 + R ) dt® + (1 + -8 ) (dp? + p*dQ3) . (2.21)
p p
Now we can analyse the near-horizon geometry taking the limit p — 0, which yields

p? GIQ\IM2

2 2 2 2 2
_G2NM2dt + = et + GRS, (2.22)

ds® =

13



We see that the metric has factorized into a two dimensional space parametrized by ¢ and p, which
is anti-de Sitter space (defined later in section 2.4), and a two-sphere. We have then AdSy x S?
near-horizon geometry, with the AdS scale and the S? radius both being G M, such that the total
Ricci curvature vanishes. This metric belongs to the Bertotti-Robinson class of solutions [24, 25]
and is maximally symmetric, i.e. it has the same number of independent Killing vector fields as
Minkowski spacetime.

On the other hand, it is easy to see that taking r — oo in (2.20) yields the Minkowski metric
in spherical coordinates. In other words, it is an asymptotically flat geometry. This is actually a
common feature of all the 4D black holes described in this chapter. One can then say that the
extremal Reissner-Nordstrom black hole interpolates between two maximally symmetric spacetimes:
Minkowski at infinity and Bertotti-Robinson near the horizon.

For a extremal black hole the surface gravity is zero by definition, so their temperature vanishes.
Note that, nonetheless, their entropy does not vanish because the area of the horizon is still finite.
We conclude then that the third law of thermodynamics does not apply to black holes, at least in

its strong formulation.

2.3 The Kerr-Newman black hole

So far we have studied black holes created by massive and charged matter, but what if we also add
angular momentum? This question is important when it comes to model astrophysical black holes,
because their rotation is often not negligible. The solution that describes a charged rotating black

hole is called Kerr-Newman, and in Boyer-Lindquist coordinates its metric is

A —a?sin 6 2a(r? + a® — A)sin? 0

ds? = — dt? — dtdp+
b)) - (r? 4+ a?)? — azi sin? ¢ (2:23)
+ Zdr? + 2do? + sin? 0d¢?,
A by
with
Y =72+ a’cos? b,
(2.24)

A =12 —2GNMr + GNQ? + 2.

The total mass, charge and angular momentum are M, () and J = aM respectively. The gauge field
is not necessary in our discussion so we omit it. When Q = 0 we have the so called Kerr solution,
when J = 0 we are back in the Reissner-Nordstrom case and when Q = J = 0 we have of course the
Schwarzschild black hole.

This spacetime is no longer static and spherically symmetric. Instead it satisfies two weaker
conditions related to the existence of certain Killing vector fields: it is stationary and axisymmetric.
The metric tensor degenerates at ¥ = 0 and A = 0, the former being a true singularity provided
M # 0. Notice that we have ¥ = 0 only for § = 7/2 so we are dealing with a so called ring

singularity.

14



On the other hand, A = 0 occurs at

re = GxM £/GAM? — GxQ? — a2, (2.25)

We have, like in the Reissner-Nordstrom black hole, three different cases. When G%\IM 2> GnQR*+ad?
the above equation has real solutions 4 and r_, corresponding to the event and the Cauchy horizons
respectively. When the bound is saturated both coincide and we have the extremal case, and when
G%M? < GNQ? + a? the singularity ¥ = 0 is naked. We have then that not only the electromagnetic
charge is bounded now, but also the angular momentum.

Notice that in the G%\I]W2 < GNQ? + a? case one can not associate an entropy to the solution
because there is no horizon whose area one can measure. If one still insists in substituting A = 47T’I“3_
in the Bekenstein-Hawking formula, it produces a complex result for the entropy because r, € C

when the bound is not satisfied.

2.4 Cosmological constant

We can further generalise (2.1) if we add a cosmological constant term —2A /167G to the lagrangian.

It modifies the Einstein field equations yielding

1
R, — iRg’“’ + Aguy = 81GNT 0. (2.26)
We can see that this term is equivalent to an energy-momentum tensor 7}, = —g,,A/87GN. For a
homogeneous and isotropic perfect fluid the energy-momentum tensor is 7,,” = diag(—p,p,...,p)

with p the energy density and p the pressure. Hence, the cosmological constant term models the
presence of a perfect fluid with equation of state p = —p filling the entire space, which acts as a
vacuum energy density p = A/87GN. As a consequence of the extra term, the vacuum solutions of

these equations will now have constant curvature

2D
R=——A. 2.27
D3 (2.27)
The maximally symmetric solutions of the vacuum (2.26) equations are de Sitter (dSp) and anti-de

Sitter (AdSp) spacetimes, for positive and negative A respectively.

We are interested in the AdSp solution, which can be defined by its embedding in D + 1 flat

spacetime with signature (—, —, +,...,+) as the hypersurface satisfying
D—-1)(D -2
—x%—x§+x§+...+x%+1:( 2)1(X )5—12. (2.28)
The metric can be written, in global coordinates,
2 r? 2 r2\ 7 2 2 7102
ds* = — <1 + l2> dt* + <1 + l2> dr® 4+ r“dQp_o, (2.29)
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with ¢ € [0,27) and 7 € RT. Another parametrization is given by the so called Poincaré coordinates,

that do not cover the whole manifold. In terms of these coordinates the line element is

12
ds? = o) (dz,dat + d2?), (2.30)

with dz,dz" a metric on RLD-2,

2.4.1 The BTZ black hole

General relativity in three (241) dimensions has no local dynamics, because a graviton has zero
propagating degrees of freedom for D = 3. Nevertheless, some interesting solutions can be found in
this theory if one adds a negative cosmological constant, namely the Banados-Teitelboim-Zanelli
(BTZ) black hole that we will describe here. This black hole shares many characteristics with its
four dimensional analogues, but its construction and causal structure are very different [26]. In
addition, it is asymptotically AdSs instead of flat Minkowski.

The anti-de Sitter spacetime in three dimensions has SO(2,2) as its isometry group. In terms of

the coordinates used in (2.28) we take the Killing vector

T4 0 0 r_ 0 0
= — — — | — — — — 2.31
§ l (l’g 81}1 T 8903) l <x48x2 + 2 (93?4 ’ ( 3 )

with 74 and r_ irrelevant constants. The BTZ black hole is constructed by the identification of
points under a discrete subgroup of SO(2,2) generated by £. In other words, we take the quotient
of AdS3 under the identification

x ~ ey with n € 7. (2.32)

As the transformation is an isometry, the quotient spacetime obtained is still a solution of Einstein
equations with negative constant curvature, and in fact it is locally AdSs.

The fact that we are dealing with a black hole comes as follows. In order to avoid CTCs it is
necessary and sufficient to require the Killing vector £ to be spacelike [27]. Hence, in order to make
the above identification physically reasonable we need to cut out from the spacetime the regions in
which & - £ < 0. The resulting space is geodesically incomplete, because there are geodesics from
the spacelike to the timelike regions of £&. We have then that the surface £ - € = 0 is a singularity
in the quotient space. It is not a curvature singularity, as the previous ones reviewed here, but a
singularity in the causal structure.

One can write a line element for the BTZ black hole:

- 2
ds® = =N(r)’dt* + N(r)"2dr? +r® |dp + N(r)dt| (2.33)
with > 2
N(r)? = —GxM + 55 + =15, (r)=-55" (2.34)

16



In these coordinates the singularity is in » = 0, and & corresponds to d,, so the discrete identification
amounts to take this coordinate to be periodic, i.e. p ~ ¢ + 27. Notice that this identification is
what makes the black hole, and if it is absent (2.33) just describes a portion of AdS3. The mass
and the angular momentum of the solution are M and J, respectively. The event horizon is the
biggest root of N(r).

For the horizon to exist there are two conditions on the charges. If violated, one obtains a naked

singularity like in previous cases. These conditions are
M >0, |J| < ML. (2.35)

When the second condition is saturated both horizons coincide yielding the extremal BTZ black
hole. The vacuum state, in which the black hole disappears, corresponds to M — 0, which by the

above condition implies J — 0 as well. This gives

7,2

2 _
ds® = B

dt* + Zer + r2dp?. (2.36)
From this vacuum state, one can increase M to produce the continuous spectrum of black holes, but
lowering M to negative values violates (2.35) producing non physical states. There is an exception
for GNM = —1 and J = 0, for which the singularity disappears and one obtains the metric (2.29),
i.e. AdSs3 spacetime. We have then a continuous black hole spectrum and a discrete state, separated
from the vacuum by a mass gap, that corresponds to anti-de Sitter.

It is worth noticing that the BTZ solution can emerge as a final state of collapsing matter,
namely conical defects that in (2+1) dimensional gravity are treated as point particles [28]. This is
particularly surprising given the absence of local dynamics in the theory and provides one more

reason to call this solution a black hole.
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3 Supergravity

Supersymmetry (SUSY) provides a unified description of bosons and fermions by adding fermionic
generators to the algebras of usual quantum field theories. These carry half integer spin so, when
acting on the fields, they transform bosons into fermions and vice versa. There is no experimental
evidence for SUSY, but considering a supersymmetric extension of standard model (in which
SUSY must be broken to account for the different masses of physical bosons and fermions) is
a way of solving the hierarchy problem between the electroweak and Plank scales. Besides, it
provides candidates of dark matter particles and achieves the unification of the strong, weak and
electromagnetic forces at high energies. The interesting aspects of supersymmetry extend also to
the gravitational interaction. In particular, when the superalgebra generators are allowed to vary
independently in each point of spacetime, i.e. when SUSY is gauged, one finds that the resulting
theory consists of a supersymmetric extension of general relativity: supergravity. A good review of
this topic can be found in [29], but for a full treatment check [30].

In this chapter we will give a general description of global supersymmetry before explaining its
local version, supergravity. The mathematical treatment of the quantum fields that are present
in the standard model is expected to be known, but we will introduce the spin-3/2 field which is
essential in supergravity theories. After this, some simple theories will be presented as examples,
as well as some of their solutions. Later, we will review type IIB supergravity, to be used later,
with some more detail. The main theory with which we will work, namely six dimensional minimal
supergravity, is left for next chapter. Finally, we will introduce string theory and we will study how

it is connected to supergravity.

3.1 Supersymmetry

We first review global supersymmetry, that will be abbreviated as SUSY. Usual quantum field theories
are invariant under Poincaré and internal symmetry transformations. The Poincaré algebra consists
of the D(D + 1)/2 generators My, and P,, the former corresponding to Lorentz transformations

and the latter to translations, and its structure is given by

[M/JJ/7 Mpa] = nupMp,o - nupMua - nVUM,u,p + nuaMl/m
[MpUa P,u] = Ppna,u - Pcrnp;u (3'1)
[P.P,) = 0.

The internal symmetry transformations, global or local, have generators denoted T4, and their Lie

algebra has structure constants ng such that
T4, T) = fipTc (3-2)

In SUSY, one includes A spinor supercharges Q°, to the algebra under which the theory is

invariant. Here « is a spinor index and i = 1,..., N labels the various distinct supercharges we
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might add. These generators join the Poincaré and internal symmetry ones forming a so called

superalgebra, that in the /' =1 case consists of the new relations

{Qaa@ﬁ} = _%(’Yu)aﬁpua
[MMV7QO£] = _%(’Yp,u)aﬁQﬁH (33)

[P,Lw Qa] = 07

plus those we already had in (3.1) and (3.2). Notice that we have introduced anti-commutators for
the fermionic quantities and that @ is the Dirac adjoint of ). An important quantity of the theory

is the number of real supercharges Q, which is the number of real components of Q times A

Taking the trace of the anti-commutator above one obtains Tr [QQT + QTQ] = 2PY. The left
hand side of this expression is always positive, so the energy P? of any state of the SUSY theory
must be positive. The supercharges, and thus the parameters of SUSY transformations, are spinors
so they transform bosons into fermions and vice versa. We can then see that a SUSY theory will
contain both bosonic and fermionic states, and due to the third (anti-)commutator in (3.3) those
states related by a transformation under ) will have the same mass. In fact, for a superalgebra of

the form given above, the numbers of bosonic and fermionic degrees of freedom coincide [31].

When N > 1 we have extended supersymmetry. In the so called minimal extension the different
supercharges anti-commute and satisfy N copies of the relations (3.3). When they do not commute

one needs to add some objects called central charges, as we will see later in an example.

The field content of supersymmetric theories is organized in supermultiplets, commonly abbre-
viated as multiplets. A multiplet is a representation of the superalgebra, so it consists of a set of
bosonic and fermionic fields that transform among themselves under supersymmetry. There are
several types, classified by the maximum spin sy, of the fields included. The gravity (or supergravity)
multiplets are those with s, = 2, the vector or gauge multiplets have s, = 1 and the chiral and

hypermultiplets sy, = 1/2. Obviously, no multiplet with s, = 0 is possible.

3.2 The Rarita-Schwinger field

Supergravity is the theory of local supersymmetry. This means that, as we will see in section 3.3, the
fermionic SUSY transformation parameters are gauged and thus have an associated gauge field. This
field has necessarily spin s = 3/2 and two indices, one spacetime and one spinor, such that we will
denote it by ¥, (). In this section we will review the theory of a free spin-3/2 field, also known as
vector-spinor or Rarita-Schwinger field. In the context of supergravity it is called gravitino because

it is the superpartner of the graviton, i.e. they transform into each other under supersymmetry.

We are then concerned with a free gauge field in Minkowski spacetime, that has a gauge
transformation
Via(x) —  Yua(x)+ Ouea(r). (3.4)
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The Rarita-Schwinger action for such a field is [30, ch. 5]
S=- / APz, (P70, — my") U, (3.5)

where m is the mass and spinor indices are omitted. In supergravity the gravitino is massless and
interacts with the rest of the fields. However, it is useful to study this limit because the gravitino

kinetic term of supergravity actions is written as (3.5) with m = 0 and minimally coupled to gravity.

The Euler-Lagrange equation derived from (3.5) is
("0, — mAy") W, = 0. (3.6)

In the massless case there are (D — 1) - 2[P/2 independent equations of motion ([z] stands for the

D/2] components of \If”a(ac) up to gauge transformations.

