Compiling an Haskell EDSL to C

A new C back-end for the Copilot runtime
verification framework

Frank Dedden'?
Student number: 3705269

Mentor: Supervisor: Second examiner:
Alwyn Goodloe? Wouter Swierstral Jurriaan Hage!
May 18, 2018

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

v&‘Wi,
JJAAL\\

! Utrecht University
Department of Information and Computing Sciences
Utrecht, The Netherlands

5

/

2 NASA Langley Research Center 3 National Institute of Aerospace
Safety Critical Avionics Systems Branch Hampton, Virginia, USA
Hampton, Virginia, USA

Abstract

Electronics and computers are all around us, ranging from cellphones
to aircraft avionics. Some systems, including aircraft and nuclear pow-
erplants, are considered safety-critical: failure can lead to the injury or
death of humans. These ultra-critical systems require a very small prob-
ability of failure (< 1079), and are strictly certified by regulatory bodies.

Static software verification can aid in improving the safety of these
systems, but only scales for a limited number of properties. Functional
verification often requires the use of interactive theorem provers and are
not practical for industrial scale systems. There is also a push to apply
highly nondeterministic techniques such as machine learning in safety-
critical systems, which cannot be verified using traditional proof tech-
niques. Runtime verification, where specifications are checked during ex-
ecution can allow us to verify software systems that cannot be verified by
other means. The Haskell based Copilot runtime verification framework
has been developed as part of a NASA project applying runtime verifi-
cation to real-time embedded C programs. A lack of first class support
for arrays and structs limited Copilot’s practical usability. By replacing
the current Atom and SBV-based code generation back-ends by a new,
custom designed one, we are able to implement both arrays and structs
as first class members of our specification. Both C structs and arrays are
not straightforward to represent in Haskell, and require special attention.
In particular type literals have been used to implement a safer array than
Haskell normally allows.

Having native support for structs and arrays simplifies monitor spec-
ifications, and makes writing them easier and quicker. In addition, a
tailored code generator also allows us to improve on the readability of the
generated output code, making debugging and tracing easier, which in the
end aids in making systems safer.

Contents

1

Background 3
1.1 Safety-Critical Embedded Systems 3
1.2 Formal Methods, 4
1.3 Runtime Verification 0L 4
Introduction 5
2.1 Research question., 6
Copilot 6
3.1 Overview 6
3.2 Specifications Lo 8
3.3 Current limitations 10
Implementation 11
4.1 Structs 11

4.1.1 Indexedlists 12

4.1.2 Structs using datatypes 13
4.2 ArTays 17

4.2.1 Dependently typed arrays 18

4.2.2 Simplearrayso 20

4.2.3 Arrays using type literals 21
Code generator 24
5.1 Modelling streams in C, 24

51.1 Codeexample. 25

5.1.2 Bufferexample 27
5.2 Step function o 28
5.3 External streams 29
54 Arrays 29
5.5 ACSL specifications 31

5.5.1 Generators 32

5.5.2 Step function L Lo 33
Example 33
Related work 37
Discussion & Future work 37
Conclusion 39
Example code 40
Al Copilot-C99 40
A2 Copilot-SBVo 45

1 Background

In this section we provide a general background information for the top-
ics discussed in this thesis. Section 1.1 surveys safety-critical embedded
systems, which are the domain targeted for Copilot. Section 1.2 briefly
introduces basic concepts from formal methods. Section 1.3 provides a
short history of the field of runtime verification.

1.1 Safety-Critical Embedded Systems

Embedded systems are used in a wide range of applications, ranging from
televisions and cellphones, to automobiles, aircraft and ships. In all of
these applications we want the system to function correctly, but those
systems that are safety critical, that is where failure can result in injury or
death of a human, warrant special attention [Knight, 2002]. Society judges
some safety-critical systems serious enough to subject them to government
regulation and oversight. Systems that require a very small probability
of failure (lower than 107%), such as civil transport aircraft and nuclear
power stations are called wltra-critical, while ones that actually meet this
requirement are called ultra-reliable.

