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Abstract

In this thesis we investigate the effect of a magnetic field on the surface states
of a slab of Weyl semimetal surrounded by a vacuum. We consider a time reversal
symmetry broken semimetal by splitting the Weyl cones up in momentum space.
We warm up by calculating the Landau level states in the bulk for a magnetic
field parallel and perpendicular to the direction in which the cones are split in
momentum space. Next, we find the wavefunction in a half-infinite semimetal and
match to the vacuum solutions. For zero magnetic field, we find gapless, chiral
surface states with dispersion E = −vFky, existing on a Fermi arc. For a magnetic
field parallel to the surface, we find solutions using a WKB approximation. For
magnetic fields perpendicular to the surface, we find no surface state solution
in a half-infinite semimetal. Since Weyl metals have large anomalous magnetic
moments [1], the surface states are altered by anomalous magnetic effects. We
investigate the effect of the new anomalous terms on the surface states in a parallel
magnetic field, and find that in some cases the surface states are altered. Since
we found no surface states for a perpendicular magnetic field in the half-infinite
Weyl metal, we switch to a finite slab of Weyl metal, and find that surface states
are possible. Focussing on the high magnetic field limit, where only the lowest
Landau level contributes, we find analytical solutions. Moreover, we find that
closed magnetic orbits are possible due to the chiral lowest Landau level acting
as a one-way “conveyor belt”, carrying particles from one surface to the other.
These orbits have discrete energy levels and depend on the length of the material
and the Fermi velocity. We look at the influence of anomalous effects on these
orbits and find that the Fermi velocity is rescaled and the energy is Zeeman
shifted. Finally, using numerics, we find the first-order correction in B on the
energy by adding one more Landau level.



iii



iv

Contents

1 Introduction to Weyl semimetals 1
1.1 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Surface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Chiral magnetic effect . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Anomalous Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Experimental realizations . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Anomalous magnetic moment in Weyl semimetals . . . . . . . . . . 8
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Landau Levels in the bulk 11
2.1 Magnetic field parallel to band splitting . . . . . . . . . . . . . . . 12
2.2 Magnetic field perpendicular to band splitting . . . . . . . . . . . . 14

3 Surface States in a half-infinite Weyl semimetal 18
3.1 Zero magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Semimetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Matching at the boundary . . . . . . . . . . . . . . . . . . . 20
3.1.4 Anomalous effects with zero magnetic field . . . . . . . . . 21

3.2 Magnetic field parallel to surface . . . . . . . . . . . . . . . . . . . 22
3.3 Magnetic field perpendicular to the surface . . . . . . . . . . . . . 24

3.3.1 Solutions in semimetal bulk . . . . . . . . . . . . . . . . . . 24
3.3.2 Solutions in vacuum . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Anomalous magnetic effects . . . . . . . . . . . . . . . . . . . . . . 30

4 Surface states on a finite slab of Weyl semimetal 33
4.1 Surface state solutions . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Solutions in semimetal bulk . . . . . . . . . . . . . . . . . . 33
4.1.2 Solutions in vacuum . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 LLL limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Normalization of the wavefunction . . . . . . . . . . . . . . 39
4.2.2 m→∞ limit . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Anomalous effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Zeeman term . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Tilt term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Spin polarization . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Corrections on the LLL limit . . . . . . . . . . . . . . . . . . . . . 45



v

5 Discussion 48
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Appendix A1 51
6.1 Appendix A: Harmonic oscillator wavefunctions with splitting of

cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Appendix B: First-order perturbation theory . . . . . . . . . . . . 53



1

Chapter 1

Introduction to Weyl
semimetals

In 2010 the Nobel Prize in Physics was awarded to Andre Geim and Konstantin
Novoselov for their work on graphene [2]. Graphene is a 2D layer with a thickness
of one carbon atom, arranged on a honeycomb lattice. The honeycomb lattice
is pictured in Figure 1.1. The lattice is divided into two sublattices A and B.
The first Brillouin zone is a hexagon, with three atoms of each sublattice. It
is clear that the points of the same sublattice are equivalent by the symmetry
of the lattice, so we can consider only two corners of different sublattice. We
label these points K,K′ and choose our coordinate system such that we have
K =

(
4π/3

√
3a, 0

)
and K′ =

(
−4π/3

√
3a, 0

)
. These points are called the Dirac

points. At these points, the conical conduction and valence bands of graphene
intersect (see Figure 1.1). Close to the Dirac points K,K′, one can describe the
electrons in the material by two 2D massless Dirac Hamiltonians

Hχ = vF (χkxτx + kyτy) , (1.1)

where vF is the Fermi velocity, k = (kx, ky) is the wavevector relative to K and
K′, τx, τy are Pauli matrices and the chirality χ = 1 for the cone at K and
χ = −1 for the cone at K′. For zero chemical potential, the Fermi surface is
zero-dimensional, located at the point of intersection of the conical bands. Thus,
close to the Fermi surface, the system is described by a gapless linear dispersion
E ∝ |k|. These conical dispersions are called Dirac cones.

Graphene has inversion symmetry, time-reversal symmetry and rotational
symmetry along the six points of the hexagons. These symmetries prove to be
very important for the electronic properties of graphene. The time-reversal opera-
tor complex conjugates and sends t→ −t, causing the direction of the momentum
to be reversed, k → −k. This sends K to K′, exchanging the Dirac cones. The
Hamiltonian 1.1 is time-reversal symmetric, as H1(k) = H?

−1(−k) holds since
kxτx changes sign while kyτy does not, as τ?y = −τy. Note that time-reversal
symmetry also reverses spin, but since the Pauli matrices τ represent the sub-
lattice structure rather than the spin, we do not have to take this into account.
Inversion symmetry sends r → −r, giving k → −k, also exchanging the Dirac
cones. However, the sign of kyτy is not switched back by this operation, which
is needed to obtain H−1(k). Consequently, the inversion operator also requires a
rotation τx, since τxτyτx = −τy, switching back the sign of kyτy to obtain H−1(k).
This rotation is needed because inversion also switches the sublattices.
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Figure 1.1 – The honeycomb lattice of graphene (left) and the corresponding band
structure (right), taken from [3]. In the picture on the left, the two sublattice
A and B are pictured in different colors. In the picture on the right six band-
touching points (Dirac points) are shown. Around these points the electrons can
be described by a 2D Dirac Hamiltonian with a linear energy spectrum.

The energies in graphene are given by

E = ±~vF
√
k2
x + k2

y. (1.2)

Any perturbation of the form mτz opens up a gap, giving

E = ±~vF
√
k2
x + k2

y +m2.

This destroys the Dirac point at k = 0, as k = 0 is no longer a band crossing point
and there is no other point satisfying E = 0. Such a perturbation would preserve
time-reveral symmetry, but break inversion symmetry, as inversion sends mτz to
τxmτzτx = −mτz. Therefore, the existence and stability of the Dirac points are
protected by inversion symmetry.

Dirac and Weyl metals are like the three-dimensional cousins of graphene.
They possess similar electronic properties and their low-energy electrons can be
described by respectively the Dirac and Weyl equation, giving cone-like disper-
sions around the Fermi surface. A Dirac semimetal is defined as a 3D semimetal
(since it has a zero-dimensional Fermi surface for zero chemical potential) which
for low energies has quasiparticle excitations that obey the Dirac equation. Like
graphene, a Dirac semimetal has time-reversal and inversion symmetry. A Weyl
semimetal is made by taking a Dirac semimetal and breaking time-reversal and/or
inversion symmetry. We describe the Weyl semimetal by two 3D Weyl Hamilto-
nians

H = ε~vF (k− εb) · σ − εb0, (1.3)

describing two cones around the Weyl points (3D Dirac points, also called Weyl
nodes) with chirality ε = ±1, separated by the four-vector bµ = (b0,b). The
splitting vector b breaks time-reversal symmetry and b0 breaks inversion symme-
try. Note that in this case the Pauli matrices σi denote the spin structure rather
than the sublattice structure. We have assumed that the system is isotropic,
such that the Fermi velocity is equal in all directions. The chirality for massless
particles indicates whether the momentum and spin of particles in a Weyl cone
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are parallel or anti-parallel in the positive energy band. The Hamiltonian 1.3 re-
sembles the Hamiltonian 1.1 of two Dirac cones in graphene. They both describe
two cones with parameter χ = ε = ±1, which for graphene determines the sign
of kx, while for a Weyl metal giving an overall sign difference. The important
difference between the two Hamiltonians is that in the Weyl Hamiltonian the 3D
momentum is coupled to the Pauli matrices instead of the 2D momentum. In a
Weyl semimetal we have energies

E = ±vF
√

(kx − εbx)2 + (ky − εby)2 + (kz − εbz)2 + εb0. (1.4)

Therefore a perturbation in the z-direction simply shifts the kz momentum, which
only changes the location of the Weyl nodes. The Weyl nodes are not destroyed,
as was the case for the Dirac points in graphene. This is why we say that the
existence and stability of the Weyl nodes is guaranteed by the third dimension.

In the next Chapter, we will show that the Weyl nodes have topological prop-
erties, which is the reason Weyl metals are topological materials. The topologi-
cal properties of these materials lead to remarkable consequences such as surface
states with open Fermi surfaces, called Fermi arcs, and the chiral magnetic effect,
which are all not present in graphene. This has caused a great interest in this
field by condensed matter physicists. In this Thesis, we focus on the properties
of the surface states in Weyl semimetals under the influence of a magnetic field.
First, we introduce some key properties of Weyl metals further.

1.1 Topological properties

In 2005 Kane and Mele [4] discovered a new class of materials called topological
insulators. These materials are insulators in the bulk, but allow for conduct-
ing surface states which are protected from local perturbations by topological
properties of their band structure. While in the bulk the dispersion is gapped,
the surfaces of topological insulators in 3D have a gapless Dirac dispersion like
graphene. These surface states are protected by time-reversal symmetry. Since
the surface has a gapless dispersion, conduction on the surface is possible. This
remarkable discovery has led to an explosion of interest in topology in the con-
densed matter field. This led people to look into other topological materials, such
as Weyl metals. Weyl metals are particularily interesting because they have topo-
logically protected conducting surface states which are also chiral, which means
the conducting electrons only move in one direction. The Dirac semimetal is
degenerate in momentum space, which means two Weyl cones are lying on top
of eachother. In this Thesis we consider a time-reversal symmetry broken Weyl
semimetal. The symmetry is broken by the splitting vector b = (0, 0, bz), pic-
tured in Figure 1.2.

The topological nature of the Weyl nodes lies in the fact that they act, de-
pending on the chirality, as a source or sink of Berry flux. In 1984, Michael Berry
found that adiabatically transporting a system around a loop C by varying pa-
rameters R in its Hamiltonian H(R), the system acquires a geometrical phase
factor eiγ(C) called the Berry phase [5]. The Berry phase over a closed loop C in
parameter space (momentum space in our case) is given by

γ = i

∮
C

dk 〈u(k) | ∇k |u(k)〉 =

∮
C

dk ·A(k), (1.5)
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Figure 1.2 – Graphical representation of a single Dirac cone (left) and two Weyl
cones (right), separated in momentum space by the splitting vector bz.

where u(k) are Bloch wave functions. We defined the Berry connection as A(k) =
i 〈u(k) | ∇k |u(k)〉. The Berry curvature is obtained by taking the rotation with
respect to parameter space

Ω(k) = ∇k ×A(k).

Using Stokes’ theorem we can rewrite the Berry phase in terms of a surface
integral over the Berry curvature, giving

γ =

∫
S
dS · Ω(k). (1.6)

By the Chern-Gauss-Bonnet theorem, this integral is an integer multiple of 2π.
The Chern number over a surface S in momentum space is defined by

CS =
1

2π

∫
S
dS · Ω(k). (1.7)

If we take a surface enclosing the entire Brillouin zone of the semimetal and calcu-
late the Chern number we get 0 (topologically trivial), since by periodicity in all
directions, this is equivalent to a point. Therefore, the Chern number of all Weyl
nodes together must vanish. However, if we take a surface in momentum space
enclosing one of the Weyl nodes, the Chern number will be non-zero (topologi-
cally non-trivial). Taking the Hamiltonian 1.3, we can calculate the eigenstates
and use them to find the Berry curvature of one node. We find

Ω(k) = −ε k

2k3
, (1.8)

where k = |k|, giving

CS =
1

2π

∫
S
dS · Ω(k) = ε. (1.9)
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So enclosing a positive chirality node gives a Chern number of +1, while a negative
chirality node gives −1. Consequently, the Weyl nodes must always come in
pairs (sink, source) to result in a vanishing net Chern number. Using the Berry
curvature 1.8, we find

∇k · Ω(k) = εδ(k), (1.10)

which shows that Weyl nodes are monopoles of Berry curvature. Since the topol-
ogy has to be preserved, the Weyl nodes can only be destroyed by annihilating
two nodes with opposite chirality, reverting back to a Dirac semimetal.

1.2 Surface states

A well known property of topological insulators is that they have topologically
protected surface states. These states also appear on the surfaces of Weyl semimet-
als, but they have different properties. The Fermi surfaces of surface states are
usually closed surfaces, but for Weyl semimetals they are open. The Berry flux
coming from the Weyl nodes flows from the positive chirality cone to the negative
chirality cone. So if we take a surface between the Weyl nodes, we get a non-zero
Chern number. If we move this surface slightly left or right (but still between
the nodes), we still have a non-zero Chern number. Therefore, we can generate
a line of points between the Weyl nodes that have non-zero Chern number. By
the bulk-boundary correspondence [6], for every point on this line the bulk is
a topological insulator, and thus has a surface state. The Fermi surface of the
surface state is an open line, which we call the Fermi arc. For instance, if we split
the Weyl nodes up in the z-direction by bz > 0, the Fermi arc exists for |kz| < bz.
We will investigate the surface states and their behaviour under the influence of
a magnetic field in Chapter 4.

Figure 1.3 – Schematic picture of the Fermi arcs drawn on two surfaces, connected
through the Weyl nodes in the bulk. Image taken from Ref. [7].

1.3 Chiral magnetic effect

The Chiral magnetic effect (CME) is one of the most interesting and exciting
properties of Weyl semimetals. Charged particles in a magnetic field have quan-
tized energy levels, called Landau levels. The energy separation of the Landau
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levels depends on the strength of the magnetic field. However, thermal fluctua-
tions broaden the energy levels into bands. Consequently, for low magnetic fields
and high temperatures, the energy separation is too small to see the quantization,
since the energy bands will overlap. That means we need strong enough magnetic
fields to be able to see the Landau levels, which we assume to be the case through-
out this Thesis. The lowest Landau level of a cone is chiral, which means that
the particles in this state can only move in one direction. When we combine the
magnetic field with an electric field, the so-called chiral anomaly appears. The
action of massless Dirac fermions in (3+1) dimensions can have a chiral symme-
try defined by ψ → eiγ

5θψ, where ψ is a Dirac-spinor. By Noether’s theorem,
this symmetry has a corresponding conserved current ∂µJ

µ
5 = 0. Therefore we

expect the number of chiral fermions to be conserved, so ∂tN± = 0. However, if
we couple this equation to an external gauge field, we get an anomalous quantum
correction which causes J5 to not be conserved anymore:

∂µJ
µ
5 =

e2

2π2~2
E ·B. (1.11)

Since this current is no longer conserved, we get a chiral population imbalance,
as ∂t(N+ −N−) 6= 0 (see Figure 1.4). This is called the chiral anomaly.