D/2]

integer part of x), that determine the D - 2l
Here we have considered ¥, (x) and ¢(z) to be Dirac spinors with 2! complex components, but

we will see that in supergravity the type of spinor is different and these numbers change.

3.3 Gauging supersymmetry

As we have seen in section 3.1, the parameters of SUSY transformations are constant spinors, that
we will call €,. If we gauge this symmetry we have spacetime dependent parameters €, (z) instead,
and as a consequence of the superalgebra relations (3.3), the Poincaré transformations must also be
gauged. These local Poincaré transformations are diffeomorphisms, so the theory includes gravity.
This is precisely how supergravity works.

A supergravity theory will of course contain

a gravity multiplet, formed by the graviton, N D Spinor # of components
gravitini ¥, (x) and additional fields depending 4 M 4
on the specific theory. The graviton is often de- 5 S 8
scribed in terms of the vielbein fields ef (), that 6 SW 8
satisfy gu(x) = eZ(az)elb,(x)nab (see appendix 7 S 16
A). Apart from the gravity one, other multiplets 8 M 16
(chiral, vector, tensor ...) of the superalgebra 9 M 16
can be added. They are often denoted matter 10 MW 16
multiplets. When for a given D and N, the 11 M 32

theory contains only the gravity multiplet, it is ) )
Table 1: Fundamental spinors and its number of

components in terms of the spacetime dimension
The structure of the multiplets of a theory D).

called minimal.

highly depends on A. Looking at the possible
massless multiplets one can see that supergravity is only possible for A/ < 8, because higher A/
requires particles with spin s > 5/2, for which consistent interacting theories are not known. This

gives another constraint: the maximum dimension for a supergravity theory is D = 11 [32].
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So far, we have not specified which kind of spinor is used for supersymmetry transformations. The
rule is to choose the most fundamental spinor, i.e. the one with the fewest independent components.
Table 1 shows what is the fundamental spinor for every interesting spacetime dimension D: a
Majorana (M), symplectic Majorana (S), Majorana-Weyl (MW) or symplectic Majorana-Weyl (SW)
spinor. All these kinds of spinors are explained with more detail in appendix B. It can be seen in
the table that in D = 6 and D = 10 the (symplectic) Majorana and Weyl conditions are compatible,
i.e. the chiral components of a (symplectic) Majorana spinor are also (symplectic) Majorana, so the
most elementary spinors are those that satisfy both. For this reason the supergravity theories in
these dimensions are frequently not denoted by the number A/, but by (m,n), where m and n are

the numbers of right-chiral and left-chiral pairs of supercharges, respectively.

Example: 4D N = 1 supergravity

All these concepts are better understood with a simple example, and for that reason here we
introduce N/ = 1 supergravity in four dimensions. It is the most basic supergravity theory in 4D,
and when no matter multiplets are added it only contains the graviton and one gravitino. Their

transformation rules are [30, ch. 9]

1
dey, = ey "V,

2 . (3.7)
OV, = Dye = Oue+ fwuabfy“be,

4

with w4 the spin connection®. From table 1 we know that ¢ and each W, are Majorana spinors,
and they have four components so the theory has Q = 4 real supercharges.

The action, invariant under the above transformations (and also local Poincaré transformations),
is

! /d4xeR(e, w) — ! /d4xe\If VN (3.8)
16mGx 167Gy g P

with

1
V.U, =0,V, + Ewﬂaw“b% — 1,0, (3.9)
The first term is the Einstein-Hilbert action (2.1) written in terms of the vielbein fields and the spin
connection w, and the second is just the massless Rarita-Schwinger field (3.5) minimally coupled to

gravity and appropriately rescaled.

3In order to work with spinors in curved backgrounds one needs to define curved space gamma matrices. They are
defined in terms of the usual gamma matrices in Minkowski by means of the vielbein: v*(z) = ek (z)v®. Next, one
needs to define a covariant derivative for the spinor fields. This is done by lifting the Levi-Civitta connection on the
tangent bundle to the Clifford bundle, obtaining the spin connection. In differential form notation it is

w=ede ' +ele !,
and the covariant derivative of, for example, a vector field with Minkowski index a is

DV =0, V* 4w, V"
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3.4 Solutions

The most important solutions of a supergravity theory are the background solutions, also called
vacua. They are obtained from the classical equations of motion, and then quantum mechanical
perturbations can be studied on them. These backgrounds are usually taken to have vanishing
fermion fields for simplicity, so they are characterized by the values of the bosonic ones.

It is interesting to ask whether a solution is invariant under a subset of the supersymmetries of
the theory. A field configuration ®( (a solution) is said to preserve some supersymmetry if there is

a non-vanishing choice of the fermionic transformation parameter e(z) that leaves it invariant:
3|, = 0. (3.10)

The parameter ¢(x) is the fermionic analogue of a Killing vector, so it is called Killing spinor and
(3.10) is called Killing spinor equation. In general, for a background, the solution to this equation is
a set of @’ linearly independent spinors. It is then said that the solution preserves a fraction 9’ / Qo
of the supersymmetry. Notice that this residual supersymmetry is a global subset of the original
local supersymmetry.

Equation (3.10) can be used to construct supersymmetric backgrounds, imposing it as a condition
on the bosonic fields. This approach is usually more favourable than trying to solve the equations
of motion directly, as one faces first order instead of second order differential equations. One still
has to check that the solutions obtained satisfy the EOMs, but happily for some theories this is
already guaranteed by the equation (3.10).

Example: 4D N =1 supergravity

In order to illustrate the study of classical solutions we consider again the four dimensional N' =1
supergravity theory. The simplest solution is Minkoski spacetime, for which the field configuration
(I)(] is

Guvlo = Muv,

(3.11)
v,l, = 0.
The transformation rules (3.7) evaluated in this background values are
det =0,
a (3.12)
0V, = Oye,

because the spin connection vanishes for Minkowski spacetime. Now, in order to find the residual
supersymmetry we must impose these variations to be zero. For the first one this is already the
case, and from the second we get the Killing spinor equation d,e¢ = 0, which is solved by four
constant linearly independent Majorana spinors. Hence, Minkowski spacetime preserves all the

supersymmetry of the theory.
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Another example: 4D N = 2 supergravity

In this example, we consider again a supergravity theory in four dimensions, but with two super-

charges instead of one. Their anti-commutator is

1
{Qg}ng} = _§PLaBZAB; (313)

ZAB are the components

where A, B = 1, 2 label the supercharges, Py, is the left chiral projector and
of an antisymmetric matrix. These Z45 are called central charges because they commute with
all other operators of the superalgebra. For N' = 2 we can write 248 = ¢AB 212 = cABZ Tp the
minimal extension case we have Z = 0. Some manipulation of (3.13) together with (3.3) and a

unitarity requirement lead to the BPS (Bogomol'nyi-Prasad-Sommerfield) bound [33, ch. 25]
M > |Z|. (3.14)

Solutions that saturate (3.14) are called BPS, and in fact supersymmetric solutions are always BPS.
In fact, those that preserve all of the supersymmetry are called full-BPS, those that preserve 1/2 of
it are called half-BPS and so on ...One can then see that central charges are necessary in order to

have massive supersymmetric solutions.

Extended supergravity theories contain N'(N — 1)/2 vector fields that are U(1) gauge bosons.
Then, the supergravity multiplet of the 4D A = 2 theory contains the graviton, two gravitini and
the gauge boson, called graviphoton. We can see then that the bosonic content is the same as for
the Einstein-Maxwell theory described in section 2.2, if we identify the graviphoton here with the
electromagnetic photon there. The transformations of the gauge group mentioned above are the
central charges. Then, following the identification with Einstein-Maxwell theory, we can write our

central charge in terms of the electric and magnetic charges getting [7]

q+p 2 ¢ +p? Q?
Z = Z|° = = —. 1
VGN 2] GN GN (3.15)

Now we can see that the extremal condition GNM? = Q? of the Reissner-Nordstrém black hole
implies that it saturates the BPS bound (3.14). In other words, the metric given by (2.20), its
associated Maxwell gauge field and two gravitini set to zero are a BPS solution of 4D N = 2
supergravity. Many black holes can be made BPS in supergravity, for which they need to be

extremal. The converse is not necessarily true.

We can wonder now what is the residual supersymmetry of the extremal Reissner-Nordstrom
solution. The graviton and graviphoton variations vanish because they are proportional to the

gravitini, so we only have the gravitini variation

VTGN

5 Fab’y“b’yueABeB, (3.16)

1
5\1qu = <8M + 4’yabwﬂab) €A —
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where the up or down position of the A, B = 1,2 indices denote the left and right chiral projections
of the spinors, respectively. Imposing this variation to be zero we get a Killing spinor equation
that can be solved in terms of four independent spinors [30, ch. 22]. The theory has eight real
supercharges so the extremal Reissner-Nordstréom solution is half-BPS.

The number of residual supersymmetries is doubled in the limits studied in section 2.2.2, i.e.
Minkowski space and Bertotti-Robinson geometries. These two are then full-BPS solutions of 4D
N = 2 supergravity, and we can say that the extremal Reissner-Nordstrém black hole interpolates
between two maximally supersymmetric vacua of the theory. This is one of the reasons why
the extremal Reissner-Nordstrom black hole is considered a supersymmetric soliton. Solitons are
stationary, regular, stable and finite energy solutions in QFTs that tipically interpolate between

vacua, and all these properties are satisfied by the extremal Reissner-Nordstrém black hole.

3.5 Type IIB supergravity

As we saw in section 3.3, in 10 dimensions the supercharges @) are chiral spinors. There are three

types of supergravity theories in 10D depending on the number and chirality of these supercharges:
e Type I: One chiral supercharge.
e Type ITA: Two supercharges of opposite chirality.
e Type 1IB: Two supercharges of the same chirality.

The names of these different algebras will be suggestive for those who are familiarized with string
theory. In fact, these supergravity theories are the low energy limit of the string theories of the
same name.

In type IIB we have then two supercharges satisfying Q4 = PrQ4 with A = 1,2, and their

anti-commutator is

{Qd.QF} = —%5AB(7“)aﬁPa. (3.17)

These supercharges are Majorana-Weyl spinors, which have 16 real components in 10D. The
supergravity multiplet is formed by the graviton, two gravitini of the same chirality, a four-form
with self-dual field strength, two two-forms, two spinors of the same chirality and two scalars [34].

The bosonic matter content of some supergravity theories includes p-forms, as we have just seen.
Just like the one-form potential A of Maxwell theory couples to particles, the natural coupling of a
p-form is with objects whose world-volume extends in p dimensions. The so called electric couplings

have the form
AP (3.18)
MP
where M, is the world-volume of the object and A®) is the form. By analogy to the Maxwell case
one can take the Hodge dual of the field strength of A®) to obtain the magnetic coupling. The
extended objects are called strings when their world-volume is two dimensional and branes when

it has more dimensions. Hence, supergravity is naturally a theory of strings and branes, and we
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expect to understand it in the frame of string theory as we said above. In fact, it has been proved
that one can work classically with IIB supergravity, but when quantum corrections are studied one
needs to consider the string theory in order to avoid nonrenormalizable divergences [35].

We now focus on a particular family of solutions of type II supergravity called p-branes,
representing objects that extend in p spatial dimensions. When these objects are taken to be
extremal, they are charged with respect to the bosonic fields of the theory, so using equation (3.18)
we can know their dimensionality. In the IIB case, the two-forms will have a 1-brane as electric

source, and a 5-brane as magnetic source and the four-form will have 3-branes as both electric and

magnetic sources?. An extremal p-brane solution is, in string frame,
p D—p—1
ds® = H,(Z)~'/? (—dyg + ) dyfn> +Hy(@)? Y da?, (3.19)
m=1 n=1
Hy(@) ' -1
AP — Ldyo A A dyP, (3.20)
gs
e 20 = g2 H, (7)Y, (3.21)

where H), is a harmonic function given by

7— _
Hy(r)=1+ (%p) " with r= |Z] and r;_p = goNo/T=P)/2(47)(5=P)/2D (72p> . (3.22)

AP+ g the (p+1)-form coupled to the brane and ¢ is one of the scalars of the theory, called dilaton
in the string theory setting. Extremal p-brane solutions are important because they are half-BPS

solitons and they can be associated with a very important object in string theory, Dp-branes.

3.6 Embedding in string theory

String theory claims that the fundamental objects of nature are not point-like particles, but strings
that spatially extend in one dimension. The dynamics of a string in a background with metric

G (X) are given by the non-linear sigma-model action [36]

1

4o/

S, / 2oV =hh™G,, (X)9, X 0y X", (3.23)
b

where 0¥ and ¢! are coordinates on the world-sheet 3, hyp is its metric and o is the only independent

dimensionful parameter of string theory, which is directly related to the length of the strings Iy, = V.

“One can also associate brane sources to the scalars, which are zero-forms. These, called (-1)-brane and 7-brane
have exotic properties and are important in string theory, but their study is out of the scope of this thesis.

’The Einstein frame is the field parametrization in which the standard Einstein-Hilbert action (2.1) is written.
However, in string theory one often uses a different parametrization called string frame, in which some power of e?
(with ¢ one of the scalars of the theory called dilaton) multiplies the action. One can go from one frame to the other
using

_48=(9) ()

(B =
b-2 Guv >

g;w> =€

where (@) denotes the v.e.v. of the dilaton.
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Usually this is set to be the Planck length, as string theory is a quantum theory of gravity and one
expects to find quantum gravity effects at this scale. This done, the theory is free of adjustable
parameters. X* are D scalar fields in two dimensions that describe the string embedding in the

curved D dimensional background.

