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Abstract

Using a Kaluza-Klein reduction, we determine the bosonic part of the d = 4, N = 1

effective theory resulting from the ten-dimensional Type IIB supergravity action on

a general compact Calabi-Yau orientifold, allowing for O3/O7-planes. Including a

single spacetime filling D7-brane wrapped on a four-cycle, we consider the low-energy

limit. We do not specify a specific orientifold or four-cycle on which the D7-brane is

wrapped. However, using the general geometry of these objects, we give a detailed

discussion regarding how to construct the N = 1 gauge kinetic coupling function.

In doing so, we extensively carry out the dualization procedure for the gauge fields,

giving a clear outlook of how one should handle this technical aspect. By taking

into consideration the Wilson line moduli arising from the higher-dimensional gauge

vector on the brane, we obtain mixed kinetic interactions between the bulk and

the brane gauge vectors. Furthermore, these Wilson lines give rise to an additional

term in the D7-brane gauge interaction. We will emphasize on how the addition of

Wilson lines alters the gauge kinetic coupling function and discuss how this effects

its holomorphic property. As imposed by the N = 1 supersymmetric representation,

we show that indeed the bulk gauge coupling function is holomorphic in the chiral

superfields. As a new result, we will show via M-theory that the mixed gauge kinetic

coupling function is holomorphic in the complex structure moduli. As of yet, this

result has not been presented anywhere in the academic literature. In addition, we

argue the existence of two specific relations which together imply that the D7-brane

gauge kinetic coupling function is holomorphic in the N = 1 coordinates.
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Chapter 1

Introduction

The first section of this chapter is devoted to family and friends, to provide them

with a brief historic introduction leading to what motivates this field of research. We

continue with the main fundamentals underlying this thesis in string theory. After

discussing the basic principles, we highlight how our work relates to other studies

and comment on the setup we will analyze. Emphasizing on the aim of the research,

we will briefly discuss our strategy. We conclude with the organization of this study.

1.1 A look back in history

For centuries, mankind has been intrigued by the world around us. Observing and

learning from physical phenomena, theories have been developed. Starting in ancient

Greece, where Plato and his student Aristotle laid out the basic principles of physics.

It was Aristotle who first wrote down the thought that physical phenomena should

lead to the laws of nature governing them. Hence, studying these observations could

lead to discovering these laws. A field of study that he referred to in his work as

“physics”. The theory he developed contained the four elements; earth, air, water

and fire, with which he attempted to explain phenomena like motion and gravity.

Until the end of the Medieval Period Aristotle’s work remained the mainstream the-

ory in Europe. But approaching the era in which Galileo Galilei and thereafter Isaac

Newton came into the picture things started to change.
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Inspired by Nicolaus Copernicus’ thoughts about the heliocentric model of the Solar

System that the Earth revolves around the Sun, Galileo attempted to mathemati-

cally describe motion not only to support heliocentrism, but also other mechanical

experiments. At the age of only 19, he discovered how the period of a pendulum

is independent of the amplitude of the swing. Other experiments, enlightened how

the path of a projectile is shaped in the form of a parabola or that the velocity with

which bodies fall is not proportional to their weights. The experiments Galileo car-

ried out and the results obtained were so contradictory to the theory Aristotle had

developed, that a completely new theory of physics arose. This was the starting point

of Newtonian mechanics, also known as classical mechanics, a theory which describes

the macroscopic motion of objects, funded by Newton’s laws of motion. On top of

that Newton started an entirely new field within mathematics called calculus, which

is still one of the most known and commonly used branches of mathematics today.

It is a long way from this changing point in physics that Newton and Galilei created

to the modern physics studied today. A journey that is an extraordinary intellectual

achievement to which several great researchers have contributed. To mention only

a few of the most memorable findings; it was Michael Faraday who discovered the

electromagnetic induction in 1831 or Wiliam Thomson, better known as Lord Kelvin,

who formulated the first two laws of thermodynamics. Not to mention James Clerk

Maxwell who was able to mathematically substantiate the experimental observations

of Faraday and lay the foundation for electromagnetism. This theory, with in par-

ticular the establishment of the speed of light and the symmetry transformations

of Maxwell’s equations, led Albert Einstein to the development of special relativity,

which he later extended to general relativity. Einstein is probably the most known

scientist that has ever lived. In 1930 he began his work on a so-called unified the-

ory. Just as Maxwell had provided a framework that unifies electric and magnetic

phenomena, Einstein was convinced that gravity could be unified with the electro-

magnetic force, leading to a theory of all fundamental forces. He spent the rest of his

live chasing this unified theory.

Nowadays, this hope of finding a “theory of everything” that constitutes a framework

for all fundamental forces is still shared. However, instead of only considering gravity

and the electromagnetic force, we have included the weak and strong nuclear interac-

tions as fundamental forces. Hence, adding up to four fundamental forces, the three

gauge interactions; the electromagnetic, weak and strong force are already brought
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together in the same framework of quantum field theories. Even more, the Standard

Model of particle physics unifies the electromagnetic and the weak force, which in

itself is an extraordinary accomplishment. The experimental evidence underlying this

theory has so extensively been tested at the LHC that the success is compelling.

The downside of all this is that the mathematical framework that has been proven so

suitable at the subatomic scale to develop these quantum field theories is not applica-

ble to the gravitational force. This is mainly due to the fact that the Einstein-Hilbert

action is non-renormalizable. Even though the principles of quantum mechanics have

not yet been reconciled with the gravitational force, Einstein’s general relativity does

provide a very well tested theory, on length scales of the Solar System, describing

gravity. Though it cannot be completed to a theory of quantum gravity. In principle,

any consistent quantum field theory that reduces to general relativity in the classical

limit would qualify for a theory of quantum gravity.

One can imagine that combining two theories, of which on the one hand one describes

phenomena on subatomic length scales (∼ 10−19m) at the LHC, while on the other

hand the second describes observables at the scale of the universe (∼ 1027m), can

be quite a tough task. However, despite all struggles yet to be overcome one of the

leading candidates for setting a framework containing all four fundamental forces is

string theory.

1.2 The basic concepts of string theory

The underlying fundamental thought behind string theory is quite elegant. Instead of

considering interacting particles as points, we consider interacting strings propagating

through space and time. The spin-2 metric field associated with the graviton is one

of the infinitely many string excitations. This graviton is the elementary particle

that mediates the gravitational force. All particles observed in nature should arise

via the same mechanism in string theory. At low-energy scales string theory can

be described as a field theory called supergravity. The two essential ingredients of

supergravity are gravity and supersymmetry. In physics, two classes of particles are

distinguished. An elementary particle can be either a fermion or a boson. Fermions

are half-integer spin particles, which are described by spinors in relativistic field
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theories and cannot occupy the same quantum state. These particles constitute all

matter we know of. Fields of integer spin describe bosons. These in contrast have

the property that they can occupy the same state. Bosons are the mediators of

forces. Supersymmetry relates these two classes in a one-to-one correspondence such

that each fermion has its bosonic superpartner and vice versa. The superpartner

of the graviton is the spin-3
2

particle named the gravitino. The number of copies

of this gravitino in a supersymmetric theory is denoted with N . This contributes

to the number of supercharges, which is determined by multiplying the number of

degrees of freedom of a d-dimensional spinor by N . Therefore, every supergravity

is characterized by two things; the number of dimensions of the theory d and the

number of copies of the gravitini N .

In this thesis we consider the low-energy description of string theories which gives

rise to higher-dimensional supergravity actions. More specifically, we will discuss the

ten-dimensional Type IIB superstring theory and the eleven-dimensional supergrav-

ity action following from M-theory in the low-energy limit at weak string coupling.

We will restrict ourselves to the bosonic fields since supersymmetry relates this part

of the theory in a one-to-one correspondence to the fermionic part of the action.

Instead of only including the one-dimensional strings, one could also wonder about

including higher-dimensional generalizations of the string. These dynamical objects

are called Dp-branes, which are (p+1)-dimensional hypersurfaces embedded in the

higher-dimensional theory. They couple to the Ramond-Ramond p-form potentials

C(p). A p-form is an antisymmetric tensor forming a linear map from p vectors to

the real numbers.

However, there is a mismatch between these higher-dimensional theories and the

world we observe around us, since we only see three space dimensions and one time

dimension. Nonetheless, that we do not observe any other dimensions does not nec-

essarily mean they are not present. A thought of Kaluza [1] was to introduce a fifth

dimension, which is so small it cannot be detected with the current accessible en-

ergies reached in modern day physics. This proposal seemed conceivable to Klein,

who five years later in 1926 made an attempt to further elaborate on the idea [2].

The term Kaluza-Klein compactification is a widely used technique in string theory,

which suites as a strategy to defend the unobservability of the extra dimensions and

which we will apply extensively throughout this work. Therefore, we now elaborate

on it.
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Lets say for the moment we start from a D-dimensional supergravity theory, from

which we seek to obtain the lower-dimensional effective field theory. The equations

of motion, for a p-form potential with field strength F (p+1) = dC(p), following from

the higher-dimensional supergravity action of massless fields result in

∆DC
(p) = 0, (1.2.1)

after gauge fixing. We denoted the Laplacian operator as ∆D, acting on a p-form

in D-dimensions, which we will discuss in section 2.1.1. We consider our observ-

able four dimensions to be Minkowski spacetime. Therefore, splitting spacetime as

M(1,D−1)(x, y) = R1,3(x) × MD−4(y), with MD−4(y) denoting the unobservable di-

mensions of a compact manifold expressed in local coordinates y, tells us that the

Laplacian operator decomposes as

∆D = ∆1,3 + ∆D−4. (1.2.2)

If we now also expand the p-form potential according to the decomposition of space-

time

C(p) =
∑

q+r=p<D−1

A(q)(x) ∧B(r)(y) with
q = 0, 1, ..., 3,

r = p− 3, ..., p
(1.2.3)

in the forms A(q) on Minkowski spacetime and B(r) on the internal manifold, whose

dimensions are hidden, we obtain information about the mass of the effective lower-

dimensional fields

(∆1,3A
(q)(x)) ∧B(r)(y) = −A(q)(x) ∧ (∆D−4B

(r)(y)). (1.2.4)

Recall from field theory that the mass of a field φ(x) is given by ∆φ(x) = ∂µ∂µφ(x) =

m2φ(x), therefore the mass of the lower-dimensional q-form potential field A(q) is

reflected by (1.2.4). However, since the mass of even the lightest massive four-

dimensional fields is already of the order of the energy needed to measure the extra

dimensions (which are unobservable), only massless modes are kept in the reduction.

This means that the right hand side of (1.2.4) should vanish, which is exactly why
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we expand the higher-dimensional fields in harmonics on the internal manifold. We

will come back to this in section 2.1.1.

Shortly summarizing the above, when compactifying a theory from D to four dimen-

sions, the D-dimensional fields have to be expanded into the zero mode eigenfunctions

of the kinetic operator in the internal space, such that the effective lower-dimensional

fields are massless. The interaction coefficients in the effective theory between these

four-dimensional fields are determined by matrices resulting from the reduction of the

internal space. Therefore, the choice of this manifold one compactifies on is highly

non-trivial for the lower-dimensional effective theory obtained from the reduction.

What we did not take into account yet is how to cope with the (p+1)-dimensional

hypersurfaces, stretching over a submanifold of the higher-dimensional spacetime.

Since we will consider a spacetime filling Dp-brane, exactly (p-3)-dimensions of the

brane extend in the internal directions. Therefore, when compactifying this part of

the brane is wrapped on a cycle of the internal manifold. Thus, not only is the in-

ternal manifold crucial for the lower-dimensional interaction coefficients, but also for

the allowed subspace on which the brane can be wrapped.

A commonly used choice, which we will also work with in this thesis, is to preform a

Kaluza-Klein reduction on a Calabi-Yau manifold. In such a reduction, one expands

all N higher-dimensional gravitini η̂ schematically according to

η̂ =
M∑
i=1

ηi ξi, (1.2.5)

where M denotes the number of Killing spinors ξi on the internal manifold and ηi

are the lower-dimensional gravitini. Therefore, it follows that the total number of

gravitini in the lower-dimensional theory is given by M · N .

Due to the property that a Calabi-Yau manifold allows for only one Killing spinor, the

lower-dimensional theory results in the same number of gravitini N as the higher-

dimensional theory started from. Thus, when reducing a N = 2 supersymmetric

ten-dimensional theory on a Calabi-Yau threefold, supersymmetry is broken from

N = 8 to N = 2 in four dimensions.

Generally, including orientifold planes to a certain configuration of D-branes is re-

quired to cancel Ramond-Ramond tadpoles. The orientifold projection truncates the
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four-dimensional N = 2 sypersymmetric spectrum to N = 1 by keeping precisely

those states invariant under the projection.

1.3 The scope of the thesis

The amount of supersymmetry is an important phenomenological ingredient. With

the current developments in research, the most promising choice of supersymme-

try seems to be minimal N = 1 supersymmetry in four dimensions. Even more,

extended supersymmetry in four-dimensional theories does not allow for observed

chiral fermions of the Standard Model [3, 4]. However, exact supersymmetry is not

a correct theory of nature. If supersymmetry exists as an exact symmetry we should

have already observed it in experimental data of particle physics. Though it may

be possible that supersymmetry is non-linearly realized (i.e. spontaneously broken)

in physics, meaning that it is spontaneously broken somewhat similar to the Higgs

mechanism. Quite some studies have yet exploited this field of research [5–8]. Specif-

ically within string theory, a promising set-up seems to be an orientifold bulk theory

with supersymmetry N = 1 and D-branes compatible to this supersymmetry. By

including background fluxes to the bulk, supersymmetry is sponteneously broken

[9–15].

It is necessary to derive the lower-dimensional N = 1 theory in the low-energy limit

in order to reliably deduce information about the supersymmetry breaking of such

a theory. Therefore, in this work we confine our attention to the d = 4, N = 1

low-energy supergravity action resulting from a Kaluza-Klein reduction on a general

Calabi-Yau orientifold of the democratic version of the ten-dimensional N = 2 super-

gravity action of Type IIB theory at tree level. We work in the weak string coupling

limit, since we consider the tree level supergravity action.

Introducing D-branes to the theory can be studied from many different perspectives,

for instance to improve the relation between string theory and cosmology in which

branes have been incorporated to the theory to exploit cosmic inflation [16–18]. From

the particle physics point of view, in general several spacetime filling D-branes are

positioned in such a way that certain particles arise, for instance to give rise to

models similar to the Standard Model [19–22]. If instead of a single spacetime filling
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D-brane, which gives rise to a lower-dimensional U(1) Abelian gauge theory, a stack

of N spacetime filling D-branes is included to the theory, the U(1) gauge group is

enhanced to a non-Abelian U(N) group. Thus, stacking spacetime filling D-branes

gives rise to non-Abelian gauge theories with charged matter multiplets. Whenever

the D-brane is wrapped on a cycle which allows for non-trivial one-cycles, Wilson line

moduli are added to the theory.

In this thesis we will cope with the perspective which improves the relation between

string theory and particle physics. For simplicity we consider a U(1) Abelian gauge

theory by including a single spacetime filling D7-brane that respects the supersym-

metry of the bulk, wrapped on a (2,2)-cycle of the Calabi-Yau orientifold. In terms of

the supergravity action, including a D7-brane implies including the Dirac-Born-Infeld

and the Chern-Simons action to the supergravity bulk part of the action

S = SBulk + SDBI + SCSD7
. (1.3.1)

As stated before one has to include orientifold planes, to a certain configuration of

D-branes, to cancel Ramond-Ramond tadpoles [23–27]. Even though, in this work we

do take into account an orientifold projection, in this specific model the configuration

is not set in such a way that the orientifold and the D-brane cancel out each others

tadpoles. Nevertheless, we are interested in the orientifold projection due to the fact

that it reduces supersymmetry from N = 2 to N = 1 in the compactification on

the Calabi-Yau orientifold, which is preferred to obtain an effective theory closer to

the phenomenology of particle physics. To give an example, apart from the chirality

mentioned earlier, as the name already states the Minimal Supersymmetric Standard

Model is an extension to the Standard Model that realizes N = 1 supersymmetry. It

constitutes a complete field of research [28–30].

In a d = 4, N = 1 effective theory, the dynamics of both the gauge vectors aris-

ing from the brane and the Ramond-Ramond vector fields crucially depends on the

gauge kinetic coupling function. Inherent to the N = 1 supersymmetry representa-

tion, the gauge kinetic coupling function should be holomorphic in the chiral super-

fields treated as complex variables [31]. The purpose of this work is to show that

the given set-up indeed yields a gauge kinetic function that is holomorphic in the

complex scalars arising from the bosonic part of the chiral multiplets.
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Without specifying the orientifold, apart from that it allows for O3/O7-planes, nor

the (2,2)-cycle on which the brane is wrapped, except that we assume it to include

non-trivial one-cycles, we will derive the gauge kinetic coupling function using the

general geometry of the manifolds. Very similar analyses have been performed in

[32, 33] or for D5-branes [34]. The work in [32] thoroughly carries out this derivation,

neglecting the Wilson lines arising on the brane. However, since the Wilson lines are

part of the N = 1 coordinates, the gauge coupling function should be holomorphic

in these as well. For this reason we will be particularly interested in how the addi-

tion of these scalar fields influences the gauge kinetic coupling function. Therefore,

we will derive the lower-dimensional theory resulting from our set-up in which we

emphasize on the parts of the reduction contributing to the gauge coupling. We will

stay close to the analysis performed in [32], but deviate from it towards the end of

the reduction in which we define the N = 1 coordinates. The reason for this is that

the result for the gauge coupling function including the Wilson lines is stated at the

end of [32]. Though interestingly, they already mention the result does not seem to

be holomorphic in the chiral coordinates. As pointed out in [33] there seems to be

a mismatch regarding the Wilson line moduli, which is recovered at the open string

one-loop level [35]. In addition to this, there seems to be a second problem regarding

one of the derived N = 1 coordinates. In the presence of Wilson line moduli, one of

these coordinates seems to be in conflict with the holomorphic property imposed by

supersymmetry. This has recently been pointed out in [36], where a set of slightly

different chiral coordinates is proposed. Therefore, in this thesis we will carefully try

to combine the knowledge of these recent studies to work towards the point of show-

ing that, in the presence of Wilson line moduli, the gauge kinetic coupling function

is holomorphic in the N = 1 coordinates.

Extensive discussions of the holomorphic property of the kinetic coupling among

the bulk gauge vector fields have yet been included in [32, 34]. Therefore, using an

appropriate set of N = 1 coordinates, our main attempt is to show the mixed gauge

kinetic coupling function and the gauge coupling amongst the D7-brane U(1) vectors

are holomorphic in the chiral superfields as well.

Our strategy will be to perform a Kaluza-Klein compactification on a Calabi-Yau ori-

entifold including a single spacetime filling D7-brane such that we reduce the Type
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IIB supergravity action, yielding a d = 4, N = 1 supergravity. Just as in [32] we will

take into account all terms up to second order in derivatives. By paying extra atten-

tion to those parts contributing to the gauge kinetic coupling function and extensively

performing the dualization procedure inherent to starting from the democratic ac-

tion, we carefully construct the gauge coupling function. We will discuss how the

addition of Wilson lines has altered the gauge coupling. As a new way of approach-

ing the objective, we will use an appropriate set of N = 1 coordinates to express the

D7-brane gauge coupling function in terms of the chiral coordinates in an attempt

to manifestly show it is holomorphic. However, two mathematical identities should

hold in order to obtain this manifestly holomorphic result. We present a possible

approach to prove these equations, though we are unable to give a mathematically

correct proof.

Additionally, we briefly review the holomorphic property of the gauge kinetic cou-

pling function resulting from the bulk part of the action.

At last, to show that the mixed gauge kinetic coupling function is also holomor-

phic in the chiral superfields, we will shed light on this with an approach not yet

presented elsewhere. We take an alternative route via M-theory in the weak coupling

limit. Therefore, the reduction of M-theory on a general Calabi-Yau fourfold, lead-

ing to an N = 2 supersymmetric three-dimensional theory, is explained to obtain

the mixed gauge kinetic coupling function following from this theory. In order to

compare the result with the mixed gauge kinetic coupling function obtained from

the Type IIB compactification, we adjust the reduction performed for M-theory by

considering an elliptically fibered Calabi-Yau fourfold and the weak string coupling

limit when lifting to four dimensions, such that it suites our tree level Type IIB per-

spective. By showing the equivalence between the mixed gauge coupling obtained in

M-theory and the one obtained in Type IIB, in combination with the fact that the

mixed gauge kinetic coupling function is holomorphic in M-theory, we conclude it

must be holomorphic in Type IIB theory as well.
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1.4 The outline of the thesis

Specifically, the organization of this work is as follows. To become familiar with all

mathematical definitions and conventions we start with the main basic properties of

several manifolds in chapter 2. Starting briefly with real manifolds in section 2.1

including the differential geometry defined on them explained in sections 2.1.1-2.1.3.