Figure 1.4 – The Landau level energies plotted as a function of the momentum kz.
The chirality in this picture is denoted by χ. After switching on the electric field,
the momentum of the electrons is increased. This creates a chiral imbalance,
causing a current to flow. In this picture the magnetic and electric fields are in
the z-direction. Image made by Erik van der Wurff.

We can understand this result intuitively by taking a close look at the band
structure. Switching on the electric field E creates a force F = −eE on the
electrons. Since we have ~∂tk = eE, the momentum of the electrons is increased.
Since the ground state is chiral, the electrons in the “−” chirality band will lose
energy while the electrons in the “+” chirality band increase their energy (see
Figure 1.4). The model we use has two seperate bands with different chirality. In
a realistic band structure however, the two bands are connected, so a current will
flow from one band to the other. Since the energies depend on the momentum
in the direction of the magnetic field, the current flows in the direction of the
magnetic field. This is called the chiral magnetic effect. The generated chiral
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magnetic current is given by

J =
µ5e

2

2π2
B, (1.12)

where µ5 is the chiral chemical potential. Furthermore, the chiral magnetic cur-
rent is dissipationless. This is a direct consequence of time-reversal symmetry.
One could also look at it from another perspective. In general, a loss of energy
is obtained by an electron scattering off something like an impurity. However,
this assumes that there are quantum states available for the scattering process.
Since the lowest Landau level is chiral, the only allowed states occupying this
level are the ones that have the direction aligned with the chiral direction. Since
scattering states by definition have different direction than the original direction,
they are not available to the electrons.

1.4 Anomalous Hall effect

Next to the CME, there is another effect present in Weyl semimetals that makes
these materials very interesting. In 1879 Edwin H. Hall made the important
discovery that when a conductor is placed in a magnetic field perpendicular to
the current, a voltage difference across the conductor appears, perpendicular
to the magnetic field. The voltage difference appears because the charge carri-
ers experience a Lorentz force, causing the charges to accumulate on one side
of the conductor. This effect provided a tool to measure carrier concentration,
which later proved to be very useful in developing the field of solid-state physics.
Shortly after his discovery, Hall discovered that the effect he measured was much
stronger in ferromagnetic conductors. This became known as the anomalous Hall
effect (AHE). It was only after about a century that theoreticians figured out
what caused this increased Hall current. The breakthrough for understanding
the AHE was the formulation of the Berry phase, which we have shown is also
very important in Weyl semimetals.

The anomalous Hall effect has two contributions: the intrinsic (related to
the Berry phase) AHE and the extrinsic (impurity scattering) AHE. In a Weyl
semimetal, it was shown that the extrinsic part is absent [8]. The current due to
the AHE is

J =
e2

2π2
b×E (1.13)

where b is the splitting vector and E the electric field. The reason that the AHE is
particularily interesting in Weyl semimetal, is that the current is fully determined
by the relative location of the Weyl nodes. The AHE relies directly on splitting
the Weyl cones in momentum space by b. Since the Weyl nodes are topologically
protected and can only be removed by annihilating two opposite chirality nodes,
the AHE current is also topologically protected in Weyl semimetals. This makes
it very interesting to use Weyl semimetals for experiments with the AHE.

1.5 Experimental realizations

The first experimental discovery of a Weyl semimetal was made in 2015 in Tanta-
lum Arsenide (TaAs) [9, 10, 11]. The theoretical work predicting the low energy
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Weyl behaviour was already done half a year before [12]. Using photoemission
spectroscopy (ARPES), the Fermi arcs were immediately observed as a key ex-
perimental signature. The experimentalists continued, using a technique called
soft X-ray ARPES to gain insight into the bulk dispersion of the material. There
they found experimental signatures of Weyl fermions, like Weyl cones and Weyl
nodes. A very convincing result of the team’s ARPES measurements is shown
in Figure 1.5. This work opened the field for the experimental study of Weyl
semimetals. Very shortly after, Weyl semimetals were discovered in Niobium Ar-
senide (NbAs) [13] and Tanalum Phosphide (TaP) [14]. Weyl cones have also
been observed in photonic crystals [15].

Figure 1.5 – ARPES maps of TaAs showing the Fermi arcs (left) and the Weyl
cones (right). The Fermi arcs are indicated by the darker color. The chirality
of the Weyl nodes are indicated by the plus and minus signs. The Fermi arcs
correctly end at the Weyl nodes. Picture from Ref. [9].

Weyl semimetals are interesting for technological purposes, as the massless
nature of the Weyl fermions could be used to conduct electric charge much faster
through a material than normal electrons - a very important property for elec-
tronic circuits. Furthermore, Weyl semimetals also have dissipationless CME cur-
rents, another promising property for the future of electronic circuits. Graphene
shares some of these properties, however 2D materials are not very practical for
use in technology. Another advantage over graphene is the topological protection
of the Weyl fermions, a feature which could be very useful in quantum computers.
The experimental work we discussed above was done for so-called type-I Weyl
semimetals. A recent topic of interest are type-II Weyl semimetals. These ma-
terials have tilted Dirac cones, such that the Fermi surface is no longer a point.
These properties have been found for example in MoTe2 [16], WP2 and MoP2
[17]. These last two materials have also been shown to exhibit extremely high
magnetoresistance [17].

1.6 Anomalous magnetic moment in Weyl semimetals

Another interesting feature of Weyl semimetals we will consider in this Thesis,
is its large anomalous magnetic moment. When considering the Zeeman interac-
tion of an electron’s spin with an external magnetic field in vacuum, historically,
the dimensionless magnetic moment gm = 2 was derived by Dirac. However it
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turned out to be a coincidence that this value is so close to 2. In 1947 a deviation
from gm = 2 was measured [18]. Shortly after, the Nobel-prize winning American
physicist Julian Schwinger used quantum field theory to calculate this deviation
of the magnetic moment of the electron due to the coupling with the photon [19].
This deviation is called the anomalous magnetic moment, defined by a = g−2

2 .
Schwinger found a ≈ 0.0011614, which is close to the current best experimental
value a = 0.00115965218073 [20].

Schwinger considered massive electrons in vacuum, however in Weyl semimet-
als electrons behave as massless particles around the band-touching points. This
presents a problem, since the anomalous magnetic moment for massless electrons
contains an infrared divergence [1]. However, if the photons couple to a finite
density of electrons, photons acquire an effective mass at long wavelengths. This
generates a screened Coulomb potential between the electrons, giving an infrared
cutoff, which makes the anomalous magnetic moment finite. For typical parame-
ters, the photon mass is found to be about three orders of magnitude smaller than
the free electron mass. This implies that the Coulomb interaction has a relatively
large range, which shows that the vertex corrections, pictured in Figure 1.6, can
be of significant size.

Figure 1.6 – Feynman diagram of the vertex correction to the magnetic moment
(left). The wiggly lines denote photons while the fermions are denoted by straight
lines. The dimensionless magnetic moments (right) for kF ξ = 1/4 (solid lines)
and kF ξ = 2 (dashed lines), where ξ is the screening length ξ =

√
π/2gᾱk2F

with the dimensionless effective fine-structure constant ᾱ ≡ e2/4πε0~vF and g
the number of Weyl nodes. Pictures taken from Ref. [1].

In Ref. [1], the contribution from the anomalous magnetic moment was cal-
culated to be

Hanomalous = − [µ1~p× ~σ] ·
~E

vF
− [µ2~σ − εµ1~p] · ~B, (1.14)

where µ1 and µ2 are magnetic moments. These magnetic moments depend on the
momentum, but become constant for large wavelengths. Throughout this Thesis,
we use µ1 and µ2 as constants, which are their long-wavelength limit values. The
first term is interpreted as a Rashba-spin-orbit coupling, while the second and
third term are Zeeman-like terms. Note that the third term is dependent on the
chirality of the cone and has the effect of tilting the cones. For typical parameter
values, the authors of Ref. [1] find µ1kF /µB ≈ 0.25 and µ2/µB ≈ 0.85 where µB
is the Bohr magneton. Hence, the anomalous effects are substantial, and could
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measurably influence the semimetal.

One of the main motivations for writing this Thesis was the appearance of
this large anomalous magnetic moment. In Ref. [1], it was found that for a
constant external electric field, the Rashba spin-orbit term that follows from the
anomalous magnetic moment vastly influences the surface states in certain cases.
By looking at the surface states in a constant magnetic field, we can find the
effect of the other anomalous terms, which couple to the magnetic field. Since
the surface states were greatly influenced by the Rashba spin-orbit term, the
surface states may also be significantly affected by the Zeeman terms. We will
further expand on the effects of these anomalous terms in Chapter 3 and 4.

1.7 Outline

Now that we introduced some key features of Weyl metals, we will warm up by
deriving the Landau level eigenstates and energies in the bulk of the metal in
Chapter 2. We look at the Landau levels that appear for magnetic fields parallel
and perpendicular to the band splitting bz. The results that follow form the foun-
dation for the following Chapters. We continue in Chapter 3 by focusing on the
surface states in a half-infinite Weyl semimetal. For three separate cases, we de-
rive the surface state wavefunction in the semimetal and the vacuum, and match
the full wavefunction at the surface. First, we look at the surface state for zero
magnetic field. Second, we use a WKB approximation to find the surface state for
a magnetic field parallel to the surface. Third, we use the results of Chapter 2 to
attempt to find the surface state for a magnetic field perpendicular to the surface.
We find no solutions in this case, which leads us to conclude that there are no
surface states in a half-infinite semimetal in a perpendicular magnetic field. At
the end of Chapter 3, using the surface-state solutions we found for a magnetic
field parallel to the surface, we look at the effects of the anomalous magnetic
moment on the surface states. We continue in Chapter 4 by investigating surface
states in a finite slab of Weyl semimetal. We find that solutions are possible,
but very hard to find for low magnetic fields. Surprisingly, we find that closed
magnetic orbits are possible in a finite Weyl semimetal. Particles in these orbits
move over the surface between Weyl nodes, and continue to propagate through
the bulk to the other surface. In the high magnetic field limit, we only have
to consider the lowest Landau level, as the higher levels are separated in energy
proportional to the square root of the field strength. We find analytical solutions
of propagating states in the bulk, moving from surface to surface, with discrete
energy levels. Next, we investigate how the energies of these states change when
we add anomalous terms. We round off Chapter 4 by looking at the first order
correction in the magnetic field to the lowest Landau level limit. The first order
correction is found by adding one Landau level above the lowest level, and using
numerics to investigate the effect on the energy levels. Finally, in Chapter 5, we
summarize our results and discuss open questions.
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Chapter 2

Landau Levels in the bulk

Charged particles in a magnetic field will move in orbits perpendicular to the
magnetic field, due to the Lorentz force. The energy of these so-called cyclotron
orbits quantize in a magnetic field, called Landau quantization. This is only
observed if the magnetic field is high enough such that the separation of the energy
levels is higher than the mean thermal energy : ~ωc � kBT where ωc = qb/m is
the cyclotron frequency. We assume this to be the case throughout this Thesis.
In this Chapter we derive the energy levels of massless spin-1/2 Weyl fermions in
a 3D Weyl semimetal, under influence of an external magnetic field. We work in
units where ~, vF ≡ 1 for simplicity and reintroduce SI units when it is relevant.
A Weyl fermion obeys the Weyl equation, given by

σµ∂µψ = 0, (2.1)

where σµ = (σ0, σ1, σ2, σ3) are Pauli matrices with σ0 = 12×2 and ψ is a Weyl
spinor. Two Weyl fermions of opposite chirality are described by the Dirac Hamil-
tonian

H = γ0γ · (−i∇), (2.2)

where we use the convention for the Dirac matrices

γ0 =

(
0 12

−12 0

)
, γi =

(
0 σi
σi 0

)
.

To include the magnetic field we use the minimal substitution −i∇→ −i∇+eA.
Additionaly, to get a Weyl semimetal instead of a Dirac semimetal we break time-
reversal symmetry by splitting the two bands up in momentum space by the band
splitting vector b, so we subtitute k→ k− εb. Lastly, we assume no interactions
between cones, so we will be able to describe the system as two separate two-
by-two problems. Altogether this gives us the general Hamiltonian for a Weyl
semimetal under influence of a magnetic field

H = γ0
[
~γ ·
(
−i~∇+ e ~A+ γ5~b

)]
, (2.3)

where

γ5 =

(
−12 0

0 12

)
.

The Landau level eigenstates per cone are two-component Weyl spinors, which
we write down in four components using the Dirac matrices. Throughout this
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Thesis we assume the bands are split in the z-direction in momentum space, so
b = (0, 0, bz). We treat two cases, one where the magnetic field is parallel to the
band splitting and the other where it is perpendicular. Splitting up the bands in
other directions in momentum space can also be done, but offers no new insights.

2.1 Magnetic field parallel to band splitting

We start with the general Hamiltonian of a Weyl semimetal in a magnetic field,
given by

H = γ0
[
γ ·
(
−i∇ + eA + γ5b

)]
. (2.4)

For A = b0 = 0, the spectrum is given by Eq. 1.4. Since we do not have
interactions between cones, we have no off-diagonal elements. That means we can
write the semimetal Hamiltonian 2.4 per cone in 2D using the chirality ε = ±1,

H = ε [(−i∇ + eA) · σ − εbzσ3] . (2.5)

We take the magnetic field in the z-direction. To preserve translational invariance
in the y,z directions, we choose the Landau gauge A = B(0, x, 0). We can assume
plane waves in the y, z-direction, giving the ansatz ψ(x) = eikyy+ikzzφ(x). We
obtain a two-by-two problem per cone, with an effective Hamiltonian acting on
a two-component spinor φ(x) that we can write as

H = ε

(
kz − εbz −i∂x − i(eBx− ky)

−i∂x + i(eBx− ky) −kz + εbz

)
.

