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Abstract

The problem of plastic in our oceans has received much attention in science and policy
in recent years. In this context, Lagrangian particle modelling has been used to better
understand the causes behind the plastic accumulation in the subtropical gyres. However,
most studies do not take into account the currents which are not resolved by Oceanic
General Circulation Models (OGCM) beyond simple linear interpolation.

In this thesis we study to what level of accuracy these sub-grid scale �ows can be ap-
proximated by three di�erent di�usion models: simple Brownian motion, wind-dependent
Brownian motion and the Kinematic Lagrangian Model of Lacorata, Palatella, and Santoleri
(2014). We simulate an ensemble of 70,000 particles with the Lagrangian particle tracking
program Parcels forced by data from the GlobCurrent OGCM for three and thirteen years,
and compare the obtained distributions to the drifter-based results of Maximenko et al.
(Sebille et al. 2015; Maximenko, Hafner, and Niiler 2012).

The results showed that Brownian motion provides a better �t with observations than
simulations with just the large-scale advection components. It was also shown that the
optimal amount of di�usivity needed to be higher for the best �t with the Maximenko
result than an experimentally determined di�usivity relationship would prescribe. The
‘Kinetic Lagrangian Model’ was proven not to provide better results than the base-line test
and was, therefore, not seen as conducive to providing a better plastic distribution.

This thesis was concluded by suggesting that further research needed to be done into
the oceanic-coastal interface.

The image on the front page is a snap shot of the GlobCurrent at 19 January 2002 in Parcels with some particles
visualised near the Gulf of California.
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1. Introduction

One of the great environmental problems of this day and age is the concern for plastic litter
in the world’s oceans. It is a concern which is not only felt by the academics, but also by the
general public. People are continually being made aware by governmental and environmental
agencies that the extent of the amount of plastic in the oceans is of concern. Certainly the
pictures of plastic-strewn beaches, birds �lled with plastic and giant clumps of �oating debris
are well known. From these examples, and from academic research, it becomes clear that this
marine plastic, besides being aesthetically unpleasant, also endangers various forms of marine
life through ingestion, absorption into the organism itself or through enabling zoological aliens
to enter previously closed-o� environments (Derraik 2002). The impact which plastic can have
on the human quality of life should not be underestimated either. Plastics have been shown to
contain compounds which are hazardous to human health (Halden 2010). There are, therefore,
dangers involved in the ingestion of plastic compounds through contaminated marine animals
(Rochman et al. 2014).

The amount of plastic in the oceans is an on-going topic of research. Though it is a fact
that there are large amounts of di�erent types of plastic in the marine environment, available
estimations contain a lot of uncertainty. An estimate for 2014 says that the amount of plastic
in the ocean is found in between 93 and 236 Gg (Sebille et al. 2015). Besides a gap in the
understanding of the amount of plastic. An estimate concerning the yearly amount of plastic
that enters the ocean says that in 2010 between 4.8 to 12.7 Mg of plastic entered the oceans,
and that this yearly addition to oceanic pollution will grow by an order of magnitude by 2025
(Jambeck et al. 2015). These studies show that there is a large amount of uncertainty considering
the amount and growth of all the plastic in the ocean.

It is clear that there is a need to improve the scienti�c understanding of plastic in the ocean.
This can be done in a variety of ways and in this thesis one route is tried. An important tool
for studying the distribution of plastic in the ocean is numerical simulation. Considering the
amount of plastic in the ocean and the multitude of health and environmental risks which this
problem poses, any improvement made to simulation of plastic �ow is a welcome one.

There is, furthermore, an added bene�t to trying to improve the accuracy of these models:
besides deepening the scienti�c understanding about how plastics move, such an improvement
to model accuracy is invariably also an improvement to the general knowledge concerning
the movement of small particles in the ocean. It can be said that an unexpected good side to
plastic pollution is that this provides researchers with a tracer particle which is many times
more abundantly available in the ocean as compared to other objects of the same size in the
ocean. What such an abundant tracer particle then allows us to do, is to judge to what degree
advection models with input from a Oceanic General Circulation Model (OGCM) can explain
the movements of particles which are much smaller than the grid resolution on which the
OGCM is de�ned.

So besides getting an insight into the way an environmental hazard is moved around, im-
proving the simulation of plastic provides us also with a way to better understand the currents
which exist below the grid length of an OGCM.

We can understand from the previous that the �nite resolution of OGCM data in space-time
as compared to the almost in�nitely complex nature of the real ocean is a major bottle neck in
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trying to represent a natural system in a model. We need to stress here that particle dynamics
not only depend on the velocity �eld in which they exist, but also upon particle properties, like,
density and shape.

We are, however, interested in further exploring manners in which the unresolved currents
which live below the grid scale of an OGCM data set, can be represented and the di�erences
between particle are, therefore, ignored within this thesis.

To show that there is a big di�erence in scale between the data set and particle length scale,
we can analyse the length scale properties of the OGCM data set that is used within this thesis.
The repository that we use, is version 2.0 of the GlobCurrent which contains geostrophic and
Ekman components of the current at 1/4°-spacial and 3-hour temporal resolution∗. This 1/4°
corresponds to a length of approximately 28 km, whilst the �oating oceanic plastic which Sebille
et al. (2015) included in their plastic count had a length scale between 0.33 and 200 mm.

Every current that then lives on the length scale that lies somewhere from the particle to the
GlobCurrent scale is lost. In this thesis an attempt is made to approximate these localised forces
by implementing a general form of di�usion through Brownian motion. This might represents
the unresolved currents which are not captured by the GlobCurrent.

The argument that this can be done, is mainly bases on the assumption that the sum of all
the currents that exist in between the particle scale and the �ow data set scale is su�ciently
chaotic. This means that whilst all the currents on the sub-grid scale are structured and in a
sense deterministically bound by, e.g., ocean geometry, this whole — by virtue of the shear
vastness of its scope, is chaotic. This is the reason for us to see whether this chaos could be
represented by the random nature of Brownian motion.

This is why Brownian motion can be used as a di�usion model to approximate these unre-
solved currents.

However, to what system parameter is the strength of Brownian motion linked? In the
later sections covering the theory used in the model, there is a detailed explanation of how
Brownian motion is implemented, but it is useful to succinctly cover to what parameter(s)
Brownian motion is linked.

The strength of the Brownian motion is determined by the di�usivity of a system. In sec-
tion 2.1 it is stated that this quality depends primarily on the distance between grid points in
the data set that contains the advection �elds. This type of Brownian motion we call simple
Brownian motion. However, it might be interesting to see if the di�usivity can be linked more
thoroughly to a more natural system parameter. We suggest that because wind stress leads to
more turbulent mixing which brings about an increase of chaos/complexity in the system, an
adjustment must be made to the strength of the Brownian motion. This mixture of Brownian
motion with a strength dependence on length scale and wind stress, we call wind-in�uenced
Brownian motion.

