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Abstract

In this thesis we review how entanglement entropy is related to the gravitational equations

of motion by means of the AdS/CFT correspondence. We consider the entanglement en-

tropy of a ball-shaped spatial region in the CFT vacuum and derive a holographic relation

between the relative entropy and the equations of motion in the dual bulk spacetime. For

small perturbations around the CFT vacuum, we show that the first law of entanglement

entropy requires the dual metric to satisfy the linearized Einstein equation when the en-

tanglement entropy is given by the area of an extremal surface in the bulk. We discuss a

recent paper [1] in which the complete Einstein equation is derived and explain why we

believe this result is incomplete. This thesis serves both as a commentary on this paper,

as well as a detailed review of the relationship between entanglement and gravity.
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Chapter 1

Introduction

One of today’s greatest challenges in physics is finding a consistent theory of quantum

gravity. Quantum mechanics, in its relativistic form called quantum field theory, accu-

rately describes the world we live in on a microscopic length scale. Driven by a desire

to unify all models within a single framework, physicists started searching for a quantum

description of Einstein’s theory of general relativity. It turns out, however, that if GR is

quantized canonically it cannot be renormalized. Consequently all attempts so far have

failed.

The question why physicists want to unify all of physics within one theory is legitimate.

Both general relativity and quantum field theory provide predictions which agree with

experiments to high precision. On first sight it seems a matter of elegance, rather than

necessity. However, general relativity contains singularities, which are points of infinite

curvature. At these points the classical description of spacetime breaks down. A well-

known example of singularities are black holes. Due to the extreme conditions in a black

hole, it is thought that quantum mechanics should play a role in its description. Therefore,

understanding black holes lies at the heart of understanding quantum gravity.

Over the years progress was made. By thinking about black holes as thermodynamical

systems, it was concluded they must have non-vanishing entropy. The argument is very

simple: if black holes were to carry no entropy, throwing in matter would remove entropy

from the universe, which is a violation of the second law of thermodynamics. Motivated

by the idea that more could be learned from black hole entropy, Hawking and Bekenstein

derived a formula to calculate it [2, 3, 4]. The entropy is related to the area of the black

hole horizon. This was puzzling because thermodynamic entropy is an extensive quantity,

such that it is expected to scale with the volume of the black hole instead.

More recently, the AdS/CFT correspondence was conjectured [5]. Motivated by string

theory, a duality between 4d N = 4 super Yang-Mills theory and 10d supergravity on

AdS5 × S5 was found by studying D3-branes. This correspondence suggests that certain

quantum field theories can be re-expressed in terms of quantum theories of gravity. The

quantum field theories of interest are conformal field theories. A CFT quantum state then
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has a gravitational dual description in asymptotically anti-de Sitter (AdS) spacetime.

The geometry at the AdS boundary corresponds to the spacetime on which the quantum

state is defined. In the bulk AdS spacetime, the metric is dynamical and should therefore

satisfy gravitational equations of motion. In the classical regime, these will be the Einstein

equations.

In the light of quantum gravity, some questions regarding AdS/CFT naturally pop up.

What quantum mechanical object describes the geometry of the AdS space? And how

are the gravitational equations of motion encoded within the quantum field theory? Un-

derstanding these questions might be our best lead to learn more about quantum gravity.

Somewhat ironically, it turns out that gravity is intimately related to quantum entangle-

ment. Entangled particles are in a quantum superposition state. They are correlated,

even when separated. This phenomenon is inherent to quantum mechanics, and absent

in classical theories such as general relativity. The amount of entanglement between two

systems is measured by the entanglement entropy. This quantity can be thought of as

the quantum generalization of thermal entropy. It scales as the area of the surface that

separates the two systems. The black hole entropy shares this property. The event horizon

separates the spacetime into the black hole interior and exterior. According to Hawking

and Bekenstein, the black hole entropy is given by the area of the horizon. This indicates

that entanglement plays a role here too.

In 2006, Ryu and Takayanagi proposed a method to compute the entanglement entropy

using AdS/CFT [6]. The entanglement entropy in the CFT is given by the area of an

extremal surface in the dual spacetime. This establishes a direct link between entanglement

on one side, and geometry on the other. If an AdS geometry gives the right entanglement

entropy of the CFT we can learn a lot about this geometry. Starting from this principle,

it has been shown that an AdS geometry which gives the correct entropy of a perturbed

CFT vacuum state must satisfy the linearized Einstein equation [7]. Research on this

topic continues and hopes to discover what holographic constraints must be satisfied by

the AdS metric in order for it to be a solution of the full Einstein equation. Recently, a

paper was written by Oh, Park and Sin in which this problem is claimed to be solved [1].

This would a big step towards understanding of the relation between entanglement and

the Einstein equation.

The main goal of this thesis is to check the validity of [1]. This requires a proper un-

derstanding of the framework introduced by [7], since the proof is a generalization of the

linearized result to the full Einstein equation. This thesis will therefore also serve as a

comprehensive review of the relation between gravity and entanglement entropy from a

holographic viewpoint. We start by introducing the concept of entanglement entropy in

Chapter 2. We define the relative entropy, which will be our quantity of interest. In Chap-

ter 3 we consider the entanglement of a CFT. This includes setting up a scheme in which

we can compute the relative entropy. We will discuss the holographic interpretation of the

relative entropy in Chapter 4. This requires the identification of the CFT geometry with

the boundary geometry of a dual AdS spacetime. In Chapter 5 we will focus on this AdS
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spacetime. Using a formalism introduced by Wald, we derive an equation which relates

the gravity dual of the relative entropy to the gravitational equations of motion. We show

in Chapter 6 that the AdS metric must satisfy the linearized Einstein equation. This

concludes our review of [7]. In Chapter 7 we discuss recent research which goes beyond

the linearized gravity result. Here we comment on [1] and review some relevant related

work. Finally, in Chapter 8 we discuss the current status of the research on entanglement

and gravity. This includes open problems and what we might hope to learn and achieve

by solving them.
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Chapter 2

Entanglement Entropy

2.1 Introduction

In a classical theory, particles can always be described by separate states in the system.

If we construct a state with multiple particles, this state can be written as the product

of the individual particle states. In the quantum world, this intuitive premise does not

hold. Quantum theories contain the notion of quantum entanglement. Particles can be

correlated, such that their quantum state can not be divided into individual states. Such

a set of particles must be described using a quantum superposition. In this case, we say

the particles are entangled.

A simple physical example of quantum entanglement can be constructed by two spin-1
2

particles. The Hilbert space H of this system is spanned by the basis {∣↑↑⟩ , ∣↑↓⟩ , ∣↓↑⟩ , ∣↓↓⟩}.

According to quantum mechanics the following state is allowed

1√
2
(∣↑↓⟩ − ∣↓↑⟩), (2.1)

which is called a superposition. This is a pure quantum state. Since this state is a linear

combination, we cannot say if the particles have spin up or down. When we measure

the spin of one particle, the quantum state collapses to either ∣↑↓⟩ or ∣↓↑⟩. Whatever

spin we measure for the first particle, we immediately know that the second particle

has the opposite spin. This proves the particles to be correlated. The two spins in the

superposition state are entangled.

When quantum mechanics was still young, entanglement puzzled physicists. Einstein

famously dubbed entanglement “spooky action at a distance”, and used the seemingly

paradoxical behavior as an argument against quantum mechanics. He reasoned that if we

separate two entangled particles and measure one, the other particle state is determined

instantaneously. This breaks causality, which dictates that signals cannot travel faster

than the speed of light. In modern physics, entanglement has proven itself a useful object

of study. Some examples of its applications are quantum phase transitions, black hole
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entropy and, by means of holography, the emergence of spacetime and gravity. The latter

will be the subject of this work.

Entanglement can be quantitatively measured with entanglement entropy. In this chapter

this quantity will be defined, alongside related concepts which will be important for our

considerations. The discussion will be as general as possible.

2.2 Definitions

Consider a general quantum theory. The system will occupy a physical state, described by

a density matrix ρ. A density matrix describes a quantum system as a statistical ensemble

of quantum states. Each quantum state has a probability, and all probabilities add up

to unity. Furthermore they are Hermitian and positive semi-definite. The von Neumann

entropy of this system is defined by

S = −Tr(ρ log ρ), (2.2)

which can be interpreted as the quantum generalization of the classical thermodynamic

entropy.

Let us define some coordinate system in our theory, and define a spatial subregion B at

a fixed time. We can describe the degrees of freedom within B with a density matrix ρB

by integrating out all degrees of freedom within its complement B̄. This is achieved by

factoring the Hilbert space as H = HB ⊗HB̄ and tracing over HB̄. We assume that this

factorization exists. This procedure defines the reduced density matrix

ρB = TrB̄(ρ). (2.3)

Reduced density matrices are both Hermitian and positive semidefinite, just like normal

density matrices. As such, we can express ρB as

ρB = e−HB

Tr(e−HB) , (2.4)

for some Hermitian operator HB, which is called the modular Hamiltonian [8]. In general,

the modular Hamiltonian is not a local operator. This means that it can not be written

as a local expression in terms of the fields on B. Note that we included the denominator

in the definition to ensure proper normalization. This makes sure that the trace of ρB

equals unity, as we expect from a density matrix.

We can now define an entropy for the subregion B, analogous to the von Neumann entropy:

SB = −Tr(ρB log ρB). (2.5)
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This quantity is called the entanglement entropy. It is a measure of the quantum entangle-

ment between the subsystem B and its complement. In a QFT, the entanglement entropy

is UV divergent due to the fact that spacetime is continuous. This is because a QFT has

infinite degrees of freedom. When choosing a subregion B, there will be infinite entangled

degrees of freedom between B and B̄, causing the entropy to diverge. However, these

divergences typically do not depend on the state of the system. They are well understood

and can be regularized.

Another quantity of interest is the relative entropy. It is defined as

S(ρ∣σ) = Tr(ρ log ρ) −Tr(ρ logσ), (2.6)

where ρ and σ denote two density matrices. The relative entropy is a measure of the

distinguishability between two states, in this case that of ρ with respect to the reference

state σ. One can show it to be a non-negative, monotonically increasing function, as one

would expect from an entropy [9]. This paper is rather involved, so we included a proof of

these properties a simple two-spin system in Appendix A. When the states are identical the

relative entropy vanishes, marking its global minimum. Unlike the entanglement entropy,

the relative entropy is regular in QFT. This is because the UV divergences cancel, rendering

it a finite quantity. The relative entropy can also be calculated for two states described

by reduced density matrices. This will be our main application.

2.3 The first law of Entanglement Entropy

The relative entropy is related to the modular Hamiltonian and the entanglement entropy.

S(ρ∣σ) = Tr(ρ log ρ) −Tr(ρ logσ)
= Tr(ρ log ρ) −Tr(ρ logσ) +Tr(σ logσ) −Tr(σ logσ)
= −S(ρ) + S(σ) +Tr(ρH) −Tr(σH)
= ∆⟨H⟩ −∆S,

(2.7)

where we defined H to be the modular Hamiltonian for the reference state σ, H = − logσ.

Furthermore we defined ∆⟨H⟩ = Tr(ρH) −Tr(σH) and ∆S = S(ρ) − S(σ), the differences

in modular energy and entanglement entropy between the two states. We will often write

the modular energy ⟨H⟩ as E.

Note that the relative entropy is related to entanglement only when we are considering

reduced density matrices. If we choose σ to be thermal, such that σ = e−βH , the above

expression simplifies to

S(ρ∣σ) = β(F (ρ) − F (σ)) (2.8)
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where F (ρ) = Tr(ρH)−TS(ρ) is the free energy and S is the thermal entropy. This is the

thermodynamical analog of equation (2.7). From here on, when we write a density matrix

it will always denote a reduced density matrix implicitly.