We will continue with complex manifolds in section 2.2 to build towards the Dolbeault

cohomology discussed in 2.2.1, which will be of importance for the dependence of

spacetime fields on the complex structure later on. After obtaining the basic notion

of a real and complex manifold we can move toward the Kähler and Calabi-Yau

manifold, respectively in sections 2.3 and 2.4. Both will have an important role in

this work. We will compactify on a Calabi-Yau manifold in chapters 4 and 6. But

before reaching the compactifications, first the moduli space of a Calabi-Yau threefold

is discussed in chapter 3, which contains the geometry of the manifold and splits into

two Kähler manifolds. We will elaborate on the Kähler class moduli space in section

3.1 and setup the framework for the complex structure moduli space in section 3.2.

In chapter 4 we define the orientifold projection and start the compactification of

the ten-dimensional N = 2 supergravity Type IIB action on a general Calabi-Yau

orientifold. Thereby, analyzing the N = 1 spectrum that results from the orientifold

reduction. In chapter 5 we extend this by including the D7-brane action up to tree

level and define the (2,2)-cycle on which the brane is wrapped. To reduce these terms

of the action we include the spectrum of the U(1) gauge vector on the brane and the

normal coordinates, since the brane itself is a dynamical object, in section 5.1. First

reducing the gauge vector part of the Chern-Simons action in detail in section 5.2,

whereafter briefly reducing the rest of the action including the Dirac-Born-Infeld

action in section 5.3. Since the considered supergravity action is formulated in the

democratic version, the duality relations have to be imposed upon the reduced action.

This dualization will be preformed in section 5.4. To eventually reach the conclusion

that the gauge kinetic coupling function is holomorphic in the chiral fields, we define

the N = 1 chiral coordinates and vector multiplets in section 5.5 after which we

give an argument showing the holomorphic property of the D7-brane gauge coupling

function. To show that the mixed gauge kinetic coupling function is holomorphic,

we first reduce M-theory on a general Calabi-Yau fourfold, in chapter 6. In order

to compare the the mixed gauge kinetic coupling function obtained from M-theory
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with the Type IIB result, we consider an elliptically fibered Calabi-Yau fourfold and

the weak string coupling limit when lifting to four dimensions, in chapter 7. In this

way we will show that the mixed gauge kinetic coupling between the bulk and the

D7-brane gauge vectors must be holomorphic in the chiral superfields.
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Chapter 2

Manifolds and differential

geometry

Laying part of the mathematical foundation, we will start this thesis with a general

introduction on certain types of manifolds and the differential geometry defined on

these manifolds. We will only consider smooth Riemannian manifolds.

2.1 Real manifold

A real n-dimensional differential manifold is a topological space that locally looks

like Euclidean space, meaning that coordinates and functions act in a similar way.

This does not mean the metric is the same. It should be possible to construct a

manifold by smoothly sewing together these locally flat regions, called patches. More

precisely, the union of patches, Ui, is equal to the manifold, M . And every patch can

be mapped one-to-one on Euclidean space, φi : Ui → Rn such that φ(Ui) is open in

Rn. The composite function, φiφ
−1
j , of any two overlapping patches, Ui ∩ Uj 6= ∅, is

smooth.

Before going into detail about other manifolds, we first want to use this definition of

a manifold to introduce a special class of tensors defined on such a manifold known

as differential forms, accompanied with some properties.
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2.1.1 Differential forms

Differential p-forms are totally antisymmetric tensors of rank p, that form a linear

map from p vectors to the real numbers, at a certain point on a manifold M . The

definition of a p-form, C(p), in terms of local coordinates, {xµi}, on an n-dimensional

manifold M is given by [37, 38]

C(p) =
1

p!
Cµ1,...,µpdx

µ1 ∧ ... ∧ dxµp , with µi = 1, ..., n (2.1.1)

where ∧ denotes the exterior product and we have used Einstein summation conven-

tion. Due to the antisymmetric property A(p) ∧ B(q) = (−1)pqB(q) ∧ A(p) holds, and

the rank of two forms adds up.

Lastly, for the wedge product between two forms we use the convention

B(p) ∧ C(q) =
1

p!q!
Bµ1,...,µpCνp+1,...,νp+qdx

µ1 ∧ ... ∧ dxµp ∧ dxµp+1 ∧ ... ∧ dxµp+q . (2.1.2)

Exterior derivative

The exterior derivative, d, is an operator that maps a p-form to a (p+1)-form

dC(p) =
1

p!
∂µ1Cµ2,...,µp+1dxµ1 ∧ ... ∧ dxµp+1 . (2.1.3)

It is a nilpotent operator meaning that d2C(p) = 0 for any p-form. Furthermore, the

exterior derivative has the property

d(A(p) ∧B(q)) = dA(p) ∧B(q) + (−1)pA(p) ∧ dB(q). (2.1.4)

With a closed form we mean a form C(p) having the property dC(p) = 0 and a form

that can be written as C(p) = dD(p−1) is called an exact form.

Interior product

The interior product or interior derivative is quite similar to the exterior derivative,

except that it has the opposite property of lowering the degree of a form by one.
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Therefore, the interior product ιX by a vector field X on the manifold M , is a map

from the space of p-forms on the manifold, denoted by Ap(M), to the set of (p-1)-

forms on the manifold

ιX : Ap(M)→ Ap−1(M). (2.1.5)

The interior product relates the Lie derivative to the exterior derivative, and has a

similar property as the one given for the exterior derivative in (2.1.4)

ιX(C(p) ∧B(q)) = (ιXC
(p)) ∧B(q) + (−1)pC(p) ∧ (ιXB

(q)). (2.1.6)

Even more, by antisymmetry of forms we know that

ιXιYC
(p) = −ιY ιXC(p) (2.1.7)

for a p-form C(p) and two vector fields X and Y on the manifold. Since the vector

field X with respect to which we take the interior product ιX will play an important

role, we will emphasize it by denoting the interior product of a vector field X acting

on a p-form C(p) as Xy C(p).

Hodge star operator

Whenever the manifold allows for a metric, one can define the Hodge star operator, ∗.
This operator is not topological since it does not exist without a reference to a metric

on the manifold. It maps a p-form to an (n-p)-form on an n-dimensional manifold

with metric gµν as

∗ C(p) =

√
g

p!(n− p)!
Cµ1,...,µpε

µ1,...,µp
νp+1,...,νn

dxνp+1 ∧ ... ∧ dxνn , (2.1.8)

where g is the determinant of the metric gµν and the Levi-Civita symbol is defined

as

εµ1,...,µn =

 ±1 for µ1, ..., µn even/odd permutations of 1, 2, ..., n

0 else.
(2.1.9)
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Three important properties of the Hodge star operator defined on an n-dimensional

manifold, M , are

∗ ∗C(p) = (−1)p(n−p)+δC(p)

 δ = 1, for a Lorentzian signature metric

δ = 0, for a Euclidean signature metric
(2.1.10)

∫
M

C(p) ∧ ∗D(p) =
1

p!

∫
M

Cµ1,...,µpD
µ1,...,µp

√
gdnx, (2.1.11)

and on a Cartesian product of manifolds MD(x, y) = Md(x) ×MD−d(y), the Hodge

star decomposition is given by1

∗̂D(Aq ∧Bp) = (−1)p(d−q)(∗dAq) ∧ (?D−dBp), (2.1.12)

where Aq and Bp are a q-form and a p-form on the manifolds Md(x) and MD−d(y),

respectively.

With the Hodge star operator in n dimensions, one can define the Hodge duality

F (p+1) = ∗F̃ (n−p−1) (2.1.13)

since both field strengths, F (p+1) = dC(p) and F̃ (n−p−1) = dC̃(n−2−p), describe the

same number of degrees of freedom. Therefore, the Hodge dual relates a p-form

potential C(p) to a dual (n-2-p)-form potential C̃(n−2−p) in n dimensions. This is the

generalized version of the electro-magnetic duality which relates two vector potentials

in four dimensions.

Harmonic forms

At last, we can define the adjoint of the exterior derivative acting on a p-form on an

n-dimensional Riemannian manifold as d† = (−1)n(p−1)+1 ∗ d∗. Analogously to what

we called a closed and exact form, we can define a co-closed and co-exact form as

d†C(p) = 0 and C(p) = d†D(p+1) respectively. With this definition, we can state what

1To differentiate between the Hodge star on the internal and external manifold, we use ? and ∗,
respectively throughout the thesis.
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it means for a form to be harmonic. A harmonic form, C(p), satisfies

∆C(p) = 0 (2.1.14)

with the Laplacian operator

∆ = (d + d†)2 = dd† + d†d. (2.1.15)

As a final remark, we want to state that a form is harmonic if and only if it is closed

and co-closed.

2.1.2 Cycles and chains

Given an n-dimensional manifold M , we can define the set of p-dimensional sub-

manifolds {Γip}. A p-chain, ap, is defined as a linear combination of such a set of

p-dimensional submanifolds

ap =
∑
i

ciΓ
i
p (2.1.16)

with coefficients ci. A p-form can be integrated over such a p-chain, which is defined

to be ∫
ap

C(p) =
∑
i

ci

∫
Γip

C(p) =
∑
i

ci

∫
Γip

dpxC1,...,p. (2.1.17)

Note that the form must be defined on the submanifold we integrate over, otherwise

the integral vanishes.

The boundary operator, δ, for chains is the equivalent of the exterior derivative for

forms. This operator maps a p-chain to a (p-1)-chain. Again we are dealing with a

nilpotent operator. A p-cycle is a p-chain, hp, without a boundary, hence δhp = 0.

What one would call a trivial p-chain, dp, is a p-chain that is the boundary of (p+1)-

chain, thus dp = δap+1. Note that even though the exterior derivative raises the rank

of the form, the boundary operator lowers the dimension of the manifold.
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2.1.3 (Co)homology

We have now build up the basics to be able to discuss what the pth cohomology

and homology groups of a manifold are. Starting with the pth de Rham cohomology

group, we consider the quotient group of the closed p-forms modulo all exact p-forms

on a manifold M

Hp(M) =
{C(p)| dC(p) = 0}

{D(p)|D(p) = dA(p−1)}
. (2.1.18)

With this definition, an equivalence class of the pth cohomology exists of all closed p-

forms that differ from each other only up to an exact form, hence C(p) ∼ C(p)−dA(p−1).

Furthermore, the pth Betti number is given by [39]

bp = dimHp(M), (2.1.19)

which is a topological invariant of the manifold M . For a compact manifold, the

Betti number is finite. Finally, the Hodge decomposition theorem states that every

p-form can uniquely be split into an exact part, a co-exact part and a harmonic part

D̃(p)

C(p) = dA(p−1) + d†B(p+1) + D̃(p). (2.1.20)

Given that C(p) is closed, we obtain C(p) = dA(p−1) + D̃(p) and hence C(p)−dA(p−1) =

D̃(p), which we recognize as an element of the same equivalence class of the pth co-

homology group that C(p) belongs to. Therefore, each equivalence class of the pth

cohomology can be represented by a unique harmonic p-form. Thus, the pth Betti

number corresponds to the number of distinct harmonic p-forms that exist on the

manifold.

Now switching to what we call the pth homology group, we consider the quotient

group of p-cycles modulo all trivial p-chains. Therefore, in complete analogy to the

pth cohomology, the pth homology of a manifold M is defined as

Hp(M) =
{hp| δhp = 0}
{dp| dp = δap+1}

, (2.1.21)

with dimensions bp = dimHp(M). Therefore, two p-cycles are in the same equivalence

class if they differ up to a boundary, meaning hp ∼ hp − δap+1.
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Poincaré duality

The fact that these two quotient groups are constructed with so much analogy, results

in a duality between both spaces, the so-called Poincaré duality. The de Rham’s

theorem states that there exists a isomorphism between the cohomology and the

homology group on a smooth manifold M . Due to this isomorphism, one can state

that for any basis of closed p-forms {C(p),k|k = 1, ..., dimHp(M)} of Hp(M) there

exists a basis of p-cycles {hkp|k = 1, ..., dimHp(M)} of Hp(M) such that we can define

the period of C(p),k along a dual basis of p-cycles hlp∫
hlp

C(p),k = δkl , (2.1.22)

which explicitly shows the one-to-one correspondence between both groups. Further-

more, the duality that maps Hp(M) to Hn−p(M), due to the Hodge star operator,

ensures that for every basis of closed p-forms {C(p),k|k = 1, ..., dimHp(M)} of Hp(M)

there exists a dual basis of closed (n-p)-forms {A(n−p)
l |l = 1, ..., dimHn−p(M)} of

Hn−p(M) such that

∫
M

C(p),k ∧ A(n−p)
l = δkl . (2.1.23)

Therefore, on a manifold M we also have∫
hp

C(p) =

∫
M

C(p) ∧ A(n−p), (2.1.24)

for the p-cycle hp ⊂M that is related to the closed (n-p)-form A(n−p), via the Poincaré

duality.

At last, with these dualities we are able to define an intersection number between a

p-cycle ap and an (n-p)-cycle dn−p on a manifold M as

ap · dn−p =

∫
M

D(p) ∧ A(n−p), (2.1.25)

where D(p) and A(n−p) are the dual forms of the cycles dn−p and ap.
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2.2 Complex manifold

In the previous section we gave a definition of a real manifold, on which we defined

differential forms, cycles and (co)homology groups. We could have done this equally

well for complex manifolds, on which we will focus in this section.

A complex manifold, M , is a manifold with 2n-dimensions which locally looks like

Cn. It allows an indexed collection of charts (Ui, fi) with Ui ⊂ M and fi : Ui → Cn

a one-to-one map such that f(Ui) is open in Cn. For any two overlapping patches

Ui ∩ Uj 6= ∅, the composite function fif
−1
j is holomorphic. This last demand is the

crucial difference with a 2n-dimensional real manifold, where a smooth map between

non-empty intersections of patches is sufficient.

Complex manifolds allow a complex structure on the manifold. A complex structure

is an almost complex structure which is integrable over the manifold. Therefore, we

discuss the latter. An almost complex structure, J , is a (1,1)-tensor field (a multi-

linear map from one vector and one 1-form to the real numbers) with the property

J 2 = −1. (2.2.1)

Locally this can be expressed as

J β
α J

γ
β = −δ γ

α for α, β, γ = 1, ..., 2n, (2.2.2)

which is used to construct the local complex coordinates on the manifold. Let xα, yα

with α = 1, ..., n be a set of real coordinates on M , the locally defined complex

coordinates can be written as

zα = xα + J α
β yβ. (2.2.3)

Now as mentioned above, this almost complex structure must be integrable in order to

have globally defined complex coordinates on the manifold. To meet this integrability

condition, the Nijenhuis tensor

N γ
αβ = (∂αJ ε

β )J γ
ε − J ε

α (∂εJ γ
β )− ((∂βJ ε

α )J γ
ε − J ε

β (∂εJ γ
α )) (2.2.4)
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must vanish. Given this condition, the (1,1)-tensor field J represents the complex

structure of the complex manifold.

2.2.1 Dolbeault cohomology

Similar to the cohomology group defined in section 2.1.3, one can define the so-

called Dolbeault cohomology (or ∂̄-cohomology) on a complex manifold using the

complex structure. Let M be an n-dimensional complex manifold (hence 2n real

dimensions), then one can always introduce a set of holomorphic/antiholomorphic

complex coordinates zα/z̄β̄ with α, β = 1, ..., n. Given this set of coordinates, we can

define a (p,q)-form on the manifold M as

χ(p,q) =
1

p!q!
χα1,...,αp,β̄1,...,β̄qdz

α1 ∧ ... ∧ dzαp ∧ dz̄β̄1 ∧ ... ∧ dz̄β̄q , (2.2.5)

which is fully antisymmetric in both its p holomorphic indices and its q antiholomor-

phic indices. We now split the exterior derivative in two parts

d = ∂ + ∂̄ with locally ∂ = dzα∂α and ∂̄ = dz̄β̄∂β̄, (2.2.6)

such that the operators act on the space of (p,q)-forms Ap,q(M) on the manifold as

∂ : Ap,q(M)→ Ap+1,q(M) and ∂̄ : Ap,q(M)→ Ap,q+1(M). (2.2.7)

The notion of closed and exact with respect to these two operators ∂, ∂̄, called the

Dolbeault operators, is in complete analogy to the exterior derivative. Both Dolbeault

operators are nilpotent.

As the name indicates, the (p+q)th Dolbeault cohomology is defined with respect to

the operator ∂̄

Hp,q

∂̄
(M) =

{C(p,q)| ∂̄C(p,q) = 0}
{D(p,q)|D(p,q) = ∂̄A(p,q−1)}

. (2.2.8)

Thus, we consider the quotient group of closed (p,q)-forms with respect to the ∂̄

operator, modulo the exact forms. The complex dimensions of these groups are

called Hodge numbers

hp,q = dimCH
p,q

∂̄
(M). (2.2.9)
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Any form χ(p,q) ∈ Bp,q

∂̄
(M), where Bp,q

∂̄
(M) denotes the space of ∂̄-closed (p,q)-forms

on the manifold M , can be written as χ(p,q) = ∂̄α(p,q−1) + χ̃(p,q), where χ̃(p,q) is an

harmonic form with respect to the operator

∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ =
1

2
∆. (2.2.10)

Therefore, any Dolbeault cohomology class can uniquely be represented by a harmonic

with respect to the operator ∆∂̄. Note that the last equality of equation (2.2.10) only

holds for compact Kähler manifolds, which will be discussed in section 2.3.

On a compact Kähler manifold, M , the kth cohomology and the (p+q)th Dolbeault

cohomology can be related, using (2.2.10)

Hk(M) =
⊕
k=p+q

Hp,q

∂̄
(M). (2.2.11)

Therefore, a similar expression holds for the relation between the kth Betti number

and the Hodge numbers

bk =
∑
k=p+q

hp,q. (2.2.12)

These Hodge numbers are quite often arranged in a Hodge diamond which, using the

duality relations of this chapter and complex conjugation which relates the left side

to the right side, can be expressed as

h0,0

h1,0 h1,0

· · ·
hn,0 · · hn,0

· · ·
h1,0 h1,0

h0,0

. (2.2.13)

To conclude this section we want to end with how the interior product splits, simi-

lar to the exterior derivative (2.2.6), when acting on a Dolbeault cohomology class.

Consider a vector field X̂ on the manifold M which can be split into its holomorphic
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part and its anti-holomorphic part as

X̂ = X + X̄. (2.2.14)

Then the interior derivatives of these parts can act separately on the space of (p,q)-

forms Ap,q(M) on the manifold as [40]

ιX : Ap,q(M)→ Ap−1,q(M) and ιX̄ : Ap,q(M)→ Ap,q−1(M). (2.2.15)

2.3 Kähler manifold

With the construction of section 2.2, we are now at a point to define a Kähler man-

ifold. A Kähler manifold is a complex manifold that allows for a Hermitian metric.