In any case, the above two types of di�usion are still built on the e�ect of Brownian motion.
To see if a whole di�erent kind of di�usion model can be used as an approximate, we try a
di�usion model which is not based upon Brownian motion. In a paper by Lacorata, Palatella,
and Santoleri (2014) a so-called KLM† was introduced wherewith the unresolved parts of motion

∗For access to the OGCM data set, see http://globcurrent.ifremer.fr/.
†Kinematic Lagrangian Model

2

http://globcurrent.ifremer.fr/


of tracers in the Mediterranean was modelled. An important di�erence between the KLM and
Brownian motion in general is that the �rst is a determined but chaotic force, whilst the second
is simply random. In any case, the authors found results which would suggest that this type of
di�usion would work to add chaos to the system. In this thesis, simulations are run to see how
this KLM impacts the distribution of marine-bound plastic.

These are then the di�erent di�usion models which are used as an approximation for the
unresolved parts of motion. We will now discuss how these forms of di�usion can be cast into
mathematical formalism. This is done in section 2. After that we will explain in section 3.2
what external data sets are used in running the model and how the model is run. Furthermore,
we will show how from the model results can be extracted that either support or denounce the
di�usion approximation.

2. Theory

In this section we cover the three types of di�usion models which are used within this thesis;
simple Brownian motion, wind-in�uenced Brownian motion and the KLM.

2.1. Brownian Motion

One of the two types of di�usion which we have suggested to replace the unresolved currents
was Brownian motion. In section 1 we have covered why Brownian motion could be used.
Another statement that was made, was that the strength of Brownian motion, i.e. the di�usivity,
is primarily dependent upon the length scale between grid points in the OGCM data set. As a
side note the suggestion was made that wind stress could also contribute to the di�usivity. This
is a hypothesis which is also being made in the papers by Okubo (1971) and Morales, Elliott,
and Lunel (1997).

As the �rst step we cover what the mathematical description of Brownian motion that is true
for both the simple and wind-in�uenced forms of Brownian motion. The important property
of this type of motion is that it is a stochastic process: this means that any description that
can be given for this type of motion does not describe for a particle the exact trajectory, but it
does describe on a macroscopic scale the statistical properties which are associated with the
physical process of Brownian di�usion.

In this thesis use is made of eq. (1) from a paper by Spagnol et al. 2002. This form of an
equation describing Brownian motion is exactly what is required in this thesis, since it not only
allows for an iterative simulation through time, but it also outputs a displacement which can
simply be added on top of the movements caused by the large-scale currents.

(
xbm
ybm) = (

√
2Δt
r (

R1 0
0 R2) + Δt (

)x 0
0 )y)) ⋅(

KU 0
0 KV) (1)

In eq. (1) xbm is the Brownian-caused displacement in the zonal direction and ybm is this
displacement in the meridional direction; note that both displacements are in degrees. R1 and
R2 are uniform random numbers distributed around a zero mean and with a variance equal to r .
Within this thesis r is equal to a third. This corresponds to the variance of a uniform number
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distribution that pulls a number from the range [−1, 1].∗ The probability distribution function
is given in eq. (2). In this equation n represents a number.

The last two quantities in this equation are Δt which is the time skip in between simulation
steps, and KU and KV are the values for the di�usivity in deg2/s for the zonal and meridional
direction as functions of longitude and latitude. That there exists a distinction between the
zonal U -component and the meridional V -component is because the di�usivity is a quantity
which primarily depends on the length scale on which the di�usion happens; and on a globe
these length scales are di�erent depending on the cardinal direction along which the length in
meters of a degree is measured.

p(n) =
{
1
2 if |n| ≤ 1
0 else

(2)

In the case of the model which is used in this thesis, the length scale equals the grid spacing
for the GlobCurrent, as explained in section 3.3. This spacing equals 1/4°. in both the zonal as
the meridional direction. An experimentally determined relationship between the length scale
and di�usivity was shown by Okubo 1971 to equal:

Kcgs = 0.0103l1.15, (3)

wherein Kcgs is the di�usivity in cm2/s and l is the length scale in cm. Do note carefully that
the units used in eq. (1) are di�erent from those in this equation. Special care has to be taken
when converting from centimetres to degrees, because the relationship between a length in the
zonal direction in centimetres and degrees is ∝ cos−1 (y) with y the particle latitude in degrees,
whilst the conversion in the meridional direction is position independent.

2.2. Brownian Motion with Wind Influence

With Brownian motion and the de�nition of the di�usivity in eq. (3). We can run models where
we have a combination of OGCM-caused advection and simple Brownian motion; to quickly
reference to this type of Brownian motion, we give it the name type-0 or T0 Brownian motion.
However, we can modify the de�nition of the di�usivity to also include a dependency on the
wind stress.

To achieve this, one would �rst need to determine what the coupling between wind and
Brownian motion is. A simple starting description would be that this coupling is proportional to
the strength of di�usivity as prescribed by eq. (3), and that whilst the maximal wind contribution
to the di�usivity should be lesser, the addition of the e�ect is taken to be quite signi�cant. This
is primarily done to clearly study the e�ect of the wind parameter and is not based on an
analysis of the e�ect or on results from other research.

A follow up enquiry would be how the wind e�ect would be represented in the addition. It
is certainly possible to use a data set containing the surface wind stress over the paci�c during
the years the model is run, however, in this thesis the wind over the paci�c is highly simpli�ed
through a series of assumptions.

∗Quick proof: r = ⟨n2⟩ − ⟨n⟩2 = 1
2 ∫

1
−1 n2 dn − ( 1

2 ∫
1
−1 n dn)

2
= 1

3
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Figure 1: Annual mean winds with wind stress (N/m2) (vectors) and wind-stress curl (×10−7
N/m3) (color), multiplied by −1 in the Southern Hemisphere. This image was taken
from http://booksite.elsevier.com/DPO/chapterS10.html and then slightly
modi�ed to not include the sub�gure marker.

The �rst assumption is that we only take into account the trade winds, because these are
constant in time for the time span this model is run for. In �g. 1 the winds are shown in the
Paci�c. If we now focus on the winds in the Northern paci�c from 0° to 60° N, it is clear that they
are primarily zonally orientated. Furthermore, if one were to describe the form and strength of
this zonal component, then you could state as a �rst, crude approximation that �x ∝ cos (ky),
with �x the wind stress at the ocean surface, k the wavenumber which is estimated to equal
� /30 deg−1 and y is the latitude in degrees.

With these simpli�cations in mind, further progress can be made in completing the wind-
in�uenced part of the di�usivity. This is not too di�cult to do, as it simply consists of multiply-
ing the wind addition with the absolute value of the sine function with which the horizontal
wind stress scales. Do take note that the absolute value of the sine is taken here for the addi-
tion, and not just the sine. This is done because whilst the wind stress does have a direction,
di�usivity does not. The latter, as was stated in the beginning of this section, is proportional to
the strength of the wind, and not to its orientation.

