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Abstract

In this work we analyze the Swampland Distance Conjecture [1] for the field space of scalar
fields, called the complex moduli, that arise in Calabi-Yau threefold compactifications. The
Swampland Distance Conjecture states that at any infinite distance point in this moduli
space an infinite tower of states will appear, rendering the effective 4D theory unphysical.
This is very important when one attempts to realize inflation with a large field distance
from string theory, as in essence this renders the complex moduli unable to be identified
with the inflaton that causes this type of large field inflation. In this work we elucidate
the above motivations for studying the Swampland Distance Conjecture, after which we
connect the Swampland Distance Conjecture in physics to the mathematical Wang conjecture
[2]. For a moduli space with singularities encoded on subspaces called divisors the Wang
conjecture states that the metric on the moduli space diverges if and only if the divisors
have monodromies of infinite order. In [3] a connection between infinite order monodromy
matrices and infinite towers of states is postulated, bridging the gap between the Wang
and Swampland Distance conjectures. Wang himself already showed that an infinite order
monodromy is a necessary requirement for an infinite field distance to arise[2]. In this
work we study the mechanism behind the Swampland Distance Conjecture, by considering
whether having such a monodromy is also a sufficient condition for the divergence of the
field distance. We review a proof by Lee [4] of specific cases of this sufficient condition of
the Wang conjecture. The cases we revisit and clarify assume the singularity to be located
on the intersection of up to two divisors. Finally we present a new result, by giving new
criteria for the field distance to diverge, in the case of a singularity on one infinite and one
finite divisor in two dimensions.
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Chapter 1

Introduction

Within string theory there is a vast amount of consistent effective theories arising from
the equations of motion. These consistent theories are said to lie in the string landscape.
Because of this very large amount of possible solutions it is not clear whether string theory
can make any real predictions at all, as it appears that, with the right compactification
scheme, one could construct any theory one wants to find. Then came the claimed BICEP-2
measurement of tensor modes in the CMB spectrum, which would imply a large inflationary
field distance. Inflation can be parametrized by a field called the inflaton, which acts as
an order parameter for inflation. The difference in value of the inflaton field from one time
to the next is referred to as the field distance, or field range. This lead to string theorists
revisiting the following question: “is it possible to engineer transplanckian field ranges from
string theory?” That is, is it possible to create a 4D effective theory, from string theory,
which can source inflation with a large inflaton field distance. Realizing such inflationary
theories proved difficult however, as the inflationary models were plagued by problems. One
of these is the moduli stabilization problem, where fields related to the geometry of the string
landscape, called moduli, are too energetic for too long, thereby being relevant well into the
early universe and ruining nucleosynthesis. Because of these problems string theorists were
hard-pressed to achieve high enough field distances, in a straightforward manner.

The growing pile of string theories that were unable to source large field inflation lead
Ooguri and Vafa[1] to consider a simplified question “is it possible to engineer parametrically
infinite field distances in string theory?” In order to come to an answer they conjectured
the following: any theory that is consistent as a quantum gravitational theory breaks down
if one lets a field distance traveled in the space of moduli (which is just the field space for
some specific string theoretical fields) diverge. That is, they conjectured that the divergent
field distance leads to the emergence of an infinite tower of massless states that have to be
incorporated into the effective theory, rendering the theory invalid. They therefore answered
the simplified question, where the field range is taken to infinity, with a no. This would
make it impossible to write down UV-complete 4d effective theory in which a moduli field
is identified to be the inflaton that sources large field inflation. To use the terminology
introduced earlier: any theory which is located in the string theory landscape has this
inability to realize transplanckian field distances. Hence their conjecture was named the
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swampland distance conjecture (SDC).

As of now the SDC has been expanded into the refined swampland distance conjecture
(RSDC)[5]. This conjecture specifies the field distance at which the effective theory breaks
down to be ∆φ ∼Mpl, the Planck mass.

The (R)SDC is still a conjecture however. More evidence is needed to verify it and also
to understand the connections between the field distance and the appearing infinite tower
of states. Proving it in full generality is a difficult task: to begin, we therefore restrict
ourselves to a particular corner of string theory; those 4d effective theories with a scalar field
realized as a complex modulus (i.e. the field describing the complex properties of the string
manifold) of a type IIB compactification. Restricting ourselves to these solutions gives us
the possibility to use the already existing mathematical formalism of the moduli space.

In this thesis we attempt to motivate the SDC from a mathematical point of view, by
studying the theory behind infinite distances in the moduli space. We hope to give strong
evidence for the link between a divergent field distance and the emergence of an infinite
tower of massive states (hence also evidence for the SDC) through the mathematical Wang
conjecture. This conjecture pertains to moduli spaces, and relates a divergent field distance
to the existence of a monodromy of infinite order.

We begin by developing the knowledge necessary to understand how the measurements of
CMB tensor modes could be relevant for string theory. As such we begin with a short review
of large field inflation and tensor perturbations, following with a review of the conjectures
seeking to limit the field distances realizable from string theory. Having explained the pre-
dictive power of tensor modes in the context of string theory, we then, in chapter 3, consider
the basics of string theory compactifications. This chapter explains the origin of scalar fields
in 4d effective string theories, and introduces the concept of the moduli space. With our
understanding of the moduli space, and the relevance of distances therein, we are ready to
study the divergence of distances in the moduli space and the Wang conjecture. This is what
chapter 4 focuses on.
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Chapter 2

Large field inflation and the string
swampland

In this section we shall consider the theory of inflation, and the way in which it influences
the evolution of the metric. Inflation is postulated as a solution to the horizon and flatness
problems[6], by making the Hubble radius (aH)−1 decrease at early times. This criterion is
equivalent to accelerated expansion of the universe, ä > 0. When considering inflation from
a field theoretical point of view we think of a field φ, the inflaton, which drives inflation.
This is explained in a bit more detail in appendix A.

Within inflationary theories we can differentiate between those theories in which the inflaton
traverses a subplanckian field distance (∆φ < Mpl) while sourcing inflation, and those where
the inflaton traverses a transplanckian field range (∆φ > Mpl). The former class of theories
is labeled large field inflation. This field range is measured by the tensor to scalar ratio r
and can be observed in CMB fluctuations. It turns out that, for an observable value of r, the
field distance has to be of the order of the Planck distance ∆φ ∼Mpl. This bound is called
the Lyth bound [7]. In this chapter we will provide the motivation for the Lyth bound.

Were tensor perturbations to be discovered in the CMB, the Lyth bound would imply that
during inflation the inflaton traverses a transplanckian field range. An inflationary model
where this is the case is called large field inflation. In this chapter we will restrict ourselves to
large field models and mention some points about them. Note that, from a field theoretical
point of view, finding such a large field range would be surprising, as this requires the
potential to be flat for a long enough time. Inflation however is a UV-sensitive theory, and
one would expect Planck-suppressed operators to ruin the flatness of the potential in the
UV-limit. One does not allow this to happen though, as such a potential would spoil the
inflationary mechanism. This suggests that inflationary models have a shift symmetry to
protect the potential from change. This shift symmetry needs to be unbroken also in the
UV-limit, which requires inflationary models to have a UV-completion.

Realizing large field inflation from string theory could therefore lead to a measurable pre-
diction for r, as well as UV-complete theories for inflation. This motivates one to ask the
question “is it possible to engineer transplanckian field ranges from string theory?” As was
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Figure 2.1: Picture showing the anisotropies in the CMB temperature. In the field of
cosmology one can model the correlation of fluctuations in the temperature. Source: Planck
collaboration.

mentioned in the introduction, this question is difficult to answer, and therefore the (Re-
fined) swampland distance conjectures [1, 5] began by conjecturing the answer to the slightly
simpler question, “is it possible to engineer diverging moduli space1 field ranges from string
theory?” to be no.

To motivate the conjecture we shall look at a simple example, where the inflaton is identified
with the complex structure modulus arising from the string compactification on a circle.
One should note that inflation has also been realized from string theory in different, more
complicated ways[8, 9], which with the methods presented in this work are beyond our reach
to consider.

In this chapter we shall introduce large field inflation and motivate the Lyth bound. Having
motivated the question of realizing large field inflation from string theory, we shall then
consider the conjectured answer by looking at the (R)SDC.

2.1 Inflation and the Lyth bound

When looking at the temperature distribution in the CMB 2.1 we observe that the universe
is not perfectly homogeneous and isotropic. One finds patches of slightly higher, and some
of slightly lower temperature. These fluctuations away from a homogeneous solution are
small however. Therefore this phenomenon can be explained by quantum fluctuations to the
classical background evolution of the inflaton φ(t). Because of these fluctuations inflation
will end earlier or later in different disconnected patches, leading to different parts of the
universe undergoing different types of evolution.

1Remember that the moduli space is simply the name for the field space of some specific string theoretical
fields, namely those describing the structure of the manifold on which one compactifies.
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These same inhomogeneities in the CMB also lead us to consider perturbations to the back-
ground metric ηµν . The various components of the metric fluctuations can then be studied
using cosmological perturbation theory.

In this section we will briefly motivate (omitting all calculations) how one can combine the
quantum fluctuations to the inflaton with cosmological perturbation theory to derive the Lyth
bound. This is a relation between the field distance traversed by the inflaton during inflation
and the ratio of tensor-to-scalar metric perturbations. We will see that, in order to have an
observable tensor-to-scalar ratio, the inflaton field distance needs to be transplanckian.

Having obtained this motivation to study large inflaton field distances, we will briefly review
large field inflation.

The review we present in this section will follow [6]. Some notation, the basics of inflation
and some important notions of cosmology, like the Hubble radius, have been collected in
appendix A. For the motivations behind inflation and a more detailed discussion see [6].

2.1.1 Metric perturbations

The starting point for our discussion is the inflaton Lagrangian as written in (A.23),

S =

∫
d4x
√
−g
(

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
=: SEH + Sφ. (2.1)

We define the following perturbations around the homogeneous background solutions φ(t),
gµν(t) for the inflaton and metric respectively

φ(x, t) = φ(t) + δφ(x, t), gµν(x, t) = gµν(t) + δgµν(x, t). (2.2)

We can then decompose the metric into scalar, vector and tensor modes to find

(2.3)ds2 = gµνdx
µν

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2 [(1− 2ψ)δij + Eij] dx

idxj,

where

Bi := ∂iB − Si, ∂iSi = 0, (2.4)

Eij := 2∂i∂jE + 2∂(iFj), ∂iFi = 0, hii = ∂ihij = 0. (2.5)

We have therefore decomposed the metric gµν into scalar perturbations E, Ψ, Φ and B,
vector perturbations Si and Fi and a tensor perturbation hij. The vector perturbations Si
and Fi decay as the universe expands. Also, they are not sourced by inflation[6]. As such
we will ignore them in the rest of this discussion.

The relevant parameters to us will therefore be E, Ψ, Φ, B and hij. The scalar perturbations
will be responsible for density fluctuations in the late universe, and the tensor fluctuations
as gravitational waves.
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Gauge-invariant parameter

Because of the gauge freedom present in general relativity it is necessary, in order to get a
physical answer, to define gauge invariant scalars out of the scalars considered above. We
note that hij is already gauge invariant, and therefore does not have to be treated.

The most relevant gauge invariant quantity to this discussion is the comoving curvature
perturbation,

R := Ψ− H

ρ+ p
δq, (2.6)

where H is the Hubble parameter, ρ, p are the background energy density and pressure
respectively and δq is related to the scalar part of the 3-momentum density; T 0

i = ∂iδq.

In the epoch of inflation we know the behavior of the stress-energy tensor[6] to be T 0
i =

−φ̇∂iδφ. Hence

R = Ψ +
H

φ̇
δφ. (2.7)

In the next section we shall consider the Fourier transform of the scalar and tensor pertur-
bations, namely Rk and hk. We can compare the mode k of the perturbation to the charac-
teristic wave number of the universe, (aH)2. It can be shown that, when |k| = k < aH, the
perturbations freeze out, meaning that they remain constant3.

We know that, by definition, (aH)−1 shrinks during inflation. We can therefore talk about
modes exiting the horizon (as k < aH), and entering the horizon again (as k > aH) at a
later time. We will use these ideas later on.

2.1.2 Power spectra of cosmological perturbations

Due to the uncertainty in the initial conditions of the universe we have to work with statistical
quantities when doing measurements. The perturbative approach given above could therefore
never supply us with an estimate for the value ofR. Instead we consider the statistics through
its two-point correlation function 〈RxRx′〉. Given a value of Rx at x, this function describes
the chance of finding a valueRx′ at position x′. Using our assumption that the background of
the universe is isotropic and homogeneous we can Fourier transform this correlation function
to

〈RkRk′〉 = (2π)3δ(k + k′)PR(k), ∆2
s := ∆2

R =
k3

2π2
PR(k). (2.8)

2This characteristic wave number is of course derived from the characteristic length scale (aH)−1 as
mentioned in appendix A.

3Intuitively this is because the wavelength of the mode is larger than that of the causally connected
universe; different points on the wave are therefore no longer in causal contact and cannot evolve.

9



Where P denotes the power spectrum. The power spectra of the gauge invariant scalar and
tensor modes, R and hij, are very important in considering their primordial fluctuations.
We will assume the statistics governing the early universe to be Gaussian, which means that
all the information is absorbed in the two-point function shown above.

We can split the tensor modes up into two polarizations; h = h+, h×. The power spectrum
for the two polarization modes is then defined to be,

〈hkhk′〉 = (2π)3δ(k + k′)Ph(k), ∆2
h =

k3

2π2
Ph(k). (2.9)

The presence of the two polarization modes then motivates us to define the full tensor power
spectrum as,

∆2
t := 2∆2

h. (2.10)

2.1.3 Calculating the power spectra from inflation

We would now like to calculate these two power spectra in the context of inflation, and see
what results this leads us to.

Scalar perturbations

Beginning with the action for single-field slow-roll inflation,

S =
1

2

∫
d4x
√
−g
[
R− (∇φ)2 − 2V (φ)

]
, (2.11)

with M−2
pl := 1. After fixing the gauge as in [6] one can expand this action up to second

order in the perturbations R in order to find the following scalar action,

S(2) =
1

2

∫
d4x

φ̇

H2

[
Ṙ2 − a−2 (∂iR)

]
a3. (2.12)

We will now omit the further calculations, and merely mention the steps taken in [6].

First one uses the Mukhanov variable to re-parameterize the action. This leads to some
equations of motion, for which we need boundary conditions in order to find a solution. We
therefore quantize the action, the normalization of operators giving us our first boundary
condition. The next boundary condition on the modes is given by the fact that, in the far
past (τ → −∞) the vacuum state of the fluctuations is the Minkowski vacuum.

This makes it possible to compute the power spectrum of R, the moment when the wave-
length of the modes k is of the order of the Hubble scale (i.e. at horizon crossing, a∗H∗ = k).
We assume that this happens during inflation, such that the slow-roll approximation still
holds. The R power spectrum can then be related to inflation through

∆2
R(k) =

H2
∗

(2π)2

H2
∗

φ̇2
∗
. (2.13)
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Note that, as the mode no longer evolves, the power spectrum is fixed to this value until
horizon re-entering. This makes it very valuable to measure upon re-entering, as it supplies
us with knowledge on inflation and the early universe.

Tensor perturbations

Analogously we can also expand the action (2.11) up to second order in the tensor modes
hij,

S(2) =
M2

pl

8

∫
dτdx3a2

[
(h′ij)

2 − (∂lhij)
2
]
, (2.14)

where h′ij denotes the derivative of hij with respect to the proper time, and introduction of
Mpl is done to make hij dimensionless. Performing a similar, but simpler, procedure leads
us to the tensor power spectrum,

∆2
t = 2∆2

h(k) =
2

π2

H2
∗

M2
pl

. (2.15)

2.1.4 The Lyth bound

It is useful to express tensor fluctuations as normalized with respect to the scalar fluctuations.
This leads one to define the tensor-to-scalar ratio r,

r :=
∆2
t (k)

∆2
s(k)

. (2.16)

Using equations (2.13) and (2.15), we can express this ratio in terms of the evolution of the
inflaton as a function of the number of e-folds,

r =
8

M2
pl

(
dφ

dN

)2

. (2.17)

Taking the square root and integrating both sides we observe that it is possible to express
the inflaton field range ∆φ in terms of the tensor-to-scalar ratio r(N),

∆φ

Mpl

=

∫ Ncmb

Nend

dN

√
r

8
. (2.18)

Making the final observation that, during inflation, the tensor-to-scalar ratio does not change
much as a function of N we can approximate it to be constant, and find the Lyth bound [7],

∆φ

Mpl

' O(1)

(
r(Ncmb)

0.01

)1/2

. (2.19)
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The value that a chosen model has for the scalar to tensor ratio therefore directly influ-
ences the field range; for r > 0.01 we find that ∆φ > Mpl. An inflationary theory with a
transplanckian field range is referred to as large field inflation.

The growth of scalar and tensor modes influences the CMB spectrum. As such their values
can be observed by analyzing the CMB, as was done by the BICEP-2 measurement men-
tioned in the introduction. It is through the Lyth bound that observations could lead to
a confirmation of large field inflation, and the need for string theory to produce effective
theories with transplanckian field ranges.

2.2 Swampland Conjectures

In the previous section and in the introduction we motivated the benefits of considering large
field inflationary models, and attempting to find an effective string theory realizing this. It is
widely known that the various compactification schemes, parameters and geometries possible
within string theory lead to an entire host of string theories: estimated to go up to O(101500)
[10]. This lead to people referring to the “landscape” of viable string theories, which is
distinguished from a “swampland” of theories which are proven to be inconsistent in some
way.

In this section we will restrict ourselves to those effective theories in which a moduli field4

is identified with the inflaton driving large field inflation. In other words, we want to
study which effective theories the field distance in the moduli space can be transplanck-
ian; ∆φ > Mpl. In this section we will review The swampland distance conjecture (SDC)
[1], which declares that any consistent quantum gravitational theory breaks down for such
field distances.

The SDC states that letting the moduli field value vary over any geodesic of infinite distance
leads to a breakdown of the effective theory. Note that the SDC does not mention what
the cutoff ∆p is up to which the effective theory is still valid. The recently proposed refined
swampland distance conjecture [5] improves on the SDC by stating that the allowed field
range is of the natural order; the Planck scale.

This chapter therefore acts as the “glue” between the various parts of this work. When
building an inflationary model from string theory the question of possible field ranges for
string moduli, which is discussed here, arises naturally when one considers the inflaton field
range that is required to reach 60 e-folds of inflation. As, for class of theories chosen earlier,
the inflaton inhabits the moduli space, the mathematical approach to studying distances in
the moduli space taken in chapter 5 is warranted.

In this chapter we will consider the (R)SDC and physical examples thereof. In contrast to
chapter 4, where we will use the mathematical Wang conjecture2 to motivate the (R)SDC.

4Remember: this is a field describing the geometry of the string space, its field space is referred to as the
moduli space
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2.2.1 Swampland Distance Conjecture

The Swampland Distance Conjecture (SDC) is a conjecture proposed by Ooguri and Vafa [1].
In [1] it corresponds to conjectures 1 and 2. The essence of these conjectures is as follows.

At any infinite distance singularity in the moduli space an infinite tower of massless states
will appear, meaning that for this field value one actually has to incorporate an infinite
amount of states into the effective theory. Since this is impossible within a gravitational
theory the effective theory becomes unphysical at that point.

When trying to realize large field inflation from a string theory one attempts to approach
such singularities, meaning that one then reaches a point where an asymptotically infinite
number of states have to be included in the effective field theory. This means that, in order
for the theory not to break down, the inflaton field can only slow roll up to that cut-off.
This in turn leads to a reduced proper field distance which may be less than 60 e-folds, and
is therefore unable to produce inflation.

Note that the SDC does not make a statement on what the cut-off is up to which the effective
field theory would still be valid.

Ooguri and Vafa formulated the conjecture as,

Conjecture 1 (Swampland Distance Conjecture) Let M be the string moduli space,
spanned by the expectation values of the string moduli. Let d be the hermitian metric on M
and let p0 ∈M.

For any L ∈ R>0, there exists another point p1 ∈M such that d(p0, p1) > L.

Moreover, denote now by pL any point such that d(p0, pL) > L. The theory at which the field
takes the value pL has an infinite tower of light particles in comparison to the theory at p0.
These particles have a mass of e−αL.

This implies in particular that there always exists a point p∞ which is at infinite distance
from p0, and at which point the effective theory needs to incorporate an infinite tower of
massless states, hence becoming unphysical.

Example of the SDC

The authors of [1] present several examples of effective string theories where the SDC holds.
We will consider one of them here.

Consider the compactification of M -theory in 10-dimensions, on a circle. For the correspond-
ing Kaluza-Klein expansion we refer back to equation (3.3),

Φ(XM) =
∞∑
n=0

einy/Rφ(xµ), M2
KK =

n2

R2
. (2.20)
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In this case we note that we have one modulus r which is related to the radius of the circle.
The metric on the moduli space is given by

g =

(
dr

r

)2

. (2.21)

As we compactify on a circle we only have the one parameter y, such that there is no path
dependence. We find the following distance between a point r and r0,

L(r) =

∫ r0

r

dr′

r′
t = |log(r/r0)| . (2.22)

Note that the logarithm is a monotonically increasing function, which means that we can
always find an r′ such that L(r′) > L(r), as per the conjecture1.

Defining now ρ = λ−1 log r ∝ L(r), with λ ∈ R>0 we can express the Kaluza-Klein mass in
a different way

MKK ∼
n

r
∼ ne−λρ, (2.23)

which is the dependence conjectured in 1. As we take r −→ ∞ the distance L(r) also
diverges, leading to a an infinite tower of massless states, and an unphysical theory.

