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Abstract

Interpretability and predictive performance are important aspects of a machine learning model.
Typically, there is a trade-off between interpretability and predictive performance. This trade-off results in
a choice between accurate but opaque models such as multilayer perceptron (MLP) and less accurate but
more transparent models such as logistic regression (LR). In the healthcare domain, model interpretability
is especially important because the real-life goals (e.g. patient well-being) are hard to model (and thus
optimize) formally. Traditional methods such as LR & MLP use aggregate features and are therefore not
able to effectively model temporal dimension that is inherent in Electronic Health Records (EHR) data.
Recently, Recurrent Neural Network (RNN) approaches have been successful in modelling healthcare
data because they are able to effectively take the temporal dimension into account. However, the RNN
model is notoriously hard to interpret. We have looked at three recently proposed RNN-based models
for medical event prediction that claim to be interpretable (Dipole, GRNN-HA and RETAIN). The
interpretability of these models is tied to the implementation of a neural attention mechanism. Having
considered how well the models are able to relate the input to the output in understandable terms, we
devised an ordering of the interpretability of these models. Then, we compared performance in predicting
30 re-hospitalisation on an EHR dataset with 37,287 medical histories using admission and diagnosis data.
The interpretability/performance trade-off within the three ‘interpretable’ models was partly observed.
Although the performance of the RNN-based models was quite similar, the difference in interpretability is
more substantial. Therefore we believe that the interpretable RNN-based models are the better overall
option to use for predicting events in the healthcare domain.
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Chapter 1

Introduction

Heart Failure (HF) is one of of the leading causes of hospitalisation in patients over the age of 65 years,
and is associated with high morbidity, mortality, and healthcare expenditures (Writing et al., 2016). It is
estimated that around 38 million people worldwide suffer from HF (Braunwald, 2015). Also, projections
show that the prevalence of HF will increase due to the ageing of the population. At present, in-hospital
mortality for acute HF is around 15% and 60-day re-hospitalisation rates in patients who survive to
discharge approach 30% (Gheorghiade and Pang, 2009). The 5-year mortality rate after HF diagnosis
approximates 50% (Writing et al., 2016).

It has been shown that in outpatients with chronic HF, a hospital admission is one of the strongest
prognostic factors for an increased rate of mortality (Koudstaal et al., 2016). This is because severely ill
patients are more likely to be hospitalised than patients who are less ill. Therefore, in order to reduce
HF mortality it is imperative to be able to detect patients that have a high risk of (re-)hospitalisation
and provide them with the care they need. In the majority of patients, gradual signs and symptoms
of worsening heart failure emerge in the days or weeks prior to the re-hospitalisation. Several studies
have already shown that using ML techniques can be effective in improving the quality of healthcare
(Chaudhry et al., 2006; Jha et al., 2009; Black et al., 2011; Shekelle et al., 2006; Jones et al., 2014).

At present, prediction models based on ‘traditional’ epidemiological approaches such as Logistic
Regression (LR) analysis have produced moderate results in the context of HF re-hospitalisation prediction
(Ouwerkerk et al., 2014). The subtle dynamics and time-varying nature of real-world clinical predictors
are often lost in the oversimplified traditional logistic regression analyses. Clearly, if we could use this
information without aggregating over the temporal dimension, significant steps could be taken to improve
our ability to recognise and intensify medical care to those who are at high-risk for an impending HF
(re-)hospitalisation. The Recurrent Neural Network (RNN) model is able to take into account the temporal
dimension and has recently been applied in several healthcare applications (Choi et al., 2016a; Lipton
et al., 2015b; Esteban et al., 2016; Lipton et al., 2016). The RNN-based models consistently outperform
models that use aggregate features (e.g. LR). However, the gain in performance comes at the cost of
reduced interpretability.

The need for interpretability arises when there is a mismatch between the machine learning model
optimization objective and the ‘real-life’ goals of the user of a machine learning model (Lipton, 2016),
or when there is a multi-objective trade-off (Doshi-Velez and Kim, 2017). The actuality of mismatched
objectives is clear in the healthcare domain where (some of) the real-life goals are to provide the most
efficient and effective care while taking ethical considerations and patient subjective well-being into
account. The goal of the machine learning model is to minimize prediction errors (as measured by some
loss function). However, we are not (yet) able to define the real-life goals in terms of a real-valued function
and a machine can therefore not really optimize them (Lipton, 2016). Also, objectives such as healthcare
cost and patient well-being can be a trade-off (Doshi-Velez and Kim, 2017). This is where interpretation
and human judgement are used. With an interpretable model, a human can make (and justify) decisions
with regards to mismatched objectives or objectives that trade-off. In that sense, an interpretable model
can serve as a decision support system.
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1.1 Problem Statement

The pairing of the four elements that were just introduced are the basis for the problem statement of this
study. The problem statement is reached by the following line of reasoning:

1. Heart Failure is a big healthcare problem because of high mortality, morbidity and healthcare costs.

2. In order to improve healthcare for HF patients we need to be able to detect patients that have a
high risk of re-hospitalisation. This allows us to keep these patients in the hospital and give them
better treatment.

3. Additionally, in predicting re-hospitalisation risk model interpretability is important because it
allows a human to make an informed decision with regards to his/her objectives.

4. Problem Statement:

The Recurrent Neural Network model has been shown to be successful in modelling EHR
data and predicting medical events but suffers from a lack of interpretability.

1.2 Objective, Scope and Structure

The main objective of this research is to address the problem of providing an interpretable prediction
of re-hospitalisation risk for HF patients. Although our scope was a specific condition (i.e. HF) and
a specific outcome (i.e. re-hospitalisation), we believe this study addresses the problem of providing
accurate and interpretable predictions of medical events in the healthcare domain more generally.

This document is divided into several parts. We complete the preliminaries with a description of our
research approach in Chapter 2. After that, this document has the following structure:

Part II: Background

This part consists of the background that is needed for a complete understanding of the problem
and the context for a possible solution. We provide an overview of the condition of HF and studies that
attempt to predict re-hospitalisation in literature in Chapter 3. In Chapter 4 we describe the structure
of Electronic Health Records, challenges for machine learning in the healthcare domain and a way to
measure predictive performance of a machine learning model. We continue with the definition of several
machine learning approaches that are relevant in our context in Chapter 5.

Part III: Theory

In this part we delve deep into the theory that aims to address our problem. We describe a taxonomy
of interpretability that can be used to anchor a discussion about the interpretability of a model in
Chapter 6. Following that we discuss several extensions to the RNN model that aim to improve its
predictive performance and interpretability in Chapter 7. Finally we outline three RNN-based models
that claim to be interpretable and evaluate that claim in Chapter 8.

Part IV: Results

In the fourth and final part we outline our results. The experimental setting and evaluation of the
results is given in Chapter 9. We conclude with a return to our research questions, the limitations of our
study and considerations for future research in Chapter 10.
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Chapter 2

Research approach

2.1 Research Questions

Following from the problem statement that was formulated in the opening of this document, we devised
the main question of this research as follows:

Can the Recurrent Neural Network model be improved such that it can provide an accurate
and interpretable prediction of (re-)hospitalisation risk for Heart Failure patients?

In order to answer the main research question there are several sub-questions that need to be answered.
In order to make assertions regarding the interpretability of a model we need to be precise in a definition
of the concept. This is reflected in the first sub-question:

SQ1. What constitutes an interpretable model?

After fixing on a definition of the concept of interpretability, we are looking for ways that aim to
improve the RNN model in terms of interpretability and predictive performance:

SQ2. How can the regular RNN model be adapted in order to allow for better predictive
performance and interpretation?

Finally, we are interested in the comparison between the ‘interpretable’ RNN-based models and their
non-interpretable counterparts:

SQ3. How do the ‘interpretable’ RNN-based models compare against each other, the tradi-
tional approaches and the regular RNN model with regards to predictive performance and
interpretability?

2.2 Research Design

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely adopted standard for
machine learning projects. It recognizes that machine learning is an iterative process but provides
structure to a project by dividing activities into specific phases. A useful feature is that it guides users
to gain an understanding of the application (business) context and the characteristics of the data first
before moving on the actual machine learning activities (data preparation, modelling and evaluation).
The CRISP-DM method was used as guidance in planning and executing the research project. For this
research project, the ‘Deployment’ phase was out of scope and is therefore not discussed. The research
methods used in this machine learning project consist of a literature review and an experimental study.
See Figure 2.1 for our application of the CRISP-DM to this research project.

The literature review was a part of the ‘Business- and Data Understanding’ phases of the CRISP-
DM. It was performed in order to answer SQ.1 & SQ.2. The results of this literature review are laid
out in Parts II & III of this document. Chapter 6 specifically aims to answer SQ.1 while Chapter 7 &
Chapter 8 aim to answer SQ.2.
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Figure 2.1: The CRISP-DM. The color coding illustrates the link between phases in the CRISP-DM and
the parts, chapters and sub-questions in this document.

The experimental study was part of the ‘Data Preparation’, ‘Modelling’ and ‘Evaluation’ phases.
It was performed in order to answer SQ.3 in Chapter 9. With the answers to all the sub-questions we
answer the main research question in Chapter 10. The design and results of the experimental study are
laid out in Chapter 9.

2.2.1 Contributions

The proposed research project will contribute to the scientific body of knowledge in the following two
ways:

1. An operationalisation of the concept of interpretability in the context of predicting re-hospitalisation
for heart failure patients. This provides a basis for assertions regarding the interpretability of a
machine learning model in this context.

2. A comparison of ‘interpretable’ Recurrent Neural Network models with each other (and with baseline
approaches) in an experimental study on a cohort of HF patients from the University Medical
Centre Utrecht. The models are compared with regards to their:

• Predictive performance

• Interpretability

7
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Chapter 3

Heart Failure and Re-hospitalisation
Prediction

In this chapter we give a more complete description of the condition of Heart Failure. In addition, we
provide an overview of studies from literature that aim to predict Heart Failure re-hospitalisation.

3.1 Definition of Heart Failure

Heart Failure (HF) is a clinical syndrome caused by cardiac abnormality. The result is reduced cardiac
output (i.e. a reduced amount of blood that the heart is able to pump through the body). HF may also
result in elevated levels of pressure within the heart. Classical symptoms are breathlessness, fatigue and
swollen ankles. The cardiac abnormality that is usually the cause of HF has to do with the muscular
tissue of the heart (myocardial abnormality) which in turn results in ventricular dysfunction. However,
there are abnormalities related to other parts of the heart that can also cause HF.

HF patients are usually differentiated with regards to the left ventricular ejection fraction (LVEF).
This measure is the fraction of the blood that is ejected from the left ventricle with a heartbeat. It
is measured with an echo cardiogram (a sonogram of the heart). The European Society of Cardiology
defines three groups of heart failure patients according to their LVEF (see table 3.1) (Ponikowski et al.,
2016). The differentiation is done because treatment options, morbidity and mortality are different for
these groups. HF with reduced ejection fraction is also known as Systolic HF. In this case the heart is not
able to pump with enough force to circulate the blood through the body. In contrast, HF with preserved
ejection fraction is also known as diastolic HF. In this type of HF the heart is not able to relax normally
in between each heartbeat and allow its ventricles to be filled with blood.

Type of HF LVEF

preserved ejection fraction (HFpEF) / Diastolic HF ≥ 50%
mid-range ejection fraction (HFmrEF) 40–49%
reduced ejection fraction (HFrEF) / Systolic HF <40%

Table 3.1: Differentiation of HF. The type of HF is established by measuring the Left Ventricular Ejection
Fraction (LVEF). In other words, the fraction of blood that is ejected by the left ventricle after each
contraction of the heart muscle.

Another way to characterize the type of HF is by looking at the time of onset. The ESC guidelines
make a distinction between patients who have developed HF slowly over time (Chronic HF) and those
that are presented suddenly (Acute HF) (Ponikowski et al., 2016). A patient that has been treated for
HF and has symptoms and signs that have mostly stayed the same for at least one month is said to be
‘stable’. The term ‘de-compensated’ is used to describe a patient with Chronic HF in which the symptoms
have suddenly deteriorated. De-compensation usually leads to a hospitalisation. In some cases of HF the
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Figure 3.1: Heart Failure state diagram. A patient can have a gradual or acute onset of symptoms.
Suddenly deteriorating symptoms is known as de-compensation. If symptoms remain unchanged for
longer than a month, the patient is considered to be stable. After treatment, the patient has a recurrent
risk of de-compensation.

symptoms can completely resolve but in most cases there is a recurrent risk of de-compensation and/or
death. Figure 3.1 shows the disease states and the transitions between them. For a summary on the
diagnosis and common treatment options for HF see Appendix B.

3.2 Heart Failure Re-hospitalisation Prediction in Literature

Four literature review studies by Rahimi et al. (2014), Tripoliti et al. (2017), Ouwerkerk et al. (2014) and
Ross et al. (2008) take a look at studies that describe a model used for predicting risk of re-hospitalisation
for HF patients. Table 3.2 shows the outcome description, prediction window, model architecture, number
of predictors and discriminative ability measured with the AUC1. Ouwerkerk et al. (2014) state that the
mean AUC of models that aim to predict HF re-hospitalisation reviewed in their study was 0.68. The
studies listed in table 3.2 have an average AUC of 0.66.

From the studies listed in the table there are 2 that have a significantly higher AUC score than the
other studies. The study by Wang et al. (2012) included 198,640 patients with ≥ 1 diagnosis of HF (as
defined by ICD-9 codes). The models developed in this study aimed to predict whether a patient would
be hospitalized, die without hospitalisation or be event-free after 30 days. The authors of this study note
that their accuracy is on the high end of the spectrum compared to other studies. However, they add
that hospitalization may be easier to predict than re-hospitalization. They state that: “re-hospitalization
risk could be more heavily influenced by hospital and physician level factors, whereas hospitalization risk
might be inherently more related to patient level factors such as previous health care usage” (Wang et al.,
2012).