Ultra-reliable systems often must be certified by a regulatory body
as meeting the required levels of safety. In the case of civil transport
aircraft, there is a set of standardized software design and development
guidelines that, if followed, can help ensure the system to be certified.
For instance the guidance document SAE4761 [SAE, 1996] designates a
number of safety analyses that must be performed such as a hazard anal-
ysis [Leveson, 2012] and DO-178 [RTCA, 2011] describes many processes
that need to be followed in the software development and testing processes.
The grave consequences of failure have compelled industry and regulatory
authorities to adopt conservative design approaches and exhaustive verifi-
cation and validation (V&V) procedures to prevent mishaps. A particular
stress in DO-178 is traceability of code to requirements and testability.
Getting the requirements correct for large safety-critical systems is a very
difficult engineering task in and of itself and ensuring that the software has
a probability of failure (lower than 107°) is as much an art as a science.

In theory, software can be made “perfect”, but in the case of embed-
ded systems there are many assumptions about the operating environment
that can be violated once in use and both the computer hardware and the
system it is embedded in are subject to wear and tear as well as fail-
ure. Ultra-reliable systems must continue to function safely under such
conditions. The terms ‘failure’, ‘error’, and ‘fault’ have technical mean-
ings in the fault-tolerance literature. A failure occurs when a system is
unable to provide its required functions. An error is “that part of the
system state which is liable to lead to subsequent failure,” while a fault
is “the adjudged or hypothesized cause of an error” [Laprie, 1995]. For
example, a sensor may break due to a fault introduced by overheating.
The sensor reading error may then lead to system failure. A fault-tolerant
system [Butler, 2008] is one that continues to provide its required function-
ality in the presence of faults (for the faults tolerated). A fault-tolerant
system must not contain a single point of failure such that if the single

subsystem fails, the entire system fails. Thus, fault-tolerant systems are
often implemented as distributed collections of nodes such that a fault that
affects one node or channel will not adversely affect the whole system’s
functionality. Ultra-reliable systems achieve their high-level of reliability
through a combination of hardware redundancy and very sophisticated al-
gorithms. Unfortunately, this complexity of the solution means it is often
more difficult to implement than the actual system.

1.2 Formal Methods

Formal methods of program specification and verification has its origins
in the following two observations: first, that testing can show the pres-
ence of bugs, but cannot demonstrate their absence, and second, if pro-
grams and their specifications are expressed in a logical, formal language,
then program correctness can be demonstrated using formal mathematical
proof [Floyd, 1967, Hoare, 1969]. Great progress has been made in devel-
oping a range of mathematical techniques for ensuring varying levels of
correctness of both hardware and software and these techniques are gain-
ing increased acceptance in industry especially in safety-critical domains
such as aerospace. For instance the DO-333 [RTCA, 2011] supplement to
DO-178 provides guidance on how formal methods can be used instead
of testing for a significant percentage of the testing required to obtain
certification for civil aircraft.
Static analysis tools such as abstract interpretation

[Cousot and Cousot, 1977] can identify a significant class of bugs in soft-
ware, but current techniques tend to yield many false positives. Model
checking [Clarke et al., 1999], where a design is captured as a state ma-
chine and sophisticated algorithms are employed to check that this model
satisfies a temporal logic specification, has been especially effective in ver-
ifying safety properties of computer hardware and protocols. In addition,
model checking has been successfully used in may other application do-
mains, but model checking can be very sensitive to state explosion. The
aforementioned fully automatic tools are often not suitable for proving the
functional correctness of a system. For instance, this often requires the use
of interactive theorem provers such as Coq [Bertot and Castran, 2010] and
PVS [Owre et al., 1992], that require a lot of effort to for a programmer to
become proficient with. However, there is a growing body of experts in the
area who have had many notable successes ranging from verified compilers
to verified industrial floating-point units to verified airspace management
algorithms.