We can even say that, depending on the chosen mass cutoff of our theory, for ρ > ρc = λ−1

we find an infinite tower of exponentially light states. These all have to be incorporated
into the effective field theory, indicating again that the effective theory has to break down.
As demonstrated in [11] this parameter λ emerges when writing out the field distance L(r)
using our knowledge of the Calabi-Yau structure.

In the attempt to generalize the Wang conjecture to more than one parameter in section 4.2
we will again try to find a 1/r2 dependence in the metric, but now for a general case, as such
a dependence always leads to a divergent distance for r →∞.

Refined Swampland Distance Conjecture

In the previous section no mention was made about the actual value of ρc at which the theory
becomes unphysical. Palti and Kläwer conjecture the critical distance dc = λ−1 to always
be of natural order[5], i.e. for α ∈ R and of order 1, λ = αMpl. This conjecture was dubbed
the Refined Swampland Distance Conjecture (RSDC) and would imply that super-Planckian
field ranges lead to unphysical theories.

The authors of [5] have checked and confirmed their conjecture for several manifolds. They
consider for example a case with two singular divisors, one finite and one infinite. Their
next step consists of analyzing the field distance one can traverse from in approaching these
singular divisors. This of course requires you to find the metric; in chapter 5 we will show
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Figure 2.2: Picture showing the Kähler moduli space for a specific example. In the picture we
can distinguish between three points; the Landau-Ginzburg (LG), large volume and conifold
points. The dotted line represents the radius of convergence for the two expansions of the
metric. Source: [10], figure 1.

how one can expand the metric around a singular point using the corresponding monodromy
matrix. Here however we will merely assume this to be possible.

It follows that the presence of two singular divisors leads to two different expansions for the
metric, each with their own cut-off and valid only in an area around the singularity. If we
want to move from a small volume area near a finite singular divisor, to a big volume area5

near an infinite singular divisor we therefore have to cross some domain wall, where the
expression for the metric changes. This is represented in figure 2.2.1, where the domain wall
is given by the dotted line. The patching together of the metric expansions to get a global
expansion of the metric is still an open problem. In [5] the authors therefore approach the
problem by calculating the maximum field distance one can travel from the small volume
limit to the large volume limit, after which they consider the path from the large volume
towards the infinite distance singular divisor.

In the notation of the previous part the critical distance for a point in the large volume region
would be λ−1

c . However, as explained, if one wants to reach a point at infinity from the small
volume region one first has to transition from the small volume to the large volume region.
We will denote the maximum distance one can travel in field space to complete this transition
by θ0. The critical distance for a point in the small volume region is then θ := θ0 + λ−1

c .

Now the small volume region posits a way to falsify the RSDC; if θ0 > Mpl, then the

5The small volume area is finite, hence small.
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parameter α := θ/Mpl > O(1), contrary to what the RSDC predicts. In [11] more possible
moduli spaces were considered, where for all cases it was shown that θ0 < 1 and λ−1

c < 1,
verifying the RSDC so far.
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Chapter 3

Deriving the effective theory: IIB
compactification

Within string theory one starts by analyzing the superstring action, which depending on the
chosen type of GSO-projection leaves one with an effective 10-dimensional theory, containing
several fields describing the dynamics of our string modes. Using these modes this chapter
aims to build the effective 4-dimensional string vacuum from the type IIB theory.

When the alleged discovery of tensor modes seemed to have confirmed large field inflation
via the Lyth bound, string theorists attempted to realize such an effective 4D theory, and
thereby explain large field inflation from string theory. In doing so some of the effective
fields arising in the compactification procedure have to be identified with the inflaton driving
inflation. In this chapter we go over a relatively simply compactification, that of the type
IIB superstring, to show the emergence of a popular candidate for the inflaton: the scalars
describing the complex structure of the manifold, called the complex moduli. Remember that
the Swampland Distance Conjecture 1 would tell us that at any infinite distance point in the
space spanned by the complex moduli, i.e. the moduli space, an infinite tower of massless
states would appear. In other words, a diverging field distance in the moduli space leads to a
breakdown of the 4D effective theory. The Swampland Distance Conjecture would therefore
tell us that, in a consistent theory of quantum gravity, the complex moduli are actually not
able to source large field inflation.

In this chapter we will also mention the properties of the moduli space, details of which
are left to the appendix C. These properties can be very well described using algebraic
geometrical tools that are extensively used in chapters 4 and 5.

There are two important points in building the vacuum for an effective theory. The first is
that there is a discrepancy in dimension; we know that in general relativity we model our
world via a 4-dimensional Minkowski spaceM4. A realistic physical theory should therefore
be 4-dimensional rather than 10-dimensional. The simplest possibility would be to consider
that the 10-dimensional manifold has a product form Mdc = Md × K6, where K6 is a
compact manifold which we have not yet detected in experiments. Note that for this to be
true the characteristic length scale of K6 should be much smaller than that measured by
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particle accelerators; this enables us to see a low energy effective theory which is located on
M4.

The second point is that we would like the 4 dimensional effective theory to be supersymmetric[12].
This greatly simplifies some properties in string theory and could solve for example the hi-
erarchy problem.

Next we can wonder how to realize the above two points. The discrepancy in dimensions
leads us to the concept of compactification; a way to reduce the number of dimensions from
dc = 10 to d = 4 by considering the low energy effective theory. We do this by splitting
our fields into a part which depends on the internal manifold K6, and a part which depends
on the external manifold M4. This idea is well illustrated by considering the metric. On
a product manifold the background metric, which is also a 10-dimensional field, splits in a
useful way

GMN(x, y) =

(
gµν(x) 0

0 gmn(y)

)
. (3.1)

The indices we use here and in most of the remainder of this work are capital latin letters for
the full 10-dimensional theory, small latin letters for the internal manifold and greek letters
for the external manifolds. A point in the 10 dimensional theory is denoted Xm = xµ, ym

with xµ ∈ M4 and ym ∈ K6. Note that this choice for the metric also allows us to split the
laplacian as ∆dc = ∆d + ∆D.

The properties of the manifold K6 will determine the physics we observe in the 4-dimensional
theory. This includes the conservation of supersymmetry as we compactify from 10 to 4
dimensions: this is only possible if the internal manifold K6 admits a Ricci-flat metric [12].
As such we will choose K6 to be a Calabi-Yau manifold CY3. A Calabi-Yau n-fold is a 2n-
dimensional complex, Kähler manifold which admits a Ricci-flat metric, the details to this
are worked out in appendix B and C. The Kähler structure enables us to properly reduce
the 10-dimensional fields dependent on Xm to 4-dimensional fields dependent on xµ.

The rest of this chapter is dedicated to writing down the 10 dimensional IIB superstring ac-
tion and using the properties of the Calabi-Yau threefold to reduce the number of dimensions
to 4 through compactification.

3.1 Kaluza-Klein reduction

We will first illustrate the idea of compactification in a simpler example. Consider a scalar
field φ(XM) in dc dimensions. We will take the internal manifold to be the one dimensional
circle S1, denote Xdc = y and call it the “internal coordinate”. The remaining d = (dc−D) =
(dc − 1) coordinates will be the “external coordinates”, denoted by xµ. We will now use the
geometry of the circle, specifically the periodicity, to expand the field φ into a part that lives
on the internal manifold and a part on the external manifold.
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The periodicity of the circle is realized as Φ(y) = Φ(y +R), with R the radius of the circle.
For such a field we can perform a Fourier transformation to find,

Φ(XM) =
∞∑
n=0

einy/Rφ(xµ). (3.2)

The quantities exp(iny/R) are solutions to the Laplace equation, and hence can be said to
have squared mass n2/R2,

∆einθ/R =
∂2

∂y2
einy/R = − n

2

R2
einy/R. (3.3)

If we consider the case where R is very small we see that the first mode already has a very
high mass. Keeping our energy cutoff small, it follows then that we can only take the n = 0
mode of our expansion into account when writing down the effective theory. This process
is called Kaluza-Klein reduction; reduction because we went from a dc to a d = dc − D
dimensional theory.

Our effective theory hence only consists of the massless d-dimensional modes (in the above
example this is φ). The problem in realizing the d dimensional effective theorey therefore
becomes one of finding all the massless modes. We will illustrate what this means in the
context of our internal and external space with another example, taking again dc = d+D.

Consider the p-form field B(p) with a field strength H(p+1). The dc-dimensional action for
B(p) will be proportional to,

S =

∫
Mdc

H(p+1) ∧ ∗H(p+1). (3.4)

If we fix our gauge condition by taking d∗B(p) = 0 then this has as equation of motion,

∆dcB
(p) = 0, (3.5)

where the Laplacian ∆ is defined in B, and the subscript dc denotes that it is the dc dimen-
sional Laplacian on the full space. Now assume that we can neatly split the form B(p)(XM)
in a part dependent on the internal coordinates and a part dependent on the external coor-
dinates:

B(p)(XM) =
∑
k

A(k)(xµ) ∧ Ã(k−p)(ym).

Using also that the laplacian splits over the internal and external space, ∆dc = ∆d + ∆D we
find that

∆dcB
(p)(XM) =

∑
k

(∆dA
(k)(xµ)) ∧ Ã(k−p)(ym) +

∑
k

A(k)(xµ) ∧ (∆DÃ
(k−p)(ym)) = 0,

and so,

∆dA
(k)(xµ) = 0⇐⇒ ∆DÃ

(k−p)(ym) = 0. (3.6)
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Remember that we were interested in finding massless modes for our d-dimensional theory.
The above relation tells us that in order to find all of these massless modes it is also sufficient
to find the zero modes of the internal laplacian, i.e. ∆d.

A form ω for which ∆Dω = 0 is called a harmonic form. Finding these harmonic forms is a
problem that can be tackled using the theory of cohomologyB, in which the structure of the
internal manifold plays a very important role.

3.1.1 The moduli space

The metric, being another field in our theory, can also be expanded in its zero modes. We
can decompose the metric itself through its indices as gMN → gµν ⊕ gµm ⊕ gmn. Each of
these components has a different structure with respect to the internal manifolds; gµν for
example is a scalar on the internal manifold, which means that it only has one zero mode in
its expansion C.

In turn gmn corresponds to 2-form in D dimensions. The metric gmn on the internal manifold
KD of course determines its structure; we would therefore like to analyze the behavior of these
modes further by considering perturbations from the background value: gmn = g̊mn + hmn.
These perturbations hmn are called the (metric) moduli.

Remember that we chose K6 = CY3, where the CY3 space was defined to be Ricci-flat. The
moduli therefore need to conserve this property, meaning that R(̊gmn + hmn) = 0.

What this means is that there are many consistent string vacua possible which have the
same topology, but a slightly different structure. An example of this is the radius R that we
considered in the compactification on a circle (3.3). This was a free parameter (up to the
point where we needed R small such that the energy scale of massive modes would become
sufficiently large) of our space, signifying the different circle sizes that could have been used
in the compactification process.

Using the equations characterizing the moduli (for example R(̊gmn + hmn) = 0) we can
define the moduli space, which consists of all possible values for the moduli. The space of all
complex structure moduli is also a Kähler manifold, as explained in C.

3.1.2 Further with compactification

Consider a theory with Φ(XM) coupled to gravity and electromagnetism. After having
written our field Φ(XM) only in terms of the field φ(xµ) we would like to expand the entire
theory in these modes, such that we are left with only a (d − 1) dimensional theory. To
achieve this we need to do a massless reduction of the metric tensor (i.e. write it out in
massless modes). Consider the following ansatz for the metric,

gMN =

(
gµν Vµ
Vν φ(xµ)

)
. (3.7)
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We note that none of the fields φ (which is a Kaluza-Klein field), Vµ or the external metric
g depend on the coordinate y. Next it is possible to expand the full metric gMN in its
indices again. The d dimensional metric then becomes the (d− 1) dimensional metric when
one considers only the external indices. When the indices are mixed between internal and
external we get a vector structure Vµ, and when the indices are purely internal we get a scalar
φ. We can therefore reduce the Ricci scalar R to a purely (d−1) dimensional expression[13],

R = R + FµνF
µν + ∂µφ∂

µφ.

This illustrates the general strategy when performing a compactification,

• Write down the 10 dimensional fields (gMN).

• expand the 10 dimensional fields, keeping only massless modes (gµν , φ, Vµ).

This is the step that will truly lead to a reduction in dimension, as for specific internal spaces
(in the Kaluza-Klein example it was a circle, in the type IIB example it will be a Calabi-
Yau manifold) one finds that the reduced, massless modes do not depend on the internal
coordinates.

• reduce the quantities dependent on the fields (in this example, R) by expanding them
as well.

When considering the action one has to still perform the integral over the internal dimensions,

• integrate out the internal dimensions.

The result is a 4-dimensional theory of supergravity.

3.2 Compactification of the type IIB theory

We are now ready to consider the compactification of the type IIB theory. In doing so we
will follow [13, 14]. The type IIB supergravity theory consists of a gravitational part; the
Ricci scalar R̂ and the dilaton φ̂, and a matter part. The NS-NS spectrum of the matter
part is made up of the dilaton and a 2-form B̂2. The R-R spectrum consists of a 0-form â,
a 2-form Ĉ2 and a 4-form Â4.

Note that the fields enter the action through their field strengths, which we shall introduce
momentarily. In working out the action we shall make use of the Hodge duality outlined in
appendix B. For the 4-form Â4 this poses a problem, as ∗F̂5 = F̂5 (i.e. F̂5 is self dual). This
means that we have an extra constraint, losing us half the degrees of freedom, which has to
be manually imposed on the action. The nature of differential forms however tells us that
∗F̂5 = F̂5 putting this condition into the action means that the kinetic term for Â4 vanishes,
as F̂ 2

5 = 0.

21



All of these fields can be written within the following 10-dimensional supergravity action,

(3.8)SIIB =

∫
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2dφ̂ ∧ ∗φ̂− 1

4
dB̂2 ∧ ∗B̂2

)
− 1

2

∫ (
dâ ∧ ∗dâ+ F̂3 ∧ ∗F̂3 +

1

2
F̂5 ∧ ∗F̂5

)
− 1

2

∫
Â4 ∧ dB̂2 ∧ dĈ2,

where â is the scalar axion coming from the RR-sector. Note that in this notation we omitted
writing down the metric

√
−g which multiplies all terms in the integral, at all times. The

fields strengths are given by,

Ĥ3 = dB̂2, F̂3 = dĈ2 − âĤ3, F̂5 = dÂ4 − Ĥ3 ∧ Ĉ2. (3.9)

We will begin by reducing the gravitational part of the action.

3.2.1 Reducing Sgrav

We can recognize the gravitational part of equation (3.8), which is

Sgrav =

∫
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2dφ̂ ∧ ∗φ̂

)
, (3.10)

We first note that the metric splits over our internal and external spaces as∫
M10

√
−g =

∫
M4

d4x
√
−g4

∫
CY3

d6x
√
g6. (3.11)

We then complexify the 6 real coordinates as,

ξ1 =
y1 + iy2

√
2

; ξ2 =
y3 + iy4

√
2

; ξ3 =
y5 + iy6

√
2

. (3.12)

In order to write down the volume form in these coordinates we define the 6-dimensional
Levi-Civita tensor with mixed indices as,

εα1α2α3β1β2β3 = −iεα1α2α3εβ1β2β3 , (3.13)

with the added condition that ε123123 = 1. Note that we can write the complex volume form
as

dξα1 ∧ ... ∧ dξαn ∧ dξβ1 ... ∧ dξβn = iεα1...αnβ1...βnd2nξ. (3.14)

Having done this we begin to expand Ricci scalar R̂ in its (complex) indices,

R̂ = RMNg
MN

= R P
MPN gMN

= R + gµνR α
µαν + gαβ

(
R µ
αµβ +R γ

αγβ +R γ
αγβ

)
+ gαβ

(
R µ
αµβ

+R µγ
αγβ

+R γ
αγβ

)
+ c.c.,

(3.15)
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where R is the 4-dimensional Ricci scalar. We expanded the coordinates M → {m,µ} →
{α, α, µ}, where the last step represents splitting the internal coordinates m into a real and
complex part as done with the ξ above.

We then proceed to expand the internal metric up to second order in the moduli fields,
as outlined in B. We define g = g̊ + δg, with g̊ the original background metric and δg
the perturbation leading to the moduli. Considering first the purely holomorphic metric
perturbations,

gαβ = za(ba)αβ (3.16)

gαβ = −za(ba)αβ g̊ααg̊ββ, (3.17)

with b the complex structure moduli as defined in appendix C. We now introduce the fol-
lowing notation to simplify our expressions a bit,

(ωig) = (ωi)αβ g̊
αβ (3.18)

ωiωj = (ωi)αα(ωi)ββ g̊
αβ g̊βα (3.19)

babb = (ba)αβ(bb)αβ g̊
αβ g̊βα. (3.20)

For the mixed perturbations we get,

gαα = g̊αα − ivi(ωi)αα (3.21)

gαα = g̊αα + ivi(ωi)ββ g̊
αβ g̊βα. (3.22)

Note that, as shown in appendix B, the Calabi-Yau structure implies that certain parts of
the Levi-Civita tensor vanish. We can use the expansions of the metric to find the only
non-zero components, which are

Γ β
µα =

1

2
(ωi)γγ(ωj)αβ g̊

γβ g̊βγvi∂µv
j − i

2
(ωi)αβ g̊

ββ∂µv
i − 1

2
(ba)βγ(bb)αγ g̊

γβ g̊βγza∂µz
b(3.23)

Γ β
µα =

1

2
(ba)αβ g̊

ββ∂µv
iza (3.24)

Γ µ
αβ = −1

2
(ba)αβ∂

µza (3.25)

Γ µ
αβ

=
i

2
(ωi)αβ∂

µvi. (3.26)
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We then put these Christoffel symbols into equation (3.15) to find for each of the terms

gµνR α
µαν =

1

2

[
(ωig)(ωjg)− 1

2
ωiωj

]
∂µv

i∂µvj +O(3)4babb∂µz
a∂µzb +O(3) (3.27)

gαβR µ
αµβ =

1

2
babb∂µz

a∂µzb +O(3) (3.28)

gαβR µ
αµβ

=
1

2

[
(ωig)(ωjg)− 1

2
ωiωj

]
∂µv

i∂µvj − 1

4
babb∂µz

a∂µzb +O(3) (3.29)

gαβR γ
αγβ

= −1

4
[(ωig)(ωjg)− ωiωj] ∂µvi∂µvj +O(3) (3.30)

gαβR γ
αγβ

= −1

4
(ωig)(ωjg)∂µv

i∂µvj − 1

4
babb∂µz

a∂µzb +O(3). (3.31)

(3.32)

There are two terms in the expansion (3.15) we have not considered yet,

gαβ
(
R γ
αγβ +R γ

αγβ

)
= gαβR m

αmβ = gαβRαβ. (3.33)

It was mentioned before that the background of the internal Ricci scalar is zero. Because
of the index structure we observe in addition that in the expression of the Riemann tensors
there will be no derivative term with spacetime indices, which means that all derivate terms
vanish. The only terms surviving are the terms quadratic in Γ, which are of second order in
the moduli fields. Noting that gαβ is of first order in the moduli fields we find,

gαβ
(
R γ
αγβ +R γ

αγβ

)
= O(3). (3.34)

We can now combine all of the terms above to find the correct expansion of the Ricci scalar
up to second order in moduli fields,

SEH =

∫
d10x̂

√
−ĝR̂ =

∫
d4x
√
−g4

(
KR + Vij∂µv

i∂µvj + Zab∂µz
a∂µzb

)
, (3.35)

where we defined,

K =

∫
CY3

√
g6 (3.36)

Vij =

∫
CY3

√
g6

(
(ωig)(ωjg)− 1

2
(ωiωj)

)
(3.37)

Zab =

∫
CY3

√
g6 (−(ωig)(ωjg) + (ωiωj)) . (3.38)

This can be related to the properties of the Calabi-Yau manifold as outlined in appendix C.

Weyl rescaling to the Einsteins frame

Having obtained the expansion of R̂ in terms of 4 dimensional fields the next step is to rewrite
the expanded equation (3.10). We do this in order to get the correct sign in front of the
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kinetic term for the dilaton in equation (3.10); this is called transforming into the Einstein
frame. we perform a Weyl rescaling as outlined in equation (A.45). By using equations
(A.48) and (A.51) we find

Sgrav =

∫
10

−1

2
R̂ ∗ 1− 1

4
dφ ∧ ∗φ, (3.39)

the action in the Einstein frame, where the dilaton kinetic term has a negative sign.

Compactification

As the dilaton is a scalar on the Calabi-Yau the difficult part in compactifying lies with the
Ricci scalar. We have done this work earlier and can plug in equation (3.35) to find

S =

∫
4

−1

2
KR ∗ 1−K1

4
dφ ∧ ∗φ− 1

2
Vijdv

i ∧ ∗dvj − 1

2
Zabdz

a ∧ ∗dzb. (3.40)

Note that the Ricci scalar is multiplied by the volume of the Calabi-Yau manifold. We would
like to scale this away.

Weyl rescaling the normalization of R

We again perform a Weyl transformation as in (A.45), taking Ω = K1/2. This gives us,

S =

∫
−1

2
R ∗ 1− 3

4
d logK ∧ ∗d logK − 1

4
dφ ∧ ∗φ− 1

2K
Vijdv

i ∧ ∗dvj − 1

2K
Zabdz

a ∧ ∗dzb.(3.41)

Note now that we have introduced a new scalar term d logK ∧ ∗d logK. This term can in
fact be absorbed within the vi, as we will do in the next and final step.