Looking at the effective Hamiltonian, we see that the splitting of the Weyl nodes
bz simply shifts the momentum with direction depending on the chirality. We
define the harmonic oscillator operators as

a† =
1√
2eB

(px + i(eBx− ky)),

a =
1√
2eB

(px − i(eBx− ky)),
(2.6)

with px = −i∂x, which satisfy [a, a†] = 1. Note that there is a degeneracy in ky
hidden in the way we define the operators. This degeneracy is in the localization
of the harmonic oscillator wave functions coming along with these operators (see
Appendix A). We can write H using Eq. 2.6 as

H = ε

(
kz − εbz −

√
2eBa†

−
√

2eBa −kz + εbz)

)
. (2.7)

The eigenstates are two-component spinors we denote by φ = (|φ+〉 , |φ−〉)T . The
Schrödinger equation Hφ = Eφ gives a set of two equations

−ε
√

2eBa† |φ−〉+ ε(kz − εbz) |φ+〉 = E |φ+〉 , (2.8)

−ε
√

2eBa |φ+〉 − ε(kz − εbz) |φ−〉 = E |φ−〉 , (2.9)

where E is the energy of the system. Solving the second equation for |φ−〉 gives

|φ−〉 =
−ε
√

2eBa

E + ε(kz − εbz)
|φ+〉 , (2.10)
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which we can put into the first equation and solve for E, resulting in

E2 |φ+〉 =
(

2eBa†a+ (kz − εbz)2
)
|φ+〉 . (2.11)

The only operator acting on |φ+〉 is the number operator, so the solutions are
harmonic oscillator states. We assume |φ+〉 = c |n〉 with c some constant and put
this back into 2.11, giving the energy levels (for n > 0)

E =
√

2eBn+ (kz − εbz)2. (2.12)

The negative n give negative energies E = −
√

2eBn+ (kz − εbz)2, as we have
particle-hole symmetry. Inserting |φ+〉 = c |n〉 into the equation for |φ−〉 gives

|φ−〉 = c
−ε
√

2eBn

E + ε(kz − εbz)
|n− 1〉 .

Note that |φ−〉 = 0 for n = 0, so we have to treat this case seperately. Now that
we know the eigenstates, we can use the normalization condition φTφ = 1 to find
c, giving

c =

(
1 +

2eBn

εE + (kz − εbz)2

)−1/2

. (2.13)

To conclude, we get the eigenstates (for |n| > 0)

φn,ε =

(
an,ε |n〉

bn,ε |n− 1〉

)
,

with

an,ε =

(
1 +

2eB|n|
εE + (kz − εbz)2

)−1/2

bn,ε =
−
√

2eB|n|
εE + (kz − εbz)

an,ε.

(2.14)

Note that for the negative energy states (n < 0) the energy switches sign. For
n = 0, we get the normalized eigenstate

φ0,ε =

(
|0〉
0

)
,

with its energy given by

Hφ0,ε = E0φ0,ε = ε(kz − εbz)φ0,ε.

We see that per cone there is only one sign for the ground state energy, determined
by the chirality. Together with the dependence on kz, this means the electrons
only move in one direction. We call this the chiral ground state. The energy of
the states above the ground state do not depend on the chirality. However, as we
will see in Chapter 3, interaction effects from the anomalous magnetic moment
can cause energy differences between cones, which will affect the surface states.
The chiral ground state will turn out to be of profound importance when we look
at surface states in Weyl semimetals.
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Writing the eigenstates down in four components gives for |n| > 0

|ψn〉 = Cn,1


an,1 |n〉

bn,1 |n− 1〉
0
0

+ Cn,2


0
0

an,−1 |n〉
bn,−1 |n− 1〉

 ,

with En = ±
√

2eBn+ (kz − εbz)2 and Cn,1, Cn,2 constants. The energies for the
two cones are plotted in Figure 2.1. The states above are linear combinations of
states residing in one cone, as we do not have interactions between cones. These
states are called the Landau level eigenstates.

kz

E

Figure 2.1 – Energies of the Landau levels of the ε = −1 (red) and ε = 1 (blue)
Weyl cones as a function of kz for bz 6= 0.

2.2 Magnetic field perpendicular to band splitting

Now that we found the Landau levels in the bulk for B = Bẑ, we look at a
perpendicular magnetic field B = −Bx̂. We include the magnetic field in the
negative x-direction by minimal coupling and try to find the solutions in the
bulk. The semimetal Hamiltonian per cone in 2D is given by

H = ε [(−i∇ + eA) · σ − εbzσ3] . (2.15)

We choose the gauge A = (0, Bz, 0), breaking translational invariance in the z-
direction. We have translational invariance in x and y, so we expect plane waves
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in these directions. This gives us the ansatz ψ(x) = eikxx+ipyyφ(z), leaving us
with a one-dimensional problem in z. Using this ansatz, we get the Hamiltonian

H = ε [kxσ1 + (ky + eBz)σ2 − i∂zσ3 − εbzσ3] ,

= ε

(
−i∂z − εbz −i(ky + eBz) + kx

i(ky + eBz) + kx i∂z + εbz

)
.

In the case of the magnetic field in the z-direction, we could immediately identify
the ladder operators of the harmonic oscillator in the Hamiltonian. This time
the parts which form the ladder operators, ∂z and i(ky + eBz), are in different
matrix elements. To resolve this issue, we apply a unitary transformation in spin
space using the unitary matrix

V =
1√
2

(
1 1
1 −1

)
. (2.16)

Note that this will affect the eigenstates as well. The unitary transformation
gives the rotated Hamiltonian H̃

H̃ = V †HV = ε

(
kx −i∂z + i(eBz + ky)− εbz

−i∂z − i(eBz + ky)− εbz −kx

)
.

(2.17)

We define the operators

a† =
1√
2eB

(−i∂z + i(eBz + ky)− εbz)

a =
1√
2eB

(−i∂z − i(eBz + ky)− εbz),
(2.18)

satisfying [a, a†] = 1 and rewrite Hamiltonian 2.17 in the now familiar form

H̃ = ε

(
kx

√
2eBa†√

2eBa −kx

)
. (2.19)

The addition of the −εbz term in the operators will add a phase eεibzz to the
harmonic oscillator wavefunctions (see Appendix A). This approach turns out
to be much easier than the approach taken in Ref. [21], where perturbation
theory is attempted. The energy should ultimately not depend on bz, so there is
probably a mistake in this calculation. A first-order perturbation calculation on
the wave function confirms that a band splitting perpendicular to the magnetic
field generates a phase on the harmonic oscillator states (Appendix B). Since the
Hamiltonian is of the same form as the Hamiltonian for the magnetic field in the
z-direction 2.7, we can immediately conclude that the energies are given by (for
n > 0)

En = ±
√

2eBn+ k2
x, (2.20)

similar to 2.12. We can also copy the eigenstates, giving the new coefficients

an,ε =

(
1 +

2eBn

(E + εkx)2

)−1/2

,

bn,ε =

√
2eBn

εE + kx
an.

(2.21)
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Writing this down again in four components, we have the mutually orthogonal
set of eigenstates for |n| > 0

|ψn〉 = Cn,1


an,1e

ibzz |n〉
bn,1e

ibzz |n− 1〉
0
0

+ Cn,2


0
0

an,−1e
−ibzz |n〉

bn,−1e
−ibzz |n− 1〉

 ,

where we explicitly added the phase to the original harmonic oscillator wave
functions denoted by |n〉. Note that this are harmonic oscillator states in the
z-direction, while in the previous section we had harmonic oscillator states in the
x-direction. The ground states are given by

|ψ0,ε=1〉 =


eibzz |0〉

0
0
0

 |ψ0,ε=−1〉 =


0
0

e−ibzz |0〉
0

 .

As before, the chiral ground state energy turns out to have no ambiguity in sign
and is given by E0 = εkx. The energies of the Landau levels are depicted in
Figure 2.2.

kx

E

Figure 2.2 – Energies of the Landau levels of the ε = −1 (red) and ε = 1 (blue)
Weyl cones as a function of kx. The energies are no longer shifted by bz, so the
Landau levels above the zeroth level lie on top of each other.

We can put the eigenstates back in the original spin basis using the V -matrix
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given in Eq. 2.16. In two-component notation, we get

|ψvn〉 = V |ψn〉 =
1√
2

(
1 +

2eBn

(εE + kx)2

)−1/2
(
|n〉+

√
2eBn

εE+kx
|n− 1〉

|n〉 −
√

2eBn
εE+kx

|n− 1〉

)
,

|ψv0〉 = V |ψ0〉 =

(
eεibzz |0〉
eεibzz |0〉

)
.

The chiral ground state is spin-polarized in the x-direction, which is in the direc-
tion of the magnetic field, as we have

〈ψv0 |σ1 |ψv0〉 = 1,

〈ψv0 |σ2 |ψv0〉 = 0,

〈ψv0 |σ3 |ψv0〉 = 0.

This will turn out to have interesting consequences. For n > 0 the states are no
longer spin-polarized, as we get

〈ψvn |σ1 |ψvn〉 =
−2eBn+ (εE + kx)2

2eBn+ (εE + kx)2
,

〈ψvn |σ2 |ψvn〉 = 0,

〈ψvn |σ3 |ψvn〉 = 0.

We have now found the energy levels and eigenstates of a Weyl semimetal
in a magnetic field. We split the Weyl cones up in momentum space in the z-
direction and showed that in a parallel magnetic field, this shifts the momentum
kz. In a perpendicular magnetic field, this adds a phase to the harmonic oscillator
wavefunctions in the Landau level eigenstates. Furthermore, we showed that
the lowest Landau level is chiral and spin-polarized. These results will be the
foundation of the next Chapters. In Chapter 3, we will investigate surface states
in a half-infinite semimetal. To find the surface state wavefunction in the bulk,
we slightly modify the results we found in this Chapter.
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Chapter 3

Surface States in a half-infinite
Weyl semimetal

One of the remarkable properties of Weyl semimetals is the existence of conduct-
ing surface states. These states decay exponentially away from the surface, and
are topologically protected. As we will show, the surface states are gapless and
chiral. These states are experimentally observable by measuring their Fermi arcs,
serving as a key experimental signature for Weyl semimetals.

We start out by investigating surface states absent a magnetic field, and
continue by looking at the influence of a magnetic field on the surface states. In
our model we look at a half-infinite semimetal bordering a vacuum of mass m at
x = 0. The setup is pictured in Figure 3.1. The mass m is artificial but serves as
a barrier for electrons to leave the bulk. We assume the metal is infinitely long
in the y, z and positive x directions such that we can disregard boundary effects
in those directions. We break time reversal symmetry by splitting up the Weyl
cones in the z direction in momentum space by bz > 0.

Figure 3.1 – Schematic picture of our model for a Weyl semimetal. The model
consists of a vacuum for x < 0 and a Weyl semimetal for x > 0 with time
reversal symmetry breaking vector b. The green line denotes the amplitude of a
surface state, which is decaying away from the surface. Picture taken from Ref.
[1].
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3.1 Zero magnetic field

The case of zero magnetic field is already treated in Ref. [21]. We briefly repeat
the main calculations and results. The Hamiltonian describing the system is

H = γ0
[
γ ·
(
−i∇+ θ(x)γ5bz ẑ

)
+ θ(−x)im

]
, (3.1)

where θ(x) is the Heaviside step function and we add the imaginary unit to the
mass to make that term Hermitian, since (γ0)† = −γ0 in our case. We will
solve the problem in the semimetal and vacuum sides seperately and match the
solutions on the boundary x = 0.

3.1.1 Semimetal

In the semimetal, we have the Hamiltonian

H = γ0
[
γ ·
(
−i∇+ γ5bz ẑ

)]
. (3.2)

Since we have translational symmetry in y, z, we assume plane waves in these
directions. We want to find surface states, so we assume that the wavefunction
decays exponentially away from the surface. Additionaly, as we have no interac-
tions between cones, we know the wavefunction to consist of a linear combination
of the eigenstates of the single cones. This gives us the ansatz

|ψ(x)〉 = eikyy+ikzz
(
C1e

−λ1x |ψε=1〉+ C2e
−λ−1x |ψε=−1〉

)
, (3.3)

where Re[λ±] > 0 since we want exponential decay for x > 0, and |ψε〉 are 4-
component vectors in the cone with chirality ε. Since the Hamiltonian has no
off-diagonal elements, we can rewrite the Schrödinger equation Hψ(x) = Eψ(x)
per cone as

∂x |ψ(x)〉 = Q |ψ(x)〉 = λ± |ψ(x)〉 (3.4)

where Q is defined by

Q = −iγ1
[
γ0E − γ2ky − γ3

(
kz + γ5bz

)]
. (3.5)

Eq. 3.4 is easily solved for λ±, giving

λε =
√
−E2 + k2

y + (kz − εbz)2. (3.6)

The corresponding eigenvectors are given by

|ψε=1〉 = c1


i(−ky+

√
k2y+(kz−bz)2−E2)
−E−kz+bz

1
0
0

 , |ψε=−1〉 = c−1


0
0

i(ky−
√
k2y+(kz+bz)2−E2)
−E+kz+bz

1

 ,

(3.7)

where c±1 are normalization constants. So the surface state wave function in the
semimetal is given by

|ψ(x)〉 = eikyy+ikzz
(
C1e

−λ1x |ψε=1〉+ C2e
−λ−1x |ψε=−1〉

)
, (3.8)

where C1, C2, E are to be determined by matching the wave functions in the
vacuum and the semimetal at the boundary. We proceed using the same method
to find the wave function in the vacuum.
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3.1.2 Vacuum

In the vacuum, we have the Hamiltonian

H = γ0 [γ · (−i∇) + im] . (3.9)

We use the exponentially decaying ansatz ψ(x) = e−λxφ(x), where φ(x) is a
spinor, and with negative λ as we want it to decay for negative x. However, this
time we have off-diagonal elements in the Hamiltonian. Consequently, we will not
be able to write the eigenstates using only two components. We get the ansatz

|ψ̃(x)〉 = eikyy+ikzzC̃ie
λ̃ix |ψ̃〉i , (3.10)

where |ψ̃〉i are four-component spinors. Again rewriting the Schrödinger equation,
we get a similar equation to Eq. 3.4, with

Q = −iγ1
[
γ0E − γ2ky − γ3kz − im

]
. (3.11)

We find only one negative solution

λ̃ = −
√
−E2 + k2

y + k2
z +m2.

Thus, the eigenstates |ψ̃〉i are given by

|ψ̃1〉 =
c̃1

m


−ky + λ̃
i(E + kz)

0
m

 , |ψ̃2〉 =
c̃2

m


i(E − kz)
−ky − λ̃

m
0

 , (3.12)

where ˜c1,2 are normalization constants. So the solution in the Dirac vacuum is
given by

|ψ̃(x)〉 = e
√
−E2+k2y+k2z+m2x

(
C̃1 |ψ̃1〉+ C̃2 |ψ̃2〉

)
, (3.13)

where C̃1, C̃2, E have to be determined in the matching procedure.