(
KU-wind
KV-wind)

= (1 +
1
2
||||
sin(

�
30y)

||||)(
KU
KV) (4)
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The di�usivity in eq. (4) can now be used in conjunction with the Brownian motion model
given in eq. (1) to run simulations with a combination of OGCM-caused advection and Brownian
motion that has a di�usivity which includes parametrised wind; for ease of reference we call
this model of Brownian motion type-2 or T2 Brownian motion.

Do note that in eq. (4) we have assumed that an increase in zonal wind stress leads to
both an increase in zonal and meridional di�usivity. We assume that this is right because we
recognise that what the extra di�usivity replaces, is not the e�ect of particles being pushed
by the wind. What is replaced, are the localised turbulent currents which are determined by
the wind strength; and de�nitely these cause particle motions to become more chaotic, even
though trade winds have a habitual orientation. This means that there is reason to increase the
di�usivity in both directions.

However, to support the validity of this assumption on the nature of the wind e�ect, simula-
tions are also done which only make use of a di�usivity contribution in the zonal plane so that
these di�erent implementations can be compared. The equation for the di�usivity that is used
in these cases is the one in eq. (5). The combination of this di�usivity in the Brownian motion
model plus OGCM-based advection we call Brownian motion type-1 or T1.

(
KU-wind
KV-wind)

= (
KU
KV) + 12

||||
sin(

�
30y)

|||| (
KU
0 ) (5)

As a �nal check to see if the possible increase in quality of the match between the model
and Maximenko results is rooted in the wind approximation and not in the on-average higher
di�usivity, a simulation with Brownian motion is run which has a �at 50 per cent increase in
overall di�usivity strength. This is to see if the change in �t quality is primarily dependent
upon the inclusion of a wind parameter in the system or upon the �at di�usivity increase.

2.3. Brownian Motion Optimisation Analysis

Another aspect of Brownian motion that is interesting to research, is if eq. (3) describes the
optimal value for di�usivity to use in this model for a given length scale. It might very well
be that a higher or lower di�usivity results in a better �t for the simulation to the Maximenko
result. To explore this issue, multiple simulations are run with di�erent di�usivity values.

In the case of this thesis ten models are run with a global di�usivity multiplier which jumps
from 0 to 4.5 in steps of 0.5 in between steps. The simulation is also initialised in a slightly
di�erent way: instead of starting on an uniform grid with 0.25° longitudinal spacing and 0.4°
latitudinal spacing, an interval size 0.5° between grid points in both directions is used. This is
mainly so as to cut back on calculation time, whilst keeping the resolution of the model high
enough to extract usable results from it. These models are run for both the time span of three
and thirteen years.

2.4. Kinematic Lagrangian Model, or KLM

The �nal type of di�usion which is studied, is one suggested by the researchers in the paper by
Lacorata, Palatella, and Santoleri 2014. Herein they used a so-called KLM model to �ll in for the
turbulent parts of motion which drifters in the Mediterranean Sea underwent. Their model is
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predicated upon the idea that the turbulent motion is akin to a summation of di�erently scaled
simpli�ed Rayleigh-Bénard convection cells. The velocity �eld brought about by the KLM is:

uklm (x, y, t) =
Nm
∑
n=1
AUn sin [k

U
n x −

�
5 sin (!

U
n t)]

× cos [k
U
n y −

�
5 sin (!

U
n t + �n)]

vklm (x, y, t) = −
Nm
∑
n=1
AVn cos [k

V
n x −

�
5 sin (!

V
n t)]

× sin [k
V
n y −

�
5 sin (!

V
n t + �n)]

(6)

In eq. (6) Ain is the amplitude of motion, kin is the wavenumber whilst !in is the frequency of
the temporal oscillation. In all these cases i denotes the unit direction of the variable, either U
or V and n indicates a countable sub-mode in a series of Nm modes that make up the �nal result.
That we denote a di�erence in the variables depending on which unit direction the variable
is taken, is because all these have a dependencies on the length scale. And just as it was with
the conversion from a length in centimetres to degrees for eq. (3), the variables in eq. (6) that
depend on a length are ∝ cos−1 (y) in the zonal direction with y the latitude of the particle
whilst this dependency does not exist in the meridional direction.

The next step then would be to �nd a series of modes which best replaces the unresolved
parts of motion. This, however, we have not done, because one would need to do a drifter
analysis to map the KLM modes to the seen unexplained movements and this is considered to
be outside the scope of this thesis. As an initial try to see if KLM can work as a replacement
di�usion model, the modes found by the researchers in the paper by Lacorata, Palatella, and
Santoleri (2014) looking at unexplainable drifter motion in the Mediterranean is used.

l in = 2−1/2l in−1 Ain = (�l in)
1/3 kin = 2�/l in

!in = �Ain/l in �n = �/4

Herein � in the equivalent mean turbulence dissipation rate and it equals 10−9m2s−3. The value
of the number of modes (Nm) was set to six in their solution and lU ,V6 is equal to 10 km. Again,
remember here that in metres lU6 = lV6 , but in degrees this relation is not true, e.g., for a particle
at 30° N lU6 = 2.9° and lV6 = 2.5°.

To �nally apply these �elds in the model, they need to be numerically integrated. The scheme
we use for this is the classical Runge-Kutta or RK4 scheme.

3. The Model

3.1. Parcels and Model Running

To facilitate the simulation, a program called Parcels∗ was used. This program allows users to
create small kernels which dictate what particles should do. In this thesis we have created a

∗The program itself is discussed in Lange and Sebille 2017, furthermore, it is freely avaible on Github at https:
//github.com/OceanParcels/parcels.
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basic framework on which all the di�erent kernels are based. This framework consists of three
parts: (1) an implementation for zonal periodicity which allows particles to jump between -180°
and +180°. (2) A logic check to see if a particle is at a location where it can be advected. This
condition is true if a particle is at a location where it has an entry for the current strength;
when this is not so, we tag the particle as being beached. (3) The equation of motion which is
used to advect non-beached particles during the simulation.

The equations of motions that are used in this thesis are covered in section 2. Here one can
see that the equations of motion all consist of an advection and a di�usion implementation,
like Type-0 Brownian motion. The advection implementation is done through a RK4 numerical
integration of a particle in the OGCM data from the GlobCurrent (see section 3.3). If a particle
cannot be directly located on a grid point in the GlobCurrent, then a new velocity is construed
through linear interpolation to its nearest neighbours.

We then run such a kernel with equations of motion embedded into it for either three or
thirteen years. We go through this temporal domain with time steps of 5 minutes between
iterations. After running this loop for �fteen days, the model handles all the particles that have
beached; what happens to these is discussed in section 3.1.1. A visual representation of how
the kernel is used, is given in �g. 2.

Run if elapsed time is less than 15 days

Check Zonal Periodicity

Is particle is ‘beached’

Ignore eqm. Execute eqm.

YesNo

Increase elapsed
time by 5 min.

Increase elapsed
time by 5 min.