Now consider a one parameter family of states described by ρ(λ), such that ρ(0) = σ, the

reference state. We can expand the relative entropy around the reference state σ in terms

of λ as

S(ρ(λ)∣σ) = S(ρ(0)∣σ) + d

dλ
S(ρ(λ)∣σ)∣λ=0λ +O(λ2). (2.9)

The lowest order cancels by definition of the relative entropy. The first order term also

vanishes, since the relative entropy is a monotonically increasing function around σ. There-

fore, the expansion of S(ρ(λ)∣σ) around λ = 0 starts at quadratic order. Expanding both

sides of equation (2.7) up to first order in λ, we find

δS = δ⟨H⟩, (2.10)

where δf = d
dλf ∣λ=0 for some function f . This is the first law of entanglement entropy. It

relates the variation of the modular energy to the variation of the entanglement entropy.

The name comes from its strong resemblance to the first law of thermodynamics.

2.4 Summary of the thesis

The rest of this thesis can be divided into two parts. Chapters 3-5 provide a derivation

of the relationship between entanglement entropy and gravity. In Chapter 6 we explicitly

show how the first law of entanglement entropy implies the linearized equations of motion

in the dual spacetime. This concludes the first part. The second part, Chapter 7, will

concern results beyond linearized gravity, which includes our comments on [1].

We will now present a brief summary of the derivations and results in Chapters 3-6. The

calculations that are involved are detailed and often abstract. This summary will hopefully

provide some overview when reading through the rest of the chapters. It is quite dense,

so it is not necessary to understand all the details during a first read. It should however

give some feeling for the structure of the arguments.

The first goal of this thesis is to relate entanglement entropy to the Einstein equations

via AdS/CFT. We can achieve this by considering the gravity dual of the relative entropy.

We have seen the QFT expression for the relative entropy

S(ρ∣σ) = ∆E −∆S. (2.11)

We will choose the reference state σ to be the CFT vacuum state in d-dimensional

Minkowski spacetime. The state ρ will denote a family of states ρ(λ) parametrized by

λ, such that ρ(0) = σ. This allows us to study perturbations around σ by expanding in

λ. In order to identify the gravity dual of the relative entropy, we must determine the

entanglement entropy and modular Hamiltonian and find their bulk counterparts. The
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CFT state ρ(λ) will be dual to an asymptotically AdS spacetime with metric g(λ), such

that g(0) corresponds to pure AdS.

We will start with the modular Hamiltonian. It was shown in [10] that for a ball shaped

region B of radius R the modular Hamiltonian HB is given by

HB = 2π∫
B
dd−1x

R2 − r2

2R
T00. (2.12)

where r is a radial coordinate measuring the distance to the center of the ball. This is

derived by a conformal transformation relating the sphere B to the Rindler wedge, in

which the expression for the modular Hamiltonian is given the the generator of Lorentz

boosts. Mapping the modular Hamiltonian of the Rindler wedge back to Minkowski, we

find the desired expression for HB. To find the bulk interpretation of this quantity, we can

relate the CFT stress tensor Tµν to T gravµν , the stress tensor of the dual AdS spacetime.

The modular energy EB can then be interpreted a bulk quantity Egrav
B , evaluated at the

asymptotic boundary of the AdS space. It is related to the energy of the AdS spacetime.

The entanglement entropy SB can be computed using the Ryu-Takayanagi prescription.

This prescription states that the entanglement entropy is given by the area of a codimen-

sion 2 extremal surface B̃ in the bulk spacetime, which ends on the entanglement surface.

In our case, this surface is the boundary of B. By change of coordinates, we will show

that the bulk region enclosed by B and B̃ is diffeomorphic to the exterior of a hyperbolic

AdS black hole spacetime, in which B̃ is the horizon. The entanglement entropy SB is

then equal to the corresponding AdS black hole entropy, which we denote Sgrav
B .

At this point we have identified EB and SB with bulk quantities. The next step is to

relate the difference ∆EB − ∆SB to the bulk equations of motion. This can be realized

using a formalism developed by Wald [11] which provides a description of diffeomorphism

invariant theories. We will apply this formalism to describe our bulk spacetime bounded

by B and B̃, which we will denote Σ. Specifically, we will exploit a formula introduced in

more recent work by Hollands and Wald [12],

d

dλ
(∆Egrav

B −∆Sgrav
B ) = ∫

Σ
ω(g(λ);LξBg(λ), ddλg(λ)) + ∫Σ

Ê(g(λ)). (2.13)

The form Ê(g(λ)) denotes an expression that vanishes when the dual AdS metric g(λ)
satisfies the equations of motion. The integral over ω is a presymplectic form on the space

of perturbations to the metric g(λ). Using our bulk identifications of EB and SB, the left

hand side is equal to the relative entropy in the CFT.

Equation (2.13) provides us with a holographic relation between the CFT relative entropy

and the AdS equations of motion. By considering first order variations of the CFT state,

we can show that the first law of entanglement entropy implies the linearized equations of

motion in the dual AdS spacetime. More precisely, we show that the fluctuations around

the pure AdS metric satisfy the linearized Einstein equations.
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Chapter 3

Relative Entropy in a CFT

3.1 Introduction

In this chapter we focus on finding an explicit computational scheme for the relative

entropy in a CFT. As we have seen, the relative entropy in terms of state ρ and reference

state σ is given by

S(ρ∣σ) = ∆E −∆S. (3.1)

Therefore, our goal is to find a way to compute the modular Hamiltonian and entanglement

entropy of a general CFT. In both cases we will first sketch an outline of the arguments

involved before proceeding with the detailed calculations.

This chapter is based on the work of Casini et al. [10]. It serves as a review of the

arguments which are necessary to understand the framework in which we can relate en-

tanglement entropy to gravity. The results should therefore not be interpreted as our

own.

3.2 The Modular Hamiltonian

The modular Hamiltonian is in general a complicated object that cannot be written as a

local expression of fields. One might justly wonder why it is a useful object to study at

all. There are special cases in which the modular Hamiltonian simplifies and does have a

local expression. These will be of our interest, as they allow us to calculate the modular

energy.

We will consider a spherical entanglement surface in Minkowski space. For CFTs, we

show that the domain of dependence of the sphere in the vacuum state is equivalent to

Rindler space in a thermal state. In Rindler space, the modular Hamiltonian can be

expressed in terms of the boost generator of the Lorentz group [13]. By inverting the

conformal transformation we can map our modular Hamiltonian back to Minkowski space

and obtain an explicit expression which depends on the stress tensor of the theory. The
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B̄B

D

t

Figure 3.1 – A schematic overview of the setup. The spatial dimensions of the CFT are

located in the plane. The shaded region B denotes the spatial sphere and the rest of the

CFT is the complement B̄. The entanglement surface is the boundary between B and B̄

which we will denote ∂B. The domain of dependence D of B is the set of points such that

every past (future) moving causal curve must intersect B.

variation of the Hamiltonian can then be computed from the variation of the stress tensor.

Finally, the variation of the modular energy is given by taking the expectation value of

the variation of the modular Hamiltonian.

3.2.1 Set up

Consider a CFT in d-dimensional Minkowski space R1,d−1 in the vacuum state. We will

denote the coordinates as xµ = {t, xi}. We consider a spherical, spatial entanglement sur-

face at a fixed time. Choose t = 0 without loss of generality. The entanglement surface

divides our space into the interior of the sphere B, and its complement B̄. The entan-

glement surface will be denoted as ∂B. We will denote the modular Hamiltonian of B

as HB, and the entanglement entropy as SB. We will consider the causal development

D of B. This is the union of the future and past domain of dependence, D+ ∪D−. The

future (/past) domain of dependence of B is defined as the set of points for which all past

(/future)-directed causal curves intersect B. A causal curve is a timelike or lightlike path,

such that a signal can travel along it. The idea is that if we know the the state on B, we

can evolve it to describe all points within D. See Figure 3.1.

3.2.2 Rindler space

We will now consider Rindler space, which we will denote R. A uniformly accelerating

observer in Minkowski will undergo a hyperbolic motion. The frame in which this observer

is at rest is often called the Rindler frame. We will denote the coordinates in R with Xµ

to distinguish from the coordinates on B. Let the observer be accelerated in the X1

direction. Rindler space, which is often called the Rindler wedge, then consists the part
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X0

X1

R

Figure 3.2 – A two dimensional sketch of the Rindler space R. The direction of time X0

and the direction of acceleration X1 are shown. The wedge R corresponds to the region

0 <X1 <∞, −X1 <X0 <X1.

of Minkowski space given by 0 < X1 <∞, −X1 < X0 < X1. It corresponds to the domain

where the coordinates of the Rindler frame are defined. See Figure 3.2.

As in any quantum theory, the physical state of the region R can be described by a density

matrix which we will denote ρR. Corresponding to the density matrix is a modular

Hamiltonian HR. The reason that we are interested in Rindler space, is because its

modular Hamiltonian takes a simple form. The Bisognano-Wichmann theorem states that

HR is simply the boost generator in the X1 direction [13]. If the modular Hamiltonian

induces evolution in a parameter s, the modular flow is given by

X±(s) =X±e±2πs, (3.2)

where X± =X1±X0 are the null coordinates in R. The other coordinates remain invariant

under the flow, since they are not influenced by the boost. We will now consider a heuristic

derivation of this statement. Start with the Lorentz boost given in terms of the hyperbolic

functions

(X0)′ =X0 coshw +X1 sinhw

(X1)′ =X1 coshw +X0 sinhw
(3.3)

with w = arctanh(v/c) the rapidity corresponding to the boost velocity v. We can rewrite

this in terms of the null coordinates X± =X0 ±X1

(X±)′ = (X0 coshw +X1 sinhw) ± (X1 coshw +X0 sinhw)
= (X0 ±X1) coshw + (X1 ±X0) sinhw

= 1
2(X

0 ±X1)(ew + e−w) + 1
2(X

1 ±X0)(ew − e−w).
(3.4)

From here one finds the result

(X±)′ =X±ew. (3.5)

Comparing with (3.2) we see that we find the correct answer up to a normalization factor

of 2π.

The flow parametrizes orbits of constant acceleration, which coincide with the boost orbits

by construction. The Hamiltonian in R is thermal with respect to translations along boost
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orbits. This phenomenon is commonly known as the Unruh effect [14]. Therefore, the

modular Hamiltonian HR will be thermal as well. We can show this by choosing new

coordinates

X0 = z sinh(τ/R),
X1 = z cosh(τ/R),

(3.6)

such that

X± = ze±τ/R. (3.7)

Rewriting the Rindler space metric in terms of these coordinates yields

ds2 = dX+dX− +
d−1

∑
i=2

(dXi)2 = − z
2

R2
dτ2 + dz2 +

d−1

∑
i=2

(dXi)2. (3.8)

In this form, we recognize z and τ to be polar coordinates with radius z and angle i
Rτ .

Through this identification, the angle is seen to be 2π-periodic, such that τ is 2πiR pe-

riodic. This is easily verified using equation (3.6). We conclude that the Rindler state

is thermal with respect to Hτ , the Hamiltonian which generates translations in τ , with

temperature T = 1/2πR. Hence, we can identify

ρR = e−HR

Tr(e−HR) = e−βHτ

Tr(e−βHτ ) . (3.9)

We can now read off the expression for the modular Hamiltonian

HR = 2πRHτ . (3.10)

We see that the modular Hamiltonian generates translations in τ . By comparing equations

(3.2) and (3.7), the modular flow in terms of the new coordinates is given by τ → τ +2πRs.

3.2.3 A Map from D to R

To find an expresssion for HB, we would like to relate HB to HR. Therefore, we need a

map between our causal diamond D and Rindler space R. It will be useful to define null

coordinates on D which exploit the spherical symmetry of B. Define

x± = r ± t,

r =
√

(x1)2 + . . . + (x(d−1))2,
(3.11)

where r is a radial coordinate on B. In these coordinates, the causal development of the

ball D is given by {x+ ≤ R} ∩ {x− ≤ R}. The map which transforms the Rindler wedge R
to the causal diamond D consists of a special conformal transformation combined with a

translation. It is given by [8]

xµ = Xµ − (X ⋅X)Cµ
1 − 2(X ⋅C) + (X ⋅X)(C ⋅C) + 2R2Cµ, (3.12)
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with Cµ = (0,−1/2R,0, . . .)1. It is not difficult to verify that X± ≥ 0 covers −R ≤ x± ≤ R,

such that we end up with D.