3.1.3 Matching at the boundary

By continuity, we demand that the two wave functions have to be matched at
the boundary: |ψ̃(x = 0)〉 = |ψ(x = 0)〉. We also demand that the wave function
is normalized: ∫ 0

−∞
dx 〈ψ̃(x)|ψ̃(x)〉+

∫ ∞
0

dx 〈ψ(x) |ψ(x)〉 = 1. (3.14)

Together these two conditions give five equations, and we have five unknowns:
the four coefficients C̃1, C̃2, C1, C2 and the energy E. The matching equations
define a matrix problem

M(C̃1, C̃2, C1, C2)T = 0,

which has non-trivial solutions when det(M) = 0. This condition gives us the
allowed energies for the surface states. We find the gapless solution

E = −ky, (3.15)
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which only holds for |kz| < bz. This solution shows that the surface state is chi-
ral, so the electrons on the surface can only move in one direction, the y-direction.

Using this solution, together with the normalization condition 3.14, we can
find the full wave function. We take the limit m→∞, disallowing the electrons
from leaving the semimetal, to simplify the expressions. This forces the vacuum
wavefunction to only exist on the surface x = 0. We find the wavefunctions to be

|ψ̃(x = 0)〉 = ceikyy+ikzz


1
−1
1
1

 (3.16)

|ψ(x)〉 = ceikyy+ikzz

e−(bz+kz)x


i
−1
0
0

+ e−(bz−kz)x


0
0
i
1


 . (3.17)

We see that the wave functions decay slightly differently for each cone away from
the surface. After taking the m → ∞ limit, the wave function is zero in the
vacuum, but nonzero on the surface. This shows that we could not have simply
taken the boundary condition to be that |ψ(x = 0)〉 = 0, as this could not have
given the same result. The important difference is that the wave function still has
spin structure on the boundary which we cannot ignore. Note that for |kz| = bz,
the wavefunction actually does not decay in the bulk. This will turn out to be
very important later on.

3.1.4 Anomalous effects with zero magnetic field

In the zero magnetic field case, we can still have anomalous effects due to an
external electric field E. These anomalous effects were derived in [1]. The first
term in Hamiltonian 1.14 represents the anomalous Rashba spin-orbit coupling,
originating from the Coulomb interaction between electrons. Adding this term
to the Hamiltonian gives the anomalous Hamiltonian

H = γ0γ ·
[
−i∇− γ5bz ẑ + (µ1E× bz ẑ)− iγ5(µ1E×∇)

]
. (3.18)

Since ky and kz are still good quantum numbers, we can still use the same
ansatz |ψ(x)〉 = eikyy+ikzzφ(x), giving a one-dimensional problem in x. Since
we use a half-infinite slab of Weyl semimetal, assume exponential decay in the
negative x-direction, giving φ(x) ∝ e−λx, with λ < 0. As before, we want to find
the effective matrix Q and determine its eigenvalues. There are three different
situations. An electric field in the y-direction does not affect the surface state
dispersion and Fermi arc. An electric field in the z-direction E = Ez ẑ (not to be
mistaken with the energy E) does affect the dispersion. Following Ref. [21], we
find, similar to Eq. 3.4,

Q =
1

1 + E2
z

(
σ · vz+ 0

0 σ · vz−

)
, (3.19)

where vz± =
(
(∓iE ∓ Ez(kz ± bz), iEzE − (kz ± bz), ky(1 + E2

z )
)
. The negative

eigenvalue of this matrix is

λz = −

√
(kz ± bz)2 + k2

y(1 + Ez)2 − E2

1 + E2
z

, (3.20)
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which we put into the wave function for the semimetal. The new wave function
is matched at x = 0 with the unchanged vacuum wave function, giving the
dispersion

E = −ky
√

1 + E2
z , (3.21)

which still has the Fermi arc |kz| < bz. In SI units, we get the dispersion

E = −vFky
√

1 + E2
z . (3.22)

So the electric field in this case increases the Fermi velocity by a factor
√

1 + E2
z ,

but does not alter the linearity in ky of the dispersion nor the Fermi arc.

The most interesting case is when we take the electric field perpendicular to
the surface, E = Exx̂. This gives the effective matrix

Q =

(
σ · vx+ 0

0 σ · vx−

)
, (3.23)

where vx± = (∓iE,Exky ∓ (kz ± bz), ky ± Ex(kz ± bz)). The effective matrix has
positive eigenvalues

λx± =
√

(kz ± bz)2(1 + E2
x) + k2

y(1 + E2
x)− E2. (3.24)

The matching procedure gives the dispersion

E = −
(1− Ex)2bzky + Ex(k2

y + k2
z − b2z)√

(bz + Exky)2 + E2
xk

2
z

, (3.25)

which is no longer linear in ky, and is no longer defined on a straight Fermi arc.
Instead, the solution is now only defined in the exterior of the two circles defined
by (

ky +
bz
Ex

)2

+

(
kz ±

bz
2

(1 +
1

E2
x

)

)2

=
b2z
4

(
1 +

1

Ex

)2

.

Inside these two circles, there are no surface states and the problem corresponds
to a topologically trivial insulator. A density plot of the dispersion and the new
Fermi arc is depicted in Figure 3.2.

3.2 Magnetic field parallel to surface

In this section we consider a magnetic field parallel to the band splitting bz and
the surface, so B = Bẑ. We can choose our gauge such that A has a component in
the x-direction, for example A = B(−y, 0, 0) or in the y-direction A = B(0, x, 0).
In the first case we break translation symmetry in the y-direction, which causes
ky to no longer be a good quantum number. That means the result E = −ky we
obtained in the zero magnetic field case, is no longer valid. In the second case,
minimal substitution gives ky → ky + eBx. But since the boundary is at x = 0,
this term in first instance does not contribute to the surface state dispersion.
While the surface state dispersion is unaffected, the decaying wave function may
still be modified. Since we add a term eBx to the Hamiltonian, we can no longer
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Figure 3.2 – Density plots of the dimensionless dispersion ω(k)/bzvF as a function
of the dimensionless momenta kz/bz, ky/bz for Ēx = µ1Ex/~v2F = 1/10 (left)
and Ēx = 1/2 (right). The red lines 1© indicate the allowed region for surface
states for zero electric field (see previous section). The blue lines 2© indicate the
new allowed region for surface states, including the electric field. The green lines
3© indicate the Fermi arc, which is no longer a straight line. The white regions
indicate regions where no surface state is supported. Picture adapted from Ref.
[1].

use the exponential ansatz ψ(x) = e−λx. The solutions are found using a WKB
approximation in Ref. [21]. In the vacuum the wave function becomes

|ψ̃(x)〉 = ceikyy+ikzze−λ̃(x)


i
i
1
1

 , (3.26)

where c is a constant of normalization and

λ̃(x) =

∫ x

0
dx′
√
−k2

y + k2
z + (ky + eBx′)2 +m2

Note that we could not have found this using an exponential ansatz. The wave
function in the semimetal becomes

|ψ(x)〉 =ceikyy+ikzz

√
λ−(0)

λ−(x)

√
ky + eBx+ λ−(x)

ky + λ−(0)
eλ1(x)


0
0

−iky+eBx−λ−(x)
E−kz+bz

1

+

ceikyy+ikzz

√
λ+(0)

λ+(x)

√
ky + eBx+ λ+(x)

ky + λ+(0)
eλ2(x)


i
ky+eBx−λ+(x)

E+kz+bz
1
0
0

 ,

where

λ1(x) =

∫ x

0
dx′λ−(x′), λ2(x) =

∫ x

0
dx′λ+(x′),

λ±(x) =
√
−k2

y + (ky + eBx)2 + (kz ± bz)2.
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In the zero magnetic field case, we found that the wavefunctions for each cone
decay differently, with all the x-dependence in the exponential. In this case, we
see that all four components of the wave function do not fall off at the same rate,
since the components have different dependencies on x. At the surface at x = 0,
the same wave function as the zero magnetic field case is found, as expected.

3.3 Magnetic field perpendicular to the surface

In this section we consider a magnetic field in the negative x-direction, perpendic-
ular to the band splitting bz and the surface. A magnetic field in the z-direction
generates cyclotron orbits in the xy plane, coinciding with the direction of the
surface state dispersion in the zero magnetic field case. This intuitively justifies
that the magnetic field does not influence the surface states in this case. Elec-
trons propagating through the bulk in the x-direction are also pulled back by the
Lorentz force. Therefore, we do not expect bound states to no longer be bounded
when adding a magnetic field parallel to the surface. That is no longer the case
for a magnetic field in the x-direction, since there is no Lorentz force on electrons
propagating through the bulk in the x-direction. That means we expect vastly
different results for the surface states than in the previous section.

3.3.1 Solutions in semimetal bulk

In the semimetal we have the Hamiltonian

H = ε [(−i∇ + eA) · σ − εbzσ3] , (3.27)

with the gauge A = (0, Bz, 0). We want to find states that live on the surface and
exponentially decay away from the surface. Using the Landau level solutions we
found in Chapter 2, the most general ansatz we can make is a linear combination
of the Landau levels combined with exponential decay away from the surface. A
sensible ansatz is therefore

|ψSM(~x)〉 = eikyy
∑
n≥0

(
e−λnx [Cn,1 |ψn,1〉+ Cn,2 |ψn,−1〉]

)
,

where Cn,1, Cn,2 are coefficients to be determined in the matching procedure.
We now look at how the Hamiltonian acts on the individual Landau level

states eikyyeλnx |ψn〉. We rotate the Hamiltonian in spin space using the unitary
transformation matrix V given in Eq. 2.16. This gives us the Hamiltonian

V †HV = ε

(
−iλn −i∂z + i(eBz + ky)− εbz

−i∂z − i(eBz + ky)− εbz iλn

)
We recognize the form of the Hamiltonian of the Landau levels in the bulk 2.19
with kx = −iλn. Therefore, we can immediately conclude that for n > 0, we
get E = ±

√
2eBn− λ2

n. For n = 0 we get E = −εiλ0, indicating that λ0 is
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imaginary. Using the results from Chapter 2, we get

|ψ0,1〉 =


eibzz |0〉

0
0
0

 |ψ0,−1〉 =


0
0

e−ibzz |0〉
0

 ,

|ψn,1〉 =


an,1 eibzz |n〉

bn,1 eibzz |n− 1〉
0
0

 |ψn,−1〉 =


0
0

an,−1 e−ibzz |n〉
bn,−1 e−ibzz |n− 1〉

 ,

where an,bn are given by Eq. 2.21 with kx = −iλn. We can rewrite λn in terms
of E, giving λn = ±

√
2eBn− E2 and λ0 = εiE. We discard the negative λn

since we want surface states which decay for increasing x. We also see that for
a fixed energy there are certain Landau levels for which λn is real and others
where there is no real solution. Therefore we want to fix some energy E and see
if there are real solutions for λn. If these solutions exist, there are surface states.
This also means that we can have a linear combination of these Landau levels
with some higher Landau levels exponentially decaying away from the surface
and some lower levels propagating through the semimetal.

We can transform the wave function back to the original spin basis using the
V matrix again. This gives the wave function

|ψSM(~x)〉 = eikyy

C0,1e
iExeibzz


|0〉
|0〉
0
0

+ C0,2e
−iExe−ibzz


0
0
|0〉
|0〉




+ eikyy
∑
n>0

(
eλnx√

2

[
Cn,1 |ψvn,1〉+ Cn,2 |ψvn,−1〉

])
,

with

|ψvn,1〉 = eibzz


i√
2
|n〉+ i

√
2eBn√

2(E−iλn)
|n− 1〉

i√
2
|n〉 − i

√
2eBn√

2(E−iλn)
|n− 1〉

0
0



|ψvn,−1〉 = e−ibzz


0
0

i√
2
|n〉+ i

√
2eBn√

2(−E−iλn)
|n− 1〉

i√
2
|n〉 − i

√
2eBn√

2(−E−iλn)
|n− 1〉

 .

We have now found the full solutions to the Landau level eigenstates in the bulk.
We continue by calculating the expectation value of the spin of the Landau level
states again. This gives

〈ψvn |σi |ψvn〉 = 0,

where we use σi = σi⊕σi. Note that this is different from the bulk states, where
we found non-zero expectation value for the spin in the x-direction. The ground
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state is still the same,

|ψ0,ε〉 =

(
eiεbzz |0〉

0

)
,

so we find that the ground state is still spin-polarized,

〈ψv0 |σ1 |ψv0〉 = 1,

〈ψv0 |σ2 |ψv0〉 = 0,

〈ψv0 |σ3 |ψv0〉 = 0.

3.3.2 Solutions in vacuum

In the vacuum we have the Hamiltonian

H = γ0
[
~γ · (−i∇+ e ~A) + im

]
We make the ansatz for the wavefunction in the vacuum

|ψ̃(x)〉 = eikyy
∑
n

c̃n,me
λ̃mx |ψ̃n〉 ,

where |ψ̃n〉 are the Landau-level states we found in the bulk, minus the phase
from the splitting of the cones. We rotate the Hamiltonian in spin space using
the unitary transformation matrix

V =
i√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 ,

giving the Hamiltonian

V †HV =

 −iλ̃n −i∂z + i(eBz + ky) im 0

−i∂z − i(eBz + ky) iλ̃n 0 im

−im 0 iλ̃n i∂z − i(eBz + ky)
0 −im i∂z + i(eBz + ky) iλn



=



−iλ̃n
√

2eBna† im 0√
2eBna iλ̃n 0 im

−im 0 iλ̃n −
√

2eBna†

0 −im −
√

2eBna −iλ̃n


.

This Hamiltonian is slightly different from the Hamiltonian for the Landau levels
due to the mass term. We can square the Hamiltonian to find the eigenenergies,
giving

En = ±
√

2eBn+m2 − λ̃2
n. (3.28)

Additionaly, we can rewrite λ̃n in terms of E, giving

λ̃n = ±
√

2eBn+m2 − E2. (3.29)

We discard the negative solution since it blows up for x → −∞. So the wave-
function is given by

|ψ̃(x)〉 = eikyy
∞∑
n=0

c̃ne
−λ̃nx |ψ̃n〉 ,
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where λ̃n = −
√

2eBn+m2 − E2. Since the mass now couples the Landau level
states, the eigenstates have the form

|ψ̃n〉 =


ãn |n〉

b̃n |n− 1〉
ã′n |n〉

b̃′n |n− 1〉


for n > 0. The Schrödinger equation gives the 4 equations

−iλ̃nãn +
√

2eBnb̃n + imã′n = Enãn,√
2eBnãn + iλ̃nb̃n + imb̃′n = Enb̃n,

−imãn + iλ̃nã
′
n −
√

2eBnb̃′n = Enã
′
n,

−imb̃n −
√

2eBnã′n − iλ̃nb̃′n = Enb̃
′
n.