Whenever a complex manifold also allows for a Hermitian metric, one can always

construct a symplectic (1,1)-form, using the complex structure. To show this, we

start from the Hermiticity condition on the metric written in local coordinates

gαβ = gᾱβ̄ = 0,

gαβ̄ = J γ
α J ε̄

β̄ gγε̄.
(2.3.1)

It therefore follows that one can construct the components of a (1,1)-form

Jαβ̄ = J γ
α gγβ̄, (2.3.2)

written in local coordinates

J = igαβ̄dzα ∧ dz̄β̄. (2.3.3)

On top of this, the symplectic form should obey

dJ = 0, (2.3.4)

in order for J to be the fundamental Kähler form. This is the final defining condition

for a Kähler manifold. From this defining relation, a characteristic aspect of a Kähler

manifold can be constructed. Writing (2.3.4) explicitly using the decomposition of
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the exterior derivative introduced in (2.2.6) one obtains

dJ = i∂[γgα]β̄dzγ ∧ dzα ∧ dz̄β̄ + i∂[γ̄gαβ̄]dz
α ∧ dz̄β̄ ∧ dz̄γ̄ = 0, (2.3.5)

which results in two constraints

∂γgαβ̄ = ∂αgγβ̄ and ∂γ̄gαβ̄ = ∂β̄gαγ̄. (2.3.6)

Therefore, the characteristic result of a Kähler manifold

gαβ̄ = ∂α∂β̄K ⇒ J = i∂∂̄K (2.3.7)

is obtained, where K is called the Kähler potential. Due to these relations the

only non-vanishing Christoffel symbols turn out to be Γγαβ and Γγ̄
ᾱβ̄

. Therefore, the

only non-trivial Riemann tensor is constraint to Rρ
αβγ̄. When considering the Ricci

curvature tensor, it follows that only Rαβ̄ may have a non-vanishing value. With this

tensor the Ricci (1,1)-form is constructed

R = iRαβ̄dzα ∧ dz̄β̄ = i∂∂̄log(
√
g ), (2.3.8)

which implies dR = 0 and defines the first Chern class on the manifold

c1(M) =
[ R

2π

]
. (2.3.9)

2.4 Calabi-Yau manifold

The framework we have set up of defining complex and Kähler manifolds in the

previous sections were needed to define a Calabi-Yau manifold. One can define a

Calabi-Yau manifold in two ways. We will give both since they seem to emphasize

on different properties of a Calabi-Yau manifold [41].

Definition 1: A 2n-dimensional Calabi-Yau manifold, M , is a compact Kähler mani-

fold of n complex dimensions with a no where vanishing holomorphic n-form.

This holomorphic n-form can be represented in complex coordinates zα, z̄ᾱ which
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constitute a basis on M

Ω = Ωα1,...,αn(z) dzα1 ∧ ... ∧ dzαn . (2.4.1)

That this form is holomorphic is reflected in the fact that the coefficient is a holo-

morphic function in the complex coordinates and that it is an (n,0)-form. Due to the

holomorphic property, ∂̄Ω = 0 and since Ω is an (n,0)-form in n-dimensions ∂Ω = 0.

Thus, Ω is closed. One can also show that this holomorphic n-form is co-closed,

therefore it is harmonic.

As a final property we state from this definition, Ω is unique up to constant rescalings.

Definiton 2: A 2n-dimensional Kähler manifold with vanishing first Chern class is

called a Calabi-Yau manifold.

From the fact that the first Chern class vanishes, it is clear that the Ricci form must

be trivial in cohomology. Therefore, the Ricci form is exact and globally defined on

the manifold. This forms the link to the unique holomorphic n-form, connecting the

two definitions. We will not prove the equivalence of both definitions here. We refer

the reader to [41].

A consequence of this definition is that, given any Kähler metric g with a Kähler

form J associated to it (2.3.7), there exists a unique Ricci-flat metric g̃ with associ-

ated Kähler form J̃ such that J̃ is in the same Kähler class as J , i.e. [J ] = [J̃ ]. Thus,

a Kähler manifold with vanishing first Chern class admits in every Kähler class a

unique Ricci-flat metric.

Finally, for this work the restriction to three complex dimensions will be most rele-

vant. An important property of a Calabi-Yau threefold is that its moduli space M
splits into a direct product of two special Kähler manifolds, the Kähler class moduli

space and the complex structure moduli space

M =MKähler class ×Mcomplex structure. (2.4.2)

Special Kähler manifolds are distinguished by the fact that the Kähler potential can

be expressed in terms of a holomorphic prepotential [42]. We will elaborate on the

moduli space of a Calabi-Yau threefold in later chapters.
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Chapter 3

Moduli spaces

In Type IIB theory on a Calabi-Yau threefold Y3, one starts from an N = 2 ten-

dimensional supergravity action and obtains after compactification an N = 2 super-

symmetric effective theory in four dimensions. In such a reduction there is a freedom

of the metric on a Calabi-Yau threefold allowing for fluctuations of the metric, con-

strained to the defining properties of a Calabi-Yau manifold, discussed in section 2.4.

Therefore, our interest goes to those infinitesimal fluctuations of the metric g + δg

allowing the manifold to remain Kähler and Ricci-flat. Expanding Rµν(g + δg) = 0

to first order in δg and recalling that Rµν(g) = 0, we arrive at [43]

∆Lδgµν ≡ ∇2δgµν + 2R ρ σ
µ ν δgρσ = 0 (3.0.1)

after fixing the diffeomorphism invariance, since we are not interested in δg generated

by a coordinate transformation. The operator ∆L is known as the Lichnerowicz

operator. Given the index structure of the metric, equation (3.0.1) decouples for

fluctuations δgαβ̄ and δgαβ. Hence, studying these deformations separately, we will

start with fluctuations related to the Kähler form.

Metric variations δgαβ̄ lead to non-trivial cohomology changes of the corresponding

Kähler form J , i.e. given J the Kähler form corresponding to gαβ̄ and J ′ corresponds

to gαβ̄ + δgαβ̄, then [J ] 6= [J ′]. However, as stated in section 2.4 every Kähler class

admits an unique Ricci-flat metric. Since we want to keep track of these Kähler class

deformations in the lower-dimensional theory, we expand the Kähler form according

to [44]
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Jαβ̄ = vi(ωi)αβ̄, i = 1, ..., h1,1(Y3), (3.0.2)

where ωi denote a basis of harmonic (1,1)-forms on the Calabi-Yau threefold. Com-

bining this with the relation between the metric and the Kähler form (2.3.3) we can

determine the massless modes arising from the Kähler class deformations

δgαβ̄ = −ivi(ωi)αβ̄, (3.0.3)

where vi are real scalar fields in the effective four-dimensional theory, called Kähler

moduli.

In a similar fashion, one can also study the deformations of the metric disrupting the

complex Hermitian metric structure (2.3.1). The massless modes arising from the

complex structure deformations of Y3 are encoded as [44]

δgαβ =
i

||Ω||2
z̄s(χ̄s)αγ̄1γ̄2Ωγ̄1γ̄2

β, s = 1, ..., h1,2(Y3), (3.0.4)

with the lower-dimensional scalar fields zs named complex structure moduli, Ω the

unique three-form and χs constitute a basis of harmonic (2,1)-forms.

The lower-dimensional scalar fields resulting from these fluctuations are the mod-

uli fields and the space they live on is a scalar manifold called the moduli space,

which incorporates the geometry of the manifold. The moduli fields are viewed as co-

ordinates on the scalar manifold. As stated before, the moduli space of a Calabi-Yau

threefold, in N = 2 Type IIB theory, splits into a direct product of the (h1,1(Y3)+1)-

dimensional Kähler class, spanned by the scalars of the hypermultiplets and the

h2,1(Y3)-dimensional complex structure moduli space describing the scalars of the

vector multiplets [34, 45]

M =Mh1,1(Y3)+1
Kähler ×Mh2,1(Y3)

complex structure. (3.0.5)

Since the resulting lower-dimensional theory is a d = 4, N = 2 supergravity, the

Kähler class moduli space is a quaternionic Kähler manifold, while the complex struc-

ture moduli space is a (local) special Kähler manifold [46, 47]. A quaternionic Kähler

manifold differs from a Kähler manifold by its holonomy group. Extremely simplified,



3.1. KÄHLER CLASS MODULI SPACE 29

the intuition of a holonomy group can be described with parallel transport. When

parallel transporting a vector ~v along a closed curve on a manifold, one transforms

the vector into G~v. The holonomy group is formed by collecting all elements G ob-

tained in this way [43]. A Riemannian manifold of real dimension 4n, with n ≥ 2,

whose holonomy group is a subgroup of Sp(n)Sp(1)1 is called a quaternionic Kähler

manifold. A Kähler manifold of complex dimension n has holonomy group U(n). For

further interest, we refer the reader to [48].

3.1 Kähler class moduli space

Starting with the Kähler class, we define the triple intersection number

Kijk =

∫
Y3

ωi ∧ ωj ∧ ωk, (3.1.1)

where ωi are harmonic (1,1)-forms of H1,1(Y3).

Since the Kähler form can be expanded as J = viωi we can write

Kij =

∫
Y3

ωi ∧ ωj ∧ J = Kijkvk (3.1.2)

Ki =

∫
Y3

ωi ∧ J ∧ J = Kijkvjvk (3.1.3)

6VY3 = K =

∫
Y3

J ∧ J ∧ J = Kijkvivjvk (3.1.4)

in which VY3 denotes the volume of the Calabi-Yau threefold.

The metric of the Kähler class moduli space turns out to be

gij =
1

4VY3

∫
Y3

ωi ∧ ?ωj, (3.1.5)

which does not yet show the characteristic form of equation (2.3.7) explicitly, but

1Sp(n) refers to the symplectic group.
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rewriting it with

? ωj = −J ∧ ωi +
Ki

4VY3

J ∧ J (3.1.6)

results in the expression [34]

gij = −1

4

(Kij
VY3

− KiKj
4V 2

Y3

)
= ∂i∂̄j(−ln8VY3). (3.1.7)

The inverse metric can be expressed in terms of the dual (2,2)-forms ω̃i [34]

gij = 4VY3

∫
Y3

ω̃i ∧ ?ω̃j = −4VY3

(
Kij − vivj

2VY3

)
, (3.1.8)

in which we defined

KijKjk = δik. (3.1.9)

From the metric in (3.1.7) we observe that the Kähler potential, K, can be written

e−K = 8VY3 . (3.1.10)

We have yet explained that to keep track of the Kähler class deformations in the lower-

dimensional theory we expand these deformations according to (3.0.3). Likewise, a

Type IIB theory comes with an anti-symmetric two tensor B̂ which is expanded in a

similar fashion as the metric gαβ̄,

B̂ = biωi. (3.1.11)

Combining the lower-dimensional fields resulting from the expansion of the Kähler

class deformations and the anti-symmetric two-form, we can construct a complex

coordinate XI = (1, ti) in which ti is a scalar in the hypermultiplets defined as

ti = bi + ivi. (3.1.12)

In terms of these coordinates XI and a prepotential F we can write the Kähler

potential as

e−K = i(X̄IFI −XIF̄I), (3.1.13)
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with prepotential [43]

F = − 1

3!

KijkX iXjXk

X0
and FI ≡

∂

∂XI
F , (3.1.14)

which fully determines the Kähler potential, making it a special Kähler manifold [42].

This prepotential again appears in the coupling matrix NIJ between the hypermul-

tiplets in Type IIB as [44]

NIJ = F̄IJ +
2i

XM ImFMNXN
ImFIKXKImFJLXL, (3.1.15)

with real and imaginary parts given by

ReN00 = −1

3
Kijkbibjbk, ImN00 = −VY3 +

(
Kij −

1

4

KiKj
VY3

)
bibj, (3.1.16)

ReNi0 =
1

2
Kijkbjbk, ImNi0 = −

(
Kij −

1

4

KiKj
VY3

)
bj, (3.1.17)

ReNij = −Kijkbk, ImNij =
(
Kij −

1

4

KiKj
VY3

)
. (3.1.18)

3.2 Complex structure moduli space

To construct the complex structure moduli space we need a basis of harmonic three-

forms on the Calabi-Yau manifold. Hence, we start by introducing these. A Calabi-

Yau threefold has one unique (3,0)-form Ω and h2,1(Y3) different harmonic (2,1)-forms

χs with s = 1, ..., h2,1(Y3), which together with their complex conjugates span a space

of all three-forms on Y3, H3(Y3) = H3,0
⊕

H2,1
⊕

H1,2
⊕

H0,3 [49]. Note that this

basis was already used in (3.0.4) for the expansion of the pure metric deformations.

Two important relations for these forms are [43, 45]

? Ω = −iΩ and ? χs = iχs, (3.2.1)

from which we see that χs is a primitive (2,1)-form, since in general one would expect

[43]

? β = iβ − iω ∧ ?(ω ∧ β) (3.2.2)
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for a (2,1)-form β. However, the contraction between χs and the Kähler form vanishes,

making χs a so-called primitive form.

Furthermore, ∂
∂zs

Ω is in H3,0
⊕

H2,1 since the Kähler covariant derivative of Ω is

given by [43]

DsΩ =
∂

∂zs
Ω− ksΩ = iχs, (3.2.3)

with zs the complex structure moduli fields (3.0.4) and ks given by

ks = −∂sK, (3.2.4)

where K is the Kähler potential, we will come back to in a second.

Another basis that spans the space of H3(Y3) is the symplectic basis of three-forms∫
Y3

αI ∧ βJ = δJI ,

∫
Y3

αI ∧ αJ =

∫
Y3

βI ∧ βJ = 0, (3.2.5)

with 2(h2,1 + 1) real three-forms αI , β
J .

These two bases can be related through [43]

Ω = ZIαI −HIβ
I , (3.2.6)

where HI and ZI are periods of Ω defined by

HI =

∫
Y3

Ω ∧ αI , and ZI =

∫
Y3

Ω ∧ βI . (3.2.7)

Analog to the Kähler class, the coordinates on the complex structure moduli space

are ZI = (1, zs) and the first derivative of an N = 2 sypersymmetric holomorphic

prepotential H of degree 2 in the coordinates ZI is represented by HI = ∂IH. From

(3.2.6) we can deduce

∂IΩ = αI −HIJβ
J , (3.2.8)

defining HIJ = ∂I∂JH. Thus, combining (3.2.3) and (3.2.8) leads to2

kIΩ + iχI = αI −HIJβ
J , (3.2.9)

2Implicitly a coordinate redefinition has been made [43].
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an important result that will be used later.

The metric on the complex structure moduli space that connects the scalars zs of

the vector multiplets is given by [34]

Gs̄r = −
i
∫
Y3
χs ∧ χ̄r̄∫

Y3
Ω ∧ Ω̄

= − i

VY3||Ω||2

∫
Y3

χs ∧ χ̄r̄ = ∂s∂r̄(−ln(i

∫
Y3

Ω ∧ Ω̄)), (3.2.10)

using (3.2.3) for the last equality. Hence, we obtain the Kähler potential

e−K = i

∫
Y3

Ω ∧ Ω̄ = i(Z̄IHI − ZIH̄I), (3.2.11)

where we have used equations (2.3.7), (3.2.5) and (3.2.6). Again, we observe that

the Kähler potential is fully determined by the holomorphic prepotential. Therefore,

the complex structure moduli space of a Calabi-Yau threefold is a special Kähler

manifold [42].

In (3.1.15) the coupling matrix of the hypermultiplets was already stated, similarly

we will now give the N = 2 gauge coupling matrix between the vector multiplets in

four-dimensional Type IIB. In order to do so we have to determine the integrals in

the reduction that contain Hodge duals of the symplectic basis of H3(Y3). The latter

are given by [49]

?αI = A J
I αJ +BIJβ

J ,

?βI = CIJαJ +DI
Jβ

J ,
(3.2.12)

with matrices A,B,C and D

A I
J = −

∫
Y3

βI ∧ ?αJ , BIJ =

∫
Y3

αI ∧ ?αJ ,

CIJ = −
∫
Y3

βI ∧ ?βJ , DJ
I =

∫
Y3

αI ∧ ?βJ ,
(3.2.13)

which determine the N = 2 gauge kinetic coupling matrix of the vector multiplets

MIJ = A K
I CKJ + iCIJ . (3.2.14)

We defined CIJ to be the inverse of CIJ and mention that these matrices fulfill the
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properties [50]

AT = −D, BT = B, CT = C. (3.2.15)

One can write the gauge coupling matrix M in terms of the prepotential, which

results in [51]

MIJ = H̄IJ +
2i

ZKImHKLZL
ImHIMZ

M ImHJNZ
N , (3.2.16)

with the matrices A,B and C in terms of M [49]

A = (ReM)(ImM)−1,

B = −(ReM)(ImM)−1(ReM)− (ImM),

C = (ImM)−1.

(3.2.17)
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Chapter 4

IIB reduction on Y3 inlcuding

O3/O7-planes

In this chapter we perform a dimensional reduction of the bulk action of the ten-

dimensional N = 2 Type IIB supergravity at tree level on a Calabi-Yau threefold

including O3/O7 orientifold planes. We expand the ten-dimensional fields of the

supergravity action according to their equations of motion in harmonics on the Calabi-

Yau threefold, restricting the theory to the subspace invariant under the orientifold

projection O, and integrate out the internal coordinate dependence. We choose the

ten-dimensional spacetime background to be M(1,9) = R1,3 × Y3/O, with Y3/O a

compact Calabi-Yau orientifold.

4.1 The spectrum

Ignoring the orientifold projection for the moment, we write the metric according to

the block diagonal spacetime1

〈dŝ2
10〉 = ηµνdx

µdxν + 2ğmn̄dymdȳn̄, (4.1.1)

where ğmn̄ is the background value of the metric on the Calabi-Yau threefold. Note

1Throughout the thesis we will denote the higher-dimensional objects with a hat.
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that locally this means ğmn = ğm̄n̄ = 0, in agreement to the Hermicity condition on

the metric (2.3.1). Recall from section 1.2 that the effective four-dimensional theory

we obtain after compactifying on the threefold Y3 includes all massless fluctuations

around the background. These fluctuations can be deduced from the Hodge diamond,

stating the number of harmonic forms, of a Calabi-Yau threefold

1

0 0

0 h1,1 0

1 h2,1 h1,2 1

0 h1,1 0

0 0

1

. (4.1.2)

As discussed in chapter 3, the fluctuations around the background metric (4.1.1)

can be divided into two types of deformations. The Kähler class deformations are

the mixed forms δgmn̄ and the pure metric deformations δgmn and δgm̄n̄ break the

complex Hermitian metric structure (2.3.1).

Recall from equations (3.0.3) and (3.0.4) that up to first order in the moduli fields,

the metric on the threefold Y3 reads

gmn̄ = ğmn̄ − ivi(ωi)mn̄
gmn = z̄s(b̄s)mn,

(4.1.3)

with

(b̄s)mn =
i

||Ω||2
(χ̄s)mē1ē2Ωē1ē2

n. (4.1.4)

To include the orientifold projection, the states not invariant under the projection

have to be modded out of the spectrum. The orientifold projection acting on the

Type IIB states is given by

O = (−1)FLΩpσ
∗. (4.1.5)

Here FL is the spacetime left-moving fermion number, Ωp the world-sheet parity op-

erator that mods out the string orientation and σ∗ is the pullback of an internal

symmetry acting only on the Calabi-Yau threefold and leaving the four-dimensional
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Minkowskian spacetime invariant. Due to the orientifold projection N = 2 super-

symmerty is broken. However, maintaining N = 1 supersymmetry, σ is required to

be an isometric and holomorphic involution of Y3 [50, 52, 53].

The fixed point set (or each disconnected component) of this involution spans the

O-planes. Note that since the involution does not act on the Minkowski space, all

orientifold planes are spacetime filling. Since we will discuss D7-branes in this work,

we want to include O3/O7-planes to the theory. Meaning, given the complex coor-

dinates ym with m = 1, 2, 3 on the Calabi-Yau threefold, we choose the action of the

involution to be2 σymσ−1 = ±ym with either all three complex directions reflected

creating O3-planes or just one complex direction reversed resulting in O7-planes [46].