Our goal is to find an expression for the modular Hamiltonian in D. Since the modular

Hamiltonian is the generator of shifts in s, we need to know what the modular flow looks

like in D. This is possible by mapping the modular flow from Rindler space back to

Minkowski. The result is given by

x±(s) = R(R + x±) − e∓2πs(R − x±)
(R + x±) + e∓2πs(R − x±) . (3.13)

The calculation is given in Appendix B. This flow can be proven to correspond to the

modular flow in D. This was shown by [10]. It is generated by the modular Hamiltonian

HB. When we consider infinitesimal transformations, the shift δs on the surface t = 0 is

of the form

δt = 2π
R2 − r2

2R
δs. (3.14)

The corresponding operator in the CFT may now be identified as

HB = 2π∫
B
dd−1x

R2 − r2

2R
T00, (3.15)

where Tµν is the stress tensor of the CFT.

It is possible to rewrite this result in a more covariant form. InR, the modular Hamiltonian

HR induces translations in the coordinate τ . Define ζB to be the image of the Killing vector

2πR∂τ under the conformal transformation from R to D. This vector will induce the flow

in D. It is given explicitly by

ζB = π

R
(R2 − t2 − xixi)∂t −

2π

R
txi∂i. (3.16)

This vector will set the direction of ‘time’ associated with the modular flow. We can now

express the modular Hamiltonian as

HB = ∫
B
dΣµζνBTµν , (3.17)

where dΣµ is the (d−1)-dimensional volume form on B. The modular energy EB is given

by the expectation value of this integral. In conclusion, we have derived that the modular

energy is given by

EB = ∫
B
dΣµζνB⟨Tµν⟩. (3.18)

3.3 The Entanglement Entropy

The entanglement entropy is generally a difficult quantity to compute. A common method

is to make use of the so called replica trick. A review can be found in [15]. Computations

1If you are planning on working through these calculations, be careful. Reference [10] contains a typo

in defining Cµ. It differs from our definition by a minus sign. The transformation as given here is the

correct one.
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become intractable very quickly and results are obtained in simple cases only, such as free

field theories and CFTs in (1 + 1)-dimensions. We will not work out the details of the

replica trick. Instead, we will rely on a different method to compute the entanglement

entropy.

In 2006, Ryu and Takayanagi proposed a prescription to calculate the entanglement en-

tropy using a holographic setup [6]. The so called Ryu-Takayanagi (RT) proposal makes

use of the AdS/CFT correspondence and relates the CFT entanglement entropy to the

area of an extremal codimension-2 surface in the bulk theory, which ends on the CFT

entanglement surface. An extremal surface is a surface of which the area is extremal. The

RT proposal considered surfaces at fixed points in time. This construction was later gen-

eralized to a covariant version, which is called the Hubeny-Rangamani-Takayanagi (HRT)

proposal. Unlike the RT proposal, the HRT proposal holds in any Lorentz frame. The

correctness of both proposals has been proven recently [16, 17]. The explicit expression

for the entanglement entropy is

SB = A(B̃)
4GN

, (3.19)

where A denotes the area functional, B̃ is the extremal surface ending on B and GN is

Newton’s constant.

The HRT proposal allows us to calculate the entanglement entropy of the CFT sphere

B, if we know the gravitational dual to our CFT. For an arbitrary CFT state it is not

known what the gravitational dual looks like, or if it exists at all. If the CFT is in the

vacuum state, the dual is pure AdS. This allows us to apply the HRT procedure to find the

entanglement entropy of our spatial spherical region in the CFT vacuum. Computationally,

this is a variational problem. We need to write down a bulk area functional in terms of a set

of coordinates which parametrize the surface. We then vary the surface while restricting

the boundary coincide with the entanglement surface, which is ∂B. For this specific case,

the calculation is not too difficult. However, the relative entropy is given in terms of the

variation of the entanglement entropy. We would then need to identify the gravitational

dual of a perturbed CFT state, which is difficult.

As it turns out, there is another way to compute the entanglement entropy of a spherical

region in the Minkowski vacuum. By a conformal transformation we can relate the vacuum

state in D to a thermal state on a hyperbolic space R×Hd−1. This transformation is closely

related to the map from D to Rindler space. The entanglement entropy is then equal to

the von Neumann entropy of the density matrix in R ×Hd−1, which we will show to be

thermal. This is a thermodynamic entropy. In this section we show how this can be

achieved.



3.3. The Entanglement Entropy 17

3.3.1 A Map from D to R ×Hd−1

Recall the Minkowski metric in Rindler coordinates (3.8). We can divide out a scale factor

and rewrite it as

ds2 = z2

R2
[−dτ2 + R

2

z2
(dz2 +

d−1

∑
i=2

(dXi)2)] . (3.20)

Eliminate the scale factor by a Weyl transformation. Since we are considering a CFT,

this is a symmetry of the theory. The result is recognized to be the metric on the (d− 1)-
dimensional hyperbolic space Hd−1 with an additional timelike direction parametrized by

τ ,

ds2 = −dτ2 + R
2

z2
(dz2 +

d−1

∑
i=2

(dXi)2) . (3.21)

We will denote this space as R×Hd−1. The hyperbolic space H is the analog of Euclidean

space with constant negative curvature. The radius of curvature in our hyperbolic space

is given by R.

Since the transformation from R to R ×Hd−1 does not depend on τ , it does not change

the modular Hamiltonian. The modular Hamiltonian is simply given by HR×Hd−1 = HR =
2πRHτ . We conclude that our vacuum state in D is conformally related to a thermal state

in R ×Hd−1.

The von Neumann entropy is invariant under conformal transformations. This was rea-

soned in [10]. They argue there exists a unitary operator which maps the CFT from D to

R, and similarly from R to R ×Hd−1. Since the von Neumann entropy is invariant under

unitary transformations, it is unaffected by the conformal mapping. The entanglement

entropy across the boundary of B must be equal to the von Neumann entropy of the

density matrix of R ×Hd−1, which is thermal. This means our entanglement entropy is

equivalent to the thermodynamic entropy in R ×Hd−1.

In [10] it is not explained why conformal transformations are unitary operations. Confor-

mal transformations do preserve the inner product. Namely, we have ds2 = ηµνdXµdXν =
Ω2ηµνdx

µdxν for some conformal prefactor Ω. Due to the Weyl symmetry of a CFT, the

inner product is invariant. Furthermore, the mapping is invertible. We can both map

D → R and back. These properties seem to be in favor of the claim. It would be useful

to have a more mathematical rigorous proof. However, we are not able to give this in this

thesis, which is why we have to assume the assertion to hold instead.

By rewriting the entanglement entropy as a thermal entropy we haven’t solved anything

yet, we have just rewritten our problem as a different one. This derivation is a preliminary

result which we will need in Chapter 4. Via the AdS/CFT correspondence we will relate

this to the entropy of an asymptotically AdS black hole spacetime. This will be the subject

of Chapter 4.
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Chapter 4

Holographic interpretations

In the previous chapter we discussed the modular Hamiltonian and entanglement entropy

of the CFT. We should in principle be able to calculate the relative entropy in the CFT,

aside from possible computational difficulties. The next step we will take makes use of

the AdS/CFT correspondence. Ultimately, we are interested in determining the gravita-

tional dual of the relative entropy S(ρ(λ)∣σ) in the CFT. The goal of this chapter is to

find holographic interpretations of both the modular Hamiltonian and the entanglement

entropy, in order to obtain a holographic interpretation of the relative entropy. We will

denote these quantities as Egrav
B and Sgrav

B . The superscript serves as a reminder that they

are defined in the gravitational bulk theory.

First of all, we will set up some necessary framework to use the AdS/CFT correspondence.

We will start by giving a quick review of AdS space and express it in different coordinate

systems. We continue our discussion by identifying the dual CFT metric. This is achieved

by looking at different foliations of the AdS metric and studying the metric on the AdS

boundary. Assuming our theory to have a holographic dual, the metric of the CFT will

correspond to the asymptotic boundary metric of the AdS space.

A thermal CFT state is dual to a black hole geometry in the AdS bulk. By considering

foliations of AdS space we can identify the black hole geometry that corresponds to our

CFT. Through this identification, we show that the entanglement entropy of a spherical

region in the vacuum is equivalent to the entropy of the bulk black hole. We will work out

this procedure in detail and show that it yields the same result as the HRT prescription.

The modular Hamiltonian also has a bulk interpretation. It can be expressed in terms

of the asymptotic stress tensor of the AdS space. This will be explained in more detail

below.
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4.1 Geometry of AdS

In order to holographically relate our CFT to an AdS space, we need to know more about

AdS. In this section we review the geometry of the AdS spacetime and look at different fo-

liations. A foliation is a decomposition of a manifold into parallel submanifolds of smaller

dimension. We will describe our AdS spacetime as a union of hypersurfaces. By taking

the asymptotic boundary limit, we obtain a hypersurface which encodes the boundary ge-

ometry of the spacetime. If the AdS spacetime has a holographic CFT dual, the geometry

of this theory will correspond to the geometry of this asymptotic hypersurface.

The AdSd+1 geometry is described by embedding the surface

−y2
d+1 − y2

0 + y2
1 + . . . + y2

d = −L2 (4.1)

within a R2,d space. Here, L is a constant which will turn out to be the AdS radius. There

are two choices of coordinates which will be of our interest. The first choice is called the

Poincaré coordinate system. It can be derived by choosing

yd+1 + yd =
L2

z
,

ya = L
z
xa, a = 0, . . . , d − 1

(4.2)

and substituting them into the hyperbolic surface,

−L2 = −y2
d+1 − y2

0 + y2
1 + . . . + y2

d

= −(yd+1 + yd)(yd+1 − yd) − y2
0 +

d−1

∑
i=1

y2
i

= −L
2

z
(yd+1 − yd) +

L2

z2
ηabx

axb

(4.3)

with ηab the metric of R1,d−1. This yields the following constraint,

(yd+1 − yd) = z +
1

z
ηabx

axb (4.4)

from which we can compute the induced metric on the embedded surface.

ds2 = − dy2
d+1 − dy2

0 +
d

∑
i=1

dy2
i

= − d(yd+1 + yd)d(yd+1 − yd) + ηabdyadyb

= − d(L
2

z
)d(z + 1

z
ηabx

axb) + ηabd(
L

z
xa)d(L

z
xb)

=L
2

z2
(dz2 − 1

z2
ηabx

axbdz2 + 2

z
ηabx

adxbdz) + ηab
L2

z2
( 1

z2
xaxbdz2 + dxadxb − 2

z
xadxbdz)

=L
2

z2
(dz2 + ηabdxadxb).

(4.5)

Equation (4.5) is called the AdSd+1 Poincaré metric. From the metric, we see that the AdS

space is foliated in sheets of Minkowski space, warped by a scale factor which depends on
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the z coordinate. Taking the limit z → 0 allows us to study the asymptotic boundary metric

which will correspond to the metric of the holographic CFT. Define a new coordinate

z̃ = log z and rewrite the metric in terms of this coordinate. We find

ds2 = L2(dz̃2 + e−2z̃ηabdx
adxb). (4.6)

The asymptotic limit now corresponds to z̃ → −∞. In this limit the contribution of dz̃

becomes negligible. After removing the conformal prefactor we find that the AdS boundary

has the geometry of Minkowski space

ds2 = ηabdxadxb. (4.7)

In Chapter 3 we defined the CFT setup, which was given in Minkowski coordinates. This

means we can describe the holographic dual AdS space in terms of Poincaré coordinates.