Rotating the vi

In order to eliminate the scalar term depending only on the Calabi-Yau volume we rotate
the vi as follows,

vi = e−
1
2
φṽi. (3.42)

All the fundamental forms in the action are independent of the vi. We therefore only have to
consider the effect that such a rotation has on the metric and composite terms. Remember
that the vi are the complex structure moduli, and that they are defined through the expansion
(C.53). By considering this expansion we can quickly see that,

Kijk = K̃ijk (3.43)

Kij = e−
1
2
φK̃ij (3.44)

Ki = e−φK̃i (3.45)

K = e−
3
2
φK̃. (3.46)
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From expression (C.56) we can then immediately deduce that,

gij = e−
1
2
φg̃ij. (3.47)

Using equation (C.58) we can write

Vij = −Kij − 2Kgij = 2Kgij −
1

4K
KiKj, (3.48)

and so

Vij = e−
1
2
φṼij. (3.49)

The terms that have to be rotated are the dlogK term, and the kinetic term for the vi. The
rotation gives us,

1

2K
Vij∂v

i∂vj = g̃ij∂ṽ
i∂ṽj − 15

16
∂φ∂φ− 1

2
∂ log K̃∂ log K̃ +

5

4
∂ log K̃∂φ (3.50)

3

4
d logK ∧ ∗d logK = −3

4
∂ log K̃∂ log K̃ +

9

4
∂φ∂ log K̃ − 27

16
∂φ∂φ. (3.51)

Where we used that

∂K =
1

2
∂viKi. (3.52)

Putting our expressions together we find the following gravitational action,

Sgrav =

∫
−1

2
R ∗ 1− dφ ∧ ∗dφ− gijdvi ∧ ∗dvj − gabdza ∧ ∗dzb. (3.53)

In this expression we defined the 4-dimensional dilaton to be

φ = φ− 1

2
log K̃. (3.54)

We also dropped the tildes and defined the metric on the complex moduli space to be,

gab =
1

2K
Zab. (3.55)

3.2.2 Reducing the IIB matter action

The first step we take in reducing the type IIB action is to expand the fields in terms of a
basis of harmonic forms as explained in the appendix B,

B̂2 = B2 + bi ∧ ωi, i = 1, ..., h1,1 (3.56)

Ĉ2 = C2 + ci ∧ ωi, (3.57)

Â4 = Di
2 ∧ ωi + ρiω̃

i + V A ∧ αA − UA ∧ βA, A = 0, 1, ..., h2,1, (3.58)
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the basis elements of the various cohomology spaces are,

ωi ∈ H1,1(CY3), ω̃i ∈ H2,2(CY3), αA, β
A ∈ H3(CY3). (3.59)

The “coefficients” of the harmonic forms are purely space time dependent, and given by the
2-forms Di

2, the 1-forms V A and UA and the scalars bi, ci and ρi. Using that a form being
harmonic implies that it is closed by (B.10) we can write the field strengths as,

(3.60a)Ĥ3 = H3 + dbi ∧ ωi,

(3.60b)dĈ2 = dC2 + dci ∧ ωi,

(3.60c)dÂ4 = dDi
2 ∧ ωi + dρi ∧ ω̃i + FA ∧ αA −GA ∧ βA,

(3.60d)F̂3 = dC2 + dci ∧ ωi − a(H3 + dbi ∧ ωi),

(3.60e)F̂5 =
(
Di

2 − dbi ∧ C2 − ciH3

)
∧ ωi + FA ∧ αA −GA ∧ βA + dρi ∧ ω̃i − cidbj ∧ ωi ∧ ωj.

where we took FA = dV A, GA = dUA. Note that â = a, as it already was a scalar on the
Calabi-Yau manifold. We can then plug in these expansions to find the following expressions
for the integrals of CY3,

(3.61a)−1

4

∫
CY3

Ĥ3 ∧ ∗Ĥ3 = −K
4
H3 ∧ ∗H3 −Kgijdbi ∧ ∗dbj,

(3.61b)−1

2

∫
CY3

dâ ∧ ∗â = −K
2
da ∧ ∗da,

(3.61c)−1

2

∫
CY3

dF̂3 ∧ ∗F̂3 = −K
2
da (dC2 − lH3) ∧ ∗ (dC2 − lH3)

− 2Kgij
(
dci − ldbi

)
∧ ∗
(
dcj − ldbj

)
,

(3.61d)−1

4

∫
CY3

dF̂5 ∧ ∗F̂5 =
1

4
Im
(
M−1

) (
G̃−MF̃

)
∧ ∗
(
G̃−MF̃

)
−KgijdD̃i

2 ∧ ∗dD̃i
2 −

1

16K
gijdρ̃i ∧ ∗dρ̃j,

(3.61e)−1

2

∫
CY3

Â4 ∧ Ĥ3 ∧ dĈ2 = −1

2
KijkDi

2 ∧ dbj ∧ dck −
1

2
ρi
(
dB2 ∧ dci + dbi ∧ dC2

)
,

where we defined

dD̃i
2 = dDi

2 − dbi ∧ C2 − cidB2 (3.62)

dρ̃i = dρi −Kiklckdbl, (3.63)

and the matrix M is the matrix depending on the moduli as defined in (C.47). Now the
self duality condition on the 5-form field strength tensor F̂5 = ∗F̂5 tells us that only half the
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degrees of freedom in Â4 are physical. This means that the fields on which Â4 depends come
in dual pairs. We shall therefore use Lagrange multipliers to pick ρi and V A as independent
fields, which have Di

2 and UA as their dual respectively.

We will use two different ways to impose the self duality condition of the 5-form to eliminate
Di

2 and GA in terms of the other fields, as presented in [13]. First we write out the duality
condition ∗F̂5 = F̂5 to find the equivalent conditions on the fields making up F5

dD̃i
2 = gij

1

4K
∗ dρ̃j (3.64)

∗G = ReM∗ F − ImMF (3.65)

G = ReMF + ImM∗ F, (3.66)

where in the derivation we made us of the relations between the bases of cohomology classes
as outlined in appendix C. We will begin by dualising Di

2.

Our goal is to write down a Lagrangian with the same physical content (i.e. equations
of motion) after imposing equation (3.64). In order to do this we write down the most
general Lagrangian independent Di

2, and match its equations of motion to that of the original
Lagrangian (3.8). This gives us the correct values for the general coefficients we have to
introduce in the general Di

2 independent Lagrangian. Looking also at the expansion of the
various terms in equation (3.61) we find that the most general post-dualisation Lagrangian
has the form,

(3.67)Ldualised = k1g
ij
(
dρi −Kiklckdbl

)
∧ ∗ (dρj −Kjpqcpdbq) + k3dρi

∧
(
cidB2 + dbi ∧ C2

)
+ k4KijkcicjdB2 ∧ dbk.

So, by matching the equations of motion arising from the 10-dimensional Lagrangian (3.8)
to the equations of motion from (3.67) we find the following values for our parameters [13],

k1 = − 1

8K
, k3 = −1, , k4 = −1

2
, (3.68)

giving us the dualized Lagrangian.

We now apply a different procedure to dualize G. The aim is to introduce a term to the
4-dimensional Lagrangian,

LF =
1

4
ImM−1(G−MF ) ∧ ∗(G−MF ) (3.69)

thereby changing the equations of motion for G to (3.65). We can then impose these equa-
tions of motion in order to eliminate GA in terms of FA.

The term we add is a total derivative,

1

2
FA ∧GA, (3.70)
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which indeed leads to the correct equation of motion. After eliminating GA we get the
Lagrangian,

LF =
1

2
ImMABF

A ∧ ∗FB +
1

2
MABF

A ∧ FB. (3.71)

As was explained earlier while compactifying the gravitational part of the action 3.2.1, we
now Weyl rescale our terms with a factor K 1

2 . This is followed by a rotation of the Kähler
class moduli vi into vi = e−

1
2
φ̂ṽi, as done in 3.2.1, to eliminate a scalar term. This leads to

the following action,

S4
IIB =

∫
−1

2
− gabdza ∧ ∗dzb − gijdti ∧ ∗dt

j − dφ ∧ ∗dφ− 1

4
e−4φdB2 ∧ ∗dB2

− 1

2
e−2φK(dC2 − ldB2 ∧ ∗(dC2 − ldB2)− 1

2
Ke2φdl ∧ ∗dl − 2Ke2φgij(dc

i − ldbi) ∧

∗(dcj− ldbj)− e
2φ

8K
(gij)−1

(
dρi−Kiklc

kdbl
)
∧∗ (dρj−Kjmncmdbn) +

(
dbi∧C2 + cdB2

)
∧
(
dρi−Kijkcjdbk

)
+

1

2
KijkcicjdB2∧dbk +

1

2
ReMABF

A∧FB +
1

2
ImMABF

A∧∗FB.

(3.72)

Now, in order to get a simpler Lagrangian, it remains us to dualize the last two 2-forms in
the expression, namely C2 and B2 with scalar duals h1 and h2 respectively. To achieve this
we proceed in a similar fashion as with the dualization of GA. We add a total derivative to
the Lagrangian, given by

dC2 ∧ dh1. (3.73)

The C2 dependent part of the Lagrangian then becomes

(3.74)LC2 = −1

2
e−2φK (dC2 − ldB2) ∧ ∗ (dC2 − ldB2)− bidC2 ∧ dρi + dC2 ∧ dh1.

By calculating the equation of motion for C2 and using it to express C2 in terms of its dual
h1 we find,

(3.75)Lh1 = − 1

2K
e2φ(dh1b

idρi) ∧ ∗(dh1 − bjdρj) + ldB2 ∧ (dh1 − bidρi).

We can apply exactly the same procedure to B2 in order to dualize it to h2, which leads us
to the final action for type IIB supergravity on a Calabi-Yau manifold,

S
(4)
IIB =

∫
−1

2
R ∗ 1− gabdza∧∗dzb− gijdti∧∗dt

j−dφ∧∗dφ− e
2φ

8K
(gij)−1

(
dρi−Kiklckdbl

)
∧ ∗(dρj −Kjmncmdbn)− 2Ke2φgij(dc

i − ldbi) ∧ ∗(dcj − ldbj)

− 1

2
Ke2φdl ∧ ∗dl − 1

2K
e2φ
(
dh1 − bidρi

)
∧ ∗(dh1 − bjdρj)

− e4φDh̃ ∧ ∗Dh̃+
1

2
ReMABF

A ∧ FB +
1

2
ImMABF

A ∧ ∗FB,

(3.76)
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where we defined

Dh̃ = dh2 + ldh1 + (ci − lbi)dρi −
1

2
Kijkcicjdbk. (3.77)
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Chapter 4

Distances in the moduli space

In chapter 2 we saw that the Swampland Distance Conjecture (SDC) implies that there
might be a mechanism by which an infinite distance in the moduli space leads to an infinite
tower of states. This would motivate why attempts at sourcing inflation with moduli fields
lead to a breakdown of the theory.

In this chapter we will further consider the link between divergent field distances and infinite
towers of massless states. Remember that in chapter 3 we introduced the moduli space of
IIB string compactifications; this is the setting to keep in mind in the following discussion
on moduli spaces.

The situation in chapter 3 is slightly changed here however, as we now place singularities
in the moduli space. These singularities lie at a finite or infinite distance, and induce a
monodromy upon circling them. It was recently proposed in [3] that, if such a monodromy
has infinite order, then it leads to an infinite tower of states: the authors have shown this
for the moduli space of type IIB with D3 branes.

This proposal leads to a promising avenue for studying the mechanism behind the SDC
through a mathematical framework. If one can further understand the relation between
divergent field distances and monodromies, then through the proposed link between mon-
odromies and infinite towers of states this would provide very strong evidence for the SDC.

This chapter is an attempt to further study the mechanics of divergent field distances in
the moduli space; in particular we study the Wang conjecture. It states that, in the moduli
space, one has an infinite field distance if and only if there exists a monodromy of infinite
order.

Wang himself already proved one direction of his conjecture, that an infinite field distance
implies a monodromy matrix of infinite order. When also taking into account the proposed
connection between infinite order monodromy matrices and infinite towers of states, we note
that in their paper[3] the authors have demonstrated an example of the proposed mechanism
by which the SDC comes about.

Having seen evidence for the fact that the existence of a diverging field distance implies an
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infinite tower of states, we could wonder whether the opposite is also true. This is in fact
proposed in [3]. Specifically, the authors motivate that integrating out an infinite tower of
states would lead to corrections to the field distance, resulting in a divergent distance in the
field space. Such a mechanism would imply that the SDC, and the Wang conjecture, indeed
go both ways.

In this chapter we study the implication from right to left; does having an infinite order
monodromy matrix imply the existence of an infinite distance. Thereby we get closer to
understanding the workings of the SDC. We consider the simpler cases where a singularity
is located on one or two divisors, and we review a proof by Lee[4]. In his work the author
manages to prove the Wang conjecture for these cases, as long as the paths considered are
constant in the x direction. We then present a new result, giving criteria for when the case
with one finite and one infinite divisor can be solved on a general path.

The mathematics underlying this discussion can be found in chapter 5. The mathematical
theory provides an important background, but is not essential to understand the current
chapter.

Motivation: infinite towers of states and monodromies

For completion we will briefly sketch the outline of the postulated link between infinite towers
of states and infinite monodromies, as given in [3]. In this work the authors consider type
IIB string theory compactifications with D3-branes wrapping 3-cycles. These 3-cycles are
purely on the internal manifold, therefore intuitively compactifying the (3+1)D object that
is a D3-brane would leave us with a (0 + 1)-dimensional object, without spatial dimensions
but with one time dimension: in other words, a particle.

The mass of this scalar particle is proportional to the inverse of the string coupling, and to
the volume of the cycle. Shrinking the volume of the cycle to 0 leads one to a vanishing
mass, and a singularity in the scalar particle field space. Note that we have now only found
a single massless state, which we have yet to relate to monodromies. This will be done by
noting that the D3-branes are charged under gauge bosons. Then, by using the N = 2
supersymmetry relation we can relate the scalar particle to a gauge boson. The mass of
the gauge boson is M ∝ q · ΠeK/2, with q the charge, Π the period map and K the Kähler
potential. We know that the period map interacts with the monodromy matrix relating to
the mass of the gauge boson. The monodromy matrix is a mathematical concept used to
describe singularities, and applying it should not change a physical object like the mass of
a particle. Nonetheless we see that Π is changed by N , and therefore M is changed as well.
We can fix this by stating that it is not the mass of the particle that should remain the
same, but rather the entire spectrum of masses that we have in our theory. The mass/charge
combination that the original particle had, before applying the monodromy matrix to move
to a different “representation” of the theory, is then taken over by another particle. We
would therefore need an extra particle per order of the monodromy matrix, as each change
requires a different particle to take the place of the old one. An infinite order monodromy
matrix would therefore imply an infinite tower of states, the superpartners of which are
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massless.

The setup

We consider an n-dimensional moduli space B which parametrizes a family of Calabi-Yau
manifolds,

φ : X → B. (4.1)

For s ∈ B the corresponding manifold is given by Xs := φ−1(s).

The singularities of the moduli space are located on divisors1; such a divisor can be located
at finite or infinite distance. Let r be the number of singular divisors in our moduli space.
As the points not on the singular divisor will not be relevant to our discussion we can choose
n = r.

Talking about distances in field space needs us to define some sort of metric. We shall
therefore focus on the complex structure moduli space of the type IIB superstring compact-
ification2. In this moduli space we can use the special geometry outlined in appendix C.
First we define,

Q̃(Ω,Ω) := −iD
∫
YD

Ω ∧ Ω (4.2)

and name Q̃ the polarization3. Then, for a family of Calabi-Yau threefolds, the metric
measuring the field distance on the moduli space (called the Weil-Petersson metric) can be
expressed in terms of the unique (3, 0)-form as,

ωWP =

√
−1

2
∂∂ log

(
Q̃(Ω,Ω)

)
. (4.3)

This result was already used in chapter 3, and is mentioned in section 5.5.3.

Monodromy matrices and filtrations

Having introduced our distance measure we will now look at some other concepts needed in
formulating the Wang conjecture. Consider for a moment the Hodge decomposition as in
appendix B, and its filtration as given in the appendix B. Both these structures are defined
nicely for a moduli space without singularities. The moment we add singular divisors we
need to consider so called limiting filtrations

F p
∞ = lim

z→0
e−

1
2
πi log(z)NF p,

1It suffices to think of them as (n− 1) complex dimensional submanifolds of the moduli space. See 5.2.
2Mirror symmetry tells us that this space is dual to the type IIA Kähler moduli space, so in fact both

can be considered.
3The polarization is similar to the metric, but now takes into account a family of spaces, as one sees in

the context of Hodge decomposition. See B.
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where intuitively the singularities have been divided out. Here N denotes the monodromy
matrix associated to the singular divisor.

Remember that a0 is an element of the limiting filtration space F∞n [3]. A divisor corre-
sponding to a monodromy matrix N for which Na0 6= 0 will be referred to as an infinite
divisor.

As explained further in the beginning of section 5.5 the monodromy operators map elements
of the filtration space to a lower filtration; N(F n

∞) ⊂ F n−1
∞ . For a Calabi-Yau manifold the

Hodge diamond structure therefore ensures that

There exists a d ∈ N such that Nd+1a0 = 0, (4.4)

and as we have a Calabi-Yau threefold d ≤ 3. This statement further limits the order of the
monodromy matrices.

The Wang conjecture

We can now consider the Wang conjecture[2], which states that the singular divisors encode
important information about divergences of the metric,

Conjecture 2 (Wang conjecture) Let X/B be a family of n dimensional Calabi-Yau
manifolds, the moduli space of which is smooth outside a divisor4 ∪iEi. Then Xs, with
s ∈ ∪iEi, has finite Weil-Petersson distance if NiF

n
∞ = 0 for all i with s ∈ Ei.

Some comments are in order. Note that the other direction has already been proven by
Wang [2], and is therefore no longer a conjecture but a theorem. When we say that the
manifold Xs has finite Weil-Petersson distance, we mean that there exists a point p ∈ B
which maximizes the field distance as measured from s. When we write NiF

n
∞ = 0 we mean

that Ni applied to an element of F n
∞ gives 0; note that a0 ∈ F n

∞, hence we can also write
this condition as Nia0 = 0.

In this chapter We will review a proof of simpler cases of the contraposition of conjecture 2.
That is for some cases we will show that if s is located on the intersection of any number of
infinite divisors, then any path length towards the singularity diverges. We therefore assume
that Nia0 6= 0. Note that combining this with equation (4.4) means that for any monodromy
Ni with order di we have 0 < di ≤ 3.

Outline of the proof

The rest of the current chapter will be devoted to using the mathematical formalism in
chapter 5 to expand Ω. In doing so we find a series in Nia0, and, knowing what we know
about the possible order, we find that the series truncates. From there we estimate a lower

4This divisor is a simple normal crossing divisor, this basically means that the divisors act nicely as they
intersect.

34



bound for the integral defining the field distance. We will show that, for specific cases, this
lower bound diverges.

In this introduction we have already mentioned two very relevant parameters: the number of
intersecting divisors that our point s is contained in, and the dimension r of the moduli space.
Considering different numbers of intersecting divisors changes the number of coordinates
along which one approaches the singularity. One can visualize this as having a plane in three
dimensions 5; in order to reach the plane one only has to change the coordinate perpendicular
to the plane. When considering a singularity placed on two intersecting, non-parallel divisors
however, one has to change both perpendicular coordinates in order to reach the singularity
located on the intersection. In the case with one infinite divisor we will see that the metric
depends non-trivially on only one coordinate. Increasing the number of dimensions still
complicates the story, as a higher dimension increases the number of possible paths towards
the singularity, thereby making it difficult to control the various terms popping up in the
estimation.

Our case distinction will be based on these two parameters: the number of divisors that
create the intersection on which the singularity is located, and the number of dimensions.

• Case I: 1 infinite divisor in an r dimensional moduli space,

• Case II: 1 infinite and 1 finite divisor in a 2 dimensional moduli space,

• Case III: 1 infinite and 1 finite divisor in an r dimensional moduli space,

• Case IV: 2 infinite divisors in a 2 dimensional moduli space,

• Case V: 2 infinite divisors in an r dimensional moduli space.

Case I can be proven in full generality, however we will not be able to prove cases III-IV
generally, and we will not prove V at all. For case II we will give new results, in the form of
criteria for when the case could be proven generally. The results of the review and further
simplifications done are summarized in section 4.8.

4.1 Case I

We now consider the case where our singularity is located only on one infinite, singular
divisor E ⊂ B, and therefore one infinite order monodromy matrix N , in an r dimensional
moduli space.

Case 1 (One parameter Wang conjecture) If s ∈ E1 with E1 an infinite divisor, and
s /∈ Ej for all j 6= 1, then Xs has infinite Weil-Petersson distance.

5Note that this example uses real dimensions, whereas in the moduli space we are working with complex
codimension 1. For the divisor to take the form of a plane this would require us to consider a 4-dimensional
real space, which remains tricky.
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Note that even though we have only one singular divisor, the moduli space itself can still
be parametrized by many moduli. It does however mean that we can reach the singularity
from any point by only varying one of our moduli.

In the one singular divisor scenario Wang showed that the Weil-Petersson metric diverges[2].
We will present the proof here, following [4]. Let us begin by considering the expression for
the Weil-Petersson metric 5.16. Remember that our goal is to show that it diverges as we
approach the singularity (located on the divisor) at z = (0, 0).

Consider any p-form Ω, which we can expand in periods Πi as Ω(z) = Πi(z)γi := ΠT (z) · ~γ
where the γi are complex (3, 0)-forms. We can then define the inner product matrix ηIJ =∫
YD
γI ∧ γJ to get

Q(Ω,Ω) = −iDΠT (z)ηΠ. (4.5)

Using the nilpotent orbit theorem 2 we can expand the period map Π(z) as

Π(z) = exp(tN)A(z, z′), (4.6)

where we take z′ to be the coordinates outside of the divisor E, z the coordinate on E and
A ∈ C. The new variable t is defined to be t = log(z)/(2πi). So the singularity is now
located at t→∞. We now note a property of the monodromy operators Ni, and η, namely
that [3]

NT
i η = −ηNi. (4.7)

We can use this property to write out the Weil-Petersson metric,

(4.8)
Q(Ω,Ω) = −iDΠTηΠ

= −iDATηe−tNetNA
= −iDATηe(t−t)NA

= −iDATηe−2iIm(t)NA.