1.3 Runtime Verification

In spite of many notable successes in applying formal methods to indus-
trial systems, there are practical limitations. Formal methods are often
the most effective when applied to requirements, but given limited re-
sources, the code itself is not subject to formal proof. When applying
formal methods to the design many assumptions are made, these must
often be checked at run time. In the case of very large systems, it is not
yet practical to apply formal methods to the whole system. Advances

in artificial intelligence are enabling the development of increasingly au-
tonomous cyber-physical systems that modify their behavior in response
to the external environment and learn from their experience. While un-
manned aircraft systems (UAS) and self-driving cars have the potential
of transforming society in many beneficial ways, they also pose new dan-
gers to public safety. The algorithmic methods such as machine learning
that enable autonomy lack the salient feature of predictability since the
system’s behavior depends on what it has learned.

Runtime verification (RV) [Goodloe and Pike, 2010], where monitors
detect and respond to property violations at runtime, has the potential to
enable the safe operation of safety-critical systems that are too complex
to formally verify or fully test. Technically speaking, a RV monitor takes
a logical specification ¢ and execution trace 7 of state information of the
system under observation (SUO) and decides whether 7 satisfies ¢. Run-
time verification ensures that properties are not violated at runtime so it
cannot be viewed as a proof of correctness, but a significant improvement
over testing alone. The Simplex Architecture [Sha, 2001] provides an ar-
chitecture design for RV, where a monitor checks that the executing SUO
satisfies a specification and, if the property is violated, the RV system
will switch control to a more conservative component that can be assured
using conventional means, that steers the system into a safe state. High-
assurance RV provides an assured level of safety even when the SUO itself
cannot be verified by conventional means.

2 Introduction

Copilot [Pike et al., 2010, Pike et al., 2011, Pike et al., 2013] is a runtime
verification framework that was developed as part of a research project
investigating and applying runtime verification to safety-critical hard real-
time embedded systems. The project was initiated in 2010 under NASA
research by principal investigators Dr. Lee Pike (Galois Inc.) and Dr. Al-
wyn Goodloe (National Institute of Aerospace/NASA). The project con-
sists of a collection of Haskell libraries that provide an embedded domain
specific language (EDSL) for defining monitors for hard real-time embed-
ded systems. The Copilot framework translates high-level specifications
of system safety into monitors implemented in a subset of C that runs
in constant time and constant space on real-time embedded systems. To
date it has been applied to monitor software on an avionics testbed and
on various flights of an unmanned aircraft system (UAS).

While Copilot started out solely as a research project, over the years
engineers found more and more interest in the project as well. With
the increased use outside of research, several limitations of the current
implementation arose. The bigger deficiencies, no support for structs and
arrays and in some cases huge inefficiencies take a lot more effort to fix.
The solution to these problems is clear: rewrite the compiler of Copilot,
so we can have proper support for structs and arrays, and improve on
efficiency of the produced code as well.

If runtime verification is to be used when other forms of verification are
either impractical or impossible, it is very important for us to be able to

trust the monitors we have written. Hence we want to be able to formally
verify that the generated monitors indeed implement the specification.
This can be very difficult to do by hand, consequently we would like to
employ a verification tool for this.

The aim of this project is to find a solution to these problems, while
improving on the implementation in general. This will open up new pos-
sibilities for the application of Copilot.

2.1 Research question

The most important part of this project will be reimplementing the code
generator. Due to the nature of the project, we will not be focusing on
a single specific research question. We will define a broad question that
covers the project, but is subdivided in smaller research questions that
each focus on the sub problems. We define our main research question as
follows: How to translate Haskell monitoring code for embedded systems
to C? We can divide the problem into these questions:

e Non-scalar values, like structs and arrays, can not be directly trans-
lated from Haskell to C; how do we support these?

e How do we use a formal verification tool to verify the generated
code?

e Can we improve on the traceability of the code, without having the
user of Copilot do extra work?