Figure 2: Basic scheme of how a kernel is used within the simulation. As can be seen, to execute
the loop 15 days are split up in iterative steps where each one covers 5 minutes. After
15 days are run, the model will handle the particles that are beached.

The initial start of the model has all the particles on a grid with 0.25° spacing in the zonal
direction and 0.4° spacing in the meridional direction. This grid itself runs from 65°N and 120°E
to 0°N and 100°W; this covers the Northern Paci�c and some parts of the Chinese Sea. Of course
some of the particles in this block start on land, this is an invalid position and we have removed
those that start in such an area. That we have chosen to simulate the development of the plastic
distribution in the Northern Paci�c, is because this particular area has received a great deal of
attention in cataloguing its plastic inventory.
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3.1.1. Coastal Interaction

As a last point with Parcels and the model in general, the way beached particles are handled
needs to be discussed. Firstly it must be determined when a particle is beached and secondly
what should happen after such an occurrence has been detected. It is assumed that a particle
is beached when its coordinates point to an unde�ned value in the GlobCurrent. When this
happens a particle will be frozen in place and every �fteenth day the program checks which
particles have this state. Those that have are then reinserted on a randomly selected grid point
that was pulled from the original collection of particles in the uniform distribution.

The underlying physical argumentation here is that it is assumed that the coastal interaction
is too complex to be de�ned in the constraints of this thesis. So a reasonable �rst guess would
be to state that such a particle has been ‘lost’. However, because deleting particles gives a
skewered result to favour those whose path did not come close to a coast, there is a need to
reinsert particles to keep track o� how particles move along these coastal danger zones.

However, doing this causes a certain problem to appear: when a particle is randomly replaced
on a grid point, its history is erased. This is problematic, because the object of interest is what
the realistic plastic distribution should look like. A particle which has just been placed in the
model, can only re�ect the real distribution as a product coincidence. What is meant by this, is
that by reinserting a beached particle on a grid point, you may inadvertently recreate a plastic
distribution that shows more �tness to Maximenko’s result than when you left the particle
beached.

To account for this, we �rstly recognise that a particle that has lived for a longer time in
the model has more authority in determining the end distribution than a particle that has lived
for a shorter time. We represent this observation by determining for each particle a weight
value, as de�ned in eq. (7), and it shows the weight as a function of ‘time the particle has been
simulated for without beaching’ (ti) in seconds divided by ‘the total time the model was run
for’ in seconds (either three or thirteen years). The subindex refers to the individual particle in
question. In section 4 it will be shown how these weights are used.

wi =
ti
� (7)

3.2. The Global Inventory of Marine Plastics

In section 1 we have stated that measurements on the amount of oceanic plastic contain a lot of
uncertainty. This is problematic, because in this thesis there is a need for a general distribution
of oceanic plastic; data in the form of localised measurement are not enough to con�dently
judge the accuracy of simulations. Luckily, research has been done to construct a global oceanic
inventory of the plastics.

The general process of measuring plastic is described by Law et al. (2010) and Law et al.
(2014). They describe that in their cases ships towed with a plankton net, i.e. a net with a mesh
spacing near 0.3 mm, for a certain length. From the amount of plastic in the net and the distance
travelled during the tow, the numerical or weighted density can be determined at .

Doing this measurement is in itself not problematic. What is problematic is to do enough of
these measurements to create a plastic inventory for all the world’s oceans. For example, in Law
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et al. (2014) the area covered by each bin describing the plastic density is 1°×1°, and to achieve
this resolution within an area which roughly runs in longitude from Hawaii to the American
East Coast and in latitude from the northern tip of Peru to the Gulf of Alaska, 2529 di�erent
plankton net tow runs had to be made which were done from October 2001 till December 2012.
One can readily understand from this that taking these measurements demands a lot of time
and e�ort.

An added problem is also that not all oceanic regions have received the same attention
when it comes to conducting these measurements; the lack of trawl data for plastic near the
southern hemisphere is to such a degree that the existence of accumulation zones can scarcely
be con�rmed there (Sebille et al. 2015). Furthermore, the di�erent organisations which do these
tests use di�ering standards.∗ This means that when a global inventory of plastic is composed
one shall run into issues which come about by trying to combine data sets from di�erent origins.

For example, in a paper by Sebille et al. (2015) it is reported that their combined data set of
trawls across the globe used plankton nets which had di�ering mesh spacings between 0.15 to
0.3 mm, though it ought to be said that 90 per cent of the trawls used a mesh spacing of 0.333 or
0.335 mm. Of greater importance is the fact that the time range in which these data sets were
collected runs from 1971 to 2013. This suggests that such an inventory does not give an exact
picture of the plastic in the ocean at a de�nite point in time.

To quickly summarise what is known about the di�culties which are had with composing a
global ocean plastic inventory:

• A global inventory of oceanic plastic has such a temporal range that it is di�cult to call
the inventory a ‘snapshot in time’ of the actual inventory.

• There is a substantial di�erence between oceanic regions with their amounts of docu-
mentation for plastic content.

Having recognised these two di�culties, the authors of the paper by Sebille et al. (2015)
�rst applied a plastic growth function which was either a smooth term or a �rst/second order
polynomial, because plastic pollution has only increased since its production started. Therefore,
this was done to equate the di�erent measurement years with one and another to the same
year, namely 2014. Do note, however, that the distribution of plastics on the ocean surface is
not wholly dependent on the ocean currents, but it also varies because of forces which are not
so temporally invariant as the main ocean currents in the looked-at timespan.

The main force which can cause such variability on the distribution of plastic is the wind
force. That is because through vertical mixing at the ocean-atmosphere interface the wind
can directly in�uence how particles get distributed. To account for this fact, the researchers
also applied wind data to their equalisation of the temporal element of the plastic inventory
snapshot.

To garner a �x for the problem raised by the second bullet point the same researchers used
three di�erent oceanic models to simulate the distribution of virtual particles in the oceans.
This was done so as to provide data on the distribution of particles where the standardised
data set was lacking. To judge the accuracy of the model solution the plastic count density was

∗The Sea Education Association (SEA) is one such organisation that has organised such trawls. In the paper by
Law et al. (2014) SEA’s standards are covered in depth.
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calculated for both the solutions as the standardised dataset in 1°×1° bins. These bins were then
inter-compared through a spacial regression analysis.

The results which they obtained showed a reasonable �t with the standardised data set, even
more so considering the amount of unresolved motions that there are in the system. In this
thesis one of these modulation results is used as the de facto global inventory for oceanic plastic.
The favoured result is the Maximenko model.

The reason for admitting this result as the future basis for the results acquired in this thesis is
because the Maximenko model exhibits the most similarities with how the model in this thesis
shall be initialised. As will be shown later both the Maximenko model and the di�usion model
start with a uniform distribution of the particles (Maximenko, Hafner, and Niiler 2012), whilst
the other two solutions in the Sebille paper do not start with a uniform input but with a coastal
injection distribution which was based on the population density at coastal regions.

