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Abstract

Traveling Thief Problem (TTP) is a relatively new benchmark problem
created to study problems which consist of interdependent subproblems.
In this thesis various operators and strategies in the literature of TTP are
investigated in order to understand if and how they work and whether they
can be improved. Operators include 2-opt, Insertion, Bitflip and Ex-
change. Strategies include greedy packing plan heuristic, neighborhood
reduction and use of various tour crossovers in a genetic algorithm. The
investigation is done in part by fitness landscape analysis. The first part
of the thesis is a literature study and discusses TTP, the subproblems of
TTP and fitness landscape analysis. The second part of the thesis consists
of experiments which investigate these various operators and strategies in
the literature. The second part also consists of time complexity improve-
ments for the commonly used local search operators for TTP. Experiments
show that greedy packing heuristics have a high chance of finding optimal
or near-optimal solutions. Other experiments show that between nearest
neighbor reduction, k-quadrant nearest neighbor reduction and reduction
by Delaunay triangulation there is no significant difference in performance.
Fitness landscape analysis shows among other things that TTP instances
contain a lot of local optima but their distance to the global optimum
is correlated with its fitness. Local optima networks with respect to an
iterated local search shows that TTP has a multi-funnel structure. Other
experiments show that a steady state genetic algorithm with edge assem-
bly crossover outperforms multistart local search, iterated local search and
genetic algorithms with other tour crossovers. At last there is a compre-
hensive comparative study which contains new best solutions to almost
all studied instances of the commonly used benchmark suite.
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1 Introduction

The Traveling Thief Problem (TTP) was created in 2013 by Bonyadi, Michalewicz,
and Barone [7]. In TTP a thief must visit each city once and at each city has
the opportunity to take items with him. These items have a certain profit and
weight and the knapsack has a certain capacity, the thief can’t take all items.

The TTP is a combination of two NP-hard subproblems: Knapsack Problem
(KP) and the Traveling Salesman Problem (TSP). The two subproblems are
interdependent because the weight of the items slows the thief down and time
is of importance since the knapsack is rented. The speed of the thief has a
non-linear relation with the weight the thief carries. The goal of the traveling
thief is to maximize the profit from items while paying rent for the knapsack.

The problem may sound a little bit goofy but interpretation aside the combi-
nation of KP and TSP with an interdependence is an interesting problem. The
optimal knapsack depends on the route the thief takes and the optimal tour
depends on the items in the knapsack. Finding the optimal knapsack and tour
is harder than solving each subproblem individually. That is the crux of TTP.

TTP was created because Bonyadi, Michalewicz, and Barone found that re-
search about and comparison between metaheuristics takes place in the context
of certain NP-hard problems. But they argue that there is a growing gap be-
tween real problems and these benchmark problems. The growing gap comes
from the fact that the problems encountered in the world become increasingly
more complex while the benchmark problems in 50 years have stayed the same.
The traveling thief problem tries to close this gap by being a problem with two
important characteristics of real-world problems: It contains two subproblems
and there exists an interdependence between the two.

In the short time since TTP has been introduced various algorithms have
been proposed. But as I will explain in section 4.8.1 there is no real justification
for using these operators/strategies besides some comparison between different
algorithms or previous findings from TSP literature. Therefore I would like
to research two things in my thesis: investigate and understand these opera-
tors/strategies and try to improve them. I will investigate the previous point
in part by fitness landscape analysis in order to answer the following research
question:

How can the use and effect of various operators and strategies
in the literature of the traveling thief problem be justified, explained
and improved?

The structure of this thesis is as follows: part I (section 1-6) is a literature
study of TTP, TSP, KP and fitness landscape analysis. Part I also contains
explanations of various local search procedures, metaheuristics and operators
used in this thesis. In section 6 I will give a detailed explanation of my research
question and define subquestions which I will answer in part II. In part II of my
thesis I will answer these subquestions at each section and in section 14 give a
conclusion.
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1.1 Definition

Traveling thief problem formally defined:
Given n cities, m items, mi items at city i, a profit pik and weight wik for

each item k at city i, a distance dij between city i and j, a minimum speed vmin,
a maximum speed vmax, a renting rate R and a knapsack capacity C. The goal
is to find a permutation of cities Π = (x1, ..., xn) and a bitstring representing
the packing plan Y = (y21, ..., y2m2

, ..., ynmn
) such that the objective Z(Π, Y ) is

maximized. Z(Π, Y ) is defined the following way [56]:

Z(Π, Y ) =

n∑
i=1

mi∑
k=1

pikyik −R
n∑
i=1

dxixs(i)

Vi
(1)

Where s(i) is the successor of integer i in the permutation Π. Z is the
summation of profit of the packed items minus the renting rate times the travel
time. The travel time depends on the distance between city xi and its successor
and the speed Vi.

Vi = vmax −
vmax − vmin

C
Wi (2)

The speed Vi at city xi is calculated with the collected weight Wxi
from items

at city xi. Without any items the speed is equal to vmax and with full capacity
it is equal to vmin.

Wi =

i∑
j=2

mj∑
k=1

yxjk
· wxjk

(3)

Wxn ≤ C (4)

The collected weight at the last city xn must be smaller or equal to capacity C.

1.2 Outline Part I

The structure is as follows: In section 2 I will introduce local search that is
relevant for TTP. In section 3 I will give an overview of the literature of KP
and TSP. In section 4 there will give a complete overview of the TTP literature.
In section 5 I will introduce a subset of landscape analyses I want to use in my
thesis and at last in section 6 I will propose my research questions with relevant
subquestions.
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Part I

Literature Study

2 Preliminary

2.1 Local Search

A local search is a method of iteratively improving a solution by making local
changes. These local changes are made with an operator. Most of the time
the operator can be applied in multiple ways. Every application of an operator
creates a neighbor solution. Iteratively going to a better neighbor solution is
called a hill climbing algorithm (see Algorithm 1). If a solution has no neighbors
with a better evaluation score, then the solution is a local optimum with respect
to the operator. For the traveling thief problem, local searches are performed
on the packing plan or on the tour. The packing plan is represented by a bit
string and the tour by a permutation.

In the next section I will briefly explain some local search procedures that
are used throughout this thesis. When a local search is mentioned it is implied
this procedure is done until no improvements are made or stated otherwise.
Sometimes a local search is only applied for one pass and sometimes an operator
is randomly applied. In the latter case it serves as a disruptive operator.

Algorithm 1 General format hill climbing (best improvement)

1: function Hill Climbing
2: x← an initial solution
3: while termination conditions are not met do
4: x← arg max{f(x′) | x′ ∈ N(x)} . f is a fitness function
5: . N is the neighborhood of x
6: end while
7: end function

2.1.1 2-opt

2-opt is a local search procedure created for TSP but can be applied to any
kind of permutation representation. The 2-opt-swap reverses a segment of the
permutation. In terms of a tour it deletes and creates two edges (Figure 1).

Since every segment can be used for a valid application of 2-opt-swap, this
operator has a total O(n2) neighboring solutions.

2.1.2 Insertion

Closely related to 2-opt is Insertion also called 2.5-opt. Here an element of
the permutation is chosen and reinserted somewhere within the permutation.

7



Figure 1: 2-opt. Permutation representation (left) and the corresponding tour
(right).

There are O(n) candidates for insertion and O(n) places to insert, again O(n2)
neighboring solutions.

Figure 2: Insertion. Permutation representation (left) and a corresponding
tour (right).

2.1.3 BitFlip

As the name probably suggests BitFlip is a local search that flips a bit of a
bit string. In terms of the packing plan this is either inserting or removing an
item from the knapsack. There are O(n) possible bits to flip.

2.1.4 Exchange

Exchange is a local search that takes two bits with different values and swaps
their status. In terms of the packing plan this is consecutively removing and
inserting an item. There are O(n2) possible combinations. This local search
procedure is stronger than BitFlip since it can first ‘visit’ an invalid or worse
solution by first removing or inserting an item.
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Figure 3: BitFlip (left) and Exchange (right)
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3 Subproblems of the Traveling Thief Problem

In this section I want to provide a small literature study on the traveling sales-
man problem and the knapsack problem to gain insight into the subproblems
of the traveling thief problem. Not by any stretch of the imagination will this
be a complete overview of the work done in these fields. I have chosen parts of
the literature which I deem historically relevant, relevant to the TTP and the
TTP-literature or relevant to paths I take in my thesis.

3.1 Traveling Salesman Problem

The traveling salesman problem is one of the most intensely investigated prob-
lems in optimization [1]. Its popularity is due to its easy to understand but
hard to solve nature. It also has a large variety of applications in many different
areas. To name a few: logistics, mapping genomes, aiming telescopes, guiding
industrial machines, scheduling jobs and many more [10]. The pursuit of solv-
ing TSP, be it exact or approximate, has pushed research in computer science
forward, created novel methods and algorithms along the way and functioned
as a test-bed for various metaheuristics.

The traveling salesman problem can be defined as finding the shortest Hamil-
tonian cycle in a graph. The problem is finding a permutation of cities such
that the cost of the summation of every edge between consecutive cities is mini-
mized. The search space of this problem is enormous: (n−1)! different solutions

exist for asymmetric TSP and (n−1)!
2 for symmetric TSP. A brute force algo-

rithm would suffer from the giant permutation search space and is therefore not
feasible.

3.1.1 Exact Methods

A significant but still impractical improvement has been made by the Held–Karp
algorithm that solves TSP with dynamic programming and has an improved
time bound of O(n22n) [21]. This still takes too much time for even the smallest
instances.

The state-of-the-art of using an exact methods to solve TSP is linear pro-
gramming using branch-and-cut. The most efficient implementation of this
method is in the freely available Concorde [19]. Concorde is software that con-
tains approximately 130.000 lines of code and lies at the heart of the research
done by Applegate et al. [1]. It includes multiple methods that have been accu-
mulated over more than 60 years of LP-reseach into TSP. Concorde can solve
instances up to 85900 nodes, for an example the instance pla85900 of TSPLIB
[57]. The computation however comes at the cost of consuming over 136 CPU
years on a cluster of computers. Instances of smaller size, i.e. 1000 nodes, only
takes minutes. Linear programming is the most successful exact TSP approach
proposed to date and Applegate et al. called it one of the great success stories
of modern mathematics.
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3.1.2 Construction Algorithms

Given the hardness of the problem a lot of research on TSP went into heuristic
algorithms. One of the earliest approaches is to simply construct a tour following
a basic rule. In the nearest neighbour algorithm a tour is created by iteratively
going to the nearest city. This naive algorithm performs reasonable well for the
first few cities but will eventually require long edges to go back to unvisited
cities. In fact Gutin, Yeo, and Zverovich [18] showed that it can return the
worst possible tour.

Other construction algorithms have been proposed which give a guaranty on
the quality of the solution: approximation algorithms. One of the best approx-
imation algorithms to date is the Christofides algorithm [9]. The Christofides
algorithm finds a tour in the following way: First, a minimal spanning tree T
is created. Then a minimum-weight perfect matching M in the vertices of odd
degree in T is found. After which an Euler tour is constructed in T ∪M . Remov-
ing duplicate vertices in this Euler tour gives a TSP-tour with a quality that is
no less than 3

2 of the optimal solution. In practice the tour is much closer than
3
2 of the optimum but it is still outperformed by a simple hill climber algorithm
using 2-opt [23].

3.1.3 Lin–Kernighan Heuristic

More practical success has been achieved by various applications of the Lin–
Kernighan heuristic developed by Lin and Kernighan [28]. The Lin–Kernighan
heuristic (LK) is generalization of the 2-opt search and is the backbone of many
metaheuristics that solving TSP [1]. LK iteratively improves the tour by search-
ing for a sequence of edge swaps such that each initial subsequence has a chance
of improving the tour. If it actually does improve the tour, the sequence of edge
swaps is executed. If no sequences can be found, a local optimum has been
reached and the algorithm stops.

To find a better solution you could run LK multiple times (MLS) or perturb
the solution and apply the local search again (ILS). The Chained Lin-Kernighan
heuristic does exactly that. It kicks a solution out the basin of attraction of its
local optimum by a non-sequential move called the double bridge. The double
bridge is an exchange of 4 edges such that a Lin-Kernighan search cannot find
the set of flips needed to undo the exchanged edges. To date the Chained Lin-
Kernighan heuristic is still one of the best approaches for very large data sets
(n > 25.000.000) [10].

One rather effective implementation of this LK heuristic is the one by Hels-
gaun, abbreviated as LKH [22]. LKH has various optimizations that speed up
the algorithm as well as some significant changes that alter the structure of the
algorithm. Instead of using the 2-opt exchange as base move it uses a 5-opt
exchange, considering 10 edges at the same time. One other change is that
LKH only considers promising edges to swap. Promising edges are those that
are likely to be found in the optimal solution. It finds these edges by a measure
called α-measure which is defined as the distance to the corresponding minimal
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1-tree, a spanning tree with one additional edge. A minimal 1-tree has been
empirically proven to contain between 70-80% of the edges of an optimal tour
[22]. LKH held the record for multiple TSP instances and already found the
global optimum of pla85900 before Applegate et al. did but in considerable less
time [1].

3.2 Genetic Algorithms and Permutation Crossover

Although early genetic algorithms for the TSP were not successful [10], relatively
new genetic algorithms with permutation crossovers like EAX and GPX give
comparative results with Chained Lin-Kernighan heuristic and LKH [44, 58].

An important aspect of a genetic algorithm is its recombination operator:
its crossover. Finding a good crossover for permutations is not trivial. Us-
ing a traditional crossover like 1-point or uniform crossover is not an option
(Figure 3.2).

Figure 4: Example of where 1-point crossover results in an invalid solution

In the last 30 years numerous crossover operators were defined for the permu-
tation representation of the TSP. Different crossovers focus on different aspects
of the problem. Some value absolute position, like cycle crossover (CX), position
crossover (PX), partially-mapped crossover (PMX) and to some extent order
crossover (OX). Other crossovers value relative order, like maximal preservative
crossover (MPX) and OX. The last group values adjacency information, like edge
recombination crossover (ERX), partition crossover (PX), generalized partition
crossover (GPX) and edges assembly crossover (EAX). Adjacency information
and relative order are important information for TSP but absolute position is not
[27]. In general for the TSP problem it holds that CX < PMX < OX < ERX
[49, 60].

In this section I would like to discuss crossovers that have been proposed for
TSP. First some that are outperformed by other methods but are still relevant
since they might be useful for TTP and occur in the TTP literature. At last I
will introduce some that are effective and can compete with the state-of-the-art
heuristics for TSP.

3.2.1 Cycle Crossover (CX)

The cycle crossover was proposed by Oliver, Smith, and Holland [49]. It works
the following way: First cycles are constructed for both parents. To create a
cycle, start at a random city c of the first parent P1 that is currently not in

12



Figure 5: Example of two cycles (left) and a cycle crossover (right)

any cycle. The next city will be chosen to be at the position of c at the second
parent P2. Repeat this until you encounter the initial city, creating a cycle.

The offspring only inherits all or none of the nodes of a cycle belonging to
the same parent. The city at every position of the offspring of CX corresponds
to either P1 or P2. CX correspond to doing uniform crossover on the cycles.

The cycle crossover preserves the absolute position of the two parents, rela-
tive order only within a cycle and adjacency information only by accident.

3.2.2 Order Crossover (OX)

Figure 6: Example of a order crossover

The order crossover was first introduced by Davis [12]. It works the following
way: first a segment is copied from one parent to the offspring. This segment is
defined as the cities between two randomly determined crossover points. Then
the remaining cities are added after the second crossover point. They are added
in the order they appear in the other parent starting from the second crossover
point.

The order crossover preservers the absolute position, relative order and ad-
jacency information of the copied segment but only the relative order of the
other elements.
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3.2.3 Partially-Mapped Crossover (PMX)

Figure 7: Example of a mapping between parent (left) and a partially-mapped
crossover (right)

Partially-mapped crossover was introduced by Goldberg, Lingle, et al. [17].
It works the following way: First a segment is copied from one parent (same as
in OX). Then the remaining positions are copied from the other parent. This
results in duplicate cities. In order to repair this the mapping between nodes
of the parents is used. If the city is still duplicate the mapping is applied again
until the city is unique in tour.

3.2.4 Maximal Preservative Crossover (MPX)

Figure 8: Example of a maximal preservative crossover

The maximal preservative crossover was introduced by Muhlenbein [42] and
works the following way: first a segment is copied from one parent to the front
of the tour. After the segment is copied, cities are added from the other parent
in the order they appear.

The segment was originally defined as the cities between two randomly de-
termined crossover points with a restriction that the segment is greater than 10
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but smaller than n
2 [27]. Another study found that using a fixed length of 1

3
gave better results [34]. The relative position and adjacency information of one
parent is preserved while only the relative order of the other parent is inherited.
MPX has good results compared to other classical permutation crossovers in
combination with a local search [67].

3.2.5 Crossover with random keys

Figure 9: Example of a crossover with random keys

Another way to do crossover on two permutations is by using a random keys
encoding instead of a direct path encoding. Representing the permutation as
a list of random keys was first proposed by Bean [4]. First a list on random
numbers is created then the list is sorted and every city is assigned to a number
on the list corresponding to the relative order of the permutation. Applying
traditional crossover operators on the random key encoding will always result
in a valid permutation. In Figure 9 I have used a two-point crossover.

3.2.6 Edge Recombination Crossover (ERX)

The genetic edges recombination crossover was introduced by Whitley and
Starkweather [69] and works in the following way: First an edge map is cre-
ated containing adjecency information of parents. Then the current city c is
chosen at random. All occurrences of c are removed from the edge map. The
next value of c is chosen from the available adjacent city. If there is no adjacent
city then a random unvisited city will be picked.

When picking the next city, the ones with the fewest entries gets priority to
ensure cities do not become isolated. In general we want to introduce the least
number of new edges. Starkweather et al. [60] made an enhancement to ERX
by also prioritizing edges that are present in both parents.

The ERX preserves the adjacency information of both parents but the rela-
tive order can be disrupted since ERX can reverse the direction.
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3.2.7 Edge-Assembly Crossover (EAX)

A really effective crossover, the edge-assembly crossover, was proposed by Na-
gata [43]. The procedure involves finding AB-cycles. AB-cycles are constructed
from the two parents, which Nagata names Tour-A and Tour-B. An AB-cycle is
a cycle consisting of alternating edges of Tour-A and Tour-B. EAX is performed
the following way:

1. Construct graph Gab by merging tour-A and tour-B
2. Divide the edges in Gab into AB-cycles
3. Construct an E-set by selecting cycles according to a given rule
4. Generate an intermediate solution by transforming Tour-A. Remove edges

from Tour-A which occur in the E-set and add the edges from tour-B in
the E-set.

5. Connect the subtours heuristically

Figure 10 can give the much needed intuition. Selecting an E-set can either
be done by selecting one cycle at random, in which case the offspring is similar
to one of its parents or by selecting multiple AB-cycles and in that case the
offspring inherits a roughly equal amount of edges from Tour-A and Tour-B.

EAX is one of the most successful tour-finding procedures finding. It can
find good solutions even without the use of a local search procedure like LK
[10].

3.2.8 (Generalized) Partition Crossover ((G)PX)

The partition crossover is a relatively new crossover operator introduced by
Whitley, Hains, and Howe [67]. It creates offspring by only using edges present
in both parents. It does this by combining the two parents and merging common
edges. After which it tries to find a cut of cost two (It tries to partition N in
two sets, S1 and S2, such that there are only 2 edges going from S1 to S2). The
offspring inherits all common edges. The PX preserves adjacency information
since the offspring is created using only edges present in both parents.

When partition crossover is applied to parents that are local optima, the
offspring is usually also a local optimum and in 50% of the cases of applying the
crossover the offspring has an improved fitness [67]. Only inheriting edges from
parents and never introducing new edges also has its downside. If edges from
the global optimum are not present in the population then PX alone can never
find the global optimum.

Whitley, Hains, and Howe [66] realized that when there are multiple parti-
tions in a graph there are also multiple offspring possible. If there are k partition
components then there are 2k−2 distinct offspring. The TSP objective function
is of such a nature that you can greedily construct the best possible offspring in
O(n). This procedure is called the generalized partition crossover (GPX).

GPX suffers from the same problem PX has, edges are never introduced.
Sanches, Whitley, and Tinós [58] tried to solve this by combining GPX which
is highly exploitative with EAX which is highly explorative. Empirical results

16



Figure 10: Example of an edge-assembly crossover. Red edges are from Tour-A,
blue edges from Tour-B and green edges are foreign.

demonstrate that combining the two can lead to better results than applying
only one of them.

3.2.9 TSP as Subproblem of TTP

As mentioned before the traveling salesman problem is part of the traveling
thief problem. In fact if no items are picked up or the renting rate R is set to
an extremely high value then the subproblem becomes TSP.

One major difference is that not only distance between cities counts towards
the objective function but that the total travel time of the whole tour is impor-
tant. Travel time depends on the speed of the thief and thus on the items that
are picked up. It also depends on what order they are picked up. In general
it is a good idea to pick up heavy items at the end of the tour and if heavy
items are pick up visit the corresponding cities at the end of the tour. Another
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Figure 11: Example of a generalized partition crossover

difference between TSP and TTP is that there exists an initial city. Therefore
while relative order and absolute position might not play a roll in TSP, this is
important for TTP.

Using travel time instead of distance has another downside: small changes
effect the whole tour and thus incremental fitness evaluation is not possible.
This is a major downside since it multiplies the time complexity of almost all
TSP heuristics by a factor O(n). This also implies that algorithms, for example
LK, and operators, for example EAX or GPX, aren’t trivially translated to TTP.
LK makes decisions based on edge length and EAX recombines partial solutions
in a greedy way. The question remains if those recombination operators can be
used efficiently and effectively.

3.3 Binary Knapsack Problem

The knapsack problem is a popular optimization problem which often occurs as
a subproblem in algorithmic approaches that solve real world problems [59]. In
the knapsack problem, one tries to find the set of items with the most combined
profit while respecting the capacity constrain. More formally, given m items
with weight wi and profit pi and capacity of the knapsack C. Let xi be the
decision variable that is 1 when the item is included and 0 otherwise. The
knapsack problem can be formulated as an ILP in the following way:

maximize

m∑
i=1

pixi
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subject to

m∑
i=1

wixi ≤ C

xi ∈ {0, 1}

The special case of knapsack where pi = wi is called the subset sum prob-
lem. Knapsack is NP-Hard in the weak sense meaning that although there
doesn’t exist a polynomial algorithm to solve knapsack, there does exist a
pseudo-polynomial algorithm. Most of the carefully constructed hard knapsack
problems can be solved with Dynamic Programming in milliseconds [52].