The study by Koulaouzidis et al. (2016) stands out in the sense that it uses tele-monitoring device
to track the diastolic blood pressure and the weight of the HF patients while they are at home. The
study shows the promise of using tele-monitoring devices in predicting HF re-hospitalisation. However,
the study lacks in sample size (n = 308) and only tries to predict the re-hospitalisation event 1 day in
advance.

1We provide a comprehensive description of the AUC measure in Section 4.3
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Study
Outcome

description
Prediction
Window Model # predictors AUC

Yamokoski et al. (2007) All-cause 6-month LR 2 0.519
Kang et al. (2016) HF 60-day DT 7 0.59

Philbin and DiSalvo (1999) HF any LR 11 0.6
Keenan et al. (2008) All-cause 30-day LR 37 0.6

Au et al. (2012) All-cause 30-day RF 4 0.6
Zolfaghar et al. (2013) HF 30-day LR > 100 0.63
Postmus et al. (2012) HF 18-month LR 5 0.66
Watson et al. (2011) All-cause 30-day LR 3 0.67
Felker et al. (2004) All-cause or death 60-day LR 5 0.69

Basu Roy et al. (2015) HF 30-day HDC 91 0.69
Amarasingham et al. (2010) All-cause 30-day LR 29 0.72

Wang et al. (2012) All-cause 30-day LR 37 0.82
Koulaouzidis et al. (2016) HF 1-day NB 2 0.82

Table 3.2: HF re-hospitalisation prediction studies from literature. Models are abbreviated as follows:
Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Hierarchical Dynamic Clustering
(HDC) & Naive Bayes (NB).
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Chapter 4

Electronic Health Records and
Machine Learning

In this chapter we introduce the structure of Electronic Health Records data. We discuss the challenges
in carrying out a machine learning project on Electronic Health Records. Finally, we introduce the Area
Under the Receiver Operating Characteristic Curve as a way to measure the predictive performance of a
machine learning model.

4.1 Electronic Health Records as a Temporal Sequence

Electronic Health Records (EHR) data can be regarded as a temporal sequence that describes the medical
history of a patient as a number of hospital visits. EHR systems usually contain the types of data
listed below (Lee et al., 2017). In the Dutch healthcare system, the healthcare providers and insurance
companies make use of codes that describe a ‘diagnose-behandelcombinatie’ (DBC). A DBC represents
standard treatment plan that is linked to a given diagnosis. These codes are used so that the healthcare
providers can bill the insurance companies for the healthcare provided.

With the exception of the socio-demographic information, all data types have a temporal component
that describes when something (e.g. a procedure or diagnosis) has happened. This temporal information
makes it possible to see the EHR data as a temporal sequence. However, it is important to note that EHR
data is not a fixed time-series because data is only recorded when a patient is at the hospital. Figure 4.1
shows an example of a data matrix that describes the medical history of a patient.

4.1.1 Formal EHR structure

A medical history can be regarded as a time-labelled sequence of observed variables. Let r be the number
of variables. The medical history of the n-th patient (of N total patients) is then represented by a

sequence of T (n) tuples (t
(n)
i , x

(n)
i ) ∈ R× Rr, where i ∈ 1, ..., T (n) and T (n) is number of hospital visits

in the medical history of the n-th patient. t
(n)
i denotes the time-stamp of the i-th visit in the medical

Data type

- Socio-demographic information
- Diagnoses
- DBC-codes
- Image data (such as an echo cardiograph)
- Lab Tests
- Procedures
- Medications
- Unstructured text data

Table 4.1: Data types that are usually stored in an EHR system.

12



Figure 4.1: Example of EHR data. At every visit xi, medical events such as procedures or medication
prescriptions cj and the time-stamp of their occurrence ti are documented. The formal description of
EHR structure is given in Section 4.1.1. Every visit xi is encoded as a so-called ‘one-hot’ vector. This
means that the j-th dimension of the vector is a 1 if the event cj occurred in that visit.

history of the n-th patient. x
(n)
i denotes the visit information of the i-th visit. Each visit is represented

by a set of medical codes {c(n)1 , c
(n)
2 , ..., c

(n)
r }, where cj is the j-th code from the vocabulary C. From this

it follows that r = |C| and x
(n)
i ∈ {0, 1}r where the value one in the j-th coordinate means that cj was

observed in the i-th visit of the n-th medical history. See Figure 4.1 for an example of a medical history
with the xi’s, ti’s and cj ’s annotated. Hereafter we will drop the superscript (n) if it is unambiguous and
describe the algorithms as if for the medical history of a single patient.

4.2 Challenges for Machine Learning using EHR data

Lee et al. (2017) describe several characteristics of EHR data that make machine learning more challenging.
The first of these is high-dimensionality and sparsity. For instance in the case of diagnoses, the ICD-101

contains more than 14,000 diagnosis codes (Organization, 1993). In addition, a single patient is usually
only diagnosed with a very small subset of the total number of possible diagnoses. The problems associated
with increasing dimensionality are increased model complexity (and thus need for greater computational
resources) and decrease in predictive power (with a fixed number of training examples). The next challenge
has to do with the irregular time interval between data points. This is due to EHR data only being
recorded when a patient visits the hospital and not when the patient is at home. In addition the number
of recorded visits can also vary greatly between patients. Another challenge has to do with missing data.
This can be the result of a data collection problem where patients are not checked for a condition, or a
data documentation problem where the patients are checked for the condition but the outcome is not
recorded (for whatever reason). The next challenge is that of noise in the data due to inconsistent coding
or naming conventions. Finally, the last challenge has to do with bias that arises due to the fact that
more data is usually recorded (e.g. more lab tests are performed) for a patient that is perceived to be
more ill. In other words, the availability (or missingness) of data is related to the how ill the patient is.
This is known as data Not Missing At Random (Scheffer, 2002) .

4.3 Area Under the Receiver Operating Characteristic Curve

The Area Under the Curve (AUC) –sometimes referred to as the C-statistic– is used as a measure to
evaluate the discriminative ability of a model with a binary outcome. It ranges from 0.5 as the lowest

1International Statistical Classification of Diseases and Related Health Problems. It is a medical classification list
maintained by the World Health Organization.
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Figure 4.2: Receiver Operating Characteristic curve and Area Under the Curve. The true positive rate
(y-axis) is plotted against the false positive rate (x-axis) at different classification thresholds. Resulting is
the Receiver Operating Characteristic curve. The portion of the graph under the ROC curve is the AUC
score.

possible value to 1 as the highest possible value. It is calculated by considering a range of classification
thresholds (from 0 to 1) and plotting the false positive rate versus the true positive rate. The result of
this is known as a Receiver Operating Characteristic (ROC) curve (shown in figure 4.2). Then, the AUC
score is the fraction of the graph that is under the plotted ROC curve.

The AUC represents the probability that a randomly selected patient who experienced an event (e.g.
re-hospitalisation within 30 days) had a higher risk score (according to the model) than a patient who has
not experienced this event. It is most often used in situations where there is a class imbalance (e.g. there
more patients that are not re-hospitalised within 30 days than patients who are). In these situations
the AUC is more useful than the simple accuracy measure 2 because a simple model that classifies all
patients as the majority class may score quite well on the accuracy measure but will not at all be able to
discriminate between classes (and thus score low on the AUC measure). An alternative to the AUC score
is the Area Under the Precision Recall Curve (AUPRC). Instead of plotting the true positive rate versus
false positive rate, the AUPRC curve is calculated by plotting precision versus recall.

2Accuracy = # of correctly classified patients
# of patients
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Chapter 5

Machine Learning Approaches

In this chapter we describe several machine learning approaches. We distinguish between approaches that
take a single feature vector as input (Section 5.1), and those that are able to take a sequence of feature
vectors as input (Section 5.2). Figure 5.1 highlights this distinction. The approaches considered in this
chapter are included either because they are often used in the healthcare domain, or they are able to
model sequential data.

5.1 Approaches that use a single feature vector

A way to use machine learning on EHR data is to construct aggregate features from the medical history of
a patient (Wu et al., 2010; Wang et al., 2015). This means that the history of the patient with respect to
a variable (i.e. a medical event) is denoted by a single variable value. To illustrate this, take the example
of the hypertension diagnosis (figure 4.1). This is a diagnosis that is likely to occur multiple times in the
medical history of a patient. To aggregate the medical history and represent it as a singe variable value,
one could just count the amount of times the diagnosis was made and use that integer as the value for the
variable ‘hypertension’. An example of an aggregation of a numeric variable in the medical history is a
measurement such as blood pressure. To aggregate this into a single value one could take the mean of the
measures. Using aggregated features makes it possible to use ‘traditional’ data analysis methods such as
Logistic Regression, Support Vector Machines, Decision Trees, etc. But a downside of using aggregated
features is that the information about the sequence of medical events as well as the time between events
are lost.

5.1.1 Logistic Regression

Logistic Regression (LR) is a model that is often used in the healthcare domain. Out of the 13 studies
that aimed to predict Heart Failure re-hospitalisation from literature (Table 3.2), 9 used the LR model.
The LR model can be represented as a layer of input nodes that have a weighted connection to the output
node (see Figure 5.2). The input nodes contain the values of the feature vector. Then, the weighted
connection from an input node to the output node determines influence of the input feature to the
predicted risk score.

Trainable parameters

Wy ∈ Rm Regression coefficients
by ∈ R Bias
m: input layer nodes (# of features)

ŷ = sigmoid(Wyx+ by)

Table 5.1: Formal description and trainable parameters of LR. In this definition, the input features
(c1, ..., cj) are represented as a vector x, which has m dimensions. See Figure 5.2 for a graphical
representation of the LR model. The sigmoid function is defined in Appendix E
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Figure 5.1: Sequence versus Aggregate approaches. Two ways to represent EHR data. (a) is a sequence
of feature vectors that does justice to the temporal dimension of EHR data as described in Section 4.1.1.
(b) is a single feature vector which has ‘collapsed’ over the temporal dimension by summing up the
occurrences of medical events. This single feature vector does not capture the temporal dimension.

Figure 5.2: Logistic Regression (LR). The input layer x and the output layer y are shown. In this example,
the number of input nodes m. φ represents the sigmoid activation function and b is the bias unit.
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5.1.2 Cox Proportional Hazards Regression

Cox Proportional Hazards Regression analysis (CPHR) is an extension to Survival Analysis. Survival
Analysis is a way to analyse datasets in which the dependent variable is the occurrence of an event
(HF re-hospitalisation in our case) and we are interested in the expected time duration until that event
will happen. Survival Analysis assumes that there is a ‘survival function’ that describes the predicted
probability of survival (i.e. not re-hospitalised) after a given amount of time. In CPHR the aim is to take
into account certain factors that influence survival probability other than just the amount of time that
has passed. The result of a CPHR is a number of regression coefficients that correspond to a variable
(just like in Logistic Regression). A coefficient represents the increase or decrease of the log of the hazard
ratio relative to unit change in the variable that it corresponds to (holding all other predictors constant).
The hazard ratio is similar to the odds ratio in Logistic Regression. The CPHR model can be written
down as follows:

h(t) = h0(t) exp(b1X1 + b2X2 + · · ·+ bpXp) (5.1)

In this formula the b’s are regression coefficients corresponding to the X’s (the predictor variables).
h(t) is the hazard function at time t. To obtain the hazard ratio for a predictor variable one takes the
exponent of the corresponding coefficient in the CPHR model. If the hazard ratio of a predictor variable
is 1 it does not affect the probability of survival (i.e. the event happening). A hazard ratio smaller than 1
means that the presence (or unit increase of the value) of this variable increases the probability of survival
(decreases the probability of the event happening). Conversely, a hazard ratio greater than 1 decreases the
probability of survival. An important drawback of the CPHR model is the fact that it does not model the
actual baseline hazard (h0(t)) and can therefore not be used to perform an individualised prediction by
‘plugging in’ the values corresponding to a specific person. It can only be used to identify risk factors that
increase/decrease the probability of survival. However with some additional work, Chin and Goldman
(1997) and Krumholz et al. (2000) have used the CPHR model to predict risk of re-hospitalisation for HF
patients. The main idea of their approach is to use CPHR to identify risk factors, and then look at the
marginal distribution of re-hospitalisation given the identified risk factors.

The CPHR model assumes that the relative risk of two individuals with differing values for the
coefficients is independent of the time that has passed (i.e. constant at all times). Babińska et al. (2015)
have studied the case of a CPHR model in the context of survival from Acute Coronary Syndrome
and have shown that it is improper to use a CPHR model without checking the proportional hazards
assumption. The result of using a simple CPHR model in the case where the proportional hazards
assumption is violated could result in the inclusion of seemingly ‘time-independent’ risk factors which are
in fact time-dependent. The study by Chin and Goldman (1997) does not report whether they checked the
proportional hazards assumption. Krumholz et al. (2000) state that “the proportional hazard assumption
was confirmed graphically”. See Appendix C for a more comprehensive description of these studies.

5.1.3 Multilayer Perceptron

A Multilayer Perceptron (MLP) is an interconnected group of nodes consisting of at least one input layer,
an arbitrary number of hidden layers and one output layer (see Figure 5.3). Each node in a layer has a
weighted connection to every node in the next layer. These weighted connections are optimized during
the training of the network. The nodes in the input layer take the values of the predictor variables. In
every node in the hidden layer there is an activation function1 that takes as input the weighted sum of
the output of all the nodes in the previous layer plus a bias term. The result of the function is further
propagated to the nodes in the next layer. If the node is in the final layer, the result of the activation
function is the output of the model.