3 Copilot

This section provides a brief introduction to the Copilot runtime ver-
ification framework intended to communicate the core ideas needed to
understand the later sections of this thesis.

3.1 Overview

Copilot consists of a collection of Haskell libraries that provide an em-
bedded domain specific language (EDSL) for defining monitors for hard
real-time embedded system. The defined monitors do not monitor hard-
ware directly but are interfaced with C variables and functions. This
approach has two main benefits: first, there is no need to implement
hardware specific features, and second, our monitor is not limited to sen-
sors, so we can monitor every possible C variable. Copilot can be seen as a
generalization of the idea of Lustre’s [Caspi et al., 1987] “synchronous ob-
servers” [Halbwachs et al., 1993], which are Boolean-valued streams used
to track properties about Lustre programs. Whereas Lustre uses syn-
chronous observers to monitor Lustre programs, Copilot applies the idea
to monitoring arbitrary periodically-scheduled real-time systems.

Most RV frameworks heavily instrument code so each update to a mon-
itored variable is sent to the monitor. This is not feasible in avionics and
similar domains. Instead, Copilot samples variables. Monitoring based
on sampling state-variables has historically been disregarded as a runtime

monitoring approach for good reason: without the assumption of syn-
chrony between the monitor and observed software, monitoring via sam-
pling may lead to false positives and false negatives [Dwyer et al., 2008].
For example, consider the property (0;1;1)*, written as a regular expres-
sion, denoting the sequence of values a monitored variable may take. If the
monitor samples the variable at the inappropriate time, then both false
negatives (the monitor erroneously rejects the sequence of values) and
false positives (the monitor erroneously accepts the sequence) are possi-
ble. For example, if the actual sequence of values is 0,1,1,0,1,1, then
an observation of 0,1,1,1,1 is a false negative by skipping a value, and
if the actual sequence is 0,1,0,1,1, then an observation of 0,1,1,0,1,1
is a false positive by sampling a value twice. However, in a hard real-
time context, sampling is a suitable strategy. Real-time programs usually
deliver output signals at a predicable rate and properties of interest are
generally data-flow oriented. In this context, and under the assumption
that the monitor and the observed program share a global clock and a
static periodic schedule, false positives are possible, while false negatives
are not. A false positive is possible, for example, if the program does not
execute according to its schedule but just happens to have the expected
values when sampled. In practice, this approach has worked very well for
Copilot since the engineers who use it are experienced at hard real-time
scheduling.

In order to interface with the C code, we need to translate our Haskell
specification to C, so it can be included from the C code base. The
translation from the front-end Copilot monitor, through underlying rep-
resentations to the final C code is done in several steps. Figure 1 shows
an overview of the modules in Copilot.

Core At the heart of the Copilot EDSL is Copilot Core, this contains
a low level representation of the specification. This specification
is translated to C code through one of the two back-ends, but for
testing purposes it can also be run in an interpreter.

Libraries/Language The front-end of Copilot is defined in Language.
It is a set of functions that makes working with the specification of
Core a lot easier. Users of Copilot will always use these functions
to write their specification, instead of speaking to Core directly.
Alongside Language, Copilot contains a number of more high level
libraries built on top of Language.

Atom back-end This code generating back-end is built upon the Atom
library [Hawkins, 2008] by Tom Hawkins, used for generating hard
real-time C code from Haskell. Currently this back-end is unmain-
tained, and although it produces code that works, the output is very
hard to read.

SBYV back-end This back-end generates code using Haskell’s SBV li-
brary, by Levent Erkck. SBV is a library to express properties and
prove them with an SMT solver. Currently this back-end is favored
over the Atom one, as it is being maintained, and it can be used to
express properties on the specification and have them proved by a
solver like Z3.

Interpreter The interpreter allows us to simulate the execution of a
monitor, without actually translating it to C. During testing this
allows us to run the monitor on a regular machine, instead of an em-
bedded one. The output of it can be tested and compared with the
back-ends using the QuickCheck [Claessen and Hughes, 2000] frame-
work.