Another important property of the Maximenko result is that the distribution is calculated by
utilising a transition matrix which was constructed by Maximenko et al. through analysation of
drifter data. The other distributions in Sebille et al. (2015) do not directly implement drifter data
in determining their distributions. Seeing as how in this thesis particles are simulated through
a combination of OGCM-based advection plus di�usion, the transition matrix approach of
Maximenko et al. is closer to how the simulations in this thesis are run.

0°

30°N

60°N

135°E 180° 135°W 90°W

Maximenko Solution
(MCU, log10 scale)

1

1.0

2101.77

Figure 3: The Maximenko model for the distribution of plastic zoomed in on the Northern
Paci�c from a world-wide data set which was presented in the Sebille et al. 2015
paper. The ‘Mean Cell Unit’ (MCU) scale is covered in section 6.

3.3. Model Forcing Data

We said in section 1 that we use the OGCM data from the GlobCurrent project to simulate the
advective currents. We have also covered in the same section some of the properties of this
OGCM data set, we will now cover in more detail the precise subset of data that is taken.

We use ‘version 2.0’ of the GlobCurrent∗ containing the geostrophic and Eckman components
of the surface current. This data set provides these current components for all the worlds oceans
on a 0.25° by 0.25° grid for all longitudes and latitudes — excluding those latitudes near the
Arctic and Antarctic Circle. The temporal range of the data is used from 1 January 2002 to 31rd

∗URL link to the GlobCurrent project: http://www.globcurrent.org/.
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December 2014. Within this thesis models shall be run for three and also thirteen years∗ both
starting on 1 January 2002.

4. Result Analysis

The last topic of discussion concerns how the di�erent di�usion models can be compared to
each other and the Maximenko model. To this end there are two di�erent representations of
the results in this thesis: one is used to allow for visual inspection of the plastic distribution,
and the second one is used to quantify the amount of similarity between distributions.

For this analysis — especially the comparison with the Maximenko model, the individual
particles must be binned to allow for an easier way of comparison between di�erent results.
What we have de�ned as a bin is an 1°-by-1° object. We have as many bins as is necessary to
�ll a 2D space which runs in longitude from 0° to 360° and in latitude from -90° to +90°. This
de�nition of a bin and in which space the collection of bins are placed is the same as was used
in the paper by Sebille et al. (2015) for the Maximenko result. The binning process is done
by adding the weight value (as was de�ned in eq. (7)) of each particle to the bin to which a
particle’s coordinates correspond.

The follow-up step is to divide the weighted sum in each bin by the area in kilometres that
the bin covers on the globe. From this we get a weight density for each bin. The reason this is
done, is twofold: First, because the area covered by each bin in km2 is not always equivalent
to one and another, you could get a skewered picture about how much plastic there is in a bin,
and second, because the Maximenko model is also given in particles per km2 there exists also a
practical reason to do the conversion.

Earlier in this section was said that one of the result representations which was wanted, was
a visual plot of the distribution of plastic. With these bins this can be done through plotting the
contents of each bin as a contour level on a world map, so that one acquires an easily understood
plot of not only the relative density of plastic particles at each position in the Northern Paci�c,
but also of what the spatial gradients are of the plastic density in this area.

For quantifying the similarities between di�erent results, a spatial regression analysis is done.
What this means is that each bin cell from one data set is plotted against the corresponding cell
in another set. What one sees in data sets which have a close correspondence to each other, is
that the plotted points are on a linear �t described by y (x) = ax with a some constant which
is determined by the relative linear scaling di�erence between two sets. To then quantify the
�tness, a correlation coe�cient is calculated between this imaginary line y (x) and the points
determined by linked cells. Note that this process is only done for the bins which fall in the
area covered by the initial uniform particle distribution.

The values of this analysis can be used by themselves to judge quantitatively the quality of
a �t. However, one can also compare the correlation coe�cients of two analyses with the same
equations of motion but with di�ering model run lengths to judge how �tted a model stays to
the Maximenko distribution through time.

A side note on this last analysis must be made with respect to the results which will be
obtained from doing what is described in section 2.3. The same analysis as given above is

∗The days are counted here inclusively.
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done, but instead of looking at each individual analysis, a graph containing each correlation
coe�cient as a function of the di�usivity at the equator will be plotted.

5. Simulation overview

Before the result are shown, it might be helpful to provide a small diagram covering all the
di�erent model con�gurations which are run. You can see this visualisation in �g. 4.

Model run for 3 years with... advection only.

advection and BM

advection and BM-ZOWI

advection and BM-WI

advection and KLM

Model run for 13 years with...

R-optimisation

Figure 4: Possible simulation durations with model components. In this �gure BM stands for
Brownian Motion, see section 2.1, and ZOWI and WI stand for (zonal only) wind
in�uenced whose de�nitions were covered in section 2.2, and KLM refers to the
‘Kinetic Lagrangian Model’. ‘Advection’ in these blocks refers to the movement caused
by the current �elds in the GlobCurrent.
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6. Results — Density Distribution

After having run the models as is speci�ed in section 3.1, the end distributions are plotted in
�gs. 5 to 6. In �g. 3 the Maximenko model — as given in the paper by Sebille et al. 2015, is
displayed for the same area of interest as of this thesis.

The unit scale used in the plots of the distribution is in ‘Mean Cell Units’ (MCU). We have
de�ned one MCU as being the mean content of the bins which have a non-zero value for their
weighted density. This scale is more useful in determining how convective a distribution of a
simulation is than keeping the bin content in #/km2, because on the MCU scale convergent and
divergent behaviour become more apparent in higher and lower extrema.

As can be seen in �g. 5a the particles have a tendency to converge from all latitudes towards
30°N, furthermore, a similar e�ect also seems to happen in the zonal direction. As can be seen
when plot (a) is compared to (b), there happens to be also a tendency to pull particles towards
135°W. However, note that we do not observe the same convergence in the zonal direction as we
have seen in the meridional direction. Another observation is that the advection-only simulation
does not predict that there is a heightened concentration of particles near the 60°N band which
the Maximenko solution prescribes to be there. This behaviour which we observe in the control
set also mirrors plastic distribution results of another Lagrangian particle simulations of plastic
by Lebreton, Greer, and Borrero (2012).

Another metric of the control set is the average number of times every particle was beached;
for the result in (a) this value is 2.28 #−1 and for (b) this increased to 14.7 #−1. This was determined
for a set wherein a total of 70 k# particles where uniformly distributed.

The set of simulations with Brownian motion in �g. 5b shows an increased vertical structure
if one compares them to the results in �g. 5a. In the left side of the �gure you can see, e.g.,
that the left tail of the big garbage patch at 30°N 135°W is far more vertically spread out. This
structure seems to persist even when the model is run for a longer duration.

A curious observation is that there is still no development of a separate garbage patch at the
west end of the tail which was seen in �g. 3. Also worth pointing out is that the big plastic gyre
seems to have rotated slightly anticlockwise as compared to both the advection-only set and
Maximenko model. What does appear to happen is that the maximum cell density seems to
decrease when you compare the results for three and thirteen years of all the Brownian motion
sets with the control set.