Next we consider the limit we are taking. Since we consider the metric around the point
z = (0, 0) we can expand the function A(z, z′) around 0 in z. Keeping only the 0 order terms
in z we find,

Q(Ω,Ω) = −iDa0(z′)ηe−2iIm(t)Na0(z′) + H. (4.9)

Here we used H to denote the class of functions that decay exponentially with Im(t)→∞,
and also whose partial derivatives decay exponentially in this limit. We now proceed to put
in the expansion for the exponent that depends on Im(t), giving

Q(Ω,Ω) = −iDa0(z′)η
∞∑
k=0

(−2iIm(t)N)ka0(z′) + H. (4.10)
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We will now make use of the fact that, for d as in 4.4, we have 0 < d ≤ 3. This will make
the power series truncate. For simplicity we use the following notation,

Sj(a, b) := aTηN jb. (4.11)

Note that if N is of order d then Sd+1(a0, a0) = 0.

We will now prove the conjecture 2 for the case with only one parameter. This was first
done by Wang [2], and we follow the proof given by Lee [4].

We start by taking Im(t) = y1 and renaming the first term in the potential (4.10);

p(y1) := −iDa0(z′)η
∞∑
k=0

(−2iy1N)ka0(z′) (4.12)

Here p is a polynomial in the parameter on the divisor, i.e. y1. The polynomial p has a
guaranteed finite order d because of the nilpotency of the monodromy matrix. Note that
p(y1)H→ 0 for y1 →∞, as H decays exponentially in y1.

Note from appendix B that the polarization Q is restricted to have Q(ω, ω) > 0. If we
write p(y1) :=

∑d
l=0 sl(z2, ..., zr)y

l
1 then for all zi near 0 we get that y1 → ∞. Now in this

limit the term sdy
d
1 dominates p(y1). The polarization condition B therefore tells us that

sd(z2, ..., zr) > 0 for all zi near 0. So p will remain a polynomial of order d even near 0.

Remember now the expression for the metric two form(5.16), which we will expand in forms
to get

−
√
−1

2

∑
i,j

∂i∂j log Q̃(Ω,Ω)dzi ∧ zj. (4.13)

We will prove theorem 1 by considering the terms i = j = 1, i = 1, j 6= 1 and i 6= 1, j 6= 1 in
the above sum separately, and showing that their sum has to diverge as y1 →∞. We begin
with the term i = j = 1.

Putting in Q̃ = p(y1) + H and taking the derivatives (the derivative ∂z1∂z1 = ∂2
x1

+ ∂2
y1

, so
we compute the double x1 and y1 derivatives separately to come to the full result). For the
x1 derivative we find,

(4.14)

−
√
−1

2
∂2
x1

log Q̃ = −
√
−1

2
∂2
x1

log(p(y1) + H)

=

√
−1

2
∂x1

H

p(y1) + H

= −
√
−1

2

H

(p(y1) + H)2
,

where we kept denoting any exponentially divergent term simply as H. Next, for the double
y1 derivative we find,

−
√
−1

2
∂2
y1

log(p(y1) + H) =

√
−1

2
∂y1

H + p′(y1)

p(y1) + H
=

√
−1

2

H + p′′(y1)p(y1)− (p′(y1))2

(p(y1) + H)2
.
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Now considering the limit where y1 → ∞ we neglect the lower order terms and terms
proportional to H, and take p(y1) ≈ sdy

d
1 to finally get,

−
√
−1

2
∂2
y1

log Q̃ ≈ d(d− 1)s2
dy
d−2
1 yd1 − d2s2

dy
2d−2
1

s2
dy

2
1d

=

√
−1

2

d

y2
1

.

Putting these two results together we have the following expression for the i = j = 1 term,

−
√
−1

2
∂z1∂z1 log Q̃ ≈

√
−1

2

d

y2
1

.

We then consider the term with i = 1, j 6= 1, again splitting up the derivative into a derivative
over x and y, this time also getting mixing terms.

(4.15)
−
√
−1

2
∂x1∂xj log(p(y1) + H) = −

√
−1

2
∂x1

H

p(y1) + H

∼ −
√
−1

2

H

(p(y1) + H)2

∂y1

∂xj
= H,

where the last two steps were taken using that we denote anything decaying exponentially,
also when multiplied by p(y1), with H. Now for the y derivatives,

(4.16)

−
√
−1

2
∂y1∂yj log(p(y1) + H)

= −
√
−1

2
∂yj

H + p′(y1)

p(y1) + H

= −
√
−1

2

−(p(y1) + H)∂yj(H + p′(y1)) + (H + p′(y1))∂yj(H + p(y1))

(p(y1) + H)2
.

Instead of calculating this quantity explicitly for the limit y1 →∞ we will give an argument
to motivate the scaling of the term (as per [4]), which is all we are interested in. By putting
in the power series expansion for p(y1) we find that,

(p(y1) + H)∂yj(H + p′(y1)) = d · y2d−1
1 sd∂yjsd + ...

(H + p′(y1))∂yj(H + p(y1)) = d · y2d−1
1 sd∂yjsd + ... .

So the highest order terms in both expansions cancel, leaving us with a numerator which
has a maximum order of y2d−2

1 . For the total y derivative term we then find,

−
√
−1

2
∂y1∂yj log(p(y1) + H) ∼ Cj

y2
1

with Cj a constant in y1, a real number (possibly zero). All that rests us now is to examine
the mixed derivatives. The term with derivatives ∂x1∂yj will scale as H, since just as in
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(4.15) we differentiate twice to a variable that p(y1) is independent of.
The term with derivatives ∂y1∂xj gives,

−
√
−1

2
∂y1∂xj log(p(y1) + H) = −

√
−1

2
∂xj

H + p′(y1)

p(y1) + H
, (4.17)

which is the same case we had in (4.16), hence by analogy we find that

−
√
−1

2
∂y1∂xj log(p(y1) + H) ∼

C ′j
y2

1

, (4.18)

where C ′j again gives a constant real number. For simplicity we will denote the sum Cj +C ′j
as Cj from this point onwards.

This takes care of all terms but the one with i 6= 1, j 6= 1, luckily this term does not contain
any y1 derivatives, so as we have seen it will scale as H, meaning that gij decays exponentially
as well.

Putting all of this together we find that the metric two-form is given by

(4.19)g ∼ −
√
−1

2

(
d

y2
1

dz1 ⊗ dz1 +

(
Cj
y2

1

+ H

)
dz1 ⊗ dzj + gijdzi ⊗ dzj

)
≥ −
√
−1

2

(
d

y2
1

dz1 ⊗ dz1 +
Cj
y2

1

dz1 ⊗ dzj + gijdzi ⊗ dzj
)
.

We can now use this expression to show that the Weil-Petersson distance indeed diverges by
further estimating a lower bound for the second term of the metric. We will use the following
relation for complex numbers a, b:

(|a|−|b|)2 ≥ 0⇒ −|a|2−|b|2≤ −2|ab|.

Noting that the one forms dzi are maps into C we can use this inequality with a = εdz1 and
b = Cjdzj/ε to get,

−Cj
y2

1

(dz1 ⊗ dzj) ≥ −
Cj
y2

1

|dz1 ⊗ dzj|≥ −
(
ε2

y2
1

dz1 ⊗ dz1 +
C2
j

ε2y2
1

dzj ⊗ dzj
)
/2. (4.20)

which means that we can estimate the metric as follows:

g ≥
(
A

y2
1

dz1 ⊗ dz1 +
C2
j

ε2y2
1

dzj ⊗ dzj + gijdzi ⊗ dzj
)
. (4.21)

Where we choose ε such that A := d−ε2(r−1) > 0. Since the third term decays exponentially
in all coordinates it will remain finite as we integrate over a curve. The second term is larger
than zero, as it corresponds to the sum over the diagonal elements of our semi-positive
definite metric, we have∫

γ

ds ≥
∫ ∞
c

√
A

y1

dy1 + finite terms =∞. (4.22)

And so indeed the Weil-Petersson distance from any point c 6= 0 towards singular point will
diverge, and the conjecture 2 has been proven.
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4.2 Two divisor setup

We will now consider the situation where the singular point is contained in two divisors;
s ∈ E1

⋂
E2, s /∈ Ej. The conjecture we would like to prove is therefore

Conjecture 3 (Two parameter Wang conjecture) If s ∈ E1 and s ∈ E2 with E1 or E2

an infinite divisor, and s /∈ Ej for all j 6= 1, 2, then Xs has infinite Weil-Petersson distance.

The two singular divisor case of the Wang conjecture 2 requires a different, but in essence
similar, approach as the previous one parameter case. This is because with the addition of
more parameters one introduces path dependence. In this paragraph we will be following
Lees attempt at a proof [4].

Here we introduce the notation for any two divisors contained in an r dimensional moduli
space. In the next sections, when we consider more specific cases, we shall change the
assumption on the number of dimensions.

We begin with the potential function Q̃(z), which depends on all our r coordinates zi. We
have two divisors E1, E2 the coordinates on which we will denote by z1 and z2 respectively,
which we collectively write as z. The remaining r − 2 coordinates will be denoted ζ. As
we are sending z1 and z2 to 0 it makes sense to attempt to expand our potential in these
variables. We will, like before, map z to t = log(z)/(2πi).

We will begin by applying the nilpotent orbit theorem 2 to our period map Π(z, η) to get

Π(z, η) = exp(t1N1 + t2N2)A(z, ζ)→ exp(t1N1 + t2N2)A(t),

where we leave the ζ dependence of A(t) implicit. The next step is to consider the expansion
of A(t) around z = 0,

(4.23)

A(t) =
∑
m,n

amn(ζ)zm1 z
n
2

= a0(ζ) +
∑

m≥1,n=0

am,0(ζ)zm1 +
∑

m=0,n≥1

a0,n(ζ)zn2 +
∑

m≥1,n≥1

am,n(ζ)zm1 z
n
2

≡ a0 + f1(t1) + f2(t2) + h(t),

where h(t) denotes all terms of order at least one in both z1 and z2 (which means of order
one in both exp(2πit1) and exp(2πit2)); hence h(t) decays exponentially for Im(t1) or Im(t2)
approaching infinity. The terms f1(t1) and f2(t2) are at least first order in exp(2πit1) and
exp(2πit2) respectively, hence f1 decays exponentially for Im(t1) and f2 for Im(t2) approach-
ing infinity.

We will now put these expressions into our Kähler potential Q̃(Ω,Ω) and, using commuta-
tivity of monodromy matrices arising from different divisors [15], find,

Q̃(Ω(z, ζ),Ω(z, ζ)) = Q̃(et1N1+t2N2A(z, ζ), et1N1+t2N2A(z, ζ))

= Q̃(e2iIm(t1)N1A(z, ζ), e−2iIm(t2)N2A(z, ζ)).
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Labeling A1 := e2iIm(t1)N1 and A2 := e−2iIm(t2)N2 as per [4] and putting in our expansion for
A(z, ζ) gives,

(4.24)Q̃(Ω(z, ζ),Ω(z, ζ)) = Q̃(A1a0, A2a0) + Q̃(A1a0, A2f1) + Q̃(A1a0, A2f2)

+ Q̃(A1f1, A2a0) + Q̃(A1f1, A2f1) + Q̃(A1f1, A2f2)

+ Q̃(A1f2, A2a0) + Q̃(A1f2, A2f1) + Q̃(A1f2, A2f2) + H12,

where H12 denotes all the terms that decay exponentially for Im(t1) or Im(t2) approaching
infinity. We will refer to each of the terms in equation (4.24) by Q̃i,j, where i, j refer to
the lower index of the a0, f1, f2 terms in first and second argument of Q̃ respectively. For
example Q̃1,1, corresponds to Q̃(A1f1, A2f1). Our goal is now to study each of these terms
and determine their behavior when we take Im(t1), Im(t2) to infinity, remembering that due
to the nilpotency of the monodromy matrices the terms A1 and A2 are polynomials of finite
order in t1 and t2 respectively.

All the terms dependent on f1 but not f2 will therefore be polynomials in y2 with coefficients
decaying exponentially when Im(t1) diverges. The same holds in the case where Im(t2)
goes to infinity for all terms that have an f2 term and not an f1. Hence we will define
p2(t2) := Q̃1,1 + Q̃0,1 + Q̃1,0 and p1(t1) = Q̃2,2 + Q̃0,2 + Q̃2,0. Both p1 and p2 depend on t, but
for simplicity we omit the dependence on the parameter that they decay in exponentially.
Note that the dependence of p1 on t2 and p2 on t1 arises from A1 and A2. We cannot say
anything about the decay properties of Q̃0,0 =: p(t1, t2), and will thus simply relabel it.
Finally the terms Q̃1,2 and Q̃2,1 decay exponentially in both t1 and t2, so we absorb them in
H12. This leaves us with

Q̃(Ω(z, ζ),Ω(z, ζ)) = p(t1, t2) + p1(t1) + p2(t2) + H12. (4.25)

Comparing this to the one parameter case Q̃ = p(y1) + H we see that we have gained two
non-trivial terms due to the introduction of an additional parameter.

We can still say something about the order of these polynomials. In order to do this we
introduce dj again as the order of the nilpotent matrix Nj. Since p1 is a polynomial in
Im(t1) it follows that the order of p1 in Im(t1) is less than or equal to d1. Analogously the
order of p2 in Im(t2) is less than or equal to d2. Finally the order of p in Im(t1) and Im(t2)
is less than or equal to d1 and d2 respectively; hence the total order is less than or equal to
d1 + d2.

The next step is to again study the resulting Weil-Petersson metric. However, with the
introduction of the two extra terms we can no longer simply compute all derivatives; the
expression will become too involved to make sense of the path integration, in a general case.
The approach taken by Lee [4] is to calculate the distance for p(t1, t2) first, and then view
the metric term resulting from

f := p1 + p2 + H12 (4.26)
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as a small perturbation on p. This matrix perturbation to the metric will be denoted E.
One can calculate it by simply performing the derivatives as worked out in the appendix D.

With the introduction of a second nilpotent matrix we can also no longer be certain of the
order of the polynomial p in t1 and t2; we can only state an upper bound. Lee [4] attempts
to remedy this by doing a case distinction of all possible polynomials with an order between
0 and 3, labeling these candidates of the Weil-Petersson potential. After characterizing all
the possible polynomials one attempts to integrate each of them over a path in order to
determine whether the Weil-Petersson distance diverges if the polynomial p would be of that
order.

At the end of the proof we shall consider the full Weil-Petersson potential, which means
incorporating the perturbation to the candidate potential as well. We will see that this is
possible for all cases but case V.

In doing these calculations we shall find it difficult to work with the path dependence; having
two divisors will lead to a path in two complex directions. As will be mentioned again later,
to simplify our life we can work on constant angular slices : Re(zj) = cj. In this case our
path will only depend on the imaginary parts of the coordinates. We will actually turn out
to need it in cases II-V.

The candidate potential

We will assume now that i, j ∈ {1, 2}. The first step in doing the case distinction is to
check whether the Weil-Petersson candidate actually dominates the potential metric at large
values of Im(t1) and Im(t2). This has been done by Lee [4], and we will repeat some results
here. Take M to be given by Mij = −∂i∂jQ̃. For the case with only two dimensions6 we
find,

M11 ∼
(∂y1p)

2 − p∂2
y1
p

p2
+ e−y1 (bounded terms) (4.27)

M22 ∼
(∂y2p)

2 − p∂2
y2
p

p2
+ e−y2 (bounded terms) (4.28)

M12 ∼
(∂y1p)(∂y2p)− p∂y1∂y2p

p2
+ C1e

−y2 y
2D1−2
1

p2
+ C2e

−y1 y
2D2−2
2

p2
+ C3

e−y1−y2

p2
, (4.29)

where Dj is the order of p in yj. We see that in the limit of large y1, y2 the metric is
indeed dominated by the polynomial p. The terms in (4.27) proportional to exponents arise
from what was in the previous section called the matrix E. Remember p is a polynomial
in the nilpotent monodromy matrices. Therefore we have 1 ≤ Dj ≤ dj ≤ 3. As on the
intersection of two divisors y1N1 + y2N2 defines the same monodromy weight filtration for
any y1, y2 6= 0 [15], we see that the Hodge diamond structure implies that applying any
monodromy operator more than three times gives zero (e.g. N1N2N2N1a0 = 0). Since p is

6In section 4.6 we will remark on the r dimensional case.
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Table 4.1: Possible orders of the dominant polynomial [4].
d2

d1 3,0 3,1 3,2 3,3
2,0 2,1 2,2 2,3
1,0 1,1 1,2 1,3
0,0 0,1 0,2 0,3

the truncation of an expansion in the monodromy operators, the polynomial p can contain
no term of total order higher than three.

We can now start to classify the different possible polynomials p by their value for D1

and D2. This polynomial will be dominated by the top-right possible terms in the table
below 4.1, e.g. taking D1 = 2 and D2 = 3 would lead to the polynomial p(y1, y2) =
Ay2

1 + By3
2 + Cy2

1y2 + Dy1y
2
2. This is because for any bottom-left term there exists a top-

right term dominating it for large values of y1 and y2, for example terms of order (1, 1) are
dominated by terms (2, 1).

As such we can distinguish a total of nine different possible polynomials which are worked
out in [4].

Using the above outlined approach we will not be able to prove 3 in generality. For the cases
II-IV we will need the angular slice assumption, and case V we will not manage at all.

4.3 Case II

Consider the case with one infinite divisor and one finite divisor, in a 2 dimensional moduli
space. Note that this case is still different from having only a single divisor, as our path still
depends on the extra parameter y2.

Case 2 (Infinite/finite Wang conjecture in 2 dimensions) If s ∈ E1

⋂
E2 with E1 a

finite and E2 an infinite divisor, let

• γ a path for which y1, y2 →∞, situated on an angular slice (i.e. Re(zj) = cj),

then ∀γ as above
∫
γ
ds =∞, and so the Weil-Petersson distance diverges.

we can prove the theorem 5, albeit on angular slices. This case is simpler than the two infinite
divisor cases, because the period map Π(z) no longer depends on t2 as per the nilpotent orbit
theorem 2. Hence in the discussion in section 3 we can take A2 to be the identity, and the
two parameter potential (4.25) Q̃ reduces to Q̃ = p(y1) + p1(y1) + H.

For simplicity we consider the case where our moduli space B has only two parameters;
r = 2.

The perturbation matrix E depends on the function f (4.26) which now reduces to f =
p1(y1) + H. Remember that H = H(y1, y2) is exponentially decaying in both parameters,
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and p1 is exponentially decaying in y2. Since every term in the numerator of E is proportional
to a derivative of H or p1 as per appendix D we find that Eij is exponentially decaying in
y2.

The dominant polynomial p = p(y1), hence the only non-zero contribution comes from
∂1∂1p. This case reduces back to the one-parameter case reviewed in subsection 4.1. We can
therfeore write ∂1∂1p ∼ 1/y2

1. Note that we did not need to use the setup with Weil-Petersson
candidates to reach this conclusion.

This leads us to the following expression for the full metric,

g =

( 1
y21

0

0 0

)
+

(
E11 E12

E21 E22

)
=

( 1
y21

g(y1)e−y2

g(y1)e−y2 E22

)
. (4.30)

Note that because we only have one infinite divisor we only approach the singularity along
the z1 direction (or y1 because of our angular slice assumption), motivating the first term. In
the last expression we chose to neglect E11 with respect to 1/y2

1, as E11 decays exponentially.
We also wrote E12 = E21 = g(y1)e−y2 . We took out part of the exponential y2 dependence,
and left the y1 dependence in the function g which, taken together with the exponential, is
bounded from above. The E22 term is left as is because its explicit form is not needed in the
rest of the derivation.

We then proceed to estimate a lower boundary for the integral over the metric, and therefore
the Weil-Petersson distance, and show that this diverges. Remember that the metric is semi-
positive definite[16]. We complete the square to find

g =
2

y2
1

(
dy2

1 + 2e−y2y2
1gdy1dy2 + y2

1E22dy
2
2

)
=

2

y2
1

∣∣dy1 + e−y2y2
1gdy2

∣∣2 + 2y2
1

(
E22

y2
1

− e−2y2g2

)
dy2

2,

where we made us of the angular slice assumption to ignore the displacement along the x
direction. Note that semi-positive definiteness of the metric implies that all diagonal elements
of g have to be ≥ 0, hence det g = E22/y

2
1 − exp(−2y2)g2 ≥ 0. This is exactly the second

term in the expression above, and so

g ≥ 2

y2
1

∣∣dy1 + e−y2y2
1gdy2

∣∣2 . (4.31)

As we take y1, y2 → ∞ we can absorb the factor of y2
1 into g without changing any of the

relevant, large y1 properties of g(y1)e−y2 . In the distance integral we will work with the
square root of the metric, and so we will proceed to estimate that from now on:

√
g ≥
√

2
|dy1 + e−y2gdy2|

y1

. (4.32)

We would now like to estimate this expression in such a way that makes the evaluation of
the integral simpler. The form of the fraction invites us to attempt to estimate the term by
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the derivative of a logarithm. Let min(y1) = c and max|g exp(−y2)|= gm. We can reduce to
the case where c > gm, as the path taken until y1 reaches gm will always be finite, and give
a finite contribution. Therefore if we can show that the infinite path after y1 = gm diverges
we will not have to bother about y1 < gm. In this case we can rescale y1 to find,

y1 ≤
(y1 − gm)(c+ ε)

c− gm
≤ (y1 − ge−y2)(c+ ε)

c− gm
, (4.33)

where ε is a real positive constant we choose such that c + ε > c − gm. As y1 is a linear
function in y1 that starts at y1 = c, we have to show that the linear function on the right
increases faster and starts at a higher value. We therefore check the value at y1 = c, and the
first derivative of the first inequality in 4.33:

c− gm
c− gm

(c+ ε) = c+ ε > c (4.34)

c+ ε

c− gm
> 1 by our choice for ε, (4.35)

so we have rescaled this linear function to always be greater than y1. Note that the constant
factor is positive. Inverting the found inequality (4.33) we conclude that,

√
g ≥ A

|dy1 + e−y2gdy2|
y1 − ge−y2

≥ A
(dy1 + e−y2gdy2)

y1 − ge−y2
, (4.36)

where A denotes the positive constant term we leave out for simplicity.