This means the involution σ must be constrained to act on the unique (3,0)-form Ω

as

σ∗Ω = −Ω. (4.1.6)

We preform the reduction of the bulk N = 2 ten-dimensional democratic action of

Type IIB supergravity given in the string frame by

S
(10)
Bulk IIB, SF = − 1

2κ2
10

∫
e−2φ̂R̂∗̂1+

1

2
e−2φ̂(8dφ̂∧ ∗̂dφ̂− Ĥ ∧ ∗̂Ĥ)− 1

4

∑
p=1,3,
5,7,9

Ĝ(p)∧ ∗̂Ĝ(p),

(4.1.7)

where κ10 is the ten-dimensional gravitational coupling constant, Ĥ is the field

strength of the anti-symmetric two tensor B̂, i.e. Ĥ = dB̂ , φ̂ the ten-dimensional

dilaton and the field strengths Ĝ(p) are defined to be

Ĝ(p) =

 dĈ(0) p = 1,

dĈ(p−1) − dB̂ ∧ Ĉ(p−3) else,
(4.1.8)

with Ĉ(p−1) for p = 1, 3, 5, 7, 9 the anti-symmetric ten-dimensional potential fields

from the open string Ramond-Ramond sector. We will expand according to the

vanishing backgrounds 〈Ĉ(p)〉 = 〈B̂〉 = 0. Since the democratic action contains all

Ramond-Ramond forms of Type IIB supergravity, the equations of motion have to

be supplemented by the duality constraints

2The minus sign denotes the reflection of orientation.
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Ĝ(1) = ∗̂Ĝ(9), Ĝ(3) = (−1)∗̂Ĝ(7), Ĝ(5) = ∗̂Ĝ(5). (4.1.9)

Next, the Kaluza-Klein spectrum of this compactification is obtained by expanding

all fields according to their equations of motion into harmonics on the Calabi-Yau

threefold. The Hodge diamond of a Calabi-Yau threefold (4.1.2) contains the infor-

mation necessary for this expansion. This results in the massless four-dimensional

N = 2 Kaluza Klein spectrum. However, as mentioned before, truncating the spec-

trum further by keeping only the states invariant under the orientifold projection O,

results in the four-dimensional massless N = 1 Kaluza Klein spectrum. We first note

that the harmonic forms of Hp,q

∂̄
(Y3) split into positive and negative eigenforms under

σ∗ [34, 52, 54]. Therefore, our chosen basis for all Dolbeault cohomology groups splits

as Hp,q

∂̄
(Y3) = Hp,q

∂̄,+
(Y3)×Hp,q

∂̄,−(Y3) and is shown in Table 4.1 [32].

space basis dimension space basis dimension

H1,1

∂̄,+
(Y3) ωα α = 1, ..., h1,1

+ H1,1

∂̄,−(Y3) ωa a = 1, ..., h1,1
−

H2,2

∂̄,+
(Y3) ω̃α α = 1, ..., h1,1

+ H2,2

∂̄,−(Y3) ω̃a a = 1, ..., h1,1
−

H3
+(Y3) αα̂, β

α̂ α̂ = 1, ..., h2,1
+ H3

−(Y3) αâ, β
â â = 0, ..., h2,1

−
H2,1

∂̄,+
(Y3) χα̃ α̃ = 1, ..., h2,1

+ H2,1

∂̄,−(Y3) χã ã = 1, ..., h2,1
−

H1,2

∂̄,+
(Y3) χ̄α̃ α̃ = 1, ..., h2,1

+ H1,2

∂̄,−(Y3) χ̄ã ã = 1, ..., h2,1
−

Table 4.1 – Cohomology basis

In order to determine which states are projected out by the orientifold projection

given in (4.1.5), we need to know how the world-sheet parity operator and the left-

moving fermion number act on the states.

From the fact that the world-sheet parity operator acts on the world-sheet bosons,

on a string of length l, as [46]

ΩpX̂
µ(τ, σ)Ω−1

p = X̂µ(τ, l − σ) (4.1.10)

and similarly for the world-sheet fermions. One can deduce the eigenvalues of the

NS-NS fields and the Ramond-Ramond fields under this operator [55]

Ωp = +1 : φ̂, ĝµν , Ĉ2, Ĉ6

Ωp = −1 : B̂µν , Ĉ0, Ĉ4, Ĉ8.
(4.1.11)
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Finally, since all NS-NS fields have eigenvalue +1 under the operator (−1)FL and

Ramond-Ramond fields eigenvalue -1, we conclude that in order for states to be

invariant under the orientifold projection (4.1.5), and hence not to be projected out,

they must obey to the eigenvalues

σ∗ = +1 : φ̂, ĝµν , Ĉ0, Ĉ4, Ĉ8

σ∗ = −1 : B̂µν , Ĉ2, Ĉ6.
(4.1.12)

under the involution operator. This brings us to the expansions [32]

Ĵ = vα(x)ωα, B̂ = ba(x)ωa, φ̂ = φ(x)1, (4.1.13)

Ĉ(8) = l̃(2)(x) ∧ Ω ∧ Ω̄∫
Y3

Ω ∧ Ω̄
,

Ĉ(6) = c̃(2)
a (x) ∧ ω̃a,

Ĉ(4) = Dα
(2)(x) ∧ ωα + V α̂(x) ∧ αα̂ + Uα̂(x) ∧ βα̂ + ρα(x)ω̃α,

Ĉ(2) = ca(x)ωa,

Ĉ(0) = l(x)1,

(4.1.14)

with scalar fields vα, ba, φ, ρα, c
a and l, vector fields V α̂ and Uα̂ and two-form tensor

fields l̃(2), c̃
(2)
a and Dα

(2).

Finally, since the metric has a positive eigenvalue under the operator (−1)FLΩp and

the involution acts on the unique (3,0)-form as given in (4.1.6), the expansion of the

complex structure deformations (4.1.3) becomes

gmn = z̄ã(b̄ã)mn. (4.1.15)

4.2 Bulk compactification

Before starting the dimensional reduction of the bulk ten-dimensional Type IIB action

(4.1.7), we preform a Weyl rescaling (ĝMN)old = eφ/2(ĝMN)new to switch from the

string frame to the Einstein frame for convenience. Ignoring total derivatives the
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action in the Einstein frame becomes

S
(10)
Bulk IIB, EF = − 1

2κ2
10

∫
R̂∗̂1− 1

2
dφ̂∧∗̂dφ̂− 1

2
e−φ̂Ĥ ∧∗̂Ĥ− 1

4

∑
p=1,3,
5,7,9

e
φ̂
2

(5−p)Ĝ(p)∧∗̂Ĝ(p).

(4.2.1)

A more detailed discussion of how one should preform such a Weyl rescaling is in-

cluded in appendix B.

We begin with the dimensional reduction of the Einstein-Hilbert term up to second

order in the moduli fields

S
(10)
EH, EF = − 1

2κ2
10

∫
R̂∗̂1. (4.2.2)

The ten-dimensional Ricci scalar is given by

R̂ = ĝMN R̂P
MPN = gµνRρ

µρν +
[
gµνRm

µmν + gmn(Rµ
mµn +Rp

mpn +Rp̄
mp̄n)

+ gmn̄(Rµ
mµn̄ +Rp

mpn̄ +Rp̄
mp̄n̄) + c.c.

]
,

(4.2.3)

with R̂R
MPN the Riemann curvature tensor

R̂R
MPN = ∂P Γ̂RNM − ∂N Γ̂RPM + Γ̂RPLΓ̂LNM − Γ̂RNLΓ̂LPM (4.2.4)

and Christoffel symbols

Γ̂RMN =
1

2
ĝRP (∂M ĝPN + ∂N ĝPM − ∂P ĝMN). (4.2.5)

Deriving all terms of the Ricci scalar (4.2.3) up to second order in moduli fields, using

the background given in (4.1.1) expanded according to (4.1.13) and (4.1.15), results

in the lower-dimensional Einstein-Hilbert action

S
(4)
EH, EF = − 1

2κ2
10

∫
d10x
√
−g10

[
R +

(1

2
(ωα)n̄m(ωβ)mn̄ − (ωα) mm (ωβ) nn

)
(∂µv

α)∂µvβ

− 1

2
(bã)

mn(b̄b̃)mn(∂µz
ã)∂µz̄b̃

]
.

(4.2.6)
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The details of this derivation are presented in appendix C.

When compactifying all other terms on the background (4.1.1), we use the Hodge

star decomposition (2.1.12) combined with the expansions (4.1.13) and (4.1.14). The

dimensional reduction of (4.2.1) results in∫
Ĥ ∧ ∗̂Ĥ =

2K
3
Gab

∫
dba ∧ ∗dbb, (4.2.7)∫

Ĝ(1) ∧ ∗̂Ĝ(1) =
K
6

∫
dl ∧ ∗dl, (4.2.8)∫

Ĝ(3) ∧ ∗̂Ĝ(3) =
2K
3
Gab

∫
(dca − ldba) ∧ ∗(dcb − ldbb), (4.2.9)

∫
Ĝ(5) ∧ ∗̂Ĝ(5) =

∫
2K
3
GαβdDα

2 ∧ ∗dD
β
2 +

3

2K
Gαβdρα ∧ ∗dρβ +Bα̂β̂dV α̂ ∧ ∗dV β̂

− C α̂β̂dUα̂ ∧ ∗dUβ̂ − 2A α̂
β̂

dUα̂ ∧ ∗dV β̂ − cadbb ∧ ∗dρα
∫
Y3

ωa ∧ ωb ∧ ?ω̃α

+ (cadbb) ∧ ∗(ccdbd)
∫
Y3

ωa ∧ ωb ∧ ?(ωc ∧ ωd),

(4.2.10)

∫
Ĝ(7) ∧ ∗̂Ĝ(7) =

∫
3

2K
Gabdc̃2

a ∧ ∗dc̃2
b − 2dba ∧Dα

2 ∧ ∗dc̃2
b

∫
Y3

ωa ∧ ωα ∧ ?ω̃b

+ dba ∧Dα
2 ∧ ∗(dbb ∧D

β
2 )

∫
Y3

ωa ∧ ωα ∧ ?(ωb ∧ ωβ),

(4.2.11)∫
Ĝ(9) ∧ ∗̂Ĝ(9) =

∫
6

K
dl̃2 ∧ ∗dl̃2 +

6

K
dba ∧ c̃2

a ∧ ∗(dbb ∧ c̃2
b)−

12

K
(dba ∧ c̃2

a) ∧ ∗dl̃2,

(4.2.12)

in which we used that there are no 1-forms on a Calabi-Yau threefold and that the

unique 6-form is positive under the involution. Therefore, we are able to write

ωa ∧ ω̃b = δba
Ω ∧ Ω̄∫
Y3

Ω ∧ Ω̄
=

1

VY3

δbaΩ ∧ Ω̄, (4.2.13)
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where VY3 denotes the volume of the Calabi-Yau threefold and 6VY3 = K, with

K =

∫
Y3

J ∧ J ∧ J = Kαβγvαvβvγ. (4.2.14)

Note that the volume form dVY3 of the Calabi-Yau threefold is even under the invo-

lution, therefore Kabc = 0 since ωa ∧ ωb ∧ ωc is odd under the involution.

Hence, all non vanishing intersection numbers are

Kαβγ =

∫
Y3

ωα ∧ ωβ ∧ ωγ,

Kαβ = Kαβγvγ,
Kα = Kαβγvβvγ,

Kab =

∫
Y3

ωa ∧ ωb ∧ J = Kabγvγ.

(4.2.15)

Furthermore, we defined the metrics on the space of harmonic two-forms

Gab =
1

4VY3

∫
Y3

ωa ∧ ?ωb = −3

2

Kab
K
, (4.2.16)

Gαβ =
1

4VY3

∫
Y3

ωα ∧ ?ωβ = −3

2

(Kαβ
K
− 3

2

KαKβ
K2

)
(4.2.17)

and denoted their inverse metrics by Gab and Gαβ respectively.

The metric on the complex structure deformations zã is defined to be

Gãb̃ =
1

4VY3

∫
Y3

bã ∧ ?b̄b̃ =
∂2

∂zã∂z̄b̃
KCS(z, z̄), (4.2.18)

with Kähler potential

KCS(z, z̄) = −ln(i

∫
Y3

Ω ∧ Ω̄). (4.2.19)

Finally, the introduced coefficients of the vector fields Uα̂ and V α̂ are given by [49]

A α̂
β̂

= −
∫
Y3

βα̂ ∧ ?αβ̂, Bα̂β̂ =

∫
Y3

αα̂ ∧ ?αβ̂, C α̂β̂ = −
∫
Y3

βα̂ ∧ ?ββ̂,

(4.2.20)
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which is consistent with

? αα̂ = A β̂
α̂ αβ̂ +Bα̂β̂β

β̂, ?βα̂ = C α̂β̂αβ̂ +Dα̂
β̂
ββ̂. (4.2.21)

Furthermore, defining the matrix

Mα̂β̂ = A γ̂
α̂ Cγ̂β̂ + iCα̂β̂ (4.2.22)

implies the identities

A = ReM(ImM)−1, B = −ImM − ReM(ImM)−1ReM, C = (ImM)−1,

(4.2.23)

where we have written (C α̂β̂)−1 = Cα̂β̂ = (ImM)α̂β̂.

Note that all the above definitions (4.2.14) - (4.2.17) correspond exactly to what

is defined for the Kähler class moduli space in section 3.1, if one takes into account

that the orientifold projection (4.1.5) mods out the states not invariant under the

projection.

The same holds for the comparison between the complex structure moduli space de-

fined in section 3.2 and the definitions (4.2.18) - (4.2.23).

Therefore, judging from the way the full Kähler potential, which follows from the re-

duction of N = 2 Type IIB supergravity on a Calabi-Yau threefold including O3/O7-

planes, decomposes into two parts [34], the moduli space becomes block diagonal and

reads

M =Mh1,1(Y3)+1
Kähler class ×M

h2,1
− (Y3)

complex structure. (4.2.24)

This scalar manifold is restricted to be Kähler since the N = 1 supersymmetry im-

poses this constraint in four dimensions. Even more, the moduli space is required

to be a Hodge Kähler manifold, due to the fact that the chiral supermultiplets are

a representation of d = 4, N = 1 supergravity [47]. A Hodge Kähler manifold is a

Kähler manifold with a Hodge metric, meaning that the fundamental Kähler form

defines a cohomology class of integral forms. The latter are forms defined on the

manifold whose integral over any cycle of this manifold is integer [56]. The Kähler

class moduli space is a Kähler manifold and the complex structure moduli space is

even a special Kähler manifold [34].
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Furthermore, for orientifold compactifications with O3/O7-planes, relation (3.2.16)

alters due to the fact that the fields zα̃, z̄α̃ are projected out by the orientifold, re-

sulting in [34]

M̄α̂β̂ ≡ M̄IJ

∣∣∣
zα̃=z̄α̃=0

= HIJ

∣∣∣
zα̃=z̄α̃=0

. (4.2.25)

From here on we will denote Hα̂β̂ = HIJ

∣∣∣
zα̃=z̄α̃=0

.

From (4.2.6) it is clear that we should preform a second Weyl-rescaling in order

to obtain the standard four-dimensional Einstein-Hilbert term. Thus, we rescale the

action with (gµν)
old = V −1

Y3
(gµν)

new and rewrite the coefficient matrices using

dln(VY3) =
1

6VY3

d(Kαβγvαvβvγ) =
3

6VY3

Kαβγvαvβdvγ =
1

2VY3

Kαdvα (4.2.26)

to obtain the low-energy four-dimensional effective N = 1 action [32]

S
(4)
Bulk, EF =

1

2κ2
4

∫ [
−R ∗ 1 + 2Gãb̃dz

ã ∧ ∗dz̄b̃ + 2Gαβdvα ∧ ∗dvβ

+
1

2
d(lnVY3) ∧ ∗d(lnVY3) +

1

2
dφ ∧ ∗dφ+

1

4
e2φdl ∧ ∗dl + 2e−φGabdb

a ∧ ∗dbb

+
K2

36
GαβdDα

(2) ∧ ∗dD
β
(2) +

9

4K2
Gαβdρα ∧ ∗dρβ −

9

2K2
KabαGαβ(cadbb) ∧ ∗dρβ

+
9

4K2
(KabαKcdβGαβ +KabeKcdfGef )(cadbb) ∧ ∗(ccdbd) +

1

16
e−φGabdc̃(2)

a ∧ ∗dc̃
(2)
b

+
1

16
e−φKabαKcdβGbd

(
dba ∧Dα

(2)

)
∧ ∗
(
dbc ∧Dβ

(2)

)
(4.2.27)

− 1

8
e−φKabαGbc

(
dba ∧Dα

(2)

)
∧ ∗dc̃(2)

c + eφGab(dc
a − ldba) ∧ ∗(dcb − ldbb)

+
1

4
e−2φdl̃(2) ∧ ∗dl̃(2) +

1

4
e−2φdba ∧ c̃(2)

a ∧ ∗(dbb ∧ c̃
(2)
b )− 1

2
e−2φ

(
dba ∧ c̃(2)

a

)
∧ ∗dl̃(2)

+
1

4
Bα̂β̂dV α̂ ∧ ∗dV β̂ − 1

4
C α̂β̂dUα̂ ∧ ∗dUβ̂ −

1

2
A α̂
β̂

dUα̂ ∧ ∗dV β̂
]
.

An important remark here is that (4.2.27) has double the amount of degrees of free-

dom that we would expect. This is due to the fact that we have compactified the

democratic version of the Type IIB action and have yet to impose the duality relations

(4.1.9).
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Chapter 5

IIB reduction on Y3 including a

D7-brane

We will include a single spacetime filling D7-brane in this chapter. Meaning, we will

be discussing a U(1) Abelian gauge theory. After generally defining the (2,2)-cycle

on which the brane is wrapped, we consider the spectrum of the brane consisting of

the U(1) gauge field on the brane and the fluctuations in the directions normal to the

brane. Hereafter, compactifying and collecting all lower-dimensional terms obtained

so far, we impose the self-duality relations upon the action. Finally, we write the

obtained four-dimensional theory in the N = 1 supergravity representation and read

of the gauge kinetic coupling function of which we discuss its holomorphic property.

5.1 D7-brane

The internal part of the D7-brane worldvolume, W , has four legs on Y3. Therefore,

in reducing the action, it is wrapped on a (2,2)-cycle of the Calabi-Yau threefold, due

to restrictions on Y3, which are captured in the Hodge diamond (4.1.2).

Consider a four-cycle S1 ⊂ Y3 on which the D7-brane is wrapped. Since we discuss an

orientifold theory M(1,9) = R1,3×Y3/O, we must include its image D7-brane wrapped

on the four-cycle σ(S1). We will assume that the D7-brane and its image are disjoint,

meaning S1 ∩ σ(S1) = ∅. However, we only wanted to include a single spacetime
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filling D7-brane. Therefore, we construct the internal four-cycle

S+ = S1 ∪ σ(S1) (5.1.1)

on which the brane is wrapped, such thatW = R1,3×S+, the worldvolume of the D7-

brane, is invariant under the involution, making it an O-plane. In this way, we prevent

the problem of having to include the image brane by construction. By requiring the

empty intersection S1 ∩ σ(S1) = ∅, we implicitly required that the involution does

not have any fixed points in the four-cycle S1. If this would have been the case, we

would expect extra massless states in the twisted open string sector [57]. For later

convenience we define

S− = S1 ∪ −σ(S1), (5.1.2)

where the minus sign denotes the flipping of orientation of the cycle. Thus, the two

cycles we have defined obey σ(S±) = ±S±.

The spectrum of the D7-brane consists of two parts, namely the degrees of free-

dom due to the U(1) gauge field on the brane and secondly the fluctuations of the

embedding of the four-cycle into the two directions of the Calabi-Yau threefold, nor-

mal to the internal cycle. Both type of degrees of freedom belong to the bosonic part

of the action. We will start by discussing the former.

5.1.1 U(1) gauge field on the brane

Since the U(1) gauge boson Â on the worldvolume of the brane is negative under the

world-sheet parity operator Ωp, we expand it in harmonics of the four-cycle S+

Â = A(x)P−(y) + aI(x)AI(y) + āJ̄(x)ĀJ̄(y), (5.1.3)

where {AI} and {ĀJ̄} form a basis ofH0,1

∂̄,−(S+) andH1,0

∂̄,−(S+) respectively.Furthermore,

P−(y) is an element of H0
−(S+) obeying the relation

P−(y) =

 +1 y ∈ S1,

−1 y ∈ σ(S1).
(5.1.4)
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The lower-dimensional Minkowski fields resulting from this expansion are a four-

dimensional U(1) gauge vector A(x) and the Minkowski scalars aI and āJ̄ , called

Wilson lines. The four-dimensional gauge vectors AI and ĀJ̄ are on the cycle S+.

The lower-dimensional vector boson A(x) contains less degrees of freedom than the

higher-dimensional gauge vector Â. However, all gauge degrees of freedom of the orig-

inal eight-dimensional vector boson Â should be captured in the lower-dimensional

theory. Those gauge degrees of freedom captured by the Wilson lines give rise to a

shift symmetry of both aI(x) and āJ̄(x). This is demonstrated with a simple example

of a circle reduction in appendix D.

Due to the expansion of the ten-dimensional gauge vector Â in the forms AI which

constitute a basis of H0,1

∂̄,−(S+), their coefficients aI are holomorphic in the complex

structure moduli fields. Similarly, the fields āJ̄ are anti-holomorphic in the complex

structure.

Additionally D-branes may carry lower-dimensional Ramond-Ramond charges, dis-

tributed over the brane, which appear as background fluxes f within the field strength.