Dantzig [11] introduced a procedure to get a good solution by simply sorting
the items on there profit/weight ratio such that:

pj
wj
≥ pi+1

wj+1
∀i ∈ {1, ...,m− 1}

and greedily adding them in this order to the knapsack. The first item that
cannot be included in the knapsack is called the break item. Items added to
the knapsack greedily give an optimal solution to the continuous knapsack and
a pretty good solution to the binary knapsack problem. The solution to the
continuous knapsack can also be used as an upper bound to the binary knapsack
problem.

3.3.1 Exact Method

Successful knapsack algorithms are usual based on two approaches, branch-
and-bound and dynamic programming [32]. Most of these use the Dantzig
integer solution as initial solution or use an upper bound of the just mentioned
continuous solution. Tighter bounds are found by calculating the maximum
cardinality. Additional speedups can be achieved by multiplying the coefficients.

One way of solving knapsack is with core algorithms that only consider
interesting items called the core. The core is defined as the set of items around
the break item. All items with a ratio higher than all core items are included in
the knapsack and all items with a ratio smaller than all core items are excluded.
If the core is chosen correctly this solves the problem to optimality and if not
it can be used as an upper bound. Choosing the correct core can be difficult.
Pisinger [51, 50] solves this by finding the correct core on the fly by iteratively
adding items to the core or removing them from the core. The core itself can
either be solved with a ILP or with dynamic programming.

3.4 Hardness of an Instance

Most of the knapsack instances studied in the literature are artificially generated.
The hardness of a knapsack instance in part depends on the chosen correlation
between the profit and the weight. An instance where the profit and weight are
chosen independently are called uncorrelated and are easy to solve [32]. This
comes from the fact that the upper bounds can easily identify which item won’t
contribute to an optimal solution. Instances where the profit highly depends on
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the weight, pi = wj + ε are much harder to solve. Two observations by Pisinger
[52] why they are harder: 1) There is a large gap between the continuous and
integer solution of the problem. 2) For any small interval of ordered items there
is a limited variation in weights making to difficult to fill up the knapsack to
maximal capacity.

Using higher coefficients will also increase the computation time for dynamic
programming and Martello, Pisinger, and Toth [32] suggest that instances with
an exponentially growing coefficient will remain hard to solve due to the NP-
hardness of the problem.

3.5 Knapsack as Subproblem of TTP

Knapsack is a subproblem of TTP. If the renting rate R or the distances between
cities are set to zero then TTP becomes knapsack.

The major difference between knapsack and knapsack in TTP is that the
decision to pick up an item doesn’t only depend on the weight and profit but
also on the total traveling time. This makes the property of weight-profit ratio
far less important than in the normal knapsack problem which is key to almost
all efficient knapsack algorithms.

The gain of an item depends on the tour but also depends on the status
of other items. The situation in which the tour is kept fixed is a problem on
its own called Packing While Traveling (PWT) [54]. Polyakovskiy and Neu-
mann [55] solve PWT by first using a pre-processing scheme that decreases
the amount of items by directly including or discarding certain items. Then
they solve the reduced instances with either one of two exact approaches, one
using constraint programming with the branch-and-cut method and one using
mixed-integer programming.

Neumann et al. [45] later proposed a more efficient exact approach with
dynamic programming that solves PWT in pseudo-polynomial time. In the
same paper they proposed a fully polynomial time approximation scheme for a
variant of PWT.

Early attempts to translated these results can back to TTP where made [16]
and it remains interesting to see if the dynamic programming of Neumann et al.
[45] can be used as part of an algorithm to solve TTP.
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4 Traveling Thief Problem

4.1 Origin

In their original paper Bonyadi, Michalewicz, and Barone [7] propose two prob-
lem variants of the traveling thief problem, TTP1 and TTP2. TTP2 is a bi-
objective optimization problem. The two objectives are: minimize the total
travel time and maximize the profit with an additional feature that the value of
an item drops over time. This variant received little attention in the literature.

TTP1 is the variant that is studied most in the literature and is also the
subject of this thesis. It is important to note that the definition of TTP1 is
slightly different from the commonly used TTP definition. In the original paper
the thief could pick the same item at different locations while most research now
focuses on the variant of Polyakovskiy et al. [56] in which items are limited to
only one city. See definition in Section 1.1.

4.2 Difficulty of the Problem

Simply putting two subproblems together with an interdependence does not
necessarily lead to an interesting or hard problem but there is ample evidence
that suggests it is indeed hard to find a good solution for instances of TTP:

• Bonyadi, Michalewicz, and Barone [7] showed in the original paper that a
global optimum to one of the two subproblems is not necessarily a global
optimum of the whole problem. Indeed for some instances solutions with
much longer tours are found to have better fitness values than those that
have a tour that lies closer to TSP-optimal solutions [29, 41, 63].

• Mei, Li, and Yao [37] investigated the interdependence between the two
subproblems and stated that the non-linear interdependence of the sub-
problems makes it difficult to decompose the problem into independent
subproblems, if not impossible.

• El Yafrani and Ahiod [13] showed that it is impossible to recover the ob-
jective value of a mutated solution in a constant time. The mutations they
used where 2-opt and BitFlip. Therefore incremental fitness evaluation
is not possible and the use of local search is much more computational
expensive than for example with TSP.

The fact that incremental fitness evaluation is not possible makes the prob-
lem time consuming to solve even the smallest of instances. The fitness evalu-
ation for TTP is O(n+m). When only the tour changes but the packing plan
remains the same the fitness evaluation can be improved to O(n) by storing the
total profit and weight. When the packing plan remains the same for each city
these totals do not change [36].
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4.3 Benchmark

Polyakovskiy et al. [56] provided a benchmark suite in order to study TTP.
The benchmark is build upon instances of the TSP library, TSPLIB [57]. Only
TSP instances where the distance between two cities is defined as the euclidean
distance are considered. A TSP instance from the TSPLIB specifies the amount
of cities and the distances between them. In order to turn a TSP instance into a
TTP instance a few things need to be done. Items need to be generated, items
need to be assigned to cities and the knapsack capacity and the renting rate
need to be set.

In this section I will explain how these instances are generated and I included
some critical remark about the way they are generated. I believe that there
is still room for improvement regarding these benchmark instances for it to
represent the full potential of the hardness of the traveling thief problem.

4.3.1 Knapsack Type

As mentioned before the correlation between weight and value of the items can
decide the complexity of a knapsack problem [31]. Therefore Polyakovskiy et al.
chose to have three different KP types: uncorrelated, uncorrelated with similar
weights and bounded strongly correlated. The fact that the profit weight ratios
are close to each other with strongly correlated items makes it hard to solve
(Section 3.4).

However what is hard to solve for the knapsack problem is not necessarily
hard for TTP. In TTP this profit weight ratio is of less importance since the
contribution towards the objective function does not solely dependent on the
profit but also on the distances of cities. We can sort items according to a ratio
dependent on profit and weight and distance. This is done by almost all current
TTP heuristics in the form of a greedy packing heuristic (Section 4.4.1).

It would be interesting to also have instances where items are generated to
have a strong correlation between profit and weight and distances. I predict
these instances are much harder to solve since the ordering contains less in-
formation as is the case for strongly correlated instances of normal knapsack
problems.

4.3.2 Item Distribution and Capacity Constrain

Every city of a problem instance gets a constant amount of items depending on
the item factor. Every instance has an item factor Fi ∈ {1, 3, 5, 10}.

This is an interesting choice made by the authors because one could imagine
that non-uniform distribution of items over the cities would lead to interesting
examples. Simply varying the amount of items that a city gets might not lead
to something interesting besides more decision variables. In fact it might even
lead to less interesting problems since a higher percentage of cities have items
with a good profit weight ratio. In other words, if there aren’t any cities which
deserve priority then the order in which cities are visited might not matter
that much for the best packing plan. In turn this makes the subproblems less
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dependent on each other. This is just speculation for now but it seems evident
the interdependence chances for incredible high item factors.

The capacity is set as a fraction of the total weight, where the fraction is
chosen from the set { 1

11 ,
2
11 , ...,

10
11}. Resulting in 10 different capacity categories.

4.3.3 Renting Rate R

As mentioned before the value of the renting rate R is crucial for the interdepen-
dence of the problem. It must be chosen in such a way that both the profit of an
item and the travel time contribute an equal amount to the objective function.
The contribution towards the objective function should be roughly the same as
to ensure that one does not dominate the other. This balance is enforced by
setting the renting rate as:

R =
optimal value KP

aprox. optimal value TSP

Where the optimal value of the tour is approximated by a solution found via
the Chained Lin-Kernighan heuristic.

The renting rate is a vital aspect in how hard the problem is. Wu, Polyakovskiy,
and Neumann [70] studied the effect of the renting rate of the unconstrained
packing while traveling problem. They looked at ranges of renting rates in which
the decision of picking up an item is non-trivial. Non-trivial here means that it
is not the case that is always profitable to pick up a certain item (or not). More
general, the renting rate decides what amount of influence the profit of items or
distance traveled has on the objective function. Polyakovskiy et al. [56] choose
to set R to a specif value dependent on CLK tour and the optimal packing plan.
However by not varying R, the instances or some items of those instances might
become trivial. Moreover defining the fitness function as a solution found by
CLK could in itself create a bias towards similar solutions found by CLK which
is a common practice in literature [13, 14, 16, 36].

4.3.4 The Generated Benchmark

The benchmark consists of 9720 different TTP instances. Build on 81 TSP
instances, with 3 KP types, 4 item factors and 10 capacity categories.

The actual benchmark published online1 weirdly enough is not created in
the same way as described. If you look at the actual benchmark instances there
are a few differences:

• They claim the knapsack items for the category bounded strongly corre-
lated are constructed the following way: The weight wik is chosen ran-
domly in the interval [1, 103]. But if you look at the data it becomes
evident that weight values as high as 4000 exists (Figure 12).

1https://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/
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• They claim the profit for the items of the knapsack type bounded strongly
correlated is set to pik = wik + 100. But in the data the profit is also
defined by adding 200, 300 and 400 to the weight (Figure 12). A little
bit sloppy but this could also influence the structure of the problem. The
items that get +400 instead of +100 are favorable.

• Items in all of the 9720 instances are created with only three different sets
of knapsack items for the three knapsack types. If this was intended they
could have just provided 3 knapsack instances and 91 TSP files instead of
9720 different files!2

Luckily this doesn’t imply that the instances have the same structure
since the decision to pick up an item depends on the tour and that differs
between instances.

Figure 12: Frequency (left) of items with a certain weight and a plot of the
item profit and weight (right) of the TTP-instance pla85900 n85899 bounded-
strongly − corr 01

4.3.5 Conclusion Benchmark

The differences between the proposed and the actual benchmark do not matter
that much, the instances are still hard and most certainly interesting but I think
it is important to know these differences exist.

Most literature about the TTP use these benchmark instances to compare
their algorithm with others and this will probably not change any time soon.
As I mentioned in the previous sections, it would be interesting to look at
instances that are not included in the benchmark. For example, those with a
ratio that have a strong correlation between profit and weight and distance,

2The only thing that would be missing is the renting rate. That needs the be specified for
the 9720 differnt instances.
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those with varying renting rate and those where items are spread over cities in
a non-uniform way.

4.4 Single Solution Algorithms

4.4.1 DH and CoSolver

Bonyadi et al. [8] provided two algorithms to solve TTP: Density-based Heuris-
tics (DH) and CoSolver. DH is a greedy packing heuristic. First the tour
is generated with Chained Lin-Kernighan heuristic [2]. After the tour is gen-
erated, DH fills the knapsack according to a given ordering. This procedure is
common for all greedy packing heuristics in the literature [56, 16, 14, 15, 41, 37,
63, 62, 29, 33] and is described in Algorithm 2. The main difference between
packing heuristics is either the order in which the items are processed or the
mechanism that includes an item into the packing plan. Some heuristics use a
fitness evaluation and others an approximate fitness evaluation.

The ordering for DH is based on a score that is calculated by:

score1(Iik) = pik −R ∗ tik

tik =
di

vmax − vmax−vmin

C ∗ wik
where Iik is the item k at city i, pik and wik are the profit and weight of item
Iik and di is the total remaining length of the tour at city i. DH is described
in Algorithm 3.

CoSolver is an algorithm that decomposes TTP into two subproblems. It
then proceeds to solve these subproblems and exchanges information between
the two subproblems. In the end the solutions of the subproblems are combined
to form a TTP-solution. How these subproblems are solved isn’t made explicit.
They state that the TSP-subproblem is solved by an exact algorithm and the
KP-subproblem is relaxed and solved by dynamic programming.

Results show that on most test instances CoSolver outperforms DH. Tests
were performed on rather small instances n ≤ 25 possibly because Cosolver
has an exact subroutine. According to the authors the fact that DH performs
worse than CoSolver confirms that considering the interdependence is benefi-
cial in solving multi-component problems.

4.4.2 SH, RLS, (1+1)-EA

Besides providing a TTP benchmark suite, Polyakovskiy et al. [56] also defined
some simple algorithms: Simple Heuristic (SH), Random Local Search (RLS)
and (1+1) Evolutionary Algorithm ((1+1)-EA).

The main difference between these algorithms is their name. They all use
the same Chained Lin-Kernighan heuristic to construct an initial tour and then
apply a greedy or local search to the packing plan. RLS and (1+1)-EA are
described in Algorithm 4. They both iteratively mutate the packing plan and
save the changes if it leads to a better solution. SH is similar to DH. The only
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difference is that DH calculates the actual increase of the addition of an item
where SH approximates this by calculating the total gain of adding an item on
an otherwise empty tour.

Algorithm 2 General approach for a greedy packing, heuristic FillSack

1: function FillSack(L) . L is a sorted list of items
2: Y ← ∅ . initial knapsack empty
3: W ← 0 . initial weight set to zero
4: k ← 1
5: while W < C ∧ k ≤ m do
6: if W + wLi

≤ C ∧ Z(Π, Y ) > Z(Π, Y ∪ {Li}) then
7: Y ← Y ∪ {Li}
8: W ←W + wLi

9: end if
10: k ← k + 1
11: end while
12: return Y
13: end function

Algorithm 3 Simple Heuristic/ Density Heuristic SH

1: function SH
2: Π← get tour with CLK
3: for every item Iik compute score1(Iik)
4: L← acquire list by sorting items according to scores
5: Y ← FillSack(L)
6: return (Π, Y )
7: end function

4.4.3 JNB and J2B

El Yafrani and Ahiod [13] proposed two hill climbing algorithms, JNB and J2B,
with two different mutation operators. JNB uses a combination of BitFlip and
a swap between consecutive cities and J2B uses a combination of BitFlip and
2-opt. The two mutations have a combined neighborhood of O(n ∗ m) and
O(n2 ∗m). This together with a fitness evaluation of O(n+m) makes a single
mutation computationally intensive resulting in a high running time for even
small instances. In part they solve this by restricting the neighborhood of 2-
opt to edges found in a Delaunay triangulation (this was previously done by
Mei, Li, and Yao [36]).

They also experimented with initial tours and concluded that using a good
TSP-tour as initial solution resulted in far better results compared to using a
random tour as initialization. They found that JNB and J2B performed better
than (1+1)-EA and RLS when it could finish within the time limit.
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Algorithm 4 Random Local Search RLS and (1+1)-EA

1: function RLS
2: Π← get tour with CLK
3: Y ← ∅ . inital knapsack empty
4: k ← 1
5: while k < 10000 do
6: In case of RLS:
7: Y ′ ← invert status of random item
8: In case of (1+1)-EA:
9: Y ′ ← invert status of each item independently with probability 1

m
10: if Z(Π, Y ) < Z(Π, Y ′) ∧ w(Y ′) ≤ C then
11: Y ← Y ′

12: end if
13: k ← k + 1
14: end while
15: return (Π, Y )
16: end function

4.4.4 S1-S5 and C1-C6

Faulkner et al. [16] provided a series of algorithms all based around their packing
heuristic that called PackingIterative. PackingIterative uses a subrou-
tine Pack. Pack is a greedy packing heuristic and adds items based on a score
that is defined in the following way:

score2(Iik, α) =
pαik

wαik × di

where pik and wik are the profit and weight of item Iik and di is the total
remaining length of the tour at city i. The exponent α changes the impact
the variables have on the score. The exponent therefore influences the order in
which items are picked up. The success of the heuristic depends on a good value
for α. Pack is described in Algorithm 5.

Algorithm 5 Packing Routing Pack

1: function Pack(Π, α)
2: for every Iik compute score2(Iik, α)
3: L← acquire list by sorting items according to scores
4: Y ←FillSack(L)
5: return Y
6: end function

Calculating the fitness score Z(Π, Y ) is computationally expensive. There-
fore Faulkner et al. only compute the fitness after multiple items are added and
backtrack if the score became worse. PackingIterative produces different
picking plans for variable values of α in order to find the best value for α. The
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exponent α starts at a certain value and after each iteration the algorithm checks
whether α should be increased or decreased. After some iterations it returns
the best packing plan found. PackingIterative is described in Algorithm 63.

In their paper, Faulkner et al. propose 11 different variants of the same al-
gorithm called S1-S5 and C1-C6. All algorithms begin with a tour Π found
by Chained Lin-Kernighan heuristic. After which the tour is kept fixed and
PackingIterative is performed on the packing plan. Depending on the vari-
ant of the algorithm, multiple local searches are performed or the algorithm is
started again. The local searches included in the paper are: BitFlip, Inser-
tion and (1+1)-EA.

They also propose an algorithm that is based on the mixed integer program-
ming procedure from Polyakovskiy and Neumann [54]. Again CLK is used to
get a tour after which the optimal packing plan is approximated with mixed
integer programming.

The variant S5 performs best on a large variety of instances and is used as
comparison for many algorithms [14, 15, 33, 64]. It is a multistart algorithm
that repeats S1. S1 performs CLK and PackingIterative without any further
local search.

Algorithm 6 Iterative Packing Routine PackIterative

1: function PackIterative(Π, α, δ,maxIterations)
2: Pl ← Pack(Π, α− δ)
3: Pm ← Pack(Π, α)
4: Pr ← Pack(Π, α+ δ)
5: i← 1
6: while i ≤ maxIterations do
7: if Z(Π, Pl) > Z(Π, Pm) ∧ Z(Π, Pl) ≥ Z(Π, Pr) then
8: Pm ← Pl
9: α← α− δ

10: else if Z(Π, Pr) > Z(Π, Pm) ∧ Z(Π, Pr) > Z(Π, Pl) then
11: Pm ← Pr
12: α← α+ δ
13: end if
14: δ ← δ

2
15: Pl ← Pack(Π, α− δ)
16: Pr ← Pack(Π, α+ δ)
17: i← i+ 1
18: end while
19: return Pm
20: end function

3This pseudocode differs slightly from the pseudocode provided by Faulkner et al. [16] in
order to remove redundancy
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4.4.5 CS2SA

In another paper by El Yafrani and Ahiod [14] two algorithms are introduced.
A single solution algorithm inspired by CoSolver called CS2SA and a popu-
lation based algorithm MA2B. I will discuss MA2B in the next section to put
it in perspective with other population based algorithms. CS2SA works the
following way: First it initializes the tour with CLK and it initializes the pack-
ing plan with greedy packing heuristic similar to the heuristic of Mei, Li, and
Yao [36]. Then it keeps trying to improve the tour by 2-opt with a reduced
neighborhood of the Delaunay triangulation. After which it tries to improve
the packing plan with simulated annealing. This process of improving tour and
then the packing plan is repeated until no improvements are made. They found
that CS2SA is competitive with S5 and MATLS and that it performed better
on instances with high knapsack capacities.

Table 1: Overview of single solution algorithms.
Algorithm Π Local Search Y Local Search Packing Heuristic

DH [8] - - DH
SH [56] - - SH
RLS [56] - Flips random bit -
(1+1)-EA [56] - Flips bit with prob 1

m
-

JNB [13] Consecutive swap BitFlip -
J2B [13] 2-opt BitFlip -
S1 [16] - - PackingIterative
S2-5,C1-C6 [16] Insertion BitFlip, (1+1)-EA PackingIterative
MIP [16] - - Approximated MIP [54]
CS2SA [14] 2-opt Simulated Annealing Heuristic from [36]

4.5 Evolutionary Algorithms

4.5.1 MA, CC and MATLS

Mei, Li, and Yao [37] proposed two population based algorithms. A cooperative
co-evolution algorithm (CC) similar to CoSolver but with population and a
memetic algorithm (MA).

CC keeps two populations containing partial solutions to the subproblems,
a population with packing plans and a population with tours. It iteratively pro-
gresses the packing plan with BitFlip, Exchange and the one-point crossover
OPX. It iteratively progresses the tour with 2-opt and order crossover OX.
In order to do a fitness evaluation for the partial solutions a collaborator from
the other population is needed. Only the k best members of a population are
considered to be a collaborator. A fitness evaluation of a partial solution is done
with all the k best members of the other population and the best evaluation of
those k members is used.

MA is a memetic algorithm that initializes the population randomly. After
which for each generation the following happens:
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1. Two members of the population are randomly chosen. P1 = (Πp1 , Yp1)
and P2 = (Πp2 , Yp2)

2. An offspring C is created by doing order crossover on the tour and two-
point crossover on the packing plan.

C = (OX(Πp1 ,Πp2), OPX(Yp1 , Yp2))

3. With a certain probability a local search is performed on C. The local
search consists of a best improvement hill climbing procedure which con-
secutively makes one improvement with one pass of 2-opt then BitFlip
and at last Exchange.

4. After a sufficient number of offspring has been created a truncation selec-
tion is performed.

They found that MA outperforms CC and claim this is because CC optimizes
the subproblems separately and MA solves the problem as a whole. Further
more they claim this illustrates the importance of considering the interdepen-
dence of the subproblems. In my opinion this difference could also be explained
by the fact that intermediate partial solutions of CC are local optima with re-
gard to 1 or 2 neighborhoods and the intermediate solutions of MA consider
3 neighborhoods. A local optima with 3 instead of 1 or 2 neighborhoods will
probably be of higher quality.

In another paper by Mei, Li, and Yao [36] they propose a computational effi-
cient version of their memetic algorithm with a two-stage local search (MATLS).
That is partly reminiscent of S5. First a population is created and initialized.
The tour is initialized with CLK or a minimal spanning tree heuristic. The pack-
ing plan is initialized by a greedy packing heuristic similar to SH. The difference
is the fitness evaluation. In MATLS it is approximated by the worst possible
and by the expected gain. The worst possible gain is the net increase of an item
where the assumption is made that items are picked up in the worse case possi-
ble. Worst case is when all items included in the knapsack are picked before the
city of the current item. The expected gain is the assumption that all previously
picked up items are picked up along the tour with an even distribution.