We are now ready to consider the Weil-Petersson distance, by integrating the metric over a
general curve γ.∫

γ

ds =

∫ ∞
c

√
gdy1dy2 ≥ A

∫ ∞
c

(dy1 + e−y2gdy2)

y1 − ge−y2
(4.37)

= A

∫ ∞
c

(
d log(y1 − ge−y2)−

(∂1gdy1 + ∂2gdy2)e−y2

y1 − ge−y2

)
. (4.38)

The logarithmic term clearly diverges, so it rests us to show that the term on the right hand
side remains finite. This is true because, as g is at most polynomial in y1, any integral will
again be polynomial, and dominated by the exponential decay we have in y2. Noting that
the integral over the logarithm diverges we see that,

A

∫ ∞
c

(
d log(y1 − ge−y2)−

(∂1gdy1 + ∂2gdy2)e−y2

y1 − ge−y2

)
=∞. (4.39)

Here we dodged the problems of path dependence by estimating the Weil-Petersson distance
by an indefinite integral which we could calculate, thereby proving the Wang conjecture for
the two divisor case with one finite divisor, and r = 2.
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4.4 Case III

Note that in Case II we have proven the conjecture using only that the function g is a
bounded function. If take r to be any natural number (while keeping the number of infinite
singular divisors equal to one) then we can prove

Case 3 (Infinite/finite Wang conjecture in r dimensions) If s ∈ E1

⋂
E2 with E1 a

finite and E2 an infinite divisor, and s /∈ Ej for all j 6= 1, 2, let

• γ a path for which y1, y2 →∞, situated on an angular slice (i.e. Re(zj) = cj),

then ∀γ as above
∫
γ
ds =∞, and so the Weil-Petersson distance diverges.

in the same way. For r dimensions the expression in equation (4.3) changes to [4],

g =

(
dy1 +

∑
i 6=1

E1idyi

)2

−

(∑
i 6=1

E1idyi

)2

+
∑
i,j≥2

Eijdyi ⊗ dyj, (4.40)

Where the matrix E is the perturbation matrix. The parameters are again convergent power
series in 1/y1, and proportional to e−y2 . However now they can also depend on yj with j > 2.
These will not make a difference; since they are not on a divisor their range remains finite.

The boundedness and convergence of the matrix elements ensures that the previous deriva-
tion remains largely the same, so we omit it here and refer to [4].

4.5 Case IV

In the case with two infinite divisors we can no longer write the simpler expression we had
for the metric in (4.30). Instead we need to use the candidate potential formalism that was
built up previously. In [4] all cases are treated, here we will only go over two in order to
illustrate the procedure. Remember that Di denotes the order of the dominant polynomial
p in yi; we used this to characterize the different cases in section 4.2. The theorem that will
be proven is

Case 4 (Infinite/infinite Wang conjecture in 2 dimensions) If s ∈ E1

⋂
E2 with E1,

E2 infinite divisors, let

• γ a path for which y1, y2 →∞, situated on an angular slice (i.e. Re(zj) = cj),

then ∀γ as above
∫
γ
ds =∞, and so the Weil-Petersson distance diverges.

The two cases we will be looking at in detail are (D1, D2) = (1, 1) and (D1, D2) = (1, 3).

Studying the dominant polynomial

The first step is writing down the most general polynomial. Here we want to preserve
as much information from the mixed variation of Hodge structure as we can, as it is this
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structure which should imply divergence of the Weil-Petersson distance. We will make use
of the polarization of the MVHS to constrain the coefficients of our polynomials. One of the
properties of the polarization is that for any v ∈ F p

∞ we have

Q̃(v, v) > 0. (4.41)

Remember that for the polarization we had Q̃ ∼ p as per (4.25), where p is the dominant
polynomial. By considering different regimes for y1, y2 we can determine constraints for the
coefficients on p. Let p =

∑
i≤d1,j≤d2 aijy

i
1y
j
2.

• In the limit of y1, y2 →∞ it is clear that Q̃ ∼ p ∼ ad1,d2y
d1
1 y

d2
2 > 0, and it follows that

ad1,d2 ≥ 0.

• In the limit where y1 → 0, y2 →∞ we have Q̃ ∼ p ∼ a0,d2y
d2
2 > 0, and it follows that

a0,d2 ≥ 0.

• By analogy to the case above ad1,0 ≥ 0.

The constrains we had on the order of our polynomial were that d1 +d2 ≤ d, so it is possible
to have terms with a monomial of order D1 +D2 = d. For these terms we have the following
constraint,

• Consider d1 ≤ D1. By taking y2 >> |ad1,0/aD1,D2| we have that aD1,D2y
D1
1 yD2

2 +
ad1,0y

d1
1 ∼ aD1,D2y

D1
1 yD2

2 . Out of all terms in p this would make the monomial the one
of highest order in y1. Hence sending y1 →∞ gives aD1,D2 ≥ 0.

• Analogous to the case above, for d2 ≤ D2 we can again find aD1,D2 ≥ 0.

We can now consider two cases and calculate the dominant polynomial for each of them.
Note that the cases we distinguish here are for different orders of the polynomial. This will
generate a total of 9 possible metrics for which to estimate the WP candidate.

Case 1 d1 = 1, d2 = 1, d = 1

We have the polynomial p = Ay1 +By2. By the discussion above we can note that A,B > 0.
The corresponding metric is as per equation (4.27), given by

gc =
1

(Ay1 +By2)2

(
A2 AB
AB B2

)
. (4.42)

which is a semi-positive definite matrix, and hence correct. It follows that p = Ay1 +By2 is
a WP candidate.

Case 2 d1 = 1, d2 = 3, d = 3

We could have several possible candidates, namely p = Ay3
2 + By2

2y1 + Cy1, p = Ay3
2 +

By2y1 + Cy1 and p = Ay3
2 + Cy1, with A,B,C > 0 by the discussion above. Note that

this case allows multiple candidates, as we generally do not know the nilpotency order of a
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product of N1’s and N2’s. Therefore some coefficients may vanish, or they may not: we do
not know and have to check everything.

In [4] the author proceeds to calculate the determinant of the various metrics implied by the
polynomials we found. Imposing that they be semi-positive definite leads one to the viable
candidates, the details are omitted here.

Estimating the candidate Weil-Petersson distance

The next step is to take our candidate Weil-Petersson potentials and calculate the corre-
sponding metrics to find the Weil-Petersson distance itself. We will only be able to do this
by estimating a lower bound for the integral in such a way that the lower bound can be
written as an indefinite integral, which we will show diverges. We will consider only two
possible candidate polynomials, distinguished by the highest order monomials. Note that
this case distinction is different from the one done in the previous subsection, as the cases
in the previous subsection could lead to more than one candidate polynomial.

Case i D1 = 1, D2 = 1, d = 1

The candidate Weil-Petersson potential is given by p(y1, y2) = Ay1 +By2, with A,B > 0. It
follows that the metric gc corresponding to the candidate potential is,

gc =
1

(Ay1 +By2)2

(
A2 AB
AB B2

)
. (4.43)

We therefore find that the candidate Weil-Petersson distance is,

(4.44)

LcWP =

∫
γ

√
A2dy2

1 +B2dy2
2 + 2ABdy1dy2

Ay1 +By2

=

∫
γ

|Ady1 +Bdy2|
Ay1 +By2

≥
∫
γ

Ady1 +Bdy2

Ay1 +By2

= log(Ay1 +By2)|∞c
=∞.

So the candidate of the Weil-Petersson metric diverges for case i.

Case ii D1 = 1, D2 = 3, d = 3

The candidate potential is p(y1, y2) = Ay3
2 +By2

2y1 +Cy1, where A,B,C > 0. We note that
in the limit as y1, y2 →∞ the Cy1 term is dominated by By2

2y1, so we can safely omit Cy1

48



to keep the dominant polynomial p(y1, y2) = y2
2(Ay2 +By1), resulting in the metric

(4.45)

gc =
1

y4
2(Ay1 +By2)2

(
A2y4

2 ABy4
2

ABy4
2 y2

2(3y2
2A

2 + 4y1y2AB + 2B2y2
1)

)
.

=
1

(Ay1 +By2)2

(A2 AB
AB 3A2

)
︸ ︷︷ ︸

M

+
1

y2

(
0 0
0 4ABy1

)
︸ ︷︷ ︸

N

+
1

y2
2

(
0 0
0 2B2y2

1

)
︸ ︷︷ ︸

O

 .

Now note that the matrices M , N and O are all semi-positive definite, hence have de-
terminant ≥ 0. We then have the property of the determinant that det(M + N + O) ≥
det(M) + det(N) + det(O). Consider now the candidate Weil-Petersson distance for any
path γ(s),

(4.46)

LcWP =

∫
γ(s)

√
det(gc)ds

=

∫
γ(s)

1

Ay1 +By2

√
det(M +N +O)ds

≥
∫
γ(s)

1

Ay1 +By2

√
det(M) + det(N) + det(O)ds

=

∫
γ(s)

1

Ay1 +By2

√
det(M)ds,

filling in M from (4.45) we get,

(4.47)
=

∫
γ

√
A2dy2

1 + 9B2dy2
2 + 2ABdy1dy2

Ay1 +By2

≥
∫
γ

√
A2dy2

1 +B2dy2
2 + 2ABdy1dy2

Ay1 +By2

≥ ∞,

where the last inequality follows from equation (4.44). This means that any path distance
has to diverge, also the one used previously which was parametrized by s. So, putting this
into equation (4.46), we find

LcWP ≥ ∞. (4.48)

Thereby we have shown that the candidate Weil-Petersson metric diverges for case ii.

Note that in [4] all different polynomials are considered, we will omit them here.
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Estimating the Weil-Petersson distance

Having shown that the main part of the potential causes a divergence we are ready to consider
adding the perturbations. These were analyzed for the two dimensional case in equation
4.27, where one can see that all of the terms added are bounded, with an exponentially
decaying factor multiplying them. We can therefore argue as above 4.33 that the terms can
only contribute a finite amount before being dominated by the candidate potential. The
remaining infinite path will diverge as worked out in the first part of this section.

We have then proven theorem 5.

4.6 Case V

The final case to be considered, and the only one which is not proven, is the case with two
infinite divisors in r dimensions.

Case 5 (Infinite/infinite Wang conjecture in r dimensions) If s ∈ E1

⋂
E2 with E1,

E2 infinite divisors, and s /∈ Ej for all j 6= 1, 2, let

• γ a path for which y1, y2 →∞, situated on an angular slice (i.e. Re(zj) = cj),

then ∀γ as above
∫
γ
ds =∞, and so the Weil-Petersson distance diverges.

In this section we will note the reason why the approach outlined in section 4.2 failed for this
case. In principle we would like to repeat the generalizing procedure as shown for 4.4, where
we had a potential Q̃ = p(y)+H. We noted in our proof in section 4.4 that the generalization
proceeds smoothly because the terms added are still bounded. This has everything to do with
the fact that H decays exponentially with our one relevant parameter y.

For the case with two infinite parameters in section 4.5 we have however Q̃ = p(y1, y2) +
p1(y1) + p2(y2) + H := p(y1, y2) + f(y1, y2), where p1, p2 is not exponentially decaying in y1,
y2 respectively, but actually a polynomial. We can consider the components of the metric as

in 4.27. In the limit as y1, y2 →∞ we find for e.g. −∂j∂1 log
(
Q̃
)

a term of the form

(4.49)
−p(y1, y2)∂y1∂xjf(y1, y2)

p(y1, y2)
∝
−p(y1, y2)∂xja1,0(ζ)

p(y1, y2)
,

where an,m(ζ) is defined in (4.23), and ζ denotes the coordinates not on either infinite divisor.
The first expression is reduced so far from what is given in equation (D) because of the limit
we took: x derivatives of f are still exponentially decaying in y1 and y2, hence they drop out.
Note that in section 4.5 we could also get terms not multiplied by exponentially decaying
terms, however as we still had r = 2 the expansion coefficients were constants. They could
therefore be ignored, but with the introduction of the ζ coordinates this situation is changed.

We do not know enough of the properties of the expansion coefficients an,m(ζ) to guarantee
boundedness of the integral when considering paths dependent on ζ. The argument as

50



presented in section 4.2 therefore does not hold, and to finish the proof (even when taking
just the candidate potential into account) more information is needed.

4.7 Away from the angular slice: case II

The Wang conjecture does make mention of a specific path over which the distance has to
be computed. In this section we attempt to move away from the angular slice, and see what
this implies for the allowed forms of the perturbation, and for the field distance that we can
derive.

4.7.1 Example: exponential growth in x

We construct an example as shown by Lee [4] for attempting to generalize case II 5. As
mentioned in 4.2 and can be seen from appendix D we have only two restrictions on our
perturbation matrix E: the entries of E, excluding E11 , should decay exponentially in yi for
one i, and E has to be hermitian.

Consider the perturbation matrix E given by

E =
1

y2
1

(
0 ie−y2

−ie−y2 e−2y2

)
, (4.50)

and the candidate matrix,

M =

(
1/y2

1 0
0 0

)
. (4.51)

The perturbed metric is now given by g = M + E, which leads to a field distance given by

LWP =

∫
γ

ds =

∫
1

y1

√
|dx1 + e−y2dy2|2 + |dy1 − e−y2dx2|2.

Consider the curve γ : t→ (C, t, et, t), t > 1,where the vector represents (z1, z2) = (x1, y1, x2, y2).
Denoting derivatives with respect to t with a prime we then have,

LWP =

∫
1

y1

√
|x′1 + e−y2y′2|

2 + |y′1 − e−y2x′2|
2dt =

∫ ∞
1

e−t

t
dt <∞, (4.52)

where we recognize the last term to be the convergent exponential integral. Note that the
chosen path is exponential in x2. This is in stark contrast with the assumption we made in
our proof; namely that all paths are situated on angular slices.

This example shows us that when moving away from the angular slice, the restrictions that
we can derive for the perturbation matrix E are not enough to prove case IV 4.5 anymore.
We need to therefore know more about the possible perturbations to the metric. Remember
that the metric perturbations arose from the polarization of our mixed variation of Hodge
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structure, which had as argument the period map corresponding to our (3, 0)-form. We
would therefore need to increase our knowledge of the terms arising in the expansion of the
(3, 0)-form due to the nilpotent orbit theorem, and the exact workings of the polarization
Q̃ if we want to tighten the restrictions on E. This requires a deeper understanding of the
mixed Hodge structure.

4.7.2 Relaxing the angular slice assumption

In this section we present some new results for the case with one infinite and one finite
divisor, in two dimensions.

Case 6 (Infinite/finite Wang conjecture in 2 dimensions) Let s ∈ E1

⋂
E2 with E1

an infinite divisor and E2 a finite divisor, parametrized by z1 and z2 respectively, and s /∈ Ej
for all j 6= 1, 2. Denote by E the hermitian 2×2 perturbation matrix of which all components
decay exponentially in y2, and let γ be any path in the moduli space ending on the singular
divisor. If either of the following conditions hold

• Im(E21) = Im(E12) = 0,

• γ is a path which grows at most polynomially in the real direction,

then
∫
γ
ds =∞

Note that, because of the hermitian condition on E, having real off-diagonals is equivalent
to E being symmetric. We will derive the metric without assuming to be on an angular slice,
and give criteria for when the Weil-Petersson distance diverges independent of the path.
These criteria are based on the form of the perturbation matrix E introduced in section 4.2.

Note that the angular slice is an assumption on the path taken towards the infinite dis-
tance singularity. The expression for the metric, in terms of a main contribution p and a
perturbation matrix E derived in section 4.2 are still valid. We therefore begin with

g =

(
1/y2

1 0
0 0

)
+

(
0 g(y1)e−y2

g(y1, y2)e−y2 E22

)
, (4.53)

where g is bounded and a polynomial in y1, as per section 4.2.

Losing the angular slice assumption does show up when writing out the expression of the
metric in terms of a basis of forms, namely, we now need to take dx 6= 0. This gives us

(4.54)g =
1

y2
1

∣∣dz2
1

∣∣+ E22

∣∣dz2
2

∣∣+ g(y1)e−y2dz1dz2 + g(y1, y2)e−y2dz2dz1.

Expanding dz = dx+ idy and rewriting leads to

(4.55)g =
1

y2
1

(∣∣dy1 + e−y2y2
1g(y1)dy2

∣∣2 +
∣∣dx1 + e−y2y2

1g(y1)dx2

∣∣2)
+ y2

1

(
E22/y

2
1 − e−y2 |g|

2) (dy2
2 + dx2

2)− 2e−y2Im(g)(dy1dx2 − dy2dx1).
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Table 4.2: Current status of the Wang conjecture
Proven?

Case # of infinite/finite divisors # of dimensions Type of path Type of perturbation
I 1/0 r Any Any

II 1/1 2
Any
Polyn. growth in x

Symmetric
Any

III 1/1 r Angular slice Any
IV 2/0 2 Angular slice Any
V 2/0 r No No

We note that, in the above expression, the final term is the only term with a possibly negative
contribution (this is shown in section 4.3 in detail). We have shown in section 4.3 that the
first term by itself already leads to a divergence of the field distance: absence of the final
term proportional to Im(g) therefore implies divergence of the field distance, and so the first
condition in 6 is proven.

If we limit the possible paths to only those not growing exponentially in the direction of
x, then we see that the factor e−y2 exponentially suppresses the last term, thereby again
ensuring divergence, as the negative term only contributes up to a finite cutoff in y2. This
proves the second condition in 6.

The general case considered here reduces to example 4.7.1 upon taking E22 = e−2y2 and g = i
(i.e. Im(g) = 1).

4.8 Summary and outlook

In the previous parts we have reviewed the proof of Wang’s conjecture 2 for some special
cases, completing the steps and clarifying the assumptions made by Lee [4].

The attempted proof was a constructive one, where various mathematical techniques out-
lined in chapter 5 were used to expand the metric, split it into a main contribution and
an exponentially decaying contribution, and use this to calculate the field distance through
integration. We showed for various cases that the field distance diverges, the results are
summarized in table 4.2.

The other barrier we ran into during the proof is the fact that the expansion coefficients
suddenly become relevant in case V, meaning that we can no longer guarantee boundedness
of the extra terms (i.e. those appearing in the r dimensional analogue of equation (4.27))
along paths that also run in the ζ direction.

It appears that due to the intricacy with which the metric is produced the resulting terms
become highly non-trivial when one tries to expand them in generality. The subsequent
integration to find the Weil-Petersson distance is difficult because of the large number of
available paths in four real dimensions. Both the intricacy of the metric, and the failure
to incorporate the perturbation matrix E to finish the proof of case 4.5 follow from the
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mathematical formalism used to calculate the metric. A better understanding of the po-
larization of mixed variations of Hodge structures could lead us to improved restrictions on
the expression for the dominant term and its perturbations. This could also tell us what
form the perturbations generally take, as 6 seems to imply that, for the Wang conjecture to
hold in generality, we should be able to use variations of Hodge structure to prove that the
perturbation matrix is always symmetric, i.e. that Im(g) = 0.
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Chapter 5

Mathematical background

This chapter provides an overview of the mathematics used in chapter 4. The setup we
consider is the same: we have a family of Calabi-Yau manifolds φ : X −→ B, where B
is the moduli space. In this moduli space some points lie on singular divisors; which are
hypersurfaces of one dimension lower than the full space, on which a singularity is located.

We build up the mathematics needed to consider Hodge decomposition in the context of
singularities. This chapter continues with the theory presented in appendix B, which was
already needed for the compactification in chapter 3.

5.1 Variation of Hodge structure

In this section we closely follow [17]. One can consider a family of different Kähler manifolds
M , each manifold specified by several parameters (for example the Kähler and complex
structure moduli). Now remember that in string theory one is interested in the space of
harmonic forms, which one can relate to the de Rham cohomology, which in turn can be
studied through Hodge theory. Note that here we assume the reader to be familiar with all
of these concepts, including Hodge decomposition. If that is not the case then it warrants
itself to read appendix B (which was also used “behind the scenes” in chapter 3) as most of
this chapter leans on these concepts.

A very interesting topic of study is then how Hodge structures change based on the pa-
rameters that specify the family of manifolds. This is precisely what this chapter is aimed
at; elucidating some of the mathematical theory behind the study of variations of Hodge
structure.

Let φ : X → B be a map between two complex manifolds. We take φ to be a proper,
holomorphic submersion. In this scenario B will be the moduli space parametrizing a family
of Kähler manifolds. Each of these Kähler manifolds is given by the fibre Xb := φ−1(b).
By [17] we know that each Xb is a complex submanifold within X, of codimension dim(B).
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We now have the fibres Xb : b ∈ B as the manifolds of which we want to study the Hodge
structure.

We now use the formalism of filtrations, as outlined in appendix B, to find a map between
parameters corresponding to the family of manifolds and the Hodge structure. First we shall
find a map relating the fibres, i.e. a map between two manifolds Xb1 and Xb2 , for b1, b2 ∈ B.
This map will then be used to relate a parameter t ∈ B to a filtration, and therefore a Hodge
structure.