Tu (1996) describe the advantages and disadvantages of using a MLP over LR for predicting clinical
outcomes. The main advantage is the fact that a MLP with a single hidden layer with a finite number of
nodes is a universal approximator (Csáji, 2001). This means that in theory, the model can approximate
any measurable function to any desired degree of accuracy. In other words, a MLP can model highly
complex and non-linear relationships between the predictor variables and the clinical outcome. This
power comes from the nodes in the hidden layer that act as automatic feature detectors. In theory, LR is

1Activation functions that are often used in practice are the logistic sigmoid function, the hyperbolic tangent function
(tanh) or the rectified linear function (ReLu). See Appendix E for the definition of these functions.
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Trainable parameters

Wh ∈ Rp×m Hidden layer weights
bh ∈ Rp Hidden layer bias
Wy ∈ Rp Output layer weights
by ∈ R Output layer bias
m: input layer nodes (# of features)
p: hidden layer nodes

h = φ(Whx+ bh)

ŷ = φ(Wyh+ by)

Table 5.2: Formal description and trainable parameters of MLP. In this definition, the MLP has a single
hidden layer and an output layer consisting of one node (like shown in Figure 5.3). The auxiliary function
φ can be any activation function such as sigmoid or tanh. See Appendix E

Figure 5.3: Multilayer Perceptron (MLP). A simple Multilayer Perceptron with a single hidden layer.
The input layer x, the hidden layer h and the output layer y are shown. In this example, the number of
input nodes m is 6 and the number of hidden layer nodes p is 3. φ represents the activation function and
b is the bias unit.

also able to model complex and non-linear functions but this requires an explicit search by the model
developer and may require complex transformations of the data. The same goes for interactions between
predictor variables. The hidden layer in a MLP is able to implicitly detect these interactions while LR
requires explicit modelling by the developer.

Unfortunately there are also some disadvantages of using a MLP over LR. The first of these is that
MLPs require more computational resources. Due to the large number of connection weights that need to
be optimized in an iterative fashion, the time needed to train a MLP can be considerable. The second
disadvantage is that MLPs are prone to overfitting. This means that the MLP will perform really well
on the dataset that is was trained on, but will perform a lot worse on new data. However, there are
different strategies such as using dropout, regularization and early stopping that can be implemented to
try and reduce the effects of overfitting (Caruana et al., 2001; Girosi et al., 1995; Srivastava et al., 2014).
The third and most consequential disadvantage is the difficulty in the interpretation of the model (see
section 6.1).

So far, MLPs have been used in a wide variety of contexts in the healthcare domain (Amato et al.,
2013). The specific use of a MLP for predicting (re-)hospitalisation for HF patients has been reported
by Atienza et al. (2000). However, this study suffers from the major drawback of developing the MLP
model on only 123 patients and not using cross-validation or training/test set splitting. This makes it
quite likely that the model has overfitted the training data. The reported sensitivity and specificity for
re-hospitalisation for HF patients on the training set are 0.8 and 0.94 respectively.
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Figure 5.4: Hidden Markov Model (HMM). A simple Hidden Markov model with states (X), observations
(y), state transition probabilities (a) and observation probabilities (b) (from wikipedia)

5.2 Approaches that use a sequence of feature vectors

One of the characteristics of clinical data as described in Chapter 4 is that there is an important temporal
dimension. That is to say, the sequence of –and the times between medical events may contain information
that could be useful in predicting a clinical outcome. The approaches considered up to this point do not
effectively take this temporal dimension into account and may therefore be missing information that is
useful in predicting a clinical outcome. In this chapter we describe two approaches that are better able to
model the temporal dimension.

5.2.1 Hidden Markov Model

A way to model a sequence is with a Hidden Markov Model (HMM). This model assumes that the
sequence it aims to model is a ‘Markov process’, which means that the probability of the next state (step)
in the sequence is dependent only upon the current state and is independent of all the previous states of
the sequence. The architecture of the HMM consists of states (that are hidden) and observations (that
are not hidden). In addition the model describes transition probabilities between every state and output
probabilities between every state and every observation. Figure 5.4 shows a HMM consisting of 3 hidden
states and 4 observations.

Lipton et al. (2015a) cite a couple of problems that HMMs have in learning from sequence data. The
first of these has to do with the computational complexity of the model, especially when the amount of
hidden states (S) becomes large. This is because the HMM learning algorithm scales with O(|S|2) and the
set of state transition probabilities is of size |S|2. The other problem is the assumption that the sequence
is a Markov process. This assumption is not likely to be valid in medical history data. As an example,
the diagnosis of a myocardial infarct in the past of a patient will probably maintain predictive significance
longer than just one step in the sequence. HMMs can be extended with a context window such that they
incorporate more previous states. However, this procedure grows the state space S exponentially with
the size of the context window thus compounding the problem of computational infeasibility.

Due to the problems mentioned above, we conclude that the HMM model is not a great option in the
context of predicting re-hospitalisation for HF patients.

5.2.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a type of neural network that is able to model sequential data.
Oversimplified, it can be explained as a sequence of MLPs in which the nodes in the hidden layer of one
MLP have weighted connection to the nodes in the previous MLP. In other words, there is a recurrent
connection in the hidden layer of the network. This means that the hidden state at a given timestep is
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Trainable parameters

Wh ∈ Rp×m Hidden layer weights
bh ∈ Rp Hidden layer bias
Wr ∈ Rp×p Recurrent weights
Wy ∈ Rp Output layer weights
by ∈ R Output layer bias
m: input layer nodes (# of features)
p: hidden layer nodes

hi = φ(Wrhi−1 +Whxi + bh)

yt = φ(Wyht + by)

Table 5.3: Formal description and trainable parameters of RNN. Given the input sequence x1, ..., xt
the RNN model outputs yt. In this definition, the RNN has a single hidden layer and an output layer
consisting of one node (like shown in Figure 5.5). The auxiliary function φ can be any activation function
such as sigmoid or tanh (Appendix E).
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Figure 5.5: Recurrent Neural Network (RNN). A simple RNN architecture with input layer x, hidden
recurrent layer h and output layer ŷ. Note that each xi consists of m nodes and hi consists of p nodes
(as per Table 5.3).

dependent upon the input at that timestep, as well as the previous hidden state. Formally, given the
sequence x1, ..., xt, the hidden layer of a RNN hi is φ(xi, hi−1). The activation function φ determines the
information that is propagated further through the network. Because the RNN model is in essence a
sequence of MLPs with a hidden layer to hidden layer connection, the same advantages and disadvantages
that were mentioned for the MLP model in Section 5.1.3 apply to the RNN model. Also, the same kind
of overfitting prevention strategies (e.g. dropout and regularization) can be used.

Figure 5.5 shows a graphical representation of the RNN model architecture. It is important to note
that in this representation the circles denote layers of nodes of the network and not individual nodes.
Table 5.3 shows the formal definition of a ‘simple’ RNN.

The RNN model has recently been applied in several healthcare applications. (Choi et al., 2016a;
Lipton et al., 2015b; Esteban et al., 2016; Lipton et al., 2016). The RNN-based models consistently
outperform models that use aggregate features (e.g. LR & MLP). A study aimed at specifically predicting
re-hospitalisation for heart failure patients is not reported in literature. As previously mentioned, the
RNN model is notoriously hard to interpret. However, the notion of interpretability requires further
elaboration. We will discuss the need for interpretability and the properties of interpretable models in
the next chapter.
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Part III

Theory
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Chapter 6

Model Interpretability

In the following chapter we discuess the interpretability taxonomy that was proposed by Lipton (2016).
Then, we use the taxonomy to rank several models that were discussed in Chapter 5 on the inter-
pretability continuum. Finally, we reflect on the apparent trade-off between predictive performance and
interpretability.

6.1 Properties of Interpretable Models

Interpretability is hard to define because it can not be directly measured. However, in order to make
any meaningful assertions regarding a models’ interpretability, a definition is needed. Lipton (2016)
suggest that interpretability is not a monolithic concept but propose a taxonomy that describes different
techniques and model properties that are related to its interpretability. They are organized according to
two categories. The first has to do with how the model works (Transparency). The second has to do
with the extra information a model can provide to a user (Post-hoc Interpretability). We will discuss
the elements of this taxonomy below.

6.1.1 Transparency

Transparency describes the degree to which the inner workings of a model can be easily understood
by a human being. It is the antithesis of opacity or blackbox-ness. The transparency of a model can
be assessed at different levels. These are: the whole model (Simulatability), its singular components
(Decomposability) and its training algorithm (Algorithmic Transparency). We will use LR and
MLP as examples in discussing the three transparency levels.

Simulatability

If a human being can (in a reasonable timespan) do the calculations that happen when a model makes a
prediction, the model is considered to be simulatable. For example in the case of a small LR (with 4
input features), a human can easily look at the regression coefficients, make the calculations and simulate
the prediction. However, the LR model becomes less simulatable as the number of input features grows
because it would take a human more time to simulate the calculations of the model. In the case of an
MLP with an input layer consisting of 20 nodes and a hidden layer consisting of 100 nodes, it becomes
pretty clear that it not a simulatable model because of the number of calculations that have to be made
to simulate the model. On the other hand, an MLP with only 2 input nodes and 4 hidden nodes can
actually be easily simulated. This shows that simulatability is not necessarily intrinsic to a type of model
but has more to do with the hyper-parameters of a model.

Decomposability

Decomposability has to do with the ability of each input, parameter and calculation of the model to be
intuitively explained. Let’s look again at LR. A single weighted connection can be easily explained as
the contribution to the prediction of the input feature that it is connected to. subset of observations
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that satisfy a specific criteria (i.e. the split criteria). Also, the calculation at each node is quite simple to
explain as it consists of a multiplication between the feature value and the connection weight. For a given
parameter of a MLP (i.e. a weighted connection between two nodes), it is not at all easy to explain its
relationship with the input and output of the network because it is unclear what happens in the hidden
layer. The same holds for the calculations (i.e. node activations) in a MLP. Knowing the activation value
of any given node in the network is not easily translatable to a link between the input and output of
the model. With regards to the decomposability of the input the LR and MLP models are not a-priori
different. The decomposability of the input has to do with the amount of feature engineering that has
been performed. Both the LR and MLP models are able to use as input either ‘raw’ and simple features
or heavily engineered features. One thing to note is that feature engineering is a less common practice for
the MLP model because the hidden layer of a MLP performs implicit feature engineering anyway.

Algorithmic Transparency

Algorithmic transparency has to do with the mathematical guarantees that can be given regarding the
solution of the training algorithm. The gradient descent algorithm (that is used for training LR and
MLP) is a greedy search algorithm. It looks at the gradient of the loss function with respect to the
weights in the network and incrementally updates the weights in the direction opposite to the gradient.
In this sense, the algorithms of LR and MLP are less than fully transparent.

6.1.2 Post-hoc Interpretability

Besides looking at the inner workings of a model and considering its interpretability, one could look at
smart techniques to derive extra information from a trained model and present it to an end-user. These
‘post-hoc explanations’ can allow less transparent models (such as a MLP) to become more interpretable.
In some sense, a good analogy is the human brain (as a black-box system) that provides post-hoc
explanations for its behaviour even though we know that at the mechanical level of the brain these
explanations do not make any sense. One important thing to note about post-hoc explanations is that
they do not necessarily reflect the true inner workings of the model. Therefore they can potentially
mislead humans into thinking the model works in some way while in reality it does not.

Text Explanations

A common way for a human to confer an explanation to another human is by giving a chain of reasons
that can be written down as text. Understanding this type of explanation comes naturally to a human so
therefore it makes sense to try and generate textual explanations for the predictions a model makes. One
approach for this is to concurrently train two models. One prediction model, and another that uses the
internal representations of the prediction model to produce a textual explanation.

Visualization

Humans can grasp complex entities with their visual system and pattern recognition capabilities. Granted,
these systems are not perfect but given the right visualization, they allow humans to almost instantly
gain a better understanding of a dataset and/or prediction model. Visualization techniques might be
best suited models that learn rich representations of the data (because there is more to visualize). One
way to use a visualization to interpret a model is to manipulate the input to the model to see how the
visualization changes.

Local Explanations

Instead of trying to explain the whole model, efforts can be made to try and explain a smaller (local)
part of the model. Although an explanation for the whole model is of course more desirable than just a
local explanation. However, if a global explanation is unattainable, a local explanation might still be
quite useful. For instance, Ribeiro et al. (2016) have proposed a technique to make a local sparse linear
approximation to be used as an explanation for a model’s predictions.
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Figure 6.1: Model Interpretability Continuum. The models more to the left are less interpretable (e.g.
RNN & MLP) than the models more to the right (LR).

Explanation by Example

Another way in which humans confer explanations to each other is by an analogy. They justify some
decision by explaining that the situation was quite similar to another situation in which the same decision
turned out to be a good one. In the same vein, a model could show the user the predicted label along
with an observation (for which the label is known) that is most similar to the observation that gave rise
to the prediction. Similarity can for example be calculated using a proximity measure in the space of the
hidden representation.

6.2 The Interpretability Continuum

Typically, as the number of parameters of a model increases, it becomes increasingly harder to simulate
and therefore more difficult for a human to interpret. For example, a LR with a small number of input
features is more interpretable than a LR with a large number of input features. This is because with a
small LR, it is easier to simulate the model by taking the input and simulating the calculations.

The MLP and RNN model have a reputation for being difficult to interpret. This is because the
hidden layers learn increasingly abstract (hidden) features from the data that are represented by a set
of weighted connections between nodes. This set of weighted connections is not easily translated to an
intuitive explanation (i.e. decomposed), especially as the number of hidden nodes becomes large.

Concluding, even though it is difficult to objectively measure interpretability, it is still possible compare
models with regards to their interpretability using the taxonomy proposed by Lipton (2016). The lack of
an objective measure means that there is not a clear dichotomy between models that are interpretable
and models that are not interpretable. Therefore, we consider model interpretability as a continuum
along which different models are located according to their transparency and the post-hoc explanation
techniques they allow.