After quantizing, one finds that the spectrum is given by the oscillation states of the string. The
excited states of the string spectrum will have masses given by the inverse of [y, i.e. in the Planck
scale, so they will not be accessible at usual energies. We will then focus our attention in the massless
sector of the theory, but first we must specify the boundary conditions in the spatial direction o' of
the world-sheet, for which we have several options. When periodic boundary conditions are chosen,
one is describing closed strings. The massless states given by closed strings are the graviton G,
a two-form B, and a scalar ¢ called dilaton, whose vacuum expectation value fixes the string
coupling parameter gs. A question arises at this point: if the graviton is produced by the closed
string dynamically, is it consistent to introduce a curved background G, (X) in the sigma model
action? The answer is yes, because one can see that the background in (3.23) is actually a coherent
state of gravitons. One can generalize this to include a coupling to the two-form B, by adding in
the action a term

1 2__ab
P B (X)0, X Op X" .24
o [ o Bu(X)0 X7, (3.24)

Sp =

Other possible boundary conditions are Neumann and Dirichlet, which describe open strings
and are defined as

respectively. Notice that the Dirichlet condition implies that the endpoints of the string are fixed in
the X* direction, so if we want to satisfy conservation of momentum at these points we must have
some dynamical object there. These are the Dp-branes, objects to which the endpoints of the string

are attached.

Generically one has Neumann boundary conditions along the time component X° and p spatial
components, and Dirichlet boundary conditions along the D — p — 1 remaining directions. We
have then a Dp-brane defined by X* = X§ with a =p+1,..., D — 1, which extends in p spatial
dimensions and thus has a p + 1 dimensional world-volume. The massless states obtained from open
strings attached to the brane are a p dimensional gauge boson A, with 4 =0,...,pand D —p —1
scalars ®“ that describe the oscillations of the brane in the transverse directions. These fields live
on the world-volume of the brane, which we will parametrize using coordinates £* with a =0, ..., p,
so the scalar fields ®*(£*) are the embedding fields of the brane in analogy to the X*(c%) fields for
the string. We conclude then that string theory is not only a theory of strings, but also of more

extended objects called branes.

Consider the spectrum of strings in a configuration with N parallel Dp-branes. We can label the
endpoints of the open strings with numbers ¢, j = 1,..., N called Chan-Paton factors, associated to
the brane in which the endpoint lays. As a consequence, we will have N? sectors labelled by the

two Chan-Paton factors of the string i, j (we are dealing here with oriented strings, for unoriented
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the number would be N(N + 1)/2). The N sectors 7,4 correspond to strings starting and ending in
the same brane, and we know from the previous paragraph that their spectrum contains a massless
gauge boson A,. When the branes sit at different positions we will have then a U ()N symmetry.
However, if the N branes coincide we will have N? copies of the spectrum of a single brane, and we

can arrange the massless fields in a matrix of Chan-Paton factors
(40,7, (). (3.26)

One can see that the (A#)ij form now a U(N) gauge connection [37, ch.7], so by putting the N
branes together we have enhanced the gauge symmetry from U(1)" to U(N). In addition, the
scalars (@a)ij transform in the adjoint representation of the group.

So far we have considered only D bosonic fields X#(o®) in the world-sheet, but the resulting
theory, called bosonic string theory, does not properly describe nature. In order to get a realistic

theory one needs to extend it adding D world-sheet fermions ¥*(c®) in the action:

1

4o/

S / o/ =y, (h“bf)aX“abX” n i21/?“7“8a¢”>, (3.27)
X

where we have considered now a flat background, and v* are gamma matrices in the world-sheet.

The result is called superstring theory and lives in D = 10. Choosing different types of strings leads

to the various theories: type I for open strings and type II for closed ones. Among type II the

supersymmetry requirements still allow to distinguish between ITA, for which the fermionic ground

states are not chiral, and IIB, for which they are.

3.6.1 Type IIB superstring theory

The bosonic massless spectrum of type IIB superstring theory consists of the graviton G, a
two-form B, a dilaton ¢ and three gauge fields A® A and A® that are zero-, two- and
four-forms respectively. The latter has a self-dual field strength F®) = «F®). As for the massless
fermions, we have two spin-3/2 particles, the gravitini, and two spin-1/2 ones called dilatini, and as
we said all of them have the same chirality. It can be noticed that the field content is the same as
for the type IIB supergravity, in consistency with our claim that it is the low energy limit of type
IIB superstring theory.

At this point we can ask ourselves what the string theory looks like around those backgrounds
we found for the type IIB supergravity: extremal p-branes. Polchinski showed in [38] that the string
description of a p-brane is given by a p + 1 surface around which the spectrum of fluctuations of
the theory can be obtained quantizing open strings whose endpoints are attached to it. In other
words, the string theory description of p-branes are Dp-branes®. One can actually check that the
tension (energy per unit volume) and charges of the supergravity p-branes and superstring Dp-branes

coincide, and that the backreaction of the Dp-branes on a flat background produces the metric of

5There are some exceptions to this claim like the NS5-brane, which does not have a good stringy description. In
any case, these exceptions can be ignored for our purposes.
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the p-brane solution (3.19). It is worth noticing that we are dealing here with a non-perturbative
state of string theory, because these Dp-branes are solutions that cannot be described as oscillatory
states of strings. In fact, the brane tension decreases (except for the 1-brane case) in the strong
coupling limit gs > 1. This implies that these objects become lighter than the strings and effectively

dominate the low energy physics in this regime.

We have seen in section 3.5 that p-branes source the form fields of the supergravity theory. Now
these fields are B,,,, AW A® and A©) and certain Dp-branes will carry their charges in the string
theory description. This is just another signal that string theory must necessarily include branes, as
they are charged under certain fields that the strings alone can describe but not source. Due to their
special properties, the objects charged under the Kalb-Ramond field B, are called fundamental
string or F-string and NS5-brane. The fields and branes of type IIB string theory are summarized
in table 2.

Field Electrically coupled to Magnetically coupled to

By F-string NS5-brane
A® D3-brane D3-brane
A®) D1-brane Db5-brane
A©) D(-1)-brane D7-brane

Table 2: Form fields of type IIB superstring theory and the objects they couple to.

The fact that the branes are BPS solutions implies a certain relation between their tension
and charges, that causes a cancellation of forces when various branes are set on a background.
This allows one to write stable solutions containing an arbitrary number of branes because the
gravitational attraction and electrical repulsion exactly compensate each other. Recall that the BPS
condition is satisfied (or not) at the level of the supersymmetry algebra, so BPS states do not cease
to be BPS under changes of parameters of the theory (like @’ or gs) or quantum corrections. This
property is essential to assure the existence of the non-perturbative brane solution beyond the low
energy limit [39, ch. 6].

The stringy description of an extremal p-brane is actually more elaborate. The solution (3.19)-
(3.22) has N units of charge under the A®*1) gauge form, meanwhile a Dp-brane has one [7]. The
supergravity p-brane is then understood as the field generated by a stack of N Dp-branes located
at the same position, and it is also called black brane solution. In a situation with N Dp-branes the
calculation of a typical perturbative string diagram includes a trace over the Chan-Paton factors, so
together with the string coupling gs we will have a factor N and the effective expansion parameter
will be gs/N. This implies that the perturbation theory is valid for gsN < 1. On the other hand,
the supergravity approximation is valid for low energies or, in other words, when the curvature of
the geometry is small compared to [5 and string effects do not arise. The curvature is (inversely)
related to r, and from (3.22) we have

T;—p ~ gsNa/TP)/2 = g NIT-P, (3.28)
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Figure 1: Negative brane Dp~ in r = 0 surrounded by a naked singularity at some finite radius.
Inside it, the string theory has non-Lorentzian signature {10 — p, p}. The coordinate r measures the
distance to the brane in the transverse directions.

so the supergravity solution holds when g;/N > 1. We see then that the stringy and supergravity
descriptions are complementary, which lays the basis for AdS/CFT correspondence [6].

3.6.2 Negative branes

For future convenience, we introduce here negative branes. They are defined as the objects that
cancel the effect of usual Dp-branes, meaning that two coinciding branes, one ordinary and one
negative, are equivalent to a flat vacuum field configuration. In order to get this, the supergravity
description of a stack of Ny usual branes and N_ negative branes is given by the usual solution
(3.19)-(3.22) under the substitution N — Ny — N_. In other words, Chan-Paton factors of negative

branes carry a minus sign.

We had that a stack of N Dp-branes realizes a U(N) gauge symmetry in the target space, but
what is the effect of negative branes? It was shown in [40] that for N, usual and N_ negative
branes the gauge symmetry group is actually a supergroup U(N;|N_) because the negative sign of

the Chan-Paton factors change the statistics of the massless string states, making fermions appear.

We focus now on the backreaction of negative branes. We can see in 3.22 that when N_ > N,
there exists a radius 7, for which H, = 0, which causes a naked curvature singularity. This makes
sense because the tension of a negative brane is negative (recall that the Schwarzschild metric
describes a naked singularity when its mass is negative). The picture is then a stack of branes
sitting in 7 = 0 surrounded by a naked singularity at r = r5. Moreover, Dijkgraaf et al. showed in
[18] that in the region inside the naked singularity, i.e. 0 < r < rg, the metric signature of spacetime
is different from the usual {9,1} (nine positive and one negative eigenvalues). This is visible with a
heuristical argument that goes as follows. In the bubble 0 < 7 < ry the harmonic function H), is

negative so in order to study the solution (3.19)-(3.22) in this region one must analytically continue
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it. This yields

1

D—p—
d32:i1ﬁp(f)_l/2< dy —i—Zdym) +il,(@)' Y de?, (3.29)

m=1 n=1
o n—1
1-H,
AP+ — idy AL AN dyP, (3.30)
9s
—2(;5 — P 3 —2H ( )(p 3)/2, (331)
with H = —H. Now a field redefinition of the metric allows to eliminate the imaginary units, getting

D—p—1
ds? — _Hp(f)_1/2< dyd + Zdym> +Hy (D) Y da?, (3.32)

m=1 n=1

and we see that the signature of the brane world-volume directions has been flipped, yielding a
spacetime signature {10 — p, p}. The conclusion, more rigorously proved in [18], is that the negative
branes live in a string theory with non-Lorentzian signature contained inside a bubble, and the
boundary of the bubble is a naked singularity beyond which the usual string theory is recovered. A

schematic picture is shown in figure 1.
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4 6D minimal supergravity

During most of the present thesis we will work with solutions of six dimensional minimal supergravity,
also called 6D (1,0) supergravity. In this chapter we will study its field content, main characteristics
and the general form of its supersymmetric solutions. We will also present some of them, because
they are the starting point of the forthcoming research part. After parametrizing the phase space of
a certain class of supersymmetric solutions, we will introduce the Sp(6,R) group of endomorphisms
on it. This group is interesting because its action on the solutions is clear in mathematical terms,
but its physical significance has not been explored yet. Finally, we talk about the reduction of the

theory to five dimensions.

4.1 Description of the theory

The theory we are about to study is minimal so it only contains a supergravity multiplet. It consists
of the graviton, a symplectic Majorana-Weyl gravitino ‘Ifﬁ and a two-form B:[l, for which the +
index denotes that its field strength G = dB is self-dual [41]. Our symplectic Majorana spinors
form representations of the group Sp(1) = Sp(2,R) NU(2) so we need a couple of them. This is the
reason for the label A = 1,2 in the gravitino, that will be usually omitted. A Majorana-Weyl spinor
has 2[P/2-1 real components, and we just saw that in our case two of them are necessary because
of the symplectic condition. The theory has then Q = 8 real supersymmetries.

The self-duality condition of G cannot be obtained as an equation of motion from any action,
unless we add an auxiliary tensor multiplet [42]. The condition is necessary to match the fermionic
and bosonic degrees of freedom, so it cannot be relaxed. As we want to stay in the minimal theory
adding matter multiplets is not an option, so we will just treat the self-duality of G as an extra

condition on our fields. We have then that the equations of motion are

G = xG, (4.1)
dG =0, (4.2)
Ry = Gupo G (4.3)

From the first and last equations we can obtain that the Ricci scalar vanishes for any solution of

this theory. To show this, recall from equation (A.1) that
1 pivp
GN*G = EGWPG volg, (4.4)
and taking the trace of (4.3) gives R,* = G,,G*? so
1 R
G AN *G = ERM“ volg = R volg. (4.5)

But due to the self-duality condition on G we have G A *G = GA G =0 and so R = 0. We can

then consider (4.3) to be the Einstein equations.
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12D: F-theory

Elliptically Fibers
fibered CY with 10D: IIB string theory
base P?

P2 base

6D: (1,0) supergravity

Figure 2: F-theory compactified on a two-torus yields type IIB string theory. Also, when compactified
in an elliptically fibered Calabi-Yau manifold with base the complex projective plane, one gets
minimal 6D supergravity.

How does 6D minimal supergravity fit in the stringy description of nature? In order to answer
this question we need to briefly introduce F-theory. The starting point is the fact that type I1B
superstring theory has an SL(2,Z) symmetry called S-duality. This symmetry can be geometrized
and made explicit by compactifying a twelve dimensional theory, F-theory, on an elliptical fiber over
a base B (due to supersymmetry requirements, the fiber and the base must form a three dimensional
complex manifold of a specific class called Calabi-Yau (CY)). This provides a non-perturbative
picture of type IIB with D7-branes, whose backreaction on the metric and the dilaton is more
substantial than for other branes [12]. The backreaction is geometrically taken into account by the
fibration, and the loci where the fiber degenerates describe the presence of the brane. When F-theory
is compactified on the CY threefold, the result is a 6D theory with (1,0) supersymmetry. The matter
content in six dimensions is determined by the Hodge numbers of the particular CY manifold chosen.
These numbers contain information about its topological properties and are denoted hP4(X) with
X the manifold. One obtains h1'(B) — 1 tensor and h''(X) — h11(B) — 1 vector multiplets in the
six dimensional theory for a CY manifold X [15]. Although the D7-brane sits in singular points of
the fiber, we want to keep the total C'Y manifold non-singular. Possible singularities of the CY
manifold in the points where the fiber is singular can be fixed by a procedure called “blowing-up”,
but it generates gauge fields in the 6D theory that in our minimal supergravity case are undesired.
We must look then for spaces that do not become singular when the fiber does, and this in practice
means hl1(X) = hb1(B) + 1 so vector multiplets will be absent. Choosing the complex projective
plane P? as a base satisfies this, and in addition has h%!(B) = 1 so tensor multiplets are also absent.