Pretty Printer The pretty printer displays a slightly rewritten and more
humanly readable version of a Core specification. This could aid in
debugging monitors.

Copilot Libraries

Copilot Language Reification and
DSL-specific
type-checking

Interpreter EvaLlu<ﬂ[00pﬂot Core]—>[Pretty Printer]

QuickCheck

Translation

'SR

Atom Back—End] SBV Back-End

Compilation Compilation

Model checking
C99 C99

Figure 1: The Copilot toolchain

3.2 Specifications

A Copilot specification is a program written in a reactive EDSL. Func-
tional reactive programming is a form a declarative programming where
we write programs based around data streams. Explicitly modelling time
allows us to define streams depending on time. The Copilot EDSL is
based around streams as well, but differs slightly in the sense that it does
not explicitly model time.

In Copilot, the specification we write defines which external variables
from C are used, and how these are combined and modified in case calcu-
lations need to be made. These variables are represented using streams,
which are very similar to infinite lazy lists. In Copilot a single step, or
iteration, of a stream models a single step forward in time. As Copilot is

designed in such a way that the duration of a single iteration is always
constant, the streams determine our monitoring frequency.

Streams can be combined and modified using a number of operators.
Most of these operators are analogous to the ones defined for numerals
and lists. In addition, literal values are lifted to streams automatically,
this allows us the write programs on streams with relatively little syntactic
overhead:

X Stream Int32
x =1

This will yield the constant stream containing only ones. In similar ways,
the basic numerical operators like +, * etcetera are overloaded, and can
be applied directly to streams. The operator ++ is used to append a list
and a stream. Using these operators we can define the Fibonacci sequence
without much effort. Note that this function calculates the sequence over
time, each stream iteration the next element of the sequence is calculated:

fib :: Stream Int32
fib = [1, 1] ++ (fib + drop 1 fib)

The definition of £ib might seem surprising at first, but after a closer look
it is quite simple. We start of with defining a buffer of [1, 1], which are
the first two elements of our sequence. We append a stream, defined by
two recursive calls, to this buffer. We drop the first element from the
second call, effectively skipping the first element and jumping forward in
time by one step. The result is added to the first recursive call:

fib (1, 1, 2, 3, 5, 8 13, ...)
drop 1 £fib (1, 2, 3, 5 8 13, 21, ...)
fib + drop 1 £fib (2, 3, 5, 8, 13, 21, 34, ...)

Figure 2: Calculating the Fibonnaci sequence

One could imagine that we can drop any amount of elements from a
stream, but this is not the case. Future elements from a stream may de-
pend on external values, and by dropping elements from externals streams
we need to be able to look in the future, which for obvious reasons is not
possible. In practice we can drop elements from a stream as long as the
buffer always contains at least one element. In other words: the amount
n we drop must always be positive, but smaller then the length of the
buffer. fib has a buffer of two elements, therefore we can only drop a
single element maximum.

Modelling external variables as streams is done using the extern func-
tion. This function takes a name of a C variable and a possible list of
default values. It comes in several flavours, each of them for loading spe-
cific types of data. At some point we need to do something with the data
we read. Using triggers we can call previously defined C functions, based
on the value of a stream. The resulting type of trigger is Language. Spec,
which is a monad provided by Copilot used to keep track of triggers. In
order to use the spec, we have to reify it to the lower level Core.Spec

0~ Uk WN

representation first, which in turn gets compiled by the compile function,
implemented in the chosen back-end.

The following example illustrates the usage of many of the Copilot ca-
pabilities combined in a single monitor specification for a heating element.
Note that temperature, heat_on and heat_off are all defined in the C pro-
gram that actually interfaces the heater. In this example, we rely on the
C99 back-end to generate our code. In order to use the produced code, we
need to include the generated header file, call the step() function inside
our main-loop and compile all the sources with a C compiler.