Figure 6.1 shows the models previously discussed placed on the interpretability continuum. The
small LR is ranked most towards the right of the continuum because it is the most simulatable and
decomposable of the models. The large LR is ranked just below that because with increasing tree size,
the model becomes less simulatable. The MLP & RNN models are ranked more towards the left side of
the continuum because a ‘normally’ sized model (i.e. tuned for predictive performance) quickly becomes
non-simulatable and also its individual nodes/weights do not allow for an intuitive explanation (i.e.
non-decomposable).

6.3 Interpretability / Predictive performance Trade-off

The bias-variance decomposition describes the elements that contribute to the prediction error of a
model on test data (Friedman, 1997). The bias-term is related to the errors made because of improper
assumptions built into the model. On the other hand, the variance-term is related to the errors that are
due to the model capturing ‘random noise’ from the training data. Typically as one increases model
complexity, the bias-term will decrease while the variance-term will increase. In order to obtain the
best possible predictive performance, one must manage the bias-variance trade-off and pick a model
(and its hyper-parameters) with the right amount of complexity. Looking at just the bias-term of the
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decomposition, we should expect more complex models to outperform less complex models. Also, looking
at the concepts of complexity and simulatability we can see that increasing model complexity is bound to
decrease its simulatability (and thus its interpretability). Therefore, we would expect to see a trade-off
between interpretability and predictive performance.
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Chapter 7

Extending the Recurrent Neural
Network model

In this chapter we return to the RNN model and consider several extensions that aim to improve it.
These extensions are the foundations of the ‘interpretable’ RNN-based models that will described in
Chapter 8. The first three extensions aim to improve the predictive performance of the RNN model. The
final extension aims to both improve predictive performance, as well as interpretability.

7.1 Advanced Cell Architectures

Due to the recurrent nature of the hidden layer to hidden layer connection, the model can in theory
capture long range dependencies in the sequence. However in practice, in a simple RNN architecture
the long-range dependencies may not actually be learned due to the problem of the ‘vanishing gradient’
(Hochreiter, 1998). This problem is the result of performing a squashing non-linear transformation (e.g.
sigmoid or tanh) on the gradient of the error function at every timestep. In other words, the information
about the gradient of the error shrinks at every timestep and becomes so small that the slope of the
error function can not be detected and therefore the network can not learn from a mistake made more
than a few timesteps in the past. Proposed solutions for this problem are Long-Short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) and more recently the Gated Recurrent Unit
(GRU) (Chung et al., 2014).

Hochreiter and Schmidhuber (1997) have proposed the LSTM architecture (Figure 7.2a). Reconsider
the simple node from the MLP that takes as input the weighted values of its input nodes, applies a
transformation function and outputs the value to all the nodes in the next layer. A node in a LSTM
network is extended with an input gate, forget gate and output gate. These gates control the flow of
information through them. This allows the network to learn what parts of the input to ignore (input
gate), what to forget from its current hidden state (forget gate) and what parts of the hidden state to
output to the next layer and timestep (output gate). The other RNN cell architecture that has recently
become popular is the Gated Recurrent Unit (Chung et al., 2014) shown in Figure 7.2b. The main
difference between the two is that the GRU combines the input and forget gates into an update gate thus
reducing the complexity of the model slightly while having similar results. The LSTM and GRU solutions
to the vanishing gradient problem are so effective that every implementation of a RNN described in the
literature makes use of them. Some examples are Bajor and Lasko (2016) (LSTM & GRU), Choi et al.
(2016e) (GRU) & Choi et al. (2016a) (GRU).

We apply the GRU-based RNN in this research because they are a bit simpler in terms of trainable
parameters than the LSTM-based RNN. The calculation of a hidden state in the GRU architecture shown
in Table 7.1.
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Figure 7.1: Multiple Sigmoids. The effect of multiple sigmoid transformations Deeplearning4j (2017).
The error signal becomes increasingly small as multiple sigmoid transformations are performed to the
point where the model is not able to ‘learn from’ mistakes made multiple timesteps in the past.

Figure 7.2: LSTM and GRU. The LSTM (a) and GRU (b) cell architectures from Deeplearning4j (2017).
The LSTM- and GRU-based RNN are better able to deal with the vanishing gradient problem and can
therefore better capture long-range dependencies.

Trainable parameters

Wr ∈ Rp×m Reset gate (input) weights
Ur ∈ Rp×p Reset gate (hidden) weights
br ∈ Rp Reset gate bias
Wz ∈ Rp×m Forget gate (input) weights
Uz ∈ Rp×p Forget gate (hidden) weights
bz ∈ Rp Forget gate bias
Wh ∈ Rp×m Output gate (input) weights
Uh ∈ Rp×p Output gate (hidden) weights
bh ∈ Rp Output bias
m: input layer dimensions
p: hidden layer dimensions

rt = sigmoid(Wrxt + Urht−1 + br),

zt = sigmoid(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + rt � (Uhht−1) + bh),

ht = (1− zt)� hh−1 + zt � h̃t,

Table 7.1: Formal description and trainable parameters of GRU. The � symbol denotes the element-wise
multiplication operation. The auxiliary functions (such as sigmoid and tanh) are defined in Appendix E
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Figure 7.3: Medical Concepts in Efficient Representation. Example of a tranformation from ‘one-hot’
into an efficient representation from Choi et al. (2016d). The efficient representation has a smaller
dimensionality and captures semantic relatedness. An example of semantic relatedness can be seen in
the diagnoses ’Bronchitis’ and ’Pneumonia’ (both lung-related) that are close to each other in the vector
space. Both are further away from ‘Obesity’ and ‘Cataract’ (not lung-related).

7.2 Representation Learning

Another extension to RNN model is that of efficient representation learning. The goal here is to transform
the ‘one-hot’ encoding of the input xi ∈ {0, 1}|C| to a more efficient representation vi ∈ Rm (see Figure
7.3). The representation is more efficient in the sense that it has a lower dimensionality but also in the
sense that it captures a semantic relationship between the inputs. Semantic relatedness in this approach
is characterized by the distance between points in the vector space. An example is shown in Figure 7.3.
Choi et al. (2016d) and Choi et al. (2016b) have shown that learning such a representation improves the
prediction performance for traditional methods (LR, KNN & SVM) as well for RNNs.

7.3 Bi-directional Recurrent Neural Networks

In addition to allowing the RNN to model the temporal sequence in one direction (from x1 to xt), it is
also possible to model the sequence from xt to x1. This idea is implemented in the the Bi-directional
Recurrent Neural Network (BRNN) as proposed by Schuster and Paliwal (1997). The BRNN architecture
uses a forward and backward RNN to model the sequence in both directions. The forward RNN reads

the input sequence from x1 to xt and results in a sequence of forward hidden states (
−→
h1, ...,

−→
ht). The

backward RNN reads the input sequence from xt to x1 and results in a sequence of backward hidden

states (
←−
h1, ...,

←−
ht). Concatenating the forward and backward hidden state results in the bi-directional

hidden state hi = [
−→
hi ;
←−
hi ].

7.4 Neural Attention Mechanism

The neural attention mechanism has been proposed by Mnih et al. (2014) in the field of computer vision
and was later refined by Bahdanau et al. (2014) for use in machine translation. It has been shown to be
successful in different contexts (Yang et al., 2016) , (Ba et al., 2014) and (Chorowski et al., 2015). The
attention mechanism can be explained as allowing the model to look at every element of a sequence (e.g.
a sequence of hidden states in a RNN and) ‘pay attention’ to the elements that are important. Given a
sequence of length T , with elements h1, ..., hT , we generate attention values αi for i = 1, ..., T . Then, the
elements are multiplied by their attention value and summed to generate the ‘context vector’ c =

∑
i αihi.

The idea is that the context vector contains the information from every hidden state that is important
for making a correct prediction.

In the context of a medical history (such as shown in Figure 4.1), the attention mechanism can be
used on two levels. The first of these is on a visit-level. In this case the attention mechanism learns which
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Figure 7.4: Bi-directional Recurrent Neural Network (BRNN). An illustration of the BRNN model from
Schuster and Paliwal (1997). The input sequence is modelled in both directions resulting in a forward
and backward hidden state. The forward and backward hidden states are concatenated to obtain the
final hidden state at each timestep.

encoded visits are most important for making a correct prediction. The other level at which an attention
mechanism can operate is on the event-level. In this case the attention mechanism learns which medical
events are most important for making a correct prediction.

See Figure 7.5 for a graphical representation of the attention mechanism in a sentence summarization
task. The distribution of attention values over the sentence shows that words ‘win’ and ‘victorious’ are
important when predicting the word ‘beat’.

7.4.1 A note on correlation and causation

Like with any supervised machine learning algorithm, the ‘interpretable’ RNN-based models that will
be discussed in Chapter 8 make predictions on the basis of correlations in the training data. It may
be tempting to interpret the distribution of attention as a describing a causal relationship between the
elements of the medical history of a patient and the re-hospitalisation event. When data shows that
events A and B are correlated, any of the following relationships are possible (Novella, 2009):

• A causes B

• B causes A

• A and B are caused by C (which may be unobserved)

• There is no causal relation between A and B (the correlation is a coincidence)

These possible relationships show that it is unwarranted to infer a causal relationship simply from
correlation. Having said that, looking for correlations can still be useful as they can provide a trigger for
more comprehensive investigation into the causal relationship between events.
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Figure 7.5: Neural Attention Mechanism. The attention mechanism in a sentence summarization task
from See et al. (2017). The attention distribution shows that words like ‘win’ and ‘victorious’ are more
important than others when predicting the word ‘beat’.
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Chapter 8

‘Interpretable’ Recurrent Neural
Networks

Choi et al. (2016c), Ma et al. (2017) and Sha and Wang (2017) have proposed RNN-based model
architectures for diagnosis prediction in the healthcare domain (Figure 8.1). These models have been
specifically developed in order to allow for better interpretation than a ‘regular’ RNN would. They aim to
achieve this by implementing an attention mechanism that is able to tell the user what the model focuses
on when making a prediction. This improves the decomposability of the RNN model because it provides
an element of the model – the attention weights – that can be used to give an intuitive explanation. In
this chapter we will outline these models and show how they implement the RNN extensions that were
described in Chapter 7. Then, we revisit the interpretability continuum described in Section 6.2 and
include the RNN-based models outlined in this chapter.

In the following sections we provide for each model its formal description and its trainable parameters.
In addition we provide an ‘unrolled’1 overview of what the model would look like if the medical history
from Figure 4.1 was the input of the model. Also, in order to keep the description simple we have left out
how we incorporated the temporal information. A full description of how we incorporated the temporal
information can be found in Appendix F.

8.1 Diagnosis Prediction Model (Dipole)

Figure 8.1a shows the high-level architecture of the Dipole model as proposed by Ma et al. (2017).
Figure 8.2 shows the ‘unrolled’ overview of the model. Table 8.1 contains the formal description and the
trainable parameters of Dipole. The authors describe three attention mechanisms but state that the
‘location-based’ attention mechanism performed better than the other two. In our description of the
Dipole model we have implemented this attention mechanism.

The attention mechanism of Dipole allows the model to explain how much attention each timestep in
the sequence of hidden states h1, ..., ht receives. The amount of attention on an hi can be interpreted
as its importance to the calculation of the output yt. However, due to the transformation of vi by the
bi-directional recurrent layer into hi, one is not justified in using the attention on hi as a basis for a
claim about the importance of solely vi. This is because hi is the result of weights that are connected to
hi−1, hi+1 as well as vi. In turn, the the hidden state hi−1 is connected to vi−1 and hi−2 and so on. In
addition, because the context vector ct is concatenated with the last hidden state ht in the sequence, it
becomes less clear what the relative impact of the states h1, ..., ht−1 versus ht is.