In each generation OX is performed on the tours after which 2-opt is done
with a reduced neighborhood by the Delaunay triangulation. The fitness evalu-
ation of TSP is used which takes constant time instead of O(n+m). For each
new member in the population the packing plan is created by the same greedy
packing heuristic I mentioned before.

In their paper they compare their algorithm to (1+1)-EA and RLS and
found they have better results.

Following up on this paper Mei et al. also experimented with evolving the
packing heuristic with genetic programming [38]. Interesting idea that had
competitive results.

4.5.2 MA2B

In the same paper where El Yafrani and Ahiod [14] introduced CS2SA they
also proposed a memetic algorithm MA2B. The population is initialized in the
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following way: First the tour is created by CLK, then a packing plan is generated
based on a heuristic of Mei, Li, and Yao [36] after which a restricted local search
is applied with maximum of 50 passes. They use the same local search as with
CS2SA.

MA2B uses the double bridge move as mutation operator and MPX as
crossover. The reasoning behind the use of MPX is that it is a disruptive
crossover. They argue that this is preferred in memetic algorithms. Preliminary
tests (not explicit in the paper) confirmed that MPX performed better than
ERX.

No crossover was directly used on the packing plan, the status of the offspring
was inferred from MPX and the packing plan. If the city containing the item is
inherited from the first parent then the state of the item is also inherited from
the first parent.

yikOffspring
=

{
yikParent1

, if city i was inherited by Parent1

yikParent2
, otherwise

They also compared their two algorithms with S5 and MATLS and concluded
that both algorithms showed competitive performance. No algorithm dominated
the others on all instances. The memetic algorithms performed better on smaller
instances and S5 and CS2SA better on larger instances. They also found that
for large instances MATLS spends the majority of the time on its initialization.
Furthermore they state that it is a little unusual that greedy algorithms perform
very well for many instances and maybe landscape study could give insight in
why this is the case. I agree with this sentiment and will investigate this in my
thesis.

4.5.3 Other Memetic Algorithms

In [29, 41, 62] rather similar memetic algorithms were proposed with as no-
table difference the crossover operator: order-based crossover [62] and partially
mapped crossover [29, 41]. Lourenço, Pereira, and Costa [29] counted the num-
ber of edges that are different between the optimal TSP tour and the tour of the
best found TTP solution. They found that in all cases but one, the difference
exceeded 50% of the edges.

4.5.4 Ant Colony Optimization

Wagner [63] proposed an algorithm that finds a TTP solution with the help
of swarm intelligence, a MAX-MIN ant colony optimization algorithm called
MMAS. Ants construct a tour choosing the next city based on a probability that
is proportional to the pheromone associated with edges between cities. After a
tour has been found, a TSP specific local search is performed, 2-opt, 2.5-opt
or 3-opt. Just like in MATLS this is a local search where the fitness evaluation
is done without considering the KP-part of TTP. Only distances between cities
are considered. After a tour has been established a packing plan is constructed
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Table 2: Overview of choices for population based algorithm. “LS TSP-
evaluation” means that they used a local search with a TSP specific fitness
evaluation
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CC [37] OX OPX Yes Yes Yes - - - -
MA [37] OX OPX Yes Yes Yes - - - -
MATLS [36] OX - Yes - - Yes - CLK Yes
MA2B [14] MPX - - - Yes Yes Yes CLK -
MCGA [62] OBX 3PX Yes - Yes Yes Yes CLK -
EA [29] PMX - - - - Yes Yes - -
Hybrid [41] PMX - Yes - Yes Yes Yes NNH -
MMAS [63] - - Yes - - Yes - - Yes

using PackIterative from Faulkner et al. [16]. As an optional step local search
is performed that does consider the total fitness function: (1+1)-EA, one pass
of Insertion and one pass of BitFlip. After which the pheromone trails are
updated based on how the ants perform. Stepwise4 this would look like this:

1. Construct tour using ants.
2. Perform TSP-specific local search on tours: 2-opt, 2.5-opt or 3-opt.
3. For every tour create packing plan with PackIterative.
4. Perform TTP-specific local search on tour: (1+1)-EA, one pass of In-

sertion and one pass of BitFlip.
5. Update pheromone trail.

Wagner shows that his ant colony optimization algorithm picks longer tours
than the approximate algorithms S1-5 and C1-6. Longer tours but with better
results. MMAS outperforms most current approaches on instances with up to
250 cities and 2000 items [63, 64]. Wagner claims this is because it focuses less
than existing approaches on good TSP tours, but more on good TTP tours. But
this is not apparent from his approach at all. Actually, together with MATLS
they are the only population based approaches that have TSP-specific local
search (Table 2). I suspect the good results are due to the fact their tour is not
generated by CLK as is the case with most single solution algorithms. MMAS
generates many different “weaker” local optima that are not found by CLK.
Those other optima that CLK can’t find might provide better tours and thus
MMAS has better results.

4The order of steps is different in Wagner’s paper [63]. In his paper step 2 and 3 are
reversed but this is not the control flow of the source code available online https://cs.

adelaide.edu.au/~optlog/research/ttp/2016ants.zip.
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4.5.5 Hyper Heuritics

One interesting approach to solve TTP is with a hyper-heuristic. El Yafrani
et al. [15] have done this and a similar paper by Martins et al. [33]. A popula-
tion of encodings is kept where each individual of the population represents a
combination of multiple low level heuristics (LLH). The LLH’s are all applied
in succession after an initial tour via CLK and a packing plan via PackIter-
ative is created. The LLH’s are either local searches or disruptive operators.
The different local searches are: BitFlip, simulated annealing [14] on packing
plan and 2-opt. The disruptive operators are: random 2-opt swap, the double
bridge move and bit flips on a percentage of items.

El Yafrani et al. [15] use genetic programming and Martins et al. [33] sample
new solutions using an estimation of distribution algorithm. Martins et al. also
approximates the fitness evaluation with a radial basis function network. Their
algorithms are competitive with S5, MMAS and MA2B.

4.6 Exact Approach

Wu et al. [71] proposed some exact approaches, one with dynamic programming,
one with branch and bound search and one with constraint programming. Given
the hardness of the problem these algorithms’ time complexity grows exponen-
tially with the number of cities. On small samples (n ≤ 20) the optimal solution
can give insight in how algorithms perform. They found that PackingIter-
ative of S5 could be still be a little bit improved by using an exact packing
approach and they found that MA2B has an outstanding performance across
all instances with a high reliability.

4.7 Algorithm Selection and Comparison

Wagner et al. [64] studied the applicability of algorithm selection to the trav-
eling thief problem and among other things compared the performance of 21
algorithms on all 9720 instances for 10 minutes! The algorithms they compared
were: SH, DH, (1+1)-EA, RLS, S1-S5, C1-S6, MALTS, CS2SA and four
different configurations of MMAS. The results are available online5 and can
serve as a great tool for comparison.

On average S5 had the best ratio to best found solution. It is interesting to
note however the compared algorithms are really similar. All algorithms except
(1+1)-EA used a greedy packing heuristic and all algorithms except MMAS
used CLK as (initial) tour. They also found that CS2SA found best solutions
on a number of instances while having the worst performance on average.

Unfortunately from the source code6 it becomes evident that El Yafrani and
Ahiod [14] have made a rounding error in the fitness function. The distance
between cities were rounded down instead of up. This makes a huge difference

5https://cs.adelaide.edu.au/~optlog/research/ttp/160624-21algs-scmatls-1run.

csv
6https://github.com/yafrani/ttplab
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on some TTP instances where the x- and y-coordinates have small integer val-
ues. Therefore the results and conclusions in their paper and others [64] are
unreliable. El Yafrani and Ahiod are not the only ones to make this mistake, I
found a similar error with the work of Vieira et al.7 [62] and Moeini, Schermer,
and Wendt 8 [41].

4.8 Conclusions

4.8.1 Trends

In the four years since the problem has been formulated a number of algorithms
have been proposed. Although some strategies probably had different goals in
mind, there are a few trends to be seen:

• Use of TSP-specific local search with neighborhood reduction strategies.
• Use of a greedy packing heuristic to generated a (initial) packing plan.
• Use of local search 2-opt, Insertion, BitFlip and Exchange.
• Use of memetic algorithms with OX, PMX or MPX as crossover for the

tour.

For the trends there is no real justification for using these operators/strategies
besides some comparison between different algorithms or previous findings from
the TSP literature.

4.8.2 Interdependence

Some papers claim that one of their algorithms performs better since it con-
siders the interdependence or TTP-specific tours more than other algorithms.
CoSolver is better than DH, MA is better than CA and MMAS performs
better than S1-S5, C1-C6 and MATLS for small instances. The authors of
these papers claim this is the case because their algorithm considers impor-
tant TTP-aspects while others don’t. These claims however are only backed
up by their good performance relative to others and not by any other analytic
argument or other empirical study.

What does it mean for an algorithm to consider the interdependence of TTP?
The interdependence, to put it simple, is the fact that if you choose certain items
then in turn cities containing these items will likely be at the end of the tour.
If you have cities at the end of the tour then the items belonging to these cities
are more likely to be in the packing plan since the travel time to the end of the
tour is shorter.

It seems that the greedy packing heuristic is a strategy that takes into con-
sideration the tour aspects when forming the packing plan. Using the fitness
evaluation could be seen as considering the interdependence of TTP. But these
two things are present in almost all proposed algorithms. CoSolver, MA and

7https://github.com/DanielKneipp/GeneticAlgorithmTravelingThiefProblem/blob/

master/ttp/city.cpp
8In email-correspondence with Moeini, he confirmed there was a rounding error in the

source code.
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MMAS obviously do some things better, hence the better fitness, but the cause
of these differences are attributed to considering interdependence or solving
TTP as a whole without much justification.

4.8.3 Focus on Large Instances

Some papers [8, 37, 71] have focused on small size instances (n ≤ 100), some
papers [13, 15, 16, 33] focus on mid size instances (n ≤ 1000) and some papers
[14, 16, 36, 56, 64] focus on large size instances (n ≤ 85900). I think its better
to focus on small or mid size instances because of two reasons:

• The motivation behind the introduction of TTP was to close the gap
between real-world problems and research [7]. Bonyadi, Michalewicz, and
Barone argue that one difference is how complexity is defined. Complexity
in benchmark problems refer to the scale of the problem. The complex-
ity of real-world problems on the other hand get their complexity from
the interdependence between their components rather than number of ob-
jectives or the size of the problem. It therefore seems odd that a lot of
research has focused on large instances given the motivation behind the
TTP.

• Trying to solve large instances that are already hard for TSP with a fitness
evaluation function that takes O(n) times as long seems really hopeful.
That is even without considering the extra complexity from the knap-
sack problem and the interdependence between the two. If this could be
achieved, this could probably be carried over to TSP but my guess is
that improving state-of-the-art TSP algorithms is really hard. Therefore
I think it would be more interesting to understand how hard the problem
is and what this interdependence actually adds to the complexity. This
instead of cutting corners with Delaunay triangulation, approximate fit-
ness evaluation [14, 16, 38] or solving the two subproblems independently
[16, 36, 56] in order to get any answer for really large instances.
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5 Fitness Landscape Analysis

The effectiveness of using heuristic optimization for NP-Hard combinatorial op-
timization problems can be shown empirically. Either by producing good solu-
tions or by comparing them to other approaches. A much harder problem is to
show why and how heuristic optimization works [39, 40].

Fitness landscape analysis tries to answer these questions or at least gives
us some insight in how hard the problem is, how solutions are related, how
operators transform solutions and which parameters are best suited for the
problem at hand.

According to Jones et al. [24], a landscape is a way to look at some aspects
of a complex process. Landscape therefore is a metaphor, a tool, that can help
us understand aspects of the complex process of finding the optimal solution in
a discrete search space. Visualizing the search space as a 3D landscape where
the objective is finding the highest peak is appealing. Jones et al. argue that
simple properties of a fitness landscape rely heavily on physical three dimen-
sional landscapes like peaks, ridges and valleys. Although the metaphor can be
useful it could also be harmful as it is not clear if these properties scale up to
search spaces with higher dimensions.

Nonetheless fitness landscape analysis has been proven to be a valuable tool
and in this chapter I want to discuss some fitness analysis I tend to use to
understand various operators and strategies to solve TTP.

5.1 Formal Definition Fitness Landscape

A fitness landscape is a tuple (X, f, d). Where X is a set containing all possible
solutions, the search space. f : X → R is a function from solutions ∈ X to a
fitness value ∈ R. And the third element is a notion of how they are related.
For this we use a distance measure, d : X ×X → R. d can be defined with the
neighborhood of a particular operator (2-opt for example) or as the distances
between two representations of solutions (hamming distance for example). It
is important to note that this implies that every operator, every representation
and every problem instance has its own fitness landscape [24, 53].

A fitness landscape can also be seen as a graph G = (X,E) where the nodes
are equal to the search space, X, and the edges are defined as {〈x, y〉 ∈ X×X |
d(x, y) = dmin} where dmin is the minimal distance between two solutions [39].

5.2 Ruggedness, Autocorrelation and Correlation Length

One important property seems to be the ruggedness of a landscape. The more
rugged a landscape is, the harder it is to navigate. Autocorrelation is a measure
first investigated by Weinberger [65] and is used to quantify the ruggedness of
a landscape. Although this measure can be useful, it only gives a basic view of
the landscape and cannot always predict the hardness of a problem [24].

Autocorrelation measures the correlation of fitness between neighboring so-
lutions. One way to measure it is by repeatedly picking a random point x ∈ X
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and measure the correlation between all neighboring solutions. Another way to
measure it is by doing a random walk through the landscape and calculate the
correlation between succeeding solutions [40].

To calculate the autocorrelation with a random walk:

• Start at a random solution x1 ∈ X, a random point on the landscape

• Make a random walk [x1, ..., xn] with regard to some neighborhood

• Calculate R(s) with regard to some step size s

R(s) ≈ 1

σ2
f (n− s)

n−s∑
i=1

(f(xi)− f)(f(xi+s)− f)

Related to autocorrelation is the correlation length l, the largest step size for
which there is correlation and is defined as l = − 1

ln(|R(1)|) . High correlation and

a long correlation length indicate a smooth landscape where a low correlation
and a short correlation length indicate a rugged landscape [39].

Merz [39] proposed another interesting method. Instead of doing a random
walk, one could also walk towards another optima. The intermediate values of
the walk between local optima could be better than on a random walk. This
could indicate that recombination can be very effective. This only holds for
recombinations and mutations that are similar. For example: for BitFlip and 1-
point crossover this makes some sense but not for 2-opt and MPX. All children
of the 1-point crossover can be reached from a short random path from one
parent to the other. 2-opt and MPX are too dissimilar, one reverses subtours
and the other injects subtours.

5.3 Crossover Correlation

The crossover correlation coefficient is a measure that tries to capture the rela-
tion between parent and child of a certain crossover in term of their fitness. It
was first introduced by Manderick [30] and is defined the following way:

ρop(fp, fc) =
Cov(fp, fc)

σ(fp)σ(fc)

where fp and fc are fitness of the parent and child. A higher correlation
coefficient suggests better preservation of information during inheritance [34].

Mathias and Whitley [34] used this measure for different TSP crossovers in
three different scenarios. One without local search, one where 2-opt is applied
to the initial population and one where 2-opt is applied to the initial popu-
lation and produced offspring. They found that ERX and MPX have similar
correlations in the first case and MPX has higher correlations when 2-opt was
applied in the other cases.
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5.4 Distance to Global Optimum

The fitness distance correlation coefficient (FDC) was proposed by Jones and
Forrest [25] and can be used to measure the difficulty of a problem for certain
metaheuristics. A high fitness distance correlation coefficient indicates that an
optima with a higher fitness is more likely near the global optima than optima
with a lower fitness. These properties are useful for local search. For example,
if a landscape has a high correlation then iterated local search can navigate
it quite easily since it iteratively moves towards better optima and hopefully
towards the global optimum.

The fitness distance correlation can be estimated by:

FDC(f, d) ≈ 1

σ(f)σ(d)

1

n

n∑
i=1

(fi − f)(dopti − dopt)

Where dopt is the distance to the global optimum or a global optimum in
case there are many. According to Jones and Forrest the problems they studied
could be grouped into roughly three classes:

• FDC(f, d) ≥ 0.15 misleading landscape

• −0.15 ≤ FDC(f, d) ≤ 0.15 difficult landscape

• FDC(f, d) ≤ −0.15 straightforward landscape

For TSP there exists a correlation between the fitness of local optima and
the distance to the global optimum [61]. But similar to autocorrelation this
cannot always predict a problem hardness [35] but it can give some insight and
the structure of the relationship between fitness and distance can be revealed
by a scatter plot [25].

5.5 Basin of Attraction

All optima have a basin of attraction. Knowing what the basin of attraction
is can be very useful for iterated local search and memetic algorithms. The
perturbation, mutation and crossover should be designed such that it can escape
the basin of attraction [39] but not jump so far out of the basin that it becomes
unrelated to the previous optimum.

The larger the basin of attraction, the higher the probability that a local
search can find it. This suggests that a preferable property of a fitness landscape
would be that local optima with a low fitness should have a smaller basin of
attraction than local optima with high fitness [61]. There are several ways to
measure this. Theoretically you could locate all points in the basin of attraction
of a local optimum xl and calculate the sum of probability that a point in the
basin of attraction actually goes to xl. For most landscapes locating all points
in the basin of attraction of a particular optimum is impractical. One way
to approximate it would be to generate a large number of local optima and
calculate the probability that one is found.
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There is also a nice alternative method design for landscapes which have a
high ruggedness and therefore a small basin of attraction. Reversed hill climb-
ing was introduced by Jones, Rawlins, et al. [26] and can calculate the exact
probability that hill climbing will attain some point in a landscape. They do
this with a hill climber in the reverse direction, going towards worse solutions.
All the solutions that can be reached by a reversed hill climber are in the basin
of attraction of the starting position. The exact probability that a local op-
timum will be visited can be calculated. The running time of this algorithm
corresponds to the size of the basin of attraction and is therefore unfeasible for
a lot of problems.

Tayarani-N and Prügel-Bennett [61] found that the number of local optima
of all TSP variants grow exponentially and fitter optima had a larger basin of
attraction. The probability of finding the global optimum with 3-opt decreases
exponentially.

5.6 Big Valley, Single-Funnel and Multi-Funnel

Supposedly the fitness landscape with respect to 2-opt for the traveling sales-
man and many other problems looks like a big valley in which good local optima
are clustered around the global optimum and optima with a good fitness are
correlated with the distances to the global optimum [6]. The gradient viewed
on a coarse level looks like a globally convex structure that leads to the global
optimum hence the name big valley [20]. In the literature a related term, single-
funnel structure is used [68]. In a single-funnel landscape there is a global struc-
ture that dominates the entire search space and causes the best local optima to
be concentrated in one region of the search space. A multi-funnel structure on
the other hand means that the fitness landscape at the scope of local optima are
organized into clusters. A particular local optimum therefore largely belongs to
a particular funnel [48]. Finding the best local optima in a funnel is readily
done with an iterated local search but escaping it is a much harder task.

Hains, Whitley, and Howe [20] found that the overall search space of TSP
indeed appears to display the big valley structure but tours with a fitness close
to the global optimum do not have this structure. Tours close to the global
optimum have a multi-funnel structure. Ochoa and Veerapen [47] expanded this
idea confirming that there indeed exists a multi-funnel landscape and not only
near the global optimum but much earlier on. Specifically in their study they
found that some instances of the TSPLIB are actually composed of subvalleys
or funnels. The funnels are of importance since they are structures of which an
iterated local search, in this case CLK, cannot escape. In order to escape such
a funnel a restart is needed or a crossover operator which is strong enough to
escape the funnel like GPX [20].

To analyze the fitness landscape Ochoa and Veerapen made a local optima
network. Nodes are local optima and edges are the starting and end optima after
a double-bridge move, the perturbation. To get these nodes and edges they run
CLK 100 times with n perturbations. This results in 100n (some duplicate)
local optima.
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The constructed graph besides being aesthetically pleasing shows that there
exits multiple funnels of large size. Sometimes these funnels do not contain the
global optimum. In [46] they found that for some problems with a multi-funnel
structure increasing the perturbation size improved the algorithm. This made
the fitness landscape smoother with less funnels and the global optimum more
accessible with CLK.
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6 Research

As mentioned in section 4.8.1 various algorithms have been proposed and there
are some trends in these algorithms. In the literature there is no real justi-
fication for using these operators/strategies besides some comparison between
different algorithms or previous findings from TSP literature. Therefore I would
like to research two things in my thesis: investigate and understand these opera-
tors/strategies and try to improve them. I would like to investigate the previous
point in part by fitness landscape analysis. My research question is:

How can the use and effect of various operators and strategies in
literature of the traveling thief problem be justified, explained and
improved?

6.1 Subquestions

To answer this question I have some related subquestions:

1. Can optimal or near optimal solutions for the packing plan be
obtained with a greedy packing strategy?

In almost all TTP literature a greedy packing heuristic is used based on
distance, weight and profit of items. I would like to research if these greedy
packing heuristics can actually find good solutions and if they can why.

2. What is the effect of using different restricted neighborhoods for
local search?

In some of the literature the neighborhood of 2-opt is reduced by only
using edges that are in the Delaunay triangulation of the graph. This
makes the neighborhood of 2-opt O(n) instead of O(n2) but how does it
effect the solution quality and how do other neighborhoods compare?

Neighborhood Reductions:

• Delaunay triangulation
• nearest neighbor
• k-quad-nearest graph

3. What are the characteristics of the fitness landscape of various
operators of traveling thief problem instances?

I would like to investigate several measures on fitness landscapes of oper-
ators of different instances.

Measures:

• Autocorrelation
• Probability to find the basin of attraction
• Fitness distance correlation coefficient

Operators:

• BitFlip
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• 2-opt
• Exchange
• Insertion

Instances:

• Benchmark [56]
• Instances where one of the subproblems is kept fixed

4. Does there exist a single (big valley) or multiple funnel structure
in instances of the TTP?

I would like to investigate how local optima are related to each other
and find out whether TTP contains a big valley or if it contains multiple
funnels. In order to do this I will collect local optima in the context of an
iterated local search and research how they are related to each other.

5. How can state-of-the-art crossover operators for TSP be used
for TTP?

Crossovers that produce good results for TSP are EAX, PX and GPX2.
They cannot directly be used for the TTP since subprocedures of these
crossovers are designed for the fitness evaluation of TSP that only uses
the distance between cities. I would like to find out if these same subpro-
cedures can be tinkered such that they can be used for the TTP.

6. How well do different crossover operators perform on TTP?

In the literature the following crossovers are used: OX, PMX and MPX.
I would like to find out how other crossover methods compare in terms
of their performance of instances. Also I would like to gain insight in the
crossover correlation with and without performing local search.