Solving this system gives four solutions, given by

|ψ̃n,1〉 =
1√

2(2eBn+m2)


i
√

2eBn |n〉
(iEn − λ̃n) |n− 1〉

0
m |n− 1〉

 ,

|ψ̃n,2〉 =
1√

2(2eBn+m2)


(iEn + λ̃n) |n〉
i
√

2eBn |n− 1〉
m |n〉

0

 ,

(3.30)

where En, given by Eq. 4.2, can be positive and negative. We can change back
to the original spin basis using the V matrix again. We get the states

|ψ̃vn,1〉 = V |ψ̃1〉 =
1

2
√

2eBn+m2


i
√

2eBn |n〉+ (iE − λ̃n) |n− 1〉
i
√

2eBn |n〉 − (iE − λ̃n) |n− 1〉
m |n− 1〉
−m |n− 1〉

 ,

|ψ̃vn,2〉 = V |ψ̃2〉 =
1

2
√

2eBn+m2


i
√

2eBn |n− 1〉+ (iE + λ̃n) |n〉
(iE + λ̃n) |n〉 − i

√
2eBn |n− 1〉

m |n〉
m |n〉

 .

Now that we are in the correct spin basis, we can compute the expectation value
of the spin in the x-direction of the different solutions. This gives

〈ψ̃vn,1|σx|ψ̃vn,1〉 = − m2

2eBn+m2
,

〈ψ̃vn,2|σx|ψ̃vn,2〉 =
m2

2eBn+m2
,

which is the same for both signs of the energy. We see that the first two solutions
(|ψ̃vn,1〉 with positive and negative energy) have spin directed in the negative x-
direction which is in the direction of the magnetic field. The direction of the
expectation value of the spin of the other two solutions are opposite to the field.
In the m → ∞ limit however, the spin is polarized in the positive and negative
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x-direction. The lowest Landau level is spin-polarized for any m. The zeroth
Landau level states have the form

|ψ̃0〉 =


a0 |0〉

0
b0 |0〉

0

 .

We get two solutions, a positive and a negative energy state given by

|ψ̃0〉 =


im√

2(E−iλ̃0)
|0〉

0
1√
2
|0〉

0

 ,

where E = ±
√
m2 − λ̃2

0 for the positive and negative energy state. We can
transform the states back to the original spin basis, giving

|ψ̃v0〉 = V |ψ̃0〉 =
1√
2


im√

2(E−iλ̃0)
|0〉

im√
2(E−iλ̃0)

|0〉
1√
2
|0〉

1√
2
|0〉

 .

Now we can calculate the expectation value of the spin in the x-direction. This
gives

〈ψ̃v0 |σx|ψv0〉 =
1

2

(
2|a2

0|+ 2|b0|2
)

=
1

2

(
m2

E2 + λ̃2
0

+ 1

)
= 1

for both the positive and negative energy states. The expectation value of the
spin in the other directions is zero, so the zeroth Landau level in the vacuum is
also spin-polarized.
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3.3.3 Matching

Now that we found the full wave functions in the vacuum and in the semimetal,
we have to match them at the boundary x = 0. In the last two sections, we found
the wave functions

|ψSM (x)〉 = eikyye−λ0x

C0,1


eibzz |0〉

0
0
0

+ C0,2


0
0

e−ibzz |0〉
0


+

eikyy
∞∑
n>0

e−λnx

Cn,1

an,1 eibzz |n〉
bn,1 eibzz |n− 1〉
0
0

+ Cn,2


0
0

an,−1 e−ibzz |n〉
bn,−1 e−ibzz |n− 1〉


 ,

|ψ̃(x)〉 = eikyye−λ̃0xC̃0


im√

2(E+iλ̃0)
|0〉

0
1√
2
|0〉

0



+ eikyy
∞∑
n=1

e−λ̃nx√
2(2eBn+m2)

C̃n,1


i
√

2eBn |n〉
(iE − λ̃n) |n− 1〉

0
m |n− 1〉

+ C̃n,2


(iE + λ̃n) |n〉
i
√

2eBn |n− 1〉
m |n〉

0




= eikyye−λ̃0xC̃0 |ψ̃0〉+ eikyy
∞∑
n=1

e−λ̃nx
[
C̃n,1 |ψ̃n,1〉+ C̃n,2 |ψ̃n,2〉

]
,

where λn =
√

2eBn− E2, λ̃n = −
√

2eBn+m2 − E2. We want to match these
wave functions at the boundary, so we set |ψSM (x = 0)〉 = |ψ̃(x = 0)〉. We can
now project with some vector containing harmonic oscillator states from the
left. On the semimetal side we have a factor eibzz, generating overlap with every
harmonic oscillator state, given by the matrix elements Pn,m ≡ 〈m|eεibzz|n〉. The
states |n〉 are given by (see Appendix)

|n〉 =
in√
2nn!

(
eB

π

)1/4

e−
(eBz+ky)

2

2eB Hn

(
1√
eB

(eBz + ky)

)
, (3.31)

where Hn(x) are Hermite polynomials. For the diagonal elements, we get

Pn,n = 〈n|eεibzz|n〉 =
1

2nn!

(
eB

π

)1/2 ∫ ∞
−∞

dz e−
2(eBz+ky)

2

2eB eεibzzH2
n

(
1√
eB

(eBz + ky)

)
=

1

2nn!

(
eB

π

)1/2

e−
b2z
4eB
− iεbzky

eB

∫ ∞
−∞

dz e−
(eBz+ky− 1

2 iεbz)
2

eB H2
n

(
1√
eB

(eBz + ky)

)
,

where we completed the square in the exponential. We define η =
eBz+ky− 1

2
iεbz√

eB
and rewrite the integral in terms of η, giving

Pn,n =
1

2nn!

(
eB

π

)1/2

e−
b2z
4eB
− iεbzky

eB

∫
dη√
eB

e−η
2
H2
n

(
η +

εibz

2
√
eB

)
.
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The integral we have now can be found in Gradshteyn [22]. The general form
found there is∫ ∞

−∞
dxe−x

2
Hm(x+ y)Hn(x+ z) = 2nπ1/2m!yn−mLn−mm (−2yz) (m ≤ n),

(3.32)

where Ln−mn are generalized Laguerre polynomials. In this case, using 3.32, we
have ‘simple’ Laguerre polynomials L0

n, giving

Pn,n =
1

2nn!

(
eB

π

)1/2

e−
b2z
4eB
− iεbzky

eB

[
2nπ1/2(n!)L0

n

(
−2(

iεbz

2
√
eB

)2

)]
= e−

b2z
4eB
− iεbzky

eB L0
n

(
b2z

2eB

)
.

Similarily, the off-diagonal elements have generalized Laguerre polynomials Lαn,
giving

Pm,n =
2max(n,m)min(n,m)!√

2n+mn!m!
e−

b2z
4eB
−i εbzky

eB

(
iεbz

2
√
eB

)|n−m|
L
|n−m|
min(n,m)

(
b2z

2eB

)
.

(3.33)

Now that we have found these matrix elements, we can try to set up a system
of equations by projecting with different states. On the semimetal side, we can
project with two different vectors onto the lowest Landau level, (〈0| , 0, 0, 0) and
(0, 0, 〈0| , 0). The higher Landau levels have four different projections per level,
giving us a total of two plus 4 equations per Landau level above the zeroth level.
These are all the equations we are able to find, as other projections on the vacuum
or semimetal side would simply yield zero. Finally, we have the normalization of
the wavefunction, adding one equation. So altogether, if we take Landau levels
into account up to the n-th level, we have 3 + 4n equations. If we look at the
amount of coefficients, we see that there are two coefficients per level on the
semimetal side, Cn,1 and Cn,2. On the vacuum side, we have one coefficient C̃0

plus two coefficients, C̃n,1 and C̃n,2, per level above the zeroth level in the vacuum.
Furthermore, we still have the energy E as an unknown. In total, we have 4 + 4n
unknowns, which is one more than the amount of equations. That means we have
an underdetermined system, so we cannot find a unique solution. Therefore, in
the half-infinite semimetal, there are no surface state solutions. In Chapter 4, we
will find surface state solutions in a finite slab of Weyl semimetal, and show why
there are no solutions possible in the half-infinite semimetal. First, we stay in the
half-infinite semimetal and look at the anomalous effects on the surface states in
a magnetic field parallel to the surface.

3.4 Anomalous magnetic effects

Since we found no surface state solutions for a magnetic field perpendicular to
the surface, in this section we only treat the magnetic field parallel to the surface,
B = Bẑ. We follow Ref. [21], where these results have been derived. Adding the
anomalous terms relevant to the magnetic field from Hamiltonian 1.14, we get
the Hamiltonian

H = γ0γ ·
[
−i∇− γ5bz ẑ

]
− γ5

[
γ0γ3µ2 + µ1(kz + γ5bz)

]
B. (3.34)
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We treat the two new terms seperately. The first term scaling with µ2, is an
anomalous Zeeman term. Adding only this term gives the effective matrix

Q = −iγ1
(
γ0E − γ2 [ky + eBx]− γ3

[
kz + γ5(bz + µ2B)

])
, (3.35)

which is the effective matrix for zero magnetic field given in Eq. 3.5 with
bz → bz + µ2B. So we conclude that we find the same surface state with
energy E = −ky and with the anomalous effect extending the Fermi arc as
|kz| < bz + µ2B.

The second term, scaling with µ1, is a term that tilts the Weyl cones. Adding
this term to the Hamiltonian gives the effective matrix

Q = −iγ1
(
γ0
[
E − γ5µ1(kz − γ5bz)B

]
− γ2 [ky + eBx]− γ3

[
kz + γ5bz

])
.

(3.36)

This is no longer simply a shift, but rather something more difficult. The resulting
dispersion is vastly different from the dispersion in Eq. 3.15, which was found
ignoring anomalous effects. It is given by

E = µ1Bbz

(
1− k2

z

b2z

)
− ky

√
1− (µ1B)2

k2
z

b2z
, (3.37)

which correctly reverts back to E = −ky for µ1 = 0. This is an interesting result,
since the energy now depends on the splitting of the Weyl cones bz. Ofcourse,
bz = 0 presents a problem, but in that case we have a Dirac semimetal, which
does not have surface states at all. The allowed region in momentum space now
depends on the magnetic field in a more complicated manner. The region is
bounded by two hyperbolic curves defined by

ky =
kz ± bz
µ1Bkz

√
b2z − (µ1Bkz)2. (3.38)

The allowed region is drawn in Figure 3.3.

The two effects combined are given by the Hamiltonian 1.14, giving

Q = −iγ1
(
γ0
[
E − γ5µ1(kz − γ5bz)B

]
− γ2 [ky + eBx]− γ3

[
kz − γ5(bz + µ2B)

])
.

(3.39)

The surface state dispersion with both anomalous effects is then given by

E = µ1Bbz

(
1− k2

z

bz(bz + µ2B)

)
− ky

√
1− (µ1B)2

(
kz

bz + µ2B

)2

. (3.40)

Interestingly, the surface state dispersion now depends on the anomalous mag-
netic moment µ2 because it Zeeman shifts bz. Adding just the Zeeman term
only influenced the allowed region in momentum space, because the energy did
not depend on bz. The allowed region changes only slightly, since we only shift
bz → bz + µ2B, and is now given by the two hyperbolic curves

ky =
kz ± (bz + µ2B)

µ1Bkz

√
(bz + µ2B)2 − (µ1Bkz)2. (3.41)
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Figure 3.3 – The allowed region defined by Eq. 6.1 (red) for µ1B
~vF = 0.4, compared

to the non-anomalous region (green), for dimensionless k̄y,z = ky,z/bz. Picture
taken from Ref. [21].

This concludes the anomalous effects on the surface states for a magnetic field
parallel to the band splitting and surface. In this Chapter, we found surface states
on a Weyl semimetal for zero and low magnetic fields. For zero magnetic field, we
found a linear, chiral dispersion, only depending on ky. Further on in the Chapter,
we included anomalous effects, and found a non-linear dispersion which depends
on kz and bz as well as ky. For a magnetic field parallel to the surface, we found
the same dispersion as for the zero magnetic field case. However, when including
anomalous effects, we found that the anomalous magnetic effects significantly
alter the dispersion, which now also depends on µ1, µ2, bz and kz. For a low
magnetic field perpendicular to the surface, we were not able to find solutions for
the surface state. However, in the next Chapter we will find solutions for surface
states under influence of a strong perpendicular magnetic field. When we find
the solutions, we can look at the anomalous effects on those surface states.
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Chapter 4

Surface states on a finite slab
of Weyl semimetal

In Chapter 3, we found no bound surface state solutions in a half-infinite Weyl
semimetal in a magnetic field perpendicular to the surface. However, if we take
a finite slab of Weyl semimetal by adding another surface on the right, we will
find surface state solutions. The new model is pictured in Figure 4.1. We again
consider a magnetic field in the negative x-direction, perpendicular to the band
splitting bz and the surface. Since we added a vacuum on the right side, we
get two vacuum wavefunctions, as well as surface states on both surfaces of the
semimetal.

Figure 4.1 – Schematic picture of a model of a finite slab of Weyl semimetal bor-
dered by a vacuum at x = 0 and x = L. Picture adapted from Ref. [1]

.

4.1 Surface state solutions

4.1.1 Solutions in semimetal bulk

In this case, we follow Section 3.3, but add another surface state on the right side
of the semimetal. Again, we have the Hamiltonian

H = ε [(−i∇ + eA) · σ − εbzσ3] , (4.1)

with the gauge A = (0, Bz, 0). Now that we have two surfaces (at x = 0 and
x = L), we have surface states on the left and right side of the semimetal that
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we have to consider. Our ansatz is now given by

|ψSM(~x)〉 = eikyye−λ0x [C0,1 |ψ0,1〉+ C0,2 |ψ0,−1〉] +

eikyy
∑
n>0

(
e−λnx

[
C`n,1 |ψn,1〉` + C`n,2 |ψn,−1〉`

]
+ e−λn(L−x)

[
Crn,1 |ψn,1〉r + Crn,2 |ψn,−1〉r

])
,

where the `,r lables surface states on the left and right of the material respectively.
Similar to Chapter 3, we get

|ψ0,1〉 =


eibzz |0〉

0
0
0

 |ψ0,−1〉 =


0
0

e−ibzz |0〉
0

 ,

|ψn,1〉` =


an,1 eibzz |n〉

bn,1 eibzz |n− 1〉
0
0

 |ψn,−1〉` =


0
0

an,−1 e−ibzz |n〉
bn,−1 e−ibzz |n− 1〉

 ,

where an,bn are given by Eq. 2.21 with kx = −iλn. The states on the right side
of the semimetal |ψn〉r are found by substituting λn by −λn in an and bn.