8.2 GRU-based RNN with Hierarchical Attention (GRNN-HA)

Figure 8.1 shows the high-level architecture of the GRNN-HA model as proposed by Sha and Wang (2017).
Table 8.2 contains the formal description and the trainable parameters of GRNN-HA. The authors state
that they used the word2vec algorithm to learn the medical event embedding matrix. However, we used a

1An unrolled visualisation of a RNN removes the cycle (recurrence) and instead shows every timestep of the input.
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Figure 8.1: ‘Interpretable RNN’. High-level overview of ‘interpretable’ RNN-based models for medical
event prediction. Dipole (Section 8.1), GRNN-HA (Section 8.2) and RETAIN (Section 8.3). The color
coding illustrates the implementation of the concepts described in Chapter 7. Given a sequence of hospital
visits x1, ..., xt (with a single visit indexed as xi), the models produce the prediction yt. The description
of the other elements of the models are given in Table 8.1, 8.2 & 8.3 respectively. The unrolled overview
of the models is given in Figure 8.2, 8.3 & 8.4 respectively.
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Figure 8.2: Dipole Architecture. Unrolled overview of the Dipole model with an input sequence of 4 visits
(x1, x2, x3, x4). Each visit xi is embedded into an efficient representation vi. Then each embedded visit is
transformed by a BRNN into hidden state hi. The visit-level attention mechanism ‘pays attention’ to the
hidden states. Each hidden state hi is multiplied with its attention value αi. The sum of the ‘attended’
hidden states is the context vector ct. The context vector and the last hidden state are concatenated into
h̃t which is used to generate prediction yt.
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Trainable parameters

Wemb ∈ Rm×r Input embedding weights
bemb ∈ Rm Input embedding bias
Wα ∈ R2p Visit-level attention weights
bα ∈ R Visit-level attention bias
Wc ∈ Rc×4p Context weights
Wy ∈ Rc Output weights
by ∈ R Output bias
r: input dimensions
m: embedding dimensions
p: visit-level RNN dimensions
c: context vector dimensions

vi = ReLU(Wembxi + bemb), for i = 1, ..., t

h1, ..., ht = [
−−−→
GRU(v1, ..., vt);

←−−−
GRU(vt, ..., v1)],

gi = W>α hi + bα, for i = 1, ..., t

α1, ..., αt = Softmax(g1, ..., gt),

ct =

t∑
i

αihi,

h̃t = tanh(Wc[ct;ht]),

ŷt = sigmoid(Wyh̃t,+by),

Table 8.1: Formal description and trainable parameters of Dipole. GRU refers to the equations described
in Table 7.1. The definitions of ReLU, Softmax, tanh and sigmoid are given in Appendix E

Trainable parameters

Wemb ∈ Rm×r Input embedding weights
bemb ∈ Rm Input embedding bias
Wβ ∈ R2p×2p Event-level attention weights
uβ ∈ R2p Event-level context weights
bβ ∈ R2p Event-level bias
Wα ∈ R2q×2q Visit-level attention weights
uα ∈ R2q Visit-level context weights
bα ∈ R2q Visit-level bias
Wy ∈ R2q Output weights
by ∈ R Output bias
r: input dimensions
m: embedding dimensions
p: event-level RNN dimensions
q: visit-level RNN dimensions

wij = ReLU(Wembxij + bemb),

h1j , ..., htj = [
−−−→
GRU(w1j , ..., wtj);

←−−−
GRU(wtj , ..., w1j)],

fij = tanh(W>β hij + bβ)>uβ ,

β1j , ..., βtj = Softmax(f1j , ..., ftj),

vi =

k∑
j

βijhij ,

H1, ...,Ht = [
−−−→
GRU(v1, ..., vt);

←−−−
GRU(vt, ..., v1)],

gi = tanh(W>α Hi + bα)>uα,

α1, ..., αt = Softmax(g1, ..., gt),

ct =

t∑
i

αiHi,

ŷt = sigmoid(Wyct,+by),

Table 8.2: Formal description and trainable parameters of GRNN-HA. The definitions of ReLU, Softmax,
and sigmoid are given in Appendix E

MLP to learn the embedding matrix (just like Dipole). The GRNN-HA model is formally described in
Table 8.2. One thing to note is that the GRNN-HA model also takes into account the temporal dimension
within a visit. For the GRNN-HA model the visit xi is a sequence of vectors xi1, ..., xik with xij ∈ {0, 1}r
and only one dimension in the in the vector having the value 1.

GRNN-HA is quite similar to Dipole in that it uses a BRNN with an attention mechanism. However,
GRNN-HA has a hierarchical structure. Which means it first uses a BRNN with attention to encode every
medical event within a visit resulting in a visit encoding. Then, GRNN-HA uses another BRNN with
attention on every encoded visit, resulting in an encoded sequence (i.e. the context vector). GRNN-HA
improves upon the shortcoming of Dipole by implementing an attention generating mechanism on the
event-level as well as the visit-level

On the visit-level, the GRNN-HA model is quite similar to Dipole and is therefore (non-)decomposable
to the same degree. However, GRNN-HA adds the BRNN and attention mechanism on the event-level.
This makes it so that the βij values can be used to explain the importance of hidden state hij . Just
like with Dipole, one is not justified in relating βij strictly to the medical event embedding vij because
hij is influenced by the next and previous hidden states in the sequence. However, one is justified in
claiming that a hidden state hij is more important than hik if βij > βik. In addition, one can also make
comparisons between hidden states of different visits (e.g. h12 and h32) by weighting the β attention
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Figure 8.3: GRNN-HA Architecture. Unrolled overview of the GRNN-HA model with an input sequence
of 4 visits (x1, x2, x3, x4) with x1 consisting of two medical events x11 & x12. The medical events observed
during the other visits are not shown in the visualisation but are encoded just like x11 & x12. Each
medical event xij is embedded into an efficient representation wij . Then, each embedded medical event
wij is transformed by a BRNN into hidden state hij . The event-level attention mechanism ‘pays attention’
to the hidden states. Each hidden state hij is multiplied with its attention value βij . The sum of the
‘attended’ hidden states on the event-level is the visit representation vi. Each visit representation vi
is transformed by a BRNN into hidden state Hi. The visit-level attention mechanism values αi are
multiplied with Hi and summed over to obtain the context vector ct which is used to generate prediction
ŷt.
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Figure 8.4: RETAIN Architecture. Unrolled overview of the RETAIN model with an input sequence of 4
visits (x1, x2, x3, x4). Each visit xi is tranformed into visit representation vi. Then, the visit representation
vi is input for the Reverse-Time RNNs f and g. The hidden state fi is used to generate the event-level
attention βi. The hidden state gi is used to generate the visit-level attention αi. The attention vectors αi
and βi are combined with the visit representation vi into the context vector ct which is used to generate
the prediction ŷt.

values by their respective α attention weight.

8.3 Reverse Time Attention model (RETAIN)

Figure 8.1 shows high-level overview of the RETAIN model architecture as proposed by Choi et al. (2016c).
Table 8.3 contains the formal description and the trainable parameters of RETAIN. Unlike Dipole and
GRNN-HA, it does not use a BRNN structure but processes input only in reverse-time order so as to
mimic a physicians’ practice of looking at medical events from present to past.

Another difference between RETAIN and Dipole/GRNN-HA is that the visit embeddings are not
transformed by recurrent hidden layer before attention is applied. Instead, two RNNs (RNNα and RNNβ)
use the visit embeddings to learn the α and β attention vectors, which is then directly applied to the
visit embeddings.

The α attention mechanism of RETAIN allows the model to explain how much attention each timestep
in the sequence of embedded visits v1, ..., vt receives. In addition, the β attention mechanism allows the
model to explain how much attention each dimension in the embedded visit receives. Because the visit
embeddings are combined with the attention without being transformed by a recurrent layer, one is
justified in relating the αi and βi values to the vi visit embedding.

The benefit of not transforming the input with an RNN is that the single contribution of each medical
event can be calculated. Equation 8.1 shows how to calculate this contribution ω to the predicted risk
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Trainable parameters

Wemb ∈ Rm×r Input embedding weights
Wβ ∈ Rm×q Event-level attention weights
bβ ∈ Rm Event-level attention bias
Wα ∈ Rp Visit-level attention weights
bα ∈ R Visit-level attention bias
Wy ∈ Rm Output weights
by ∈ R Output bias
r: input dimensions
m: embedding dimensions
p: RNNα dimensions
q: RNNβ dimensions

vi = Wembxi,

gt, ..., g1 =
←−−−
GRU(vt, ..., v1),

ei = W>α gi + bα,

α1, ..., αt = Softmax(e1, ..., et),

ft, ..., f1 =
←−−−
GRU(vt, ..., v1),

βi = tanh(Wβfi + bβ),

ct =

t∑
i

αiβi � vi,

ŷt = sigmoid(Wyct + by)

Table 8.3: Formal description and trainable parameters of RETAIN. The definitions of Softmax, tanh
and sigmoid are given in Appendix E

score ŷt of each medical event xij . αi represents the attention on visit embedding vi as a whole. βi
contains the attention on every dimension of the embedded visit vi. Wy and Wemb represent the output
and embedding weight matrices respectively. From Equation 8.2 it follows that a negative ω value
decreases the risk score, while a positive value increases the risk score. The contribution values can be
explained quite intuitively because they can be used to simulate the prediction as is done in Equation 8.2.
In order to go from the contribution values to the prediction, one needs to sum up all the contributions,
add the bias term of the output layer by and use the sigmoid function (defined in Appendix E).

ω(ŷ, xij) = αiWy(βi �Wemb[:,j]) (8.1)

ŷ(x1, ..., xt) = sigmoid

((
t∑
i

ω(ŷ, xij)

)
+ by

)
(8.2)

8.4 The Interpretability Continuum Revisited

Having discussed the interpretability taxonomy (in Section 6.1) and described three RNN-based models
that claim to be interpretable, we will now revisit the interpretability continuum. We will use the
interpretability taxonomy to justify the placement of the RNN-based models, as well as the MLP and LR
models, on the continuum.

LR is placed the most towards the right side of the continuum because it more simulatable and
decomposable than the MLP and RNN-based models. Then, the three ‘interpretable’ models described in
this chapter are placed more towards the right than the regular RNN-based models because they allow
the post-hoc visualization of attention weights.

Because MLP and the RNN-based models use the same type of training algorithm (i.e. some variation
on gradient descent) they will not score differently on algorithmic transparency. With regards to the
simulatability property of the models we previously alluded to its relationship with hyper-parameters of
the model (e.g. number of nodes in a hidden layer). This means that any of the models can be made
more simulatable than the others by making the number of nodes very small. In addition, any RNN that
is tuned for predictive performance is very likely to have so many nodes that it will take an unreasonable
amount of time for a human to simulate anyway. Finally, although the ‘interpretable’ RNN-based models
all allow for a post-hoc visualization of attention weights, the attention mechanisms are implemented
differently and are therefore also decomposable to a different degree.

For the reasons listed above, we use the decomposability criteria for the relative ordering of the
‘interpretable’ RNN-based models on the interpretability continuum.
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Figure 8.5: Model Interpretability Continuum Revisited. The placement of the models is based on
the decomposability criteria. The implementation of the neural attention mechanism improves the
decompsability of the models described in Chapter 8. Of these models, RETAIN is the most interpretable,
followed by GRNN-HA and then Dipole.

8.4.1 Decomposability

With the healthcare domain and the proposed RNN-based models as our context, we assume that at
least the input (a sequence of hospital visits with recorded events as shown in Figure 4.1) and output
(risk of re-hospitalisation within 30 days) are terms that are understandable to the user (i.e. medical
professional). Thus, if a model can provide an explanation these terms, we consider the explanation to be
intuitive. To summarize, we operationalize the decomposability criteria in the following way:

The decomposability of a model is linked to its ability to provide an explanation that relates
hospital visits and medical events to the predicted re-hospitalisation risk.

The main improvement in decomposability of the ‘interpretable’ RNN-based models is in the imple-
mentation of the attention mechanism (Section 7.4). This makes the models more decomposable than
the ‘regular’ and bi-directional RNNs because it offers an explanation as to what the model focuses on.
However, the three models implement the attention mechanism differently which results in explanations
that are ‘intuitive’ to a different degree.

Looking at the attention mechanisms and the explanations they allow, GRNN-HA and RETAIN
are able to provide a more intuitive explanation than Dipole. This is because Dipole does not provide
attention on the event-level. Dipole is able to explain which part of the sequence of hidden states
receive the most attention, but it is not able to intuitively relate the events within a visit to the output.
GRNN-HA and RETAIN are able to provide an explanation in terms of the input that is more specific,
namely in terms of the events that occurred within a visit.

Between RETAIN and GRNN-HA, RETAIN allows for a more intuitive explanation and is therefore
the most intuitive of the three models. This is because the attention mechanisms of RETAIN relates
its attention directly to the (embedded) inputs while the GRNN-HA attention mechanisms relate their
attention to a timestep of a hidden state sequence. The result of this is that the RETAIN model is able
to calculate the exact contribution (positive or negative) to the risk score as per Equation 8.1. On the
other hand, GRNN-HA is only able to use the attention weights to explain which elements of the input
are important to making the prediction, but it cannot quantify the exact contribution.
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Part IV

Results
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Chapter 9

Experiments

In this chapter we describe the experimental setting in which we compared the ‘interpretable’ RNN-
based models with the RNN baselines and two models that use aggregate features (LR & MLP). We
continue with an evaluation of the predictive performance. Finally we showcase the interpretation the
attention-based RNN models allow.

9.1 Experimental Setting

Source of data
Data was extracted from the Elecotronic Health Records system at the UMC Utrecht. Admission and
DBC data was obtained along with the time-stamp of occurrence. Table 9.1 contains some descriptive
statistics of the dataset the was used. Selected patients satisfy the following criteria:

• At least one hospital admission at the cardiology specialism between 2007 and 2017.

• Heart Failure (or synonyms) mentioned in a clinical letter. See Appendix G for a list of the synonyms
we used.

• At least one DCB (Diagnosis-Treatment-Code) related to cardiovascular disease

Admission events are represented by the concatenation of the admission specialism, type of admission
and origin of admission. Table 9.2 shows the different type and origin codes and what they represent.
DBC events are simply represented by the description of the DBC.

Implementation details
We implemented all models using Python 3.6 and Keras 2.1.2 (Chollet et al., 2015) (using the TensorFlow
1.2.1 backend (Abadi et al., 2015)). For training the models we used the Adam optimization algorithm
(Kingma and Ba, 2014) with a batch size of 512. The training was done on the High Performance
Computing cluster at the UMC Utrecht.

Baselines
As a comparison with the ‘interpretable’ RNN-based models, we implemented several baselines shown
in Figure 9.1. In order to create features for the LR and MLP models (that do not take a sequence of
feature vectors as input), we used counts of the number of occurrences of each medical event. Then

Descriptive Statistics

# patients 4,930 # sequences (discharges) 37,287
# visits 531,624 Avg # visits per sequence 14.257
# events 1,167,152 Avg # events in a visit 2.195
# event types 589 Next admission < 30 days % 31

Table 9.1: Descriptive statistics of the UMCU EHR dataset.
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Specialism Type Origin

CAR = Cardiology D = Same day therapy P = via outpatient clinic
ONC = Oncology K = Inpatient W = via waiting list
URO = Urology B = Outpatient A = via another Hospital
HEA = Hematology I = Intensive Care AZU S = via emergency ward
CHI = Surgery L = Long lasting observation H = via home

CTC = Cardiothoracic Surgery O = pre-operative screening E = via elsewhere
KNO = Throat-, nose- en earsurgery S = IC admission from emergency I = via nursing home
GER = Geriatrics Y = Psychiatry GGZ
NEU = Neurology C = Cytostatica AZU

..........