The di�erences between the types of Brownian motion, i.e., what the extra di�usivity due to
trade winds causes, is not that visible. You do see that the maximum mean cell density decreases
and that there is a bit more plastic near the coast of Alaska, but beyond that there are no visible
e�ects.

The �nal observation is that the average number of times every particle beached in the three
year runs were from T0 to T2: 2.15 #−1, 2.24 #−1, and 2.29 #−1. For the thirteen year runs 10.3 #−1,
11.3 #−1 and 11.8 #−1 beach events per particle were counted. The total number of particles in
the simulation was the same as in the advection-only run.

The combination of the KLM with GlobCurrent advection, as displayed in �g. 6, shows the
most variances when compared to the Maximenko model and the advection-only simulation.
The structure is not only far less spread out than in the control and Maximenko cases, but it
also seems to be spotted and far more convective than the others.
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(a) The results of the simulation of virtual particles that are only being forced by the advective currents
provided by the GlobCurrent. In sub�gure a) the �nal distribution after three years of simulation is
plotted and in plot b) the same equation of motion was used in the Parcels kernel, but the run time
of the model is set to thirteen years.
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g) Brownian Motion T2 - 3 Years
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(b) The assorted collection of di�erent types of Brownian motion plus GlobCurrent advection. On the
left side of the image the results are given for the end distribution after three years of simulation, on
the right this is done for thirteen years of simulation. The �rst row contains T0 Brownian motion.
The second row contains the results with T1 Brownian motion and the third row are the results
which used T2 Brownian motion.

Figure 5
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Figure 6: The result of the KLM plus advection simulation. In �gure (a) this model was run for
three years and in plot (b) you can see the result after thirteen years of simulation.

Another observation is that the highest cell density is many times higher than the average
non-zero density cell content. If you compare the KLM maximal cell density after thirteen years
with control set after that time, then you can see that the densest cells contained within the
KLM is about four times more the average cell content than was seen in the control set. The
number of times every particle beached on average, was 5.06 #−1 after three years of simulation
and 12.5 #−1 after thirteen years.

7. Results — Regression Analysis

The collection of results for the regression analysis of the models with the Maximenko model are
shown in �gs. 7 to 10. These results show all the same pattern, though there are some important
di�erences. In all the �gures there are quite a few instances where the simulation says there
ought to be no plastic particles, whilst Maximenko says there should be. This undershooting by
the simulation continues from the left side of each �gure till the black ‘one-to-one’ line; which
is an observation which was also made in the previous section where the distribution results
were visually inspected.

However, the right side of each �gure also shows some interesting results: whilst certainly
the model has an tendency to undershoot, it is not to the degree with which it overshoots. As
can be seen in, e.g., �g. 7 there are a few outliers on the right-hand side of the �gures. Again,
this is something which was also noted in the visual inspection of �g. 5a in that the simulation
tends to convect particles into the high density patch near 30°N and 135°W.

This observed pattern propagates also through time and has become more extreme after
having been simulated for thirteen years. Especially the tendency for the model to undershoot
has been increased in �g. 7 at the later date where the thicker part of the correlation plot has
shrunk on itself. This increased discrepancy is re�ected in the lowering of the correlation
coe�cient.

In �g. 8 the same trends that were explained earlier can be seen, however, a di�erence can be
seen in that through time the extremity of the model undershoot and the amount in which the
model diverges from the Maximenko model also decreases. The latter can be primarily seen by
noting that the undershooting does not as substantially increase with respect to what happens
in �g. 7. What does clearly increase in the set of Brownian motion simulations, is the strength
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Figure 7: The regression analysis of both the three year and thirteen advection-only simulations
against the Maximenko model. A point has as its x coordinate the plastic density for
a cell in a simulation result and the y coordinate is the density for the matching cell
in the Maximenko result. Points on the black line are where the simulation and the
Maximenko data have an one-on-one match for a cell. The R-value in the lower right
corner of each �gure represents the Pearson correlation coe�cient.

of the density overshooting.
As was discussed at the end of section 2.2 an analysis also needs to be done into whether

any positive change in Brownian motion with a wind in�uence approximation is rooted in the
fact that the approximation works or that a �at increase of di�usivity would also work. As can
be seen in �g. 9 the correlation coe�cient does seem to increase over the results in eq. (4). The
decrease in correlation is in this case equal to 11.3 per cent.

With the KLM simulation the remark was already made that it looked akin to a spotted
distribution with a very high gradient in cell content near the convection zone. In �g. 10 this
observation can also be made: as can be seen, there are a few cells which get to accumulate
the majority of the particles in the simulation. One also sees that the convective tendencies of
this model are greater than those in the control set, because of the very fact that these few cells
gain the majority content.

7.1. Regression Analysis with Brownian Motion Optimisation

In �g. 11 one sees the results of di�erent di�usivity values which are greater than what eq. (3)
prescribes for the equator. As can be seen by comparing the analysis after three years with the
one after thirteen years, there are some noteworthy di�erences between the right tails of the
analyses. But in both cases the strength of the di�usivity which provides the best �t with the
Maximenko analysis, is not the value that is described by Okubo’s formula.

The analysis after three years shows that the optimal di�usivity value lies somewhere in
between 200 and 300 m2/s for the di�usivity. After this optimum, the regression analysis makes
a sharp jump before it settles into a linear-looking decrease of �tness. Another observation
that can be taken from this analysis is that even adding a little amount of Brownian motion to
the simulation increases the �tness substantially.
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e) Brownian Motion T2 - 3 Years

0 1 2 3
Brownnian Motion T2 Set - 13 Years

(n#\km2)

0.0

2.5

5.0

7.5

M
ax

im
en

ko
 M

od
el

(#
\k

m
2 )

R: 0.61

f) Brownian Motion T2 - 13 Years

Figure 8: The regression analysis of the collection of di�erent Brownian motion models. The
�rst column contains the results for three years of model run time and the second
column for thirteen years of this. From the top row to the lowest the types of Brownian
motion used were ‘standard’, ‘extra zonal di�usivity due to wind approximation’,
‘extra di�usivity due to wind stress at surface’. For an explanation of the black line
and the R-value in each plot, see �g. 7.

18



0 1 2 3
Brownian Motion T0 1.5x As Strong - 3 Years

(n#\km2)

0

2

4

6

8

M
ax

im
en

ko
 M

od
el

(#
\k

m
2 )

R: 0.71

a) Brownian Motion T0
1.5x As Strong - 3 Years

0.0 0.5 1.0 1.5 2.0 2.5
Brownian Motion T0 1.5x As Strong - 13 Years

(n#\km2)

0

2

4

6

8

M
ax

im
en

ko
 M

od
el

(#
\k

m
2 )

R: 0.63

b) Brownian Motion T0
1.5x As Strong - 13 Years

Figure 9: Herein is shown the regression analysis of plastic particles in Brownian Motion plus
advection model where the di�usivity used is 1.5 times greater everywhere than eq. (3)
prescribes. In these simulations about 30 k# and 48 k# particles were marked as being
out-of-bounds for the three and thirteen year run respectively.
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Figure 10: The regression analysis of the KLM. For a de�nition of the plot parts, see �g. 7.