The second set of coordinates we will consider are often called the global coordinates of

AdS. They will turn out to induce a foliation of hyperbolic planes. They are given by

yd+1 = ρ cosh(u)
y0 = ρ̃ sinh(τ/L)
yd = ρ̃ cosh(τ/L)
y1 = ρ sinh(u) cos(φ1)
y2 = ρ sinh(u) sin(φ1) cos(φ2)
⋮
yd−1 = ρ sinh(u) sin(φ1) sin(φ2) . . . cos(φd−2)

(4.8)

Plugging these into equation (4.1) we again derive a constraint.

−L2 = −y2
d+1 − y2

0 + y2
1 + . . . + y2

d

= −ρ2 cosh2(u) − ρ̃2 sinh2(τ/L) + ρ̃2 cosh2(τ/L) + ρ2 sinh2(u)(. . .)
= ρ̃2 − ρ2.

(4.9)

In the second line, (. . .) denotes terms from the spherical angles φ. These add op to unity

by construction. Now compute the metric in these coordinates

ds2 = − dy2
d+1 − dy2

0 +
d

∑
i=1

dy2
i

= − d(ρ cosh(u))2 − d(ρ̃ sinh(τ/L))2 + d(ρ̃ cosh(τ/L))2

+ d(ρ sinh(u) cos(φ1))2 + . . . + d(ρ sinh(u) sin(φ1) . . . sin(φd−2))2

=( ρ
2

L2
− 1)

−1

dρ2 − ( ρ
2

L2
− 1)dτ2 + ρ2(du2 + sinh2(u)dΩ2

d−2).

(4.10)

In deriving the final expression, the constraint was used to get rid of ρ̃ in favor of ρ. The

last term within brackets containing du and dΩd−2 (the angular part of a (d − 2)-sphere)

is the metric of a hyperbolic plane H in (d − 1) dimensions. To study the behavior at
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the boundary, we take the limit ρ → ∞. The dρ term vanishes, and after taking out a

conformal factor ρ2/L2 we find

ds2 = −dτ2 +L2(du2 + sinh2(u)dΩ2
d−2) (4.11)

which is the metric of a (d − 1) dimensional hyperbolic plane with radius of curvature L,

with an additional timelike direction τ . We see that in these coordinates the AdS space

is foliated in terms of R ×Hd−1 surfaces.

These coordinates can be used to describe the bulk dual to the thermal state R ×Hd−1

that is conformally related to the vacuum state in D which we described in Chapter 3.

4.2 Identification of B with a bulk black hole

An interesting feature of the metric (4.10) is the fact that it is a AdS black hole solution

[18]. More specifically, the metric we have found belongs to the class of hyperbolic black

holes, or topological black holes. It is isometric to pure AdS space, since we obtained it

by choosing the coordinates (4.8) on the embedding surface. Our solution is not a proper

black hole in the sense that it non-singular at ρ = 0. The coordinate patch breaks down

at ρ = L, which can be shown to be analogous to a Rindler horizon. Furthermore, this

horizon has non-vanishing area and temperature, given by T = 1/2πL. The temperature

can be calculated with the usual Euclidean prescription. Start with the metric (4.10) and

go to Euclidean signature by choosing τ = it. Consider the metric near the horizon, ρ ≈ L.

By expanding the prefactors in terms of (ρ −L) up to linear order we have

ds2 = L

2(L − ρ)dρ
2 + 2(L − ρ)

L
dt2 +L2(du2 + sinh2(u)dΩ2

d−2). (4.12)

We want to rewrite the ρ and t coordinates into a form similar to polar coordinates, in

order to identify the conical deficit. This is achieved by the coordinate transformation

ρ = L − r2

2L . In terms of the new coordinate r, the metric takes the form

ds2 = dr2 + r2

L2
dt2 +L2(du2 + sinh2(u)dΩ2

d−2). (4.13)

From this expression we read off that t must be periodic in t→ t+ 2πL. The temperature

of the black hole is thus identified as 1/2πL.

Assuming that the bulk theory is GR, the horizon area A is related to the black hole

entropy via the Bekenstein-Hawking formula,

SBH = A

4GN
. (4.14)

The horizon area can be computed from equation (4.13) by setting ρ = L, or r = 0. We

then obtain the metric on the (d − 2)-dimensional hyperbolic space Hd−2. The ‘black

hole’ therefore has a non-vanishing black hole entropy associated with it, even when it is
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isometric to pure AdS. This seemingly paradoxical fact is the bulk analog of the fact that

the vacuum entanglement entropy is non-vanishing.

We should remark that the horizon area of the black hole is actually divergent. This is

because the hyperbolic geometry extends to infinity. Mathematically, this occurs when

integrating u → ∞ which corresponds to the AdS boundary limit z → 0. The fact that

the black hole entropy diverges might seem like a problem, but it is actually consistent

with our considerations in Chapter 2. In a continuous field theory, the entanglement

entropy suffers UV divergences due to the entanglement of an infinite amount of degrees

of freedom. We see that in the AdS language this translates to the horizon area being

divergent.

We would like to identify the spherical CFT region B as the boundary of this AdS black

hole space time. If this is possible, we can calculate the entanglement entropy of B

as the black hole horizon entropy of the dual AdS spacetime. This follows from our

derivation in Chapter 3, where we reasoned that SB is equal to the thermal entropy in

the hyperbolic space, which is in turn related to the hyperbolic black hole entropy. We

will now establish the identification by working out the relation between the Poincaré and

hyperbolic coordinates on the AdS boundary.

Combining the two different choices of coordinates (4.2) and (4.8) yields

yd+1 + yd =
L2

z
= ρ cosh(u) + ρ̃ cosh(τ/L)

y0 =
L

z
t = ρ̃ sinh(τ/L)

y2
1 + . . . + y2

d−1 =
L2

z2
r2 = ρ2 sinh2(u)

(4.15)

where we defined x0 = t and used the radial coordinate r2 = x2
1 + . . . + x2

d−1 for the CFT.

We can now express the CFT coordinates (t, r) in terms of (ρ, τ, u) as

t = L ρ̃ sinh(τ/L)
ρ cosh(u) + ρ̃ cosh(τ/L)

r = L ρ sinh(u)
ρ cosh(u) + ρ̃ cosh(τ/L)

(4.16)

The transformation between the two isometric boundary CFTs is obtained by taking the

limit ρ→∞, which implies ρ̃ = ρ
√

1 − L2

ρ2
→ ρ,

t = L sinh(τ/L)
cosh(u) + cosh(τ/L)

r = L sinh(u)
cosh(u) + cosh(τ/L) .

(4.17)

One can show this transformation to be conformal. This was to be expected, since the

associated AdS spaces are related by an isometry as well.

In order to make the identification complete, we need to make sure the black hole horizon

asymptotes to ∂B, the boundary of our sphere. The black hole horizon is given by ρ = L
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t
xz

D

B

B̃
Σ

Figure 4.1 – A schematic overview of the Rindler wedge Σ associated with the sphere B.

The CFT lives on the boundary and Σ extends into the AdS space. It is bounded by B

and the extremal surface B̃, which is denoted by a dashed line. The black hole horizon

coincides with B̃ when we consider GR.

which implies ρ̃ = 0. From the first line of equation (4.15) we find L
z = cosh(u), so the limit

z → 0 translates to u→∞. In this limit we obtain t→ 0 and r asymptotes to

lim
u→∞

r = lim
u→∞

L tanh(u) = L. (4.18)

The black hole horizon intersects the AdS boundary at a circle with radius L at t = 0. By

setting L = R this circle coincides precisely with ∂B which completes our identification. It

can also be checked that the transformation (4.17) with L = R maps the causal diamond D
to R×Hd−1. This transformation was also given in [10]. This concludes our considerations.

We have established that the entanglement entropy across a sphere B in flat space in the

vacuum state equals the horizon entropy of a hyperbolic black hole if the AdS radius

equals the radius of B. Figure 4.1 gives a schematic overview of the construction. We will

denote the black hole horizon with B̃. The region bounded by B and B̃ we will call Σ,

which corresponds to the black hole geometry without the black hole interior.

By comparing the HRT proposal and the black hole entropy, we can identify the extremal

surface which calculates SB to be the black hole horizon. The horizon B̃ has the same

boundary as the entanglement surface B. If the surface is extremal, the two prescriptions

to calculate the entanglement entropy agree, assuming the AdS theory is GR. This is

no coincidence. The horizon B̃ at t = 0 is actually the bifurcation surface of the black

hole, which is always extremal. We will explain more about this in Chapter 5. Therefore,

the construction considered in this chapter can be viewed as a verification of the HRT
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proposal.

The HRT proposal could in principle be applied to any CFT state ρ(λ), as long as we

are able to compute the extremal surface in the bulk. However, it is only valid for GR. A

generalization of the HRT formula is necessary if we are interested in more general gravity

theories. For general theories, we could instead compute the entanglement entropy as the

black hole entropy of some related AdS geometry. In this case we would need a more

general equation for the black hole entropy, since the Bekenstein-Hawking relation is only

valid in GR. This equation exists, and will be introduced below. This method only works

when considering the vacuum state ρ(0), since the identification of SB with SBH doesn’t

hold for general ρ(λ).

4.3 The entanglement entropy

We have derived that the CFT vacuum entanglement entropy of B is given holographically

by the corresponding AdS black hole entropy. In GR, the black hole entropy is given by

the Bekenstein-Hawking formula SBH. To keep the discussion more general, we can instead

use the entropy given by Wald [11]

SWald =
2π

κ
∫
B
Q (4.19)

which calculates the entropy of any classical and covariant gravity theory. Here B denotes

the bifurcation surface of the black hole and Q the Noether charge form. These concepts

will be introduced in Chapter 5. We now have the following identification for the vacuum

state for the CFT,

SB = SWald ≡ Sgrav
B . (4.20)

The relative entropy is expressed in terms of the change in entanglement entropy. There-

fore we must generalize our computational scheme of the entanglement entropy to general

states which are not the CFT vacuum. When considering a small perturbation around

the vacuum state, we can interpret this in the bulk as a fluctuation around the AdS black

hole metric. This will induce a change in the horizon, causing the black hole entropy to

change as well.

When considering finite perturbations to the CFT state, the bulk geometry is not readily

found since our identification with the AdS black hole does not apply. This poses a

problem when we want to write down an expression for the variation of Sgrav
B , which is

necessary to compute the dual of the relative entropy. This problem can be solved using

the Hollands-Wald gauge. This gauge choice fixes the coordinate location of the black

hole horizon. The extremal surface will then correspond to the black hole horizon, even

for perturbed spacetimes. Using this gauge we obtain

d

dλ
SWald =

2π

κ
∫
B

d

dλ
Q. (4.21)
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This will be explained in further detail in Chapter 5. From this expression we obtain

d

dλ
SB = d

dλ
Sgrav
B = 2π

κ
∫
B

d

dλ
Q. (4.22)

4.4 The modular energy

We have derived the modular Hamiltonian of B in the CFT vacuum, which was written

as a local expression. In order to proceed, we need to find its holographic interpretation

Egrav
B . To do so, we have to define a notion of energy in the AdS space.

For a diffeomorphism invariant theory it is difficult to assign a local notion of energy-

momentum to the gravitational field. The momentum is usually related to the field by

its first derivative. However, by transforming to locally flat coordinates we can always

make the first metric derivatives vanish. This is also the reason why GR needs the Komar

integrals and ADM mass to define the energy of a spacetime. Such quantities are defined

by an integral over the asymptotic boundary of a spacetime.

For an asymptotically AdS space, one similarly defines a stress tensor at the boundary of

the spacetime. This was shown in [19]. The AdS stress tensor is related to the expectation

value of the CFT stress tensor which lives on the boundary. This relation is simply given

by

⟨TCFT
µν ⟩ = T grav

µν (4.23)

where T grav
µν is called the holographic stress tensor.

The holographic stress tensor usually diverges at the AdS boundary. The AdS/CFT

correspondence solves this problem since the divergences can be related to ultraviolet di-

vergences in the CFT. As in usual QFTs, we can take care of ultraviolet divergences by

adding local counterterms to the CFT action. From the AdS perspective, these coun-

terterms live on the boundary and will only depend on the boundary geometry. We then

obtain a renormalized stress tensor for the AdS space. This procedure is called holographic

renormalization.