Table 9.2: Explanation of admission event codes. An example admission event code is CAR (specialism)
K (type) S (origin). This means that the person was admitted at the cardiology specialism, it was a
clinical admission and the person came in as an emergency case.

Figure 9.1: Model Baselines. (a) Logistic Regression, (b) Multilayer Perceptron, (c) Recurrent Neural
Network, (d) Reverse-Time Recurrent Neural Network & (e) Bi-directional Recurrent Neural Network.

we normalized the resulting single feature vector to have mean 0 and unit variance (i.e. 1). For the
RNN-based models we used the same data preparation as for the ‘interpretable’ RNN-based models.

Objective
Given a sequence of visits x1, x2, ..., xt to the hospital and a date of discharge, the objective is to predict
the probability of a re-hospitalisation within 30 days. We use the ground truth labels of yi ∈ {0, 1} for
xt+1. Where a 1 represents the case of the patient being re-hospitalised within 30 days of the discharge
(and 0 otherwise). We used the binary cross-entropy function 9.1 as the loss function to minimize during
training.

Li(pi, yi) = −(yi log(pi) + (1− yi) log(1− pi)) (9.1)

Cohort Construction
For every selected patient we generated the training observations by looking at each discharge and taking
the medical history of the patient up until that point. We labelled the observation with a 1 if the next
admission date was fewer than 31 days after the discharge and 0 otherwise (see Figure 9.2). We used a
maximum number of 10 visits in the past. 31% of the observations were labelled 1. We disregarded the
last discharge in all patients because the labels for these sequences are unknown.
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Figure 9.2: Medical history label assignment. The assignment of labels to medical history sequences. If
the next admission was within 30 days of discharge, the sequence is labelled 1 and 0 otherwise.

Training Details
We randomly divided the data into train/validation/test sets (0.7/0.15/0.15). In order to try and prevent
overfitting, we used (recurrent) dropout, regularization and early stopping. These strategies all require
the tuning of several hyper-parameters. Also, the numbers of nodes in each layer were hyper-parameters
that needed to be optimized.

The hyper-parameter optimization was done using the training data while evaluating the Area Under
the ROC Curve (AUC) on the validation data. Appendix A shows (for each model) the parameters that
were tuned, as well as the setting that was used during the experiments. Early stopping with a patience
of 5 epochs was used during the tuning. After tuning the parameters, we used 8-fold cross-validation (on
the training + validation data) to record the average number of epochs the model needed to converge.
Then, the average number of epochs was used for training the final model. For this we used train +
validation data to train the model and recorded its final AUC score on the test set as an estimate of the
performance of the model. In addition to the AUC, we also recorded the Area Under the Precision Recall
Curve (AUPRC).

9.2 Evaluation of Predictive Performance

Table 9.3 and Figure 9.3 show that the RNN-based models clearly outperform the LR and MLP baselines. It
also shows the interpretability score of the models based on the nominal ordering along the interpretability
continuum as described in Section 8.4. Out of the ‘interpretable’ RNN-based models, GRNN-HA had
the highest predictive performance as measured by the AUC and AUPRC metrics. RETAIN performed
slightly worse than the other RNN-based models but still a lot better than LR and MLP. Out of the
RNN-based baselines, RT-RNN performed the best with regards to the AUC metric. It was also the best
performing model overall, outperforming the ‘interpretable’ models.

Considering the interpretability / predictive performance trade-off, we would expect to see the
non-interpretable baseline models to outperform the ‘interpretable’ models. We can partly observe the
trade-off when looking at the results. RETAIN, offering the best interpretation of the RNN-based models,
underperformed compared to the others. Also, a non-interpretable model (RT-RNN) had the highest
predictive performance as measured by the AUC metric. However, it is also true that GRNN-HA (which
is interpretable to some degree) outperformed the non-interpretable models RNN and BRNN. In addition,
while Dipole is less interpretable than GRNN-HA, it was still outperformed by GRNN-HA. It could be
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Model AUC AUPRC
Interpretability

Score Epochs
# Trainable
Parameters

MLP 0.728110 0.588377 0 7 151,297
RNN 0.768283 0.674035 0 5 893,697
RT-RNN 0.774042 0.688009 0 8 1,878,529
BRNN 0.768664 0.679695 0 8 3,454,977

Dipole 0.770069 0.685232 1 9 1,616,514
GRNN-HA 0.773293 0.689235 2 11 875,521
RETAIN 0.766619 0.679100 3 13 1,613,442

LR 0.691240 0.552255 4 23 590

Table 9.3: Experiment Results. RT-RNN performed the best with regards to the AUC measure. GRNN-
HA ranked first according to the AUPRC measure. The interpretability score is based on the ordinal
ranking on the interpretability continuum as described in Section 8.4.

Figure 9.3: Area Under the Curve (AUC) versus placement on the interpretability continuum. The models
are ordered along the interpretability continuum based on the decomposability criteria as described in
Section 8.4. The models denoted with by a � use aggregate features, the models denoted by a © are the
RNN baselines and the the models denoted by a 4 are the ‘interpretable’ RNN-based models.

that modelling the temporal dimension within a visit (as only GRNN-HA does) is the reason for the
model to perform slightly better.

One might be tempted to compare the performance of the LR and MLP models with the RNN-based
models and draw an inference about the interpretability /predictive performance trade-off. However,
we feel that this is not warranted given that LR and MLP use aggregate features while the RNN-based
models use the medical history as a temporal sequence. Nonetheless, a comparison between LR and MLP
is warranted and the trade-off is definitely noticeable in this comparison.

Overall, the main takeaway is that the difference in performance between the RNN-based models is
quite small. On the other hand, the difference in interpretability between the baselines and ‘interpretable’
models is substantial (outlined in Section 8.4). Therefore we would argue that the ‘interpretable’ RNN-
based models are a better option to use, especially in an application domain where interpretability is
paramount (i.e. healthcare).

9.3 Model Interpretation

9.3.1 Local interpretation

In this section we take one medical history from our experiment as an example to showcase how the
attention weights of the three models can facilitate local interpretation of the 30-day re-hospitalisation
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Figure 9.4: Dipole Attention. Visualisation of encoded visit attention coefficient.

risk score of a single patient.

Dipole
In Figure 9.4 we can see the relative attention paid to a hospital visit (that has been transformed by a
BRNN). The attention weight corresponds to the α values as as calculated in Table 8.1. If αi > αj , we
can conclude that the hidden state hi is more important than hj in calculating the risk score. As a clear
example, the attention on the 10th visit (with index 9) receives more way more attention than the other
visits. From this we can see that Dipole uses mainly the information in the last visit to the hospital to
predict the re-hospitalisation risk score.

GRNN-HA
In Figure 9.5 we see the β (event-level) attention weights weighted by their respective α (visit-level)
attention weights. The calculation of these weights is shown in Table 8.2. With this visualisation we can
compare the importance of the hidden states of the model – both on the event-level and on the visit-level
– to making the prediction of the 30-day re-hospitalisation risk. We can see that the final visit receives the
most attention, but we can also see relative attention paid to single events. If (αi ∗ βij) > (αh ∗ βhl) we
conclude that that event j is more important that event l in predicting the re-hospitalisation risk score.
As an example we can see that event 18 (GER D P) is more important than event 4 (CAR K S) in the
calculation of the re-hospitalisation risk of this patient.

RETAIN
From Figure 9.6 we can easily see the medical events that increase or decrease the re-hospitalisation risk
score. The contributions are calculated by Equation 8.1. Given the contribution of every medical event in
the visit sequence, we can calculate the predicted risk using 8.2. From the figure we see that the events 6
(ONC K E) and 8 (ONC K E) greatly increase the re-hospitalisation risk score. It is interesting to that
the three models differ in their assessment of risk score of this patient, and that they focus on different
parts of the input sequence. Where Dipole almost only focuses on the last hospital visit, GRNN-HA has
a more evenly distributed attention but is still most focused on the last visits. RETAIN (in this example)
focuses on events further in the past.

9.3.2 Global interpretation

Here we look at GRNN-HA and RETAIN and look at the events that receive the most (and least)
attention averaged over the whole dataset. In the case of GRNN-HA we show the average β attention
weight corresponding to the hidden state of a medical event in Table 9.4. For RETAIN we show the
average contribution to the predicted risk score in Table 9.5. In both cases we leave the α (visit-level)
weights out of consideration. Because of the lack of an event-level attention mechanism, we are not able
to perform the same kind of interpretation with Dipole.
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Figure 9.5: GRNN-HA Attention. Visualisation of encoded event attention coefficient.

Figure 9.6: RETAIN Attention. Visualisation of event contribution to predicted risk score.

Event Avg. attention # occurrences

PSY D W 0.1259 1,427
Ontslagen H 0.1180 243,825
Pericarditis 0.1138 135
KNO O W 0.1130 404
CAR O W 0.1114 783
................. ....... ....
CAR D W 0.0640 15,360
CAR D P 0.0670 17,166
ONC K S 0.0678 242
CAR B W 0.0682 424
HAE B W 0.0694 154

Table 9.4: GRNN top- and bottom 5 medical events. The events are ranked by average attention weight
(events with more than 100 occurrences)
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Event Avg. contribution # occurrences

KHA K W 0.4314 128
PSY D W 0.3881 1427
Pericarditis 0.3822 135
CTC I S 0.3597 112
Screening harttransplantatie 0.3430 723
.................... ....... ....
OOG K S -0.7913 119
PLA K H -0.7297 101
VAS D H -0.6839 117
ORT D P -0.6414 376
ORT K H -0.5735 311

Table 9.5: RETAIN top- and bottom 5 medical events. The events are ranked by average attention weight
(events with more than 100 occurrences)
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Chapter 10

Discussion

Interpretable machine learning models are important in a context where the aim is to achieve a goal that
is difficult to define formally or when multiple goals trade-off. The healthcare domain is such a context.
There are traditional machine learning models (e.g. Logistic Regression) that are interpretable but suffer
from the fact that they use aggregate features and as a consequence ignore the temporal relationship
between features. The Recurrent Neural Network (RNN) is able to model the temporal dimension but
offers limited interpretability. Here we return to the main research question and the sub-questions that
were posed in Chapter 2. We conclude the document with a consideration of the limitations of this study
and some pointers for future research.

10.1 Sub-questions

1. What constitutes an interpretable model?

An interpretable model has (at least some of) the properties described in Section 6.1. The model
should be transparent on multiple levels. These levels are the whole model (simulatability), its
single components (decomposability) and its training algorithm (algorithmic transparency).

Simulatability has to do with the ability of a human to simulate the calculations of the model in
a reasonable amount of time. Decomposability has to do with single components of the model
allowing for an intuitive explanation. An explanation is intuitive if it is given in terms that are
understandable to the user. In the context of the healthcare domain with a medical professional
as the user, we have assumed that the medical history – consisting of hospital visits and observed
medical events of a patient (visualised in Figure 4.1 and formalized in Section 4.1.1) – are terms
that are understandable. Algorithmic transparency has to do with the mathematical guarantees
that the training algorithm can provide with regards to its solution.

The interpretability is also tied to its post-hoc interpretability. These are explanations that do
not necessarily reflect the true inner workings of the model but give the user some useful explanation
in the form of a textual explanation, visualization, local explanation or an explanation by
example.

2. How can the regular RNN model be adapted in order to allow for better predictive
performance and interpretation?

Chapter 7 describes several extensions to the regular RNN model that aim to improve its predictive
performance or interpretability. The advanced cell architectures (Section 7.1) are better able to
capture long-range dependencies in a sequence. Representation learning techniques (Section 7.2)
transform the ‘one-hot’ encoding of medical events into a more efficient representation that captures
semantic relatedness between medical events. Bi-directional RNN (Section 7.3) model the input
sequence in both time and reverse-time directions. This allows the model to take into account
events from the past as well as the future when deciding what information to keep.

In addition, Section 7.4 describes the neural attention mechanism that aims to improve predictive
performance by allowing the model to look at the hidden state of every timestep and ‘pay attention’
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to the parts that are most important for making a correct prediction. Furthermore, the attention
mechanism can be used to provide an explanation as to what the model focusses on when making a
prediction. This improves the decomposability – and therefore the interpretability – of the RNN
model.

The extensions described in Chapter 7 are implemented in the Dipole (Section 8.1), GRNN-HA
(Section 8.2) and RETAIN (Section 8.3) model architectures. All three models use representation
learning and the GRU cell architecture. Dipole and GRNN-HA also use a BRNN architecture while
RETAIN uses a reverse-time RNN. The implementation of the attention mechanism is different
in the three models. Dipole implements a visit-level attention mechanism on the hidden layer
of the network. GRNN-HA implements event-level attention on the hidden layer to create a
visit representation, then implements visit-level attention on the visit representations. RETAIN
implements event- and visit-level attention on the input layer of the network.

3. How do the ‘interpretable’ RNN-based models compare against each other, the tradi-
tional approaches and the regular RNN model with regards to predictive performance
and interpretability?

Predictive Performance
Section 9.2 shows the results of a case study on a cohort of HF patients at the UMC Utrecht. In
the case study, the RNN-based models solidly outperform the traditional approaches (i.e. logistic
regression and multilayer perceptron). Also, the RNN baselines (RNN, RT-RNN & BRNN) show
similar performance to the ‘interpretable’ RNN-based models. Within the ‘interpretable’ RNN-based
models, GRNN-HA slightly outperforms the other two.

Interpretability
Section 8.4 describes how the ‘interpretable’ RNN-based models compare with each other and the
RNN baselines on the interpretability continuum. The models differ in their decomposability,
therefore we used this criteria as the justification for the placement of the models on the continuum.
Section 9.3 shows the explanations the ‘interpretable’ RNN-based models can offer to a human user.