Crossovers: CX, OX, PMX, MPX, EAX, PX and GPX2.

7. How does using multistart local search, iterated local search and
genetic local search compare with state-of-the-art algorithms of
TTP?

In the end, I would like to propose a multistart local search, iterated local
search and genetic local search with the knowledge I have acquired in this
research and see how it compares to state-of-the-art of TTP.

6.2 Outline Part II

Section 7 is about the complexity improvements of BitFlip, Exchange 2-opt,
and Insertion. Section 8 is about the first subquestion. Section 9 answers the
second subquestion. Section 10 will answer the third subquestion and will also
include an investigation into multistart local search. Section 11 will answer the
fourth subquestion and will include an investigation into iterated local search.
Section 12 will answer the fifth and sixth subquestions and will include an in-
vestigation into genetic algorithms. Section 13 will answer the last subquestion.

42



In Part II the research questions are answered in part by empirical study
performed on a subset of the benchmark instances of Polyakovskiy et al. [56].
Only the instances with a small amount of cities will be used and the item factor
will be kept at 1. In part to reduce the size of studied instances, to reduce9 the
running time of the algorithms and because I think a small item factor could be
more interesting than higher item factors (see Section 4.3.2).

9This reduction is not convenient but necessary for larger instances n > 1000 it is impossi-
ble to produce a local optimum with the operators BitFlip, Exchange 2-opt, and Insertion
in a timely manner.
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Part II

7 Complexity Improvements of the Local Search

The local search procedure used in this thesis will be the following: iteratively
taking a first improving step sequentially in 2-Opt, Insertion, Bitflip and
Exchange (see section 2.1 for an explanation) until no improvement is made.

The complexity of these procedures is as follows:

Size Neighborhood Complexity Reduced Neighborhood Reduced Complexity

2-Opt O(n2) O(n2(n + m)) O(n) O(n2)
Insertion O(n2) O(n2(n + m)) no reduction O(n2)
Bitflip O(m) O(m(n + m)) no reduction no reduction

Exchange O(m2) O(m2(n + m) O(m) O(m(n + m))

How these reductions are accomplished will be explained in the following
sections.

7.1 2-Opt

The complexity of 2-Opt can be improved in two ways:

• For every city you can precalculate the total picked up value and total
picked up weight at that city [36]. This reduces the complexity of the
fitness evaluation from O(n+m) to O(n).

• With neighborhood reduction (see section 9) you can reduce the neigh-
borhood from O(n2) to O(n).

This results in a total complexity of O(n2).
An additional speedup can be accomplished by the fact that a single 2-Opt

swap only affects part of the tour. In 2-Opt a segment of the tour gets reversed.
The part in front of the segment and the part after the segment stay the same.
Therefore when doing fitness evaluation, you only have to consider the reversed
segment. On average this reduces the time by a half.

7.2 Insertion

As with 2-Opt the fitness evaluation of Insertion can also be reduced to
O(n) by precalculating the weight and profit of items in the cities. But we
can reduce complexity of the fitness evaluation even more by using incremental
fitness evaluation. Thereby considering the whole neighborhood in only O(n)
time.

The size of the neighborhood of Insertion comes from the fact that every
city O(n) can be inserted into every position of the tour O(n). A naive imple-
mentation has a time complexity of O(n2) ·O(n) = O(n3). But we can do much
better. The fitness of every possible insertion can be efficiently computed in the
following way:
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1. Place the selected city at the end of the tour
2. Calculate the fitness of this permutation O(n)
3. Swap the city with its predecessor and reevaluate the tour O(1)
4. Repeat step 3 until all possible insertion locations are evaluated O(n)

Step 3 is O(1) since only a small part of the tour changes. Swapping two
succeeding positions only alter the cost of 3 edges (see Figure 7.2).

f(Π′) = f(Π)− cost of old segment + cost of new segment

Figure 13: Using incremental fitness evaluation for Insertion. After placing city 4
at the end of the tour evaluation the tour is O(n). But for all other evaluations O(1)
time (the non-gray segment) is needed to calculated the new fitness value.

This makes the total time complexity O(n2).

7.3 Exchange

To improve the complexity of Exchange I have chosen to reduce the neighbor-
hood. Instead of trying O(m2) possible exchanges I only try promising pairs.
The pairs are created the following way:

• For every item i that is not included, create a set Si containing items j
that are included in the packing plan and have a weight equal or greater
than i. Si = {j|yj = 1 ∧ wj ≥ wi}

• From Si find the item j with the minimum loss (or maximum gain) of
fitness when the item is not included anymore. i and j form a pair and
are considered for Exchange.

Since there are only m items only O(m) exchanges are tried.
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8 Experimentation: Greedy Packing Heuristic

8.1 Introduction

In this section I will investigate greedy packing heuristics that are frequently
used in the TTP-literature. As explained in section 4.4.1 they all use a certain
ordering in which the items are added to the packing plan. Most of them also
use additional optimization to speed up the evaluation of an added item. In this
experiment I will disregard optimization and only look at the ordering of the
various packing heuristics. The focus of the section is to answer the following
research question:

Can optimal or near optimal solutions for the packing plan be
obtained with a greedy packing strategy?

The three packing orderings under investigation are:

• The Simple Heuristic (SH) from Bonyadi et al. [8] which has the same
ordering as DH from Polyakovskiy et al. [56].

score1(Iik) = pik −R · tik

tik =
di

vmax − vmax−vmin

C · wik

Where Iik is item k at city i, pik is the profit, wik is the weight, vmin and
vmax are the minimum and maximum speed, R is the renting rate and di
is the distance from city 0 to city i along the chosen tour.

• The Insertion Heuristic (IH) from Mei, Li, and Yao [36].

score2(Iik) =
pik −R · di ·∆(Iik)

wik

∆(Iik) =
1

vmax − vmax−vmin

C · wik
− 1

vmax

• Packing Iterative (PI) from Faulkner et al. [16]. Which is the most
“advanced” packing heuristic since it searches through multiple packing
orderings to find the optimal value for α.

score3(Iik, α) =
pαik

wαik × di

8.2 Experimental Setup

The tour in the experiments will be kept fixed in order to only investigate the
performance of the heuristics and not TTP as a whole. The instances under
investigation are:
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• eil51
• berlin52

• pr76
• kroA100

• bier127
• ch130

• rat195
• a280

For every TSP-instance the 3 different knapsack types and 10 capacity con-
strains ∈ {1, ..., 10} are considered. For every instance I use three different tours:
The optimal tour for TSP, the optimal tour in reversed direction and the best
TTP tour found after a number of iterations of a simple iterated local search.
In total this results in 720 instances.

To evaluate how the packing heuristics perform, I will make a comparison
between the heuristics, compare them to a simple local search and compare them
to the optimal solution. The simple local search used here only uses the oper-
ators that alter the packing plan: first improvement BitFlip and Exchange.
The optimal solution of a tour will be calculated with the use of dynamic pro-
gramming [45]. The three packing heuristics are deterministic and therefore the
experiments will not be repeated.

To analyze the heuristics I will rank the heuristics and use an approxima-
tion ratio in order to compare different instances with each other. I will also
count the number of times the heuristic produces the optimal solution and what
percentage of items have the same status as the optimal solution10.

8.3 Results

Of the three packing heuristics Packing Iterative seems to produce the best
packing plan in almost all instances (Table 3). Simple Heuristic on the other
hand produces the worst packing plans and never outperforms the other two.
Insertion Heuristic on occasion performs better than Packing Iterative.

The bad performance of Simple Heuristic can be contributed to the fact that
the ordering is only based on the approximated net gain of an item. The net
gain is the cost of the added weight (extra time it takes to travel the distance)
plus the profit of the item. Insertion Heuristic also approximates the net
gain but also divides this by the weight of the item which in turn gives a ratio.
This is a crucial aspect for a good ordering.

Remarkably, Packing Iterative finds the optimal solution almost 70%
of the time and has an average approximation ratio of 0.999. It seems that
greedy packing heuristics can produce really good results. Note however that
the success of PI could lie in the fact that it produces multiple (40 in the original
paper) packing plans.

Compared to the local search PI on average finds better results but the local
search finds the optimal solution more often. The local search seems to have
difficulty with the bounded strongly correlated knapsack type (Table 4).

To gain more insight in the ordering of the packing heuristics I visualized
them in Figure 14 & 15. Figure 15 shows that the ordering of SH does not
really provide the structure to construct the optimal solution. IH provides more

10These measures aren’t ideal. The maximum score between instances varies a lot and
can take on negative values. The percentage of items that have the same status is a distance
measure (similar to hamming distance). More about this in Section 10.3.
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Table 3: Comparing the three packing heuristics with each other and with the local
search.

# best packing plan # opt approximation ratio % item opt

SH 5 / 720 5 / 720 0.678 86.23
IH 171 / 720 126 / 720 0.975 97.26
PI 717 / 720 486 / 720 0.999 99.25
LS 546 / 720 0.993 98.88

structure and with PI the division is the most clear. This is a trend that can
be seen for all the instances under investigation (Figure 15 and for even more
see Appendix A.1).

Figure 14: A figure displaying all 90 instances of instance a280 n279. Every column
represents a single instance. Every cell represents an item which is black when the
item is included in the optimal packing plan. The cells are ordered according to PI
(in this case). If the white and black cells are completely separated this implies that
the packing heuristic returns the optimal solution.

8.3.1 Difference in Knapsack Type

Table 4 shows the performance of the heuristics on different knapsack types.
In terms of approximation ratio SH performs best with the bounded strongly

correlated type. This can be explained by the fact that there is a correlation
between profit and weight that positively complements the missing profit weight
ratio consideration of SH.

Surprisingly for the other two packing heuristics the difference in knapsack
type makes no notable difference. The approximation ratio and the frequency
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Figure 15: The performance of different packing heuristics visualized. See Figure 14
for an interpretation.

the optimum is found seems to lie really close to each other.
On the other hand the local search seems to have more trouble with the

bounded strongly correlated (BSC) type than with the other types. In less than
half of the instances the LS finds the optimal solution with BSC. For the other
types the optimal solution is found 90% of the time. A possible explanation
could be the fact that the local search makes use of Exchange. With the
two other types the differences between profit and weight ratios are greater and
therefore there are more improving exchanges possible.

8.4 Further Experiments

Packing Iterative seems to perform really well. With some further exper-
iments I want to find out why this is and whether a combination of packing
heuristic and local search can improve a solution even more.

As mentioned in previous sections the strength of PI can lie in the fact that
PI considers multiple packing plans that differ slightly. To test if this is the case
I try to achieve the same effect with Insertion Heuristic by adding a small
coefficient11 that is varied slightly in order to produce many packing plans just

11The coefficient could be added in a number of places to produce a variety of slightly
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Table 4: Difference in knapsack type. #opt is frequency that the optimal solution
is found. Fitness is the approximation ratio towards the best found fitness score. %
item is the percentage of item that has the same status as the optimal solution of the
knapsack

bounded strongly corr uncorr-similar-weights uncorr
#opt fitness %item #opt fitness %item #opt fitness %item

SH 2 / 240 0.8622 86.02 2 / 240 0.5339 85.07 1 / 240 0.6365 87.61
IH 41 / 240 0.9752 96.15 38 / 240 0.9652 97.49 47 / 240 0.9852 98.13
PI 152 / 240 0.9985 98.90 151 / 240 0.9991 99.39 165 / 240 0.9995 99.47
LS 102 / 240 0.9818 97.00 221 / 240 0.9994 99.86 223 / 240 0.9991 99.77

like PI.

score4(Iik) =
pik · α−R · di ·∆(Iik)

wik

Let us call this packing ordering Insertion Heuristic Improved (IHI).
From Table 5 it becomes apparent that IH indeed can be improved by pro-

ducing multiple packing plans with slightly different orderings and picking the
best one. The optimal solution is found three times more often. PI however
still outperforms IHI. Therefore the strength of PI lies not only in the fact
that it produces many packing plans but the whole procedure seems to perform
reasonable well.

Figure 16 shows that varying α with PI changes the packing plan. Moreover
the fitness values show an almost concave fitness function making it possible for
the uniform binary search approach of Faulkner et al. [16] to work.

Figure 16: A plot of increasing values for alpha for an instance of eil 51. The red line
indicates the fitness.

The combination of packing heuristic and local search can find the optimal
solution in almost 90% of the instances. The use of the combination is therefore
justified especially given the fact that the packing heuristic O(n log n) is far less
computationally expensive than the local search O(n2).

different packing plans. I have chosen to multiple the profit since it gave the best results.
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Table 5: Results from Insertion Heuristic Improved and the combination
of packing plans with local search

# optimum found Approximation ratio % shared with optimum
IHI 324 / 720 0.9951 98.70

PI + LS 640 / 720 0.9995 99.63
IHI + LS 610 / 720 0.9985 99.48

8.5 Conclusions

Can optimal or near optimal solutions for the packing plan be ob-
tained with a greedy packing strategy?

Most certainly, in the case that the packing heuristic does not find the op-
timum solution, it finds a near optimal solution. With a high probability the
optimal solution can be found with a packing heuristic (Packing Iterative
especially), a simple local search or a combination of the two. The relative low
computation complexity of these procedures might imply the feasibility of a two
stage algorithm12 that produces multiple tours for which it finds packing plans
with a greedy packing heuristic before evaluation.

Packing Iterative seems the best packing heuristic and the uniform bi-
nary search approach of finding the best value for α can be justified by the
‘concave’ fitness function for all possible values of alpha.

The fact that the optimal packing plan can be found with relative ease raises
some existential questions. How difficult is the TTP exactly if for any given
tour the optimal packing plan can be found with minimal computation time
and with a high reliability? This could imply that the best way to solve TTP is
by searching the tours search space and evaluating a tour by finding the optimal
solution. For instances with a low number of items (like the instances under
investigation) it is even feasible to solve them with dynamic programming.

12MMAS [63] and MATLS [36] for an example.
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9 Neighborhood Reduction Strategies

9.1 Introduction

The high cost of evaluation, size of the search space and the impossibility to
use incremental fitness evaluation makes the use of neighborhood reduction
a necessity. The local search I use has two operators that mutate the tour:
Insertion and 2-opt. The complexity of Insertion can already be reduced
(Section 7) but 2-opt cannot.

In some literature the neighborhood of 2-opt is reduced by using the De-
launay triangulation, possibly motivated by the success achieved in the TSP.
It is not evident these results hold for TTP. Indeed, for TTP local optima are
reported with longer edges and with edges that cross each other13. Therefore I
want to see how these neighborhood reductions perform and if there are other
neighborhood reductions used for TSP that can be used for TTP. In order to
answer the following research question:

What is the effect of using different restricted neighborhoods for
the 2-Opt local search?

The reduced neighborhood for 2-opt means that not all possible applications
of the 2-opt swap are considered. Only the operations that introduce edges
which are in the neighborhood of a certain node are considered.

The neighborhoods under investigation are:

• Nearest neighbor.

Every node has 4 (NN-4), 8 (NN-8) or 16 (NN-16) neighbors. With NN-
16, the neighbors of a node are the first 16 nodes that occur when sorted
on the euclidean distances between nodes.

Figure 17: The edges of a node with nearest neighborhood reduction.

• k-quadrant nearest neighbor.

Every node has 4 (QN-1), 8 (QN-2) or 16 (QN-4) neighbors. The neighbors
of a node are the first k nodes that occur in each quadrant when sorted
on the euclidean distances between nodes.

13A property in euclidean TSP is that a solution can always be improved if the tour crosses
itself. This does not hold for TTP.
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Figure 18: The edges of a node with k-quadrant nearest neighborhood reduction.

• Neighbor in a Delaunay triangulation.

Only edges found in the Delaunay triangulation (DT) are considered. An-
other practice is to use neighbors of neighbors as edges (DT2).

Figure 19: The edges of a node with Delaunay triangulation neighborhood reduction.

The 8 different neighborhoods all grow linear in the number of cities. Table 6
shows how many edges there are for each neighborhood for each instance. The
number can be lower than you might except since duplicates are omitted for
obvious reasons.

Table 6: Number of edges for each TSP-instance and each neighborhood
NN-4 NN-8 NN-16 QN-1 QN-2 QN-4 DT DT2 Normal

a280 655 1298 2526 749 1396 2651 790 2437 39060
berlin52 140 280 564 130 243 447 145 426 1326
bier127 340 672 1389 332 632 1201 368 1140 8001
ch130 319 622 1235 347 653 1191 377 1183 8385
eil51 124 246 490 116 216 388 140 391 1275
kroA100 234 470 931 270 486 881 285 877 4950
pr76 187 368 742 200 373 655 218 665 2850
rat195 454 886 1747 487 916 1746 562 1721 18915

9.2 Experimental Setup

The instances I investigate are the same as in the previous chapter. The local
search performed will be iterative doing a first improvement step in BitFlip,
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Swap, Insertion and 2-opt (with the reduced neighborhood). In total 24000
local optima will be produced. In order to comparable fitness values between
instances I will map these values between 0 and 1.

9.3 Results

The average scores grouped by TSP-instances are shown in Table 7 and Fig-
ure 20.

It would be no surprise that the local search with no neighborhood reduction
provides the best average on all instances. But at a great cost. The additional
factor O(n) in increased running time of the whole 2-opt local search is notice-
able with instance of a28014. Here it becomes apparent that 2-opt is indeed
the bottleneck of the local search if the neighborhood is not reduced. This will
only grow more rapidly for a large amount of cities.

The difference between neighborhood reduction strategies are non-satisfactory.
If you look at the three best performing neighborhoods across all instances you
will see that NN-16, QN-4 and DT2 all have comparable fitness scores. On
average these neighborhoods are second best in terms of ordering15.

It seems that which neighborhood performs best depends on the structure.
And even then the difference between NN-16, QN-4 and DT2 is not statistically
significant. The trends are almost the same for all instances at different levels
(Figure 20).

Table 7: Table containing the average fitness scores, mapped to values between 0 and
1, for each instance.

NN-4 NN-8 NN-16 QN-1 QN-2 QN-4 DT DT2 Normal
a280 0.4814 0.5053 0.5449 0.4828 0.5247 0.5671 0.4834 0.5564 0.6914
berlin52 0.6931 0.7706 0.8181 0.7232 0.7722 0.8053 0.7258 0.8022 0.8373
bier127 0.6498 0.7121 0.7631 0.6827 0.7268 0.762 0.6825 0.7600 0.7999
ch130 0.4922 0.5325 0.5774 0.5109 0.5437 0.5837 0.5175 0.5844 0.6505
eil51 0.6172 0.6597 0.6977 0.6224 0.6532 0.6874 0.6324 0.6879 0.7303
kroA100 0.5598 0.6082 0.6477 0.5845 0.6209 0.648 0.5794 0.6492 0.6905
pr76 0.5672 0.6214 0.6599 0.5884 0.6224 0.6531 0.5827 0.6543 0.7023
rat195 0.5108 0.5349 0.5677 0.5083 0.5361 0.5845 0.5102 0.5773 0.6855
avg 0.5715 0.6181 0.6596 0.5879 0.6250 0.6614 0.5892 0.6590 0.7234

14Appendix A.2 (Table 25)
15Appendix A.2 (Table 24)
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Figure 20: The top plot is a single instances of eil51. The middle plot are all
instances of eil51 combined. The bottom plot are all instances combined.
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10 Fitness Landscape Analysis

In this section I want to answer the following research question:
What are the characteristics of the fitness landscape of various

operators of traveling thief problem instances?
In order to achieve this, I will perform the following fitness landscape anal-

ysis: autocorrelation, probability to find a local optimum (basin of attraction)
and fitness distance correlation of the following operators: BitFlip, 2-opt,
Exchange, Insertion and all combined in a local search procedure. The
measures and visualization of the measures can give insight in what kind of
metaheuristics are effective for the TTP.

10.1 Autocorrelation

The autocorrelation can give insight in the ruggedness of a landscape. In general
the lower the autocorrelation the higher the ruggedness of a landscape. In
order to give perspective to these measures I will compare the autocorrelation
of the operators under investigation in the context of their original problem;
The autocorrelation of 2-opt and Insertion in a TSP instance compared to
a similar TTP instance. Same for BitFlip and Exchange with the knapsack
problem.

To approximate the autocorrelation I will use a random walk of 100.000
applications of the operator under investigation. This gives an approximation
of the autocorrelation:

R(1) ≈ 1

σ2
f (n− 1)

n−1∑
i=1

(f(xi)− f)(f(xi+1)− f)

I studied the same instances as in the previous chapters (240 instances in total).
This gives an insight in how the autocorrelation changes when knapsack type,
capacity category, TSP instance and item factor changes.

10.1.1 Results

From the results it becomes apparent that the ruggedness of 2-opt is much
larger than Insertion (Figure 21). This difference can be explained by the fact
that 2-opt for TTP is much more disruptive than Insertion. More disruptive
since the order of cities is of importance. Insertion only affects the ordering of
one element while 2-opt swaps the ordering of a whole segment.

This is different for the TSP where the ordering does not matter intrinsically.
2-opt for TSP only affects 4 edges. Those that are removed and those that are
added. Therefore the autocorrelation of 2-opt is much higher for TSP than for
TTP16.

Figure 21 shows an interesting trend. The change in autocorrelations suggest
that the larger the capacity of the knapsack is the more rugged the landscape

16Appendix A.3 (Figure 38)
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Figure 21: Boxplot of the autocorrelation of 2-opt and Insertion for all instances
grouped by different capacity categories.

of 2-opt becomes. This phenomena could be explained the following way: 2-
opt is disruptive if the picked up items are distributed over the segment in an
irregular manner. The larger the capacity, the more items are picked up and
the higher the chance that a segment has a regular distribution of item weight.

The slight drop of the autocorrelation for Insertion can be explained by
the fact that a city with an item that is inserted is more disruptive than if the
city did not contain an item.

A similar trend can be seen for the item factor. The higher the item factor the
more rugged the landscape of 2-opt becomes and the less rugged the landscape
ofInsertion becomes.17

The autocorrelation for 2-OPT and Insertion increases when the amount
of cities increases. This is a normal property of the autocorrelation measure.
The bigger the solution representation the lower the effect on the fitness value
for small changes on that solution representation.

The autocorrelation of 2-OPT and Insertion for the different knapsack
types does not differ that much (Figure 23). The only noticeable difference is
the spread for 2-opt of the type uncorrelated with similar weights. It is higher
compared to the other types. This is due to the interaction between the constant
weight of every item and the capacity constraint. The lowest knapsack capacity
with the type uncorrelated with similar weights has the lowest autocorrela-
tion for every TSP-instance compared to other types and knapsack capacities.
Similar for the highest knapsack capacity that has the highest autocorrelation
compared to others.