However, the thirteen year analysis neither shows the same optimal value for the di�usivity
nor the sharp jump to the continuously linear decreasing regimen. The optimal value is in this
case near 320 m2/s.
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b) Diffusivity Optimisation - 13 Years

Figure 11: Optimisation of the di�usivity through determining the regression analyses of model
cell contents with those in the Maximenko model. The dashed blue line represents
the di�usivity which Okubo prescribes for the length scale that �ts to 0.25°×0.25°
GlobCurrent bins on the equator.
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8. Conclusions

It is a certain observation that advection alone cannot explain the distribution of plastic in
the Northern Paci�c; by way of visual examination of �g. 5a it was noted that the plastic
patch expressed a tendency to be completely con�ned in the Northern Paci�c gyre, and mainly
in the convergence zone west of California. To express numerically how the inclination to
converge creates a growing mismatch between the observed and simulated plastic content, the
development of the Pearson coe�cients can be examined. In table 1 the R-value went from 0.45
to 0.34; this is 24.4 per cent relative decrease in �tness over 10 years. These values shall be used
as a baseline for judging whether a di�usion model improves upon the default �tness or not.

Simulation Set R-Value after
3 Years

R-Value after
13 Years

Percentile Decrease be-
tween Years

Control 0.45 0.34 24.4
Brownian T0 0.70 0.58 17.1
Brownian T1 0.70 0.60 14.3
Brownian T2 0.70 0.61 12.9
Brownian Ampli�ed 0.71 0.63 11.3
KLM 0.41 0.18 56

Table 1: In this table shows the collected correlation coe�cients from the �gs. 7 to 10. We have
also calculated what the percentile decrease was of a set between three and thirteen
years of simulation; this is shown in the right most column.

8.1. Brownian Motion

The �rst type of Brownian motion (T0) showed on visual inspection a better �t with obser-
vations. Its R-value through time went from 0.70 to 0.58 which is a 17.1 per cent decrease in
�tness. In the case of T1 the R-value goes from 0.70 to 0.60 which indicates a 14.3 per cent
decrease in �tness. For the last Brownian motion type, T2, a R-value change from 0.70 to 0.61
was reported; this equates to a 12.9 per cent decrease in �tness. This shows that all the types of
Brownian motion not only have a better �t to observations, but also keep through time a better
�t.

This validates the hypothesis that Brownian motion could be used to approximate the tur-
bulent currents in the ocean. However, do the improvements to the �tness in the case of the
wind approximation come about through it better matching the underlying physics, or does
the formula of Okubo∗ for the di�usivity underestimate the chaotic motion in the ocean — or
at least, in the Northern Paci�c?

To determine which is the case, a plain Brownian simulation was run wherein the di�usivity
was equal to its maximum in those where wind stress was used as a modi�er to this amount.
The results are given in �g. 9, but the important thing here is that the R-value went from 0.71
to 0.63 which translates to an 11.3 per cent decrease in �tness; which is an result which �ts the

∗See eq. (3).
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Maximenko distribution even better than was found with the T2 Brownian motion. Hence the
deduction can be made that wind stress causing extra di�usivity cannot be directly backed up
by the results: because a simple multiplication of the the whole di�usivity gives better results
than those cases were the multiplication was linked to the zonal wind strength.

A further point of interest in this discussion of Brownian motion concerns the handling
of particles which the simulation has designated as being ‘out-of-bounds’. As was remarked
earlier, these particles that have this event happening to them get reinserted. It was also noted
that on average a particle in the control run has more than two collisions with the coast in three
years and this number increases to about 15 after thirteen years of simulation. In the case with
Brownian motion these numbers overall decrease, but still the average number of collisions per
particle is large to such a degree that the correct handling of these events is not a trivial matter.

The action that was de�ned for handling these events was in this thesis to reinsert a particle
at random grid point of the initial distribution whilst keeping track of their ‘weighted history
length’ to make a distinction between younger and older particles. This process was described
more in depth in section 3.1, however, this was not the only coastal interaction model that was
tried. In appendix A there is a discussion about the di�erent models that were tried and also
some suggestions are o�ered to the problems that will now be covered.

The fundamental assumption that we had made with respect to what the behaviour of parti-
cles is near the coast, is that this is unknown. This is of course a crude statement and neglects
an important part of the dynamics which ultimately determines the plastic distribution in the
ocean: particles near the coast do not simply exit the system.

Whilst it has been shown that Brownian motion can better the results of plastic simulation
in the Northern Paci�c, it is strongly suggested from the observations made concerning the
frequency of coastal collisions of the average particle that in-depth study needs to be done
in how-to accurately model the ocean-coast interface. The importance of this problem in the
Northern Paci�c is in part ampli�ed by the fact that there are a few major currents which
are directed along the coast, i.e., the Alaskan, California and Kuroshio current. This causes
more coastal collisions to happen than there would be in, e.g., the Southern Paci�c, but the
importance of coastal modelling is despite of this stressed.

8.2. Brownian Motion R-Optimisation

To study how the �tness of the model was dependent on the strength of the di�usivity in the
system, two analyses were done of the di�erent correlation coe�cients of models with varying
di�usivity. In �g. 11 you can see that the addition of some Brownian motion causes a substantial
increase in �tness when compared to the no-di�usivity situation. What is more, the optimal
value for the di�usivity is higher than Okubo says it ought to be in both cases; which is a strong
suggestion that the di�use motion in the Northern Paci�c, and perhaps other oceans, is greater
than Okubo inferred from his experiments where he analysed the di�usion of a �uorescent dye
patch through time in di�erent oceanic regions (Okubo 1971).

In section 7.1 it was explained that the di�erent time spans also had a di�ering optimum for
their di�usivity. This is somewhat of a conundrum, because it would provide a clearer and less
interpretation dependent result for the implementation of Brownian motion in oceanic particle
simulations. One could say that the noticeable shift in where the optimum lies, is an indication
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that the analysis does not show where the optimum might be and that in extremis the statement
that the di�usivity must be higher for an optimal �t, might be incorrect.

However, it can be argued that the simulation has not yet stabilised after a mere three years
of run time and that only at a longer time scale the real relationship between di�usivity and
�tness becomes clear. If one takes a look and compares a set of Brownian motion runs in �g. 5b,
one clearly sees that the a three-year-run is generally a lot more di�use than the thirteen-year-
run. And this is important, for it can be argued that after three years the simulation has not
progressed far enough from its initial uniform distribution. Of course, the system after thirteen
years does not have to be the stable state, but the lack of jumps in the correlation coe�cients
after the optimum at least indicate tentatively a greater amount of stability. In appendix B there
is a more in-depth look at the development of this optimisation through time.