Therefore, the field strength F̂ on the brane in the presence of background fluxes is

defined as

F̂ = f + dÂ, (5.1.5)

such that 〈F̂ 〉 = f an harmonic two-form on the worldvolume of the D7-brane which

reads

f = faι∗ωa. (5.1.6)

Note that ι∗ωa is an element of H2
−(S+) which is in accord with the fact that the

field strength F̂ is negative under the involution, which was already displayed in the

expansion in (5.1.3). We defined ι to be the map ι : S+ ↪→ Y3 which embeds the cycle

S+ into the Calabi-Yau threefold, therefore ι∗ is the pullback of this embedding.

An important remark here is that we have implicitly assumed the pullback of the

harmonics in the cohomology class H1,1

∂̄,−(Y3) to be the only two-forms on the cycle,

negative under the involution.

5.1.2 Normal coordinates

Apart from that the brane is accompanied with U(1) gauge fields that live on it, as

described in the previous section 5.1.1, the brane itself is a dynamical object, which



48 CHAPTER 5. IIB REDUCTION ON Y3 INCLUDING A D7-BRANE

can vibrate in the directions normal to the worldvolume of the brane, in the Calabi-

Yau threefold. These fluctuations are encoded in the map ϕ :W ↪→M(1,9) embedding

the worldvolume of the brane into the ten-dimensional spacetime. Since we are

describing the fluctuations of the brane in the directions normal to the worldvolume,

these fluctuations are sections of the real normal bundle of the cycle in the Calabi-

Yau threefold. We denote the fluctuations with ζ̂ ∈ H0
+(S+, N

R
Y3
S+), where NR

Y3
S+

is notation for the real normal bundle of the cycle S+ in the Calabi-Yau threefold

Y3. Note that because the world-sheet parity operator Ωp acts with a plus on states

normal to the brane, we consider the positive eigenspace of H0(S+, N
R
Y3
S+) which

does not get projected out by the orientifold (4.1.5).

Now decomposing these real sections ζ̂ into a holomophic part ζ, coming from the

holomorphic normal bundle NY3S+, and an anti-holomorphic part ζ̄, from the anti-

holomorphic normal bundle NY3S+, we can expand [54]

ζ̂ = ζ̂A(x)ŝA(y) = ζ + ζ̄ = ζA(x)sA(y) + ζ̄Ā(x)s̄Ā(y). (5.1.7)

In this notation {sA} constitutes a basis of H0
+(S+, NY3S+) and their complex con-

jugates {s̄Ā} for H0
+(S+, NY3S+). Furthermore, the coefficients ζA, ζ̄Ā turn out to be

scalar fields in the effective lower-dimensional theory, after compactification.

The decomposition of the real normal bundle into an holomorphic and an anti-

holomorphic part, depends on the background complex structure of the Calabi-Yau

threefold. Therefore, when considering the vector field sA it is natural to explore the

interior product with the complex structure forms Ω, χã and their complex conju-

gates. Consider the background complex structure of the Calabi-Yau threefold to be

z0, then we obtain

sAyΩ(z0) = 0, sAyΩ̄(z0) = 0, sAyχ̄ã(z0) = 0, (5.1.8)

in the cohomology of Y3. This is a logical result since h2,0 = 0 for a Calabi-Yau

threefold. However, on the (2,2)-cycle S+ we do not have this information. If we

would have considered for instance a D5-brane wrapped around a (1,1)-cycle on the

Calabi-Yau threefold, we would have been able to obtain more specified information.

For the sake of getting a notion on what is relevant to keep in mind, we will explore

this situation briefly.
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Consider an identical situation but with a spacetime filling D5-brane wrapped around

the (1,1)-cycle Σ, instead of a D7-brane. For a supersymetrically embedded D5-

brane, any two-form that is pulled back to the cycle Σ has to be proportional to the

(1,1)-Kähler form. Therefore, in the background z0 the only non-trivial two-form,

resulting from the interior product of the vector field sA with a holomorphic form

Ω, χã or their complex conjugates, which can be pulled back to Σ is sAyχã(z0). In

other words, equation (5.1.8) also holds for the cohomology of the cycle Σ.

When in addition taking into account that the complex structure may vary around

its supersymmetric background value z0, we can expand the complex structure as

z = z0 + δz. To understand how this differs, we consider ι∗(sAyΩ(z)) and expand to

linear order in δz [54]

ι∗(sAyΩ(z)) = ι∗(sAyΩ(z0)) + δzãι∗(kãsAyΩ(z0) + isAyχã(z0)) = iδzãι∗(sAyχã(z0)),

(5.1.9)

where we have made use of (3.2.3) and that (5.1.8) holds for the cohomology of the

(1,1)-cycle. Equation (5.1.9) explicitly shows that even though sAyΩ is a (2,0)-form

on the (1,1)-cycle Σ in the complex structure z, it is a (1,1)-form on Σ in the back-

ground complex structure z0, up to first order fluctuations.

Back to the D7-brane, unfortunately we cannot derive such equalities that easily

due to the fact that we do not know a similar relation to (5.1.8) for the complex

structure background on the (2,2)-cycle S+. Therefore, the best we can do for now

is to phrase that, in the complex structure background z0, sAyΩ(z0) is an element

of H2,0

∂̄,−(S+), sAyΩ̄(z0) = 0, sAyχã(z0) ∈ H1,1

∂̄,−(S+), sAyχ̄ã(z0) ∈ H0,2

∂̄,−(S+) in the

cohomology of the (2,2)-cycle and similar for s̄Ā.

5.2 Compactification Chern-Simons action

In the Abelian case, the general form of the Chern-Simons action of a Dp-brane is

given by [50]

S
(10)
CS = µp

∫
W

∑
q

φ∗ζ(Ĉ
(q))e`F̂−ϕ

∗
ζB̂. (5.2.1)
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This part of the action captures the interactions between the gauge fields on the

brane coupled to the Ramond-Ramond fields on the bulk. The integral is over the

(p+1)-dimensional worldvolume W = R1,3 × S+, which is allowed to fluctuate since

it represents a dynamical object. Furthermore, the exponential is meant to be a

wedged power series of the form `F̂ − ϕ∗ζB̂, wedged with the pullback of Ĉ(q) to the

brane such that the total integrand adds up to an 8-form that is compatible with the

worldvolume. With the latter we imply that the integrand should be an 8-form split

into a 4-form defined on Minkowski spacetime and another 4-form on the (2,2)-cycle

S+.

Therefore, one needs to know how to cope with the pullback to the worldvolume of

the brane, given by the inverse map of ϕ : W ↪→ M(1,9). This is done by expanding

the ten-dimensional forms according to a Kaluza-Klein expansion on the manifold

M(1,9) = R1,3 × Y3/O and pull back the forms on the Calabi-Yau orientifold to the

cycle with the inverse map of ι : S+ ↪→ Y3.

The normal coordinate expansion of the anti-symmetric two-form B̂, that captures

the fluctuations on the D7-brane in the two directions normal to the brane, is given

by [32, 45]

ϕ∗ζB̂ = baι∗ωa + bmn̄∂µζ
m∂ν ζ̄

n̄dxµdxν , (5.2.2)

up to second order in derivatives.

Since we are mainly interested in the gauge coupling between the gauge vectors, both

arising from the bulk and the brane, we will explicitly compactify only the specific

part of the Chern-Simons action involving the gauge vector fields

µ7

2

∫
W
ϕ∗ζ(V

α̂(x) ∧ αα̂ + Uα̂(x) ∧ βα̂) ∧ (`F̂ − ϕ∗ζB̂) ∧ (`F̂ − ϕ∗ζB̂), (5.2.3)

coming from the ten-dimensional four-form potential Ĉ(4). Using (5.2.2) and the

expansion of the gauge field strength F̂ , while redefining

B = Baι∗ωa = (ba − `fa)ι∗ωa, (5.2.4)

we obtain up to second order in derivatives

`F̂−ϕ∗ζB̂ = −Baι∗ωa+`(dA∧P−+daI∧AI+dāJ̄∧ĀJ̄)−bmn̄∂µζm∂ν ζ̄ n̄dxµdxν . (5.2.5)
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Furthermore, to compactify the Chern-Simons action (5.2.1), one needs to know how

to pullback a q-form from the Calabi-Yau threefold to the worldvolume of the brane.

Incorporating fluctuations in the directions normal to the brane, one can write up to

second order in derivatives

ϕ∗ζ(Ĉ
(q)) =

( 1

q!
C(q)
µ1...µq

+
1

q!
ζn∂n(C(q)

µ1...µq
)− 1

(q − 1)!
∇µ1ζ

nC(q)
nµ2...µq

+
1

2q!
ζn∂n(ζm∂m(C(q)

µ1...µq
))− 1

(q − 1)!
∇µ1ζ

nζm∂mC
(q)
nµ2...µq

+
1

2(q − 2)!
∇µ1ζ

n∇µ2ζ
mC(q)

nmµ3...µq
+
q − 2

2q!
R k
n µ1m

ζnζmC
(q)
kµ2...µq

)
dxµ1 ∧ ... ∧ dxµq .

(5.2.6)

Note that in this expression the directions normal to the worldvolume of the brane

are denoted with Roman indices and the directions tangent to the brane are denoted

with Greek indices. Furthermore, ∇ denotes a covariant derivative of the normal

bundle.

Combining all the above and noting that the cycle S+ on which the D7-brane is

wrapped is a (2,2)-cycle, we obtain from (5.2.3) up to second order in derivatives the

non-vanishing terms

µ7

∫
W
`2(V α̂ ∧ ι∗αα̂ + Uα̂ ∧ ι∗βα̂) ∧ dA ∧ P− ∧ (daI ∧ AI + dāJ ∧ ĀJ)

= −µ7

∫
`2(aIA I

α̂ + āJ̄Ā J̄
α̂ )dV α̂ ∧ dA+ (aIAα̂I + āJ̄Āα̂J̄)dUα̂ ∧ dA.

(5.2.7)

Here we have repeatedly used some of the conventions of section 2.1.1 and defined

the matrices

Aα̂I =

∫
S−

ι∗βα̂ ∧ AI , A I
α̂ =

∫
S−

ι∗αα̂ ∧ AI ,

Āα̂J̄ =

∫
S−

ι∗βα̂ ∧ ĀJ̄ , Ā J̄
α̂ =

∫
S−

ι∗αα̂ ∧ ĀJ̄ .
(5.2.8)

The other terms in the action (5.2.1) are compactified in a similar fashion with

expansions in massless Kaluza-Klein modes given in (4.1.13), (4.1.14) and (5.1.3),

which results in the lower-dimensional effective action [32]



52 CHAPTER 5. IIB REDUCTION ON Y3 INCLUDING A D7-BRANE

S
(4)
CS = µ7

∫ (1

4
dl̃(2) − d(c̃(2)

a Ba) +
1

2
Kαbcd(Dα

(2)BbBc)
)
∧ LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
− `d

(
c̃

(2)
P −KαbPD

α
(2)Bb

)
∧ A+ `2

[
− 1

2
CIJ̄
α dDα

(2) ∧
(

daI āJ̄ − dāJ̄aI

)
+

1

2

(
ρΛ −KΛabc

aBb +
1

2
KΛabBaBbl

)
F ∧ F

−
(

(aIA I
α̂ + āJ̄Ā J̄

α̂ )dV α̂ ∧ F + (aIAα̂I + āJ̄Āα̂J̄)dUα̂ ∧ F
)]

(5.2.9)

Important to note here is that integration over the function P− switches the integra-

tion domain from S+ to S− and visa versa. This follows directly from the definition

of these cycles (5.1.1) and (5.1.2) and the definition of the function (5.1.4).

Note that in this derivation we have repeatedly used (2.1.22) and (2.1.24) to ob-

tain

c̃
(2)
P ≡ c̃(2)

a ∧
∫
S−

ι∗ω̃a = c̃(2)
a ∧

∫
S+

ι∗ω̃aP−, (5.2.10)

ρΛ ≡ ρα ∧
∫
S+

ι∗ω̃α. (5.2.11)

This notation will be used throughout the thesis, denoting the subscripts Λ and P

for a contraction with an integral over the cycles S+ and S− respectively of their

corresponding pulled back (2,2)-forms ω̃aP− / ω̃α and ω̃a / ω̃αP−.

Lastly, we have defined the matrices LAB̄ and CIJ̄
α to be

LAB̄ =

∫
S+
sAyΩ ∧ s̄B̄yΩ̄∫
Y3

Ω ∧ Ω̄
, (5.2.12)

and

CIJ̄
α =

∫
S+

ι∗ωα ∧ AI ∧ ĀJ̄ . (5.2.13)



5.3. COMPACTIFICATION DIRAC-BORN-INFELD ACTION 53

5.3 Compactification Dirac-Born-Infeld action

When including a single Dp-brane to the Type IIB orientifolded theory, one should

add the Abelian Dirac-Born-Infeld action which captures the degrees of freedom of

the kintetic terms of the D7-brane. The Dirac Born Infeld action can in general be

displayed in the string frame as

S
(10)
DBI, SF = −µ7

∫
W

d8xe−φ̂
√
−det(ϕ∗ζ(ĝ + B̂2)− `F̂ ). (5.3.1)

In this section we will not go through the compactification in detail, but only give the

main techniques and state the result. For a more detailed description of the reduction

we refer the reader to [32].

The action (5.3.1) shows that we need to know how to pull back forms from the

Calabi-Yau threefold to the worldvolume of the brane. Equation (5.2.5) already

views how to cope with ϕ∗ζ(B̂2) − lF̂ in the action. Hence, at this point we are

interested in the normal coordinate expansion of the metric (4.1.1), which is given by

ϕ∗ζ ĝ =
6

K
eφ/2ηµνdx

µdxν + 2eφ/2gmn̄dymdȳn̄ + 2eφ/2gmn̄dζmdζ̄ n̄, (5.3.2)

after a Weyl rescaling. To be able to drop the square root in the Dirac-Born-Infeld

action, the action is expanded according to the Taylor series

√
det(U + B) =

√
detU

[
1 +

1

2
TrU−1B +

1

8

(
(TrU−1B)2 − 2Tr(U−1B)2

)
+O(B3)

]
(5.3.3)

up to second order. Applying this Taylor series to the action (5.3.1), we split the de-

terminant into two parts. Namely, with U we represent the background configuration,

both of Minkowski spacetime and the Calabi-Yau threefold including the spacetime

filling D7-brane. Furthermore, B encodes the fluctuations around this background.

These fluctuations are coming from three different causes. First, of course we have ex-

panded the NS-NS fields ĝ and B̂ in perturbations around their background. Second,

we have included the fluctuations of the embedding ι of the cycle into the Calabi-

Yau threefold, which are parametrized by the normal coordinates and result in the

four-dimensional fields ζA and ζ̄Ā. And third, we consider the fluctuations around
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the background of the U(1) vector boson resulting in the inclusion of the Wilson lines

aI , āJ̄ . Using (5.3.3) and inserting the calibration condition [32]

d4x

√
−det(eφ̂/2ϕ∗ĝ + Baι∗ωa) =

1

2
eφ̂ϕ∗J ∧ ϕ∗J − 1

2
Baι∗ωa ∧ Bbι∗ωb, (5.3.4)

which ensures supersymmetry and the fact that the spacetime filling D7-brane is a

BPS state, one obtains the effective four-dimensional Dirac-Born-Infeld action [32]

S
(4)
DBI, EF = µ7`

2

∫ [1

4
(KΛ − e−φKΛabBaBb)F ∧ ∗F +

12

K
iCIJ̄

α vαdaI ∧ ∗dāJ̄
]

+ µ7

∫ [
iLAB̄(eφ −GabBaBb)dζA ∧ ∗dζ̄B̄ +

18

K2
(eφKΛ −KΛabBaBb) ∗ 1

]
.

(5.3.5)

We will not elaborate on the calibration condition of a Dp-brane. However, a more

detailed discussion is given in [32].

5.4 Imposing self-dual relations on gauge vectors

The not yet dualized action obtained so far still has to many degrees of freedom.

Recall from chapter 4 that the vector fields Uα̂ and V α̂ are related to each other via

the self-duality relation given in (4.1.9), which has to be imposed upon the action.

Since we are mainly interested in the lower-dimensional gauge vector fields arising

from the D7-brane and the four-form potential Ĉ(4) of the bulk, we will explicitly

carry out the dualization for this part of the action. We first collect only the terms

relevant for the gauge kinetic coupling functions [32]

S(4)
gauge =

1

2κ2
4

∫
1

4
Bα̂β̂dV α̂ ∧ ∗dV β̂ − 1

4
C α̂β̂dUα̂ ∧ ∗dUβ̂ −

1

2
A α̂
β̂

dUα̂ ∧ ∗dV β̂

+ κ2
4µ7l

2(
1

2
KΛ −

1

2
e−φKΛabBaBb)F ∧ ∗F

+ κ2
4µ7l

2(ρΛ −KΛabc
aBb +

1

2
lKΛabBaBb)F ∧ F

− 2κ2
4µ7l

2((aIA I
α̂ + āJ̄Ā J̄

α̂ )dV α̂ ∧ F + (aIAα̂I + āJ̄Āα̂J̄)dUα̂ ∧ F ).

(5.4.1)
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We repeatedly use relations (4.2.20) - (4.2.22) and (2.1.12) and the fact that

∗d ∗dF (p) = (−1)p(d−p)+δ with

 δ = 1 for a Lorentzian metric,

δ = 0 for an Euclidean metric,
(5.4.2)

for F (p) a p-form in d dimensions, to rewrite the self-duality relation obtaining new

constraints. Collecting all terms that correspond to the same basis form αα̂ of the

self-duality relation Ĝ(5) = ∗̂Ĝ(5) results in the constraint

− dUα̂ = Cα̂β̂ ∗ dV β̂ + dV γ̂A β̂
γ̂ Cβ̂α̂, (5.4.3)

which needs to be imposed upon dualization. Similarly collecting all terms corre-

sponding to βα̂ results in another self-duality constraint

dV α̂ = −Bα̂β̂ ∗ dUβ̂ +Bα̂γ̂A β̂
γ̂ dUβ̂, (5.4.4)

defining Bγ̂β̂ to be the inverse matrix of B, i.e. Bα̂γ̂B
γ̂β̂ = δ β̂α̂ .

For simplicity, we will first dualize the action omitting the D7-brane gauge vector

field. To do so we introduce a vector field Ṽ α̂ functioning as a Lagrange multiplier

and include the term 1
2
dṼ α̂ ∧Hα̂ to the action

S(4)
gauge =

1

2κ2
4

∫
1

4
Bα̂β̂dV α̂ ∧ ∗dV β̂ − 1

4
C α̂β̂Hα̂ ∧ ∗Hβ̂ −

1

2
A α̂
β̂
Hα̂ ∧ ∗dV β̂

+
1

2
dṼ α̂ ∧Hα̂.

(5.4.5)

In this way the equation of motion for Ṽ α̂ incorporates the trivial Bianchi identity

dHα̂ = 0 of the field, to maintain the information that locally Hα̂ = dUα̂. Thus, we

constructed an action that is a functional of V α̂ and Hα̂ instead of dUα̂.

Within this limit of neglecting the brane vector fields,

Hα̂ = −(ReM)α̂β̂dV β̂ − (ImM)α̂β̂ ∗ dṼ β̂ (5.4.6)
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are the equations of motion for the field Hα̂. Note the striking similarity with the self-

duality constraint given in (5.4.3). Of course the equations of motion of the dualized

field have to be in accord with the self-duality constraints, since these constraints

need to be imposed upon the action. This is done by substituting the equations of

motion into the action. To obtain equations of motion that match the self-duality

constraint, we conclude that the Lagrange multiplier vector field Ṽ α̂, must correspond

to the bulk gauge vector field V α̂. Substituting these equations of motion into the

action, which corresponds to imposing the duality constraints upon the action, results

in

S(4)
gauge =

1

2κ2
4

∫
−1

4
(I +RI−1R)dṼ ∧ ∗dṼ

− 1

4
I(−dṼ +RI−1 ∗ dṼ ) ∧ (− ∗ dṼ −RI−1dṼ )

=
1

2κ2
4

∫
−1

2
IdṼ ∧ ∗dṼ − 1

2
RdṼ ∧ dṼ ,

(5.4.7)

where we have used matrices (4.2.23), switched from Einstein summation convention

to regular matrix multiplication and for convenience denoted ReM and ImM by R

and I, respectively.