For the knapsack operators similar results can be seen. The autocorrelation
increases when the knapsack capacity increases (Figure 24). Surprisingly the

17Appendix A.3 (Figure 40)
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Figure 22: Boxplot of the autocorrelation of 2-opt and Insertion for all instances
grouped by TSP-instances.

differences between the normal knapsack problem and the knapsack problem as
a subproblem of the TTP are minimal. For some instances the autocorrelation
is higher than for the normal knapsack problem18 .

18the outliers of bounded strongly correlated (Appendix A.3 Figure 41)

58



Figure 23: Boxplot of the autocorrelation of 2-opt and Insertion for all instances
grouped by different knapsack types

Figure 24: Boxplot of the autocorrelation of Flip and Exchange for all instances
grouped by different capacity categories.

59



10.2 Size of the Region of Attraction

In order to give insight in how many different local optima there exist and how
high the probability is to find such a local optima I have produced 1.000.000
local optima with the normal local search procedure (without neighborhood re-
duction) and counted the number of times the same local optimum has been
found. I have done this for 9 instances of eil51 with 3 different capacity cate-
gories ∈ {01, 05, 10} and 3 different knapsack types.

10.2.1 Results

Surprisingly, for all instances the percentage of found local optima that are
unique is incredibly high (Table 8). This ranges between 19.5% and 80%. The
average number occurrences therefore is pretty low but there are some optima
which are found more often (Figure 25). Unfortunately there seems to be no
correlation between fitness and frequency of optima found. But the local optima
that are found more often seem to have a high fitness. But having a high fitness
does not mean the optimum is found more often. In only one of the instances
USW01 the optimum that is found most often is also the best found.

Table 8: Results of the 1000000 local optima for the different instances
Capacity Unique optima Avg frequency Max frequency Frequency of best found

BSC
01 683744 1.46 323 47
05 798575 1.25 297 59
10 443050 2.26 1257 32

USW
01 516804 1.93 708 708
05 592795 1.69 550 268
10 200905 4.98 4446 898

U
01 358996 2.79 1810 45
05 348335 2.87 4127 3110
10 195249 5.12 2181 362

The fact that there are many unique local optima and that the probability
of finding the global optimum is very low implies that using multistart local
search is not the best strategy.

The total number of unique packing plans varies for different instances. Both
uncorrelated instances with capacity category 01 have a relative low number of
unique packing plans and for the instance USW01 in 65% of the cases the same
packing plan is found. This can be due to the fact that instance USW01 has a
knapsack capacity of 4567 while all items have a weight between 1000 and 1010.
Therefore there is only room for 4 different items in the knapsack. Combined
with the fact that the ratios are uncorrelated this makes some item preferable
over others. This can explain why the same packing plan is found many times.
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On the other hand the amount of unique packing plans for other instances
is pretty high (45% for the instance BSC01 ).

Table 9: Results of the 1000000 local optima for the different instances of the
different found packing plans.

capacity unique plans avg frequency max frequency

BSC
01 20520 48.73 20964
05 454387 2.2 2239
10 156048 6.41 6918

USW
01 2084 479.85 64915
05 119074 8.4 9848
10 12421 80.51 38264

U
01 1285 778.21 146594
05 23416 42.71 17038
10 7674 130.31 44497

Same as for the whole problem there is a high percentage of unique tours
almost equaling the amount of unique local optima (Table 10 & Figure 27). For
the instance U01 the high amount of unique local optima is almost entirely due
to the high amount of unique tours.

Table 10: Results of the 1000000 local optima for the different instances of the different
found tours.

capacity unique tours avg frequency max frequency

BSC
01 649288 1.54 324
05 703729 1.42 372
10 377633 2.65 1259

USW
01 514221 1.94 708
05 591560 1.69 550
10 200766 4.98 4446

U
01 351367 2.85 1810
05 344713 2.9 4127
10 194221 5.15 2181

One remarkable thing is seen in Figure 25-27. For the instance BSC01
there is a cluster of local optima with a relatively low fitness. The cluster of
∼2500 local optima all share the same packing plan but differ in their tours.
Interestingly there exists a packing plan with a high region of attraction but
with a significantly lower fitness than all other optima. It would be interesting
to see (next chapter) if an iterated local search can escape out of this cluster of
local optima.
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Figure 25: Plot of the 1000000 found local optima
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Figure 26: Plot of the 1000000 found packing plans
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Figure 27: Plot of the 1000000 found tours
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10.3 Fitness Distance Correlation

The fitness distance correlation (FDC) can give insight in how local optima are
related to each other. A high negative correlation of fitness and distance can
mean that the landscape of local optima can be easily traversed with an iterated
local search.

I will use the local optima produced in the last section as data and study
the same 9 instances. The FDC only has meaning when the global optimum
is known. Since there is no timely manner in which the global optimum can
be proven, I will make the assumption that the best found optimum out of
1.000.000 is the global optimum.

The distance between packing plans will be the hamming distance and the
distance between tours will be the bond distance [5], the number of edges be-
tween tours that are not shared.

10.3.1 Results

Table 11 and Figure 28-30 show promising results. There is a high amount of
fitness distance correlation. The FDC for every instance is < −0.15. According
to Jones and Forrest [25] this means the landscape is straightforward. From
the figures it becomes apparent that the closer you are to the best solution the
higher the range of lowest and highest found optima becomes.

The same cluster of local optima with low fitness of BSC01 is again seen in
the figures.

Surprisingly there is a high correlation between the distance in the packing
plans and the fitness. The highest is the instance U05 with a correlation of
−0.70. This implies that a packing plan includes crucial information regarding
where the solution is on the landscape and where to proceed next. For the just
mentioned instance it might be better to perturb the solution when doing an
iterated local search in such a way that the packing plan remains mostly intact.

For every instance I have performed additional tests on the best found so-
lution while keeping one of the subproblems fixed. i.e. finding the optimal
packing plan when the tour is fixed and finding the best tour when the packing
plan is fixed. Results are in the last column of Table 11. The fitness distance
correlation for the tour improves tremendously and the FDC for the packing
plans are even higher. For the uncorrelated instances the optimal solution is
found every time when the tour is fixed. This is coherent with Section 8 which
suggests that finding the optimal packing plan is relatively easy.

10.4 Conclusion Fitness Landscape Analysis

The fitness analysis of some instances of the traveling thief problem have given
us some insights in the problem and how to solve it. Some key points:

• Insertion has a higher autocorrelation than 2-opt for the TTP. While
2-opt has has a higher autocorrelation for TSP. This suggests that In-
sertion is a good local search for TTP.
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Table 11: Fitness Distance correlation for 9 instances of eil51 and 3 different distances
(middle column) and additional test where one subproblem is fixed (last column). The
cells that contains ‘-’ produce the same results after every local search.

1000000 local optima Fixed subproblem
Capacity Packing plan Tour Combined Packing plan Tour

BSC
01 -0.36 -0.15 -0.26 -0.91 -0.60
05 -0.55 -0.27 -0.58 -0.82 -0.69
10 -0.28 -0.37 -0.42 -0.88 -0.56

USW
01 -0.68 -0.34 -0.54 - -0.65
05 -0.61 -0.47 -0.67 - -0.70
10 -0.52 -0.45 -0.60 - -0.50

U
01 -0.57 -0.31 -0.50 - -0.54
05 -0.70 -0.34 -0.58 - -0.59
10 -0.48 -0.48 -0.61 - -0.55

• There are many unique local optima and the global optimum has a small
region of attraction. This suggests that multistart local search is not a
good approach.

• The fitness distance correlation is high when the distance of tour and pack-
ing plans are combined. This is even higher when one of the subproblems
is kept fixed. This indicates that an iterated local search has a high chance
of finding good solutions.

• The fitness distance correlation for the packing plans is high. This is inter-
esting in combination with previous results in (Section 8) that suggested
that finding the optimal packing plan for a given tour is relatively easy.
But the correlation between fitness and hamming distance of packing plans
suggests that you might lose valuable information when you only consider
the tours and not the packing plans.
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Figure 28: Plot of 1000000 local optima. The distance is the hamming distance
plus the bond distance.

67



Figure 29: Plot of 1000000 local optima. The distance is the hamming distance.
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Figure 30: Plot of 1000000 local optima. The distance is the bond distance.
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11 Iterated Local Search & Its Fitness landscape

In this section I will investigate how local optima are related to each other
and find out whether TTP contains a big valley or if it has a multiple funnel
structure. In order to do this I will collect local optima found with an iterated
local search (ILS) and research how they are related to each other. I will answer
the following research question:

Does TTP instances have a single (big valley19) or multiple funnel
structure?

In this section I will also study the effect of iterated local search and how
often it can find the global optimum20.

11.1 Iterated Local Search

11.1.1 Experimental Setup

In order to answer the research question I will first investigate what a good
perturbation and perturbation size is.

In preliminary experiments I found that perturbing only the tour or only the
packing plan only had a small chance of kicking the solution out of its region
of attraction. Therefore I investigated multiple perturbation sizes where each
perturbation is a combination of k random applications of the 2-opt swap and k
random bit flips. I ran experiments with perturbation size ∈ {1, 2, 3, 4, 5, 10, 20}
on the 9 instances of eil51 similar to those studied in the previous chapters. The
ILS will stop after 2500 iterations without any improvement. This is a rather
large number (for this instance) but in practice it uses far less iterations. For
every instance and perturbation size the algorithm is ran 100 times. Algorithm 7
shows the basic flow of the iterated local search in pseudocode.

Algorithm 7 Iterated Local Search

1: function ILS
2: x← an initial solution
3: while k ≤ 2500 do
4: x′ ← Perturb(x)
5: if f(x) ≤ f(x′) then . Where f is the fitness function
6: x← x′

7: k ← 0
8: end if
9: k ← k + 1

10: end while
11: end function

19big valley might not be the correct term for a maximization problem but big mountain
sounds silly.

20We again assume the best found solution is the global optimum
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11.1.2 Results

Figure 31: Probability the global optimum is found after running ILS (top left).
Average fitness approximation (top right). Probability the perturbation escapes the
region of attraction (bottom left). Median of the amount local optima produced before
the final solution was found (bottom right).

Figure 31 and Table 12 13 14 contain the results of the experiments. For some
perturbation sizes (3, 4 and 5) the chance of finding the global optimum is high.
For the perturbation size of 5 and 10 (Table 12) the global optimum for all
the instances of type USW is found 100 times out of a 100 runs. For the BSC
instances the effectiveness of iterated local search versus multistart local search
becomes apparent. When the perturbation acts like a random restart the global
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optimum is only found in 12% or 17% of the time.
A perturbation size of 5 is the best size in terms of the probability of finding

the global optimum. It is also the best size for the best fitness approximation
on the instances studied.

The difference between multistart local search and ILS would be even greater
if the maximum number of non-improving is lower. Figure 31 and Table 14 in
Appendix A.4 show that indeed the maximum number of non-improving could
be lowered.

On average the largest perturbation size also uses the most perturbations
before halting, this is because with such a large perturbation size it almost
becomes a random restart.

Figure 31 shows that the probability of finding the global optimum and fit-
ness approximation increases when the perturbation size becomes higher. It
peaks at 5 and then falls off with larger perturbation sizes of 10 or 20. Surpris-
ingly even using relatively high perturbation sizes give better results than doing
a random restart (Table 12 & Table 13). This means that there is still some
structure preserved in the perturbed solutions.

Table 14 shows the probability of return to the same local optimum. This is
around 60% for the smallest and almost zero for the largest perturbation size.
The perturbation size of 5, which gave the best results, returns between 2.5%
and 15%. This means that the solution is changed enough that it almost always
falls outside the region of attraction but is also similar enough to return the
same local optima sometimes. Therefore this perturbation does not stray too
far away from the initial solution.

Table 12: Probability the global optimum was found after running ILS
perturbation size 1 2 3 4 5 10 20 Random

BSC
01 0.7 0.96 0.99 1 1 1 0.96 0.17
05 0.25 0.34 0.6 0.58 0.61 0.56 0.35 0.17
10 0.53 0.68 0.76 0.77 0.71 0.43 0.28 0.12

USW
01 1 1 1 1 1 1 1 0.97
05 0.67 0.86 0.98 0.98 1 1 0.97 0.85
10 0.92 1 1 1 1 1 0.97 0.95

U
01 0.3 0.53 0.61 0.59 0.63 0.47 0.4 0.27
05 0.88 1 1 1 1 1 1 1
10 0.7 0.87 0.9 0.95 0.99 0.93 0.83 0.92
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Table 13: Average fitness approximation.
1 2 3 4 5 10 20 Random

BSC
01 0.9897 0.9984 0.9996 1 1 1 1 0.9952
05 0.9775 0.9837 0.9902 0.9936 0.9944 0.9971 0.994 0.9859
10 0.9953 0.9983 0.9991 0.9997 0.9997 0.9989 0.9984 0.9959

USW
01 1 1 1 1 1 1 1 0.9998
05 0.9802 0.9916 0.9988 0.9988 1 1 0.9993 0.997
10 0.9995 1 1 1 1 1 0.9999 0.9999

U
01 0.9928 0.9967 0.9977 0.9976 0.9978 0.9969 0.9968 0.9955
05 0.9962 1 1 1 1 1 1 1
10 0.9996 0.9998 0.9999 0.9999 1 0.9999 0.9998 0.9999

Table 14: Probability the perturbation escapes the region of attraction.
1 2 3 4 5 10 20

BSC
01 0.5201 0.2751 0.1514 0.0863 0.0513 0.0067 0.0009
05 0.5479 0.3275 0.1796 0.1073 0.0635 0.0056 0.0003
10 0.4804 0.2166 0.1045 0.0516 0.0258 0.0027 0.0004

USW
01 0.5942 0.339 0.194 0.1109 0.0653 0.0093 0.0025
05 0.6713 0.4187 0.2639 0.1568 0.094 0.0097 0.0016
10 0.5989 0.3281 0.1796 0.1003 0.0563 0.0077 0.0018

U
01 0.5295 0.2479 0.1151 0.0555 0.0283 0.0025 0.0005
05 0.676 0.4712 0.3168 0.2101 0.1423 0.0286 0.0082
10 0.5941 0.3288 0.1794 0.0987 0.0566 0.0069 0.0018

11.2 Fitness Landscape of ILS

By taking the perturbation size of 5 we can investigate how successful ILS is
and what the fitness landscape of local optima looks like. I will follow a similar
approach to Ochoa and Veerapen [46] who’ve looked at the landscape of local
optima in the context of an iterated local search. They made a local optima
network where local optima are nodes and edges are successful perturbations
(i.e. perturbations that led to a better local optima). Their resulting graph
showed that TSP contained a multi-funnel landscape with local optima which
were non-optimal and for which the CLK could not escape.

I will do the same for the TTP. The procedure is elaborated in Algorithm 821.

21Similar to Ochoa and Veerapen [47, 46] but the sample size is not based on the input size
but on another termination condition, 2500 non-improving perturbations.
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Algorithm 8 Local optima network sampling

1: function ILS
2: x← an initial solution
3: while k ≤ 2500 do
4: x′ ← Perturb(x)
5: if f(x) ≤ f(x′) then
6: N ← N ∪ {x, x′} . Store optima as node
7: E ← E ∪ {(x, x′)} . Store successful perturbation as edge
8: k ← 0
9: end if

10: end while
11: end function

11.2.1 Results

Table 15: Solutions found after running ILS 100 times. The fitness values with a star
corresponds to local optima where there is chance that the ILS escapes it.

BSC USW U
01 4269.36 (100) 1459.95 (42) 2871.36 (63)

1459.95 (58) 2854.54 (37)*
05 5138.39 (61) 2171.99 (51) 4407.56 (100)

5104 (30)* 2171.99 (49)
4992.29 (1)*
4925.42 (8)*

10 11136.13 (71) 5631.52 (100) 6905.74 (52)
11132.59 (21)* 6905.74 (47)
11110.14 (8)* 6897.34 (1)*

Table 15 shows all local optima found by the ILS in 100 runs. The produced
graphs are displayed in Figure 32. For some instances the optimum is always
found (BSC01, USW01, USW01, USW01 and U05 ). Note that there are some
instances with global optima that have the same fitness scores. These global
optima lie close to each other and their only difference is in their tour, they all
have the same packing plan. Tours can easily be equivalent when no items are
picked up in a tour segment since the instance eil 51 has low integer distances.

The landscapes of local optima for the instances of BSC01 and USW01
are straightforward. The landscape looks like one big funnel with the global
optimum at the end. Along the way there are no local optima that get visited
significantly more. This is different for USW05, U05 and especially USW10.
For USW10 there are two other optima that have a high region of attraction
(see Figure 25) and are visited a large number of times. But in all those times
it eventually escapes its region of attraction and goes to the global optimum.

For the other instances an alternative local optima is found as endpoint of
the ILS with a high chance (BSC05, BSC10 and U01 ). Note however that for
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all endpoints of the ILS that are not optimal there does exist a perturbation that
escapes from it (see Figure32 it holds that: x is a global optimum ⇐⇒ x has no
downward path). This is due to the lenient termination criteria combined with
a large perturbation size.

The non-global-optima endpoints are indicated in Figure 32. From the pic-
ture it becomes apparent that the alternative local optima of U01 is very far
away from the global optimum and has many edges leading to it. They are
so far apart that in 37 out of a 100 runs it could not escape it even with the
relatively large perturbation size.

Instance BSC05 has found the global optimum the least amount of times. To
investigate this instances further, I ran additional tests. I have ran the ILS 1000
times but now with different termination criteria: the ILS stops after 1000 non
improvement moves. The results are displayed in Figure 33. For these instances
and for these ILS parameters there seems to exist a multi-funnel structure. In
the bottom right corner it becomes apparent one of the non-optimal endpoints
is far removed for other local optima. There exists a large gap.

11.3 Conclusions

ILS can produce good results, better than MLS. A perturbation size of 5 ran-
dom applications of 2-opt swap and 5 random bit flips seems to perform best.
For some instances the global optimum is easily found and for some of these
the fitness landscape of local optima has a single funnel structure. For those
instances the fitness landscape is globally concave and has a big valley structure.

For other instances finding the global optimum is harder but is still done in
50% of the cases. Some of these instances show a multi funnel structure. And
this is only for the smallest instances (eil 51) I suspect this is even more so for
the bigger instances since they have even more local optima.
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Figure 32: A plot of multiple runs of ILS. The nodes are local optima and the edges
are successful perturbations. The x-axis corresponds to distance removed from the
global optimum (origin at bottom left corner) and the y-axis corresponds to fitness
(the lower the better). The thickness is the weight of the edge, the amount of times
it occurs. The radius of a node is the amount of times that node is visited. The red
nodes are endpoints of the ILS.
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Figure 33: Graph representing 1000 runs of ILS on bounded-strongly-corr 05. The
4 plots are the same graph but with different x-axis. In each one an endpoint local
optimum is selected and the x-axis is the distance removed from this local optimum.
Again the thickness is the weight of the edge, the amount of times it occurs. The
radius of a node is the amount of times that node is visited. Edges with weight 1 are
removed (otherwise it is a big blue blob).
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12 Genetic Algorithms & Crossover Operators

In this section I will investigate crossovers. The crossovers I will use are CX,
MPX, OX, PMX and EAX (see Section 3.2 for detailed explanation). GPX will
not be used (see next section). To investigate the performance of these crossovers
I will look at crossover correlation and their performance as the crossover in
a genetic local search algorithm. In order to answer the following research
question:

How well do different crossover operators perform on TTP?
Besides doing crossover on the tour I will also look at crossover on the

packing plan. Since this is a bitstring we can use a normal crossover operator,
for example two-point crossover. The question remains if doing a crossover on
the tour and also on the bitstring is even necessary since it might disrupt the
solution too much.

12.1 A Note on GPX for TTP

I have implemented GPX(2) with the three enhancements of Sanches, Whitley,
and Tinós [58]. Unfortunately I found that the crossover was not always ap-
plicable. I ran some experiments testing GPX with local optima produced by
2-Opt with TSP and local optima produced by my local search with TTP. In
total I have produced 1000 local optima for TSP and TTP and tried to apply
GPX.

Results are displayed in Figure 34. GPX is far less suitable for TTP local
optima than for TSP local optima. The amount of times GPX is applicable
is much lower for TTP than for TSP. The total amount of viable partitions is
much lower for TTP than for TSP. This can be due to the fact that there is a
high variety in tours found by the TTP local search, for example much longer
tours are found. I suspect that GPX might work even better for local optima
produced by LKH than produced by 2-Opt.

Eventually with a higher problem size the probability that GPX is applicable
will increase. I however only focus on the smaller instances and therefore I will
not use GPX as crossover for the following crossover experiments.

12.2 Genetic Algorithms

In order to test which crossover performs best I have performed multiple ex-
periments by running different genetic algorithms on the 9 instances previously
studied. Besides testing the different crossovers I will also experiment with us-
ing two-point crossover on the packing plan and resetting the packing plan all
together with a greedy packing heuristic of Faulkner et al. [16].

For the genetic algorithm I use a generational GA where selection is done
by replacement. The offspring competes against the previous generation with
(N+N)-selection. Each offspring is made by first applying the chosen tour
crossover and using the chosen packing plan strategy. See Algorithm 9 for
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Figure 34: Two plots about the applicability of GPX for TSP (black) and TTP (red).
Left plot shows the amount of partitions in 1000 tries and the right plot shows the
ratio GPX was applicable in 1000 tries. The graphs shows instances of type BSC05,
USW05 and U05 of the TSP instances: eil51, berlin52, pr76, kroA100, bier127, ch130,
rat195 and a280. Ordered by problem size from left to right.

the full procedure. The following experiment will focus mostly on the amount
of times the global optimum is found by using 2500 local searches in total.

12.2.1 Results

Results are in Table 16. First thing to note is that compared to ILS the global
optimum is found far more often. But this is to be expected. As we just learned
from the previous chapter, some instances have a multi-funnel structure. Since
GA’s are population based they can search at multiple locations in the search
space and therefore wouldn’t necessarily get stuck in one of those funnels.

Best results are obtained by EAX with doing two point crossover on the
packing plan. The good performance of EAX can be due to the fact that EAX
is by far the most sophisticate crossover of the lot. While others only manipu-
late permutations, EAX uses the structure of the graph of the tours to create
offspring.

For the packing plan strategies two point crossover seems to be the best.
This is interesting since combining a crossover on the tour and packing plan
can also be viable . The offspring could inherent the status of the packing plan
from the parent for which city was copied [14, 41]. This can be trivially be
implemented for CX but nor for EAX.