Assume B to be contractible, and X to be C∞-trivial1, over B. We can then find a diffeo-
morphism gt : X = Xt0 → Xt [17]. The pull-back of which induces an isomorphism

g∗t : Hk(Xt,C)→ Hk(Xt0 ,C) (5.1)

between the de Rham cohomologies of the two manifolds Xt and Xt0 in our family. Now
comes the step where we can relate the moduli space B to realizations of Hodge structure.
This is done via the following map,

Pp : B → G(fp, Hk(X,C)); Pp(t) = g∗t (F
p(Xt)), (5.2)

where F p is the Hodge filtration as defined in appendix B. In the above equationG(fp, Hk(X,C))
is a Grassmannian space. It is the set of all fp dimensional subsets of the space Hk(X,C);
in other words it is the set of filtrations of the Hodge structure. So Pp relates t, the pa-
rameter for our family of manifolds, to the Hodge filtration of some basic Hodge filtration
corresponding to t0. It therefore tells us how the Hodge filtration varies as a function of t.

Based on this discussion we can now present the relevant properties of a variation of Hodge
structures as it is used in this work. Note that we omit a large part of the more general
definition given in [17], however for our purposes this is enough.

Let B be a connected complex manifold. A variation of Hodge structure (VHS) of weight k
over B is a local system2 of vector spaces over Z, and the corresponding holomorphic vector
bundle V3. This vector bundle has an associated filtration,

... ⊂ Fp ⊂ Fp−1 ⊂ ... (5.3)

by holomorphic sub bundles Fp satisfying V = Fp
⊕

Fk−p+1, and the property that the flat
connection on V can also be applied to the sections of Fp, the space of which is denoted by
Fp.

In our case the holomorphic vector bundle is the collection of de Rham cohomologies of the
different Calabi-Yau manifolds, which are distinguished by the values of their parameters
which lie in B, and the Fp are the Hodge filtrations. By placing this cohomology into a VHS
we get a framework for studying the changes in the Hodge structure as parametrized by B.

1This means that X as a bundle allows a smooth global frame.
2Intuitively this just means a “collection of”.
3This bundle is “corresponding” in the sense that it contains all of the aforementioned vector spaces as

fibres.
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We can also consider the changes in the Hodge numbers hp,q(Xt) as a function of t. It is not
unconceivable that different manifolds within the same fibre have different Hodge numbers.
This turns out to not be the case,

hp,q(Xt) = hp,q(Xt0), ∀t ∈ B. (5.4)

For the full proof see [17].

5.2 Divisors

The section above introduces variations of pure Hodge structure, i.e. the considered spaces
do not contain any singularities. We will now introduce infinite distance singularities to our
moduli space, by considering them to be located on divisors. Given a manifold M , a divisor
is a subspace N of M of codimension one,

codim(N) = dim(M)− dim(N) = 1. (5.5)

These are complex dimensions; so a divisor of a complex one dimensional space is simply
a point. Being codimension one locks down the direction of rotations, and one can then
consider paths that move around the divisor (i.e. the point), leading to the concept of
monodromies and monodromy operators. Each singularity has one monodromy operator
related to it, and this operator encodes information about the singularity.

In this work we will consider all of our singularities to lie on such divisors4.We then con-
sider paths moving towards these divisor-singularities. In an n-dimensional complex space
divisors are necessarily (n− 1) dimensional, and can overlap an arbitrary amount of times.
Hence when moving towards a singularity there could be any number of relevant monodromy
operators, depending on which divisors overlap.

5.3 Monodromy

Now that we can consider the singularities within our moduli space, we can start to learn
more about the behavior around the singularities. The class of transformations that move a
path around a point is given by the group of monodromy transformations denoted by Γ. We
will now proceed to define this.

Let B be a moduli space corresponding to a family of manifolds as before. We can consider
the group containing all transformations of a point b0 ∈ B which leave the point b0 invariant,
and call it π1(B, b0)5.By considering curves on B one can then define a representation of

4It was proven in [18] that one can resolve any other type of singularity to a normal crossing divisor, i.e.
a divisor which somehow acts nicely when intersecting other divisors.

5In the theory of homotopy π1(B, b0) is called the fundamental group of B at the point b0. It is defined
as the group of all loops at b0 (with composition of two loops meaning traveling first over one, then over the
other) modulo homotopy (i.e. in the fundamental group any two loops which can be continuously deformed
into each other have the same representative under homotopy).
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Figure 5.1: When one attempts to define the logarithm for complex numbers one finds
different answers along different paths. This induces an infinite order monodromy, where
the outcome of the complex logarithm is changed by a term 2πi for each rotation around
the origin. Source: [19]

π1(B, b0),

ρ : π1(B, b0)→ GL(Vb0), (5.6)

where Vb0 is the fibre of the family of Hodge structures parametrized by the moduli space
B. We then name ρ the monodromy representation and

Γ := ρ(π1(B, b0)) ⊂ GL(Vb0 ,Z), (5.7)

the monodromy group. Intuitively any path which begins at a point z ∈ B and ends at the
same point z ∈ B is like the identity; applying this path to the argument of a function of z
intuitively should not change the function value.

This is true in a lot of cases, but not when singularities are introduced into the complex
space B. When one analytically continues a function F (z) then moving the argument z on
a loop around the singularity can change the function value. This creates a covering space
B′ of B, which intuitively consists of layers above and below B, where one moves between
the layers by going around the singularity; in the same sense as using a spiral staircase.

We note that two monodromy matrices N1, N2 corresponding to different divisors E1, E2

commute [15].

In this work we keep the discussion general, and do not mention how to derive the monodromy
matrices N ; they depend on the type of singularity however. One can view [3] for more
information.
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5.4 Period map

Consider now the conceptual space D of all Hodge structures of a certain weight k, dimension
n and with certain Hodge numbers; D(V, Q, k, hp,q). Here V signifies the collection of vector
spaces defining the Hodge structure, k is the weight of the Hodge structure, Q its polarization
(see appendix B) and hp,q the Hodge numbers. This appears as a very abstract notion, and
it is. As the Hodge numbers remain constant under variations in the parameters per (5.4) we
can specify all parameters that D depends on. The space D will then reduce to a collection
of cohomology vector spaces, which, as complex vector spaces, can be identified withCn.
In other words D reduces to the space of complex moduli characterizing a specific Hodge
structure, where n denotes the dimension of the parameter space B.

We can now consider the following map,

Φ : B → D/Γ, (5.8)

called the period map. The period map relates a family of Kähler manifolds (as specified
by B) to a family of Hodge structures. In this definition we do not want to consider the
covering spaces of the Hodge structures implied by monodromy, hence we take the quotient of
all Hodge structures with the monodromy group. This quotient under the group action then
“glues together” all the points which are related to each other by moving around singularities,
as explained in the context of monodromies 5.3.

The name period map comes from the fact that a Hodge filtration F p is also referred to as
a “period”. The period map therefore connects a parameter B corresponding to a type of
Kähler manifold to a period, or Hodge filtration.

Within a physical context we find period maps whenever we perform a Poincaré duality.
Consider for example the holomorphic (3, 0)-form Ω(z). Through Poincaré duality we can
expand Ω(z) = Πi(z)γi, where in this context we refer to the Πi(z) ∈ C as the periods. The
map Π = (Π1, ...,Πn) is therefore a period map, in the sense that it is a map into coefficients
of Ω as (3, 0)-form in the cohomology space. Noting that this (3, 0)-form, being an element
of F3, generates F2 and F1 leads us to consider Π as a map into the collection of cohomology
vector spaces, and therefore to be a period map in the mathematical sense described above.

As we now use the space D this period map is defined in a more general way than the map
Pp 5.2 constructed in the previous section, however their function is similar, in the sense
that they both relate a parameter to a Hodge structure.

5.5 Asymptotic behaviour of Hodge structures

We have now come to the last part of this preliminary, where we introduce the structure
that will be used in the rest of the thesis. This structure is called the mixed Hodge structure;
it is the asymptotic version6 of a variation of Hodge structure. There are several theorems,

6In the sense that the moduli space contains singularities.
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vital for the next chapter, regarding period maps of mixed Hodge structures that will be
introduced in this section.

For our purposes mixed Hodge structures are variations of Hodge structure over spaces with
singularities. This changes the Hodge structure To account for this one uses the following
spaces (due to Schmid [20]),

F p
∞ = lim

z→0
e−

1
2
πi log(z)NF p, (5.9)

called the limiting space of F p, where N is the monodromy operator. In the context of
cohomologies one can move from one filtration to the other by applying a derivative. Now,
for the limiting filtration given above, we note that the properties of the exponent give us that
applying N is similar to applying the derivative. This motivates the fact that N(F p

∞) ⊂ F p−1
∞

[3].

The above procedure effectively filters out the singularities. However now the F p
∞ spaces and

corresponding Hp,q
∞ no longer define a VHS. We therefore need to consider a different object,

which takes into account both the Hodge structure without infinities, as the information on
the singularities.

5.5.1 Monodromy theorem

It was mentioned in section 5.2 that the monodromy matrices Ni encode the properties of
the singularities. In order to use them in the construction of a mixed Hodge structure we
first need to mention an extra property.

For this purpose we consider now c1, ..., cr, the generators of the fundamental group π1((∆∗)r).
We denote γj = ρ(cj) the generator of the monodromy group ρ(π1((∆∗)r)). We can state
our first monodromy related theorem, the proof of which is due to Landman [21] and Borel
(cf. [20]):

Theorem 1 (The monodromy theorem) For all monodromy transformations γj, j =
1, .., r, there exist integers νj such that (γ

νj
j − id) is nilpotent. This property is called quasi-

unipotence of the γj. The index of nilpotency of (γ
νj
j − id) is at most k + 1.

In the above theorem k is the weight of the Hodge structure.

The nilpotency property of monodromy matrices allows us to use them in the definition of
a new filtration, the weight filtration, which together with the Hodge filtration will make up
our mixed variation of Hodge structure.

5.5.2 Monodromy weight filtration

Using the monodromies We can define the weight filtration made up of spaces Wi(Ni) [22].
It is defined in the following way, following [17].
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Let N : B −→ B be a nilpotent matrix of order k, such that Nk+1 = 0. Let m ∈ Z, m ≤ k.
For A ⊂ B, we can define Am to be a Jordan block of weight m, if Am has an m-dimensional
basis given by f0, f1, ..., fm, and for each fi we have N(fi) = fi+1, with fm+1 = 0. We redefine
the basis f to a basis e,

em−2j := fj. (5.10)

Now let Um :=
⊕

nAn|n = m be the direct sum of all Jordan blocks of B with weight m.
We can then decompose V as the sum,

B =
k⊕

m=0

Um. (5.11)

We can also decompose Um further, into subspaces of Um which are spanned by the basis
vectors enm−2j as n runs over all Jordan blocks of weight m. This gives,

Um =
m⊕
j=0

Um,m−2j. (5.12)

Finally this leads us to the last space,

El = El(N) =
k⊕

m=0

Um, l. (5.13)

It is these spaces that will make up our weight filtration.

For the decomposition (5.13) we have per [17]

1. N(El) ⊂ El−2

2. For l ≥ 0, N l : El −→ E−l is an isomorphism.

For the first statement we used that N(fj) = fj+1 for fj the basis of a Jordan block.

Now via this decomposition we can define the weight filtration. Let N be a nilpotent matrix
with index k. We need the matrix N to be rational; N ∈ glQ [17]. Then for a vector space
B there exists a unique, increasing filtration W = W (N),

0 ⊂ W−k ⊂ W−k+1 ⊂ ... ⊂ Wk−1 ⊂ Wk = B, (5.14)

with

1. N(Wl) ⊂ Wl−2

2. For l ≥ 0, N l : GrWl −→ GrW−l, with GrWl := Wl/Wl−1, is an isomorphism.

This filtration is called the monodromy weight filtration. Note that we can apply the above
to the cohomology spaces, thereby getting a Hodge monodromy weight filtration to contrast
the Hodge filtration.
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5.5.3 Mixed Hodge structure

If we combine the two structures, i.e. the limiting Hodge filtration carrying information on
the Hodge structure (5.9) and the weight filtration with information on the singularities,
then we can define what is called a mixed of Hodge structure, which encompasses all the
relevant information.

Following [17] we take V a vector space over C. A mixed Hodge Structure (MHS) on V
consists of a pair of filtrations of V ; (W,F ), where W is increasing and F is decreasing, such
that F induces a Hodge structure of weight k on GrWk := Wk/Wk−1 for each k.

In the case of the de Rham cohomologies and monodromies on the moduli space, the filtration
W is of course the weight filtration as in (5.5.2) and F is the Hodge filtration as in appendix
B.

In the context of an MHS it is not possible anymore to work with the polarization as defined
in appendixB, as the Hodge structure is now given in terms of Grk, which also depends on
the weight filtration. In other words, there is now much more structure that the polarization
needs to account for. Following [15] as written in [17], we therefore define the polarized mixed
Hodge structure (PMHS) as below.

A polarized MHS of weight k ∈ Z on a complex vector space V is composed of an MHS
(W,F) on V as above, a morphism N ∈ g

⋂
}lQ (where g is the Lie algebra of the monodromy

group) and a nondegenerate, rational bilinear form Q where

1. Nk+1 = 0,

2. Wl = W (N)l−k,

3. Q(F a, F k−a+1) = 0,

4. the Hodge structure of weight k + l that F induces on

ker
(
N l+1 : GrWk+l → Grk−l−2

)
(5.15)

is polarized by Q(·, N l·).

The metric on the moduli space

On a polarized MHS we can use the polarization to define what is called the Weil-Petersson
metric on the moduli space. In the specific context of the Calabi-Yau manifold Todorov and
Tian[23][24] showed that the Weil-Petersson metric can be written in terms of the unique
(n, 0)-form. It can even be rewritten significantly to[23],

ωWP =

√
−1

2
∂∂ log Q̃(Ω,Ω) (5.16)

Griffiths then showed [16] that the Weil-Petersson metric is semi-positive definite, actually
making it into a well-defined metric on the moduli space.
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5.5.4 Period maps

Remember the concept of a period map introduced in section 5.4. We will now study the
effect that the presence of singularities has on the period maps. Consider a family of Kähler
manifolds φ : X → B as before. In the case where B has one or more singularities at a
point we can consider an open disk of radius L around the singular point. Here r denotes
the number of overlapping divisors, i.e. the number of singularities, within the considered
disk. With the singularity removed we find

B ⊃ U = (∆∗)r ×∆n−r (5.17)

where ∆∗ := z ∈ C : 0 < |z|< L and ∆ := z ∈ C : 0 ≤ |z|< L. We can then proceed to study
period maps in the context of the polarized mixed Hodge structure that is defined by the
cohomology of the Calabi-Yau space over this open U ⊂ B. This lets us define period maps,

Φ : (∆∗)r ×∆n−r → D/Γ. (5.18)

Noting that the universal cover of ∆∗ is given by H = z ∈ C : im(z) > 0 we can also lift the
period maps to the universal cover,

Φ̃ : Hr ×∆n−r → D. (5.19)

Note that in the lifting process we chose to consider all the copies of U under the monodromy
operations, hence our period map is now lifted to a map with image D.

Using the monodromy of our space we can say a lot about the lifted period map of our mixed
Hodge structure. This is done in the context of Nilpotent orbits.

5.5.5 Nilpotent orbits

From this point on forward we make some simplifying assumptions as per [17], which will
not reduce our level of generality. We will take the number of overlapping divisors r = n,
and assume that the monodromy transformations γj are quasi-unipotent (as explained in
(1)) with νj = 1. This means that they are actually unipotent, by definition.

Consider g the Lie algebra of our monodromy group. We write,

γj = eNj ; j = 1, .., r, (5.20)

here the Nj are nilpotent (not unipotent) elements of order k + 1 in g. For a lifted period
map Φ̃ we then find,

Φ̃(z1, ..., zj + 1, ..., zr) = eNj · Φ̃(z1, ..., zj, ..., zr). (5.21)

This means that the monodromy operator γj rotates the j’th argument of the period map
once around the singularity. Consider now Ď to be the space of all Hodge filtrations (also
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referred to as the dual of the classifying space D). We can then define some variations of
the mapping Φ which will be useful in stating the Nilpotent Orbit Theorem. We can define

Ψ(z1, ..., zr) := exp

(
−

r∑
j=1

zjNj

)
· Φ̃(z1, ..., zj + 1, ..., zr), (5.22)

which is in fact the lifting of a different holomorphic map ψ : (∆∗)r → D;

ψ(t1, ..., tr) = Ψ(
log t1
2πi

, ...,
log tr
2πi

). (5.23)

We can now state the following theorem as per [20] :

Theorem 2 (Nilpotent Orbit Theorem) Let Φ : (∆∗)r ×∆n−r → D a period map, and
N1, ..., Nr the monodromy logarithms7and ψ : (∆∗)r ×∆n−r → D as defined in (5.23). Then

1. The map ψ extends holomorphically to (∆∗)r ×∆n−r

2. For each w ∈ ∆n−r, the map θ : Cr ×∆n−r → Ď given by

θ(z, w) = exp

(
r∑
j=1

zjNj

)
· ψ(0, w)

is a nilpotent orbit8. Also if there exists a compact C ⊂ ∆n−r with w ∈ C then there
exists a constant α ≥ 0 such that for Imzj > α for all 1 ≤ j ≤ n we have θ(z, w) ∈ D.

3. For any G-invariant distance d on D there exist positive constants β, K, such that,
for Im(zj) > α for all 1 ≤ j ≤ n we have

d(Φ(z, w), θ(z, w)) ≤ K
r∑
j=1

(Im(zj))
β exp (−2πIm(zj)) .

Furthermore, the constants α, β, K only depend on the choice of d and the weight and Hodge
number used to defining D. The constants may be chosen uniformly for w in a compact subset
C ⊂ ∆n−r.

This theorem tells us that any period map Φ can asymptotically be approached by the map
θ, which is properly defined because the first argument of the map ψ can be holomorphically
extended to include the origin. Hence, because Nj is nilpotent, and the expansion will
truncate, we can actually express every period map near a singularity as a polynomial in the
zj.

Note that the expression given by θ only depends on the r monodromy matrices Nj, j ∈
{1, ..., r}, that cross at the singularity. The nilpotent orbit is independent of the non-singular
directions.

7In the sense that Nj = log γj .
8That is, the fact that θ can be expanded as such, in terms of nilpotent matrices, is the definition of being

a nilpotent orbit.

64



Chapter 6

Conclusion

In this work we studied field distances in the moduli space of type IIB compactifications on a
Calabi-Yau manifold. This study was motivated by the Swampland Distance Conjecture [1],
a conjecture stating that at any infinite distance singularity in the moduli space an infinite
tower of massless states will appear, rendering the effective theory unphysical. We aimed
to enlighten the workings behind it. As such the Wang conjecture [2] was studied, which
states that an infinite order monodromy will lead to an infinite field distance. It has already
been proven by Wang [2] that, in the presence of a singular divisor, a point at infinity has
an infinite order monodromy associated to it. In other words, Wang showed that an infinite
order monodromy is a necessary requirement for a divergent field distance. In this work
we studied whether an infinite order monodromy is also sufficient. Or, in the context of
the Swampland Distance Conjecture, whether an infinite tower of massless states is also a
sufficient condition for having a divergent field distance1.

In order to study this we began by revisiting and clarifying a proof due to Lee [4]. Following
his lead we used the special geometry of the moduli space as worked out in chapter 3 to
express the field distance in terms of the unique (3, 0)-form Ω(z). We then applied the
nilpotent orbit theorem 2 to write Ω(z) as an exponent in the monodromy matrix N , after
which we could make use of the nilpotent properties of N to let the corresponding Taylor
series truncate, leaving a polynomial to be studied further.

This set us up to study some simpler cases of the Wang conjecture, characterized by the
number of infinite/finite divisors and the number of dimensions of the moduli space. We
follow the proof by Lee and expand on some of the arguments made. As described in section
4.2 the presented proof hinges on the analyzing the metric in terms of a dominant term, and
an exponentially decaying perturbative term. The following results [4] are shown,

• In the presence of one infinite divisor the Wang conjecture holds for arbitrary dimen-
sions (theorem 1).

• In the presence of one infinite divisor and one finite divisor the Wang conjecture holds

1It is important to note again that, while the link between infinite towers of states and infinite mon-
odromies has been motivated [3], it has not been proven.
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only for paths situated on angular slices, in arbitrary dimensions (theorem 3).

• In the presence of two infinite divisors the Wang conjecture holds only for for paths
situated on angular slices, in a two dimensional moduli space (theorem 5).

After having analyzed the work by Lee [4] we proceed to consider the angular slice assumption
for the case with one infinite divisor and one finite divisor in two dimensions. In section 4.7
we show an example due to Lee that, for a general perturbation, a path growing exponentially
in the real direction can offset the growth in the imaginary direction, leading to a finite field
distance.

We then use the same formalism to derive a new result, namely a criterion based on the
perturbation for the path divergence

• In the presence of one infinite divisor and one finite divisor in a two dimensional
moduli space the Wang conjecture holds for a perturbation matrix with real off diagonal
elements, for a general path (theorem 3).

In addition we show that

• for one infinite divisor and one finite divisor in two dimensions, for a general per-
turbation matrix, it is not necessary to be on the angular slice: demanding at most
polynomial growth in the real direction is sufficient to show the Wang conjecture.
(theorem 3)

The relevance of these results was shown to come from the Lyth bound in inflation, which
would relate the existence of tensor modes in the CMB to large field inflation. The discovery
of such tensor modes would imply that when realizing inflation from string theory this bound
has to be obeyed, demanding a minimum value to be traversed in the inflaton field space. We
then used the type IIB string theory compactification to motivate the emergence of complex
moduli scalars from string theory, these scalars could be candidates for the inflaton. Finally,
the many failed attempts at realizing inflation through complex moduli lead us to consider
the Swampland Distance Conjecture, bringing us to a full circle.