Out of the RNN-based models, RETAIN is the most interpretable because of the visit- and event-
level attention that can be used to calculate the contribution of each medical event to the predicted
risk score. GRNN-HA is second because of the visit- and event-level attention that can be used to
indicate the relative importance of a medical event to the predicted risk score (but not the exact
contribution). Dipole is ranked third because of the visit-level attention that can be used to indicate
the relative importance of a hospital visits to the calculation of the risk score.

In comparison with the traditional approaches that use aggregate features we feel that RETAIN
comes close to LR with regards to decomposability. However, LR is still more interpretable because
of the simulatability criteria. In comparison with MLP we feel that the ‘interpretable’ models score
about the same on the simulatability criteria. However, they are better decomposable because of
the explanation they allow.

Interpretability / Predictive performance trade-off
Looking at the placement of the models on the interpretability continuum (Section 8.4) and the results
of the case study (Sectionr̃efsec:results), we can observe a slight trade-off between interpretability
and predictive performance. The most interpretable model (RETAIN) is outperformed by all
the other RNN-based models. In addition, a non-interpretable model (RT-RNN) had the highest
predictive performance (measured by AUC). However, GRNN-HA outperformed Dipole and is also
more interpretable.

In comparing LR with MLP, the trade-off between interpretability and predictive performance
is more clear. LR is more interpretable than MLP but performs worse. We feel that comparing
LR/MLP to the RNN-based models and attributing the difference to the interpretability / predictive
performance trade-off is unwarranted because the LR/MLP models use aggregate features (i.e.
ignore the temporal dimension).
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10.2 Main Research Question

In our work we review and compare three RNN-based models – RETAIN, Dipole and GRNN-HA – that
make use of the neural attention mechanism to improve interpretability. The implementations of the
neural attention mechanism differ, resulting in models that are interpretable to a different degree. The
review of these models aimed to answer the main research question that was formulated as follows:

Can the Recurrent Neural Network model be improved such that it can provide an accurate
and interpretable prediction of (re-)hospitalisation risk for Heart Failure patients?

The review and comparison of the RNN-based models shows that the interpretability of the RNN
model can be improved. Also, with regards to the predictive performance of models that were reported
in literature (Table 3.2) the RNN model shows state-of-the-art predictive performance. However, this
work also shows that it matters how the neural attention mechanism is implemented and that not all
implementations are equally interpretable. In addition, interpretability and predictive performance seem
to slightly trade-off. Although overall, the differences in predictive performance between the models
is quite small. The difference in AUC between the best performing (RT-RNN) and worst performing
(RETAIN) is only 0.008. On the other hand, in a context where interpretability is important –such as the
healthcare domain– interpretable models like RETAIN and GRNN-HA are clearly preferable over the
regular RNN model even though they have slightly less predictive performance.

10.3 Limitations

The patients selected for this study fulfil the requirements listed in Section 9.1. However, this does not
necessarily mean that all selected patients were actually diagnosed with Heart Failure. It may be the
case that some of the patients selected did have some cardiac related disease, but it was somewhere noted
in the clinical letters that the patient did not have Heart Failure.

Another limitation of this study lies in the comparison of models with many hyperparameters and
that their settings may not have been optimal. The hyper-parameter optimization was done using a
grid search with pre-defined values for every parameter. However, it is of course possible that are other
parameters values that would have resulted in better predictive performance.

Finally, using medical event counts as features is just one way to collapse over the temporal dimension.
There may be other feature engineering techniques that could result in different predictive performance
for the LR and MLP models. An example of a different feature engineering approach might be to only
take the medical events of the last visit into consideration.

10.4 Future Research

Combining the properties of GRNN-HA and RETAIN
During this study we found an interesting problem that warrants future research. This problem has to do
with the way that the occurrence of medical events within a visit are encoded by Dipole and RETAIN.
Although the Dipole and RETAIN model the temporal dimension between visits, they collapse over the
temporal dimension within visits. Resulting in two problems. The first is that the temporal dimension
within a visit may contain useful information and could – if modelled – improve prediction performance.
In our experiments, GRNN-HA outperformed Dipole and RETAIN, hinting that modelling the temporal
dimension within a visit does indeed improve predictive performance. The second problem is that Dipole
and RETAIN are not really able to handle a medical event occurring multiple times within a single visit.
One could encode multiple events by counting the number of times the event occurred and using the
count as the feature. But what to do when the medical event itself has multiple features consisting of
real numbers. An example of this is an ECG test which has more than 20 real-valued features. In the
case of an ECG test occurring multiple times in a visit, it is not clear how to encode the information.

GRNN-HA does not have the two problems mentioned above. Therefore we argue that there is a
need for a model that combines the properties of GRNN-HA and RETAIN. GRNN-HA allows multiple
occurrences of the same event within a visit and also models the temporal dimension of events within a
visit. However, RETAIN offers the best interpretation with its contribution values for every event which
GRNN-HA does not.
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Computational cost
Another difference between GRNN-HA and RETAIN is that training GRNN-HA is computationally more
expensive. This is because GRNN-HA models the temporal dimension within a visit. Introducing the
factor of computational cost to the trade-off between predictive performance and interpretability might
be another interesting avenue for future research.

Quantifying interpretability
The second avenue for future research is in the quantifying of model interpretability. It would be incredibly
useful if there was a principled way to measure the interpretability of a model and represent it as a real
number. With such a measure, comparing the interpretability of two models would be less dependent
upon an argument about the ‘intuitiveness’ of explanations or the ability for a human to simulate the
model in a ‘reasonable timespan’. Although I would not argue that these kinds of arguments are vacuous,
concepts such as ‘intuitiveness’ and a ‘reasonable timespan’ are quite imprecise and leave a lot of room
open for debate.

Model validation
Chapter 9.3 shows that in our case study, the three interpretable RNN models seem to pay attention
to different elements of the medical history that was used as an example. Also the predicted risk score
that the three models calculate differs1. This results prompts further research into how these models can
focus on different elements but still have similar AUC scores. It may be that some models are better able
to handle certain types of medical histories than others.

1Dipole: 0.2850, GRNN-HA: 0.2995 & RETAIN: 0.6917
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Appendix A

Hyper-parameter optimization

Parameter Settings

Embedding Nodes [ 128, 256, 512 ]
Embedding Dropout [ 0, 0.2, 0.4, 0.6, 0.8 ]

Recurrent Nodes [ 128, 256, 512 ]
Recurrent Dropout [ 0, 0.1, 0.2 ]
Context Dropout [ 0, 0.2, 0.4, 0.6, 0.8 ]
L2 Regularization [ 0, 0.0001, 0.001 ]

Table A.1: Hyper-parameters grid

Logistic Regression

Overall
L2 Regularization 0.1

Multilayer Perceptron

Hidden Layer
Hidden Nodes 256
Hidden Dropout 0
L2 Regularization 0.0001

Output Layer
L2 Regularization 0.1

Table A.2: Logistic Regression and Multilayer Perceptron hyper-parameter settings

RNN

Embedding Layer
Embedding Nodes 512
Embedding Dropout 0

Recurrent Layer
Recurrent Nodes (→) 256
Recurrent Dropout 0

Overall
L2 Regularization 0

RT-RNN

Embedding Layer
Embedding Nodes 512
Embedding Dropout 0

Recurrent Layer
Recurrent Nodes (←) 512
Recurrent Dropout 0.1

Overall
L2 Regularization 0.0001

BD-RNN

Embedding Layer
Embedding Nodes 512
Embedding Dropout 0

Recurrent Layer (visit)
Recurrent Nodes (→) 512
Recurrent Nodes (←) 512
Recurrent Dropout 0.1

Overall
L2 Regularization 0.0001

Table A.3: Baseline RNN-based models hyper-parameter settings
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Dipole

Embedding Layer
Embedding Nodes 512
Embedding Dropout 0

Recurrent Layer
Recurrent Nodes (→) 256
Recurrent Nodes (←) 256
Recurrent Dropout 0.1

Context Layer
Context Dropout 0.4

Overall
L2 Regularization 0

RETAIN

Embedding Layer
Embedding Nodes 256
Embedding Dropout 0.8

Recurrent Layer (α)
Recurrent Nodes 128
Recurrent Dropout 0.1

Recurrent Layer (β)
Recurrent Nodes 512
Recurrent Dropout 0

Context Layer
Context Dropout 0.6

Overall
L2 Regularization 0

GRNN-HA

Embedding Layer
Embedding Nodes 256
Embedding Dropout 0.1

Recurrent Layer (visit)
Recurrent Nodes (→) 128
Recurrent Nodes (←) 128
Recurrent Dropout 0.05
Recurrent Layer (sequence)
Recurrent Nodes (→) 128
Recurrent Nodes (←) 128
Recurrent Dropout 0.05

Context Layer
Context Dropout 0

Overall
L2 Regularization 0

Table A.4: ‘Interpretable’ RNN-based models hyper-parameter settings
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Appendix B

Diagnosis and treatment of Heart
Failure

B.1 Chronic Heart Failure

There are a bunch of symptoms and signs that are typical for Heart Failure (table B.1) Ponikowski et al.
(2016). However, the symptoms are often non-specific which makes it hard to discriminate between HF
and other problems. Most of the signs are more specific but they suffer from being harder to detect
and reproduce. Being elderly, obese or having chronic lung disease makes it even harder to identify and
interpret the symptoms and signs of HF.

Symptoms

Typical
Breathlessness
Orthopnoea
Paroxysmal nocturnal dyspnoea
Reduced exercise tolerance
Fatigue, tiredness, increased time
to recover after exercise
Ankle swelling

Less Typical
Nocturnal cough
Wheezing
Bloated feeling
Loss of appetite
Confusion (especially in the elderly)
Depression
Palpitations
Dizziness
Syncope
Bendopnea

Signs

More Specific
Elevated jugular venous pressure
Hepatojugular reflux
Third heart sound (gallop rhythm
Laterally displaced apical impulse

Less Specific
Weight gain (> 2 kg/week)
Weight loss (in advanced HF)
Tissue wasting (cachexia)
Cardiac murmur
Peripheral oedema (ankle, sacral, scrotal)
Pulmonary crepitations
Reduced air entry and dullness to percussion at lung
bases (pleural effusion)
Tachycardia
Irregular pulse
Tachypnoea
Cheyne Stokes respiration
Hepatomegaly
Ascites
Cold extremities
Oliguria
Narrow pulse pressure

Table B.1: Symptoms and Signs of Heart Failure

There are several initial tests that can be performed on a patient that is suspected to have HF. The
first of these is to measure the plasma concentration of natriuretic peptides (NPs). If a person has a
normal plasma NP concentration value, that person is unlikely to have HF and other hypotheses should
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be investigated. In contrast however, the positive predictive value of the plasma NP concentration is not
that high. This means that having abnormal plasma NP concentration does not imply that the patient
has HF. Therefore, “the use of NPs is recommended for ruling-out HF, but not to establish the diagnosis”.
Ponikowski et al. (2016)

Another initial test used to rule out HF is the electrocardiogram (ECG). An ECG registers the electric
activity within the heart during a heartbeat. Patients that have normal ECG are again unlikely to have
HF. In addition to being used to rule out HF, some abnormalities observed on an ECG can provide
information about the underlying cause of the HF.

If the plasma concentration NPs and the ECG both show abnormalities, echocardiography is the
recommended test to perform in order to establish the HF diagnosis. Echocardiography allows for
the measurement of the left ventricular ejection fraction (LVEF) which is essential in the diagnosis of
HF. Furthermore it can be used to find out about most types of structural and/or functional cardiac
abnormalities.

Before moving on to management and prevention there are some interventions that can prevent or delay
the onset of CHF. The ESC notes the following interventions with the highest class of recommendation
and level of evidence Ponikowski et al. (2016).

Pre-onset interventions for HF prevention/delay

1. Treatment of hypertension (i.e. reduce blood pressure) with anti-hypertensive drugs like diuretics,
angiotensin receptor blockers and beta-blockers.

2. Treatment with statins (cholesterol lowering drugs) for patients with or at high risk of coronary
artery disease.

3. Treatment with angiotensin-converting enzyme inhibitors for patients with asymptomatic left
ventricular dysfunction and a history of myocardinal infarction.

Once a patient has been diagnosed with HF the physicians has the difficult task to manage the clinical
status and functional capacity of his/her patients. Ultimately the goal is to improve or maintain the
quality of life and prevent hospitalisation and mortality. For CHF the physician has the option prescribe
certain medications (pharmacological treatment) or the placement of an electrical device. The ESC
again notes the following interventions with the highest class of recommendation and level of evidence
Ponikowski et al. (2016).

Pharmacological treatment for CHF patients

1. Angiotensin-converting enzyme inhibitors (ACEI) to reduce mortality and morbidity in patients
with HFrEF.

2. Beta-blockers to reduce mortality and morbidity in HFrEF patients by controlling high heart rate.
Also, beta-blockers and ACEI’s seem to be complementary and can/should be prescribed at the
same time.

3. Mineralorcorticoid receptor antagonist for patients with LVEF ≤ 35% to reduce mortality and HF
hospitalisation.

Treatment with a device for CHF patients

1. Implantable cardioverter-defibrilator to reduce the risk of sudden death and all-cause mortality due
to bradycardia and potentially lethal ventricular arrhythmias.

2. Cardiac resynchronization therapy to improve cardiac performance, symptoms and well-being as
well as reduce mortality and morbidity
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B.2 Acute Heart Failure

Acute Heart Failure (AHF) is the term used to describe a patient either with rapid onset of HF symptoms
or with rapid deterioration of HF symptoms. AHF can be life-threatening and therefore usually results in
hospitalisation. Multiple factors can be the trigger for AHF. Some of these factors are acute coronary
syndrome, excessive rise in blood pressure, infection, non-adherence with salt/fluid intake or medications,
toxic substances, drugs, surgery and perioperative complications.