4.1.2 Solutions in vacuum

In the vacuum we have the Hamiltonian

H = γ0
[
~γ · (−i∇+ e ~A) + im

]
We make the ansatz for the wavefunction in the vacuum left of the semimetal

|ψ̃`(x)〉 = eikyy
∑
n

c̃ne
λ̃nx |ψ̃n〉` ,

where |ψ̃n〉` are the Landau level states we found in the bulk, minus the phase
from the splitting of the cones. Note that the wave function in the vacuum on
the right is found by replacing x by (L − x) and switching the sign of λ̃n in its
eigenstates. Similar to Chapter 3, we get the eigenenergies

En = ±
√

2eBn+m2 − λ̃2
n, (4.2)

which we can again rewrite for λ̃n

λ̃n = ±
√

2eBn+m2 − E2. (4.3)

We discard the negative solution since it blows up for x→ −∞ (and for x→∞
in the case of the surface state on the right). Solving the Schrödinger equation
again gives the four solutions

|ψ̃n,1〉` =
1√

2(2eBn+m2)


i
√

2eBn |n〉
(iEn − λ̃n) |n− 1〉

0
m |n− 1〉

 ,

|ψ̃n,2〉` =
1√

2(2eBn+m2)


(iEn + λ̃n) |n〉
i
√

2eBn |n− 1〉
m |n〉

0

 ,

(4.4)

where En, given by Eq. 4.2, can be positive and negative. The solutions in the
vacuum on the right are found by switching the sign of λ̃n.
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4.1.3 Matching

Now that we found the full wave functions in both sides of the vacuum and in
the semimetal, we have to match them at the boundaries x = 0 and x = L. In
the last two sections, we found the wave functions

|ψSM(~x)〉 = eikyye−λ0x [C0,1 |ψ0,1〉+ C0,2 |ψ0,−1〉] +

eikyy
∑
n>0

(
e−λnx

[
C`n,1 |ψn,1〉` + C`n,2 |ψn,−1〉`

]
+ e−λn(L−x)

[
Crn,1 |ψn,1〉r + Crn,2 |ψn,−1〉r

])

|ψ̃`(x)〉 = eikyye−λ̃0xC̃0


im√

2(E+iλ̃0)
|0〉

0
1√
2
|0〉

0

+ eikyy
∞∑
n=1

e−λ̃nx
[
C̃n,1 |ψ̃n,1〉` + C̃n,2 |ψ̃n,2〉`

]

= eikyye−λ̃0xC̃0 |ψ̃0〉` + eikyy
∞∑
n=1

e−λ̃nx
[
C̃n,1 |ψ̃n,1〉` + C̃n,2 |ψ̃n,2〉`

]
,

where λn =
√

2eBn− E2, λ̃n = −
√

2eBn+m2 − E2 and ψ̃r(x) is given by ψ̃`(x)

but with e−λ̃n(L−x) and λ̃n → −λ̃n in the eigenstates. We now want to match
these wave functions on the boundaries. We set |ψSM (x = 0)〉 = |ψ̃`(x = 0)〉 and
|ψSM (x = L)〉 = |ψ̃r(x = L)〉. Again, we can project with vectors containing har-
monic oscillator states from the left. Firstly, we can project with (〈n′| , 0, 0, 0)T .
On the vacuum side this gives (for |n′| > 0)

∑
n

(C̃n,1ãn,1 + C̃n,2ãn,1) 〈n′|n〉 = C̃n′,1
i
√

2eBn′√
2(2eBn′ +m2)

+ C̃n′,2
iE + λ̃n′√

2(2eBn′ +m2)
.

On the semimetal side, we have overlap with all states. Here we get∑
n

Cn,1an,1 〈n′|eibzz|n〉 =
∑
n

Cn,1an,1Pn′,n,

where Pn′,n is given by Eq. 3.33. Projecting for every n gives us the matrix
equation

a0,1P0,0 a1,1P0,1 a2,1P0,2 . . .
a0,1P1,0 a1,1P1,1 a2,1P1,2

a0,1P2,0 a1,1P2,1 a2,1P2,2
...

. . .



C0,1

C1,1

C2,1
...

 =


C̃0ã0

C̃1,1ã1,1 + C̃1,2ã1,2

C̃2,1ã2,1 + C̃2,2ã2,2
...

 .

Projecting on the vectors 
0
〈n′|
0
0

 ,


0
0
〈n′|
0

 ,


0
0
0
〈n′|


also each give a set of equations. Furthermore, we require normalization of the
entire wavefunction∫ 0

−∞
dx|ψl(x)|2 +

∫ L

0
dx|ψSM(x)|2 +

∫ ∞
L

dx|ψr(x)|2 = 1.
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In this case, if we take Landau levels into account up to the n-th level, we
have 4 + 8n coefficients plus the energy, giving a total of 5 + 8n unknowns. By
including the surface on the right, we added equations from the matching on the
right, giving a total of 5 + 8n equations. That means we are able to solve the
system, showing that there are surface state solutions in a finite slab of Weyl
semimetal.

We showed that cutting off at a certain level n gives us a solvable system.
However, this problem becomes infinitely large, as we can include infinitely many
Landau levels. Consequently, we need to use some cutoff at a certain Landau
level to be able to solve the problem. However, since we have energies En =√

2eBn− λ2
n for n > 0 and E0 = −εiλ0, the Landau level energy spacing is close

to
√

2eB. For low magnetic fields, the energy spacing is small and the Landau
levels almost lie on top of eachother. That means there is no reasonable cutoff
that we can use to solve the system. However, the problem can be solved in the
high magnetic field limit, where the energy spacing becomes much bigger.

4.2 LLL limit

The solutions we found in the bulk contained a linear combination of Landau lev-
els, with energy separation ∆E ∝

√
B. For low magnetic fields, we cannot throw

away most these Landau levels because they are so close in energy. However, the
lowest Landau level has a constant energy in B, E = εkx. Therefore, if we take
the high magnetic field limit, we can assume that for low energies, this is the only
Landau level in the bulk that we have to take into account. We also call this the
lowest Landau level limit (LLL limit). This limit is often used in physics using
Landau levels, such as the Fractional Quantum Hall effect [23] and rotating Bose
condensates [24]. If we lower the magnetic field such that also the first Landau
level can contribute, we can find first order corrections to this limit. However, as
we will see, this already increases the complexity of the problem enough to force
us to use numerics.

In the LLL limit, we neglect any states higher than the lowest Landau level
(LLL). In the semimetal, the zeroth level, although not being a surface state,
contributes to the problem. It has two states, one in each cone, propagating
through the semimetal. These states are chiral, their propagation direction is
determined by their chirality ε = ±1. On the vacuum side we have only one state
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in the zeroth Landau level. We have the wavefunctions

|ψ̃`(x)〉 = Aeikyye−λ̃0x


im√

2(E+iλ̃0)
|0〉

0
1√
2
|0〉

0



|ψ̃r(x)〉 = Deikyye−λ̃0(L−x)


im√

2(E−iλ̃0)
|0〉

0
1√
2
|0〉

0



|ψSM(x)〉 = eikyy

BeiEx

eibzz |0〉

0
0
0

+ Ce−iEx


0
0

e−ibzz |0〉
0


 ,

where λ̃0 = −
√
m2 − E2 and A,B,C,D and the energy E are to be determined

by matching the wave functions. Note that in the vacuums we have exponen-
tially decaying wave functions, whereas in this limit we have a propagating wave
function in the semimetal. The direction of propagation depends on the chirality
of the state. Looking at the wave functions, we can see why an infinite slab of
Weyl semimetal does not give solutions for the surface states. In that case we
only have ψ` and ψSM, which have three unknowns plus the energy. To get the
equations to solve the matching problem, we can project with two vectors from
the left to get two equations. Adding the normalization of the wave function adds
one equation, which gives a total of three equations for four unknowns. However,
if we consider a finite slab of Weyl metal and add the vacuum on the right, we
add two equations from matching on the right side, but only one unknown D. In
total we have five equations and five unknowns, so we can solve the system. We
were also inspired by Ref. [25], where the authors use a semiclassical calculation
on this system. They find that a lot of the properties of the magnetic orbits they
find depend on the length of the material L. Therefore, we considered a finite
slab, hoping to find the same dependence on the length L.

We first match the wavefunctions of the left vacuum and the semimetal at
x = 0.
We project with (〈0| , 0, 0, 0) and (0, 0, 〈0| , 0) to get the equations

B =
im√

2(E + iλ̃0)
eb

2
z/4eB+ibzky/eBA

C =
1√
2
eb

2
z/4eB−ibzky/eBA.

Secondly, we match the wavefunctions of the vacuum on the right and the semimetal
at x = L. This gives the equations

B =
im√

2(E − iλ̃0)
e−iELeb

2
z/4eB+ibzky/eBD

C =
1√
2
eiELeb

2
z/4eB−ibzky/eBD.

Comparing the results for C, we get

A = eiELD. (4.5)
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When we compare the results for B, we find

A = e−iEL
E + iλ̃0

E − iλ̃0

D. (4.6)

Combining Eqs 4.5 and 4.6 gives the equation

eiEL = e−iEL
E + iλ̃0

E − iλ̃0

.

We take the log on both sides to get

2iEL = log

(
E + i

√
m2 − E2

E − i
√
m2 − E2

)
= 2i arctan

(√
m2 − E2

E

)
+ qπ,

where the integer q ∈ (−∞,∞). We have to add these copies of the arctan since
one copy of the arctan is restricted vertically between −π/2 and π/2, while tan(x)
has values in the whole domain x ∈ (−∞,∞). So our equation for the energy is

EL = arctan

(√
m2 − E2

E

)
+ qπ. (4.7)

This has no known closed form solutions. The argument is defined for |E| ≤ m,
so the two functions have a finite amount of intersections for finite m and L.
The amount of positive and negative energy solutions is equal by particle-hole
symmetry.

-10 -5 0 5 10
-15

-10
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0

5

10

15

E

Figure 4.2 – The two functions for varying E, with L = 1,m = 10. Different
colours represent different branches of the arctan. The intersections mark allowed
energies of the system. There are 8 solutions in this case (4 positive, 4 negative).

For instance, for L = 1,m = 10 we get 4 positive energy solutions and 4
negative energy solutions. The first q for which there is no intersection is given
by the equation mL < πq. We find that the largest q for which there is an
intersection is given by qmax =

⌈
mL
π

⌉
− 1.
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4.2.1 Normalization of the wavefunction

We have the normalization condition∫ 0

∞
dx|ψ`(x)|2 +

∫ L

0
dx|ψSM(x)|2 +

∫ ∞
L

dx|ψr(x)|2 = 1

=
|A|2

2
√
m2 − E2

+ (|B|2 + |C|2)L+ |D|2 e
−2
√
m2−E2

2
√
m2 − E2

.

We can express all the coefficients in terms of D. Solving for D gives

D = ±

[
1 + e−2

√
m2−E2L

2
√
m2 − E2

+ Le
b2z
2eB

]−1/2

.

We choose the + solution for D. The wavefunction is now known everywhere. It
is given by

|ψ̃`(x)〉 = DeikyyeiELe−λ̃0x


im√

2(E+iλ̃0)
|0〉

0
1√
2
|0〉

0

 ,

|ψ̃r(x)〉 = Deikyye−λ̃0(L−x)


im√

2(E−iλ̃0)

0
1√
2
|0〉

0

 ,

|ψSM(x)〉 =
im√

2(E − iλ̃0)
DeikyyeiE(x−L)eb

2
z/4eB+ibzky/eB


eibzz |0〉

0
0
0



+
1√
2
DeikyyeiE(L−x)eb

2
z/4eB−ibzky/eB


0
0

e−ibzz |0〉
0

 .

4.2.2 m→∞ limit

If we take the m→∞ limit we can get analytic solutions for the energy. In this

limit the arctan becomes a step-function: limm→∞ arctan
(√

m2−E2

E

)
= sgn(E)π2 .

The equation for the energy Eq. 4.7, then becomes very simple.

EL =
π

2
+ nπ.

So the energy is

E =
π

L

(
q +

1

2

)
, (4.8)

giving ∆E = π
L . In SI units, the energy is given by

E = ~vF
π

L

(
q +

1

2

)
. (4.9)
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This result is in agreement with the numerically obtained result in Ref. [26] and
semiclassically obtained in Ref. [25] where they find (for ~, vF ≡ 1)

E =
π(q + γ)

L+ bzl2b
. (4.10)

In the high magnetic field limit we can neglect the second term in the denomi-
nator and get our result with γ = 1

2 . We find that the phase shift γ = 1
2 agrees

with what is found numerically in Ref. [26].

The eigenvectors become much simpler in this limit. The surface states decay
with e−

√
m2−E2

, so in this limit the vacuum wavefunction is zero outside the
surface. The wavefunction becomes

|ψ̃`(x = 0)〉 =
1√
2L
e−b

2
z/4eBeikyyeiEL


|0〉
0
|0〉
0



|ψ̃r(x = L)〉 =
1√
2L
e−b

2
z/4eBeikyy


− |0〉

0
|0〉
0



|ψSM(x)〉 =
eikyy√

2L

−eiE(x−L)eibz(z+ky/eB)


|0〉
0
0
0

+ eiE(L−x)e−ibz(z+ky/eB)


0
0
|0〉
0


 .

This result shows that the wave function still has a spin structure on the sur-
faces. That means we could not have found the same result using the boundary
conditions ψ = 0 on the surfaces. In fact, it was necessary to start at a finite
mass to find the correct wave functions, before taking the limit m→∞. We see
that the wave function in the semimetal goes as eiEx = ei

π
L

(n+ 1
2

)x. The energy of
these chiral modes is thus determined by the number of nodes n the wave func-
tion has in the metal. In the semiclassical description in Ref. [25], the authors
describe these modes as an electron moving through the Weyl metal (see Figure
4.3). Note that they have their axes switched compared to ours, such that the
orbits go from bottom to top instead of left to right. The chiral mode is described
as an electron on the negative chirality Weyl node on the bottom surface sliding
along the Fermi arc towards positive chirality Weyl node. It then moves through
the bulk towards the positive chirality Weyl node on the top and slides along the
Fermi arc to the negative Weyl node. Finally, moving through the bulk again, it
completes its orbit. This chiral mode acts as a one-way ”conveyor belt”, moving
electrons from surface to surface. These quantized magnetic orbits turn out to
produce quantum oscillations. Very recently, in Ref. [27], experimental signa-
tures of these orbits have been found, where it is dubbed the ”topological sink
effect”.
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Figure 4.3 – Schematic picture of quantized magnetic orbits going through the
bulk to the Weyl nodes. Note that in this picture the x and y axis are switched
compared to our setup. Picture taken from Ref. [25].

We have now solved the full surface state problem in the high magnetic field
limit. Using these results we can study the effects of the anomalous magnetic
moment in this limit.

4.3 Anomalous effects

The Rashba-spin-orbit term has already been investigated further in Ref. [1],
so we focus on the anomalous Zeeman term and the tilt terms in Eq. 1.14 that
follow from the anomalous magnetic moment calculation. First, we treat the
terms separately. Then, we combine them and show that we can also understand
this result using the fact that the lowest Landau level is spin-polarized.