Thus, we have obtained the dualized action when neglecting the D7-brane gauge

vector fields. For these fields to be included into the dualization, one still has to

impose the self-duality constraint (5.4.3). However, due to the D7-brane vectors, the

action now takes the form (5.4.1), from which we observe that couplings between

the gauge vectors from the bulk and brane are added. We refer to these terms as

source terms. For the sake of keeping a clean overview we denote these sources with

J α̂ = 4κ2
4µ7l

2(aIAα̂I + āJ̄Āα̂J̄)F and Jα̂ = 4κ2
4µ7l

2(aIA I
α̂ + āJ̄Ā J̄

α̂ )F . Due to these

source terms, the Bianchi identities for both fields Uα̂ and V α̂ have been altered and

are not trivial anymore. Therefore, the Lagrange multiplier that previously included

the trivial Bianchi identities for the fields can no longer be blindly added. Though in

dualizing the action (5.4.1), which is a functional of Uα̂ and V α̂, the main techniques

are not altered thus we still need to adjust the action to being a functional of the

two-form Hα̂ and the vector field V α̂. In doing so we include a Lagrange multiplier

term that does incorporates the correct Bianchi identities of the fields in the action.

We derive these Bianchi identities by substituting the duality constraints into the
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equations of motion of the fields. The equations of motion of Uα̂ and V α̂ following

from (5.4.1) are respectively

−1

2
C α̂β̂d ∗ dUβ̂ −

1

2
A α̂
β̂

d ∗ dV β̂ − 1

2
dJ α̂ = 0, (5.4.8)

1

2
Bα̂β̂d ∗ dV β̂ − 1

2
A β̂
α̂ d ∗ dUβ̂ −

1

2
dJα̂ = 0. (5.4.9)

Substituting the self-duality constraints (5.4.3) and (5.4.4) into the equations of mo-

tion results in the Bianchi identities

1

2
C α̂β̂d ∗ (Cβ̂γ̂ ∗ dV γ̂ + dV γ̂A κ̂

γ̂ Cκ̂β̂)− 1

2
A α̂
β̂

d ∗ dV β̂ − 1

2
dJ α̂ (5.4.10)

= −1

2
d(dV α̂)− 1

2
dJ α̂ = 0, (5.4.11)

1

2
Bα̂β̂d ∗ (−Bβ̂κ̂ ∗ dUκ̂ +Bβ̂γ̂A κ̂

γ̂ dUκ̂)−
1

2
A β̂
α̂ d ∗ dUβ̂ −

1

2
dJα̂ (5.4.12)

=
1

2
d(dUα̂)− 1

2
dJα̂ = 0. (5.4.13)

Since we eventually will express the action in fields having a trivial Bianchi identity,

we define the new fields

dŨα̂ = dUα̂ − Jα̂ =⇒ d(dŨα̂) = 0, (5.4.14)

dṼ α̂ = dV α̂ + J α̂ =⇒ d(dṼ α̂) = 0. (5.4.15)

Now incorporating these Bianchi identities as a Lagrange multiplier in the action,

we include the term + 1
4κ2

4
(Hα̂ − Jα̂) ∧ (dV α̂ + J α̂). Note that because of this the

information dHα̂ = dJα̂ is captured in the action. Due to this alteration of the

action, the equations of motion slightly differ and are given by

−1

2
C α̂β̂ ∗Hβ̂ −

1

2
A α̂
β̂
∗ dV β̂ +

1

2
dV α̂ = 0, (5.4.16)

1

2
Bα̂β̂d ∗ dV β̂ − 1

2
A β̂
α̂ d ∗Hβ̂ −

1

2
dJα̂ +

1

2
d(Hα̂ − Jα̂) = 0. (5.4.17)

An important remark here is that these new equations of motion of Hα̂ and V α̂ are

in accord with the equation of motion of V α̂ (5.4.9), upon imposing the Bianchi

identity of Hα̂, and with the self-duality constraint of Uα̂ (5.4.3) as they should for

consistency.
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At this point the obtained action is a functional of Hα̂ and V α̂

S(4)
gauge =

1

2κ2
4

∫
1

4
Bα̂β̂dV α̂ ∧ ∗dV β̂ − 1

4
C α̂β̂Hα̂ ∧ ∗Hβ̂ −

1

2
A α̂
β̂
Hα̂ ∧ ∗dV β̂

+ κ2
4µ7l

2(
1

2
KΛ −

1

2
e−φKΛabBaBb)F ∧ ∗F

+ κ2
4µ7l

2(ρΛ −KΛabc
aBb +

1

2
lKΛabBaBb)F ∧ F

− dV α̂ ∧ Jα̂ +
1

2
Hα̂ ∧ dV α̂ − 1

2
Jα̂ ∧ J α̂,

(5.4.18)

which we can now dualize by substituting the equation of motion of Hα̂ (5.4.16) into

the action, i.e. imposing the duality constraint and eliminating this field from the

action, together with half of the degrees of freedom. Note that the part of the action

relevant for the dualization is identical to (5.4.5). Even more, the equations of motion

for Hα̂ are in accord to those obtained neglecting the D7-brane gauge vector fields.

Using the result of the dualization previously carried out (5.4.7), we obtain the dual

action

S(4)
gauge =

1

2κ2
4

∫
− 1

2
(ImM)α̂β̂dV α̂ ∧ ∗dV β̂ − 1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

+ κ2
4µ7l

2(
1

2
KΛ −

1

2
e−φKΛabBaBb)F ∧ ∗F

+ κ2
4µ7l

2(ρΛ −KΛabc
aBb +

1

2
lKΛabBaBb)F ∧ F

− dV α̂ ∧ Jα̂ −
1

2
Jα̂ ∧ J α̂.

(5.4.19)

Since we aim for the action in terms of the new defined field Ṽ α̂ (5.4.15) with trivial

Bianchi identity, we substitute dV α̂ = dṼ α̂ − J α̂ obtaining

S(4)
gauge =

1

2κ2
4

∫
− 1

2
(ImM)α̂β̂dṼ α̂ ∧ ∗dṼ β̂ − 1

2
(ReM)α̂β̂dṼ α̂ ∧ dṼ β̂

+ κ2
4µ7l

2(
1

2
KΛ −

1

2
e−φKΛabBaBb)F ∧ ∗F

+ κ2
4µ7l

2(ρΛ −KΛabc
aBb +

1

2
lKΛabBaBb)F ∧ F

+ (ImM)α̂β̂dṼ α̂ ∧ ∗J β̂ + (ReM)α̂β̂dṼ α̂ ∧ J β̂ − dṼ α̂ ∧ Jα̂

− 1

2
(ImM)α̂β̂J

α̂ ∧ ∗J β̂ − 1

2
(ReM)α̂β̂J

α̂ ∧ J β̂ +
1

2
Jα̂ ∧ J α̂.

(5.4.20)
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Recalling the definitions of the sources

J α̂ = 4κ2
4µ7l

2(aIAα̂I + āJ̄Āα̂J̄)F and Jα̂ = 4κ2
4µ7l

2(aIA I
α̂ + āJ̄Ā J̄

α̂ )F,

the final result for the dualized action is given by

S(4)
gauge =

1

2κ2
4

∫
− 1

2
(ImM)α̂β̂dV α̂ ∧ ∗dV β̂ − 1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

+ κ2
4µ7l

2
(1

2
KΛ −

1

2
e−φKΛabBaBb

− 8κ2
4µ7l

2Cα̂β̂(aIAα̂I + āJ̄Āα̂J̄)(aIAβ̂I + āJ̄Āβ̂J̄)
)
F ∧ ∗F

+ κ2
4µ7l

2
(
ρΛ −KΛabc

aBb +
1

2
lKΛabBaBb (5.4.21)

+ i8κ2
4µ7l

2Cα̂β̂(aIAα̂I − āJ̄Āα̂J̄)(aIAβ̂I + āJ̄Āβ̂J̄)
)
F ∧ F,

+ 4κ2
4µ7l

2Cα̂β̂

(
(aIAα̂I + āJ̄Āα̂J̄)dV β̂ ∧ ∗F

− i(aIAα̂I − āJ̄Āα̂J̄)dV β̂ ∧ F
)
,

where we have used (3.2.9) to construct the equalities∫
S−

ι∗αα̂ ∧ ĀJ̄ = Hα̂β̂

∫
S−

ι∗ββ̂ ∧ ĀJ̄ =⇒ āJ̄Ā J̄
α̂ = Hα̂β̂āJ̄Ā

β̂J̄ ,∫
S−

ι∗αα̂ ∧ AI = H̄α̂β̂

∫
S−

ι∗ββ̂ ∧ AI =⇒ aIA I
α̂ = H̄α̂β̂aIA

β̂I .

(5.4.22)

Important to mention here is that it is crucial that AI ∈ H0,1

∂̄,− and χã ∈ H2,1

∂̄,− in

order for the integrals over the (2,2)-cycle to vanish. In combination with (4.2.22)

and (4.2.25), this is used to obtain

aIA I
α̂ + āJ̄Ā J̄

α̂ = (ReM)α̂β̂(aIAβ̂I + āJ̄Āβ̂J̄) + iCα̂β̂(aIAβ̂I − āJ̄Āβ̂J̄). (5.4.23)

For the sake of completeness we state the full action after imposing the self-duality

relations, inherent to starting from a democratic action. The dualization of the total

action is analog to the dualization for the gauge vectors, explicitly carried out in the

previous paragraph. Hence, imposing the constraints (4.1.9) to the action, we reduce

the degrees of freedom by half and obtain the four-dimensional action in the Einstein

frame [32]
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S
(4)
EF = S

(4)
Bulk + S

(4)
DBI + S

(4)
CS

=
1

2κ2
4

∫ [
−R ∗ 1 + 2Gãb̃dz

ã ∧ ∗dzb̃ + 2Gαβdvα ∧ ∗dvβ

+
1

2
d(lnVY3) ∧ ∗d(lnVY3) +

1

2
dφ ∧ ∗dφ+ 2eφGabdb

a ∧ ∗dbb

+ 2iκ2
4µ7LAB̄(eφ +GabBaBb)dζA ∧ ∗dζ̄B̄ +

24

VY3

κ2
4µ7`

2iCIJ
α vαdaI ∧ ∗dāJ̄

+
e2φ

2

(
dl + κ2

4µ7LAB̄
(

dζAζ̄B̄ − dζ̄B̄ζA
))
∧

∗
(

dl + κ2
4µ7LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
+ 2eφGab

(
∇ca − ldba + κ2

4µ7BaLAB̄
(

dζAζ̄B̄ − dζ̄B̄ζA
))
∧

∗
(
∇cb − ldbb + κ2

4µ7BbLAB̄
(

dζAζ̄B̄ − dζ̄B̄ζA
))

+
9

2V 2
Y3

Gαβ
[
∇ρα −

1

2
κ2

4µ7KαbcBbBcLAB̄
(

dζAζ̄B̄ − dζ̄B̄ζA
)

(5.4.24)

−Kαbccbdbc + 2κ2
4µ7`

2CIJ̄
α (aIdāJ̄ − āJ̄daI)

]
∧

∗
[
∇ρβ −

1

2
κ2

4µ7KβbcBbBcLAB̄
(

dζAζ̄B̄ − dζ̄B̄ζA
)

−Kβbccbdbc + 2κ2
4µ7`

2CIJ̄
β (aIdāJ̄ − āJ̄daI)

]
− 1

2
(ImM)α̂β̂dV α̂ ∧ ∗dV β̂ − 1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

+ 4κ2
4µ7l

2Cα̂β̂

(
(aIAα̂I + āJ̄Āα̂J̄)dV β̂ ∧ ∗F − i(aIAα̂I − āJ̄Āα̂J̄)dV β̂ ∧ F

)
+ κ2

4µ7l
2
(1

2
KΛ −

1

2
e−φKΛabBaBb

− 8κ2
4µ7l

2Cα̂β̂(aIAα̂I + āJ̄Āα̂J̄)(aIAβ̂I + āJ̄Āβ̂J̄)
)
F ∧ ∗F

+ κ2
4µ7l

2
(
ρΛ −KΛabc

aBb +
1

2
lKΛabBaBb

+ i8κ2
4µ7l

2Cα̂β̂(aIAα̂I − āJ̄Āα̂J̄)(aIAβ̂I + āJ̄Āβ̂J̄)
)
F ∧ F +

1

2
VD ∗ 1

]
,

where a scalar potential VD, related to spontaneous supersymmetry breaking, is in-

cluded. For a detailed background of the origin of this scalar potential, we refer the

reader to [58].



5.5. N = 1 SUPERSYMMETRIC REPRESENTATION 61

5.5 N = 1 supersymmetric representation

Any N = 1 supergravity theory can be written in a standard form in which all fields

are grouped into the chiral multiplets CN and vector multiplets V Φ. In the dualization

we have seen that in a four-dimensional theory all fields can be written as either a

scalar or a vector. Since there is only one supercharge in the effective theory, bosonic

scalars and vectors cannot be grouped into the same supermultiplet. Therefore, all

scalars fit into the chiral multiplets and all vectors in the theory are grouped as

vector multiplets. The interactions in this N = 1 supermultiplet representation are

completely determined by the Kähler potential K, the superpotential W and the

gauge kinetic coupling functions fΦΣ. Generally speaking a four-dimensional N = 1

supergravity action is of the form [32]

S
(4)
N=1 =

1

2κ2
4

∫
−R ∗ 1 + 2KMN̄dCM ∧ ∗dC̄N̄ + (VF + VD) ∗ 1

+ (Ref)ΦΣF
Φ ∧ ∗FΣ + (Imf)ΦΣF

Φ ∧ FΣ,

(5.5.1)

with the field strength of the vector multiplets FΦ = (dV α̂, F ) and the Kähler metric

KMN̄ = ∂M ∂̄N̄K.

Guided by [11, 36, 45, 59], the correct Kähler variables which are part of the N = 1

chiral superfields are

zã, ζA, aI ,

S = τ + κ2
4µ7LAB̄ζAζ̄B̄,

Ga = ca − τBa,

Tα =
1

2
Kα +

i

2(τ − τ̄)
KαabGa(Gb − Ḡb)

+ i
(
ρα −

1

2
KαabcaBb

)
+ 2iκ2

4µ7l
2CIJ̄α aI(aJ + āJ̄),

(5.5.2)

in which we defined the original complex Type IIB axion-dilaton field τ = l + ie−φ.

However, the coupling to the open string sector leads to a shift in this field. Therefore,

the shifted new axion-dilaton field is represented by S.

Finally, the potentials VF and VD are also fully determined by the gauge coupling

functions, the superpotential and the Kähler potential. The scalar potential VF is
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expressed as [50]

VF = eK(KMN̄DMWDN̄W̄ − 3|W |2), (5.5.3)

in terms of the inverse Kähler metric and Kähler covariant derivatives of the super-

potential, DMW = ∂MW + (∂MK)W .

The gauge kinetic coupling function is a complex holomorphic function of the chiral

superfields. These chiral superfields are treated as complex variables. Under the

interchange of its two indices, represented in the adjoint representation of the gauge

group, the coupling function is symmetric. Finally, the mass dimension is zero and

the function encodes the couplings of the chiral supermultiplets to the gauge super-

multiplets [3].

Similar to the gauge kinetic coupling function, the superpotential is also a complex

function holomorphic in the chiral superfields. The function has mass dimension

three and must be invariant under the gauge symmetries of the theory.

The Kähler potential is a function of both the chiral superfields and their anti-chiral

partners. It is a real function with mass dimension two. At tree level, the Kähler

potential is always linear in the term CM C̄N̄ .

Since the part of interest for this work is the gauge kinetic coupling function we

will not go in to this in more depth and refer the reader to [3, 32, 60] where a thor-

ough explanation is given.

Combining equations (5.4.21) and (5.5.1) and the knowledge that all gauge vectors

fit into the vector multiplets of the N = 1 supersymmetry representation, we read of

the gauge kinetic coupling function

fΦΣ =

(
− i

2
M̄α̂β̂ 4κ2

4µ7l
2Cα̂β̂aIAα̂I

4κ2
4µ7l

2Cα̂β̂aIAα̂I κ2
4µ7l

2
(
LΛ − 16κ2

4µ7l
2Cα̂β̂aIAα̂I(aIAβ̂I + āJ̄Āβ̂J̄)

)) ,
(5.5.4)

in which, for a more convenient notation, we defined

LΛ =
1

2
KΛ +

i

2(τ − τ̄)
KΛabG

a(Gb − Ḡb) + i
(
ρΛ −

1

2
KΛabc

aBb
)
. (5.5.5)
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It follows from (4.2.25) that we can write the bulk gauge kinetic coupling function as

fα̂β̂ = − i
2
Hα̂β̂, (5.5.6)

which explicitly shows the holomorphic nature of the gauge coupling function fα̂β̂,

since the prepotential is a holomorphic function in the complex structure moduli.

The gauge kinetic coupling matrix (5.5.4) displays that whenever the Wilson line

moduli are switched off, there is no mixed interaction between the bulk and the

D7-brane gauge vector fields. Furthermore, neglecting the Wilson line moduli, the

D7-brane gauge coupling function reduces to fD7 = κ2
4µ7l

2TΛ, which is manifestly

holomorphic in the chiral superfields.

However, if the relations

− 8Cα̂β̂A
α̂IĀβ̂J̄ = iCIJ̄

Λ (5.5.7)

and

− 8Cα̂β̂A
α̂IAβ̂J = iCIJ̄

Λ (5.5.8)

hold, we can rewrite the last term of the D7-brane gauge coupling (5.5.4) involving

the Wilson lines. This results in writing the D7-brane gauge coupling function as

fD7 = κ2
4µ7l

2TΛ, (5.5.9)

which implies that regardless of the Wilson line moduli fields, the D7-brane gauge

coupling function is holomorphic in the N = 1 coordinates. Even though we have

not proven (5.5.7) and (5.5.8), based on [32] we have reason to believe there must

be such relations. This is due to the fact that [32] uses relation (5.5.7) in one of the

last steps of their calculation to obtain the gauge kinetic coupling function. However,

they do not mention using it, which leaves us a bit uncertain. Therefore, we have in-

cluded suggestions for a closer look into the validity of these equations in appendix A.

Finally, the mixed gauge kinetic coupling function fα̂D7 between the bulk and the

brane vector bosons should be holomorphic in the chiral superfields in order to com-

plement the N = 1 supersymmetric representation. At a first glance, judging by

its form fα̂D7 = 4κ2
4µ7l

2Cα̂β̂aIAα̂I , it looks holomorphic in the N = 1 coordinates

since the only explicit dependence on the chiral fields seems to be aI . However, this
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expression is misleading due to the fact that the matrices Cα̂β̂ and Aα̂I depend on yet

another one of the superfields; the complex structure, though this dependence is not

manifest. It is hidden in the basis forms AI of the Dolbeault cohomology H0,1

∂̄,−(S+)

and in the Hodge star operator due to the Hermitian metric. Therefore, the holo-

morphic nature of the mixed gauge coupling function does not explicitly show. We

will elaborate on this in the following chapters.
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Chapter 6

M-theory reduction on a general

Y4

The final aim is to show that the gauge coupling function (5.5.4) of Type IIB theory is

holomorphic in the chiral superfields. For the mixed gauge kinetic coupling function

between the bulk and the brane gauge vectors, we will take an alternative route.

Since there exists an indirect relation between Type IIB theory and M-theory, further

elaborated on in the next chapter, we will reduce the eleven-dimensional supergravity

action resulting from M-theory on a general Calabi-Yau fourfold in this chapter.

Therefore, later on we can compare the results of the mixed gauge coupling function

found in M-theory with the one resulting from Type IIB theory, to clarify that it

should indeed be holomorphic in the complex structure moduli fields.