Only doing crossover on the tour results in one of the worst results. But, for
some reason the combination of no crossover on the packing plan and partial
matched crossover work reasonable well. This could imply PMX is a good
perturbation on the tour. While the others work better in combination with a
packing plan strategy and try to combine solutions to find a better solution.

Of the classical operators CX performs best while MPX and OX have the
worst performance. This could come from the fact that cycle crossover prioritizes
absolute position which is important in the TTP and MPX and OX do not.
Funny enough, the crossovers MPX and OX, which are quite similar, are used
in the literature and CX is not (Figure 2).
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Algorithm 9 Memetic Algorithm

1: function GA
2: Pop← an initial population
3: while k ≤MaxGenerations do
4: for i← 1 to n do
5: parent1 ← Select random parent
6: parent2 ← Select random parent
7:

8: childi ← Create new child
9: childiΠ ← crossover(parent1Π , parent2Π)

10: childiY ← 2PX(parent1Y , parent2Y ) . or Packing Heuristic
11: . or inherent packing plan from parent1
12: childi ← LocalSearch(childi)
13:

14: Pop← Pop ∪ {childi}
15: end for
16: Pop← Sort population and keep n solutions
17: k ← k + 1
18: end while
19: end function

12.3 Crossover Correlation

For every tour crossover and packing plan strategy I have also calculated the
crossovers correlation. I have produced 10.000 pairs of local optima and for
each pair applied the crossover and packing plan strategy. On the offspring I
have performed local search and calculated how much the fitness value of these
children correlate with both parents.

Results are in Figure 35. For some crossovers and packing plan strategies
there is some correlation between parent and offspring. This holds for EAX and
especially for MPX where the correlation is high for every packing plan strategy.
Other crossovers have little, no or a small negative correlation (CX and OX for
an example). It is remarkable that MPX has one of the highest correlations
and OX one of the smallest. Remarkable since the procedures of both are quite
similar. This difference may be due to the fact that the TTP requires that
the tour starts at city 0. In order to facilitate this constraint the tour must
be repaired after some crossovers. This in turn can have a huge impact on the
absolute position and might make the difference in performance of MPX and
OX.

The predictive power of the crossover correlation in this context maybe non
existent. According to the crossover correlation MPX should perform best but
on the contrary, it performs worst. There does however seems to be a small
negative correlation between the amount of times a non optimal solution is
found and the crossover correlation (Figure 36). Crossover correlation is maybe
the wrong measure to use for memetic algorithms for two reasons:
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Table 16: Table showing per combination of TTP, crossover and packing plan strate-
gies how many times the global optimum was not found.

Crossover BSC USW U
Y Π 01 05 10 01 05 10 01 05 10 Σ

-
EAX 0 33 53 1 3 5 37 0 35 167
CX 64 13 44 0 0 0 21 0 0 142

MPX 71 11 62 0 0 0 25 0 1 170
OX 71 32 45 0 1 0 48 0 2 199

PMX 0 4 33 0 0 2 13 0 18 70
2PX

EAX 4 2 9 0 0 1 18 0 1 35
CX 11 2 14 0 0 0 22 0 1 50

MPX 5 55 31 4 24 2 39 7 8 175
OX 1 29 43 0 1 8 44 0 35 161

PMX 1 18 44 1 0 8 43 0 41 156

Greedy EAX 1 3 40 0 0 0 10 0 13 67
CX 1 16 42 0 0 1 13 0 7 80

MPX 0 11 59 0 0 1 26 0 15 112
OX 0 12 56 0 0 3 25 0 16 112

PMX 0 17 51 0 0 1 37 0 25 131

• Local search is done on the offspring which mutates the solution
• Highly crossover correlation can also be produced by offspring that is too

similar to the parent(s)

Figure 36: Plot showing the relation between crossover correlation and the number
of times the optimum is not found.
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12.4 Steady State Genetic Algorithm

When doing the previous experiments I found that a generational GA where
selection is done by replacement converged rather quick. A fast convergent can
have the same problems as an ILS since the search becomes narrow quickly.
Thereby effectively removing the benefits of a population based metaheuristic.
In order to account for this I ran additional experiments but now I only added
offspring into the population if they were unique. For convenience I used a
steady state algorithm instead of a generational GA in order to accommodate
this constraint.

At each “generation” the steady state algorithms produce only one offspring
and if it is better it replaces the worst member of the current population. For
all steady state algorithms I used two point crossover on the packing plan. The
pseudocode is in Algorithm 10.

Algorithm 10 Steady State

1: function GA
2: Pop← an initial population
3: while k ≤MaxGenerations do
4: parent1 ← Select random parent
5: parent2 ← Select random parent
6:

7: childi ← Create new child
8: childiΠ ← crossover(parent1Π

, parent2Π
)

9: childiY ← 2PX(parent1Y , parent2Y )
10:

11: if Population does not contain childi then
12: Pop← Replace member with lowest fitness with childi
13: end if
14: k ← k + 1
15: end while
16: end function

12.4.1 Results

Results are in Table 17. These results of the steady state algorithm are even
better. In only 5 out of 900 runs the steady state genetic algorithm with EAX
could not find the optimal solution. Some similar results can be seen for the
other crossovers. MPX performs the worst by far. PMX seems to perform much
better absolute and relative to other crossovers compared to its generational
variant.

12.5 Crossover Experiment

As previously mentioned, the strength of a genetic algorithm can lie in the fact
that it is population based. Combined with crossovers that alter the solutions it
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Table 17: Table showing per combination of TTP instance and crossover how many
times the global optimum was not found.

BSC USW U
Crossover 01 05 10 01 05 10 01 05 10 Σ

EAX 3 2 0 0 0 0 0 0 0 5
CX 3 2 18 0 0 0 2 0 2 27

MPX 35 1 17 0 0 0 12 0 0 65
OX 9 1 11 0 1 0 0 0 0 22

PMX 6 0 9 0 0 0 0 0 0 15

is inherently some sort of multistart iterated local search. In order to investigate
if the crossover not only perturb the solution but also inherent some of the good
building blocks, I ran additional experiments where I replaced the crossover
with a perturbation.

Again the perturbation will be k random applications of the 2-opt swap and
k random bit flips. I will test with the best performing perturbation size of 5 and
a smaller one of 3 since the exploitative power of a high perturbation size could
also be account for by the population (and therefore a smaller perturbation size
might perform better). I will also vary with the population size but keep the
total local searches at a constant of 2500.

Results are in Table 18. I had suspected that this would perform much
better than using the crossovers but it didn’t. Apparently the used crossovers
in the genetic algorithms do much more than just perturbing the solutions. For
the generational GA the ILS-mutations are outperformed by EAX and CX and
for the steady state algorithm each crossover operator outperforms the variant
with perturbation.

It also seems to be the case that for some procedures a smaller perturbation
size is better. For example the steady state algorithm with a perturbation size
of 3 finds the global optimum more often than with a perturbation size of 5.

Table 18: Table showing how many times the global optimum was not found for
different TTP instances and variants of genetic local searches with only mutations.

BSC USW U
peturb gen x popsize 01 05 10 01 05 10 01 05 10 Σ

(N+N) 3 50 x 50 0 29 52 0 0 0 12 0 3 96
3 25 x 100 0 18 65 0 0 0 6 0 2 91
3 100 x 25 0 40 42 0 1 0 25 0 3 111
5 50 x 50 0 25 68 0 0 0 9 0 1 103
5 25 x 100 0 34 65 0 0 0 11 0 1 111
5 100 x 25 0 35 68 0 0 0 9 0 1 113

SS 3 54 0 18 0 0 0 54 0 0 126
5 93 8 36 42 0 0 85 0 0 264
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12.6 Conclusions

How well do different crossover operators perform on TTP?
Edge assembly crossover seems to perform the best in combination with two

point crossover. Of the classical operators cycle crossover for the generational
GA seems to perform best. For the steady state GA’s all classical operators
beside MPX perform the same and all find the global optimum with a high
reliability. Partial mapped crossover with no packing plan strategy might be a
viable option as a perturbation operator.

The genetic algorithms with their respective crossovers seem to really add
something in trying to solve TTP. Especially by looking at the last experiments
it is safe to conclude GA outperforms ILS. This is easy to see if you compare
Table 17 and Table 12. GA finds the global optima with much more consistency.
Also note that GA uses 2500 local searches and ILS at least 2500 local searches,
in other words they use similar resources. But not only that, the crossover seems
to navigate the search space better than a simple perturbation.

Moreover the use of a genetic algorithm can also be justified by the fact that
the additional computational overhead is relatively non-existent since the local
search of TTP is already computational heavy.

Crossover correlation was not as insightful as initially presumed. The crossover
with the highest crossover correlation didn’t performed the best. The best per-
forming crossover, EAX, however did have one of the highest crossover correla-
tions.

For these small instances it seems better to only add unique solutions to the
population in order to avoid a fast convergence. Therefore the use of a steady
state genetic algorithm with this criteria seems to be justified.
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13 Comparison and Quality of Solutions

The last section of my thesis I will use the best found algorithm of the previous
chapter on a variety of instances and compare them to the best found in the
literature. I will also review the quality of the produced solutions. The best
found solutions are from a case study of Wagner et al. [64]. Wagner et al. ran
21 algorithms on all instances for 10 min. The 21 algorithm are: SH [56], DH
[8], (1+1)-EA [56], RLS [56], S1-S5 [16], C1-C6 [16], MALTS [36], CS2SA
[14]22 and four different configurations of MMAS [63]. To my best knowledge
there is no other published database of best found solutions23.

The best algorithm I found was the steady state algorithm with EAX and
2PX with k-quadrant nearest neighborhood reduction.

I will run the algorithm on instances of:

• eil51
• berlin52

• pr76
• kroA100

• bier127
• ch130

• rat195
• a280

For instance of eil51, berlin52 and pr76 I will look at all item factors and
only at item factor 1 for the others.

I will run the algorithm 10 times and every time use a limit of 2500 local
searches. This is different from the 10 minute limit that Wagner et al. [64] apply.
To give an impression how this compares, on my computer24 the time it takes to
perform 2500 local searches on the smallest instance (eil51) is around 9 seconds
and less than 23 minutes for the largest (a280). For all instances except a280
the running time was below 10 minutes (see Appendix A.5 Table 27 for all the
times).

In order to evaluate the quality of the solution I also looked at how many
times a solution could still be improved with dynamic programming. This how-
ever is not part of the produced solution when comparing it to the best found.

13.1 Results

A long table of results is in the Appendix A.5 Table 28. Table 19 and Table 20
give a good impression of the results from the instances with an item factor of
1. In all but two instances equal or better than the best found solution is found.
In almost all instances a new best solution is found.

Table 21 shows how many times the packing plan could be improved by
dynamic programming. These results are similar to the findings of section 8.
It seems that BitFlip and Exchange are highly capable of finding the best
packing for a given tour when the knapsack type is NOT correlated. In only
1 out of 1600 runs the produced solution could be improved with dynamic

22I have excluded fitness scores found by CS2SA since there are produced incorrectly (see
section 4.7)

23There does however sometimes exists some papers [14, 62, 41, 3] who claim to have even
better fitness scores than those of [64] or those presented in this thesis but as explained in
section 4.7 they make rounding errors and are therefore incorrect.

24C#, i7-2600K 3.40 GHz, running on Windows 10
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programming for the uncorrelated types. However for the larger instances the
solutions of type bounded strongly correlated could be improved with dynamic
programming plenty of times (82 out of 800 runs). For only 3 instances25 the
best run out of 10 could be improved with dynamic programming. These are
interesting results, it seems that the instances of type bounded strongly corre-
lated are harder to solve. This isn’t analytically evident, the strong correlation
between profit and weight partly disappears by the added hidden cost of an
item’s weight.

I’m fairly confident that for the smallest instance (eil51) the found solutions
are optimal. I base this on the fact that these solutions are found with high
reliability and by many different approaches: the “global” optima can be found
with a multi-start local search algorithm with a small probability, with iterated
local search this probability already becomes a lot higher and with a genetic
local search in almost all the times. The fact that some of these best found
solutions correspond to the best found in the literature even further confirms
this in my opinion.

I cannot however make these claims for instances with a higher number of
cities. On the contrary, I believe that for instances with a high number of cities
a better solution can still be found. Table 20 shows that for these instances the
best solution is only found once or never.

Table 22 and 23 show the results of instances with an item factor of more
than one. While this thesis didn’t focus on instances with more than one item
per city, there is no reason why these results aren’t applicable on instances with
a larger item factor. Again similar results are found, for all but one instance the
best found solution has a fitness value equal or greater than the current best
in the literature. While the number of decisions variable increases by a lot the
algorithm still produces good solutions. However, it seems like the algorithm
has a hard time solving instances with a high item factor and where profit and
weight are strongly correlated.

Of almost all the instances the average of the 10 runs is also better than the
best in the literature. Even the worst of the 10 is most of the time better (of
detailed results see Appendix A.5 Table 28). But to be fair, most algorithms in
the case study of Wagner et al. [64] aren’t sophisticated and/or are specifically
designed for larger instances. In order to solve larger instances a lot of cor-
ners have to be cut. MATLS for example use fitness approximation to increase
running time but this obviously decreases quality of found solutions. There-
fore the fact that my genetic algorithm found better solutions is not incredibly
impressive.

25BSC01 BSC04 of bier127 and BSC02 of rat195
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Table 19: Table showing for every studied instance when the best solution of
the steady state algorithm is better (green +), the same (yellow 0) or worse (red
-) than the best found solution in the literature.

1 2 3 4 5 6 7 8 9 10

eil51 BSC 0 0 0 + + + + + + +
U + + 0 0 0 0 + + + +

USW + + + + + 0 + + + 0
berlin52 BSC + + + + + + + + + +

U + + + + + 0 0 0 0 +
USW + + + + + + + 0 0 +

pr76 BSC + 0 + + + + + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
kroA100 BSC + + + + + + + + + +

U + + + + + + + + + +
USW + + + + + + + + + +

bier127 BSC + + + + + + + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
ch130 BSC + - - + + + + + + +

U + + + + + + + + + +
USW + + + + + + + + + +

rat195 BSC + + + + + + + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
a280 BSC + + + + + + + + + +

U + + + + + + + + + +
USW + + + + + + + + + +
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Table 20: The amount of times out of 10 the algorithm corresponded to the
best found solution

eil51 BSC 10 10 10 9 10 8 10 10 5 9
USW 10 9 10 10 10 10 10 10 10 10

U 10 10 10 10 10 10 10 10 10 10
berlin52 BSC 10 10 5 9 1 10 10 10 10 10

USW 10 10 10 10 10 10 10 10 10 10
U 9 10 10 9 10 10 10 10 10 10

pr76 BSC 9 10 8 4 3 9 5 7 4 8
USW 10 10 10 9 10 10 10 10 10 10

U 10 10 10 8 8 7 10 10 10 10
kroA100 BSC 10 7 3 3 1 6 3 4 4 5

USW 9 10 10 9 9 8 6 7 8 7
U 9 10 10 10 10 10 9 7 9 6

bier127 BSC 1 1 2 2 1 2 5 1 6 5
USW 7 2 7 1 1 3 2 1 8 6

U 1 1 2 1 4 5 5 9 8 8
ch130 BSC 1 0 0 1 6 2 3 4 5 8

USW 4 6 1 5 2 4 6 3 1 5
U 3 2 1 1 2 1 2 5 5 3

rat195 BSC 1 1 2 1 1 1 2 1 2 1
USW 1 1 1 1 1 2 1 1 1 1

U 2 1 1 1 1 1 1 1 1 1
a280 BSC 1 1 1 1 1 1 1 1 1 1

USW 1 1 3 1 1 1 1 5 4 1
U 1 1 1 1 1 1 1 1 1 2
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Table 21: The amount of times out of 10 the produced solution could be im-
proved by dynamic programming.

1 2 3 4 5 6 7 8 9 10
eil51 BSC 0 0 0 0 0 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 0
USW 0 0 0 0 0 0 0 0 0 0

berlin52 BSC 0 0 0 1 1 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0

USW 0 0 0 0 0 0 0 0 0 0
pr76 BSC 0 0 0 0 1 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 0
USW 0 0 0 0 0 0 0 0 0 0

kroA100 BSC 0 1 2 1 0 0 0 1 0 0
U 0 0 0 0 0 0 0 0 0 0

USW 0 0 0 0 0 0 0 0 0 0
bier127 BSC 4 3 3 9 2 2 2 0 1 0

U 0 0 0 0 0 0 0 0 0 0
USW 0 1 0 0 0 0 0 0 0 0

ch130 BSC 0 5 3 1 1 0 1 1 0 0
U 0 0 0 0 0 0 0 0 0 0

USW 0 0 0 0 0 0 0 0 0 0
rat195 BSC 3 1 1 0 2 3 2 1 0 0

U 0 0 0 0 0 0 0 0 0 0
USW 0 0 0 0 0 0 0 0 0 0

a280 BSC 8 3 5 1 1 1 1 0 0 0
U 0 0 0 0 0 0 0 0 0 0

USW 0 0 0 0 0 0 0 0 0 0
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Table 22: Table showing for every studied instance if the best solution of the
steady state algorithm is better (green +), the same (yellow 0) or worse (red -)
than the best found solution in the literature.

1 2 3 4 5 6 7 8 9 10

eil51 3 BSC + + 0 0 0 0 0 0 0 0
U 0 + 0 + 0 + + 0 0 0

USW + 0 0 + + 0 0 0 + +
5 BSC + + + + 0 0 0 0 0 0

U + + 0 0 0 0 0 0 0 0
USW + 0 0 0 0 0 + 0 0 +

10 BSC 0 + + 0 + 0 + 0 + +
U + + + + 0 + 0 0 0 0

USW + 0 0 + + 0 0 0 0 0
berlin52 3 BSC + + + + + 0 + + + +

U 0 + + 0 0 + 0 0 + +
USW + + + + + + + + + +

5 BSC + + + + + - + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
10 BSC + + + + + + + + + +

U + + + + + + + + + +
USW + 0 + + + + + + + +

pr76 3 BSC + + + + + + + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
5 BSC + + + + + + + + + +

U + + + + + + + + + +
USW + + + + + + + + + +

10 BSC + + + + + + + + + +
U + + + + + + + + + +

USW + + + + + + + + + +
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Table 23: The amount of times out of 10 the algorithm corresponded to the
best found solution

1 2 3 4 5 6 7 8 9 10

eil51 3 BSC 10 10 4 9 10 10 10 10 10 10
U 10 10 10 10 10 10 10 10 10 10

USW 10 10 10 10 10 10 10 10 10 10
5 BSC 6 10 10 10 8 9 5 10 10 10

U 10 10 10 10 10 10 10 10 10 10
USW 10 10 10 10 10 10 10 10 10 10

10 BSC 6 6 1 7 10 10 9 10 5 10
U 10 10 10 10 10 10 10 10 10 10

USW 10 8 10 10 10 10 10 10 10 10
berlin52 3 BSC 5 2 6 4 2 1 10 10 10 10

U 10 10 10 10 10 10 10 10 10 10
USW 9 10 10 10 10 10 10 10 10 10

5 BSC 3 1 1 1 1 1 10 10 10 10
U 10 10 10 10 10 10 10 10 10 10

USW 10 10 10 10 10 10 10 10 10 10
10 BSC 1 1 1 1 1 3 10 10 10 10

U 10 10 10 10 10 10 10 10 10 10
USW 10 10 10 10 10 10 10 10 10 10

pr76 3 BSC 1 3 1 4 8 10 10 10 10 10
U 10 8 10 9 7 9 10 7 9 5

USW 3 10 10 8 9 9 10 10 9 9
5 BSC 1 2 7 5 1 6 6 10 10 10

U 9 2 7 10 6 10 10 10 10 10
USW 10 10 10 10 10 10 10 10 10 10

10 BSC 1 4 4 10 9 8 10 10 10 10
U 10 10 10 10 10 10 10 10 10 10

USW 1 6 10 10 10 10 10 10 10 10

92



14 Conclusion

How can the use and effect of various operators and strategies in the
literature of the traveling thief problem be justified, explained and
improved?

The research question divided into sub-questions has been answered in their
respected chapters throughout this thesis (see the summary in the next section).
The main contributions of this master thesis are:

• Proposed a new local search procedure with two improvements to the
computational complexity of the subprocedures Insertion (improvement
of O(n)) and Exchange (improvement of O(m)) (section 7).

• Shown that a greedy packing heuristic can obtain optimal or near optimal
solutions for the packing plan and why this is the case (section 8).

• Conducted a fitness landscape analysis which among other things shows
that TTP instances contain a lot of local optima but their distance to the
global optimum is correlated with its fitness (section 10).

• Generated a local optima network with respect to an iterated local search
that shows TTP has a multi funnel structure (section 11).

• Conducted experiments that show that a steady state genetic algorithm
with edge assembly crossover outperforms multi start local search, iterated
local search and genetic algorithms with other tour crossovers (section 12).

• Found new best solutions to almost all studied instances of the benchmark
suite [56] (section 13).

14.1 Summary

In this master thesis I have investigated various operators and strategies in the
literature of the traveling thief problem in order to try to justify, explain and
improve these operators and strategies. I have found the following results:

• Optimal or near optimal solutions for the packing plan can be obtained
with a greedy packing strategy. With a high probability the optimal so-
lution can be found with a packing heuristic (Packing Iterative [16]
especially). The fitness function over multiple values of α is almost con-
cave. The relatively low computational complexity of a greedy packing
heuristic might imply the feasibility of it but it is uncertain how such a
procedure should be combined with local search or in a meta heuristic.
Similar high quality packing plans can be obtained with a combination of
BitFlip and Exchange but with a higher time complexity.

• Neighborhood reduction strategies lowered the quality of the found local
optima. But neighborhood reductions are necessary for the inclusion of 2-
opt. I have shown that 2-opt is the bottleneck for the local search. There
does however seems to be no neighborhood reduction that outperforms the
others. Nearest neighbor, k-quadrant nearest neighbor and reduction by
Delaunay triangulation do not perform significantly different. The quality
of the local optima seems to correlate with the number of neighbors.
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• Insertion has a higher autocorrelation than 2-opt for the TTP. The
reverse is true for TSP. The fitness landscape of the TTP contains many
unique local optima and the global optimum has a small (relative and
absolute) region of attraction. The fitness distance correlation is high
when the distance of tour and packing plans are combined. This is even
higher when one of the subproblems is kept fixed.

• A local optima network with respect to an iterated local search for some
TTP instances revealed a multi-funnel structure in this landscape.

• Iterated local search with k random applications of the 2-opt swap and
k random bit flips can produce good results. ILS could find the global
optimum in 50% to 100% of the cases.