It gives then minimal 6D supergravity [43]. Figure 2 shows schematically the relations described.

4.2 Supersymmetric solutions

In section 3.4 it was mentioned that the Killing spinor equation can be used as a starting point to
construct supersymmetric solutions of a theory. This method is more systematic than looking for
ansatz of a solution of the equations of motion, but is difficult to apply in complicated theories. In
contrast, it has been particularly successful for simple supergravities, for which a general form of all
supersymmetric solutions has been found. It is the case of some D =4 and D =5 theories [44, 45],

and luckily also of minimal 6D supergravity, whose supersymmetric solutions were described by
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Gutowski et al. in [16]. We will follow here their work, although the notation and conventions might

not fully coincide.

The Killing spinors are those that yield a vanishing gravitino variation, i.e.
A 1 o A
Ve + ZGupg’yp e’ =0, (4.6)

where A = 1,2 is the symplectic Sp(1) index. The strategy followed by Gutowski et al. is to write
Killing spinor bi-linears. Then, Fierz identities and (4.6) are used to impose some algebraic and
differential equations on them, and these equations are enough to determine the local form of the

solutions. In our case the bi-linears are

AB —A B
Vg™ = e yue”,

(4.7)
AB —A B
Qp = € Yuwpe -
A Fierz identity implies V,,V# = 0, and we can then introduce a vielbein e™,e™, ™ with e~ =V by
writing
ds® = —2e~ et + §ppe™e”. (4.8)

Besides, the spinor Killing equation makes V' a Killing vector field. The Fierz identity also implies
v e=0. (4.9)

In the end, all the algebraic and differential relations make the Killing spinor equation simplify
to d,e = 0, so any constant spinor satisfying (4.9) is a solution. Due to this condition we have
that supersymmetric solutions must preserve either none, one half or all the supersymmetry. Other
fractions of residual supersymmetry are not allowed. Actually, it is shown in [16] that the only
maximally supersymmetric spaces of this theory are three: R"® AdS3 x S3 and a particular six

dimensional Cahen-Wallach space CW.

The fact that V = 0, is a null Killing vector field allows one to introduce local coordinates v, u

and ', and partially solve for the vielbein. In these coordinates the metric (4.8) has to be
2 -1 F 2
ds® = —2H"" (du + ) dv—i—w—;(du—kﬂ) + Hdsy g, , (4.10)

for some v-independent functions H and F' and one-forms 5 and w. The line element dsl%n(4
corresponds to the four dimensional base space B in which § and w live, and is an almost hyper-
Kihler manifold”. Similarly, one can write the three-form G in terms of these functions and forms.

Then, the equations of motion (4.2) and (4.3) impose constraints on them.

"A hyper-Kéhler manifold is a complex manifold of dimension 4n (with n € N) which admits three complex
structures that transform under an SU(2) symmetry. When the structures are almost complex, we have an almost
hyper-Kéhler manifold. The most general hyper-Kéahler fourfold with a Killing vector field that preserves the three
complex structures is a Gibbons-Hawking manifold.
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4.3 A precise class of solutions

In this thesis we are interested in a particular class of the described supersymmetric solutions.
Namely, we will be looking at backgrounds for which 9, is a Killing vector field. In this case all the

functions and forms are u-independent, B becomes hyper-Kéhler and df is self-dual on B.

Apart from this, we also take B to be a Gibbons-Hawking (GH) space (see footnote 7). GH

spaces consist on a U(1) fibration over R3:
dsgr = Vi (dp + x)° + Vidsgs, (4.11)

where V) is a harmonic function, x is a one-form satisfying x3dx = dVj and ¢ € [0,47). Both
depend only on the R? coordinates because the vector field in the fiber direction 8, is Killing in
B. Consequently, the subscript in the Hodge star operator denotes that it is taken in the R3 base.
If we further assume that this d,, isometry is extended to the full six dimensional spacetime, the

complete solution is determined by five additional harmonic functions Va, ..., Vs on R3.

To sum up, we are considering supersymmetric solutions with two extra symmetries generated
by 0, and 0y, the second being the U(1) isometry of a GH base space. Their general form is (now

including the self-dual three-form)

ds* = —2H ! (du + ) [dv +w— g (du + 5)} + HV{ (dp 4 x)? + HVidsks, (4.12)
G = —% 4 dH — %H‘l (du + B) A [(dw)_ - Zdﬁ} - % (dv+w) ANd[H ' (du+B)]. (4.13)

This set of solutions can be fully specified by six harmonic functions on R? that we arrange into a

vector V = (V1,...,Vs). These functions determine the solution according to

_V2 2
B—Vl(d¢+x)+ﬁ,

VVs +WaVs VLV -
w= (V4+ e 223)(d¢+x)+w,
Vi Vi (4.14)
v |
F=2Vs + =
5+ ‘/17
VaVs
H =V
6+ Vl )
with
x3 dy = dVi, x3df = —dVs, s3di = (V,dV). (4.15)
In (4.15) we have used the symplectic norm on RS, defined by
0 I
(AB) = ATOB  with Q= ( , (;) . (4.16)
—43
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We also write, for future convenience, the above solution in terms of the vielbein (4.8)

e =H ' (du+pB),
HF

+ 4 _
e v+ w 26,

e = \/gl(chb + mcos 0do) , (4.17)
¢ = /HVpdr,

et = \/HVirdd,

e® = / HVyrsin 0dé.

For most of the solutions studied here the harmonic functions will be written in the form a + b/r
with r the radial coordinate of the GH base. We will use at some points the notation of [1], in which
V=T + I'/r with

. n .n
[ = (momCIompow]om %ﬂ/@) , I'= (m 4,7, §,u) - (4.18)

Although we will not encounter them, it is possible to superpose harmonic functions to write
multipole solutions, despite they satisfy non-linear equations. This is used to write bound states
of various black holes and/or other objects. In these cases the harmonic functions have poles in

different points Z, of R? yielding

Ly
V=Tu+)_ (4.19)

|7 — |

4.3.1 Flat space

It is not difficult to construct flat RY spacetime by direct inspection of (4.12). We notice that we

want 8 =w = F =0 and x = cos0d¢, from which one easily obtains

1/r

(4.20)

_ o O O O

As one would expect, this gives G = 0 and ds? = —2dudv + 4dp? + 4p2dQ§ = —2dudv + ds]%@. The
reason why 1 was taken to be ¢ € [0,47) was precisely to have the right ranges for the angles in
dQ% such that it describes a three-sphere. One can alternatively take V4 = 1 instead of V4 = 1/r, in
which case xy = 0 and the metric obtained has the form ds? = —2dudv + dy? + dsf@. This is locally
R® but not globally, as the coordinate 1 was taken to be compact.
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4.3.2 AdSs x S® and the BTZ black hole

As stated before, another maximally symmetric solution of the theory is AdSs x S3. It can be

obtained with the harmonic functions [17]

1/r

VAngXSS = . (4.21)

n/r
The self-dual three-form is

4 sin
2

1
G = =g o A du N dr — A A dO A do, (4.22)

and the metric is

2
ds? = —;rdu(dv — cdu) + L5dr? + 4pd$%, (4.23)

Notice that the parameter ¢ is absent from the three-form, and it can be eliminated from the metric
by a change of coordinates v — ¥ = v — cu. It is then an inert parameter that does not change the
solution. To show explicitly that (4.23) describes AdS3 x S? we use a new coordinate z defined by
r=4p?/2% and we get

4
ds” = 5 (~2dudd + d=?) + 4ud2%3. (4.24)

Comparing with (2.30), we see that the first part of the metric is AdSs, so we have in total the
direct product AdSs x S3. Notice that the radii squared of the three-sphere and of anti-de Sitter are
both 4. This fact makes the two curvatures cancel each other for the total Ricci scalar®, yielding

R = 0 as we expect for a solution of this theory.

We can now “switch on” another parameter in (4.21) and get

1/r
0
0

VAngxS?’ = 0 . (425)

c+n/r

n/r

8Recall that the scalar curvature of the direct product of two manifolds M = M; x M, is the sum of the individual
curvatures, i.e. R = R1 + Ra.
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The three-form is again (4.22) but the metric has now an extra term:
2 2r o o 2o o 2
ds” = ——dudv + —du” + —dr” + 4pdS3. (4.26)
u 1 r

It is useful now to make the local change of coordinates

2_4 t—2 t+2
Lo Pl A =2 2y

, , , 4.27
which yields
dp? on \? : (p* —4n)”
ds® = —N(p)%dt* + + p? <ng — dt) +4pdQ2  with  N(p)l=-~+——~.
(e) N(p)? PP\ ° (e) Apup?
(4.28)

If we now take ¢ to be periodic (¢ ~ ¢ + 27) this metric corresponds to the extremal BTZ black
hole times S2. This can be seen comparing to (2.33), which also allows to identify the radius, mass

and angular momentum of the BTZ part as

n 4dn
2 =4yu, GNM = 2—, GnJ = —. (4.29)

z vz
It is interesting to take n = 0 now. Doing so we get M = J = 0 and thus we are in the vacuum
BTZ state (2.36) (times S3). There is an apparent contradiction, because we have studied above
the n = 0 case (4.21) and it yielded AdSs x S3. The difference is in the identification ¢ ~ ¢ + 27:
as discussed in section 2.4.1 when this identification is absent (4.26) just describes some patch of

AdSs x S3.

4.3.3 The black string

The construction of black string solutions was already mentioned in the introduction. Given a black
hole solution in D dimensions with horizon topology M, it is possible to construct a solution in
D + 1 dimensions by adding a spatial direction. The resulting object will have an extended horizon
M x R and receives the name of black string [5]. One can also wrap this direction in a circle to
render a M x S horizon. In principle this would cause the gravitational collapse of the object, but
in five or more dimensions it is possible to set a non-vanishing angular momentum that compensates
it. Here we will write a circular black string solution of 6D minimal supergravity, u being the
direction of the string. The six dimensional black string naturally reduces to the five dimensional
black hole, so we expect it to have a horizon topology S3 x S!. As a supergravity solution, it is an
extremal object and its near horizon geometry is AdSs x S3.

The first step to build the black string solution is to impose the right asymptotics, in our case
R4 x S! with the S! factor corresponding to the periodic coordinate w ~ u + L in which the
string extends. In terms of the harmonic functions, the asymptotics are controlled by I'w, so the

asymptotic condition plus the bubble equations (that we will see in next section) amount to some
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restrictions on the form of this vector, found in [1]. The most general form of V is

0 m
0 q
Vbs = 1 0 + p 17 (430)
—n (D + qneo/2) ilr
Noo/2 n/2
1 1

with m € Z* to ensure the correct asymptotic limit. It is convenient now to introduce the quantities

Q=4V2(mp+qp), Q=4(mn+p’), J=38 (qp +mpp+ I .7) (4.31)

2

whose physical meaning will become clear in section 4.5. The line element for this solution is

- -1
2 _ Q / J du Q
ds® = —2 <1+4ﬂmr> du [ R~ (dw+mcos9d¢)—2<noo+4mr>]+

- (4.32)
+ @ [ (dvp 4+ m cos 8de)* + mal—r2 + mrdQ2]
4\fm7" T 2|
with v/ = u + %@bg. The singularity is at r = —Q /4v/2 as one can see in the curvature scalar

R* R, and the horizon is at r = 0, where the metric degenerates. In order to check that the

horizon topology corresponds to a black string we take r» = 0 in the metric, getting

ds? fQ f‘] dy)' + cos 0dg) du’ + @ di"? + 2 cos Ody)'dp + dO* + dp*) , (4.33)
r= Q 4\/>

where 1/ = ¢)/m. With the local change of coordinates ¢/ — 1 = ' — 4Ju'/Q? we see that this

describes S x S3/Z,,:
2
ds?| _, 2v2 ( - J) du® + Qdm (4.34)
= Q \2 @ V2
The fact that the S3 factor is an orbifold can be solved changing the periodicity of v, but we stay

d/2

in the general case here. The area of this horizon can be obtained integrating the volume form of

(4.33), and allows to calculate the Bekenstein-Hawking entropy using (2.7):

/Q2 — 92 w21/ 2()
/ sin 0%d*z = Q

2Gx \ 2m2 N om2 T w2

4GN

with L’ the period of u’ and G = wL’/4 following the conventions of [1]. The near-horizon geometry

can be obtained taking the » — 0 limit in (4.32), or directly in the harmonic functions (4.30). In

9Both u and 1 are periodic, so we need to impose 4wq/mL € Z for the change of coordinates to be well defined.
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this solution both procedures are equivalent, but it is not the case in general as we shall see in the

forthcoming sections. The result is, with the same coordinate redefinitions as above,

9 - Sfmr 'y 22 J? Q dr? 9
ds ‘T_>0 Q dvdu Q <2_Q2>d +4\[< —|—4dQ> (4.36)

This is just (4.26) so we have that the near-horizon geometry is (ignoring the orbifold issue) locally

AdS3 x 83, as one expects for a black string.

4.4 The symplectic group

In general, solutions for 6D minimal supergravity can contain Dirac-Misner string singularities [46].
These are analogous to Dirac string singularities studied in section 2.2 but this time for vector
potentials that are part of the metric, namely . These strings are potentially dangerous physical
singularities so they must be avoided. Besides, their lack is a necessary condition for the absence of
closed timelike curves in our geometry. As explained in section 2.2, the strings are a set of points
in which the vector potential is not well defined, so to make sure they are not in our solution we
require @ to be globally defined, i.e.

d’& = 0. (4.37)

We write this in terms of the harmonic functions by taking the Hodge dual and the exterior derivative
of the third equation in (4.15), which yields

d (x3 (V,dV)) = 0. (4.38)

Using (4.19) and after some calculation we get

(T, I's) (Ta, ')
d (3 (V,dV)) = 22 e + za: - vols, (4.39)
where we have used r, = | — #,|. The right hand side of (4.39) must vanish for all Z, and in

particular for r, — 0 we get a set of conditions on the relative distances of the centres, called bubble

equations:

(Too, To) + > <F‘;brb> =0, (4.40)

where rq, = |Z, — @p|. Summing this over b we get
b

because the symplectic product is antisymmetric. Note that for our case of interest, in which there
is only one centre, (4.40) and (4.41) are equivalent.