4.3.1 Zeeman term

For a magnetic field in the negative x-direction, the contribution of the Zeeman
term to the Hamiltonian is given by µ2σ1B. The full Hamiltonian with this term
added is given by

H = ε [(−i∇ + eA− εb− εµ2B) · σ] (4.11)

Using the ansatz for the unperturbed problem

|ψSM(x)〉 = eikyyeλ0x [C0,1 |ψ0,1〉+ C0,2 |ψ0,−1〉] +

eikyy
∑
n

(
eλnx

[
C`n,1 |ψn,1〉` + C`n,2 |ψn,−1〉`

]
+ eλn(L−x)

[
Crn,1 |ψn,1〉r + Crn,2 |ψn,−1〉r

])
,

(4.12)

we find that the Schrödinger equation for the n-th level gives

ε [σ1(±iλn + εµ2B) + σ2(ky + eBz) + σ3(−i∂z − εbz)] |ψn,ε〉 = E |ψn,ε〉 ,

where the left states give +iλn and the right states −iλn. We see that the Zeeman
term shifts λn in a chirality dependent way as λn → λn ∓ εiµ2B. Therefore, we



4.3. ANOMALOUS EFFECTS 42

change our ansatz to include this shift. Our new ansatz is

|ψSM(~x)〉 = eikyy
[
C0,1e

(iE−iµ2B)x |ψ0,1〉+ C0,2e
−(iE−iµ2B)x |ψ0,2〉

]
+ eikyy

∑
n

[
C`n,1e

(−λn−εiµ2B)x |ψn,1〉` + C`n,2e
(−λn−εiµ2B)x |ψn,2〉`

+ Crn,1e
(λn−εiµ2B)(x−L) |ψn,1〉r + Crn,2e

(λn−εiµ2B)(x−L) |ψn,2〉r
]
.

Now applying the Hamiltonian to |ψn,ε〉 gives the same eigenenergy E = ±
√

2eBn− λ2
n.

However, we changed the wavefunction, so through the matching problem the en-
ergy of the surface state may be different.

When we go through the matching problem again with the new wavefunction,
we find that the matching at the right side of the metal at x = L is slightly
different. The lowest Landau-level wave function in the semimetal is now

|ψSM (~x)〉 = eikyy

C0,1e
iEx−iµ2Bxeibzz


|0〉
0
0
0

+ C0,2e
−iEx+iµ2Bxe−ibzz


0
0
|0〉
0


 .

At x = L, we also get the contribution −iµ2BL in the exponential. The equation
that determines the energy is now given by

eiL(E−µ2B) = e−iL(E−µ2B)E + iλ̃0

E − iλ̃0

.

When we take the log we get

EL− µ2BL = arctan

(√
m2 − E2

E

)
+ qπ.

In the m→∞ limit this gives the energy

E =
π

L

(
q +

1

2

)
+ µ2B. (4.13)

Thus, the energy is shifted by µ2B, as is usual for a Zeeman effect. In SI units,
Eq. 4.13 is given by

E = ~vF
π(q + 1

2)

L
+ µ2B. (4.14)

For the typical values B = 10 T , L = 100 nm, vF = c/300, µ2 = 0.85µB [1], we
find that the first term is of the order ~vf/L ∝ 10−19, while the second term is of
the order µ2B ∝ 10−23. The change of the energy due to the anomalous Zeeman
effect for B = 10T is about 1 in 10.000.

4.3.2 Tilt term

The tilt term goes as εµ1k ·B. In the semimetal, we have to add to the Hamil-
tonian Htilt = εµ1(k ·B)12, giving the full Hamiltonian

H = ε [(−i∇ + eA− εb) · σ + µ1(k ·B)12]
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Again using the ansatz (4.12) for the undisturbed problem , we find that the
eigenenergies are now given by E =

√
2eBn− λ2

n + iεµ1Bλn for n > 0. Writing
λ again in terms of E, we find

λn =
1

1− µ2
1B

2

(
εiµ1BE ±

√
2eBn(1− µ2

1B
2)− E2

)
.

We find that λn always contains an imaginary part. This means that even expo-
nentially decaying Landau levels get an oscillating part in their states. We have
two cases, µ2

1B
2 < 1 and µ2

1B
2 > 1. In the first case, we have an imaginary part

and a real part of λn. We choose the plus sign for the real part to get a surface
state, since then Re[λn] > 0. In this case we still have a surface state, however
it is oscillating. In the second case, µ2

1B
2 > 1, the square root becomes negative

which means that λn becomes completely imaginary. This case is depicted in
Figure 4.4, where the cones have tilted so much that they are back at the Fermi
level, creating a Fermi sea. This is called a type-II Weyl semimetal [28]. We use
the parameters as chosen in Ref. [1], µ1kFµB

≈ 0.25 with kF = 0.04Å−1. In SI units

the condition is given by µ2
1B

2 > ~2v2
F . Using these numbers and vF = c/300, we

find a critical magnetic field of approximately 18000T , which is unrealistic. We
conclude from this that the anomalous tilting effect is not enough to transition a
type-I Weyl semimetal to a type-II Weyl semimetal. The type-II Weyl semimet-
als already have a tilted band structure at B = 0, where the anomalous effects
vanish.

Figure 4.4 – A single Weyl cone for an untilted type-I Weyl semimetal (left) and a
tilted type-II Weyl semimetal (right). The Fermi surface for a type-II semimetal
is no longer a point and contains electron and hole states. Picture taken from
Ref. [28].

In the high magnetic field limit, we just have to take the lowest Landau level
in account. In this case the effect of the tilt term is easy to describe. The lowest
Landau level is chiral and its energy is given by E = εkx. For the surface states
this means we get E = −iελ0, giving λ0 = εiE. When we add the tilt term we
get E = −iελ0 − iεµ1Bλ0. This gives a rescaled λ0, as we get λ0 = εiE

1+µ1B
. The

effect on the energies is simple, as our equation for the energy now becomes

EL

1 + µ1B
= arctan

(√
m2 − E2

E
+ qπ

)
,
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which in the m→∞ limit gives

E =
π(q + 1

2)

L
(1 + µ1B). (4.15)

In SI units 4.15 becomes

E =
π(q + 1

2)

L
(~vF + µ1B). (4.16)

We see that the tilt term rescales the Fermi velocity in the LLL limit. Using the
typical values as before, together with Fermi momentum kF = 0.04Å−1 [1], we
find that the Fermi velocity is increased by about 55 m/s, which on a total of
106 m/s is about a 1 in 20.000 change.

4.3.3 Spin polarization

The above results in the LLL limit could also have been obtained by observing
that the lowest Landau level is spin-polarized in the x-direction. Since the spins
are always in the x-direction, we can set σx = 1 since we essentially have a
1-dimensional spin space. We can use this observation to greatly simplify the
problem. We have the Hamiltonian

H = ε [σ1(−iλ0 + εµ2B) + σ2(ky + eBz) + σ3(−i∂z + εbz)− iλ0µ1B] .

Since we set σ1 = 1, we can add or remove this matrix structure as we like. We
first change the spin-basis to the basis in which we solved the problem. We get

H̃ = V †HV = ε

(
−iλ0

√
2eBa†√

2eBa iλ0

)
+ V †σ1µ2BV − V †iλ0µ1BV,

where V is given in Eq. 2.16. Now we remove the σ1 from the µ2B term and add
it to the µ1B term. This gives

H̃ = ε

(
−iλ0

√
2eBa†√

2eBa iλ0

)
+ µ2B − iλ0µ1BV

†σ1V

= ε

(
−iλ0(1 + εµ1B)

√
2eBa†√

2eBa iλ0(1 + εµ1B)

)
+ µ2B,

since V †σ1V =

(
1 0
0 −1

)
. Solving for the eigenenergies we get (in SI units)

E = −iε~vF (1 + εµ1B) + µ2B,

so we see that the Fermi velocity is rescaled with µ1B in the propagation direction
(determined by ε). Now that we know this, we can skip the matching problem
and simply rescale the Fermi velocity and add the µ2B term in our previous
result. Therefore the energy of the surface state is given by

E = ~vF (1 + µ1B)
π(q + 1

2)

L
+ µ2B.
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4.4 Corrections on the LLL limit

We now consider the problem with two Landau levels, the zeroth level we in-
cluded above and the first Landau level (referred to as TLL). This amounts to
lowering the magnetic field such that through thermal fluctuations the system can
access the first Landau level but not the levels above. This is not a great approx-
imation, as the energy levels only differ by approximately a factor

√
2. Still, this

will help us understand what including another Landau level adds to the problem.

Note that we assume that the magnetic field is still large enough such that
bzl

2
b � 1. We need this to guarantee that we are still in the limit where we

have discretization of the energy. Recall that for B = 0, the surface state wave
function is localized in momentum space between −bz and bz. That means the
wave function in real space is localized with length 1/bz. The magnetic field de-
fines the magnetic length lB, which has to be small compared to bz for the wave
function to ’feel’ the magnetic field. We see this in the vacuum wave functions
in the LLL limit, where the wave functions are localized by e−bz/4eB. This gives
the condition bzl

2
b � 1.

Including the first Landau level, we get the wavefunctions

|ψSM(x)〉 = eikyyeλ0x [C0,1 |ψ0,1〉+ C0,2 |ψ0,−1〉] +

eikyy
(
e−λ1x

[
C`1,1 |ψ1,1〉` + C`1,2 |ψ1,−1〉`

]
+ e−λ1(L−x)

[
Cr1,1 |ψ1,1〉r + Cr1,2 |ψ1,−1〉r

])
,

|ψ̃`(x)〉 = eikyye−λ̃0xC̃0 |ψ̃0〉` + eikyy
∞∑
n=1

e−λ̃nx
[
C̃n,1 |ψ̃n,1〉` + C̃n,2 |ψ̃n,2〉`

]
,

|ψ̃r(x)〉 = eikyye−λ̃0(L−x)C̃0 |ψ̃0〉r + eikyy
∞∑
n=1

e−λ̃n(L−x)
[
C̃n,1 |ψ̃n,1〉r + C̃n,2 |ψ̃n,2〉r

]
,

where λ̃0 = −
√
m2 − E2 , λ̃1 = −

√
2eB +m2 − E2 , λ1 =

√
2eB − E2. The

states |ψ̃n〉 are given in 4.4. We now have 12 coefficients plus the energy we have
to fix by matching the wave functions. We get 6 equations on each side of the
semimetal, since we can project with the vectors

〈0|
0
0
0

 ,


0
〈0|
0
0

 ,


0
0
〈0|
0

 ,


0
0
0
〈0|

 ,


〈1|
0
0
0

 ,


0
0
〈1|
0

 .

We also have the normalization of the wavefunction, so we have as many equa-
tions as unknowns. In fact, each added level adds 4 coefficients in the semimetal
and 2 coefficients in each vacuum that we have to match. There are also 8 more
equations since we can now project with 4 more states on each surface. That
means we can keep adding levels and get a solvable system, however the problem
grows with 8 more equations and unknowns to solve per level.

To solve the problem at hand we have to set the determinant of a 12 by
12 matrix to zero and solve for the energy. The determinant function is fairly
complicated, so we have to resort to numerics to find zeroes of this function. The
zeroes of this function are the allowed energies. Looking at the energy difference
between the simulated TLL and the LLL energy we find that the energy difference
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falls off for high magnetic fields as expected. Consequently, we expect the energy
to be similar to the result in the high magnetic field limit E = π(n + 1

2)/L, but
with an extra term in the denominator as in Ref. [26], where they find

E =
π(n+ γ(B))

L+ bzl2B
. (4.17)

We make the assumption that this is the correct energy and try to check if it
matches our numerical result. We define the dimensionless energy

EL

~vF
=

(n+ γ(B))π

1 + bz
L l

2
B

=
(n+ γ(B))π

1 + b̄z/β
, (4.18)

Since the limit B →∞ should give us back the result we found in the LLL limit,
we assume γ to be

γ = 1/2 + ϕ(bz)/β, (4.19)

where ϕ(bz) is the bz dependence of γ, which we determine first. To find this we
use the n = 0 energy of the TLL, E0 = γπ/(1 + b̄z/β). We multiply out all the
irrelevant terms to get

E0(1 + b̄z/β)

π
= γ =

cϕ(b̄z)

β
+

1

2
.

We substract the 1
2 and multiply by β to get(

γ − 1

2

)
β =

E0(1 + b̄z/β)β

π
= cϕ(b̄z).

Varying b̄z, we find that ϕ(b̄z) = b̄z. This means that we get

γ =
1

2
(1 +

cb̄z
β

)

as our approximation. For bz = 1 we can calculate this quantity and find c.
Since our assumption of the correct energy is not perfect, c will still depend on
the magnetic field slightly. Our assumption becomes more accurate the higher
the magnetic field since we know γ should go to 1

2 . Therefore c should go to a
constant for high magnetic fields. This is indeed the case, as c converges to 1

2 for
high magnetic fields. We put this into our assumption for the energy and compare
to the numerically simulated result in Figure 4.5. The result approximates the
simulated energy reasonably.
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Figure 4.5 – The numerically simulated energy as a function of B (blue) compared
to the approximation found using our assumption for γ with c = 1

2 (red). The
error of our approximation is about 1%.

To conclude, adding a Landau level gives the first-order correction in B to
the energy

L

~vF
E =

π
(
q + 1

2(1 + b̄z
β )
)

1 + b̄z
β

=
π
(
q + 1

2(1 + bz~
eBL)

)
1 + bz~

eBL

, (4.20)

which vanishes for high magnetic fields. For the sake of accuracy, it is not com-
pletely correct to call this the first order correction. By approximation, we have
only taken into account the first Landau level, while the energy separation of the
levels is small. Adding multiple levels would probably add more 1/B corrections,
but their magnitude should be small compared to the influence of the first Lan-
dau level. Therefore, this is the main contribution to the first order correction in
B to the energy.

In this Chapter, we found solutions for surface states on a Weyl semimetal in
a strong perpendicular magnetic field. Analytical solutions were found when we
only considered the lowest Landau level to contribute. We derived that closed
magnetic orbits with discrete energy levels are possible due to chiral modes prop-
agating through the bulk. Next, we investigated the anomalous effects on these
magnetic orbits and found that the energies were Zeeman shifted and the Fermi
velocity rescaled. Finally we showed that, using numerics, we can also consider
slightly lower magnetic fields by adding more Landau levels. We added one Lan-
dau level and found an approximation of the first order correction in the magnetic
field to the energy of the LLL limit.
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Chapter 5

Discussion

5.1 Summary

In this Thesis we investigated the effect of magnetic fields on the surface states of
a slab of Weyl semimetal in a vacuum. We considered a time reversal symmetry
broken semimetal by splitting the Weyl cones in momentum space with b =
(0, 0, bz). In Chapter 2, we found the Landau level solutions in the bulk of the
Weyl semimetal for two cases. In the first case, we treated a magnetic field
parallel to the surface and band splitting, and find Landau level eigenstates in
the form of spinors of harmonic oscillator states. The band splitting bz simply
shifted the momentum kz, giving energy levels (in SI units)

En = ~vF ±
√

2eBn+ (kz − εbz)2.