6.1 The spectrum

We start from the bosonic part of the eleven-dimensional supergravity action

S
(11)
M =

1

2

∫
R̂∗̂1− 1

2
Ĝ ∧ ∗̂Ĝ− 1

6
Ĉ ∧ Ĝ ∧ Ĝ, (6.1.1)

with R̂ the eleven-dimensional Ricci scalar and Ĝ = dĈ the field strength of the three-

form potential Ĉ. We perform a reduction on a Calabi-Yau fourfold Y4. Analog to
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the reduction performed in [36], we will decompose according to the backgrounds

〈dŝ2
11〉 = ηµνdx

µdxν + 2ğmn̄dymdȳn̄ ,

〈dĈ〉 = 0,
(6.1.2)

where ğmn̄ is the background value of the Calabi-Yau metric on Y4, thus locally ğmn =

ğm̄ n̄ = 0. The background in equation (6.1.2) implies that the eleven-dimensional

spacetime can be written in the irreducible form M(1,10) = M(1,2) × Y4. So far, this

setup is in complete analogy to the derivation of the spectrum in section 4.1, when

ignoring the orientifold projection and realizing that all forms are defined on Y4 in

this compactification instead of Y3. Therefore, the relevant Hodge diamond reads

1

0 0

0 h1,1 0

0 h2,1 h1,2 0

1 h3,1 h2,2 h1,3 1

0 h2,1 h1,2 0

0 h1,1 0

0 0

1

. (6.1.3)

We briefly state the massless spectrum arising from the fluctuations of the metric on

a Calabi-Yau fourfold. Using the information encoded in the Hodge diamond (6.1.3),

the metric on this manifold reads

gmn̄ = ğmn̄ − ivΣ(ωΣ)mn̄ , Σ = 1, ..., h1,1(Y4),

gmn = z̄K(b̄K)mn ,
(6.1.4)

up to first order in the moduli fields, where we defined

(b̄K)mn =
i

||Ω||2
(χK)mē1 ē2 ē3Ωē1 ē2 ē3

m , K = 1, ..., h1,3(Y4). (6.1.5)

Here ωΣ denote a basis of harmonic two-forms on Y4 and vΣ are real scalar fields in the

effective three-dimensional theory. Furthermore, χK constitute a basis of harmonic

(1,3)-forms on the Calabi-Yau fourfold and Ω is the unique holomorphic 4-form.
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We use the Hodge diamond of Y4 (6.1.3) to construct the massless modes arising from

fluctuations of the three-form Ĉ

Ĉ = AΣ ∧ ωΣ +NAΨA + N̄AΨ̄A, A = 1, ..., h1,2(Y4), (6.1.6)

where AΣ and NA are vector fields and complex scalars respectively in the three-

dimensional effective theory. Furthermore, the basis of harmonic (1,2)-forms is chosen

to be

ΨA =
1

2
RefAB(αB − if̄BCβC), (6.1.7)

with (αA, β
B) the real basis of harmonic three-forms on a Y4 and fAB a function

holomorpic in the complex structure, i.e. fAB(zK(x)). We denote RefAB to be the

inverse of RefAB. Note that due to this choise of basis ΨA, the scalar fields NA are

holomorphic in the complex structure moduli.

Thus, the four-form field strength Ĝ is obtained by

Ĝ = dĈ = dAΣ ∧ ωΣ + dNA ∧ΨA +NA ∧ dΨA + dN̄A ∧ Ψ̄A + N̄A ∧ dΨ̄A. (6.1.8)

When writing dΨA explicitly we obtain

dΨA(zL(x), z̄M(x), y) =
1

2

[
(∂zKRefABdzK + ∂̄z̄KRefABdz̄K)

∧ (αB − if̄BCβC) + RefAB(dαB − if̄BCdβC)
− iRefAB∂̄z̄K f̄BCdz̄

K ∧ βC
]
.

(6.1.9)

Note that implicitly df̄BC(z̄
L(x)) = ∂̄z̄K f̄BC(z̄

L(x))dz̄K and recall that αA, β
B are har-

monics on Y4. For convenience the dependence of the fields on the spacial coordinates

is dropped. In addition, we use

dRefAB = −RefACdRefCDRefDB, (6.1.10)

in combination with the holomorphic property of fAB leading to

∂zKRefAB =
1

2
∂zK(fAB + f̄AB) =

1

2
∂zKfAB, (6.1.11)
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to derive

dΨA = −1

2
RefACdfCD ∧ΨD − 1

2
RefACdf̄CD ∧ Ψ̄D = dΨ̄A. (6.1.12)

Therefore, we can now obtain the field strength by substituting this back into equation

(6.1.8) and defining DNA to be

DNA = dNA − ReNBRefBCdfCA, and DN̄A = DNA. (6.1.13)

Given this definition the eleven-dimensional four-form field strength reads

Ĝ = dAΣ ∧ ωΣ +DNA ∧ΨA +DN̄A ∧ Ψ̄A. (6.1.14)

6.2 Compactification

Having set up the spectrum of the lower-dimensional effective theory in the previous

section, we will reduce the eleven-dimensional supergravity action (6.1.1) starting

with the kinetic and the Chern-Simons term.

Substituting (6.1.14) into the second term of the eleven-dimensional action (6.1.1)

and using the Hodge star decomposition (2.1.12), yields

−1

4

∫
Ĝ ∧ ∗̂Ĝ = −1

4

∫
dAΣ ∧ ∗dAΩ ∧ (ωΣ ∧ ?ωΩ) + iDNA ∧ ∗DN̄B ∧ (ΨA ∧ Ψ̄B ∧ J)

− iDN̄A ∧ ∗DNB ∧ (Ψ̄A ∧ΨB ∧ J)

= −
∫
GΣΩ

V̂
dAΣ ∧ ∗dAΩ +

1

2
V̂ LΣd AB

Σ DNA ∧ ∗DN̄B,

(6.2.1)

in which we have made use of

?ΨB = −iΨB ∧ J. (6.2.2)

The coefficients in the effective three-dimensional action are defined to be

GΣΩ =
V̂

4

∫
Y4

ωΣ ∧ ?ωΩ = − 1

8V
(KΣΩ −

1

18V
KΣKΩ) = −1

4
∂LΣ∂LΩ logV, (6.2.3)
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d ABΣ = i

∫
Y4

ωΣ ∧ΨA ∧ Ψ̄B, (6.2.4)

where we denoted

V̂ =
1

4!

∫
Y4

J4, LΣ =
vΣ

V̂
, V =

1

4!
KΣΩΓΛL

ΣLΩLΓLΛ (6.2.5)

and the intersection numbers

KΣΩΓΛ =

∫
Y4

ωΣ ∧ ωΩ ∧ ωΓ ∧ ωΛ, KΣ = KΣΩΓΛL
ΩLΓLΛ KΣΩ = KΣΩΓΛL

ΓLΛ.

(6.2.6)

Finally, to obtain equation (6.2.3) we additionally used

? ωΣ = −1

2
J ∧ J ∧ ωΣ +

V̂ 2

36
KΣJ ∧ J ∧ J. (6.2.7)

Performing a dimensional reduction on the third term in the eleven-dimensional

supergravity action (6.1.1), we substitute expansion (6.1.6) and define the lower-

dimensional field strength FΣ = dAΣ. As a result, the Chern-Simons term reads

− 1

12

∫
Ĉ ∧ Ĝ ∧ Ĝ = −1

4

∫
dAΣ ∧ ωΣ ∧

[
NAΨA ∧ (d(NBΨB) + d(N̄BΨ̄B))

+ N̄AΨ̄A ∧ (d(NBΨB) + d(N̄BΨ̄B))
]

= −1

4

∫
FΣ ∧ ωΣ ∧

[
NAΨA ∧ (NBdΨB + dN̄BΨ̄B + N̄BdΨ̄B)

+ N̄AΨ̄A ∧ (dNBΨB +NBdΨB + N̄BdΨ̄B)
]
.

(6.2.8)

By using dΨA = dΨ̄A, shown in equation (6.1.12), we conclude that

− 1

12

∫
Ĉ∧Ĝ ∧ Ĝ = −1

4

∫
FΣ ∧ ωΣ ∧

[
(NAdN̄B − N̄BdNA) ∧ΨA ∧ Ψ̄B

+ (NAΨA + N̄AΨ̄A) ∧ 2ReNBdΨB
]

= −1

4

∫
FΣ ∧ ωΣ ∧

[
(NAdN̄B − N̄BdNA) ∧ΨA ∧ Ψ̄B (6.2.9)
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+ N̄AReNBRefBCdfCD ∧ΨD ∧ Ψ̄A −NAReNBRefBCdf̄CD ∧ΨA ∧ Ψ̄D
]

= − 1

4i

∫
d ABΣ FΣ ∧ (NADN̄B − N̄BDNA).

The reduction of the Einstein-Hilbert term is in complete analogy with the reduction

in appendix C except that now the metric deformations are expanded according to

(6.1.4), which results in

1

2

∫
R̂∗̂1 =

∫
1

2
V̂ R ∗ 1− V̂ GKL̄dzK ∧ ∗dz̄L̄ − V̂ GΣΩdLΣ ∧ ∗dLΩ (6.2.10)

in the three-dimensional effective theory, with GKL̄ a Kähler metric defined by

GKL̄ = −
∫
Y4
χK ∧ χL̄∫

Y4
Ω ∧ Ω̄

= −∂zK∂z̄L̄ log

(∫
Y4

Ω ∧ Ω̄

)
. (6.2.11)

Collecting all terms after the dimensional reduction, the three-dimensional effective

action has become

S
(3)
M =

∫
1

2
V̂ R ∗ 1− V̂ GKL̄dzK ∧ ∗dz̄L̄ − V̂ GΣΩdLΣ ∧ ∗dLΩ − GΣΩ

V̂
dAΣ ∧ ∗dAΩ

− 1

2
V̂ LΣd ABΣ DNA ∧ ∗DN̄B −

1

4i
d ABΣ FΣ ∧ (NADN̄B − N̄BDNA).

(6.2.12)

Performing a Weyl rescaling of the form (ηµν)
old = V̂ −2(ηµν)

new, explained in ap-

pendix B, on the three-dimensional external spacetime metric, results in the low-

energy effective theory

S
(3)
M =

∫
1

2
R ∗ 1−GKL̄dzK ∧ ∗dz̄L̄ −GΣΩdLΣ ∧ ∗dLΩ −GΣΩdAΣ ∧ ∗dAΩ

− 1

2
LΣd ABΣ DNA ∧ ∗DN̄B −

1

4i
d ABΣ FΣ ∧ (NADN̄B − N̄BDNA).

(6.2.13)

Recall that the whole point of reducing the eleven-dimensional supergravity action,

following from M-theory, was to relate the mixed gauge kinetic coupling function

obtained from the M-theory reduction to the one resulting from the Type IIB com-

pactification. Therefore, our main interest is this gauge kinetic coupling term.

Although it is at this point a priori not obvious which terms in the three-dimensional
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action resulting from M-theory will be related to the bulk and brane gauge vector

fields of Type IIB theory, we rewrite the object d ABΣ introduced in (6.2.4), for later

convenience of dualizing the mixed kinetic coupling. Thereby, using the intersection

numbers

M AB
Σ =

∫
Y4

ωΣ ∧ βA ∧ βB, MΣAB =

∫
Y4

ωΣ ∧ αA ∧ αB, M B
ΣA =

∫
Y4

ωΣ ∧ αA ∧ βB,

(6.2.14)

which are independent of the complex structure moduli, we are able to state

d ABΣ = i

∫
Y4

ωΣ ∧ΨA ∧ Ψ̄B

=
i

4
RefACRefBE

[
MΣCE + (iRef + Imf)CDM

D
ΣE + (iRef − Imf)EGM

G
ΣC

+ (Ref − iImf)CD(Ref + iImf)EGM
DG

Σ

]
=
i

4
RefACRefBE

[
MΣCE + 2iRef(CDM

D
ΣE) + 2Imf[CDM

D
ΣE] + RefCDRefEGM

DG
Σ

+ ImfCDImfEGM
DG

Σ + 2iRef(CDImfE)GM
DG

Σ

]
= −1

2
RefBCM A

ΣC −
1

2
RefBCImfCDM

AD
Σ +

i

2
M AB

Σ (6.2.15)

= −1

2
RefBCQ A

ΣC ,

defining new matrices

Q A
ΣC = M A

ΣC + ifCDM
DA

Σ , (6.2.16)

which will prove to be of great importance in chapter 7 when dualizing to the Type IIB

perspective. Note that these matrices (6.2.16) only depend on the complex structure

through the holomorphic function fCD. Furthermore, in the third step we used

0 =

∫
Y4

ωΣ ∧ βA ∧ βB, (6.2.17)

which we have split into its real part

0 = Re
[ ∫

Y4

ωΣ ∧ βA ∧ βB
]

=
1

4
RefACRefBE

[
MΣCE − RefCDRefEGM

DG
Σ

+ ImfCDImfEGM
DG

Σ + 2Imf[CDM
D

ΣE]

] (6.2.18)
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and the imaginary part

0 = Im
[ ∫

Y4

ωΣ ∧ βA ∧ βB
]

= −1

2
Ref [ACM

B]
ΣC +

1

2
Ref [ACImfCDM

DB]
Σ . (6.2.19)
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Chapter 7

Holomorphic mixed gauge kinetic

function

In the previous chapters we have shown the full reduction of the eleven-dimensional

supergravity action on Y4 following from M-theory and Type IIB theory on a Calabi-

Yau orientifold including D7-branes. The reduction preformed for M-theory is valid

for any smooth Calabi-Yau fourfold. M-theory is the geometrical origin of Type IIA

theory in the strong coupling limit. Additionally, Type IIA can be dualized to Type

IIB theory via a T-duality, which implies an implicit relation between our Type IIB

reduced action and the effective lower-dimensional action resulting from M-theory.

Generally speaking Type IIB theory can be related to M-theory on an elliptically

fibered Calabi-Yau fourfold, when lifted on a circle to four dimensions. An important

remark here is that we discuss the weak string coupling limit in M-theory to match

the theory with the tree level supergravity Type IIB action. We will explore this

relation in a bit more detail within this chapter, to reach the conclusion that M-

theory shows the holomorphic property of the gauge kinetic coupling function in the

chiral superfields.
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7.1 Compatible Type IIB theory

Before beginning with the lift from three to four dimensions, we first turn to the Type

IIB theory again and define an explicit basis of H0,1

∂̄,−(S+) and H1,0

∂̄,−(S+) denoted with

{γp} and {γ̄p} respectively, such that the higher-dimensional gauge vector on the

D7-brane decomposed in (5.1.3) can be expanded as

Â = A(x)P−(y) + ap(x)γp(y) + āp(x)γ̄p(y), (7.1.1)

in the explicit basis [36]

γp =
1

2
Refpq(α̂q − if̄qrβ̂r), (7.1.2)

where (α̂p, β̂
p) is a symplectic basis of H1(S+). All complex structure dependence is

captured in the function fpq, which is holomorphic in the complex structure moduli

zã. While not a priori obvious why one would choose such a basis, this will turn

out to be convenient in translating from M-theory to Type IIB theory, due to the

remarkable similarity with the choice of basis of the three-forms (6.1.7) in the M-

theory reduction. Note that aIA
I = apγ

p since both span the full space H0,1

∂̄,−(S+)

and γp is just a specific choice for AI . Furthermore, note that we could have equally

well chosen the basis (α̂p, β̂
p) itself to expand the gauge vector boson. An expansion

in these symplectic three-forms would have been [36]

Â = A(x)P−(y) + c̃pα̂p + cpβ̂
p, (7.1.3)

which implies the form ap = icp+fpq c̃
q, explicitly showing that the complex structure

dependence of the Wilson lines is captured by the function fpq, since the coefficients

c̃p and cp are real. This manifestly shows the holomorphic property of ap in the

complex structure moduli fields.

7.2 M-theory perspective

Now turning to the M-theory side. To bring structure to the set of lower-dimensional

scalars and vectors obtained in the M-theory reduction, we state how to group them

into the three-dimensional N = 2 supersymmetry multiplet representation. There-
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fore, we denote the scalar and vector multiplets of the representation respectively

with

(zK, NA), (LΣ, AΣ). (7.2.1)

To obtain the three-dimensional theory after reduction that is dual to the lower-

dimensional Type IIB theory, we compactify M-theory on an elliptically fibered

Calabi-Yau fourfold. Splitting the three-forms and two-forms according to the num-

ber of legs they have on the fiber we write

ΨA = (ΨA,Ψκ), ωΣ = (ω0, ωi, ωα), (7.2.2)

where Ψκ corresponds to three-forms that live on the base of the fibration, while ΨA

are three-forms that may have one leg on the fiber. Likewise, ωα are (1,1)-forms on

the base, ωi may have one or no legs on the fiber and ω0 are forms that have either

two, one or zero legs on the fiber. Note that since we are now compactifying on a

elliptically fibered Calabi-Yau fourfold, each non-vanishing integral over the internal

space must have an integrand which is an eight-form with exactly two legs on the

fiber and the other six on the base.

Due to the decomposition of the forms on the Calabi-Yau manifold, we include the

corresponding decomposition of the scalars and vectors related to these forms

NA = (NA, Nκ), LΣ = (L0, Li, Lα), AΣ = (A0, Ai, Aα). (7.2.3)

Since the higher-dimensional supergravity action started from in the Type IIB re-

duction was at tree level, we must consider the weak coupling limit in dualizing

the low-energy effective result from M-theory to the fields of Type IIB theory. The

NA scalars lift to both the Ga moduli and the Wilson lines ap on the D7-brane,

while the complex scalars Nκ lift to the Ramond-Ramond vector fields V α̂. From

the three-dimensional N = 2 vector multiplets, (L0, A0) lifts to the four-dimensional

Kaluza-Klein vector that follows from the reduction of the metric, whereas (Li, Ai)

includes the D7-brane gauge vectors A. Finally, the vector multiplets (Lα, Aα) trans-

late to the complex scalars Tα in four dimensions, therefore the vectors Aα have to

be dualized into scalars. Considering the complex structure moduli fields zK arising

from the eleven-dimensional supergravity, they lift to the complex structure moduli

in Type IIB zã as well as the axion-dilaton field and the normal coordinates ζA.
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Since we are mainly interested in the mixed gauge kinetic coupling function of the

bulk and brane gauge fields, the relevant four-dimensional Type IIB theory terms

are of the form dV α̂ ∧ ∗F and dV α̂ ∧ F . The coupling functions of these two terms

in the action represent the real and imaginary part of the gauge kinetic coupling

function respectively, as shown in equation (5.5.1). In the reduced three-dimensional

M-theory, the parts of the action corresponding to this include the fields Nκ and

(Li, Ai), since these are dualized into V α̂ and A. In [36] an explicit explanation of

this duality map is reviewed and they furthermore state that within M-theory the

gauge coupling function between Nκ and (Li, Ai) is given by

fiκ = Q A
iκ NA (7.2.4)

up to a prefactor, where the matrix Q A
ΣC was defined in (6.2.16) and shown to be

holomorphic. Thus, when writing out the gauge coupling function we obtain

fiκ = (M A
iκ + ifκDM

DA
i )NA = (M A

iκ + ifκλM
λA
i )NA, (7.2.5)

from which it follows that the subscript D should turn into a subscript correspond-

ing to the field Nλ, under the assumption that a gauge coupling of the form fκA

between NA and Nκ does not exist. Even more, the matrices M A
iκ and M λA

i are

only non-trivial whenever NA corresponds to NA such that the integrals in (6.2.14)

have precisely two legs on the fiber and thus are non-vanishing.

To obtain an expression closer to the form of the mixed gauge kinetic coupling func-

tion derived in the Type IIB reduction (5.5.4), one can use the particular property

that

d ABΣ = d BAΣ , (7.2.6)

with d ABΣ defined in (6.2.15) which implies the equality RefABRefCDQ D
ΣB = Q A

ΣC

[36]. Using this result and similar arguments to the ones stated above, one can write

the gauge coupling between Nκ and (Li, Ai)

fiκ = (RefABRefκDQ D
iB )NA = RefABRefκλ(M

λ
iB − if̄BCM Cλ

i )NA

= RefABRefκλ

(∫
Y4

ωi ∧ αB ∧ βλ − if̄BC
∫
Y4

ωi ∧ βC ∧ βλ
)
NA,

(7.2.7)
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where we have split the symplectic basis of three-forms on the Calabi-Yau fourfold

(αA, β
B) in (ακ, β

λ) and (αA, β
B) analog to the devision of the basis ΨA in (7.2.2).

Therefore, a Greek index denotes a form without any legs on the fiber and a form

with either one or no legs on the fiber is represented with a Latin subscript.

When dualizing from M-theory to Type IIB theory, the internal forms on the mani-

folds also have a correspondence to each other according to their expansion coefficients

in Minkowski spacetime. Therefore, the correspondences

(Ai, Li) −→ A =⇒ ωi −→ P−,

Nκ −→ V α̂ =⇒ (ακ, β
λ) −→ (αα̂, β

β̂),

NA −→ (Ga, ap) =⇒ (αA, β
B) −→

 (α̂p, β̂
p),

ωa,

(7.2.8)

relate the mixed gauge kinetic coupling function in M-theory (7.2.7) to

fiκ
weak coupling−−−−−−−−→ fα̂D7 = RefpqRefα̂β̂

(∫
S+

P− ∧ α̂q ∧ ι∗ββ̂ − if̄qr
∫
S+

P− ∧ β̂r ∧ ι∗ββ̂
)
ap,

(7.2.9)

which states the corresponding expression in the Type IIB theory. Hence, this should

be equivalent to the expression of the mixed gauge kinetic coupling function (5.5.4),

obtained in the reduction of Type IIB theory. To explicitly show this equivalence, we

recognize the basis form γp in expression (7.2.9), such that combined with aIA
I =

apγ
p we can write

fα̂D7 = 2Refα̂β̂

∫
S−

AI ∧ ι∗ββ̂aI = −2Refα̂β̂ aIA
β̂I , (7.2.10)

using the matrices defined in (5.2.8).