8.3. KLM

The KLM simulation provided the most di�ering result from what the Maximenko distribution
claimed it ought to be. The simulation can only with some di�culty be compared to the actual
model: the reported R-value in table 1 are not only lower for the KLM than for the control set,
but the overal decrease between three and thirteen years is for KLM also higher.

This shows that the KLM model is not a valid replacement approximation for the turbulent
currents, because the absolute �tness per snapshot and the relative �tness between years are
lower than the results in the control set. However, this makes one wonder why in the paper by
Lacorata, Palatella, and Santoleri 2014 the KLM model could be used successfully to simulate
drifter motion in the Mediterranean.

A possible answer could be that the Mediterranean has far fewer strong currents, whilst
the Northern Paci�c contains multiple gyres and strong circulatory currents encircling the
Northern Paci�c ocean. This is a signi�cant change in the character of the ocean, and it very
well might be that the current KLM implementation only works for waters that have no overly
strong transport currents.

9. Summary

In this thesis it was shown that Brownian motion could be used as a stand-in for the unresolved
parts of motion. However, it was also noted the ocean-land interaction is as of yet an unresolved
problem in all simulation set-ups. A suggestion for further research into the viability of this
di�usion approximation would in part depend on �nding better tools to handle particles near
this interface.

Within this thesis attempts were made to link the strength of the di�usivity to the positive
impact wind stress has on the strength of turbulent motion at the ocean’s surface. It was shown
that this relation could not be clearly seen in the results and that a �at-out increase in di�u-
sivity leads to better results than when such increases are linked to the wind stress. However,
Brownian motion can be recommended for modellers of plastic, and other oceanic particles, to
be included in their simulations, because it counterbalances the too strong convective currents
which are encapsulated in the large scale �ow.
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The results from the optimisation of the di�usivity in the case of non-wind-in�uenced Brow-
nian Motion show that the equation in eq. (3) underestimates the strength of di�use e�ects by
a factor in between 1.5 and 2.5. This was seen as a clear indication that the di�use tendencies
of the oceans are stronger than what prior research would indicate.

Simulations with the KLM model showed no improvements over the ones with Brownian
motion or even those with only advection. The observations were that the �tness of the dis-
tribution quite sharply decreased due to the e�ects of the KLM. We can, therefore, not yet
recommend KLM as an approximation for the unresolved parts of motion. We would like to
stress here the fundamental limited scope of a bachelor thesis cannot be used in determining
whether a tool developed by a professional research group fails to approximate the unresolved
parts of tracer motion; we merely state that within this thesis it could not be used to improve
upon the control set.

24



A. Problems with Boundaries

As was discussed and pointed out in the discussion that was had in the conclusion, the bound-
aries of the model play a large part in determining how the model develops. This was inferred
from the simple fact that every particle had on average 2.28 coastal collision events in three
years and 14.7 such events in thirteen years. After diagnosing this, the suggestion was made
that serious research had to be done into accurate modelling of what happens at the coast be-
cause the used interaction model was probably too simple to be representative of the underlying
physical reality.

However, whilst the goal of this thesis was not to really further our understanding of coastal
interaction modelling, di�erent attempts were made to �nd some kind of interaction model
which would work with the presupposition that the thesis should not be overly concerned with
what happens at the coast; only that what does happen, is something which is not encapsulated
into the ‘normal’ dynamics of the �ow in open waters.

The �rst assumption that was made in all the work on the coastal interaction in this thesis,
was that when such an event occurs, the particle becomes an unknown as far as the simulation
is concerned. The naive conclusion that one might draw from this is that the particle can simply
be deleted. This would be a problematic assumption, because the larger part of particles in
the simulation undergo a collision event. If one then were to delete these particles, the picture
you would get from doing this would be skewered to preferentially keep the particles in the
simulation that were not near the coast.

So this simple idea of removing particles was rejected; ideally the number of particles during
the simulation is kept at the same number as when the simulation started. However, in this
case a decision has to be made about what happens with a particle that crosses a boundary. In
this model what happens at the boundary is a virtual unknown. One interaction choice could
be that particles do not really beach, but get stuck a few hundred metres o� the coast and to
the degree that particles get into this region, they also �ow back out into the open ocean.

However, and we have tried this in the model, reinserting particles in the model within a
circle area spanned by a radius determined by the maximum standard deviation of Brownian
motion, causes hyper particle convergence in certain coastal regions. This is because a particle
does not randomly collide with the coast: they are mainly pushed unto the coast because the
GlobCurrent advected them thereto. This means that one starts to see particles continually being
convected into a coastal area and then getting themselves stuck there, because this interaction
mechanic does not push them out of the current which caused them to beach in the �rst place.

A possible �x to this problem would then be to de�ne a current which is perpendicular to the
area where there exists no de�nition of the GlobCurrent. This makes it less likely that coastal
regions become hyper convective zones, but this by itself also causes the occurrence of such
zones.

To explain this; imagine that you have an unde�ned region for the GlobCurrent. Now besides
this unde�ned region there exists a small sliver of cells which do have a GlobCurrent de�ned
and then again some region where there is no current. This means that particles can �ow in
between these regions. If one then uses perpendicular currents to push particles away from the
coast, one may get the situation where particles get trapped within these straits. This causes
the problem of hyper convection to again rear its head.
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This problem might be solved by padding the unde�ned grid cells in the current �les and
then determining the o�-shore currents by means of this padded grid cell map. This leads these
small problematic edges and small islands to become smoothed out. However, this was not
further researched in this paper and this might be the next logical step for other researchers to
explore.

As it stands, the most feasible de�nition of coastal interaction was given in section 3.1.1.
Where a particle is reinserted on an original grid initialisation point when is has collided with
the coast.

B. Development of the Di�usivity Optimisation

You can see in �g. 12 that the relationship between di�usivity and the correlation coe�cient of
the model with the Maximenko result becomes a smoother curve after it has been run for more
years. However, the mean value of the coe�cients does not seem to decrease continuously.
What is rather seen, is that the curve oscillates between the years. It is di�cult to judge whether
this is an e�ect caused by uncertainties/constraints within the model, e.g., the reinsertion after a
out-of-bounds event for a particle, or is it because Brownian motion is an approximation of more
complex �ow structures? This is an important question, but one which is outside of the scope
of this thesis. That being said, it still can be recognised that the shape of di�usivity-‘correlation
coe�cient’ relationship retains a high amount similarity between model run lengths; which
shows that the optimal value for the di�usivity in the Northern Paci�c ought to be higher than
what Okubo suggests.
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Figure 12: The di�erent curves showing how the correlation coe�cients as a function of dif-
fusivity change between di�erent run lengths of the simulation. The starting date
for each run was 1 January 2002. The dotted line is the prescribed value for the
di�usivity by Okubo for the length scale of a cell in the GlobCurrent which lies on
the equator.
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