For the cases considered the Wang conjecture now motivates the relation between infinite
monodromies and infinite distances. It is however painfully clear that an important ingredi-
ent is still missing, namely the relation between infinite monodromies and an infinite tower
of states. Without this, the results presented here cannot be related to a physical theory. In
this work we have thus only managed to scratch the surface by showing how and when the
field distance diverges for up to two dimensions. In the future we would like to use these
results to constrain the possible field distance in saxion, and even axion inflation.

Linking to actual physics comes with an extra caveat, namely specifying the cut-off at which
the effective theory breaks down. In this work, no mention was made of the cut-off that
the Wang conjecture could imply for a physical theory: the discussion in this work has only
considered field distances for singularities at infinity. The reason for this is that the cut-off
for a theory depends on at which mass the new states need to be taken into account. As we
have also ignored the link between infinite monodromies and states, the cut-off of the theory
was especially beyond the scope of this work.
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A lot of progress can also still be made in relaxing the angular slice assumption in higher
dimensions, in generalizing to more dimensions and more divisors and of course in proving
the most important part in linking this work to actual inflationary theories: proving the
connection between infinite monodromies and infinite towers of states.

While this review is far from exhaustive on the topic of string cosmology, we hope nonetheless
that this work provides a clear overview of the study of infinite distances in the moduli space,
and that the results shown convey how promising the usage of variations of Hodge structure
is to study the inner workings of the Swampland Distance Conjecture.
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Appendix A

Basics of cosmology and inflation

Here we will present some equations and definitions necessary in the study of inflation in the
context of field theory. In our discussion of inflation we will use natural units

c = h̄ := 1. (A.1)

The reduced Planck mass is used

Mpl = (8πG)−
1
2 . (A.2)

The flat background metric for our Minkowski space is,

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (A.3)

where throughout this text µ, ν are used to denote spacetime indices (note that the greek
indices α, β also see different uses within the context of string compactification).

FLRW spacetime

In cosmology it is assumed that the universe is homogeneous and isotropic. In the large scale
limit this leads to the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (A.4)

The scale factor a(t) describes the expansion of the universe. The parameter k corresponds
to the curvature of the universe, k = −1, 0, 1. This expression of the FLRW metric (A.4) uses
comoving coordinates, which means that during the expansion of the universe the location
of an object in space has fixed r, θ, φ as long as there are no external forces acting on it.
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The Hubble parameter

The Hubble parameter

H =
ȧ

a
(A.5)

characterizes the expansion rate. It is positive for an expanding universe and negative for a
collapsing universe. One uses it as the main scale of the FLRW universe, in the sense that
H−1 is the characteristic time scale of a homogeneous universe, and in natural units also the
characteristic length scale called the Hubble radius.

If we want to define the comoving Hubble radius we need to divide out the scale factor, giving
us (aH)−1.

Composition of the universe

The constituents of the universe collectively determine the energy density and pressure. We
therefore denote by ρ and p the sum of all parts making up the entire universe,

ρ :=
∑
i

ρi, p :=
∑
i

pi. (A.6)

We can define the critical energy density ρc through,

1

ρc

(∑
i

ρi + ρk

)
= 1, (A.7)

where ρk is the energy density associated to curvature, evaluated today. From the Friedmann
equation one can find that ρc = 3H2

0 with H0 the current value for the Hubble parameter.

We can then define the ratio of the energy density at the current time and the critical energy
density

Ωi :=
ρi
ρc

(A.8)

In these terms we can rewrite the Friedmann equation (A.14),(
H

H0

)2

=
∑
i

Ωia
−3(1+wi) + Ωka

−2 (A.9)

with Ωk = −k/a2
0H

2
0 the critical density for curvature.

We can combine the continuity equation (A.15) and the Friedmann equation (A.14) to find
the acceleration equation

Ḣ +H2 = −1

6
(ρ+ 3p). (A.10)
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Evaluating this equation at t = t0, i.e. today, we find

1

a0H2
0

d2a

dt2

∣∣∣∣
t=t0

= −1

2

∑
i

Ωi(1 + 3wi), (A.11)

the equation which determines whether accelerated expansions takes place today.

Einstein equations and Dynamics

The dynamics of the FLRW-universe are found through the Einstein equations

Gµν = 8πGTµν. (A.12)

We can assume the universe to be a perfect fluid, with stress energy tensor

T µν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 , (A.13)

where ρ and p define the proper energy density and prsure of the fluid in rest frame. This
stress energy tensor greatly simplifies the Einstein equations, leading to the Friedmann equa-
tion,

H2 =
1

3
ρ− k

a2
(A.14)

which can be supplemented with the continuity equation,

dρ

dt
+ 3H(ρ+ p) = 0. (A.15)

We can define the equation of state parameter,

w :=
p

ρ
(A.16)

which relates the pressure and density to each other in terms of a parameter w, which is
known for some specific cases: for a universe with only matter, radiation or a cosmological
constant we have w = 0, w = −1/3 and w = −1 respectively. The equations (A.14), (A.15)
and (A.16) can be combined to calculate the scale factor,

a(t) ∝

{
t2/(3(1+w)) w 6= −1

eHt w = −1,
(A.17)

where H is taken to be the Hubble constant.

The main goal of inflation is to have a decreasing Hubble radius at very early times. This
solves for example the horizon and flatness problems. In order to achieve this we need to
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have an epoch of very rapid expansion, and this expansion is referred to as “inflation.” As
fundamental definition of inflation we therefore take

d

dt

(
1

ȧ

)
=

d

dt

(
1

aH

)
< 0. (A.18)

It is however possible to relate the above definition to the condition of accelerated expansion,

d

dt

(
1

aH

)
= − ä

(aH)2
. (A.19)

From the above equation we can clearly see that for the Hubble radius to be shrinking we
need ä > 0. The acceleration equation (A.10) gives us a way in which to relate this second
derivative of a to the first derivative ȧ,

ä

a
= H2(1− ε), with ε := − Ḣ

H2
. (A.20)

In the above expression we have introduced a new parameter ε called the slow roll param-
eter, which is useful to consider in the context of inflation. The requirement of accelerated
expansion directly translates to the condition

ε = − Ḣ

H2
= −d logH

dN
< 1, (A.21)

with dN = Hdt = d log a measures the number of e-folds, i.e. the number of times the scale
factor a(t) has increased by a factor of e.

The components of the universe also predict whether or not expansion takes place. This is
done through the equation of state parameter w. By combining equations (A.10) and (A.14)
we find the relation

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p) . (A.22)

Inflation in field theory

We would now like to realize the above mentioned behaviour of the scale factor from a field
theory perspective. The simplest way of doing this is to link the scale factor to some scalar
field φ called the inflaton. We can then write down a Lagrangian for φ, whose equations of
motion we can relate to a(t) (we will note later how a(t) and φ are related). The inflaton
has as a role to parametrize the evolution of the “inflationary energy”. We will not yet think
about the physical origin of this field.

In this section we proceed to write down the action for the inflaton, which we vary to obtain
the stress energy tensor. Assuming again the FLRW-metric (A.4) and a homogeneous and
isotropic universe we know the stress energy tensor to be that of a perfect fluid, with pressure
and density specified by the inflaton φ. Via the Friedmann equations (A.14), relating a(t)
to the properties of this perfect fluid, we can then link the inflaton φ to the scale factor a(t).
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Figure A.1: An example of the inflationary potential. Note how inflation takes place in
between φCMB and φend, after which the inflaton rolls down, ending inflation. Source: [6],
figure 10.

The action for the inflaton is given by

S =

∫
d4x
√
−g
(

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
=: SEH + Sφ. (A.23)

The energy momentum tensor corresponding to φ is

Tµν(φ) := − 2√
−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ+ V (φ)

)
(A.24)

and the equation of motion is

δSφ
δφ

=
1√
−g

∂µ
(√
−g∂µφ

)
+ v,φ, (A.25)

where we take V,φ := ∂V/∂φ. For an FLRW-metric (A.4) in a homogeneous and isotropic
universe this stress energy tensor assumes the form of a perfect fluid with[6]

ρφ =
1

2
φ̇2 + V (φ) (A.26)

pφ =
1

2
φ̇2 − v(φ). (A.27)

In order to connect φ to inflation we calculate the state parameter,

wφ =
1
2
φ̇2 − v(φ)

1
2
φ̇2 + V (φ)

. (A.28)

Depending on the chosen potential V (φ) it is therefore possible to achieve w < −1/3, leading
to accelerated expansion and therefore inflation. For the inflaton in an FLRW-geometry we
find the following Friedmann and continuity equations,

φ̈+ 3Hφ̇+ V,φ, H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (A.29)
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The first equation is akin to a harmonic oscillator with a friction term 3Hφ̇.

We can now express the slow roll parameter ε in terms of φ,

ε =
3

2
(wφ + 1) =

1

2

φ̇2

H2
. (A.30)

Remember that accelerated expansion occurs if ε < 1. The extreme case is given by ε −→ 0,
which happens in the de Sitter limit, pφ −→ −ρφ. In this case we have that

φ̇2 � V (φ). (A.31)

We will now derive some useful conditions for inflation in terms of so-called slow roll param-
eters. Remember that one of the reasons for adopting the theory of inflation was the horizon
problem. In order for this problem to be solved we need the scale factor to change by a
certain amount; otherwise points at a large distance now would still not have been in causal
contact early on [6]. It turns out that we need a(t) to increase by about 40-60 e-foldings to
achieve this. The inflaton therefore needs to source inflation for a long enough time, since as
the value for φ̇ changes the value for ε changes too, causing the inflationary period to end.

The constraint that inflation has to last long enough is expressed in terms of φ̈,∣∣∣φ̈∣∣∣� ∣∣∣3Hφ̇∣∣∣ , |V,φ| . (A.32)

This constraint can then be recast in terms of a second slow-roll parameter η,

η = − φ̈

Hφ
= ε− 1

2ε

dε

dN
. (A.33)

The slow roll conditions are then ε, |η| < 1.

We can rewrite both of these conditions also in terms of the inflationary potential. In order
to do this we introduce the potential slow-roll parameters εv and ηv

εv(φ) :=
M2

pl

2

(
V,φ
V

)2

, (A.34)

ηv(φ) := M2
pl

V,φφ
V

, (A.35)

which under the slow-roll approximation are related to the Hubble slow roll parameters ε and
η through

ε ≈ εv, η ≈ ηv − εv. (A.36)

Using the above relations we can now relate the potential V (φ) to H and the inflaton φ in
the slow-roll approximation

H2 ≈ 1

3
V (φ) (A.37)

φ̇ ≈ − V,φ
3H

, (A.38)
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in this regime we find

a(t) ∼ eHt. (A.39)

Now as mentioned before inflation has to end at some time. We can express this moment in
terms of the slow roll conditions, as inflation ends when these conditions are no longer valid

ε(φend) = 1, εv(φend) ≈ 1. (A.40)

The value of the inflaton field φ thus changes with a value ∆φ = φend − φstart. Using the
quantity N(φ) := log(aend/a) we can calculate the number of e-folds, which in the slow-roll
approximation can be expressed as[6]

N(φ) =

∫ φ

φend

dφ√
2ε
≈
∫ φ

φend

dφ√
2εv

, (A.41)

where we made us of equation (A.37). As mentioned before the total number of e-folds
between the creation of CMB fluctuations and the end of inflation, N(φCMB) has to exceed
approximately 60 for the horizon and flatness problems to be solved,

Ntot := log
aend
astart

& 60. (A.42)

Gravity and Weyl rescaling

We have the Ricci scalar and tensor given by

Rµν = R ρ
µρν (A.43)

R = gµνRµν . (A.44)

A Weyl rescaling with parameter Ω is given by,

gµν = Ω−2g̃µν (A.45)

gµν = Ω2g̃µν (A.46)
√
−g = Ω−d

√
−g̃ (A.47)

which affects the Ricci scalar as,∫
dxd
√
−gΩd−2R =

∫
dx4

√
−ĝ′

(
R + (d− 1)(d− 2)

(
∂ω

Ω

))
. (A.48)

We can also consider the effect Weyl rescaling has on a metric independent p-form, which
we will denote by Fp. Such a term will arise in our action as,

Fp ∧ ∗Fp =
1√

−gp2(d− p)!
Fm1...mpFn1...npε

m1m2
m3...m10

dym1 ...dym10. (A.49)
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We note that because of the (d− p) low indices on the Levi-Civita symbol

εm1m2
m3...m10

= gm3n3 ...gm10n10︸ ︷︷ ︸
d−p

εm1m2n3...n10 (A.50)

which, combined with equation (A.45) tells us how the kinetic term for a p-form Fp trans-
forms:

Fp ∧ ∗Fp = Ω2p−dF̃p ∧ ∗F̃p. (A.51)
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Appendix B

Basics of differential geometry

We will assume notions like the differential p-form, the exterior derivative and the tangent
bundle to be known. One can read more about these concepts in for example[25].

In this appendix we will recall some notions of differential geometry, like the Hodge star, the
inner product of p-forms complex manifolds, Kähler manifolds and Hodge decomposition.
The information in this appendix was largely drawn from [26].

The Hodge star

Let M a smooth m-dimensional manifold, εµ1µ2...µm the Levi-Civita symbol and ω ∈ Ωr(M).
In the presence of a metric/volume form g we can define the Hodge star operator to be[27],

∗ω =

√
g

r! (m− r)!
ωµ1µ2...µrε

µ1µ2...µr
νr+1...νm

dxνr+1 ∧ ... ∧ dxνr . (B.1)

The Hodge star is an isomorphism ∗ : Ωr(M)→ Ωm−r(M); this means that any r-form can
be equally well described by an (m− r)-form. For a Riemannian manifold we also have,

∗ ∗ ω = (−1)r(m−r)ω. (B.2)

Inner product of forms

We can consider two forms ω, η ∈ Ωr(M). Then ω ∧ ∗η ∈ Ωm(M), and hence the integral of
ω ∧ ∗η over M is well defined. We can then define the inner product as,

(ω, η) =

∫
M

ω ∧ ∗η (B.3)

=
1

r!

∫
M

ωµ1µ2...µrη
µ1µ2...µr

√
gdx1...dxm. (B.4)

Note that (ω, η) = (η, ω) as ∫
M

ω ∧ ∗η =

∫
M

η ∧ ∗ω (B.5)
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The Hodge star and the adjoint exterior derivative

Note that the exterior derivative is a map d : Ωp(M)→ Ωp+1(M). Using the Hodge star we
can define the adjoint exterior derivative d∗ : Ωp+1(M)→ Ωp(M),

d∗ = (−1)mr+m+1 ∗ d ∗ . (B.6)

Consequently we have the alternative definition of the adjoint exterior derivative,

(dω, η) = (ω, d∗η). (B.7)

The Laplacian

In the context of differential geometry we use the adjoint of the exterior derivative d∗ to
define the Laplace-Beltrami operator,

∆ = dd∗ + d∗d. (B.8)

Now let ω a p-form. We note that using (B.7) we can show

(B.9)(∆ω, ω) = (dd∗ω, ω) + (d∗dω, ω)

= |d∗ω|2 + |dω|2 ,

hence

∆ω = 0⇐⇒ d∗ω = 0, dω = 0, (B.10)

proving that a form is harmonic if and only if it is closed and co-closed.

Cycles and homology

Homology classifies manifolds by their cycles. Each cycle of M is a closed submanifold which
cannot be continuously deformed into another cycle. Consider for example the circle around
the hole of the torus and the circle one can make around the actual tube making up the
torus. Because one encompasses a hole and the other does not, these cannot be deformed
into each other. A torus therefore has 2 cycles. One can capture the information of the
number of cycles of a manifold in the homology class.

Let Zp be the set of cycles, and Bp the set of cycles which are themselves boundaries of other
cycles. We define the p-th homology group of M to be

Hp = Zp/Bp. (B.11)

The elements of Hp are equivalence classes of cycles under the operation which adds the
boundary of a submanifold to the cycle.

77



Forms and cohomology

We can also consider the space of closed p-forms Zp = ωp|dωp = 0 and the set of exact p-
forms Bp = dωp−1. In words the closed forms are all forms which are mapped to zero by
the exterior derivative, and the exact p-forms are all those forms which can be written as
the exterior derivative acting on a p− 1-form. Since the exterior derivative is nilpotent with
order 2 we have that Bp ⊂ Zp. The p-th De Rham cohomology is then defined to be

Hp = Zp/Bp. (B.12)

There is a clear analogy with the homology class (hence the name), where the cycles cor-
respond to closed forms. The elements of Hp are equivalence classes of closed forms up to
exact forms, i.e. ωp ' ωp + dηp−1, which are called cohomology classes and are denoted by
[ωp]. In this example ωp would be the representative of the equivalence class.

Poincarè duality

The analogy between homology and cohomology classes is realized by the Poincaré duality,
which states that given a p-cycle a there exists a closed (m− p)-form α which is called the
Poincaré dual of a such that for any closed p-form ω we have∫

a

ω =

∫
M

α ∧ ω. (B.13)

The form ω is closed, therefore α is defined up to an exact form.

Harmonic forms

Hodge theory (which is introduced in this section) then enables one to study these cohomol-
ogy classes as solutions of differential equations, by linking the cohomology class to so called
harmonic forms,

Definition 1 A harmonic form is a form ωk ∈ Ωk(M) for which

∆ωk = 0. (B.14)

The space of harmonic k-forms is denoted Hk
∆(M).

The Laplacian here is defined in terms of the exterior derivative. These harmonic forms are
related to the De Rham cohomology through the Hodge theorem, which states that

Theorem 3 the space of Harmonic k-forms on M and the k-th de Rham cohomology group
are isomorphic as vector spaces,

Hk
∆(M) ∼= Hk(M). (B.15)
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This means that each equivalence class of closed forms modulo exact forms (cohomology
class) has a harmonic representative through Hodge theory. One can also formulate the
Hodge theorem as Hodge decomposition,

Theorem 4 any differential form ωk on a closed Riemannian manifold can be written as,

ωk = dαk−1 + d∗βk+1 + γk. (B.16)

where d∗ is the adjoint operator of d, αk−1 is a k − 1 form on M , βk+1 is a k + 1 form on
M and γk is a harmonic k-form.

Complex structure

We will now look at the implications a complex structure has for the composition of a
manifold and its tangent space. For more details see [26]. Let M be a complex manifold of
dimension n, and so a real manifold of dimension m = 2n. We note that we can decompose
a point z ∈M as

zj = x2j−1 + ix2j, zj = x2j−1 − ix2j, j = 1, ..., n, (B.17)

where we use i =
√
−1.

We can decompose the manifold tangent space in this same way to find,

TC(M) = T 1,0(M)
⊕

T 0,1(M). (B.18)

Intuitively this is the same as splitting a complex number into a real and imaginary part.
The space T 1,0(M) is spanned by {∂i} and T 0,1(M) is spanned by {∂̄i}. One can perform this
same decomposition at the level of the dual space: T ∗C(M) = T ∗1,0(M)

⊕
T ∗0,1(M), spanned

by {dzi} and {d̄zi} respectively. Because of this we also find a decomposition of differential
k-forms into differential (p, q) forms, with p+ q = k, defined through

Ak =
⊕
p+q=k

Ap,q. (B.19)

Here we haveAk = ∧k(T ∗CM) as the space of k-forms on M andAp,q = ∧p(T ∗1,0M)
⊕
∧q(T ∗0,1M)

as the space of holomorphic p-forms and anti-holomorphic q-forms respectively. Based on
this decomposition we also see that the exterior derivative expands into an exterior derivative
on the decomposition fields as d = ∂ + ∂̄.

The complex structure is in essence the way in which a manifold is realized as a 2n-
dimensional real manifold, from an n-dimensional complex manifold. We can define the
complex structure through a globally defined, differentiable linear map J that mimics the
properties of i =

√
−1

J : T (M)→ T (M), vµ 7→ Jµν v
ν J2 = −1. (B.20)

The splitting that we defined in equation (B.18) is therefore a splitting into eigenspaces of
J , where the space T 1,0(M) has eigenvalue +i and T 0,1(M) has eigenvalue −i.

Where J has to be torsionless (the precise definition of which is irrelevant for this work, see
[26]) as well in order to define an actual complex structure.
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Kähler structure

A Kähler manifold is a complex manifold, on which a closed differential (1, 1)-form ω exists,
which is compatible with the complex structure J as defined above. This means that the
form η(u, v) := ω(u, Jv) is symmetric, positive definite, and closed. In other words we can
use J and ω to define a hermitian metric on the manifold.

The Kähler manifold therefore has an added Riemannian structure with respect to the
complex manifold.

This Kähler structure has consequences for the geometric properties of the manifold, like the
connection. To see this let g be the metric corresponding to the 2-form ω. From the fact
that dω = 0⇒ ∂ω = 0, ∂ω = 0 we get that

∂igjk = ∂jgik, ∂igjk = ∂kgji, (B.21)

and so the only non-zero components of the Levi-Civita connection are,

Γkij = gkl∂igjlΓ
k
ij

= glk∂iglj. (B.22)

The equation (B.21) also implies the existence of a real Kähler potential K for the metric,
such that

gij = ∂i∂jK. (B.23)

Hodge decomposition with Kähler structure

For a Kähler manifold (i.e. a manifold with a complex, Riemannian and symplectic struc-
ture) one can decompose the k-th de Rham Cohomology Hk(M) according to the complex
structure present on the manifold. To do this we apply the derivative we used in defining
the complex structure; ∂̄.

Definition 2 (Dolbeault cohomology) The Dolbeault cohomology is defined as

Hp,q

∂̄
(M) =

Zp,q

∂̄
(M)

∂̄(Ap,q−1

∂̄
(M))

. (B.24)

Here Zp,q

∂̄
(M) denotes the space of (p, q)-forms on M closed under ∂̄ and Ap,q−1

∂̄
(M) is the

space of (p, q)-forms on M exact under ∂̄.