Following the rationale of [1] we realise that because a sum of harmonic functions is harmonic,
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performing a GL(6,R) transformation on one solution V gives another solution. In addition, if
we want to consider transformations that preserve the regularity of a solution we must ensure
that the bubble equations stay invariant. For this reason the transformations that send a regular
solution to another regular solution are those that preserve the symplectic norm (-,-), i.e. Sp(6,R).
Sp(6,R) € SL(6,R) C GL(6,R) is the real six dimensional symplectic group, defined as the set of
6 x 6 real matrices S such that

sTas =q, (4.42)

with Q the matrix defined in equation (4.16)!°. The group has dimension 21.

As an example, consider the Sp(6,R) transformation

=
Il

: (4.43)

SO I O O O
o O = O O O
O = O O O O
_ o O O O O

o o I © + O
S O O = O O

and notice that it transforms the harmonic functions (4.21) into (4.25). If we consider them to
describe extremal BTZx S? solutions via the identification explained, we are transforming the
vacuum state into one with non-vanishing mass and angular momentum. By further applying the
transformation M,, we will be adding 2n/u units of mass and 4n/,/{ units of angular momentum

each time.

The action of this Sp(6,R) group on solutions is the main research interest of this thesis, and
will be examined via some concrete examples. As mentioned in the introduction, we are interested
in how this group acts in physical terms. The Sp(6,R) endomorphisms are also interesting because
they might allow to reach unexplored corners of the space of solutions, helping us to find new
interesting vacua of minimal 6D supergravity. We will present in what follows a subset of these

transformations that later will be applied on some known solutions.

10NMore precisely, in the definition of the symplectic group the matrix Q can be any fixed invertible real skew-
symmetric matrix satisfying Q% = —I. Actually, we use this looser definition when introducing symplectic Majorana
spinors in appendix B.
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4.4.1 The entropy conserving subgroup

There is a particularly interesting set of transformations in Sp(6,R): those that leave invariant the

entropy (4.35). We start to present this set by writing the gauge transformations

1 0 0 0 0 0
g2 1 0 0 O 0
291 0 1 0 0 0
Mg = 0,2 0,2 9 L L (4.44)
9192 91 9192 92 g1
—2g? 0 —2¢ 0 1 0
-2g192 —2g1 —g2 0 O 1

These transformations form a two dimensional subgroup of Sp(6, R) whose effect is just a change of
coordinates. This can be seen from the way they act on the functions (4.14): V4, H, F' and w stay
invariant and the change in 8 can be absorbed by a redefinition of u. They are called “gauge” for
this reason. Moreover, the transformations generated by g; alone do not change the solutions at all.
The so called spectral flow transformations also leave the entropy invariant. They are the transpose

of the gauge ones, i.e.

1oy 271 29992 =297 —2m
01 0 293 0 -2
My = 0 0 1 2m7 2 -7 (4.45)
00 0 1 0 0
00 0 -y 1 0
00 0 -2y 0 1

These transformations are studied in [47], specially their non-trivial effects on four and five dimen-
sional solutions. There is another subgroup of Sp(6,R) that just rescales the harmonic functions,

and leaves the entropy invariant as well. It is given by

Ba 0 0 0 0 0
0 BB 0 0 0 0
M, = 00 4t 91 0 0 (4.46)
0 0 0 B 0 0
0 0 0 0 B7%Bt 0
0 0 0 0 0 B

These entropy conserving transformations can be obtained from a set of six generators t; as

follows

M, = exp (291t1 + got2), Mg = exp (271t3 + 72ta), M, = exp [In (51)ts + In (B152)ts].
(4.47)
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The particular form of the generators is not very illuminating so we will not write them here, but

they satisfy an algebra with non-vanishing brackets

[t1,t3] = —t6, [ta, t5] = —2to,
[t17 tﬁ] == t17 [t27 t4] - t57 (448)
[ts,te] = —t3, [ta,t5] = 2t4.

We can see that there are two separate subalgebras and they correspond to two copies of the algebra
sl(2,R), i.e.

[.1‘, y] =2y,
[z, 2] = =22z, (4.49)
y, 2] = =,

by making the identifications {z,y,z} = {2t6, V2t3, \@tl} and {x,y,z} = {t5,t2,ts}. Hence, the
algebra of the entropy conserving set of transformations of Sp(6,R) is sl(2,R) x sl(2,R). The
exponentiation of the algebra to the entropy conserving elements is not surjective, though. This can
be seen from the fact that (4.47) contains logarithms of 31 and fs, such that those elements for
which 81 < 0 and/or B2 < 0 cannot be written in that form.

The factorization of the algebra is telling us something about the structure of the entropy
conserving transformations. We pick those transformations generated by the subalgebra {to,t4,5},
i.e. gauge and spectral flow with g; = 71 = 0 and rescaling with 82 = 3, 1A general product of

them has the form

d b 0 0 0
c a 0 O 0
M. — 00 d 0 0 -b ’ (4.50)
00 0 a — O
00 0 —-b d 0
0 0 —¢c 0 0 a

with a = 81 + goye, b = ’ygﬁl_l, c= gy and d = ,6’1_1. The element M. will obviously belong to

S1(2,R), and in fact amounts to a special linear local change of coordinates [17]

b /
vy (@ ) (4.51)
u c d) \u
Note that if the w direction is taken to be compact one is changing coordinates on a torus and thus

has quantization conditions on the parameters a, b, ¢, d for the transformation to be well defined.

Among the rest of transformations, we already mentioned that those generated by ¢g; have no
effect on the solutions. M, with 8y = (31 is easily seen to be a rescaling of the coordinates v and v

and of the whole lagrangian. We only have left the spectral flow transformations generated by 71,
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which in fact are the only ones able to change the solution in a significant way, as we will see later.

4.5 Reduction to five dimensions

One of the reasons why it is worth to study six dimensional supergravity despite its apparent
lack of correspondence with physical reality is the possibility to reduce its solutions to five or four
dimensional supergravity solutions. Here we will study how this reduction works for minimal 6D
supergravity and we will apply it to the case of the black string, that lays a spinning black hole in
five dimensions. As we will justify later, the circle reduction of minimal 6D supergravity generates
minimal A/ = 2, 5D supergravity coupled to a vector multiplet. One can then, if desired, truncate
the theory to minimal 5D supergravity by consistently setting to zero the vector multiplet, so all
solutions of minimal 5D supergravity arise by dimensional reduction from a subset of minimal 6D
supergravity solutions. When reducing it to 4D one finds minimal N = 2 supergravity coupled to

three vector multiplets [16].

To start with, we need a spacelike Killing vector field in which we can perform the Kaluza-Klein
reduction. There are two clear candidates in the class of solutions that we have studied: 0, and 0.

The ansatz for the reduction is [1]

ds?® = €2 (du + A)? + e~ 2#/3d3?, (4.52)

G=0G+ %dA’ A (du+ A), (4.53)

where we have reduced in the u direction in the interest of the later example, but it is generic and
can be used to reduce in v by just substituting « — . The metric and three-form ds? and G are
the 6D minimal supergravity ones. The five dimensional metric and three-form are d3? and G, and
as a result of the Kaluza-Klein reduction one obtains two extra vectors A and A’ and one scalar ¢
in five dimensions. The self-duality of G allows to write G in terms of A’, so the former is not an
independent field of the 5D theory. Our 6D theory has Q = 8 real supercharges and this number is
conserved in the reduction because so it is the number of gravitini. From table 1 we see that two
symplectic Majorana spinors (recall that they always come in even number) assemble eight real
components in 5D, so we have an N’ = 2 theory. The bosonic content of the gravity multiplet of
N = 2 5D supergravity is the metric and a graviphoton, that can be identified with A. This leaves
apart the vector A’ and the scalar ¢, that in five dimensions can be accommodated in a vector
multiplet [30, ch. 12] confirming, at least at the level of the bosonic fields, that the theory obtained

is minimal A/ = 2, 5D supergravity coupled to a vector multiplet.

Now one can reduce the black string solution of section 4.3.3 using the above ansatz. The result
is, as we mentioned, a five dimensional black hole with event horizon topology S3. The general form

of the five dimensional solution is not very illuminating, but the relevant thing is that it gives a
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physical interpretation for the charges (4.31). Namely they are the integrals

1
J=— dK
471_2/7{*5 y

V2, (454)
87T H
81 H

L) O
I

with K the Killing vector field d,, and H the event horizon. For asymptotically flat spacetimes, the
result does not change if one integrates in a three-sphere at infinity. We have then that J is the
angular momentum of the five dimensional black hole, and Q and @ its electric charges under the
U(1) fields A" and A respectively. These charges also give the mass of the black hole via the BPS

condition [1]

M= i (v20+Q). (4.55)
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5 Spectral flow on AdS; x S?

In this section we will phrase the results of the study of a new solution of six dimensional minimal
supergravity obtained via a transformation of AdSs x S3 under the symplectic group introduced
previously. This has been the main research task along the thesis project, and provides an example

of the potential of the Sp(6,R) group to explore unknown regions in the phase space of solutions.

The solution found is not easy to describe and has not been fully understood. In particular,
we will not get a good description of what the geometry is far from the origin or near the horizon.
This fact makes it difficult to characterize the solution via Komar conserved quantities of its Killing
vector fields, for example. However, from the information of a pseudo-horizon, we will conjecture
that we are dealing with a particular case of a bigger family of solutions. This will be confirmed
later in section 6. We will also find a case which describes a naked singularity and closed timelike
curves, endangering the conjectures that protect causality and determinism. We will fail at finding
sings that this is a not physical solution, but we shall make a tentative dynamical explanation of the
naked singularity in terms of the underlying string theory in section 5.5.1. We add that the solution
here encountered was reduced to five dimensions in both u and 1), but we were not able to interpret
the results in terms of known 5D solutions and they did not provide any valuable information. For

this reason we will not present them here.

5.1 The new solution

Our starting point are the harmonic functions (4.21) corresponding to AdSs x S3. We act on them
with a spectral flow transformation (4.45) with 71 = v and 2 = 0, that will be denoted M, (we saw

that it is the only non-trivial entropy conserving transformation). The result is

—2¢? 1
0 —2py
—2cy 0 1
V=M Vagsosr = |0 | T o |- (5.1)
c 0
0 2

The transformation M, is part of the entropy conserving subset, so the new solution will have,
just like AdSs3 x S3, zero entropy. This is consistent with the fact that the charges (4.31) for this

solution are

Q=4V2u, Q=0 J=0. (5.2)
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The metric given by the above harmonic functions is

ds?® = _,u(li—rar)dv [(1 — ar)du — 2uydyp — 2uyar cos Odé] +
4 Ldu (du + 4py cos 6de) + H dvp (dip + 2 cos Ode) + (5.3)
pu(l+ ar) I+ar .
dr? 1+ 4dar

+ u(l+ ow“)r—2 + (1 + ar)db? + p T or cos® 0d¢?® + (1 + ar) sin® Ad¢?,

where we have defined a@ = 2¢y? for convenience. The Ricci scalar of this solution is of course
R =0, so if we want information about possible curvature singularities we have to look, like in the

Schwarzschild case, to other scalars. The Kretschmann scalar is

_ 3 — 12ar + 100212 — 60033 + 11atrt

K 5.4
202(1 + ar)b ’ (54)
so there is a curvature singularity in
1
=__, 5.5
r=—- (5.5)

The expression for the three-form G of this solution can be found in appendix C, and is also singular
at this point. The Gibbons-Hawking base is fully determined by the first harmonic function, which
in this case is V3 = 1/r — . When getting close to the pole in » = 0 we have V; — 1/r that, as
shown in section 4.3.1, gives flat R*.

In section 4.3.2 we noticed that the parameter c is inert in the AdSs x S2 solution and can
be given any value. The first striking feature of our new solution is that it changes drastically
depending on this parameter. We can yet see this in the fact that (5.5) is ¢ dependent (for example
there is not singularity for ¢ = 0). This is only one aspect of the ¢ dependence so in what follows we

will divide the analysis in three cases: zero, positive and negative c.

5.2 The ¢ =0 case

We start by analysing the case in which ¢ vanishes, which turns out to be the simplest. Notice that
taking ¢ = 0 in (5.1) gives the same result as transforming AdS3 x S® with Mc.. More precisely,
take (4.21) with ¢ = 0 and apply a transformation (4.50) with a =d =1, b =0 and ¢ = —2u~y. The

result is

1 0 0 0 o o0\ [1/r 1/r
—2uy 10 0 0 O 0 —2uy/r
V(e =0) = 0 0o 1 0 0 O _ 0 ’ (5.6)
0 0 0 1 2uy 0 0
0 0O 0 0 1 0 0
0 0 2uy 0 0 1 w/r w/r

i.e. (5.1) with ¢ = 0.

From the discussion about M. in section 4.4.1 we know that the above transformation is
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equivalent to an innocuous change of coordinates v — u’' = u + 2uy1) on AdS3 x S2. We conclude

then that our new solution, when evaluated in ¢ = 0, is just the original AdS3 x S3.

5.3 Metric signature

The six dimensional solutions we are treating are supposed to have signature {5,1}, and {4,0} in
the GH base. However, when the H and V; functions change sign in certain ways at some points of
the manifold, the signature of the metric can become different. It is the case for our solution. The
specific signature changes and the way we will deal with them are studied in this section. Later
in section 5.5.1, we will see that these signature changes can have an explanation in terms of the
underlying type-1IB superstring theory.