From the holographic stress tensor, one can define a conserved charge [20]. Let S be a

spacelike surface at the boundary of the spacetime and let uµ define the local flow of

time. If kµ is a Killing vector which generates an isometry of the boundary geometry, the

conserved charge is given by

Qζ = ∫
S
dd−1x

√
γuµT grav

µν kν = ∫
S
dΣµT grav

µν kν (4.24)

where γ denotes the induced boundary metric on S. The conserved charge associated with

time translation (kµ ∼ uµ) defines the mass of the AdS space. Comparing with our result

for the modular energy, we find that

EB = ∫
B
dΣµ⟨TCFT

µν ⟩ζνB = ∫
B
dΣµT grav

µν ζνB ≡ Egrav
B (4.25)
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where we chose the isometry to be generated by the conformal Killing vector ζB of the

CFT and we integrate over the spatial spherical region B on the AdS boundary. Therefore,

the modular energy EB is holographically interpreted as the conserved charge associated

with infinitesimal transformations generated by ζB at the AdS boundary.

Now we consider perturbations to our state, given by ρ(λ). These will change the stress

tensor in the CFT. The variation in the modular energy is simply given by the integral

over the variation in the stress tensor. The same reasoning holds for the bulk space, where

the metric is varied. Therefore, the equality EB = Egrav
B holds as long as the state ρ(λ)

has a dual metric. In terms of equations, we have that

d

dλ
EB = ∫

B
dΣµ⟨ d

dλ
TCFT
µν ⟩ζνB = ∫

B
dΣµ d

dλ
T grav
µν ζνB = d

dλ
Egrav
B . (4.26)

Having identified the holographic expressions of SB and EB as Sgrav
B and Egrav

B , we have the

necessary ingredients to write down the bulk dual of the relative entropy. This gravitational

quantity can be related to the gravitational equations of motion of the bulk space, which

is covered in Chapter 5.
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Chapter 5

Gravitation in Anti de Sitter

spacetime

In this chapter we will study the gravitational bulk theory. By now we have translated

the CFT modular energy and entanglement entropy into quantities that are defined in the

bulk. What is left to understand is how they are related to the gravitational equations

of motion. The goal of this chapter is to express the bulk dual of the relative entropy in

terms of the gravitational equations of motion.

We will proceed using a formalism introduced by Robert Wald. It provides a description of

general diffeomorphism invariant gravity theories. Using this formalism, Wald proved the

first law of black hole mechanics for general theories and identified the black hole entropy

as the Noether charge related to diffeomorphism invariance [11]. Since the entanglement

entropy of our setup is given by the bulk black hole entropy, we can use these results for

our present purposes.

In the first section we will introduce the formalism and use it to derive an identity which

was found by Hollands and Wald in [12]. It will serve as our basis to connect the CFT

relative entropy to the AdS equations of motion. To utilize this identity, we need to fix a

specific gauge called the Hollands-Wald gauge. This gauge was described in [12] and will

be explained in Section 5.3. Putting everything together we obtain the gravitational dual

of the relative entropy. It is given by an expression involving the equations of motion and

the presymplectic form, which will be defined below.

5.1 Wald’s formalism

We begin by introducing Wald’s formalism. Consider a general diffeomorphism-invariant

gravitational Lagrangian. We will view it as a (d+ 1)-form. This will be convenient when

making contact with our AdS space later on. In the following derivations all quantities

are expressed as differential forms, which are written in bold-face font. Our theory is
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described by the action Sbulk = ∫ L(φ), where φ denotes the fields in the theory, including

the metric. To be precise, we define

L = Lε,

ε = 1

(d + 1)!
√−gεa1a2...ad+1dxa1 ∧ . . . ∧ dxad+1

(5.1)

with L the usual Lagrangian density and ε the volume form. Consider variations of L

under smooth, one-parameter variations of the fields φ(λ). We adapt the notation of [12],

δL = d
dλL∣λ=0, δφ = d

dλφ(λ)∣λ=0, etc. (5.2)

to denote the first order variations of quantities. When a formula holds for general varia-

tions λ, we will keep the notation d
dλ .

Varying L with respect to the fields yields

d
dλL = Eφ d

dλφ + dΘ(φ, ddλφ) (5.3)

in which Eφ denotes the equations of motion for the fields φ and Θ is called the symplectic

potential current density. It arises upon integrating the Lagrangian by parts to find the

equations of motion, and it consists of boundary terms. Furthermore, the d in dΘ is an

exterior derivative. When minimizing the action, the boundary terms usually vanish due

to asymptotic conditions of the fields. We will keep these terms as they play a role in the

definition of the Noether current.

Using Noether’s theorem, it is possible to write down conserved currents and charges.

The symmetries we will consider are diffeomorphisms. Since our theory is diffeomorphism

invariant, such a transformation will change the Lagrangian by a total derivative. Let us

define the vector field X as the generator of the diffeomorphism. The variation of the

fields is then given by their Lie derivative along the direction of X, which we will denote

LXφ. As an example, the metric will vary as LXgµν = 2∇(µXν). If this vanishes, it means

the transformation is an isometry of the metric. In this case X is a Killing vector and the

Lie derivative of the metric reproduces the Killing equation. A useful relation for the Lie

derivative is Cartan’s formula

LX = iXd + diX . (5.4)

Here iX denotes the interior product with X. Using this formula we can express the

variation of L as

LXL = d(iXL). (5.5)

This is because ε is a top form, such that dL = 0. The Noether current form related to

the diffeomorphism is defined as

JX = Θ(φ,LXφ) − iXL. (5.6)

The conservation of this current can be made explicit using equations (5.3) and (5.5)

dJX = dΘ(φ,LXφ) − d(iXL)
= LXL −EφLXφ −LXL
= −EφLXφ.

(5.7)
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Indeed, the Noether current form is closed when on shell, for all X. This implies conserva-

tion because dJX = 0 implies ∇µJµX = 0 via the Hodge star, with JµX the Noether current.

Consequently there exists a form QX locally constructed from φ and X such that when φ

satisfies the equations of motion, we have JX = dQX [11]. The form QX is referred to as

the Noether charge form. It was shown by [21] that we can write an off shell relation for

JX ,

JX = dQX +CX , (5.8)

where CX contains constraints which must vanish on shell. A proof of this relation is

included in Appendix D. When the bulk theory is GR, we have that CX ∼ Eφ.

Using equation (5.6) we can express the variation of the Noether current as

d
dλJX = d

dλ(Θ(φ,LXφ) − iXL)
= d
dλΘ(φ,LXφ) − iXdΘ(φ, ddλφ) − iXEφ

d
dλφ

= d
dλΘ(φ,LXφ) −LXΘ(φ, ddλφ) + d(iXΘ(φ, ddλφ)) − iXEφ

d
dλφ

= ω(φ; d
dλφ,LXφ) + d(iXΘ(φ, ddλφ)) − iXEφ

d
dλφ.

(5.9)

In the second line, we used equation (5.3) and in the third line we used Cartan’s formula.

The form ω is called the symplectic current form. It is introduced in Section 5.2 below.

Combining equations (5.8) and (5.9) yields

dχ(φ, ddλφ) = ω(φ; d
dλφ,LXφ) − ( d

dλCX + iXEφ d
dλφ), (5.10)

where

χ(φ, ddλφ) =
d
dλQX − iXΘ(φ, ddλφ). (5.11)

Equation (5.10) will turn out to be very useful, since χ is related to Sgrav
B and Egrav

B . By

showing this, we will have explicitly established the link between the relative entropy and

the gravitational field equations.

5.2 The presymplectic form

The formalism we are introducing originates from a paper by Lee and Wald from 1990

[22]. In this work, the relation between local symmetries in the Lagrangian formalism and

the corresponding constraints in the Hamiltonian formalism was studied. This allows for

determination of the phase space for general physical field theories. In this section we

will briefly discuss this paper, which defines the forms ω and Θ. From ω we will define a

conserved quantity, following more recent work by Wald [23].

We consider a theory of dynamical fields φ, which includes a Lorentzian metric. One can

define the space of field configurations F which contains all the ”kinematically allowed”

configurations. The dynamically allowed configurations are the points in F which are

solutions to the equations of motions of the theory. We will denote this subspace as F̄ .
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F̄

F

Γ Γ̄

Figure 5.1 – A representation of F and Γ. The field configuration space F is larger than

the phase space Γ due to the presence of local symmetries. A map from F to Γ must

therefore reduce F , by identifying all elements which lie within the same gauge orbit. This

procedure is explained in detail by [22]. Furthermore, F̄ and Γ̄ denote the solutions to the

equations of motion.

When we describe our theory with the Hamiltonian formalism, we are interested in the

phase space of the theory, which we denote Γ. The points in phase space which satisfy the

equations of motion describe a subspace of Γ which we denote Γ̄. See Figure 5.1.

Hamiltonian mechanics is naturally formulated in the language of symplectic geometry.

Therefore, to obtain a relation between the Lagrangian and Hamiltonian formalisms, we

would like to define a symplectic form constructed from the fields in our theory.

Let φ(λ1, λ2) denote a two-parameter family of field configurations. We define the presym-

plectic current form ω as

ω(φ; ∂
∂λ1

φ, ∂
∂λ2

φ) = ∂
∂λ2

Θ(φ, ∂
∂λ1

φ) − ∂
∂λ1

Θ(φ, ∂
∂λ2

φ). (5.12)

It is a local function of a field configuration φ and two perturbations ∂
∂λ1

φ and ∂
∂λ2

φ. Let

Σ be a Cauchy surface (this Σ is not to be mistaken with the space bounded by B and B̃

from Chapter 4.). Consider now first order variations of the fields, δφ. By integrating ω

we can define the presymplectic form

WΣ(φ; δ1φ, δ2φ) = ∫
Σ
ω. (5.13)

It is a 2-form on F which maps two perturbations of the field configuration into the real

numbers. The presymplectic form depends on the choice of Σ. However, in the case that

the perturbations satisfy the linearized field equations, WΣ does not depend on the choice

of the Cauchy surface provided that Σ is compact or suitable asymptotic conditions are

imposed on the dynamical fields [22, 23].

Assuming these conditions, WΣ is also closed. This follows from the definition of ω. By

taking a second variation of L we get

δ2δ1L = δ2Eφδ1φ +Eφδ2δ1φ + d(δ2Θ(φ, δ1φ)). (5.14)

A similar expression holds when reversing the order of the variations. Substracting these

gives

0 = (δ2δ1 − δ1δ2)L = δ2Eφδ1φ − δ1Eφδ2φ + dω(φ; δ1φ, δ2φ). (5.15)
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The antisymmetrized variations vanish by mixing of partial derivatives. If the variations

satisfy the linearized equations, the first two terms on the right hand side vanish and we

find that ω is closed. This implies the presymplectic form is closed as well.

We have argued that WΣ is a closed 2-form. If it is non-degenerate as well, WΣ is a

symplectic form and can be used to define a Hamiltonian. This is generally not true. If

the Lagrangian possesses local symmetries, WΣ will be degenerate. In this case different

field configurations from F describe the same physical system, hence the same point in the

phase space Γ. The space F is too large to be related to Γ. This is why WΣ is called the

presymplectic form instead. In order to define a proper symplectic form we must factor

the space F by its gauge orbits. We then obtain a non-degenerate symplectic form.

For our purposes it will not be necessary to find the explicit map from F to Γ. It will be

easier to avoid these complications and work on the field configuration space F with the

degenerate presymplectic form WΣ. A vector field X will induce a field variation LXφ on

the dynamical fields. It is argued in [23] that if a Hamiltonian conjugate to X exists, it

must satisfy the relation

d

dλ
HX =WΣ(φ; d

dλφ,LXφ) = ∫Σ
ω(φ; d

dλφ,LXφ). (5.16)

In this paper it is also reasoned that this Hamiltonian defines a conserved quantity associ-

ated with X. This conserved quantity is related to asymptotic transformations generated

by X. For instance, by choosing X to be the vector field which generates asymptotic time

translation, we can define energy of the spacetime under consideration. In GR, the energy

is given by the ADM mass. The agreement of these quantities was shown explicitly in [24].