Note that because of the nature of the complex decomposition we have that Hp,q

∂̄
(M) =

Hq,p

∂̄
(M). Now we present the definition of a Hodge structure.

Definition 3 (Hodge structure) A pure Hodge structure of weight k of an abelian group
H is defined to be the decomposition of the complexified version of this group, HC, in a direct
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sum of complex subspaces Hp,q, with p+ q = k:

HC =
⊕
p+q=k

Hp,q, (B.25)

Hp,q = Hq,p. (B.26)

For a Kähler manifold one can decompose the de Rham cohomology into the Dolbeault
cohomology spaces, finding such a pure Hodge structure:

Hk(M) =
⊕
p+q=k

Hp,q

∂̄
. (B.27)

Remembering the isomorphism between cohomology spaces and harmonic forms, we would
now like to say something about the dimensions of these spaces. We therefore introduce the
Betti numbers bk = dim(Hk), and Hodge numbers hp,q = dim(Hp,q). From the Dolbeault
decomposition the following relation between the two numbers holds,

bk =
∑
p+q=k

hp,q. (B.28)

We can arrange the Hodge numbers of a manifold in a so called “Hodge diamond” as follows.
Consider the Hodge diamond of a manifold with complex dimension dimC(M) = 3,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(B.29)

for a Calabi-Yau manifold we note that many of these Hodge numbers are not independent,
as we will mention in appendix C.

The Hodge decomposition has far-reaching consequences for the expansion of our forms, as
we will now show. Let M a 10-dimensional manifold, realized as the cross product of four
dimensional Minkowski space M1,3 and a Calabi-Yau threefold CY3. Let Bp ∈ Ωp(M), as in
the discussion around equation (3.6). We are interested in finding the harmonic modes of
B, as we want an effective theory with massless fields. Consider the expansion,

B(p)(XM) =
∑
k

A(k)(xµ) ∧ Ã(p−k)(ym).

By the Hodge decomposition (B.16)we see that we can decompose Ã into a harmonic part,
and a non-harmonic part which we will neglect as it is massive. Now we know by the
Dolbeault decomposition above that any harmonic k-form has a bk dimensional basis of
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harmonic k-forms in which we can expand. Denoting the I’th element of this basis by ÃI

we therefore find,

B(p)(XM) =
4∑

k=0

bp−k∑
I=1

AIk(x
µ) ∧ ÃI(p−k)(y

m). (B.30)

Note that the forms on the Minkowski space have also received an index I, as the coefficients
of ÃI(p−k)(y

m) in the expansion can be dependent on xµ.

From the expansion (B.30) it follows for example that a 2-form will lead to b2 0-forms, b1

1-forms and b0 2-forms, each of them massless, on M1,3.

Polarization

Next, we would like to have a way to measure distances within the Hodge structure. This is
done, in a way that takes the decomposition into account, by the polarization[17].

Let V =
⊕

p+q=k V
p,q be a Hodge structure of weight k. A polarization of the Hodge structure

is a real, bilinear form Q : V × V −→ R such that

1. Q(ω, η) = (−1)kQ(η, ω). In words this means that Q is symmetric for k even and
skew-symmetric for k odd.

2. ip−qQ(ω, ω) > 0 for all 0 6= ω ∈ V p,q

3. Let ωp,q ∈ V p,q and ηp′,q′ ∈ V p′,q′ . Then Q(ωp,q, ηp′,q′) = 0 if p′ 6= k − p.

Note that for a complex Hodge structure the real dimension k will always be even, hence
the polarization will always be symmetric. Looking at the properties of the polarization it
is apparent that we can use the polarization to define a Hermitian form on V .

Hodge filtrations

It is possible to consider Hodge structures of weight k in a different way. Instead of looking
at a direct sum composition of the space HC we build it up from the following Hodge filtration
[20],

HC = F 0 ⊃ ... ⊃ F p−1 ⊃ F p ⊃ F p+1... ⊃ 0, (B.31)

where we have defined

F p =
⊕
i≥p

H i,k−i, (B.32)

and for which the following relation holds,

HC = F p
⊕

F k−p+1, for each p. (B.33)
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We call the filtration defined in (B.31) a decreasing filtration, as the higher index spaces are
contained within the lower index ones. The spaces H i,k−i and HC are the same ones as used
in definition 3. We have fp =

∑
a≥p h

a,k−a the dimension of the filtration spaces.

Through property B.33 we can see that a Hodge filtration is equivalent to a Hodge structure;

Hp,q = F p ∩ F q, p+ q = k (B.34)

This defines a bijection between weighted Hodge structures and Hodge filtrations.
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Appendix C

The Calabi-Yau manifold

In the introduction it was mentioned that one of the properties we want for our 4-dimensional
theory is supersymmetry. This implies the existence of a nowhere-vanishing holomorphic
three-form Ω [12]. Assuming that the internal manifold is Kähler one can relate this 3-form
to the metric of the internal manifold to find[28],

R = i∂∂ log
√
g = −i∂∂ log||Ω||2. (C.1)

Now since log||Ω||2 is globally defined we see that the Ricci scalar is an exact form. As
such its equivalence class in the cohomology space, which we will denote by 2πic1, is 0. We
call c1 the first Chern class, which we can hence conclude vanishes if one wants to preserve
supersymmetry.

It is precisely these properties which define a Calabi-Yau manifold: a Kähler manifold with
vanishing first Chern class, or equivalently, a Kähler manifold with a unique nowhere van-
ishing (3, 0)-form.

On a Calabi-Yau manifold we can make more statements about the Hodge structures intro-
duced in appendix B.

Hodge numbers for CY3

With the added structure of a Calabi-Yau manifold we can say a lot more about the di-
mensions of the spaces in our Hodge decomposition. For example the existence of a unique
(3, 0) form tells us that h3,0 = 1. Using mirror symmetry, the Hodge-∗ map and complex
conjugation as outlined in [26] we find out that the only independent Hodge numbers are
h2,1 and h1,1; h3,0 is fixed to be 1. Any Hodge number which is not related to either of these
through one of the mentioned operations vanishes. This leaves us with the following Hodge
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diamond,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(C.2)

where for example h1,1 = h2,2 through Hodge duality. Hence by equation (B.28) a 2-form on
a CY3 will lead to b2 = h1,1 + h0,2 + h2,0 = h1,1 0-forms, b1 = 0 1-forms and b0 = h0,0 = 1
2-forms on M1,3.

The moduli space & metric deformations

So far we have studied the different components of the Calabi-Yau manifold, consisting of
the complex structure J and the Kähler form that build the Hermitian metric gij (which
we can also refer to as the Kähler structure). We have considered both of these to be fixed
parameters, however one could consider perturbations to the complex structure and the
metric that leave the defining properties of the Calabi-Yau manifold invariant. The complex
coefficients upon expanding these perturbations are called the moduli, and they span a moduli
space which itself is again a manifold. The properties of this manifold are specified by the
geometry of the Calabi-Yau manifold that the perturbations to the structure, and therefore
the moduli, have to preserve. This geometry is called special geometry.

Through the existence of the moduli it is made clear that a Calabi-Yau manifold with certain
Hodge numbers is not unique; in fact, the moduli space specifies a continuously infinite family
of Calabi-Yau manifolds.

Metric space deformations

When considering the zero mode expansion of the metric gMN = gµν⊕gmn we shall find that
its 0-modes are given by the external metric gµν and a set of massless scalars coming from
the internal metric 2-form gmn. The fact that b1 = 0 implies that no 1-forms are formed in
the expansion.

Let us consider fluctuations of the internal Calabi-Yau metric gmn,

gmn → gmn + δgmn. (C.3)

We need to impose that the perturbed metric still satisfies the conditions of a Calabi-Yau
manifold, one of them being Ricci-flatness,

Rmn(gmn + δgmn) = 0. (C.4)

85



We fix the gauge

∇mgmn =
1

2
∇ng

mpδgnm. (C.5)

By expanding the Ricci-flatness constraint to first order in perturbations we get

∇k∇kδgmn + 2R p q
m n δgpq = 0, (C.6)

which is the Lichnerowicz equation for metric perturbations.

Now, looking at the index structure of the metric perturbations we can see that the pure
and mixed components δgij and δgij decouple as solutions to the Lichnerowicz equation. We
can therefore look at them each separately.

Consider δgij. One can show[26] that the Lichnerowicz equation applied to a form with
mixed indices is equivalent to (∆δg)ij = 0, hence the mixed perturbations are harmonic
(1, 1)-forms. We can therefore expand δgij in the basis ωα with α ∈ {1, ..., h1,1},

δgij =
h1,1∑
α=1

z̃αωα
ij
, z̃α ∈ R. (C.7)

Now for g + δg to still be a metric we need to pick the Kähler moduli z̃α in such a way that
the perturbed metric is still positive definite. Positive definiteness of the metric corresponds
to the following constraint on the Kähler form∫

Mr

J ∧ ... ∧ J︸ ︷︷ ︸
r−times

> 0, r = 1, 2, 3. (C.8)

In the above expression Mr is any complex r-dimensional submanifold of CY3.

The subset of metric deformations that satisfy the Lichnerowicz equation and the positive
definiteness constraint is called the Kähler cone. This name is chosen because for any solution
J and number λ ∈ R+ equation (C.8) is also solved by λJ .

Note that the Kähler form J is real, meaning that also the Kähler moduli are real. In string
theory We can complexify the Kähler form by combining it with the real closed (1, 1)-form
Bab, which, being a (1, 1)-form like the metric, has h1,1 massless modes. We get as the
complexified Kähler form,

J = B + iJ. (C.9)

This form results in h1,1 complex scalar degrees of freedom in the 4-dimensional effective
theory,

(δBij + iδgij)dz
i ∧ dzj =

h1,1∑
α=1

zαωα, (C.10)

where the zα = bα + it̃α denote the complexified Kähler moduli (not to be confused with the
complex moduli)
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Now let us look at δgij. Note that the original background metric has no purely holomorphic
or anti-holomorphic entries, due to the fact that it is hermitian. We can however consider
varying these components to become non-zero. The Lichnerowicz equation applied to the
holomorphic perturbation to the metric, δgij, turns out to be equivalent to [26]

∆∂δg
i = 0, (C.11)

with

δgi = δgi
j
dzj, δgi

j
= gikδgkj. (C.12)

In other words, the Lichnerowicz equation implies the existence of a harmonic (0, 1)-form
δgi contained in the de Rham cohomology group H1(M,TM).

For the metric resulting from the perturbation to again be Kähler it is necessary that coor-
dinates exist in which g + δg does not have any purely (anti)holomorphic components (as
hermiticity of the metric is part of the definition of a Kähler manifold). To arrive at this
basis we would have to perform a non-holomorphic coordinate transformation, as that is
the only way to change the index type. A non-holomorphic transformation also changes the
complex structure however [26], meaning that the new Kähler metric has a different complex
structure from the original. The difference between the two is encoded in the δgi, which we
therefore refer to as deformations of the complex structure.

In order to expand the complex structure deformations on a basis we are familiar with
we can use the unique (3, 0)-form Ω to define an isomorphism H1(M) → H2,1

∂
(M), δg 7→

Ωijkδg
k
l
dzi ∧ dzj ∧ zl. Note that the image in H2,1

∂
is again harmonic due to properties of Ω

and harmonicity of δgi.

So we expand the complex structure deformations in a basis of harmonic (2, 1)-forms bα
ijl

,

Ωijkδ
k
l

=
h2,1∑
α=1

tαbα
ijl
, (C.13)

where the complex parameters tα are the complex structure moduli.

We have thus found two sets of moduli: h1,1 complexified Kähler moduli zα and h2,1 complex
structure moduli tα, for a total of 2(h1,1 + h2,1) real deformation parameters.

These moduli inhabit the so called moduli space, which by itself is again a Kähler manifold
that locally has a product structure arising from the combination of the complex structure
moduli space Mcs and the complexified Kähler structure moduli space Mk,

M =Mcs ×Mk. (C.14)

In appendix C we will define a metric on this moduli space as per equation (C.55), which
encodes the distance between two different realizations of a string vacuum.
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The Kähler potential as function of the moduli

In the context of Calabi-Yau manifolds we can say more about the Kähler potential [26].
This goes under the name of special geometry. As it turns out we can express the Kähler
potential K in terms of the complex moduli ta, with a = 1, ..., h2,1, as follows. Define
projective coordinates ZI = (Z0, Za) through ta = Za/Z0, and then take F(Z) = (Z0)2F (t)
with F (t) a holomorphic function derived from the Lagrangian. This function F is called
the prepotential. Using these coordinates mathematicians have found that one can write the
Kähler potential as,

K = log i(Z
IFi − ZIF I). (C.15)

Here we defined FI = ∂F/∂ZI , and I = 0, ..., h2,1.

3-forms on a Calabi-Yau

In the Hodge decomposition only H2,1(CY3) and H0,3(CY3) are relevant (when considering
3-forms that is). There are two ways to pick a basis for these spaces. One is to take (ηa)αβγ,
with a ∈ {1, ..., h2,1}, as basis for the (2, 1)-forms and Ωαβγ as the unique (3, 0)-form.

One can also choose a basis that works for both spaces; i.e. one in which the (3, 0) form
can also be expanded [13]. This basis consists of 2(h2,1 + 1) components αA, βA with
A ∈ {0, ..., h2,1}. They are Poincaré dual to a homology basis (AI , BI) [26]. The cohomology
basis is then orthogonal according to the following relations,∫

AJ

αI =

∫
CY3

αI ∧ βJ = −
∫
BI

βJ = δJI , (C.16)

where all other combinations vanish. We call this is a symplectic basis.

When performing a compactification as in chapter 3 we will expand our forms in terms of
this basis. Since kinetic terms have the form

Lkinetic =

∫
CY3

F ∧ ∗F, (C.17)

with F a 3-form. Now we can expand F = AIαI +BIβ
I , with A,B coefficients. Upon filling

in this expansion it becomes clear that in order to integrate out the 6 internal dimensions
we will have to give an expression for the following integrals,∫

CY3

αI ∧ ∗βJ ,
∫
CY3

αI ∧ ∗αJ ,
∫
CY3

βI ∧ ∗βJ . (C.18)

This appendix is devoted to expressing these integrals in terms of the moduli ZI and F . We
need to use various relations between the (3, 0)-form Ω and the Kähler potential to do this.

To begin we remark that we can expand the holomorphic (3, 0)-form Ω in terms of its periods
over the cycles AI and BJ . We shall define first ZI =

∫
AI Ω, FI =

∫
BI

Ω, which leads to

Ω = ZIαI −FIβI . (C.19)
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Note now that the A-periods of Ω, i.e. the ZI , correspond to local projective coordinates on
the complex structure moduli space of CY3. These are the same coordinates as introduced
earlier in section C. The same goes for the B-periods; they correspond to the function FI(z)
defined in C. We can combine the expansion of the 3-form (C.19) and the expression for the
Kähler potential (C.15) to find a relation between K and Ω,

K = − log(i

∫
Ω ∧ Ω). (C.20)

Note now that ∗αA ∈ H2,1 ∼= H1,2. Therefore we can express ∗αA in terms of the basis
elements αA and βB. The same holds for ∗βB. We take

∗αA = A B
A αB +BABβ

B, ∗βA = CABαB +DA
Bβ

B. (C.21)

Clearly, using equation (C.16), the matrix elements A, B, C and D correspond to the
integrals in (C.18) ∫

αJ ∧ ∗αI = BIJ = BJI , (C.22)∫
βJ ∧ ∗αI = −A J

I , (C.23)∫
αJ ∧ ∗βJ = DI

J = −A I
J , (C.24)∫

βJ ∧ ∗βI = −CIJ = −CJI . (C.25)

Our goal now is therefore to express the matrices A,B,C and D in terms of the moduli. In
our derivation we follow [29, 30, 31, 32] as per [13]. We note that for π any (2, 1)-form we
have

∗Ω = −iΩ (C.26)

∗π = iπ. (C.27)

Considering the expansion of Ω (C.19) we can then match coefficients to find,

−izB = zAA A
B −FACAB (C.28)

iFB = zABAB + FAA A
B . (C.29)

In the next step of our derivation we consider the Kodaira equation [23],

∂

∂za
Ω = kaΩ + iηa. (C.30)

Where ηa is a harmonic (2, 1) form. We can multiply both sides by Ω and integrate over the
Calabi-Yau manifold to find (where the term with the ηa vanishes),∫

CY3

∂

∂za
Ω ∧ Ω =

∫
CY3

kaΩ ∧ Ω. (C.31)
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Now we find from equation (C.20) that the RHS is equal −ikae−K , with K the Kähler
potential. This we can express according to equation (C.15) in the prepotential F to find,

= ka
(
zAFA − zAFA

)
= 2kaIm

(
zAFA

)
(C.32)

We now quickly note the following fact about homogeneous functions[13]. Namely, let f(x)
be a homogeneous function, then

xi
∂f

∂xi
= 2f (C.33)

xi
∂f

∂xi∂xj
=

∂f

∂xj
, (C.34)

which we can apply to zAFA = zAzBFAB =< z|z > to rewrite the RHS to,

2ka < z|z > . (C.35)

with

FAB =
∂FA
∂zB

(C.36)

< F |G > = ImFABFAG
B
. (C.37)

This concludes our analysis of the RHS of equation (C.31). Rewriting the LHS as well we
find an expression for ka:

ka =
1

< z|z
ImFaBzB = −∂aK. (C.38)

We now note that we can use the Kodaira equation (C.30) and the expansion of our (0, 3)-
form (C.19) to find,

αA + FABBB = ∂AΩ = kAΩ + iηA. (C.39)

Taking the Hodge star on both sides, and using equation (C.26) we find,

−ikAΩ + iη = ∗(∂AΩ) = −i∂AΩ (C.40)

= −2ikAΩ + i∂AΩ (C.41)

= i
(
αA −FABβB

)
− 2ikA

(
ZBαB −FBβB

)
(C.42)

= ∗αA −FAB ∗ βB (C.43)

where in the third step we eliminated ηA by using the Kodaira equation (C.30) again. By
integrating and using the normalization of the basis we can find these expressions for the
matrices,

ABA = −ReFAC
(
ImF−1

)CB
+
zBFA + zBF
< z|z >

(C.44)

BAB = ImFAB + ReFAC
(
ImF−1

)
ReFDB −

FAFB + FAFB
< z|z >

(C.45)

CAB = −
(
ImF−1

)AB
+
zAzB + zAzB

< z|z >
. (C.46)
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They can be simplified by defining the matrix M,

MAB = FAB +
2

< z|z >
ImFACzCImFBDzD (C.47)

in terms of which we get

A = (ReM) (ImM)−1 (C.48)

B = − (ImM)− (ReM) (ImM)−1 (ReM) () (C.49)

C =
(
(ImM)−1) . (C.50)

(1, 1) forms on a Calabi-Yau

Besides the spaces of 3-forms The only other relevant Dolbeault cohomology is H1,1(CY3).
We will use a basis of harmonic (1, 1)-forms given by (ωi)αβ with i ∈ {1, ..., h1,1}. In the
process of compactifying we will run into several integrals, the notation for which we will
outline here,

K =
1

6

∫
CY3

J ∧ J ∧ J, Ki =

∫
CY3

ωi ∧ J ∧ J (C.51)

Kij =

∫
CY3

ωi ∧ ωj ∧ J, Kijk =

∫
CY3

ωi ∧ ωj ∧ ωk. (C.52)

In the equation above J denotes the Kähler form, which is a (1, 1)-form and can hence be
expanded in terms of ω to give,

J = viωi. (C.53)

The quantity K gives the volume of the Calabi-Yau manifold. The expansion of J implies
the following identities,

Kijkvk = Kij, Kijvj = Ki, Kivi = K. (C.54)

Using the combined Kähler and supersymmetric geometries we can define the metric on the
moduli space as[26]

gij =
1

4K

∫
CY3

ωi ∧ ∗ωj. (C.55)

Using [33]

∗ωi = −J ∧+
Ki
4K

J ∧ J, (C.56)

the moduli space metric can be rewritten to find,

gij = − 1

4K

(
Kij −

1

4K
KiKj

)
. (C.57)
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It further follows that

Kij =

∫
CY3

(−(ωig)(ωjg) + (ωiωj)) , (C.58)

gij = − 1

VCY3

∫
CY3

(ωiωj). (C.59)

We now define ωi to be the basis of the space H2,2(CY3) which is dual to H1,1(CY3), with a
normalization, ∫

CY3

ωi ∧ ωj = δji . (C.60)

From this normalization we derive the relations,

gij = 4K
∫
CY3

ωi ∧ ∗ωj, ∗ωi = 4Kgijωi, ∗ωi =
1

4K
gijωj, ωi ∧ ωj ∼ Kijkω̃k. (C.61)

With the ∼ we mean that the two expressions are equivalent up to an exact form, i.e. they
lie in the same cohomology class.
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Appendix D

Calculating the perturbation matrix E

We work out the derivatives in g = −∂i∂j log
(
Q̃
)

= −∂i∂j (log(p+ f)),

−∂i∂j (log(p+ f)) = −∂i
∂jp+ ∂jf

p+ f

=
−∂i∂jp− ∂i∂jf

p+ f
+
∂i(p+ f)∂j(p+ f)

(p+ f)2

=
−(p+ f)∂i∂jp+ ∂ip∂jp

(p+ f)2
+
−(p+ f)∂i∂jf + ∂ip∂jf + ∂if∂jp+ ∂if∂jf

(p+ f)2︸ ︷︷ ︸
Eij

.

(D.1)

We defined the second term on the last line to be Eij, as the first term is equal to −∂i∂j log(p)

in the limit of large y1, y2; where p+ f ∼ p. This results in the following expression for Q̃,

Q̃ = −∂∂ log(p) + E. (D.2)

Note that E ∼ f , up to some derivatives.
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