• A steady state genetic algorithm with edge assembly crossover seems to
perform really well. Only in 5 out of 900 runs the algorithm didn’t find the
global solution. The genetic algorithms with their respective crossovers
seem to contribute in trying to solve TTP. The crossovers do not only
perturb the solution they perform better and possibly inherit the good
building blocks which produces good offspring.

• I have shown that iterated local search performs better than multistart
local search which is coherent with the finding that the distance is highly
correlated with the fitness. I have shown that genetic local search performs
better than iterated local search which is coherent with the finding that
TTP instances have a multi-funnel structure.

14.2 Discussion & Future work

In my master thesis I have been thinking extensively about the TTP. I have
been watching the literature closely and experimented with different approaches.
Now it is time to take a step back and look at TTP in a broader, maybe more
speculative, perspective.

The traveling thief problem was created to study problems which consist
of interdependent subproblems. The creators argue that for most real world
problems their complexity is due to the fact that they consist of multiple inter-
dependent subproblems [7]. They argue that this is the essential characteristic
that makes a real world problem complex. By definition TTP is a problem con-
sisting of two interdependent subproblems. But the question remains whether
this interdependence is what makes problems hard.

The initial premise might be incorrect. Why should the fact that TTP con-
sists of two separate interdependent subproblems make it a complex problem?
Obviously the problem would be simpler if TTP consisted of two independent
subproblems but is an TSP instance of equivalent input size any easier to solve?

The claim is that because of the interdependence of TTP the problem is
indecomposable and should therefore by solved as a whole [37]. At the same
time, contradictory, TTP is mostly solved by decomposing it into subproblems
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[16, 36, 63]. A perfect decomposition of TTP is bound to fail, there is of course
an interdependence. But is this unique to TTP? In every NP-hard problem
there exists interdependence between the decisions variables. For every item
added to a knapsack instance the optimal solution is potentially changed and
this also holds for an added city to a TSP instance. But even for such problems
decomposing can be beneficial. In my opinion the right way to effectively solve
these problems is not to conclude that the problem is indecomposable. The
right way would be to search for a decomposition that takes into account the
interdependence of subproblems to exploit their independence.

It seems that one of the subproblems, the packing plan, is rather easy to
solve26 (section 8 & 13). If a benchmark problem with interdependent subprob-
lems is of importance it would be probably valuable to make both subproblems
hard to solve. Otherwise solving the whole problem can be done solely on the
solution representation of the tour subproblem and by only considering the pack-
ing plan subproblem when evaluating a tour [63, 36]. What makes TTP hard?
In my experience, the reason TTP is hard to solve with most metaheuristics is
because it is impossible to do incremental fitness evaluation for the most trivial
operators (section 7) which in turn makes finding good solutions for even the
smallest instances a time consuming task (section 9). Incremental fitness evalu-
ation is impossible because there is interdependence between decision variables
and not necessarily because of the interdependence between the subproblems.
Keeping one of the subproblems fixed still makes incremental fitness evaluation
impossible for most operators.

It is evident that there exist real world problems which consist of multiple
interdependent subproblems. TTP tries characterizing this and could indeed
serve as a toy problem which could help to better understand these problems
with interdependent subproblems. In order for the traveling thief problem to be
justified as a subject of study of the essence of real world problems two things
need to happen in future research:

• Confirm that consisting of interdependent subproblems is indeed the cru-
cial factor of real world complexity

• Confirm that TTP (and the predominately studied benchmark instances)
successfully captures this complex ity

This is not trivial, but it is crucial. Otherwise we would chase yet another
benchmark problem while the supposed gap between research and practice in
meta-heuristic methods, for which the problem was created, grows even further.

26at least for the instances that are predominantly studied
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A Appendix

A.1

Figure 37: The performance of different packing heuristics visualized. See Figure 14
for an interpretation.

A.2

Table 24: Table with the ordering of best average scores. Which also corresponds
to the ordering of best median scores.

NN-4 NN-8 NN-16 QN-4 QN-8 QN-16 DT DT2 Normal
a280 8 5 3 7 4 1 6 2 0
berlin52 8 5 1 7 4 2 6 3 0
bier127 8 5 1 6 4 2 7 3 0
ch130 8 5 3 7 4 2 6 1 0
eil51 8 4 1 7 5 3 6 2 0
kroA100 8 5 3 6 4 2 7 1 0
pr76 8 5 1 6 4 3 7 2 0
rat195 6 5 3 8 4 1 7 2 0
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Table 25: Table with the average running time of every local search grouped by
TSP-instances.

NN-4 NN-8 NN-16 QN-4 QN-8 QN-16 DT DT2 Normal
a280 2488 2771 3138 2579 2816 3190 2601 3182 17468
berlin52 20 23 30 19 22 27 20 26 50
bier127 262 292 355 259 288 339 260 334 1016
ch130 266 295 340 261 292 337 265 338 1029
eil51 17 19 26 16 19 23 17 23 46
kroA100 123 138 164 126 140 162 126 161 419
pr76 56 63 78 56 63 75 57 75 171
rat195 841 933 1089 851 938 1090 873 1088 4901

A.3

Figure 38: Auto correlation of 2-opt for different TSP instances.
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Figure 39: Auto correlation of Insertion for different TSP instances.
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Figure 40: Auto correlation of tour operators for different item categories.
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Figure 41: Boxplot of the autocorrelation of Flip and Exchange for all in-
stances grouped by different knapsack types.

Figure 43: Auto correlation for different item categories on the KP and the
TTP.
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Figure 42: Auto correlation for different TSP instances on the KP and the TTP.
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A.4

Table 26: Median of the amount local optima produced before the final solution
was found.

1 2 3 4 5 10 20

BSC
01 671 422 274 168 144 306 563
05 237 273 512 519 393 1047 1628
10 417 790 781 1173 1265 1035 1357

USW
01 176 85 88 99 106 158 294
05 116 98 165 118 180 256 664
10 178 120 135 142 145 319 527

U
01 233 273 273 274 345 500 1315
05 113 70 50 57 49 55 121
10 163 131 346 357 338 444 552

A.5

Benchmark Best Average Worst
a280_n279_bounded-strongly-corr_01 18441 19499 19410 19214
a280_n279_bounded-strongly-corr_02 32270 32768 32562 32237
a280_n279_bounded-strongly-corr_03 40720 41589 41270 40831
a280_n279_bounded-strongly-corr_04 49019 50184 49850 49189
a280_n279_bounded-strongly-corr_05 55766 57990 57413 55616
a280_n279_bounded-strongly-corr_06 49489 52186 51374 50657
a280_n279_bounded-strongly-corr_07 56376 60127 59084 57598
a280_n279_bounded-strongly-corr_08 53672 57989 57270 55968
a280_n279_bounded-strongly-corr_09 58486 64513 63596 61447
a280_n279_bounded-strongly-corr_10 58086 64402 63248 61829
a280_n279_uncorr_01 19349 20491 20346 20220
a280_n279_uncorr_02 28065 28775 28665 28382
a280_n279_uncorr_03 34363 34727 34631 34498
a280_n279_uncorr_04 34551 35504 35340 35125
a280_n279_uncorr_05 32910 34203 34051 33657
a280_n279_uncorr_06 37102 38666 38560 38391
a280_n279_uncorr_07 36811 38414 38155 37044
a280_n279_uncorr_08 39445 40943 40810 39833
a280_n279_uncorr_09 40372 41523 41452 41336
a280_n279_uncorr_10 42127 42931 42852 42735
a280_n279_uncorr-similar-weights_01 9167 9998 9940 9873
a280_n279_uncorr-similar-weights_02 12664 14237 14101 13952
a280_n279_uncorr-similar-weights_03 17512 19095 18877 18692
a280_n279_uncorr-similar-weights_04 19402 21163 20738 20204
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a280_n279_uncorr-similar-weights_05 22277 24214 23846 23348
a280_n279_uncorr-similar-weights_06 24500 26593 26296 25612
a280_n279_uncorr-similar-weights_07 26007 27957 27625 26730
a280_n279_uncorr-similar-weights_08 28517 30144 29810 28817
a280_n279_uncorr-similar-weights_09 35573 36657 36502 36230
a280_n279_uncorr-similar-weights_10 40820 41587 41434 41004
berlin52_n51_bounded-strongly-corr_01 4411 4455 4455 4455
berlin52_n51_bounded-strongly-corr_02 7072 7149 7149 7149
berlin52_n51_bounded-strongly-corr_03 7831 7907 7905 7901
berlin52_n51_bounded-strongly-corr_04 10810 10894 10894 10892
berlin52_n51_bounded-strongly-corr_05 14173 14271 14244 14228
berlin52_n51_bounded-strongly-corr_06 13785 13890 13890 13890
berlin52_n51_bounded-strongly-corr_07 16604 16876 16876 16876
berlin52_n51_bounded-strongly-corr_08 16964 17096 17096 17096
berlin52_n51_bounded-strongly-corr_09 19558 19563 19563 19563
berlin52_n51_bounded-strongly-corr_10 16399 16672 16672 16672
berlin52_n51_uncorr_01 3089 3111 3111 3111
berlin52_n51_uncorr_02 4435 4496 4496 4496
berlin52_n51_uncorr_03 6249 6317 6317 6317
berlin52_n51_uncorr_04 5926 6008 6008 6008
berlin52_n51_uncorr_05 6450 6459 6459 6459
berlin52_n51_uncorr_06 7704 7704 7704 7704
berlin52_n51_uncorr_07 8647 8647 8647 8647
berlin52_n51_uncorr_08 9351 9351 9351 9351
berlin52_n51_uncorr_09 9847 9847 9847 9847
berlin52_n51_uncorr_10 9643 9649 9649 9649
berlin52_n51_uncorr-similar-weights_01 1625 1656 1656 1653
berlin52_n51_uncorr-similar-weights_02 3781 3813 3813 3813
berlin52_n51_uncorr-similar-weights_03 4998 5128 5128 5128
berlin52_n51_uncorr-similar-weights_04 5184 5198 5198 5195
berlin52_n51_uncorr-similar-weights_05 6746 6750 6750 6750
berlin52_n51_uncorr-similar-weights_06 6661 6673 6673 6673
berlin52_n51_uncorr-similar-weights_07 7456 7464 7464 7464
berlin52_n51_uncorr-similar-weights_08 9110 9110 9110 9110
berlin52_n51_uncorr-similar-weights_09 8854 8854 8854 8854
berlin52_n51_uncorr-similar-weights_10 9059 9088 9088 9088
bier127_n126_bounded-strongly-corr_01 5977 6125 6029 5945
bier127_n126_bounded-strongly-corr_02 13338 13537 13467 13382
bier127_n126_bounded-strongly-corr_03 16576 16860 16802 16753
bier127_n126_bounded-strongly-corr_04 23558 23670 23639 23537
bier127_n126_bounded-strongly-corr_05 25449 25650 25486 24993
bier127_n126_bounded-strongly-corr_06 27985 28340 28113 27748
bier127_n126_bounded-strongly-corr_07 34027 34890 34788 34298
bier127_n126_bounded-strongly-corr_08 39712 40630 40496 40263
bier127_n126_bounded-strongly-corr_09 39640 40982 40909 40596
bier127_n126_bounded-strongly-corr_10 39355 40352 40308 40215
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bier127_n126_uncorr_01 7747 8233 8231 8228
bier127_n126_uncorr_02 9376 9841 9784 9638
bier127_n126_uncorr_03 13855 14137 14096 13884
bier127_n126_uncorr_04 15236 15382 15328 15247
bier127_n126_uncorr_05 15876 15962 15906 15814
bier127_n126_uncorr_06 17366 17667 17514 17396
bier127_n126_uncorr_07 16964 17174 17073 16989
bier127_n126_uncorr_08 17782 18046 18005 17987
bier127_n126_uncorr_09 19898 20107 20105 20095
bier127_n126_uncorr_10 20071 20260 20233 20180
bier127_n126_uncorr-similar-weights_01 4679 4753 4740 4721
bier127_n126_uncorr-similar-weights_02 5884 6217 6192 6167
bier127_n126_uncorr-similar-weights_03 8636 9277 9206 9104
bier127_n126_uncorr-similar-weights_04 10272 11020 10901 10741
bier127_n126_uncorr-similar-weights_05 12552 13318 13309 13277
bier127_n126_uncorr-similar-weights_06 14058 15016 14991 14962
bier127_n126_uncorr-similar-weights_07 14960 16075 16025 15861
bier127_n126_uncorr-similar-weights_08 17171 18049 18046 18026
bier127_n126_uncorr-similar-weights_09 17975 19088 19043 18675
bier127_n126_uncorr-similar-weights_10 18726 19705 19668 19368
ch130_n129_bounded-strongly-corr_01 9516 9707 9659 9593
ch130_n129_bounded-strongly-corr_02 16841 16834 16776 16591
ch130_n129_bounded-strongly-corr_03 21619 21597 21546 21438
ch130_n129_bounded-strongly-corr_04 25237 25533 25364 24926
ch130_n129_bounded-strongly-corr_05 31888 32311 32257 32134
ch130_n129_bounded-strongly-corr_06 34734 34988 34930 34785
ch130_n129_bounded-strongly-corr_07 38207 38800 38546 38303
ch130_n129_bounded-strongly-corr_08 43801 44251 43960 43694
ch130_n129_bounded-strongly-corr_09 43655 44963 44879 44563
ch130_n129_bounded-strongly-corr_10 41689 42817 42787 42564
ch130_n129_uncorr_01 6499 6895 6838 6741
ch130_n129_uncorr_02 7315 7513 7461 7337
ch130_n129_uncorr_03 11923 12021 11989 11896
ch130_n129_uncorr_04 15154 15433 15357 15209
ch130_n129_uncorr_05 17730 17890 17858 17673
ch130_n129_uncorr_06 18846 18987 18941 18890
ch130_n129_uncorr_07 20169 20325 20279 20153
ch130_n129_uncorr_08 21320 21535 21462 21334
ch130_n129_uncorr_09 21776 22066 22010 21940
ch130_n129_uncorr_10 21882 22058 22011 21879
ch130_n129_uncorr-similar-weights_01 4587 4615 4607 4594
ch130_n129_uncorr-similar-weights_02 8064 8203 8179 8169
ch130_n129_uncorr-similar-weights_03 12495 12845 12813 12700
ch130_n129_uncorr-similar-weights_04 14100 14430 14375 14334
ch130_n129_uncorr-similar-weights_05 14453 14726 14610 14569
ch130_n129_uncorr-similar-weights_06 15746 15899 15873 15832
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ch130_n129_uncorr-similar-weights_07 18059 18214 18186 18168
ch130_n129_uncorr-similar-weights_08 17373 17472 17383 17060
ch130_n129_uncorr-similar-weights_09 18627 18662 18615 18449
ch130_n129_uncorr-similar-weights_10 20264 20477 20450 20374
eil51_n50_bounded-strongly-corr_01 4269 4269 4269 4269
eil51_n50_bounded-strongly-corr_02 5571 5571 5571 5571
eil51_n50_bounded-strongly-corr_03 5885 5885 5885 5885
eil51_n50_bounded-strongly-corr_04 6310 6397 6386 6286
eil51_n50_bounded-strongly-corr_05 4906 5138 5138 5138
eil51_n50_bounded-strongly-corr_06 7083 7114 7113 7112
eil51_n50_bounded-strongly-corr_07 8240 8450 8450 8450
eil51_n50_bounded-strongly-corr_08 7059 7342 7342 7342
eil51_n50_bounded-strongly-corr_09 6775 6824 6820 6816
eil51_n50_bounded-strongly-corr_10 11000 11136 11134 11110
eil51_n50_uncorr_01 2851 2871 2871 2871
eil51_n50_uncorr_02 4791 4892 4892 4886
eil51_n50_uncorr_03 5404 5404 5404 5404
eil51_n50_uncorr_04 3013 3013 3013 3013
eil51_n50_uncorr_05 4408 4408 4408 4408
eil51_n50_uncorr_06 4440 4440 4440 4440
eil51_n50_uncorr_07 4142 4165 4165 4165
eil51_n50_uncorr_08 4790 4827 4827 4827
eil51_n50_uncorr_09 6122 6124 6124 6124
eil51_n50_uncorr_10 6821 6906 6906 6906
eil51_n50_uncorr-similar-weights_01 1448 1460 1460 1460
eil51_n50_uncorr-similar-weights_02 3769 3792 3792 3792
eil51_n50_uncorr-similar-weights_03 4433 4515 4515 4515
eil51_n50_uncorr-similar-weights_04 3160 3234 3234 3234
eil51_n50_uncorr-similar-weights_05 2134 2172 2172 2172
eil51_n50_uncorr-similar-weights_06 2743 2743 2743 2743
eil51_n50_uncorr-similar-weights_07 2857 2867 2867 2867
eil51_n50_uncorr-similar-weights_08 3452 3484 3484 3484
eil51_n50_uncorr-similar-weights_09 4094 4200 4200 4200
eil51_n50_uncorr-similar-weights_10 5632 5632 5632 5632
kroA100_n99_bounded-strongly-corr_01 4833 4976 4976 4976
kroA100_n99_bounded-strongly-corr_02 10167 10206 10202 10183
kroA100_n99_bounded-strongly-corr_03 12444 12749 12648 12585
kroA100_n99_bounded-strongly-corr_04 15266 15585 15447 15330
kroA100_n99_bounded-strongly-corr_05 19926 20271 20156 19958
kroA100_n99_bounded-strongly-corr_06 21348 22004 21902 21615
kroA100_n99_bounded-strongly-corr_07 22621 23497 23332 22938
kroA100_n99_bounded-strongly-corr_08 22135 23135 23000 22485
kroA100_n99_bounded-strongly-corr_09 22201 23562 23355 23159
kroA100_n99_bounded-strongly-corr_10 22986 23956 23785 23414
kroA100_n99_uncorr_01 3891 3966 3965 3953
kroA100_n99_uncorr_02 7176 7375 7375 7375
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kroA100_n99_uncorr_03 7712 7896 7896 7896
kroA100_n99_uncorr_04 10644 10760 10758 10745
kroA100_n99_uncorr_05 10838 10992 10991 10978
kroA100_n99_uncorr_06 11717 11859 11857 11848
kroA100_n99_uncorr_07 12362 12421 12417 12411
kroA100_n99_uncorr_08 14780 14863 14861 14856
kroA100_n99_uncorr_09 15375 15665 15664 15659
kroA100_n99_uncorr_10 16392 16510 16501 16480
kroA100_n99_uncorr-similar-weights_01 2286 2369 2368 2363
kroA100_n99_uncorr-similar-weights_02 5958 6129 6129 6129
kroA100_n99_uncorr-similar-weights_03 8263 8578 8578 8578
kroA100_n99_uncorr-similar-weights_04 9303 9594 9594 9594
kroA100_n99_uncorr-similar-weights_05 9609 9722 9722 9722
kroA100_n99_uncorr-similar-weights_06 11479 11818 11818 11818
kroA100_n99_uncorr-similar-weights_07 12953 13232 13227 13181
kroA100_n99_uncorr-similar-weights_08 13761 13850 13846 13838
kroA100_n99_uncorr-similar-weights_09 15301 15377 15376 15368
kroA100_n99_uncorr-similar-weights_10 15999 16053 16050 16046
pr76_n75_bounded-strongly-corr_01 2780 2797 2796 2787
pr76_n75_bounded-strongly-corr_02 4909 4909 4909 4909
pr76_n75_bounded-strongly-corr_03 7291 7533 7492 7322
pr76_n75_bounded-strongly-corr_04 6903 7237 7222 7195
pr76_n75_bounded-strongly-corr_05 12558 12898 12887 12831
pr76_n75_bounded-strongly-corr_06 14659 15264 15258 15202
pr76_n75_bounded-strongly-corr_07 16332 17381 17274 16990
pr76_n75_bounded-strongly-corr_08 19805 20795 20793 20788
pr76_n75_bounded-strongly-corr_09 21309 22574 22541 22519
pr76_n75_bounded-strongly-corr_10 24559 25772 25760 25711
pr76_n75_uncorr_01 4856 5105 5105 5105
pr76_n75_uncorr_02 7602 7604 7604 7604
pr76_n75_uncorr_03 9215 9293 9293 9293
pr76_n75_uncorr_04 8639 8665 8664 8651
pr76_n75_uncorr_05 9208 9664 9664 9664
pr76_n75_uncorr_06 9683 10238 10238 10238
pr76_n75_uncorr_07 11505 11904 11904 11904
pr76_n75_uncorr_08 11401 11738 11738 11738
pr76_n75_uncorr_09 11062 11431 11431 11431
pr76_n75_uncorr_10 13861 14140 14140 14140
pr76_n75_uncorr-similar-weights_01 2564 2681 2681 2681
pr76_n75_uncorr-similar-weights_02 4454 4723 4723 4723
pr76_n75_uncorr-similar-weights_03 3786 4212 4212 4212
pr76_n75_uncorr-similar-weights_04 6044 6703 6700 6692
pr76_n75_uncorr-similar-weights_05 6205 6759 6754 6733
pr76_n75_uncorr-similar-weights_06 7349 7963 7956 7890
pr76_n75_uncorr-similar-weights_07 8455 8733 8733 8733
pr76_n75_uncorr-similar-weights_08 10807 11037 11037 11037
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pr76_n75_uncorr-similar-weights_09 11037 11341 11341 11341
pr76_n75_uncorr-similar-weights_10 12696 12873 12873 12873
rat195_n194_bounded-strongly-corr_01 13163 13877 13749 13597
rat195_n194_bounded-strongly-corr_02 25752 27205 27047 26874
rat195_n194_bounded-strongly-corr_03 28315 29875 29704 29473
rat195_n194_bounded-strongly-corr_04 32495 34746 34442 33376
rat195_n194_bounded-strongly-corr_05 28210 30564 30197 29859
rat195_n194_bounded-strongly-corr_06 32109 35511 35251 34817
rat195_n194_bounded-strongly-corr_07 31380 35894 35548 35171
rat195_n194_bounded-strongly-corr_08 35876 39792 39403 39064
rat195_n194_bounded-strongly-corr_09 40781 42868 42693 42380
rat195_n194_bounded-strongly-corr_10 41142 44106 43695 43324
rat195_n194_uncorr_01 8288 8760 8676 8596
rat195_n194_uncorr_02 15173 15822 15673 15547
rat195_n194_uncorr_03 19860 21090 20852 20580
rat195_n194_uncorr_04 22275 23476 23250 22899
rat195_n194_uncorr_05 24900 25972 25475 25031
rat195_n194_uncorr_06 22426 22710 22571 22332
rat195_n194_uncorr_07 25550 26325 25718 25521
rat195_n194_uncorr_08 24124 24878 24419 24109
rat195_n194_uncorr_09 25003 25488 25202 24995
rat195_n194_uncorr_10 26329 26928 26566 26295
rat195_n194_uncorr-similar-weights_01 4753 5310 5260 5149
rat195_n194_uncorr-similar-weights_02 9093 10003 9843 9647
rat195_n194_uncorr-similar-weights_03 8978 9708 9563 9427
rat195_n194_uncorr-similar-weights_04 11382 12184 11943 11685
rat195_n194_uncorr-similar-weights_05 14497 15126 14983 14678
rat195_n194_uncorr-similar-weights_06 15075 15471 15270 15128
rat195_n194_uncorr-similar-weights_07 18400 18944 18788 18615
rat195_n194_uncorr-similar-weights_08 20380 20969 20757 20374
rat195_n194_uncorr-similar-weights_09 22842 23456 23253 22953
rat195_n194_uncorr-similar-weights_10 24862 25332 25216 25060

Table 28: Table showing the results of the 240 studied instances.