In the urgent phase after first medical contact, the patient with suspected AHF investigated to see if
he/she is in a cardiogenic shock or suffering from respiratory failure. If either of these is the case, the first
objective is to stabilize the patient with circulatory or ventilatory support. After that the objective is to
identify the acute aetiology (underlying cause) leading to the decompensation of the patient. Typical
precipitants include the following.

Acute aetiology for patients with suspected AHF

1. Acute Coronary Syndrome

2. Hypertensive emergency

3. Rapid arrhythmias or sever bradycardia/conduction disturbance

4. Acute mechanical cause

5. Acute pulmonary embolism

After identification and stabilization of the acute aetiology, the diagnostic process should be started
to confirm the AHF diagnosis. This process begins with looking at the medical history of the patient
for signs and symptoms of HF. In addition, an assessment of signs and symptoms of congestion and
hypoperfusion should be made by physical examination. After that the diagnosis should be confirmed with
additional investigations like ECG, chest X-ray, laboratory assessment (looking for specific biomarkers)
and echocardiography.

Once AHF has been confirmed a patient is usually categorized as being in one of the four categories
based on the absence/presence of congestion and hypoperfusion (table B.2) as described below.

Congestion Hypoperfusion
Pulmonary congestion Cold sweated extremities
Orthopnoea/paroxysmal nocturnal dyspnoea Oliguria
Peripheral (bilateral) oedema Mental confusion
Jugular venous dilatation Dizziness
Congested hepatomegaly Narrow pulse pressure
Gut congestion, ascites
Hepatojugular reflux

Table B.2: Symptoms and Signs of congestion and hypoperfusion

1. Warm-Dry. Patients where congestion and hypoperfusion are both absent. In this category of
patients the recommended treatment is an adjustment of the oral therapy (medications).

2. Warm-Wet Patients where congestion is present but hypoperfusion is absent. These type of
patients should be treated with diuretics and/or vasolidators.

3. Cold-Dry Patients where congestion is absent but hypoperfustion is present. For these category of
patients a fluid challenge or the administration of an inotropic agent is recommended to treat the
hypoperfusion.

4. Cold-Wet Patients where congestion and hypoperfusion are both present. Treatment options differ
based on the systolic blood pressure of the patients. For patients with systolic blood pressure <90
mm Hg, the administration of an inotropic agent, vasopressors, diuretics and mechanical circulatory
support (if no response to drugs) are recommended. For patients with higher systolic blood pressure,
the recommended treatment options are vasodilators, diuretics and an inotropic agent.
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Appendix C

Cox Proportional Hazards
Regression

Chin and Goldman (1997) have performed a study in which they use a survival analysis model. The
goal of this study was to identify risk factors that correlated with early re-hospitalisation or death for
HF patients. The authors used a CPHR model. The characteristics that were found to be significant
in increasing the probability of early hospitalisation or death were ’single marital status’, ’Charlson
Comorbidity Index score’, ’Systolic blood pressure ≤ 100 mm Hg’ and ’No ST-T-wave ECG changes’.
Based on these risk factors the authors devised a risk score that categorized patients into groups ranging
from low risk (0-20 %) to the highest risk (51-88 %) of re-hospitalisation or death within 60 days of
discharge (see table C.1). A similar study has been performed by Krumholz et al. (2000) (see table C.2)
that found patient characteristics upon which to base risk stratification. The significant predictors in this
study were quite different from Chin and Goldman (1997). Namely, ’Creatinine >2.5 mg/dL at discharge’,
’Prior admission within 1 year’, Prior heart failure’ and ’Diabetes’.

The study by Chin and Goldman (1997) suffers from a small sample size of a mere 257 patients from
only 1 hospital. Also (probably due to the small sample size), the authors did not use a separate dataset
to validate their model. The study by Krumholz et al. (2000) suffers less from these drawbacks with a
sample size of 2176 patients (from 18 hospitals) and an almost 50-50 split of the data for derivation and
validation. In both studies the authors state that they were unable to identify low-risk patients. This is
due to the small number of people in the lowest risk category in Chin and Goldman (1997) and due to
the relative high risk (31%) of re-hospitalisation in the lowest risk group in Krumholz et al. (2000).

Risk Score Nr. of patients
% Re-hospitalised or dead within 60
days (95% CI)

0–1 17 0 (0–20)
2–5 144 24 (17–31)
6–7 71 42 (31–55)
> 7 25 72 (51–88)

Significant correlates and their contribution to the risk score
Single marital status = 2 points
Charlson Comorbidity Index score = 1 point per Charlson point (maximum 4)
Initial systolic blood pressure /leq100 mm Hg = 3 points
No ST-T-wave ECG changes = 2 points

Table C.1: Risk Stratification with CPHR. Adapted from Chin and Goldman (1997)
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Nr. of correlates Nr. of patients
% All-cause Re-hospitalised or dead
within 6 months (validation sample)

0 156 31
1–2 649 54
3–4 242 65

Significant correlates
Creatinine >2.5 mg/dL at discharge
Prior admission within 1 year
Prior heart failure
Diabetes

Table C.2: Risk Stratification with CPHR. Adapted from Krumholz et al. (2000)
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Appendix D

Simulatability

With regards to the simulatability property of the models we previously alluded to its relationship
with hyper-parameters of the model (e.g. number of nodes in a hidden layer). This means that any of
the models can be made more simulatable than the others by making the number of nodes very small.
However, leaving these hyper-parameters aside, we can still look at the minimal number of layers of each
model and use that as a measure for simulatability. See Table D.1 for the minimal number of layers
needed for the MLP and RNN-based models.
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Model Layers Nr.

MLP
- Input Layer
- Hidden Layer
- Output Layer

3

RNN (& RT-RNN)

- Input Layer
- Embedding Layer
- (→ / ←) Recurrent Layer
- Output Layer

4

BD-RNN

- Input Layer
- Embedding Layer
- (→) Recurrent Layer
- (←) Recurrent Layer
- Output Layer

5

Dipole

- Input Layer
- Embedding Layer
- (→) Recurrent Layer
- (←) Recurrent Layer
- Attention Layer
- Output Layer

6

RETAIN

- Input Layer
- Embedding Layer
- (←) Recurrent Layer visit-level
- (←) Recurrent Layer event-level
- Attention Layer
- Output Layer

6

GRNN-HA

- Input Layer
- Embedding Layer
- (→) Recurrent Layer event-level
- (←) Recurrent Layer event-level
- Attention Layer event-level
- (→) Recurrent Layer visit-level
- (←) Recurrent Layer visit-level
- Attention Layer visit-level
- Output Layer

9

Table D.1: Minimal number of layers for MLP, and RNN-based models
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Appendix E

Auxiliary functions

sigmoid(x) =
1

1 + e−x
(E.1)

ReLU(x) = max(x, 0) (E.2)

tanh(x) =
ex − e−x

ex + e−x
(E.3)

Softmax(xi) =
exi∑t
j e
xj

(E.4)
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Appendix F

Using Time Information

As was described in Section 4.1.1, the medical history of a patient is represented by a sequence of T tuples
(ti, xi) ∈ R × Rr, where i ∈ 1, ..., T and T is the number of visits to the hospital. xi denotes the visit
information of the i-th visit and ti denotes the timestamp of the i-th visit. In this section we describe
a way to incorporate the temporal information into the RNN-based models. The general idea is that
the visit representation vi is concatenated with the temporal information ti in order to obtain v′i. It is
important to note that ti is not constrained to be in a specific representation. It can be represented as
days from the first visit, days until next hospitalisation, or anything else that describes the temporal
dimension. In our experiments we used the natural log of the number of days until the next visit to the
hospital. In the following tables we formally describe how the temporal information can be incorporated
for each of the three interpretable RNN models.
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vi = ReLU(Wembxi + bemb), for i = 1, ..., t

v′i = [vi, ti],

h1, ..., ht = [
−−−→
GRU(v′1, ..., v

′
t);
←−−−
GRU(v′t, ..., v

′
1)],

gi = W>α hi + bα, for i = 1, ..., t

α1, ..., αt = Softmax(g1, ..., gt),

ct =

t∑
i

αihi,

h̃t = tanh(Wc[ct;ht]),

ŷt = sigmoid(Wyh̃t,+by),

Table F.1: Dipole formal description with temporal information. The temporal information of each visit ti
is concatenated with the visit embedding vi to obtain v′i. The visit embedding plus temporal information
is then propagated further through the network.

wij = ReLU(Wembxij + bemb),

h1j , ..., htj = [
−−−→
GRU(w1j , ..., wtj);

←−−−
GRU(wtj , ..., w1j)],

fij = tanh(W>β hij + bβ)>uβ ,

β1j , ..., βtj = Softmax(f1j , ..., ftj),

vi =

k∑
j

βijhij ,

v′i = [vi, ti],

H1, ...,Ht = [
−−−→
GRU(v′1, ..., v

′
t);
←−−−
GRU(v′t, ..., v

′
1)],

gi = tanh(W>α Hi + bα)>uα,

α1, ..., αt = Softmax(g1, ..., gt),

ct =

t∑
i

αiHi,

ŷt = sigmoid(Wyct,+by),

Table F.2: GRNN-HA formal description with temporal information. The temporal information of each
visit ti is concatenated with the visit representation that is obtained after the first BRNN layer. Similar
to Dipole, vi and ti are concatenated into v′i which is then propagated further through the network.
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vi = Wembxi,

v′i = [vi, ti],

gt, ..., g1 =
←−−−
GRU(v′t, ..., v

′
1),

ei = W>α gi + bα,

α1, ..., αt = Softmax(e1, ..., et),

ft, ..., f1 =
←−−−
GRU(v′t, ..., v

′
1),

βi = tanh(Wβfi + bβ),

ct =

t∑
i

αiβi � vi,

ŷt = sigmoid(Wyct + by)

Table F.3: RETAIN formal description with temporal information. Similar to Dipole an GRNN-HA, the
temporal information ti is concatenated with the visit embedding vi to obtain v′i. The visit embedding
plus temporal information is then used to generate the attention values. However, unlike Dipole and
GRNN-HA the visit embedding without temporal information is used to generate the context vector (in
order to match dimensionalities).
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Appendix G

Synonyms of Heart Failure
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Hartfalen Hartfalen Links Hartfalen Rechts

Hart zwak
Falen cardiaal
Hartinsufficientie
Insufficientie hart
Insufficientie cardiaal
Falen van de hartfunctie
Zwak hart
Falen hart
Cardiaal falen
Hartdecompensatie
Hart insufficientie
Falende hartfunctie
Cardiaal insufficientie
Hartdecompensatie, niet gespecificeerd
Weak heart
Cardiac Failure
Cardiac insufficiency
Cardiac function failure
Heart failure
Heart insufficiency
Cardiac function failed

Linkerventrikelfalen
Lnkszijdig hartfalen
Links decompensatio cordis
Linker ventriculaire insufficientie
Linkerhartfalen
Links decompensatie
Dalen linkervertrikel
Falen linker harthelft
Linker-ventrikeldecompensatie
Left cardiac failure
Left ventricular failure
Left heart failure
Left sided heart failure
Left ventricular insufficiency

Rechtszijdig hartfalen
Rechts decompensatio cordis
Hartfalen rechts
Falen rechter harthelft
Rechter ventrikel decompensatie
Right heart failure
Heart Failure, right-sided
Cardiac failure right
Cardiac failure right heart

Acuut Hartfalen Cardiale Decompensatie Chronisch Hartfalen

Plots hartinsufficientie
Acute hartinsufficientie
Hartfalen acuut
Hartinsufficientie plots
Acute Heart failure
Acute cardiac failure
Cardiac failure acute
Acute cardiac insufficiency

Caridaal decompensatie
Cardiale decompensatie
Decompensatie hart
Decompensatie cardiaal
Heart Decompensation
Decompensation cardiac

Chronisch hartfalen
Chronic heart failure
Chronic cardiac failure
Cardiac failure chronic

Table G.1: Synonyms of Heart Failure.

73


	I Preliminaries
	Introduction
	Problem Statement
	Objective, Scope and Structure

	Research approach
	Research Questions
	Research Design
	Contributions



	II Background
	Heart Failure and Re-hospitalisation Prediction
	Definition of Heart Failure
	Heart Failure Re-hospitalisation Prediction in Literature

	Electronic Health Records and Machine Learning
	Electronic Health Records as a Temporal Sequence
	Formal EHR structure

	Challenges for Machine Learning using EHR data
	Area Under the Receiver Operating Characteristic Curve

	Machine Learning Approaches
	Approaches that use a single feature vector
	Logistic Regression
	Cox Proportional Hazards Regression
	Multilayer Perceptron

	Approaches that use a sequence of feature vectors
	Hidden Markov Model
	Recurrent Neural Network



	III Theory
	Model Interpretability
	Properties of Interpretable Models
	Transparency
	Post-hoc Interpretability

	The Interpretability Continuum
	Interpretability / Predictive performance Trade-off

	Extending the Recurrent Neural Network model
	Advanced Cell Architectures
	Representation Learning
	Bi-directional Recurrent Neural Networks
	Neural Attention Mechanism
	A note on correlation and causation


	`Interpretable' Recurrent Neural Networks
	Diagnosis Prediction Model (Dipole)
	GRU-based RNN with Hierarchical Attention (GRNN-HA)
	Reverse Time Attention model (RETAIN)
	The Interpretability Continuum Revisited
	Decomposability



	IV Results
	Experiments
	Experimental Setting
	Evaluation of Predictive Performance
	Model Interpretation
	Local interpretation
	Global interpretation


	Discussion
	Sub-questions
	Main Research Question
	Limitations
	Future Research

	Appendices
	Hyper-parameter optimization
	Diagnosis and treatment of Heart Failure
	Chronic Heart Failure
	Acute Heart Failure

	Cox Proportional Hazards Regression
	Simulatability
	Auxiliary functions
	Using Time Information
	Synonyms of Heart Failure