The reason that the Hamiltonian is related to asymptotic conserved quantities is because

it can be written as a boundary term. Using equation (5.10) we find,

d

dλ
HX = ∫

Σ
dχ(φ, ddλφ) + ∫Σ

( d
dλCX + iXEφ d

dλφ). (5.17)

If φ solves the equations of motions and the first order variation solves the linearized

equations, the second term on the right hand side vanishes. The Hamiltonian reduces to

a boundary term by virtue of Stokes theorem,

d

dλ
HX = ∫

∂Σ
χ(φ, ddλφ). (5.18)

For asymptotically flat spacetimes the Hamiltonian is then determined by an integral over

a codimension-2 spherical surface at spatial infinity. For asymptotically AdS spaces this

works differently since there is a boundary. The integration domain is then the AdS

boundary.

5.3 Application to the perturbed AdS black hole

To proceed with our derivation of the gravity dual of the relative entropy, we want to

make contact between χ, and Sgrav
B and Egrav

B . This is achieved by applying the formalism
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of Sections 5.1 and 5.2 to our AdS black hole setup. Recall that the exterior of our black

hole spacetime is given by Σ, which is bounded by the sphere B and the horizon B̃.

First, consider a diffeomorphism invariant theory described by a gravitational Lagrangian

with a stationary black hole solution. Choose ξa to be the Killing field which generates

the horizon. The surface gravity of the black hole horizon is defined by

ξa∇aξb = κξb. (5.19)

A Killing horizon is called a bifurcate Killing horizon if it has non-vanishing surface gravity.

In this case, the past and future horizons intersect at the so called bifurcation surface,

at which the horizon generator ξ = 0 opposed to being simply null. The theories of our

interest have such a surface. Physically, this restricts our discussion to non-extremal black

holes.

The horizon B̃ is also generated by a Killing vector ξa. This vector is given by

ξB = −2π

R
(t − t0)[z∂z + (xi − xi0)∂i] +

π

R
[R2 − z2 − (t − t0)2 − (xi − xi0)2]∂t (5.20)

for the sphere B at coordinates (t0, xi0) and radius R. One can verify that ξB vanishes

at the horizon B̃ at t = t0. This means our black hole horizon is a bifurcation surface.

Note that the vector ξB is not a lucky guess, it is actually related to the generator of time

translation parametrized by τ in the global AdS coordinates. It is the bulk generalization

of the conformal Killing vector ζB we discussed in Chapter 3. Taking the asymptotic limit

we indeed find that limz→0 ξB → ζB. Furthermore, ξB is normalized to have a surface

gravity of κ = 2π which will be useful shortly.

Recall equation (5.10). We will integrate it over our black hole exterior Σ and choose

X = ξB. This yields

∫
Σ
dχ(φ, ddλφ) = ∫Σ

ω(φ; d
dλφ,LξBφ) − ∫Σ

( d
dλCξB + iξBEφ

d
dλφ). (5.21)

Focus on the left hand side of this equation. Since Σ is bounded by B and B̃, by Stokes

theorem we can express this integral as

∫
Σ
dχ(φ, ddλφ) = ∫∂Σ

χ(φ, ddλφ) = ∫B χ(φ,
d
dλφ) − ∫B̃ χ(φ,

d
dλφ). (5.22)

The minus sign comes from the orientation of B̃ relative to B. At the bifurcation surface

B̃, the vector ξB vanishes by definition. The restriction of χ to this surface is therefore

given by χ(φ, ddλφ)∣B̃ = d
dλQξB . The integral over B̃ now looks a lot like the Wald entropy

defined in equation (4.19), the difference being that we are dealing with a variation of Q

instead.

We would like to show that the integral over the variation of Q is equal to the variation

of the entanglement entropy d
dλS

grav
B . This is not a trivial statement since variation of the

metric will cause a perturbation of the black hole geometry. This changes the horizon B̃
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such that ξB will cease to generate the horizon. It was shown in [11] that the statement

is valid at least for first order perturbations,

δSgrav
B = ∫

B̃
δQξB . (5.23)

It was argued in [12] that by fixing an appropriate gauge, the equality can be generalized to

arbitrary λ. This is referred to as the Hollands-Wald gauge. Without loss of generality, it

imposes two conditions on our system. First of all, the coordinate location of the perturbed

bifurcation surface B̃(λ) will be fixed at the location of B̃(0), rendering it independent of

λ. Secondly, the Killing vector ξB as defined in (5.20) will still obey the Killing equation

at this surface in the perturbed metric, LξBg(λ)∣B̃ = 0. Instead of working out the details,

we will simply assume this gauge choice. More information can be found in [12] and [25].

Using the two conditions imposed by the gauge, we derive

d

dλ
Sgrav
B = d

dλ
SWald = ∫

B̃

d

dλ
QξB = ∫

B̃
χ(φ, ddλφ). (5.24)

This completes our identification of the entanglement entropy.

The integral of χ over B is equal variation of the conserved quantity related to asymptotic

transformations induced by ξB. This can be seen by comparison with equation (5.18).

The boundary of our Cauchy slice is the sphere B. We have

d

dλ
HξB = ∫

B
χ(φ, ddλφ). (5.25)

We can make contact with Egrav
B defined in Chapter 4 by noting that the asymptotic limit

of ξB corresponds to the conformal Killing vector ζB. Recall that Egrav
B is the conserved

quantity related to infinitesimal transformations of ζB. We then conclude that HξB and

Egrav
B must describe the same conserved quantity. In terms of equations, we have

∫
B
χ(φ, ddλφ) =

d
dλHξB = d

dλE
grav
B . (5.26)

Let us summarize our results. By means of the Hollands-Wald gauge we have proven that

∫
Σ
dχ(φ, ddλφ) =

d

dλ
(Egrav

B − Sgrav
B ) (5.27)

for our specific AdS black hole setup. In Chapter 4 we have shown that Egrav
B and Sgrav

B

are equivalent to the modular energy and entanglement entropy in the boundary CFT.

The right-hand side of equation (5.27) is equal to the relative entropy of the CFT. Let us

show this by writing out the λ dependencies explicitly:

d

dλ
S(ρ(λ)∣ρ(0)) = d

dλ
(∆EB −∆SB)

= d

dλ
(∆Egrav

B −∆Sgrav
B )

= d

dλ
(Egrav

B (g(λ)) − Sgrav
B (g(λ))).

(5.28)

The last equality follows since ∆Egrav
B = Egrav

B (g(λ)) − Egrav
B (g(0)) and similarly for the

entropy. Plugging this into equation (5.21) we obtain the relation

d

dλ
S(ρ(λ)∣ρ(0)) = ∫

Σ
ω(φ; d

dλφ,LξBφ) − ∫Σ
( d
dλCξB + iξBEφ

d
dλφ). (5.29)
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This finalizes our identification of the CFT relative entropy with the dual AdS equations

of motion. We find that the relative entropy between two states in our sphere B is related

to the symplectic current form as well as the gravitational equations. By considering first

order variations in λ, we can show that the first law of entanglement entropy implies the

linearized Einstein equation in the bulk. This will be discussed in Chapter 6. Attempts

to derive the full non-linear Einstein equations will be discussed in Chapter 7.
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Chapter 6

Linearized gravity from the first

law of entanglement entropy

In this chapter we will establish the relationship between the linearized gravitational equa-

tions of motion and the relative entropy. It can be shown that spacetimes dual to small

perturbations of the CFT vacuum state must obey Einstein’s equations linearized around

pure AdS, given that this bulk spacetime computes the correct CFT entanglement entropy

using the Ryu-Takayanagi prescription. In other words, if we succeed in identifying a dual

asymptotically AdS spacetime with this property, the AdS metric perturbation solves the

linearized Einstein equations. In this chapter we will prove this assertion. It was first

derived by [26], and worked out in more detail by [7].

The dual asymptotically AdS geometry was identified in Chapters 4 and 5. What is left to

prove is that the first order perturbation δg away from pure AdS now necessarily satisfies

the linearized equations of motion. Recall the final result of Chapter 5, equation (5.29).

For simplicity, assume the only dynamical field is the metric.

d

dλ
S(ρ(λ)∣ρ(0)) = ∫

Σ
ω(g(λ); d

dλg(λ),LξBg(λ)) − ∫Σ
( d
dλCξB + iξBEg

d
dλg(λ)) (6.1)

where Σ denotes the spatial surface bounded by the sphere B and the bifurcation surface

B̃. All quantities on the right hand side now depend on the metric only and Eg denotes

the equations of motion obtained by varying with respect to the metric.

By evaluating this expression for λ = 0 we obtain the first order variation. We argued

in Section 2.3 that the variation of the relative entropy is given by δE − δS = 0, which

we named the first law of entanglement entropy. To first order in λ, the symplectic

current form vanishes as well. This is due to the fact that ξB generates an isometry of

the unperturbed metric g(0), so LξBg(0) = 0. This implies ω = 0, which can be seen most

easily from the definition of the symplectic current form in [22]. Finally, Eg(g(0)) = 0

since the AdS vacuum is a solution to the Einstein equations. Equation (6.1) now reduces

to the simple identity

∫
Σ
δCξB = 0. (6.2)
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The form CξB contains constraint equations which vanish for fields which satisfy the

equations of motion. For general relativity, it is explicitly given by

CξB = 2ξaBE
g
abε

b (6.3)

where Egab denotes the gravitational equations of motion, in this case the Einstein tensor,

and we define εb = 1
d!

√−gεba2...ad+1dxa2 ∧ . . . ∧ dxad+1 . For more information about the

constraints, see Appendix D. Our domain of integration Σ is defined at a fixed time t = 0,

such that the volume element εb on this hypersurface only has a t-component. We find

∫
Σ
ξtBδE

g
ttε

t = 0 (6.4)

where δEgab denotes the linearized Einstein equation. To prove that these are satisfied, we

need to show that δEgab = 0. Multiply the integral by R and take a derivative with respect

to R. We obtain
d

dR
∫

Σ(R,xi0)
RξtBδE

g
ttε

t = 0 (6.5)

where we have written the R dependence of Σ explicitly. This expression can be simplified

using the Leibniz integral rule for multidimensional integrals as

∫
B̃
(RξtB)δEgttr̂ ⋅ εt + 2πR∫

Σ
δEgttε

t = 0. (6.6)

Since ξtB vanishes on the bifurcation surface B̃, we find the result

∫
Σ
δEgttε

t = 0 (6.7)

which holds for any surface Σ(R,xi0). Thus, the integral must vanish for any entanglement

sphere (R,xi0) we choose. This implies δEgtt = 0.

So far we have found one component of the linearized Einstein equations. We can repeat

the whole argument for a different Lorentz frame since the CFT is Lorentz invariant. By

demanding δEgtt = 0 to hold in any frame, we find the other components of the equation.

The covariant way to do this is by defining a velocity vector uµ which describes the frame

of reference. Our equation now becomes uµuνδEgµν = 0 which must hold for each choice of

uµ. Note that µ and ν are indices of the CFT spacetime, which proves that the linearized

equations of motion are satisfied in all boundary directions.

The remaining equations δEgµz = 0 and δEgzz = 0 need some more work. They can be

argued to hold from the initial value formulation of gravity. This construction is rather

involved, and beyond the scope of this thesis. The interested reader may refer to Wald’s

book on GR for an excellent review on this topic [27]. The argument why the remaining

equations are satisfied is given in [7]. For the sake of completion, we present a heuristic

explanation to make the statement plausible.

Any proper physical theory should have an initial value formulation. This means that

by satisfying initial conditions at some point in time, we can predict what will happen

at later (or earlier) times. The question whether a theory has a well posed initial value
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formulation is closely related to the mathematical structure of the differential equations

which describe the dynamics, the equations of motion. For instance, the equations must

have a unique solution, given initial data. Other physical constraints such as causality

may be demanded as well.