In the second case we treated a magnetic field perpendicular to the surface and
band splitting. We find similar Landau level eigenstates except that in this case,
the band splitting bz generated a phase eibzz in front of the harmonic oscillator
wave functions. The energies in this case do not depend on bz and are given by

En = ~vF ±
√

2eBn+ k2
x.

Furthermore, we found that the lowest Landau level is spin-polarized in the x-
direction, but the higher Landau levels are not.

Next, in Chapter 3, we used the solutions we found in Chapter 2 to construct
surface states on a half-infinite Weyl semimetal. We found the wave function
in the bulk and vacuum, and proceeded to match them at the boundary. The
surface states were first derived for zero magnetic field. We found gapless, chiral
surface states with dispersion E = −vFky, existing on the Fermi arc |kz| < bz. We
continued by adding the effect of the Rashba spin-orbit term due to an external
electric field E, following Ref. [1]. For an electric field parallel to the surface
E = Ez ẑ, we found that the linearity of the zero magnetic field dispersion and
the Fermi arc are preserved, but that the Fermi velocity is rescaled by a factor√

1 + E2
z . Interestingly, for an electric field perpendicular to the surface, E =

Exx̂, we found a non-linear dispersion

E = −
(1− Ex)2bzky + Ex(k2

y + k2
z − b2z)√

(bz + Exky)2 + E2
xk

2
z

,
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which is no longer defined on a straight Fermi arc. Instead, the solution is now
only defined in the exterior of the two circles defined by(

ky +
bz
Ex

)2

+

(
kz ±

bz
2

(1 +
1

E2
x

)

)2

=
b2z
4

(
1 +

1

Ex

)2

.

Inside these two circles, there are no surface states and the problem corresponds
to a topologically trivial insulator. After completing the zero magnetic field
section, we continued by looking at low magnetic fields parallel to the surface.
Since an exponential ansatz no longer worked, we used a WKB approximation
to find solutions, following Ref. [21]. The surface state dispersion turned out
to be unaffected, however the decay of the wave function into the semimetal
had changed and was no longer the same for every spinor-component. Finally,
we looked at a magnetic field perpendicular to the surface. We found the wave
functions in the semimetal and vacuum, which are linear combinations of the
Landau levels. However, we found that there are no bound states possible in a
half-infinite semimetal. Next, we looked at the effects of the anomalous magnetic
terms on the surface states we found for a magnetic field parallel to the surface.
The Zeeman term gave a shift bz → bz + µ2B, widening the Fermi arc, but did
not affect the energy. The tilt term vastly changed the dispersion and the allowed
region in momentum space. We found the new dispersion

E = µ1Bbz

(
1− k2

z

b2z

)
− ky

√
1− (µ1B)2

k2
z

b2z
,

which now depends on bz and kz. The allowed region in momentum space is
bounded by two hyperbolic curves defined by

ky =
kz ± bz
µ1Bkz

√
b2z − (µ1Bkz)2.

The Fermi arcs are therefore no longer straight lines. Combining the two effects
shifts bz → bz + µ2B in the above results, causing the dispersion to also depend
on µ2.

Since we found no surface state solutions in a half-infinite semimetal for a
magnetic field perpendicular to the surface, in Chapter 4 we looked at surface
states on a finite slab of semimetal. We found that bound solutions were possible,
but were difficult to find. Since the energy spacing is small for low magnetic
fields, we could not limit the matching procedure to just a few Landau levels,
causing the problem to be unsolvable analytically. However, we noticed that in
the high magnetic field limit we can neglect all Landau levels except the lowest
one, allowing us to solve the problem. We found that closed magnetic orbits
are possible due to the lowest chiral Landau level propagating through the bulk.
The lowest Landau level acts as a one-way “conveyor belt”, carrying particles
from one surface to the other. These orbits have discrete energy levels, which for
m→∞ in the vacuum become

E =
~vF (q + 1

2)π

L
,

where q is a integer ranging from (−∞,∞). We looked at anomalous effects on
these orbits and found that the Fermi momentum is rescaled and the energy is
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Zeeman shifted, resulting in

E =
(~vF + µ1B)(q + 1

2)π

L
+ µ2B

Finally, we found an approximation of the first-order correction in B on this
result by adding one more Landau level, and found the energy levels

E =
~vF

(
q + 1

2(1 + bz~
eBL)

)
π

L+ bz~
eB

.

We argued that the approximation could be improved by adding more Landau
levels, but concluded that this is the main contribution to the first-order correc-
tion in B to the energy.

5.2 Outlook

To conclude, we have found the behaviour of the surface states in a Weyl semimetal
under influence of a magnetic field. We were able to treat almost all cases, par-
allel and perpendicular magnetic fields, in the high magnetic field limit and low
magnetic field limit. We were also able to find the effects of the unusually large
anomalous magnetic moment of Weyl semimetals. Therefore, this research is al-
most complete. A few more points could be looked at further to fully understand
this topic. For one, the behaviour of the surface states for a perpendicular low
magnetic field is not known. Using our method, we could not find solutions to
this problem. However, there may be other methods one could use that do not
require all Landau levels to be taken into account. Furthermore, in Chapter 4
we looked at the corrections to the energy by adding one Landau level. Adding
another Landau level may increase numerical complexity, but can be done. This
might give a more accurate first order correction in B to the energy. Another
point which would give a more complete picture, is finding the corrections of the
first Landau level while adding the anomalous terms. This may change the first-
order corrections in B slightly, as the anomalous terms affect the first Landau
level as well.
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Chapter 6

Appendix A1

6.1 Appendix A: Harmonic oscillator wavefunctions
with splitting of cones

The harmonic oscillator ladder operators without the splitting of the cones are
given by

a =
1√
2eB

[−i∂z − i(eBz + ky)] , (6.1)

a† =
1√
2eB

[−i∂z + i(eBz + ky)] . (6.2)

The ground state is given by the solution of a |0〉 = 0. The solutions of this
differential equation are given by

|0〉 = ψ0(z) =

√
eB

π
e−

(eBz+ky)
2

2eB . (6.3)

Higher level states are obtained by iteratively applying the raising operator a†.
In general the n-th level state is given by

ψn(z) =
in√
2nn!

(
eB

π

)1/4

e−
(eBz+ky)

2

2eB Hn

(
1√
eB

(eBz + ky)

)
, (6.4)

where Hn(x) are Hermite polynomials. We add the splitting of the cones in the
Hamiltonian by shifting k → k − εbz ẑ. This results in adding −εbzσ3 to the
Hamiltonian. In turn this requires us to redefine the ladder operators in order to
diagonalize the Hamiltonian. The new ladder operators are given by

a =
1√
2eB

[−i∂z − i(eBz + ky)− εbz]

a† =
1√
2eB

[−i∂z + i(eBz + ky)− εbz] .

We need to make slight adjustments to the ground-state wave function to still
satisfy a |0〉 = 0. We need to cancel the εbz term to get 0 again, so we add a
factor εibzz in the exponential.

a |0〉 =
1√
2eB

(−i∂z − i(eBz + ky)− εbz)
(
eB

π

)1/4

eiεbzz e−
(eBz+ky)

2

2eB

=
1√
2

(
1

eBπ

)1/4(
εbz +

2i(eBz + ky)eB

2eB
− i(eBz + ky)− εbz

)
eiεbzz e−

(eBz+ky)
2

2eB

= 0
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So the new ground state is given by

ψ0(z) =

(
eB

π

)1/4

eiεbzze−
(eBz+ky)

2

2eB . (6.5)

The phase is added to all the excited states as well. We can see this by calculating
some excited states. The first excited state is given by

ψ1(z) = a†ψ0(x) =
1√
2eB

[−i∂z + i(eBz + ky)− εbz]ψ0(z)

=
1√
2

(
1

eBπ

)1/4(
εbz +

2i(eBz + ky)

2eB
+ i(eBz + ky)− εbz

)
eiεbzze−

(eBz+ky)
2

2eB

=
2√
2

(
1

eBπ

)1/4

i(eBz + ky)e
iεbzze−

(eBz+ky)
2

2eB

=
2i√

2

(eBz + ky)√
eB

ψ0(z) =
i√
2
H1

(
1√
eB

(eBz + ky)

)
ψ0(z).

When we look at terms involving εbz in the Hermite polynomials we see that they
are always canceled. Therefore the only bz dependence in higher level states is
in ψ0(z). This means that the new states are simply the old states multiplied by
the phase eεibzz.
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6.2 Appendix B: First-order perturbation theory

We check the first order correction on the wavefunction to see if we can reproduce
the phase shift eibxx. So up to first order we expect the wavefunction to have a
correction of ibxx.

We started with the Hamiltonian

H = εvF

(
kz −i ∂∂x + i(eBx− ky)

−i ∂∂x − i(eBx− ky) −kz

)
,

which we rewrote in terms of the ladder operators a, a†, giving

H = ε

(
−vFkz −βa†
−βa vFkz

)
,

where β = vF
√

2eB. Solving the Schrödinger equation gave us the energies

En = ±
√
v2
Fk

2
z + β2n, with the special case n = 0 having energy E0 = +vfkz.

For n 6= 0 the eigenstates are given by

|ψn〉 =

(
an |n〉

bn |n− 1〉

)
,

where

an =
1√
2

[
1 +

v2
Fk

2
z + vFkzEn
β2n

]
,

bn = −En + vFkz
β
√
n

an.

For n = 0 the eigenstate is |ψ0〉 =

(
|0〉
0

)
. The first order correction to the wave

function is given by

|ψ(1)
n 〉 =

∑
k 6=n

1

En − Ek
〈ψ(0)

k |
(

0 vF bx
vF bx 0

)
|ψ(0)
n 〉 |ψ

(0)
k 〉 .

For n 6= 0 this is given by

|ψ(1)
n 〉 =

∑
k 6=n

1

En,k

(
ak 〈k|

bk 〈k − 1|

)T (
bxbn |n− 1〉
bxan |n〉

)
=

vF bx
En,n+1

anbn+1 |ψ(0)
n+1〉+

vF bx
En,n−1

an−1bn |ψ(0)
n−1〉 .

For n = 0 we get

|ψ(1)
0 〉 =

vF bx
E0,1

a0b1.

Now we want to compare this to the first order correction |ψ(1)
n 〉 = ibxx12 |ψ(0)

n 〉.
Recall that our ladder operators were given by

a = α [px − i(eBx− ky)] ,
a† = α [px + i(eBx− ky)] ,
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where α = 1√
2eB

. So we can express x as x = iα(a− a†) + 2α2ky. We discard the

constant ky term since this is just a shift in x. We get

ibxx12 |ψ(0)
n 〉 =

(
ibxiα(a− a†) 0

0 ibxiα(a− a†)

)(
an |n〉

bn |n− 1〉

)
= −bxα

(
an
(√
n |n− 1〉 −

√
n+ 1 |n+ 1〉

)
bn
(√
n− 1 |n− 2〉 −

√
n |n〉

) )
.

It is clear that this is a superposition of |ψ(0)
n+1〉 and |ψ(0)

n−1〉. We can project from

the left with 〈ψ(0)
n+1| to find the coefficient belonging to that term, giving

〈ψ(0)
n+1| ibxx12 |ψ(0)

n 〉 = −bxα
(
an+1 〈n+ 1|
bn+1 〈n|

)T (
an
(√
n |n− 1〉 −

√
n+ 1 |n+ 1〉

)
bn
(√
n− 1 |n− 2〉 −

√
n |n〉

) )
= −bxα

[
−anan+1

√
n+ 1− bnbn+1

√
n
]
.

The coefficient we got from first order perturbation theory was bxvF
En,n+1

anbn+1.

Therefore, we want to rewrite our result in terms of anbn+1, giving

〈ψ(0)
n+1| ibxx12 |ψ(0)

n 〉 = bxα

[
−anbn+1

β(n+ 1)

En+1 + vFkz
− anbn+1

En + vFkz
β

]
= bxvFanbn+1

[
− n+ 1

En+1 + vFkz
− α2(En + vFkz)

v2
F

]
.

If the coefficients of the first order perturbation theory and the first order cor-

rection of eibxx |ψ(0)
n 〉 are the same, we have[
− n+ 1

En+1 + vFkz
− α2(En + vFkz)

v2
F

]
=

1

En − En+1
.

We can reduce the left hand side to[
− n+ 1

En+1 + vFkz
− α2(En + vFkz)

v2
F

]
= − 1

vF

(√
α4k2

z + α2(n+ 1) +
√
α4k2

z + α2n
)
.

We multiply by (En − En+1), which should give us 1, giving

− 1

vF

(√
α4k2

z + α2(n+ 1) +
√
α4k2

z + α2n
)

(En − En+1)

=
1

vF

[
−
√

(α4k2
z + α2(n+ 1))(v2

Fk
2
z + β2n) +

√
(α4k2

z + α2(n+ 1))(v2
Fk

2
z + β2(n+ 1))

−
√

(α4k2
z + α2n)(v2

Fk
2
z + β2n) +

√
(α4k2

z + α2n)(v2
Fk

2
z + β2(n+ 1))

]
= −

√
(α2k2

z + n)(α2k2
z + (n+ 1))− (α2k2

z + n) + (α2k2
z + (n+ 1)) +

√
(α2k2

z + n)(α2k2
z + (n+ 1))

= −(α2k2
z + n) + (α2k2

z + (n+ 1))

= 1,

which confirmes that the |ψ(0)
n+1〉 coefficients are the same. We do the same for

the |ψ(0)
n−1〉 component, giving

〈ψ(0)
n−1| ibxx12 |ψ(0)

n 〉 = −bxα
[
an−1an

√
n− 1 + bn−1bn

√
n
]
.
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We have to compare this to bxvF
En,n−1

anbn−1. So we rewrite in terms of anbn−1,
giving

〈ψ(0)
n−1| ibxx12 |ψ(0)

n 〉 = bxvFanbn−1

(
n− 1

En−1 + vFkz
+
α2(En + vFkz)

v2
F

)
= bxvFanbn−1

(√
a2 (a2k2

z + (n− 1))

v2
+

√
a4k2

z + a2n

v2

)
.

In order for the coefficients to be the same, it has to hold that√
a2 (a2k2

z + (n− 1))

v2
+

√
a4k2

z + a2n

v2
=

1

En − En−1
.

We multiply the left hand side by (En − En−1), giving(√
a4k2

z + α2(n− 1)

v2
+

√
a4k2

z + a2n

v2

)
(En − En−1)

=

√
(α4k2

z + α2(n− 1))(k2
z +

n

α2
)−

√
(α4k2

z + α2(n− 1))(k2
z +

n− 1

α2
)

+

√
(α4k2

z + α2n)(k2
z +

n

α2
)−

√
(α4k2

z + α2n)(k2
z +

n− 1

α2
)

= −(α2k2
z + (n− 1)) + (α2k2

z + n)

= 1.

This result confirms the coefficients of |ψ(0)
n−1〉 are also the same. To conclude, we

have shown that the first order correction on the wavefunction is consistent with
a phase shift eibxx.
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