Let us start with the GH base metric (4.11). One can calculate the general form of the eigenvalues
and see that they have signature {4,0} for V; > 1 and {0,4} for V; < 0. In our case V; = 1/r — «

so we havell

e ¢ > 0 case:

{0,4} for r<0 and r>21 (5.7)

{4,0} for 0<r<1i ’ '
e ¢ <0 case:

{4,0} for r<i and r>0 (5.5)

{0,4} for L<r<o '

The signature of the base space is important because it affects the original derivation of the three-
form G. Looking at (4.13) we can see that the Hodge dual operator restricted to the base space
(denoted #4) enters the solution in two points: explicitly in the first term and implicitly in (dw)™. If
the signature of the base changes to {0,4}, this Hodge operator must pick up a minus sign.

We repeat now the analysis with the full metric (5.3). In this case the eigenvalues are not
solvable analytically with standard tools so numerical methods have been used. The result is that

the metric has opposite signature at both sides of the singularity, i.e.

e ¢ > (0 case:

{1,5} for r<-1 (5.9)
{5,1} for r>-L17" '

e ¢ < 0 case:

5,1} fo < -1

{51} for 7 @ (5.10)
{1,5} for r>-—-=

As our convention is to work with (—1,1,...,1) metrics, we will multiply (5.3) by an overall minus

sign in those cases and regions in which the signature is reversed, to get the canonical one {5, 1}.

"Here we need to consider separately the cases in which « is positive or negative. This is controlled by the sign of ¢
because a = 2¢v2.
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Although we have detailed the signatures for every value of r, in practice we are interested only
in some regions of the solution, just like we did not consider r < 0 for the Scharzschild black hole.
In fact this is the key point: we will study the region on the “right hand side” of the singularity, i.e.
r>—1/a.

5.4 The ¢ > 0 case

When c is positive the singularity » = —1/a < 0 sits in a negative value of the radius. The region of
interest includes then another relevant point of the metric (5.3), » = 0, in which it degenerates. We

try to explore now what is going on at this point.

5.4.1 The r = 0 surface

By plugging = 0 in the metric (5.3) we can see that all the v and u components vanish, so the
r = 0 surface extends in the three dimensions parametrized by the coordinates ¢, 8 and ¢. The

metric restricted to this surface is
ds?| _y = p (dy? + d6? + dg? + 2 cos Odipdg) = 4ud€23. (5.11)

So the constant time slices of » = 0 are three-spheres of squared radius 4u. We see then that this
surface extends in three spacial dimensions plus the temporal one, giving in total co-dimension two.
Hence, r = 0 is not a hypersurface and this implies that it cannot be a Killing horizon in the strict
sense of the term.

If we are to consider this surface as an event horizon, we must conclude that it is shrunk to
zero size in one direction because event horizons in 6D extend in four spatial dimensions. This
implies that the volume of our horizon r» = 0 is zero, and is consistent with the fact that the entropy
vanishes for this solution. All this suggests that we are dealing with an object for which some
quantum number has been taken to zero, contracting the size of the horizon to a point in one of its
directions. If that is the case, we would be able to obtain a more general solution with extended
horizon and non-vanishing entropy by means of an Sp(6,R) transformation that “switches on” the

missing charge. In section 6 we will precisely do this.

5.4.2 Near-horizon geometry

We are going to study now the r — 0 limit of our solution. The title of this section is an abuse of
terminology, as we have just shown that » = 0 is not exactly a horizon, but it helps to compare our
solution with previous and future cases.
Taking the r — 0 limit in the line element (5.3) gives
ds? a—immwwmwjﬁﬁ+@mgwwmw+&wmwmm:

r—0

(5.12)
= dsilds3X g3 + 4yrdvdi + 8yer cos Odudg,

48



i.e. the metric on AdS3 x S2 plus two crossed terms between the anti-de Sitter and spherical parts.
This spacetime is not a solution of minimal 6D supergravity, as one can see from the fact that R # 0.

In general we want these asymptotic geometries to be also solutions of our theory so the previous
result is not satisfying. If we want to make sure that our near-horizon limit does not lead us out of
the phase space of solutions we can take it directly in the harmonic functions V, taking care not to

spoil the bubble equation. In this case, taking the » — 0 limit in (5.1) gives

0 1
0 —2py

vo | 4 0L (5.13)
0 0o |r
c 0
0 JZ

Of course, the geometry given by these harmonic functions is a solution of the theory, but the
problem is now that it is not much simpler than the full metric (5.3) and we cannot tell which space
does it correspond to. We know though that it is not AdSs x S, because its Kretschmann scalar is
not constant. One might try to take the » — 0 limit in this metric to simplify it further, but the
result is (5.12) so we are again out of the phase space of solutions.

One can see then that taking these limits is not an easy task. Firstly because there are various
possibilities: one can do it in the harmonic functions that characterise the solutions or in the
solutions themselves, secondly because these different ways do not yield the same result in general
and finally because we can end up with a geometry that is not accepted by our theory.

The conclusion is that we have not found a good near-horizon geometry for our solution. In
[16] it was proved that any supersymmetric solution of 6D minimal supergravity with a compact
horizon has near-horizon geometry RU x T4, RU! x K3 or some identification of AdS3 x S3, so we
might be tempted to use that result in our case. However, it was assumed in their proof that the
event horizon is a Killing horizon of v, which in our case is not exactly true. In section 6 we will
avoid that problem by setting a charge to be different from zero and the result will be, among other

things, a well-defined near-horizon geometry.

5.4.3 Asymptotic limit

During the last lines we have realised that the application of a spectral flow transformation on
AdS3 x S3 results in a complicated geometry. One of its most important troubles is the fact that it
does not have a simple asymptotic limit, as we will show in this section. But what do we mean
by simple asymptotic limit? In general the gravitational solutions studied by physicists consist on
an empty background geometry over which some kind of matter and energy is placed in a certain
region, bending the surrounding spacetime. Then, far away from the region in which matter and
energy are, one shall recover the background geometry, which is a solution of the vacuum Einstein

equations. For Schwarzschild and Reissner-Nordstrom black holes the asymptotic geometry is flat
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Minkowski, for the BTZ black hole it is anti-de Sitter, etc.

In our case of study we started with AdSs x S3, which is a vacuum solution'?, and then acted
on it with a spectral flow transformation. We could expect then to find AdSs x S when taking the
r — 0o limit in the new solution, i.e. when going far away from the pole at r = 0, but it is not the
case. The key here is that the spectral flow transformation, regardless how small the parameter ~ is,
changes the matter content at big r. This can be seen in appendix C, in which G is expanded in

powers of v to show that the first order term is linear in 7.

One could still argue that the r» dependence of G can cancel when calculating the energy-
momentum tensor (which, from (4.3) we know it is T}, = G},,6G," /87GN), but it is not the case
and the influence in the geometry takes place. This can be seen by expanding, this time the metric

(5.3), in powers of ~:

2
ds® = ——Tdu(dv — cdu) + %er + 4pd93 + dyrdvdy + Syer cos fdudp + O(v*) =
i r

= dsidsgxsg + 7 (4dvdip 4 8c cos fdudp) + O(7?).

(5.14)

The zero order is of course the AdS3 x S metric we started from, and notice that the linear term
in + is also linear in r, showing that the asymptotic region is heavily changed by the transformation
M,,. Apart from this, we see that the transformation is mixing the anti-de Sitter and three-sphere
parts (coordinates {v,u,r} and {1, 0, ¢} respectively) already at first order, such that the geometry
is no longer a direct product. This coincides with Bena et al., who state in [47] that the spectral
flow transformation mixes the coordinates u and 1) and when the GH base asymptotes to R?, as it
is the case for AdSs x S3, the circle 1) in the base becomes infinitely large and the spectral flow

changes the asymptotics.

Now that we know that the asymptotic geometry is not a simple one, we try to find it explicitly.
Taking the limit » — oo in the metric drives us out of the space of solutions, just like in the

near-horizon case. Hence, we take it in the harmonic functions, getting

—2¢? 0
0 —2py
vo | T YL (5.15)
0 0 r
c 0
0 Iz

20ne might think that it is not a vacuum solution because it has a non-zero three form (4.22), and then its Einstein
equations are not of the form R,, = 0. However, the three-form contains in this case the information about the
cosmological constant, so it acts in the Einstein equations as the term Ag,, in (2.26).
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They generate the solution

e

2 2
ds? = Zdvdu + —dvdyp + 4yr cos Odvde +
1 ey ar

dyp® + %dﬂ + par (d6% + sin?0dg?),  (5.16)

1
G = 2—dv/\du/\dr—i—’yrSin@dv/\d@/\dqb—'yCOSde/\dr/\qu—i—%Sin9d¢/\d0/\dqb. (5.17)
i

The charges (4.31) are all zero for this solution, so the entropy vanishes as well. We can confirm
that it is not just AdS3 x S3 in some convoluted coordinate system because its Kretschmann scalar

is not constant and shows a curvature singularity:

11

= . 1
2u2a2r2 (5.18)

It is useful to explore the behaviour of the energy-momentum tensor at r — oo with a bit more
detail. The energy-momentum tensor of our solution (5.1) tends to a constant in the asymptotic
limit 7 — oo. This fact is, as one would expect, also true for the 7}, of (5.15). The story is different
for other objects: the energy-momentum tensor of a black string (4.30) tends to zero and that
of AdS3 x S3 becomes linear in r. However, an asymptotically constant T, is a characteristic of
pp-wave spacetimes, which suggests that our solution could be describing a bound state of some
object (associated to the singularity) with pp-waves radiating to infinity.

Pp-wave spacetimes, abbreviation for plane-fronted gravitational waves with parallel rays, are
solutions of general relativity that model light-like radiation of any kind. This class of solutions
includes for example gravitational waves, electromagnetic radiation and their combinations. Mathe-
matically, pp-waves are spacetimes that admit a covariantly constant null vector field [48, ch. 24].
One easily notices that our asymptotic spacetime (5.16) contains the two null vector fields 9, and

Oy, but they are not covariantly constant:

Va (0,)" =T%, #0, (5.19)
Va (0,)° =18, £0. (5.20)

Attempts to obtain other null covariantly constant vector fields in this spacetime have failed, so we

can neither confirm nor deny the suspicion that we have pp-waves asymptotically.

5.5 The ¢ < 0 case

For the negative ¢ case, the singularity occurs for a positive radius r = —1/a > 0. As the horizon
surface was in r = 0, there is no horizon enclosing the singular point from the point of view of an
observer in > —1/a. We are then dealing with a naked singularity. In addition, recall from section
5.3 that the metric signature is {1,5} in this case, so in order to recover the {5,1} convention we
will consider (5.3) multiplied by an extra minus sign throughout this section. Given this, one can
notice that g4y becomes negative for certain values of 7. The orbits of 94 must be closed because ¢

is a compact coordinate, so this implies the presence of closed timelike curves. Namely, we have
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ggp < 0 for r € (—=1/c, ") with

ar’ = —1—2cot?0 — \/4cot? 0 + 3 cot? 0. (5.21)

This was also true for ¢ > 0, but in that case the region with CTCs laid between the singularity
and the horizon r = 0 such that it was hiding them. When closed timelike curves are hidden by an
event horizon they are not considered problematic, because an observer would not be able to detect
the causal violation. In the present case however, we have no horizon so we must be concerned
about the CTCs.

As it was explained in section 2.1, naked singularities are accompanied by some non-physical
matter content that explains them and keeps the cosmic censorship conjecture safe, and the same
can be said for CTCs and the chronology protection conjecture. In this case both undesirable objects

are present, so we would like to find some physical indication that the solution is pathological.

In the Schwarzschild black hole, when one takes a negative mass the spacetime describes a naked
singularity. By analogy, it would be comforting to calculate the Komar mass of our solution and
find a negative value. For this we need an asymptotically timelike Killing vector field, in our case

Oy, that must be properly normalized:

ar

_ .. . 2 _ 1 - _ _
£=Vmd,  giving  lim [ = lim - o = (5.22)

Then, the Komar mass is [49]

1
Qe = 870 /{Wm *dg, (5.23)

where OV, is a closed spatial surface at infinity, which must be four dimensional in our case as *d¢
is a four-form. For instance, a Komar integral for any of the four dimensional black holes reviewed
in section 2 would be performed over an S? centred in the singularity and with infinite radius. The
problem comes precisely at this point, because we do not know what the topology of spatial infinity
is in our spacetime. The solution obtained previously for the asymptotic limit, i.e. the metric
(5.16), is still valid in the ¢ < 0 case (with the —1 prescription because of the signature, that is also

)

{1,5}) and it does not give many clues about what spatial surface we have as a “boundary” of our
spacetime. In sum, we have a manifestation of the fact that the definition of the Komar mass is
fully satisfactory only for asymptotically flat spacetimes, as pointed out by Wald in [19]. It is then

very difficult (probably impossible) to give a well defined notion of total mass for our spacetime.

An alternative way to prove that we are dealing with odd matter, if that is the case, is to find a
violation of some energy condition. The simplest case is the null energy condition (NEC), which

states that every future-pointing null vector field I must satisfy [50]
T, 1M1 > 0. (5.24)
Of course, fully checking this condition implies finding first all possible null vector fields [, i.e.
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solving g,,I*1" = 0. We can do this using the vielbein (4.17), such that
9"l = gueleyll = npl"l’ =0 — =20 + (B2 4+ (132 + (M2 + (I°)? = 0. (5.25)
We divide the solutions in two classes:

1. Im=0V m=2,...,5, in which case there are two possibilities:
(a) I~ =0 and [* arbitrary or
(b) I =0 and [~ arbitrary.

2. ™ # 0 for some m = 2,...,5, in which case we have

()P4 (P)?
It = e : (5.26)

The first class is tractable but the second consists of vector fields with five independent parameters,
and checking (5.30) for them is impossible in practice (notice that we also must change to spacetime
coordinates). We go then for the case la first. The vector corresponding to I is I* = ef =
Nia(e®)F = —(e”)* = =64, i.e. —0,. The NEC for this vector field is then T}, > 0, and it is satisfied

by our solution and its asymptotic limit because they have

1 4y2a’rt 1 1

Ty = >0, Tpp = ——— >0,
Y 8rGy (1 + ar)t Y 8GN p2c2Ay?