Theories which exhibit gauge symmetry need special attention. This is because the evo-

lution of the system doesn’t have a unique mathematical solution. However, such theories

can have a well posed physical initial value formulation if the mathematical solutions re-

lated by gauge transformations describe the same unique physical outcome. This is true

if the initial data satisfies the initial value constraints. These are derived from the theory

of interest. As a concrete example, for Maxwell theory, this constraint is given by the well

known formula ∇ ⋅ E⃗ = 0.

In [27], the initial value constraints for GR are computed explicitly. They consist of two

equations, which are both linear in the Einstein tensor. The Einstein tensor also satisfies

the Bianchi identity ∇aGab = 0. It is possible to show that if the spatial components of the

Einstein equation are satisfied and the constraints are satisfied initially, the constraints

must be satisfied at all times. In [7] the constraints are chosen to be the z-components of

the Einstein tensor. By showing they vanish at z = 0, they must be satisfied everywhere.

It is therefore concluded that δEgµz = δEgzz = 0.

Using this result, we have argued that all components of the Einstein equation vanish.

Therefore, the equations of motion are satisfied. We conclude that if we can identify

an asymptotically AdS spacetime which correctly computes the entanglement entropy of

a perturbed CFT vacuum state, the fluctuations around pure AdS solve the linearized

Einstein equations. This is related to entanglement via the first law of entanglement

entropy in the CFT.

Before we continue to the next chapter, we want to make one more remark. The relation

between the relative entropy and gravity can also be reversed. Starting from equation

(6.1), assume the perturbed AdS metric g(λ) to be a solution to the Einstein equations.

We then obtain a relation between the relative entropy of the dual CFT and the symplectic

current form
d

dλ
S(ρ(λ)∣ρ(0)) = ∫

Σ
ω(g(λ); d

dλg(λ),LξBg(λ)). (6.8)

By setting λ = 0, we obtain δEB − δSB = 0. This implies that in the dual CFT the first

law of entanglement must be satisfied. We conclude that if we have an asymptotically

AdS space which solves the Einstein equations up to linear order in the perturbation

around pure AdS, and we have identified a dual CFT, this CFT satisfies the first law of

entanglement. The point we are trying to make is that gravity not just emerges from

entanglement, but they are equivalent in a holographic sense. They can be regarded as

two sides of the same coin.
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Chapter 7

Beyond the linearized Einstein

equations

Our understanding of the connection between quantum entanglement and gravity is far

from complete. For first order perturbations on the CFT vacuum, we have derived the

relation between entanglement entropy and the corresponding bulk equations of motion.

A natural question to ask is whether this holds for all orders in the perturbation. Are

finite variations related to the full Einstein equations? This question has gotten attention

lately and is being investigated by different research groups in the field.

In Section 7.1 we will discuss a paper written by Eunseok Oh, I.Y. Park and Sang-Jin Sin

[1]. In this work it is derived that the non-linear Einstein equation is implied by finite

variations of the CFT state. The argument is based on the same formalism and setup as

the present work. We will explain why their argument, in our opinion, does not prove the

claimed result.

We continue in Section 7.2 to discuss other attempts to improve on the linearized result.

An important result was achieved by [28], in which it is shown that the Einstein equations

are satisfied up to and including second order. We also discuss a recent relevant paper

from Jacobsen [29], which relates entanglement to the Einstein equations in a different

setting.

7.1 Complete Einstein equation from the generalized First

Law of Entanglement

In September 2017, a paper was published which claims to have derived that the full

Einstein equation is equivalent to the dual of an entanglement relation [1]. This result

generalizes the work of [7] to general perturbations. We first explain their arguments, after

which we comment on the result, which is necessary since we are not truly convinced by

their method.
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The work is based on the same considerations we used to find the linearized equations.

We consider a spherical region in the CFT vacuum and apply perturbations to the state.

By means of holography, the relative entropy in the CFT is related to the presymplectic

current form and the gravitational equations in the bulk. We start from equation (5.21),

which we reproduce here for convenience

∫
Σ
dχ(g, ddλg) = ∫Σ

ω(g; d
dλg,LξBg) − ∫Σ

( d
dλCξB + iξBEg

d
dλg). (7.1)

This is a general identity that holds for any metric g(λ), both on and off shell. For

simplicity, we consider the metric to be the only dynamical field.

The goal is to show that the Einstein equations are equivalent to the gravity dual of the

relative entropy. The argument starts by considering physical metrics which satisfy the

equations of motion. In this case we have Eg = CξB = 0. As we have shown, the left hand

side of the equation can be expressed as the difference in modular energy and entanglement

entropy. We obtain

d

dλ
(∆Egrav

B −∆Sgrav
B ) = ∫

Σ
ω(g(λ); d

dλg(λ),LξBg(λ)). (7.2)

From this equation the gravity dual of the relative entropy is identified as

d

dλ
Sgrav(ρ(λ)∣ρ(0)) = ∫

Σ
ω(g(λ); d

dλg(λ),LξBg(λ)). (7.3)

Using this relation, equation (7.1) reduces to

Sgrav(ρ(λ)∣ρ(0)) = ∆Egrav
B −∆Sgrav

B . (7.4)

The conclusion of this reasoning is that the on-shell version of equation (7.1) gives the

gravitational dual of equation (2.7), the relative entropy in terms of the modular energy

and entanglement entropy.

Now consider the reversed argument. Let g(λ) be a metric which satisfies equation (7.4).

Plugging this into relation (7.1) we obtain

d

dλ
Sgrav(ρ(λ)∣ρ(0)) = ∫

Σ
ω(g(λ); d

dλg(λ),LξBg(λ)) − ∫Σ
( d
dλCξB + iξBEg

d
dλg). (7.5)

Using the definition of the gravitational dual of the relative entropy, (7.3), we find

∫
Σ
( d
dλCξB + iξBEg

d
dλg) = 0. (7.6)

It can be shown that this implies the full equations of motion to be satisfied, in a similar

fashion as the linearized case in Chapter 5. We conclude that a metric g(λ) which satisfies

the equation for the gravitational dual of the relative entropy is always on shell.

Since the argument holds in both directions, satisfying the equations of motion is equiva-

lent to satisfying equation (7.4). The identifications in Chapter 4 then tell us this is equal

to the CFT relative entropy equation (2.7). So, any metric g(λ) which reproduces the

entanglement of a perturbed CFT vacuum state must satisfy the full Einstein equation.

This completes the proof.
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We believe there is a flaw in this reasoning. The two proofs do not seem to be independent

of each other. In equation (7.3), the gravitational dual to the relative entropy is defined

for metrics on shell. This is allowed, since the proof assumes the equations of motion are

solved by g(λ). However, in the reversed argument, when considering metrics which solve

the relative entropy equation, there is no reason equation (7.3) should still hold. After all,

this identification was made after assuming the metric to be on shell. By using equation

(7.3) as the definition of the dual relative entropy in the reversed argument, the authors

implicitly force g(λ) to be on shell. The Einstein equations are then satisfied trivially.

We stress that the question whether it is possible to relate the complete Einstein equation

and entanglement entropy is still an open problem. In order to complete the proof one

would need to show that for any metric which gives the right CFT entanglement entropy,

the gravitational dual of the relative entropy is given by an integral over the symplectic

current form. In other words, one must prove equation (7.3) to hold without constraining

g(λ) to be on shell beforehand. This has not yet been achieved.

7.2 Improving on the linearized result

We will now discuss some recent research relevant to our topic.

7.2.1 Nonlinear Gravity from Entanglement in Conformal Field Theo-

ries

This paper [28] was written in collaboration with Thomas Faulkner and Mark van Raams-

donk, who also contributed to the linear result as discussed in [7]. It demonstrates the

emergence of the gravitational equations up to second order in the perturbation. We will

now explain how this was achieved.

We start from the geometrical equation we derived in Chapters 2-5. Taking a derivative

with respect to λ of equation (6.1) and setting λ = 0 we find

δ(2)S(ρ(λ)∣ρ(0)) = ∫
Σ
ω(g(λ); δg(λ),LξBδg(λ)) − ∫

Σ
δ(2)CξB (7.7)

where δ(2) = d2

dλ2
∣λ=0. We got rid of the terms involving Eg, because for λ = 0 both Eg = 0

and δ(1)Eg = 0. The last term on the right contains the second order Einstein tensor. The

first term on the right hand side defines the canonical energy in a gravitational theory

with respect to the timelike Killing vector ξB [12]. The main goal of [28] was to prove the

equality of the first two terms, which implies the second order equations via δ(2)CξB = 0.

This is achieved by explicit calculation. Since it is very involved, we won’t reproduce it

here.

The conclusion is that any geometry g(λ) which correctly gives the entanglement entropy

for a CFT using the HRT proposal must solve the Einstein equations up to and including
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second order in the perturbation. This result is reassuring. It shows that the linearized

equations were not the end of the story. This can be interpreted as a motivation researchers

to find the full Einstein equation in a rigorous manner.

By considering perturbations order by order, we will not find the full nonlinear Einstein

equations. However, by considering specific perturbations interesting holographic identifi-

cations can be made. The second order variation of the relative entropy must be a positive

quantity, since the relative entropy it is monotonically increasing away from its reference

state, in this case the vacuum ρ(0). This in turn implies positivity of the canonical energy

as defined by Wald [25, 11, 12]. Constraints like this one shed light on the conditions the

AdS metric must satisfy to ensure the existence of a dual CFT of which the entanglement

entropy is calculated using the HRT proposal.

7.2.2 Entanglement Equilibrium and the Einstein Equation

In 1995 a paper was published by Jacobson in which the Einstein equation is derived from

the principles of thermodynamics [30]. It was motivated by the similarity of the laws of

black hole mechanics and the laws of thermodynamics. This work can be seen as the

starting point of the branch of physics which seeks to relate quantum entanglement to

gravitational dynamics.

The more recent paper we will discuss here establishes a link between entanglement entropy

and the full Einstein equation [29]. The main result is that the Einstein equation is implied

by the so called ”maximal vacuum entanglement hypothesis”. To quote Jacobson:

“When the geometry and quantum fields are simultaneously varied from max-

imal symmetry, the entanglement entropy in a small geodesic ball is maximal

at fixed volume.”

This hypothesis is predicted from the assumption that the quantum vacuum has a finite

and universal area density of entanglement entropy. The physical interpretation of this

assumption is that the entanglement entropy of the vacuum is in an equilibrium condition

similar to a thermal equilibrium. Assuming this hypothesis to hold, it can be derived that

the metric must obey the Einstein equation.

The main derivation considers the entanglement entropy of regions separated by local

causal horizons. It combines Jacobson’s previous paper [30] and the work based on entan-

glement entropy and the AdS/CFT correspondence which we have reviewed in this thesis.

However, Jacobson makes no use of holography whatsoever. The local causal horizons are

analogous to the boundary ∂D of the domain of dependence D we defined in Chapter 3.

It is not defined in a CFT, but in a more general spacetime where the metric is allowed

to be dynamical. By variation of the metric away from the geometry that maximizes the

entanglement entropy, the Einstein equation is derived.

The question is whether the assumption of the vacuum being in ‘entanglement equilibrium’
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is valid. According to Jacobson, validation of this statement involves UV aspects of

quantum gravity. It remains an open question.
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Chapter 8

Outlook

Research on how entanglement and gravity are intertwined is still very young. Nevertheless

a lot of progress has been made in a very short time. There is of course much more to be

studied and there are many unexplored paths to take. As a consequence, there exist no

complete comprehensive reviews on this topic yet. Our aim was to explain this topic in a

pedagogical way, in as much detail as possible within the scope of the project. Needless to

say, our presentation of the subject can still be improved. Still, we hope that this thesis

can serve as a more easily accessible review on the relation of entanglement and gravity

via holography.

There is much more left to learn about entanglement and gravity. We will now discuss

some possible directions that could be studied. The first and most obvious result we would

like to see is the generalization of [7] to the full Einstein equation. As we have explained in

Chapter 7, the argument of [1] is in our opinion insufficient to prove this result. However

we do believe it should be possible to relate the full Einstein equation to entanglement.