Recall from equations (4.2.22) and (5.5.4) that

fα̂β̂ = − i
2
M α̂β̂ = −1

2

(
C−1 + iAC−1

)
α̂β̂

(7.2.11)

in Type IIB theory. Thus, indeed the mixed gauge kinetic coupling function between
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the bulk and the brane bosonic gauge vectors turns out to be

fα̂D7 = Cα̂β̂aIA
β̂I , (7.2.12)

up to a prefactor, as was already shown (5.5.4) from the reduction of the Type IIB

theory on a Calabi-Yau threefold including D7-branes. Hence, as expected in the weak

string coupling limit dualizing M-theory compactified on an elliptically fibered Calabi-

Yau fourfold results in the same mixed gauge kinetic coupling function as obtained

from the Type IIB reduction. However, an important result is deduced from this M-

theory path. This path has shown that the mixed gauge coupling function, obtained

from the Type IIB reduction, is holomorphic in the complex structure moduli fields,

since the mixed gauge kinetic coupling function resulting directly from the reduction

of the eleven-dimensional supergravity action on a Calabi-Yau fourfold (7.2.5) turned

out to be holomorphic, due to the holomorphic property of the function fAB.
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Conclusion

In this thesis, we have investigated in a mathematical proof that the N = 1 gauge

kinetic coupling function resulting from our setup is holomorphic in the chiral co-

ordinates. To reach this point, we have first compactified the democratic version of

the ten-dimensional Type IIB supergravity in the weak string coupling limit on a

Calabi-Yau threefold. Focussing on orientifold reductions admitting O3/O7-planes

such that part of the spectrum is projected out, we obtained the lower-dimensional

effective theory. Next, we have included a single spacetime filling D7-brane wrapped

on a (2,2)-cycle of the Calabi-Yau orientifold. We have realized this by adding the

Dirac-Born-Infeld and the Chern-Simons action for a D7-brane. Compactifying both

has led to a U(1) Abelian gauge theory. In this reduction we have taken into ac-

count the fluctuations of the embedding of the four-cycle into the two directions of

the Calabi-Yau orientifold normal to the cycle and assumed the (2,2)-cycle which

wrappes the brane allows for non-trivial one-cycles leading to Wilson lines. The final

ingredient of this reduction was the inclusion of a background flux on the D7-brane,

which gives rise to lower-dimensional Ramond-Ramond charges distributed over the

brane. For this flux we have assumed the pullback of the harmonics in the cohomol-

ogy H
(1,1)

∂̄,− (Y3) to be the only non trivial two-forms on the four-cycle.

After reducing all parts of the democratic action, we worked out the technical as-

pect of imposing the self-dual constraints on the gauge vectors. Defining the correct

N = 1 chiral and vector multiplets, it can be shown that the four-dimensional theory
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obtained indeed suites the N = 1 supergravity action, from which we can read of

the gauge kinetic coupling function. This function is of our main interest. We briefly

review that the coupling function among the bulk gauge vectors is holomorphic in

the N = 1 coordinates, as yet shown in [32, 34].

Apart from the U(1) bulk gauge vectors we obtain another sector of U(1) gauge

vectors resulting from the brane. These D7-brane gauge vectors interact amongst

themselves but also couple to the bulk vectors in the presence of Wilson line moduli.

As a new result, we discuss the indications we have found that point towards the fact

that the D7-brane gauge kinetic coupling function is indeed holomorphic in the chiral

coordinates, taking into account the existence of Wilson lines. Even though we do

not provide a mathematical proof, we do include recommendations for the discovery

of such a proof in appendix A which could be supporting for further studies. Lastly,

we note that the Wilson lines give rise to mixed kinetic coupling terms between the

bulk and the brane gauge vectors. To show that this mixed kinetic coupling function

is holomorphic, we first compactify the eleven-dimensional supergravity resulting

from M-theory on a elliptically fibered Calabi-Yau fourfold. Hereafter, we explain

which fields in M-theory correspond to the Type IIB fields in the weak coupling

limit, to show that the mixed gauge kinetic coupling in M-theory corresponds to the

function obtained in our Type IIB reduction upon matching the correct harmonics.

Therefore, from the knowledge that the mixed gauge coupling function is holomorphic

in M-theory, we conclude it must also be holomorphic from the Type IIB perspective.

As yet stated, both sectors of vectors are the gauge bosons of two different U(1)

groups. One possibility for extending the Standard Model with a new U(1) Abelian

gauge group is to interpret it as the very weak coupling of the dark photon with

the electrically charged particles of the Standard Model through kinetic mixing with

the regular photon arising from electromagnetism [61, 62]. The dark photon is the

force carrier of the hidden/dark sector [63], similar to the photon. The coupling of

the photon to the dark photon might provide the only non-gravitational window to

the existence of the hidden sector. Within string theory it has been studied that

placing hidden branes which are geometrically separated from the visible branes can

give rise to these additional hidden U(1) groups [64] with massive fields arising on

strings stretching between the branes, with masses of the order `−2. The interactions
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appearing here are α′1 suppressed. In our reduction, we have not taken into account

higher orders of α′ which can be interesting for phenomenological applications [11, 65].

Finally, we observe something quite similar to these force carriers of the hidden sector.

Due to the mixed kinetic coupling we obtain between the two U(1) gauge groups, we

could possibly view the two gauge vectors as the photon and the dark photon, which

could be an interesting point of view for further research.

12πα′ = `
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Appendix A

Recommendations for D7-brane

coupling

In this chapter we focus more extensively on equations (5.5.7) and (5.5.8). We suggest

some point of views that, if explored, could lead to a mathematical proof of these

relations, which we will leave for future research.

One possible approach would be to search for how these terms appear in M-theory.

We have only looked into this briefly, though we will now explain our findings to

construct a starting point for further investigations.

First, we want to remind the reader where the Type IIB harmonics on the Calabi-Yau

orientifold originate from in M-theory. Recall that

M-theory Type IIB theory

Ψκ αα̂, β
α̂,

ΨA =⇒ AI , ĀJ̄ ,

ωα ωα,

ωi P−.

(A.0.1)

We will assume that the (1,2)-forms Ψκ on the Calabi-Yau fourfold take a similar

form when dualized to the Type IIB perspective as ψα̂ = 1
2
Ref α̂ε̂(αε̂ − if̄ε̂β̂ββ̂).
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Next we want to emphasize that d ABΣ was given in (6.2.4) as

d ABΣ = i

∫
Y4

ωΣ ∧ΨA ∧ Ψ̄B, (A.0.2)

though, using (6.2.2), it can also be written as

LΣd ABΣ =

∫
Y4

ΨA ∧ ?Ψ̄B. (A.0.3)

With the above information, it becomes clear which matrices in M-theory correspond

to the required Type IIB matrices

CIJ̄
Λ ⇐⇒ LΣd AB

Σ , Σ must be α,

C α̂β̂ ⇐⇒ LΣd κλ
Σ , Σ must be 0,

Aα̂I ⇐⇒ LΣd κA
Σ , Σ must be i.

Note that the matrices in both theories are not equal, we only want to stress that

there are certain relations between these expressions.

When writing both equation (5.5.7) and (5.5.8) in a slightly different form

− 8Aα̂IĀβ̂J̄ = iCIJ̄
Λ C α̂β̂, (A.0.4)

− 8Aα̂IAβ̂J = iCIJ̄
Λ C α̂β̂, (A.0.5)

it becomes more explicit that both result from similar parts in M-theory, namely

LΣd ABΣ LΩd CDΩ . (A.0.6)

Though, taking into consideration that every non-vanishing integral over the Calabi-

Yau fourfold must have two legs on the elliptical fiber, we obtain that the left hand

side of (A.0.4) and (A.0.5) originates from

Lid κA
i Ljd λB

j (A.0.7)
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in M-theory, while the right hand side from

L0d κλ
0 Lαd AB

α . (A.0.8)

Hence, to show explicitly which parts of LΣd ABΣ LΩd CDΩ result in the required Type

IIB matrices, we write out both parts

L0d κλ
0 d AB

α = d AB
α

∫
Y4

Ψκ ∧ ?Ψ̄λ =⇒

i

∫
S+

ι∗ωα ∧ AI ∧ ĀJ̄
∫
Y3

1

4
Ref α̂γ̂(αγ̂ − if̄γ̂ε̂β ε̂) ∧ ?(αδ̂ + iβκ̂fκ̂δ̂)Ref δ̂β̂

=
i

4
C IJ̄

Λ Ref α̂γ̂Ref δ̂β̂
[
Bγ̂δ̂ − f̄γ̂ε̂C

ε̂κ̂fκ̂δ̂ + if̄γ̂ε̂A
ε̂
δ̂

+ iD κ̂
γ̂ fκ̂δ̂

]
= iC IJ̄

Λ C α̂γ̂C β̂δ̂
[
− Cγ̂κ̂Aκ̂ε̂Aε̂δ̂ − Cγ̂δ̂ +

1

4
(iCγ̂ζ̂A

ζ̂
ε̂ − Cγ̂ε̂)C

ε̂κ̂(iCκ̂ξ̂A
ξ̂

δ̂
+ Cκ̂δ̂)

+
i

2
(iCγ̂ζ̂A

ζ̂
ε̂ − Cγ̂ε̂)A

ε̂
δ̂

+
i

2
(iCδ̂ζ̂A

ζ̂
κ̂ + Cδ̂κ̂)A

κ̂
γ̂

]
= iC IJ̄

Λ C β̂δ̂
[
− 9

4
Aα̂ε̂A

ε̂
δ̂
− 5

4
δα̂
δ̂

]
.

(A.0.9)

In this derivation, we repeatedly used equations (3.2.13), (3.2.15) and (3.2.17) and

derived Ref α̂β̂ = −2C α̂β̂ from the result obtained in (7.2.11). Note that the M-theory

equivalent of the four-dimensional Kaluza-Klein vector is involved in this derivation.

When aiming to obtain the left hand side of relation (A.0.4), we deduce

d Aκ
i d λB

j =⇒
1

4

∫
S+

P− ∧ ι∗(αδ̂ + iβκ̂fκ̂δ̂)Ref δ̂α̂ ∧ AI
∫
S+

P− ∧ Ref β̂γ̂ι∗(αγ̂ − if̄γ̂ε̂β ε̂) ∧ ĀJ̄

=

∫
S−

iι∗βκ̂(fκ̂δ̂ − 2f̄κ̂δ̂)C
δ̂α̂ ∧ AI

∫
S−

C β̂γ̂i(2fγ̂ε̂ − f̄γ̂ε̂)ι∗β ε̂ ∧ ĀJ̄

=

∫
S−

ι∗βκ̂(−3i

2
Aα̂κ̂ +

1

2
δα̂κ̂) ∧ AI

∫
S−

(
3i

2
Aβ̂ε̂ +

1

2
δβ̂ε̂)ι

∗β ε̂ ∧ ĀJ̄

= Aκ̂IĀε̂J̄
[9

4
Aα̂κ̂A

β̂
ε̂ +

1

4
δα̂κ̂δ

β̂
ε̂

]
,

(A.0.10)

frequently using (5.4.22) and (5.5.6). The left hand side of equation (A.0.5) can be
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derived in a similar fashion. Judging from the similarity between both results (A.0.9)

and (A.0.10), this seems to head in a promising direction, however to precisely deduce

relations (A.0.4) and (A.0.5) this should be further explored, but we will leave this

to the interested reader.

Another suggestion that could quite possibly lead to the mathematical discovery of

equations (5.5.7) and (5.5.8) is to take a closer look into the derivation of the N = 1

chiral coordinates. This is likely to reveal similar relations to the ones we are aiming

for. A careful construction of these coordinates has been performed in [36]. Therefore,

we will not go into further detail about this.
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Appendix B

Weyl rescaling

Within string theory Weyl transformations are a commonly applied technique since

they form a symmetry of the Polyakov worldsheet action. Such a transformation is

a local rescaling of the metric

gold
µν = e2ωgnew

µν . (B.0.1)

These rescalings transform the original metric into another metric of the same con-

formal class. We will explicitly show how terms of the form

F (p) ∧ ∗F (p) (B.0.2)

frequently appearing in supergravity actions transform under a Weyl rescaling. We

assume a d-dimensional theory with a rescaling (B.0.1) in all d dimensions. The

crucial assumption, is that we assume F (p) to be a p-form that itself is invariant

under the Weyl rescaling. Writing (B.0.2) in Einstein summation convention shows

the explicit dependence on the metric

F (p) ∧ ∗oldF
(p) =

1

p!
Fµ1,...,µpFν1,...,νpg

µ1ν1

old ... g
µpνp
old

√
gold dnx. (B.0.3)

From (B.0.1) it follows that

gµνold = e−2ωgµνnew and
√
gold =

√
(e2ω)dgnew = (eω)d

√
gnew, (B.0.4)
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which results in

1

p!
Fµ1,...,µpFν1,...,νp(e

−2ω)pgµ1ν1
new ...g

µpνp
new (eω)d

√
gnewdnx = eω(d−2p)F (p)∧∗newF

(p). (B.0.5)

However, if F (p) does transform under the Weyl rescaling, this has to be incorporated

in addition to the result derived above. The most known example of such a situation

is the Ricci scalar. The general transformation rule of the Ricci scalar under a Weyl

rescaling (B.0.1) is explicitly derived in [55] to be

Rold = e−2ω
(
R− (d− 1)(d− 2)∇αω∇αω − 2(d− 1)∇α∇αω

)new

. (B.0.6)
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Appendix C

Einstein-Hilbert term reduction

In section 4.2 we reduced the ten-dimensional Einstein-Hilbert term (4.2.2) on the

background (4.1.1) up to second order in moduli fields. However, before arriving at

the reduced form given in equation (4.2.6), we will emphasize to some extent on the

intermediate steps of this derivation.

Recalling that the ten-dimensional Ricci scalar is given by

R̂ = ĝMN R̂P
MPN = gµνRρ

µρν +
[
gµνRm

µmν + gmn(Rµ
mµn +Rp

mpn +Rp̄
mp̄n)

+ gmn̄(Rµ
mµn̄ +Rp

mpn̄ +Rp̄
mp̄n̄) + c.c.

]
,

(C.0.1)

with R̂R
MPN the Riemann curvature tensor

R̂R
MPN = ∂P Γ̂RNM − ∂N Γ̂RPM + Γ̂RPLΓ̂LNM − Γ̂RNLΓ̂LPM (C.0.2)

and Christoffel symbols

Γ̂RMN =
1

2
ĝRP (∂M ĝPN + ∂N ĝPM − ∂P ĝMN). (C.0.3)

Given the background (4.1.1) expanded in (4.1.13) and (4.1.15), the only non-vanishing

ten-dimensional Christoffel symbols are
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Γmµn =
1

2
(ωβ)np̄(ωα)p̄mvα∂µv

β − 1

2
(bã)

mp(b̄b̃)pnz
ã∂µz̄

b̃ − i

2
(ωα) mn ∂µv

α,

Γm̄µn =
1

2
(b̄ã)

m̄
n∂µz̄

ã +
i

2
(ωα)m̄p(b̄ã)pnv

α∂µz̄
ã +

i

2
(ωα)np̄(b̄ã)

p̄m̄z̄ã∂µv
α,

Γµmn = −1

2
(b̄ã)mn∂

µz̄ã,

Γµmn̄ =
i

2
(ωα)mn̄∂

µvα

(C.0.4)

and their complex conjugates.

As an example we explicitly calculate the third term of the Ricci scalar (C.0.1) up to

second order in moduli fields∫
d10x
√
−g10 g

mnRµ
mµn = −

∫
d10x
√
−g10 z

ã(bã)
mn∂µΓµmn

=

∫
d10x
√
−g10

1

2
(bã)

mn(b̄b̃)mnz
ã∂µ∂

µz̄b̃

= −
∫
d10x
√
−g10

1

2
(bã)

mn(b̄b̃)mn(∂µz
ã)∂µz̄b̃.

(C.0.5)

Note that the derivatives do not act on the harmonics since these are closed and

furthermore we performed a partial integration in which we drop the total derivatives

and used metric compatibility and the mathematical trick det(A) = eTr[ln(A)] for a

general matrix A to obtain

∂µ
√
−g10 =

√
−g4∂µ

√
g6 =

1

2

√
−g4
√
g6 Tr[gmn∂µ gnp] = −i

√
−g10(ωα) mm ∂µv

α (C.0.6)

up to first order in moduli fields. Calculating all other terms of the Ricci scalar in a

similar fashion results in∫
d10x
√
−g10 g

µνRm
µmν = −

∫
d10x
√
−g10

1

2

[
(ωα) mm (ωβ) nn

− 1

2
(ωα)n̄m(ωβ)mn̄

]
(∂µv

α)∂µvβ +
1

4
(bã)

mn(b̄b̃)mn(∂µz
ã)∂µz̄b̃,

(C.0.7)
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d10x
√
−g10 g

mn̄Rµ
mµn̄ = −

∫
d10x
√
−g10

1

2

[
(ωα) mm (ωβ) nn

− 1

2
(ωα)n̄m(ωβ)mn̄

]
(∂µv

α)∂µvβ − 1

4
(bã)

mn(b̄b̃)mn(∂µz
ã)∂µz̄b̃,

(C.0.8)∫
d10x
√
−g10 g

mn̄Rp
mpn̄ =

1

4

∫
d10x
√
−g10

[
(ωα) mm (ωβ) nn − (ωα)n̄m(ωβ)mn̄

]
(∂µv

α)∂µvβ,

(C.0.9)∫
d10x
√
−g10 g

mn̄Rp̄
mp̄n̄ =

1

4

∫
d10x
√
−g10

[
(ωα) mm (ωβ) nn (∂µv

α)∂µvβ

+ (bã)
mn(b̄b̃)mn(∂µz

ã)∂µz̄b̃
]
.

(C.0.10)

Finally, combining the terms gmn(Rp
mpn + Rp̄

mp̄n) = gmnRmn yields the Ricci tensor

on the internal space. Up to second order in moduli fields this term vanishes.

Collecting all terms, including the complex conjugates, we obtain the reduced Einstein-

Hilbert action

S
(4)
EH, EF = − 1

2κ2
10

∫
d10x
√
−g10

[
R +

(1

2
(ωα)n̄m(ωβ)mn̄ − (ωα) mm (ωβ) nn

)
(∂µv

α)∂µvβ

− 1

2
(bã)

mn(b̄b̃)mn(∂µz
ã)∂µz̄b̃

]
.

(C.0.11)
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Appendix D

Shift symmetries from circle

reduction

In this chapter we will discuss how shift symmetries arise when compactifying an

Abelian gauge theory. Therefore, we discuss the most basic example of aD-dimensional

theory reduced on a circle, considering the manifold MD = Md × S1. As a starting

point, we will take the higher-dimensional action

S =

∫
F̂ ∧ ∗̂F̂ , (D.0.1)

with the field strength F̂ = dÂ of the D-dimensional gauge vector Â. By construction

the field strength is invariant under a gauge transformation

Â→ Â+ dΛ̂. (D.0.2)

Expanding the higher-dimensional gauge vector Â = A ∧ 1 + a ∧ dy where y is the

coordinate on the circle, y ∼ y + 2π, results in a lower-dimensional gauge vector

A and a d-dimensional scalar a. When also expanding the D-dimensional gauge

transformation as dΛ̂ = dΛ∧1+ p∧ dy, we conclude that indeed the transformation

(D.0.2) leads to a d-dimensional gauge vector transforming as A → A + dΛ, with

a field strength F = dA invariant under the transformation. In addition there is a

d-dimensional scalar a that enjoys a shift symmetry a→ a+p, obtained from the fact

that the higher-dimensional gauge vector Â includes more gauge degrees of freedom
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than the lower-dimensional gauge vector A. Therefore, the gauge degrees of freedom

are spread over the d-dimensional scalar and vector and the vector on the internal

space. Note that dΛ̂ = 0 implies dp = 0 which makes da invariant under the shift

symmetry.



BIBLIOGRAPHY 95

Bibliography
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