(5.27)

respectively. The other possible check is for 1b, for which we have that the vector associated to [~
is [ = —(eT)* = —H (F64 /2 + 6). This implies that the NEC is in this case

2

F
TTW + Tyu + FTyy > 0, (5.28)

and its is also satisfied for our solution and its asymptotic limit, for which

F? 1 a?r?(1 — 2ar)? F?
— T+ Ty +FTyy = 0 — T+ Ty +FTy, =0, (5.29
4 U’U+ ouF vu 87TGN M272(1 _ O[’I")Q(l + Oé?")4 > 9 4 ’U’U+ uu+ vu bl ( )
respectively.

We can now try with other energy conditions, like the weak energy condition (WEC). It stipulates
the same as the NEC but with timelike vector fields instead of null. In our solution, two timelike
vector fields we can easily think of are 0, and 0, for r <1/, but Ty, and Ty in 7 < r’ are always

positive or zero. We have also the strong energy condition (SEC), that requires

T
<T;w - 29,ul/> " >0, (530)

for every future-pointing timelike vector field ¢, but notice that in our theory R =0, so T'= 0 and
this condition is equivalent to the WEC.
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Figure 3: Negative D3-brane and the signatures of the type IIB theories at each side of the naked
singularity. The radius, which represents the distance to the brane in the transverse directions, is
denoted 7 to avoid confusion with the six dimensional coordinate r.

We conclude that the spectral flow on AdS; x S with negative parameter ¢ has a naked
singularity and CTCs in a region close to it, and those attempts to prove the presence of abnormal
matter have failed. Nonetheless, it cannot be claimed that we have a violation of CCC and CPC
because not all the possibilities to prove that our solution is non-physical have been exhausted. The
reason is that the problem of checking all potential violations of the energy conditions is quite hard,

as we have seen.

5.5.1 Negative branes

We have not been able to explain the naked singularity and signature changes in the metric via the
presence of exotic matter. Nevertheless, we saw in section 3.6.2, following the work in [18], that
these phenomena can have a microscopic explanation in terms of negative branes in the underlying
string theory. Namely, we stated that negative branes dynamically change the signature of spacetime
in a region around them, a region whose boundary is a naked singularity. In this section we try to
find out whether this idea can be applied to our case at hand.

Our attempt consists on placing a negative brane in the type IIB ten dimensional theory in such
a way that the compactification in P? (recall figure 2) yields a 6D minimal supergravity solution
with a naked singularity at r = —1/a and signature {5, 1} at each side (taking into account the
minus sign prescription). We need to determine which particular negative Dp-brane (that we will
denote Dp~ brane) we place in 10D and whether it wraps in the compact dimensions or not.

As we will see now, the numbers work if we consider a D3~ brane. Figure 3 shows what the
signature of the ten dimensional theory is in each side of the singularity, according to the analysis
of section 3.6.2. We also take the brane to be wrapped around a 2-cycle in the manifold in which
we will compactify to 6D, P2. The situation is summarized in table 3, where we have followed the
notation of section 3.6.2 (y for the brane parallel directions and x for the transverse ones). The
table shows schematically the signature flip of the brane directions, and indicates which coordinates
are to be compactified. We see that P? comprises two of the directions of the brane, yo and ys,
and two other spatial directions, x5 and zg. It is easy to see then that after compactifying these
four coordinates, the resulting spacetime has {5, 1} signature at each side of the naked singularity

interface, as desired.
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Now we need to determine what is the other direction in which the brane lays, i.e. which
direction does y; correspond to in our six dimensional solution. We will call ¢ the vector field that
generates translations in that direction. Let us assume for simplicity that it is a linear combination
of 9, and 9,, i.e.

C = Clau + CQam (531)

with (; and (o constants. We know that the brane directions change signature at the naked
singularity interface, so we need a change of sign of |(|? at r = —1/a. Taking ¢; = 0 is not an option

because 0, is everywhere null, so we can write ( = 9, + (20, without loss of generality. The norm is

2r

2 _ v o__
’C‘ _g/»“’CMC - /.1,(1+047')

[c—CG0—ar), (5.32)
in the region r < —1/a. When crossing the singularity to 7 > —1/a we have an overall change of
sign because of the minus sign prescription for the metric. Also, we have another sign flip from the
(14 ar) factor in the denominator, so both cancel and the norm sign stays the same. In order to

avoid this we can try to cancel the (1 + ar) factor in the denominator by making
c—CG(l—ar)x1+ar. (5.33)

This condition fixes our constant to be (o = ¢/2. Up to a proportionality factor and assuming that

it does not lay in the base, we have uniquely determined ¢ to be

c o < for r<—é
C:au+§3v giving |C|2:{ _“ for 7o 1 (5.34)

To sum up, we can give a tentative explanation to the naked singularity and the signature changes
in our ¢ < 0 solution via an uplift to type IIB superstring theory with a negative D3-brane wrapped
around a two-cycle in the compact manifold. Such a ten dimensional configuration reproduces
qualitatively the main characteristics of our six dimensional solution. Of course, this correspondence
would be properly proved by writing a negative D3-brane solution in IIB and compactifying it to

get our 6D metric and G form. Compactification on a four-torus is easy to do in practice, but when

Yo Y1 Y2 Y3

T T3
Outside - 4+ 4+ 4+ | +

+

(@]

T2 T4
+ + +
+ + +
(0] (0]

Inside + - - =

ZIs Te
+ +
+  +
Compactification | o o e e o e o

Table 3: Schematic representation of the spacetime directions and their signature in the D3~ brane
configuration. The brane world-volume directions are called y and the transverse ones are called
x. Their timelike (— sign) or spacelike (+ sign) character is indicated for the regions inside and
outside the naked singularity. The last row denotes which directions are compactified when going to
the 6D theory (e) and which are not (o).
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doing it for type IIB one ends up in (2,2) 6D supergravity (32 real supercharges) instead of (1,0)
supergravity (8 real supercharges) [30, ch. 12]. We know from section 4.1 that the right procedure to
obtain 6D minimal (1,0) supegravity is to compactify F-theory on an elliptically fibered Calabi-Yau
manifold with base P2, but how to do this explicitly is not known. We conclude that there might be
a connection between negative branes in type IIB and naked singularities and signature changes of

six dimensional solutions, but some work is still required to properly establish or discard it.
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6 Switching on missing charges

In the previous pages we realised that acting with a spectral flow transformation on AdSs x S? gives,
when c is positive, a spacetime with a squashed horizon and, hence, no entropy. We suggested that
we could be dealing with a limit of a more general solution in which some charge has been taken to
zero, shrinking to a point one of the directions in which the horizon extends. In this section, as
announced, we will use the Sp(6,R) group of transformations to turn on some charges and obtain

the more general solution.

6.1 Acting with M,

Recall from sections 4.3.2 and 4.4 that the transformation M, switches on one of the parameters
in the harmonic functions. In that case it takes AdS3 x S into AdSs x S3, or when the proper
discrete identification is made, a vacuum extremal BTZx S? into a non-vacuum one. The strategy

here will be to act with M,, on our solution (5.1). This gives

—2¢? 1
0 —2py
My - My -V pg5,x58 = 2 + ° L (6.1)
0 —2uyn | T
c—2cv*n n
0 %

Notice that M,, and M, do not commute, so this result is not the same as giving charge to AdS3 x S 3

with M,, and then applying the spectral flow transformation. The harmonic functions (6.1) generate

2
ds® = —ILL(TTO”)CZU (1 — ar)du — 2uydy — 2uyar cos Od¢] +
2 [er +n(1 — ar)?] (1 — 8ny?)
du (du + 4 0d iy (d 2 cos fd
L+ ar) u (du + dpy cos ) + ——— = dij (dyp + 2 cos dg) +
dr? 144 2 —2
+p(1+ ar)i2 + (1 + ar)do? + p +iar +1817 ar(ar - 2) cos? 0d¢?® + (1 + ar) sin® 0d¢?,
r ar
(6.2)
and a three-form G written in appendix C. There is still a singularity in 7 = —1/« for this metric,

as one can see in the Kretschmann scalar (that we will omit here due to its complicated form) and
other scalars like )
3[1+ ar(ar —2)(1 — 8nv?)]

wp o
B Ry 202(1 + ar)b

(6.3)

The transformation M,, neither does change the signature of the solution and the points in which it

flips. We still have the same pattern analysed in section 5.3.
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The charges (4.31) are now
Q =4vV2u, Q = 8n, J = —32uvyn, (6.4)

so we have non-vanishing entropy

S = 16mpuy/2n(1 — 8ny?). (6.5)

Notice that for this entropy to be well defined n must take values in n € [O, 1/ 872] . This is consistent
with the fact that, for n > 1/8v2, 0y becomes timelike, so we have CTCs.

In the following sections we partially repeat the analysis of the spectral flow on AdS; x S3
solution, looking for the differences. We will centre our attention in the ¢ > 0 case because it is the
one in which the discussion about missing charges raised (it is the only case for which there is a

horizon).

6.1.1 The r = 0 suface

We turn now our attention to the surface of » = 0, and start by reading off its geometry:
2
ds®| _, = o + (1 — 8nv?) dyp? + pudf? + pde? + 2 cos 0de [4nydu + p (1 — 8ny?) dy] . (6.6)
B H

We notice that now it extends in four spatial dimensions, as one would expect for a regular event
horizon in 6D. We can also say then that, taking into account the time component, r = 0 has

co-dimension one and thus it is a hypersurface.

The r = 0 suface has normal vector n with components n,, = V,r = 8, = ¢,,. Covariantly it is

then

7“2

rr
= a = -
n=gar pu(l+ ar)

o, (6.7)

and we can see that its norm |n|? = 72/u(1 + ar) vanishes in the 7 = 0 surface and conclude that
it is a null hypersurface. Besides, the Killing vector field 9, is everywhere null so we can say that

r = 0 is a Killing horizon of xy = 9,. We have
Vox? =17, — X'Vox?=TIy,=0 Vo, (6.8)

so the surface gravity is £ = 0 for this Killing horizon. Recall that a zero surface gravity, and thus
zero temperature, was a characteristic of extremal black holes, and then it is what one expects for

supersymmetric solutions.

To render the horizon compact we consider the coordinate u to be periodic, just like for the
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black string. Back to the metric (6.6) and going to coordinates

¢ = —8nvy(1 — 8ny?)u + 16puny? (1 — 8ny?)y,

A (6.9)
n= Sl Y (1 — 8ny?)y,
i
we get
dSQ‘ = dg? + 1 (d772 + db? + d¢?* + 2 cos 0d77d¢) = L + 4pd$2
r=0 32un~y%(1 — 8n~?) 32un~y2(1 — 8ny?) 3
(6.10)

This implies that the horizon has S* x S? topology, as in the black string case, and confirms our
suspect that the solution studied in section 5.4 describes a limit in which the S' factor has zero

length. We can calculate the area of this horizon integrating the determinant of (6.6)

A= / i/ 2n(1 — 8ny2) sin Odudipdfde = 167° uL/2n(1 — 8ny2), (6.11)
r=0

with L the period of u. Notice that when the charge n is taken to zero the horizon shrinks in size,
as we had predicted. As a consistency check, we substitute this area in the Bekenstein-Hawking

entropy formula to get the same result as in (6.5):
A
S =—— =16mu\/2n(1 — 8ny?). (6.12)
4G

This horizon not only hides a singularity, but also closed timelike curves. For ¢ > 0 and

n € [0,1/8y?] we have negative gy, in a region ar € (=1, ar’) with

, 4ny? — 1+ /1 —8ny?
- . , (6.13)

4dnry

ar
and as we took u to be periodic, this implies the presence of CTCs. Thanks to the fact that ' < 0

always for positive ¢ and physically reasonable n, they lay behind the horizon and the cosmic

censorship conjecture holds.

6.1.2 Near-horizon geometry

Next we study the geometry near the S* x S2 horizon we just described. Taking the limit » — 0 in
the metric (6.2) yields

2 P
ds? — — L dudu + dyrdvdi + " du® + (1 — 8ny2)dyp>+
K K (6.14)
+2c0s 0 [Anydu + p(1 — 8ny?)dy] + Lo dr® + pd6?® + pdg?,
T
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that under the change of coordinates (6.9) becomes

r d§2

ds* — d
s vdé + 32uny?(1 — 8ny?)

TRl + %er + 4pd Q3. (6.15)
This is locally AdSs x S as one can check by comparing with (4.23). Notice however that we
have taken w, and thus &, to be periodic so we have a discrete identification of AdS3 x S® as the
near-horizon geometry of this solution. Recall from the analysis of the previous solution that this
is one of the three possible near-horizon spaces in 6D minimal supergravity, according to [16]. In
contrast with the previous chapter, here the limit » — 0 in the fields does result in a valid solution
and it is not necessary to take it directly in the harmonic functions (which, in turn, provides a
complicated result with few valuable information). Notice that (6.14) is equivalent to the full metric
(6.2) with ¢ = 0, so in this case the vanishing c case is again AdS3 x S3, at least locally.

The topology and geometry of the horizon and near-horizon for the present solution are those
that characterize a black string in six dimensions. We can conclude then that in the region of small

r we are dealing with a black string, but what about the asymptotes?

6.1.3 Asymptotic limit

We have seen that the application of an M,, transformation to M., -V 44g, « g3 has changed noticeably
the horizon, giving it a non-zero area. Next, we study whether the asymptotic geometry of the

solution changes as well. Taking the limit » — co in the harmonic functions gives

—2cvy? 0
0 —2py
My - My -V pg5,x58 — 2 + ’ 1’ (6.16)
0 —2uyn | T
c—2cy?’n 0
0 %

which generate the solution

2
R g2 + 8nyar cos fdudp+

2 2
ds® = ;rdvdu + advdw + 4~r cos Odvdp +
6.17
p(l —8ny?%) (617
ar

+ dp® + %drz + pardd? + pard®(8ny? cos® 0 + sin® 0)d¢?,

1 . (1l —8ny?) |
G= 2—dv/\du/\dr—'ycosﬁdv/\dr/\dgi)—i—’yrSln@dv/\dH/\qu—i— fsm&iw/\dﬁ/\dgﬂ
1

(6.18)

It does not look like the asymptotes are simpler now. In fact, (6.16) is just (5.15) transformed with
M, i.e. the operations of taking the » — oo limit in the harmonic functions and M,, commute for

our solution M., -V 44q. 5 g3.
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Unlike for the near-horizon, it is not easier to find out what our asymptotic space is after
transforming with M,,. Attempts have been made to transform the harmonic functions (6.16) with
those elements of the entropy conserving subset of Sp(6,R) that amount to coordinate redefinitions,
in order to get a more tractable metric. However, all possible gauge transformations render a more
complicated form of the line element. In any case, we can say that this asymptotic solution has an
energy-momentum tensor that asymptotes to a constant when r — oo so the conclusion made in

section 5.4.3 that we could be dealing with pp-waves in the large r limit still holds.