This would tell us what set of conditions on the CFT is dual to the dynamics in an AdS

spacetime governed by GR, teaching us a lot about the AdS/CFT correspondence.

Taking this reasoning a step further, one could try to apply the whole framework to general

theories of gravity. Such theories are not described by the Einstein-Hilbert action, but

can have any covariant Lagrangian constructed from contracted Riemann tensors. In our

derivation of the Einstein equation, we made use of the HRT proposal. This formula

only holds in general relativity, which is why the Einstein equation is obtained. Relating

entanglement to the equations of motion of a general theory of gravity then comes down

to finding the correct entanglement entropy functional. In [17], a formula is derived which

applies to any gravitational theory. Aside from possible subtleties, it seems likely that

by using this generalized entanglement functional, one could relate entanglement to the

equations of motion of any gravitational theory.

All our considerations so far have focused on CFTs with a classical bulk description. It

would be very interesting to study the relation between entanglement entropy in CFTs

dual to gravity theories with quantum corrections. From the CFT perspective this is
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certainly possible since the first law of entanglement holds for any QFT. The first quantum

corrections to the HRT proposal were derived in [31] and the bulk dual of the relative

entropy in [32]. By extending the work in this direction we might learn how quantum

entanglement constrains the quantum behavior of such theories.

All our considerations so far have focused on CFTs with a classical bulk description. It

would be very interesting to study the relation between entanglement entropy in CFTs

dual to gravity theories with quantum corrections. In the language of AdS/CFT, this

amounts to relaxing the ’t Hooft limit. The CFT Yang-Mills theory has a gauge group

SU(N) and a coupling constant gYM . The coupling gYM is related to the bulk string

coupling gs as g2
YM ∼ gs. The ’t Hooft limit corresponds to N → ∞ and gYM → 0 and

selects a classical bulk dual. In order to allow for quantum corrections in the bulk, we

need to consider small N and weak (non-zero) coupling. This regime of the AdS/CFT

correspondence is not as well-established as the classical case, but let us assume that it

is valid. Since entanglement is independent of any coupling constants, the entanglement

entropy of a CFT can be computed for any limit of N and gYM . On the gravity side

we would need to generalize the HRT proposal. The first quantum corrections to the

HRT proposal were derived in [31] and the bulk dual of the relative entropy in [32]. By

extending the work in this direction we might learn how quantum entanglement constrains

the quantum behavior of such theories.

In the long run, the hope is that by exploiting the relation between entanglement and

gravity we can deduce information about the nature of quantum gravity. It could be

that entanglement is the best way to learn about this theory. The question whether

entanglement will contribute to finding a theory of quantum gravity is one that cannot

be answered with certainty right now. Personally, I am very curious to see where the

developments in this field of research will lead us in the future.
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Appendix A

Relative entropy properties for a

two-spin system

In this Appendix we will work out the properties of the relative entropy of a simple spin

system. The system consists of two spin-1
2 particles which both assume an orientation.

For simplicity, we assume both spins will point in the same direction. The reference state

will be described by the density matrix

σ = a ∣↑⟩ ⟨↑∣ + (1 − a) ∣↓⟩ ⟨↓∣ =
⎛
⎝
a 0

0 1 − a
⎞
⎠

(A.1)

where 0 < a < 1. It is interpreted as a statistical ensemble of the up and down quantum

states. We are interested in the relative entropy between this state and a state with a

different distribution of up and down spins. We define

ρ = b ∣↑⟩ ⟨↑∣ + (1 − b) ∣↓⟩ ⟨↓∣ =
⎛
⎝
b 0

0 1 − b
⎞
⎠

(A.2)

where 0 < b < 1. Now we compute the relative entropy.

S(ρ∣σ) = Tr(ρ log ρ) −Tr(ρ logσ)

= Tr
⎛
⎝
b log b 0

0 (1 − b) log(1 − b)
⎞
⎠
−Tr

⎛
⎝
b log a 0

0 (1 − b) log(1 − a)
⎞
⎠

= b log ( b
a
) + (1 − b) log ( 1 − b

1 − a) .

(A.3)

The first derivatives are easily calculated to be

∂S

∂a
= a − b
a(1 − a)

∂S

∂b
= log ( b

1 − b
1 − a
a

) ,
(A.4)

which both vanish if and only if a = b. At a = b the relative entropy S(ρ∣σ) = 0 for

all values of a. If we can show that these extremal points are minima, they must be
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global minima which proves the relative entropy to be a non-negative and monotonically

increasing function of the state ρ. We will consider the second derivatives of the relative

entropy. They are given by

∂2S

∂a2
= b(1 − a)

2 + (1 − b)a2

a2(1 − a)2

∂2S

∂b2
= 1

b(1 − b) .
(A.5)

The second derivatives are positive for all 0 < a, b < 1. This is enough to prove the

points a = b to be global minima, which proves the relative entropy is non-negative and

monotonically increasing.

In this derivation, we have excluded the possibility that either σ or ρ describes a pure

state, a, b = 0,1. For these states the relative entropy will be ill-defined because we cannot

take the logarithm of a non-invertible matrix. When a and b are both 0 or both 1, the

relative entropy will vanish since σ and ρ will be equal. When a = 0 and b = 1 or vice versa,

the relative entropy diverges. This is due to the fact that ∣↑⟩ ⟨↑∣ and ∣↓⟩ ⟨↓∣ are independent.

Therefore, when comparing these states, they are “infinitely different”. Note that this does

not contradict our claim in Chapter 2 that the relative entropy is finite. The divergences

we discussed there are UV divergences related to the continuous nature of a field theory,

which will indeed cancel.
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Appendix B

Derivation of modular flow in D

We want to translate the flow

X±(s) =X±e±2πs, (B.1)

using the transformation

xµ = Xµ − (X ⋅X)Cµ
1 − 2(X ⋅C) + (X ⋅X)(C ⋅C) + 2R2Cµ. (B.2)

with Cµ = (0,−1/2R,0, . . .). We will start by rewriting the transformation. First note that

the modular flow in R only affects the X± coordinates. Therefore, we will just consider

these directions. One easily calculates C± = C1 ± C0 = −1/2R, (C ⋅ C) = 1/4R2. Assume

for now that there are two dimensions. This yields

x± =
X± + X+X−

2R

1 + (X++X−)2R + X+X−

4R2

−R

=
X±(1 + X∓

2R )
(1 + X+

2R )(1 + X−

2R )
−R

= R 2X±

(2R +X±) −R

= R(X± − 2R)
(X± + 2R) .

(B.3)

We will also need the inverse of this relation, which is given by

X± = −2R
(x± +R)
(x± −R) . (B.4)
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The flow in D is given by

x±(s) = R(X±(s) − 2R)
(X±(s) + 2R)

= R(X±e±2πs − 2R)
(X±e±2πs + 2R)

= R
(−2R

(x±+R)
(x±−R)e

±2πs − 2R)

(−2R
(x±+R)
(x±−R)e

±2πs + 2R)

= R (x± +R)e±2πs + (x± −R))
((x± +R)e±2πs − (x± −R))

= R(R + x±) − e∓2πs(R − x±)
(R + x±) + e∓2πs(R − x±) .

(B.5)
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Derivation of HB

Our goal is to construct an explicit expression for the modular Hamiltonian. Consider the

surface x0 = 0. HB will induce some infinitesimal shift δs away from this surface. Recall

the expression for the flow in D

x±(s) = R(R + x±) − e∓2πs(R − x±)
(R + x±) + e∓2πs(R − x±) . (C.1)

We want see how the shift δs influences our coordinates xµ. Express x0(s) at x0 = 0 in

terms of r and s as

x0(s) = 1

2
(x+(s) − x−(s))

= 1

2
R((R + r) − e−2πs(R − r)

(R + r) + e−2πs(R − r) −
(R + r) − e2πs(R − r)
(R + r) + e2πs(R − r)) .

(C.2)

Consider an infinitesimal shift δs away from our surface. This yields

δx0(s) = d

ds
x0(s)∣s=0 δs

= 1

2
R ⋅ 2π(R − r)( 1

(R + r) + (R − r) +
(R + r) − (R − r)

((R + r) + (R − r))2

+ 1

(R + r) + (R − r) +
(R + r) − (R − r)

((R + r) + (R − r))2
)δs

= R ⋅ 2π(R − r) ( 1

(R + r) + (R − r) +
(R + r) − (R − r)

((R + r) + (R − r))2
)δs

= R ⋅ 2π(R − r) ( 2R

4R2
+ 2r

4R2
)δs

= 2π
R2 − r2

2R
δs

Now repeat the same derivation for x1(s) = 1
2(x

+(s) + x−(s)). Due to the plus sign, the

terms cancel after taking the derivative and setting s = 0. Therefore, we find that δr = 0.

We conclude that the modular Hamilion induces an infinitesimal flow away from x0 = 0.

We can identify the corresponding operator in the CFT as

HB = 2π∫
B
dd−1x

R2 − r2

2R
T 00(x). (C.3)
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Appendix D

The off shell Noether current form

In this appendix we will show that JX = dQX +CX as claimed in Chapter 5 and derive

the explicit form of CX . We will follow the argument presented in Appendix B of [7].

We start with an arbitrary gravitational Lagrangian in (d+1)-dimensions, which is a func-

tion of a collection of fields φ. Any proper gravitational theory is diffeomorphism invariant.

Under a diffeomorphism generated by vector X, the variation of the corresponding action

is given by

δXS = ∫ εEφδXφ = ∫ εEφLXφ. (D.1)

where ε denotes the volume form and Eφ the equations of motion. The boundary terms

do not contribute since φ vanishes at infinity. In order for the invariance to hold, the

integrand must vanish. We will now work out how this constrains the fields. The Lie

derivative of a tensor T of rank (i, j) is given by

(LXT )a1...aib1...bj =X
c(∇cT a1...aib1...bj)

−
i

∑
k=1

(∇cXak)T a1...c...aib1...bj

+
j

∑
l=1

(∇blX
c)T a1...ai b1...c...bj

(D.2)

To prevent us from complicating the derivation with lots of indices, we consider one rank-

(1,0) field such that φ = φa. In this case, the Lie derivative of our field just has two terms.

The integrand is given by

ε(Eφ)aLXφa = ε(Eφ)a[Xb(∇bφa) − (∇bXa)φb]
= εXb(Eφ)a(∇bφa) + εXb∇a((Eφ)bφa) − ε∇a(Xb(Eφ)bφa)

(D.3)

where we used Leibniz rule in the second line. The third term is a total derivative so it

vanishes when we integrate. In order for the Lagrangian to be diffeomorphism invariant

we must have

εXb(Eφ)a(∇bφa) + εXb∇a((Eφ)bφa) = 0. (D.4)
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Plugging this result back into the previous equation, we derive

ε(Eφ)aLXφa = −ε∇a(Xb(Eφ)bφa). (D.5)

We will now use this result to rewrite the Noether current. Recall that it is was given off

shell by equation (5.7). Combining with the results in this appendix we find

dJX = −EφLXφ
= −ε(Eφ)aLXφa

= ε∇a(Xb(Eφ)bφa)
= d(Xb(Eφ)bφaεa)
≡ dCX

(D.6)

where εa = 1
d!εab2...bd+1dx

b2 ∧ . . . ∧ dxbd+1 . From this expression it follows that

JX = dQX +CX . (D.7)

This expression now defines the Noether current off shell.

The derivation ofCX can easily be extended to tensors of arbitrary rank. For our purposes,

it is useful to derive what CX looks like in GR. In this case we would have one rank-(0,2)
field, namely the metric. By comparing with our result for φa we can write it down

immediately

CX = 2Xa(Eg)abgbcεc = 2Xa(Eg)abεb. (D.8)

The factor two comes from the fact that the metric has two indices. Therefore there are

two terms from the Lie derivative, which add up since the metric is symmetric. There is

no extra minus sign as the convention is to vary with respect to the inverse metric, which

has raised indices.
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