Benchmark Best Average Worst
berlin52_n153_bounded-strongly-corr_01 10364 10447 10445 10441
berlin52_n153_bounded-strongly-corr_02 18894 18949 18886 18797
berlin52_n153_bounded-strongly-corr_03 24276 24295 24221 23953
berlin52_n153_bounded-strongly-corr_04 34926 34971 34901 34733
berlin52_n153_bounded-strongly-corr_05 37690 37713 37527 37142
berlin52_n153_bounded-strongly-corr_06 45292 45292 45180 45163
berlin52_n153_bounded-strongly-corr_07 46248 46969 46969 46969
berlin52_n153_bounded-strongly-corr_08 51480 52380 52380 52380
berlin52_n153_bounded-strongly-corr_09 48913 50010 50010 50010
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berlin52_n153_bounded-strongly-corr_10 50221 51334 51334 51334
berlin52_n153_uncorr_01 11201 11201 11201 11201
berlin52_n153_uncorr_02 12831 12839 12839 12839
berlin52_n153_uncorr_03 18800 18812 18812 18812
berlin52_n153_uncorr_04 20611 20611 20611 20611
berlin52_n153_uncorr_05 20521 20521 20521 20521
berlin52_n153_uncorr_06 18634 18679 18679 18679
berlin52_n153_uncorr_07 20767 20767 20767 20767
berlin52_n153_uncorr_08 22431 22431 22431 22431
berlin52_n153_uncorr_09 22100 22146 22146 22146
berlin52_n153_uncorr_10 24009 24162 24162 24162
berlin52_n153_uncorr-similar-weights_01 5826 5832 5831 5826
berlin52_n153_uncorr-similar-weights_02 10197 10320 10320 10320
berlin52_n153_uncorr-similar-weights_03 11894 12163 12163 12163
berlin52_n153_uncorr-similar-weights_04 12115 12565 12565 12565
berlin52_n153_uncorr-similar-weights_05 16625 17325 17325 17325
berlin52_n153_uncorr-similar-weights_06 17978 19066 19066 19066
berlin52_n153_uncorr-similar-weights_07 20124 21489 21489 21489
berlin52_n153_uncorr-similar-weights_08 22911 23833 23833 23833
berlin52_n153_uncorr-similar-weights_09 24436 25466 25466 25466
berlin52_n153_uncorr-similar-weights_10 27037 27626 27626 27626
berlin52_n255_bounded-strongly-corr_01 16367 16511 16452 16401
berlin52_n255_bounded-strongly-corr_02 33024 33052 33026 32992
berlin52_n255_bounded-strongly-corr_03 50175 50289 50202 49798
berlin52_n255_bounded-strongly-corr_04 59965 59995 59874 59631
berlin52_n255_bounded-strongly-corr_05 71281 71291 71028 70115
berlin52_n255_bounded-strongly-corr_06 86954 86944 86361 86072
berlin52_n255_bounded-strongly-corr_07 92856 93790 93790 93790
berlin52_n255_bounded-strongly-corr_08 98228 99877 99877 99877
berlin52_n255_bounded-strongly-corr_09 97987 99675 99675 99675
berlin52_n255_bounded-strongly-corr_10 86780 90946 90946 90946
berlin52_n255_uncorr_01 19967 20040 20040 20040
berlin52_n255_uncorr_02 25027 25247 25247 25247
berlin52_n255_uncorr_03 31163 31356 31356 31356
berlin52_n255_uncorr_04 35133 35482 35482 35482
berlin52_n255_uncorr_05 36883 37324 37324 37324
berlin52_n255_uncorr_06 37259 37561 37561 37561
berlin52_n255_uncorr_07 41220 41754 41754 41754
berlin52_n255_uncorr_08 40264 40566 40566 40566
berlin52_n255_uncorr_09 40539 40911 40911 40911
berlin52_n255_uncorr_10 42582 43354 43354 43354
berlin52_n255_uncorr-similar-weights_01 10888 10939 10939 10939
berlin52_n255_uncorr-similar-weights_02 17226 17247 17247 17247
berlin52_n255_uncorr-similar-weights_03 21457 21881 21881 21881
berlin52_n255_uncorr-similar-weights_04 24335 25116 25116 25116
berlin52_n255_uncorr-similar-weights_05 28571 29602 29602 29602
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berlin52_n255_uncorr-similar-weights_06 31825 32436 32436 32436
berlin52_n255_uncorr-similar-weights_07 34850 35817 35817 35817
berlin52_n255_uncorr-similar-weights_08 40224 40735 40735 40735
berlin52_n255_uncorr-similar-weights_09 43247 44452 44452 44452
berlin52_n255_uncorr-similar-weights_10 46952 47893 47893 47893
berlin52_n510_bounded-strongly-corr_01 31832 32352 32344 32337
berlin52_n510_bounded-strongly-corr_02 61259 61438 61345 61254
berlin52_n510_bounded-strongly-corr_03 90621 90648 90457 89879
berlin52_n510_bounded-strongly-corr_04 113406 113425 113043 112708
berlin52_n510_bounded-strongly-corr_05 135417 135454 134909 133022
berlin52_n510_bounded-strongly-corr_06 156360 156368 155671 154673
berlin52_n510_bounded-strongly-corr_07 168648 170350 170350 170350
berlin52_n510_bounded-strongly-corr_08 181775 183273 183273 183273
berlin52_n510_bounded-strongly-corr_09 185583 187669 187669 187669
berlin52_n510_bounded-strongly-corr_10 174819 180308 180308 180308
berlin52_n510_uncorr_01 40122 40877 40877 40877
berlin52_n510_uncorr_02 56261 57102 57102 57102
berlin52_n510_uncorr_03 61725 62478 62478 62478
berlin52_n510_uncorr_04 71536 72132 72132 72132
berlin52_n510_uncorr_05 76418 77081 77081 77081
berlin52_n510_uncorr_06 80715 81393 81393 81393
berlin52_n510_uncorr_07 85398 86375 86375 86375
berlin52_n510_uncorr_08 87714 88967 88967 88967
berlin52_n510_uncorr_09 88796 89727 89727 89727
berlin52_n510_uncorr_10 95381 96519 96519 96519
berlin52_n510_uncorr-similar-weights_01 25675 25803 25803 25803
berlin52_n510_uncorr-similar-weights_02 38945 38945 38945 38945
berlin52_n510_uncorr-similar-weights_03 48460 48477 48477 48477
berlin52_n510_uncorr-similar-weights_04 54687 54691 54691 54691
berlin52_n510_uncorr-similar-weights_05 61041 61744 61744 61744
berlin52_n510_uncorr-similar-weights_06 65548 66311 66311 66311
berlin52_n510_uncorr-similar-weights_07 71106 71737 71737 71737
berlin52_n510_uncorr-similar-weights_08 77929 78985 78985 78985
berlin52_n510_uncorr-similar-weights_09 85698 87443 87443 87443
berlin52_n510_uncorr-similar-weights_10 92956 94630 94630 94630
eil51_n150_bounded-strongly-corr_01 7169 7253 7253 7253
eil51_n150_bounded-strongly-corr_02 13383 13447 13447 13447
eil51_n150_bounded-strongly-corr_03 15855 15855 15767 15678
eil51_n150_bounded-strongly-corr_04 21641 21641 21615 21379
eil51_n150_bounded-strongly-corr_05 22996 22996 22996 22996
eil51_n150_bounded-strongly-corr_06 21045 21045 21045 21045
eil51_n150_bounded-strongly-corr_07 21226 21226 21226 21226
eil51_n150_bounded-strongly-corr_08 20725 20725 20725 20725
eil51_n150_bounded-strongly-corr_09 23553 23553 23553 23553
eil51_n150_bounded-strongly-corr_10 24359 24359 24359 24359
eil51_n150_uncorr_01 6884 6884 6884 6884

109



eil51_n150_uncorr_02 9331 9363 9363 9363
eil51_n150_uncorr_03 11360 11360 11360 11360
eil51_n150_uncorr_04 8928 9086 9086 9086
eil51_n150_uncorr_05 9734 9734 9734 9734
eil51_n150_uncorr_06 11107 11135 11135 11135
eil51_n150_uncorr_07 11710 11763 11763 11763
eil51_n150_uncorr_08 14415 14415 14415 14415
eil51_n150_uncorr_09 17394 17394 17394 17394
eil51_n150_uncorr_10 20173 20173 20173 20173
eil51_n150_uncorr-similar-weights_01 4275 4325 4325 4325
eil51_n150_uncorr-similar-weights_02 7958 7958 7958 7958
eil51_n150_uncorr-similar-weights_03 11166 11166 11166 11166
eil51_n150_uncorr-similar-weights_04 8082 8118 8118 8118
eil51_n150_uncorr-similar-weights_05 8953 9103 9103 9103
eil51_n150_uncorr-similar-weights_06 9786 9786 9786 9786
eil51_n150_uncorr-similar-weights_07 11637 11637 11637 11637
eil51_n150_uncorr-similar-weights_08 12294 12294 12294 12294
eil51_n150_uncorr-similar-weights_09 13823 13889 13889 13889
eil51_n150_uncorr-similar-weights_10 15736 15940 15940 15940
eil51_n250_bounded-strongly-corr_01 11674 11734 11719 11698
eil51_n250_bounded-strongly-corr_02 20607 20675 20675 20675
eil51_n250_bounded-strongly-corr_03 31651 31655 31655 31655
eil51_n250_bounded-strongly-corr_04 34099 34101 34101 34101
eil51_n250_bounded-strongly-corr_05 33353 33353 33297 33040
eil51_n250_bounded-strongly-corr_06 39486 39486 39454 39158
eil51_n250_bounded-strongly-corr_07 38721 38721 38528 38247
eil51_n250_bounded-strongly-corr_08 42302 42302 42302 42302
eil51_n250_bounded-strongly-corr_09 42440 42440 42440 42440
eil51_n250_bounded-strongly-corr_10 39166 39166 39166 39166
eil51_n250_uncorr_01 11630 11753 11753 11753
eil51_n250_uncorr_02 17652 17689 17689 17689
eil51_n250_uncorr_03 15963 15963 15963 15963
eil51_n250_uncorr_04 18707 18707 18707 18707
eil51_n250_uncorr_05 18815 18815 18815 18815
eil51_n250_uncorr_06 20944 20944 20944 20944
eil51_n250_uncorr_07 19377 19377 19377 19377
eil51_n250_uncorr_08 23593 23593 23593 23593
eil51_n250_uncorr_09 26795 26795 26795 26795
eil51_n250_uncorr_10 31062 31062 31062 31062
eil51_n250_uncorr-similar-weights_01 5655 5792 5792 5792
eil51_n250_uncorr-similar-weights_02 10300 10300 10300 10300
eil51_n250_uncorr-similar-weights_03 12566 12566 12566 12566
eil51_n250_uncorr-similar-weights_04 12061 12061 12061 12061
eil51_n250_uncorr-similar-weights_05 14428 14428 14428 14428
eil51_n250_uncorr-similar-weights_06 17100 17100 17100 17100
eil51_n250_uncorr-similar-weights_07 19973 19984 19984 19984
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eil51_n250_uncorr-similar-weights_08 19516 19516 19516 19516
eil51_n250_uncorr-similar-weights_09 22623 22623 22623 22623
eil51_n250_uncorr-similar-weights_10 27782 27806 27806 27806
eil51_n500_bounded-strongly-corr_01 26870 26870 26862 26835
eil51_n500_bounded-strongly-corr_02 42950 43023 42913 42605
eil51_n500_bounded-strongly-corr_03 64274 64276 64258 64225
eil51_n500_bounded-strongly-corr_04 70133 70133 70090 69991
eil51_n500_bounded-strongly-corr_05 77597 77605 77605 77605
eil51_n500_bounded-strongly-corr_06 80925 80925 80925 80925
eil51_n500_bounded-strongly-corr_07 83059 83066 83065 83059
eil51_n500_bounded-strongly-corr_08 82008 82008 82008 82008
eil51_n500_bounded-strongly-corr_09 81822 82004 81896 81647
eil51_n500_bounded-strongly-corr_10 79770 80039 80039 80039
eil51_n500_uncorr_01 22722 23040 23040 23040
eil51_n500_uncorr_02 34045 34045 34045 34045
eil51_n500_uncorr_03 42481 42494 42494 42494
eil51_n500_uncorr_04 42388 42411 42411 42411
eil51_n500_uncorr_05 46899 46899 46899 46899
eil51_n500_uncorr_06 46710 46829 46829 46829
eil51_n500_uncorr_07 45380 45380 45380 45380
eil51_n500_uncorr_08 51236 51236 51236 51236
eil51_n500_uncorr_09 56653 56653 56653 56653
eil51_n500_uncorr_10 65075 65075 65075 65075
eil51_n500_uncorr-similar-weights_01 13398 13407 13407 13407
eil51_n500_uncorr-similar-weights_02 20710 20710 20667 20495
eil51_n500_uncorr-similar-weights_03 23372 23372 23372 23372
eil51_n500_uncorr-similar-weights_04 22658 22789 22789 22789
eil51_n500_uncorr-similar-weights_05 29666 29679 29679 29679
eil51_n500_uncorr-similar-weights_06 33347 33347 33347 33347
eil51_n500_uncorr-similar-weights_07 38734 38734 38734 38734
eil51_n500_uncorr-similar-weights_08 42567 42567 42567 42567
eil51_n500_uncorr-similar-weights_09 48774 48774 48774 48774
eil51_n500_uncorr-similar-weights_10 55972 55972 55972 55972
pr76_n225_bounded-strongly-corr_01 15366 15703 15677 15614
pr76_n225_bounded-strongly-corr_02 21542 21729 21697 21648
pr76_n225_bounded-strongly-corr_03 27422 27630 27606 27578
pr76_n225_bounded-strongly-corr_04 34894 35572 35534 35464
pr76_n225_bounded-strongly-corr_05 44469 46044 45992 45787
pr76_n225_bounded-strongly-corr_06 46162 48722 48722 48722
pr76_n225_bounded-strongly-corr_07 57890 61958 61958 61958
pr76_n225_bounded-strongly-corr_08 59366 64072 64072 64072
pr76_n225_bounded-strongly-corr_09 65000 69948 69948 69948
pr76_n225_bounded-strongly-corr_10 69642 72785 72785 72785
pr76_n225_uncorr_01 18018 18558 18558 18558
pr76_n225_uncorr_02 14059 14317 14203 13747
pr76_n225_uncorr_03 17909 18507 18507 18507
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pr76_n225_uncorr_04 19486 19749 19730 19564
pr76_n225_uncorr_05 21151 21336 21330 21315
pr76_n225_uncorr_06 25365 25799 25797 25774
pr76_n225_uncorr_07 27652 28096 28096 28096
pr76_n225_uncorr_08 32456 32833 32781 32659
pr76_n225_uncorr_09 32855 33539 33530 33450
pr76_n225_uncorr_10 35183 35436 35419 35401
pr76_n225_uncorr-similar-weights_01 7971 8138 8137 8137
pr76_n225_uncorr-similar-weights_02 11254 11708 11708 11708
pr76_n225_uncorr-similar-weights_03 15338 16084 16084 16084
pr76_n225_uncorr-similar-weights_04 16050 16830 16772 16533
pr76_n225_uncorr-similar-weights_05 17305 17900 17890 17803
pr76_n225_uncorr-similar-weights_06 21579 21723 21721 21701
pr76_n225_uncorr-similar-weights_07 25921 26278 26278 26278
pr76_n225_uncorr-similar-weights_08 27194 28000 28000 28000
pr76_n225_uncorr-similar-weights_09 31673 32052 32050 32034
pr76_n225_uncorr-similar-weights_10 34309 35182 35172 35078
pr76_n375_bounded-strongly-corr_01 24306 24656 24581 24424
pr76_n375_bounded-strongly-corr_02 35589 35967 35940 35889
pr76_n375_bounded-strongly-corr_03 46870 47564 47559 47546
pr76_n375_bounded-strongly-corr_04 57189 58371 58355 58307
pr76_n375_bounded-strongly-corr_05 74211 75227 75199 75188
pr76_n375_bounded-strongly-corr_06 86303 89089 89054 89003
pr76_n375_bounded-strongly-corr_07 96614 99427 99287 99077
pr76_n375_bounded-strongly-corr_08 102211 102682 102682 102682
pr76_n375_bounded-strongly-corr_09 108360 111114 111114 111114
pr76_n375_bounded-strongly-corr_10 104239 109152 109152 109152
pr76_n375_uncorr_01 25075 25980 25970 25873
pr76_n375_uncorr_02 29563 30092 30084 30067
pr76_n375_uncorr_03 34047 35044 35036 35017
pr76_n375_uncorr_04 37538 39062 39062 39062
pr76_n375_uncorr_05 38051 38833 38792 38529
pr76_n375_uncorr_06 43834 44311 44311 44311
pr76_n375_uncorr_07 49318 50278 50278 50278
pr76_n375_uncorr_08 52215 53436 53436 53436
pr76_n375_uncorr_09 56362 57215 57215 57215
pr76_n375_uncorr_10 58827 60243 60243 60243
pr76_n375_uncorr-similar-weights_01 14138 14351 14351 14351
pr76_n375_uncorr-similar-weights_02 23487 24548 24548 24548
pr76_n375_uncorr-similar-weights_03 27485 28761 28761 28761
pr76_n375_uncorr-similar-weights_04 27196 27882 27882 27882
pr76_n375_uncorr-similar-weights_05 31269 31580 31580 31580
pr76_n375_uncorr-similar-weights_06 33212 34393 34393 34393
pr76_n375_uncorr-similar-weights_07 38352 40479 40479 40479
pr76_n375_uncorr-similar-weights_08 45350 46661 46661 46661
pr76_n375_uncorr-similar-weights_09 52059 52851 52851 52851
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pr76_n375_uncorr-similar-weights_10 56880 57648 57648 57648
pr76_n750_bounded-strongly-corr_01 45586 46435 46357 46301
pr76_n750_bounded-strongly-corr_02 74809 75065 74904 74220
pr76_n750_bounded-strongly-corr_03 105096 106000 105578 105096
pr76_n750_bounded-strongly-corr_04 123691 125571 125571 125571
pr76_n750_bounded-strongly-corr_05 145783 148150 148120 147846
pr76_n750_bounded-strongly-corr_06 161895 164576 164316 163205
pr76_n750_bounded-strongly-corr_07 178660 182791 182791 182791
pr76_n750_bounded-strongly-corr_08 185533 188935 188935 188935
pr76_n750_bounded-strongly-corr_09 192163 198073 198073 198073
pr76_n750_bounded-strongly-corr_10 191703 198683 198683 198683
pr76_n750_uncorr_01 42412 43981 43981 43981
pr76_n750_uncorr_02 64525 65043 65043 65043
pr76_n750_uncorr_03 73314 74299 74299 74299
pr76_n750_uncorr_04 83825 84284 84284 84284
pr76_n750_uncorr_05 88062 89054 89054 89054
pr76_n750_uncorr_06 95701 97631 97631 97631
pr76_n750_uncorr_07 105461 106757 106757 106757
pr76_n750_uncorr_08 115087 116661 116661 116661
pr76_n750_uncorr_09 119245 122762 122762 122762
pr76_n750_uncorr_10 126317 128846 128846 128846
pr76_n750_uncorr-similar-weights_01 28602 28813 28738 28715
pr76_n750_uncorr-similar-weights_02 43265 43691 43682 43668
pr76_n750_uncorr-similar-weights_03 53943 54208 54208 54208
pr76_n750_uncorr-similar-weights_04 59383 61126 61126 61126
pr76_n750_uncorr-similar-weights_05 70169 71931 71931 71931
pr76_n750_uncorr-similar-weights_06 77243 80610 80610 80610
pr76_n750_uncorr-similar-weights_07 90223 92090 92090 92090
pr76_n750_uncorr-similar-weights_08 98333 102098 102098 102098
pr76_n750_uncorr-similar-weights_09 109815 110536 110536 110536
pr76_n750_uncorr-similar-weights_10 121977 122718 122718 122718

Table 29: Table showing the results of the extra 270 instances
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Table 27: Table showing the time in minutes it takes for 2500 local optima to
complete with a steady state genetic algorithm.

1 2 3 4 5 6 7 8 9 10

eil51 BSC 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2
USW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

U 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
berlin52 BSC 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

USW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
U 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

pr76 BSC 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.6 0.6
USW 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

U 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4
kroA100 BSC 0.8 1 1 1.1 1.4 1.2 1.4 1.3 1.3 1.2

USW 0.8 0.8 0.9 1 1 1 1 1 0.8 0.8
U 0.6 0.7 0.8 0.8 0.9 0.9 1 0.9 0.9 0.8

bier127 BSC 2.1 2.1 1.9 1.9 1.8 1.9 1.9 2 1.9 1.9
USW 2.2 2.1 2 1.8 1.9 1.7 1.7 1.6 1.7 1.5

U 2 1.6 2 1.9 1.8 1.9 1.7 1.5 1.7 1.6
ch130 BSC 1.7 1.5 1.9 2.1 2.3 2.6 2.8 2.5 2.3 2.2

USW 1.7 1.6 1.7 1.9 1.8 2 1.6 1.7 1.6 1.6
U 1.6 1.6 1.7 1.7 1.8 1.7 1.6 1.5 1.5 1.6

rat195 BSC 5.9 5.8 6.2 8.8 9 9.6 9.4 8.2 8.3 8.2
USW 5.3 5.7 6 6.2 6.4 6.5 6.8 6.4 5.7 5.4

U 4.7 5.1 5.9 5.9 6.5 6.2 6.3 5.9 6.1 5.4
a280 BSC 14.9 16 19.6 22.5 21.9 21.8 20.9 22.1 19.1 22.7

USW 15.2 15.1 15.3 17.3 15.8 16.2 15.7 14.9 14.1 14.5
U 13.7 14 14 14.6 16.6 16.3 16.3 15.4 14.3 14.9
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