6.2 Acting with M;

We can further explore the Sp(6,R) group and act with a transformation that switches on a different

parameter of the harmonic functions. We will use now

10 00 0O
010000
001 000
M;= | , (6.19)
j 00100
000010
000 O0O0°1
which gives
—2cv? 1
0 —2py
—2cy 0 1
Mj'M’Y'VAd53><S3 — 9. —|— . . (620)
—2cy7j A
0
0 I

This solution has charges Q = 4v2p, @ = 0 and J = 8, which give an imaginary entropy

S = 16my/—42. (6.21)

Recall the interpretation of Q, Q and J as charges and angular momentum of the five dimensional
associated object. Even though we do not know exactly what object are we dealing with, this helps
us understanding the imaginary entropy. The situation here is analogous to that of a Kerr-Newman
black hole (see section 2.3) with too much angular momentum, for which a naked singularity is
developed. Such a configuration does not have a physically well defined entropy, but if one computes
it with the classical formula the result is imaginary, like in (6.21). The conclusion is then that M;
has switched on the angular momentum of our original solution without switching on any other
charge, resulting in a non-physical object. We add that the seek for a violation of the NEC or the
WEC in this solution did not succeed.
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7 Conclusions and outlook

We have presented in this thesis a review of black holes in general relativity and supergravity and the
intimate relation of the latter with string theory. Later we have focused in a particular class of BPS
solutions of six dimensional minimal supergravity and the Sp(6,R) group of transformations acting
on them. The research part of this thesis has been centred around a transformation performed
on AdS3 x S3 with an entropy conserving element of this Sp(6,R) group, called spectral flow
transformation. The first conclusion is that the Sp(6,R) group can transform solutions in very
non-trivial ways, as we could see from the appearance of curvature singularities and signature
changes in the geometry, or from the fact that the new solution is highly dependant on an inert

parameter c of the original AdS3 x S3.

For ¢ > 0 the new geometry has a singularity whose horizon is squeezed to zero size. We showed
this by acting with another Sp(6,R) transformation that blew up the horizon to finite size “switching
on” some charges of the solution. The topology of this horizon is S? x S' and the near-horizon
geometry is AdS3 x S3, coinciding with those of a black string. As for the asymptotic behaviour, we
found out that it is also changed by the transformation, and that the resulting asymptotic geometry
resembles that of a pp-wave. The information extracted from the new solution does not allow us to
conclude whether it is a new solution of the theory stricto sensu or just a superposition of a black
string over a pp-wave background. This last possibility can motivate future research, for instance

trying to find the covariantly constant null vector field that corresponds to the pp-wave.

The ¢ < 0 case describes a naked singularity and CTCs close to it. We have attempted to find
signs of odd matter in the solution, like a negative Komar mass or violations of energy conditions.
The first was not possible to compute given the non-asymptotically flat character of the geometry.
As for the energy condition violations, we have failed to found them but a more thorough search
could be pursued with more powerful computational resources. We have shown, however, that
negative D3-branes in type-1IB string theory can qualitatively explain the naked singularity and
signatures of our solution. Formalising this relation by explicitly describing the reduction from ten

to six dimensions is also a possibility for future research.

In a broader sense, it can be said that the Sp(6,R) group of transformations deserves our
attention. At the very least, it is able to take us out of the usual range of BPS solutions and looks
like a very promising tool to continue the exploration of the six dimensional minimal supergravity
theory. Being optimistic, it could also have some microscopic origin or it could give structure to
the phase space of solutions. A systematic approach, in which the 21 generators of the group are
studied individually in terms of their effects on the solutions, could be a good path to follow. We
want to recall once more the difficulties that we had in our research due to the non asymptotical
flatness of our spacetimes. Given this, we add that in a prospective future research about the orbits
of Sp(6,R) in the space of solutions, it would be advisable to focus in those with flat or simple
asymptotics, at least in the first place. In this sense, it would be very convenient to find which

subset of the symplectic group fixes the asymptotics.
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A Mathematical tools

Hodge star operator

For AP(M) the space of p-forms in an D dimensional manifold M with metric g, there is an
isomorphism between AP(M) and AP~P(M) given by the Hodge star or Hodge dual operator . It
can be defined as the operation such that V «, 5 € AP(M)

1
aAxf = Hammupﬁ“lm“p volp, (A1)
with volp the volume form of M. The form xa € AP~P(M) is called the Hodge dual of o, and its

components are [51]

Al lg]
(*a)up+1...uD = Tamm“pgul...upupg...,uD = p| am...upgylm .. -gypupgm...up (A'Q)

with ¢ the Levi-Civitta symbol and g the determinant of the metric tensor. The Hodge star operation
applied twice to a € AP(M) yields

wxa = (=1)PPPg(g)a, (A.3)

where s(g) is the sign of g. We have s = 1 for Riemannian and s = —1 for Lorentzian manifolds.
When D = 2m is even and (—1)™’s(g) = 1 such that = * & = a for m-forms, one can impose on

them a self-duality or anti-self-duality condition

* o = ta. (A.4)

Vielbein

The vielbein on a D dimensional manifold M, also called tetrad or frame field, is a set of D vector
fields eq(z) with @ = 0,..., D — 1 that form an orthonormal basis of the tangent bundle T'(M) at
every point z € M, i.e. they locally diagonalize the metric [36, ch. 2]. For a Lorentzian manifold
they are one timelike and D — 1 spacelike vector fields, and physically correspond to a family of
ideal observers at spacetime whose world-lines are the integral curves of the timelike one. At each
point along these world-lines the spacelike vectors correspond to the axis of a local laboratory frame.
We write them

eq(r) = el (x)0,, (A.5)

and from the above definition

Nab = gy () e () (), (A.6)

with 74 the metric of flat D dimensional Minkowski spacetime. Note that, from the fact that the

vielbein locally diagonalizes g, (), the determinant of the D x D matrix ef () is e = det(ef;) = \/—g.
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One can define the dual frame fields raising and lowering indices with the appropriate metric tensor,
ie. ej(z) = n%g,(z)e¥ (). Under a Lorentz transformation in the flat local coordinates the fields

transform
ei(x) = (A7), (@)ef (), el (@) = (A1) (@)eh (@), (A7)

while under diffeomorphisms on M they transform as contravariant and covariant vectors respectively.
All tensorial quantities on the manifold can be expressed in the local frame using the vielbein and
its dual:

Tty b (2) = € () el (m)ezll (z)... eZZ (x)THLtm (). (A.8)

B Spinors

We briefly introduce here the different types of spinors used in supergravity theories. We refer to
[30] for a more detailed treatment of the following content. In order to work with spinors one needs
to consider the Clifford algebra associated with the Lorentz group. This algebra is generated by the

gamma matrices satisfying
{v" 7"} =291 (B.1)

There is a unique (up to conjugation) irreducible representation of the v* matrices by 2™ x 2™
matrices in spacetime dimension D = 2m. For odd dimension D = 2m -1, there are two inequivalent
irreducible representations by 2™ x 2™ matrices. The dimension of the irreducible representation

D/2]

is then always 2[P°/2 A basis for the Clifford algebra is given by I, v* and all their independent

products, and is denoted
T4 = {1 q#,yfH2, L ypeiny (B.2)

with g < po < ... < pp and y#-#r =~ At where the antisymmetrization has total weight
one and r is the rank of the element. For even D the algebra has dimension 2°. The highest rank

element y#1-#D is usually denoted ypy1 and defines the chiral projectors

1 1
Py = 5 (I +~p+1) and Pr = 5 (I —vp+1)- (B.3)

For odd dimension D = 2m + 1 the basis contains the elements given in (B.2) but only up to rank
m. There exists a so called charge conjugation matrix C' such that every matrix CT# is either

symmetric or antisymmetric, depending on the rank r of T':
(€T’ = —,cTA  with 4, = +1. (B.4)

The numbers ¢, depend on the dimension D with periodicity 8, i.e. they are the same for e.g. D =4

and D = 12. This symmetry property allows to write the complex conjugate of a gamma matrix as
(v*)* = —tot; By*B~! with B = ityCH°. (B.5)
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Majorana spinors

The Majorana conjugate of any spinor v is defined
=y, (B.6)
such that )19y is Lorentz invariant. Next, one defines the charge conjugate of a spinor as
¢ = Bly*, (B.7)

with 1* the complex conjugate spinor. This allows to impose a generic reality constraint on any
spinor v, which is

=9 —= " =DBy. (B.8)

This constraint is compatible with Lorentz symmetry and a spinor ¢ satisfying it will have half of
the components of a Dirac spinor, i.e. 2[P/2=1 complex components. Taking the complex conjugate
of the right hand side of (B.8) one finds ¢y = B*B1), so the reality condition is only consistent if
B*B = I, which implies ¢t; = —1. If one has in addition ¢y = 1 the spinors satisfying (B.8) are
called Majorana. This only happens for D = 2, 3,4 modulo 8. In these dimensions one can find
representations such that B = I, the Majorana condition is then ¥* = ¢ and the field is actually real.
For D = 8,9 modulo 8, where t; =ty = —1, the spinors satisfying (B.8) are called pseudo-Majorana

and a real representation is not available.

Majorana-Weyl spinors

Recall that a Weyl spinor is a massless field with well defined chirality, i.e. Py = ¢ or Pry = 1.
For spacetime dimension D = 2 modulo 8, the reality condition (B.8) and the Weyl condition are
compatible. In other words, each chiral projection of a Majorana spinor 1 satisfies the reality

condition:

(Pra)© = Pra, (Prip)® = Pra, (B.9)

so it is Majorana as well. In these dimensions the most fundamental spinors are taken to be those
that satisfy both constraints, called Majorana-Weyl spinors, because they have the least number of

[D/2]-1

independent components: 2 real ones.

Symplectic Majorana spinors

When t; = 1 the reality condition (B.8) is not consistent and cannot be imposed. This occurs for
D =5,6,7 modulo 8. One can, however, define a different reality condition using an even number

of spinors x* with i = 1,...,2k and a 2k x 2k invertible real skew-symmetric matrix €2
X=50¢)° = () =95BY. (B-10)
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As now B*B = —I, the matrix Q must satisfy Q% = —I in order to get x* when complex conjugating
the right hand side. There is an internal group acting on the indices 4, j, i.e. transforming

X' — M ijxj. It must be consistent with the above definition, so omitting 7, j indices we have
(Mx)* = QM By — X = (M*)"1QM By — (M*) oM = Q. (B.11)

The transformation matrices M belong then to the symplectic unitary group USp(2k) of unitary
matrices satisfying M TQM = Q [52, ch. 5]. For that reason this class of spinors are called symplectic
Majorana spinors. They have 2[P/2 real components, but as they necessarily come in pairs the
minimum number of components effectively doubles. In D = 6 modulo 8 dimensions it is also
possible to combine this reality constraint with chirality, such that the fundamental spinor is the

[D/2]-1

symplectic Majorana-Weyl spinor. They have 2 real components so the minimum number in

six dimensions is 8.
The information given in this appendix about the fundamental spinor for every dimension and

its number of real components is gathered in table 1.

C Three-form G of the solutions

The three-form G for the solution studied in section 5 is written here. As mentioned there, its
calculation is different for different regions of the manifold due to the signature changes of the base

metric, but the final result is the same. We have

a?r? 4 2ar — 1 vy yar(2 + ar)
=————dvAduld ———dvANdYp Ndr - —= Odv A dr A d
¢ 2u(1 + ar)? vAdu i drt (1+ ar)? vAdY Adr (14 ar)? cosfdv A dr A dg+

2
yars cy cy
Odv ANdONdp — ———duNdp Ad —_— Odu A dr A dop—
+ +arsm v 10) 0+ ar)? w A d T+(1+ar)2 cosBdu N dr A do
yer | 1o w(l —ar) .
— Odu ANdO Ndp — —— Ody Adr Adep — ———=sinOdy A df A d¢.
1+ ar 7o ¢ (14 ar)? cos bdyp A dr 1 dg 21+ ar) sin fdy ¢

(C.1)

We can write an expansion of G' in powers of 7 to study how the transformation M, affects it. The

result up to first order is

1
G=——dvAdundr—"Ysin0dy AdoAdp+(doAdip A dr—
2p 2 (C.2)

—cdu A dip A dr 4 ccosOdu A dr A dp — ersinOdu A df A dg) + O(5?).

The zero order part is of course the AdS3 x S3 three-form (4.22). Notice that one of the first order
terms is linear in r, so a small transformation M, already changes noticeably the matter content in

the asymptotic region.

In section 6.1 we have transformed the previous solution with the Sp(6,R) element M,,. The
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resulting three-form is

1
G = dv A du A dr + ydv A dy A dr — yar(2 + ar) cos dv A dr A dp+

1 o?r? + 201 —
(1+ar)? [ 24
+ yar?(1 + ar)sinfdv A df A dp + ve(1 — 8ny?) cos Bdu A dr A dp — ye(1 — 8ny?)du A dip A dr—
—v(1 + ar)[er + 2n(1 — ar)]sinfdu A df A dé — pa(l — 8ny?) cos Odip A dr A de+
+ g(azrg —1)(1 — 8ny?) sin Odep A dO A dop|.

(C.3)
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