Listing 1: Heater example

module Main where

import Language. Copilot
import Copilot.Compile.C99

import qualified Prelude as P

temp :: Stream Int32
temp = extern ”temperature” Nothing
spec = do

trigger ”"heat_on” (temp < 19) []
trigger ”"heat_off” (temp > 21) []

main = do reify spec >>= compile defaultParams

Copilot does support more constructs and operators, but these are
not necessary to understand the remainder of the thesis. The tutorial on
Copilot [Wegmann et al., 2015] provides more information on this matter.

3.3 Current limitations

The current implementation of Copilot started out as a project that has
been extended over the years. New possibilities and features have been
added by numerous people. Most projects that are developed in such a
manner are in need of a code refactoring at some point. It is not possible
to plan for every feature from the very start, nor can we require that every
developer has the same programming style. Sadly, Copilot is no exception
to this rule.

As described in section 3.1, Copilot has two back-ends available for the
generation of C code: C99 and SBYV. Currently both back-ends support
the same features, but only the SBV based one is maintained. The Atom
based C99 back-end works, but has not been maintained for a couple of
years. Both back-ends have a limited set of supported features: both
only support scalar values, so no structs or arrays. This is a rather large
problem, as most flight control systems in aircrafts rely on matrices, which
are either implemented by arrays or structs. In practice this means that
users of the library have to write functions to pack and unpack such data
structures, on both the C and Haskell side. Obviously this is a lot of
tedious and bug-prone work.

10

Another important shortcoming of the current back-ends is that they
produce code that is not efficient. C99 being based on Atom, creates
code that is constant in memory and time, and does its own scheduling.
Because of this, code generated by Atom deviates quite a lot from the
original definition. As the implementation of the C99 back-end is pretty
straightforward, no optimizations are done on the specification. In com-
bination with the way Atom is designed, we end up with code that is
not optimized for our purpose. The SBV back-end creates more readable
code, but everything is scattered over a large number of files, making it
hard to get a overview of the code.

Connected to the readability of the code is traceability: we want to be
able to tell which part of the produced code originates from which part of
the specification. Having readable code helps us understand the program
batter, and it is easier to see how parts relate to the original specification.
Traceability helps not only while debugging the generated code, but also
gives us a hint which part of the specification may take more time and
memory than other parts. Both of the current back-ends do not support
good traceability. As explained, C99 is based on Atom, which is its own
EDSL for defining programs. The generated code differs much from the
original specification, and because of that generated variable names are
used. This makes finding the original over variables and other pieces of
code so much harder. The SBV back-end however produces nicer code,
but as explained before, due to the scattered nature, it is very hard to
understand.

We want to be able to verify our specification. Currently the SBV
back-end can be verified using SBV. SBV does not support structs and
arrays however, so we cannot rely on SBV for this purpose. The C99
back-end does not support any verification language at all. Instead we
want to incorporate generation of ANSI/ISO C Specification Language
(ACSL) [Baudin et al., 2015] rules within our C generation. Using the
Frama-C verification tool [Frama-C webpage, 2018], we can than verify
our monitoring specification.

4 Implementation

In this section, we discuss design options considered for implementing
structs and arrays in Copilot. For both structs and arrays we will in-
troduce requirements criteria that had to be met in the implementation.
Several implementation techniques are presented in some depth and en-
gineering trade-offs are discussed in order that the reader may better
understand why we made the design decisions we made.

4.1 Structs

Structs are an important feature of the C programming language, and
are used to pack multiple values into a single variable. In avionics this
is useful to represent vectors, matrices and coordinates for example. If
we want to monitor structs with Copilot, we need to be able to represent
them in Haskell. Let us first take a look what defines structs:

11

1. A container that packs different fields together.

2. Each field has its own name and type, where the type can be any
valid type. These can be structs and arrays themselves as well.

3. We have to access each field, allowing us to read and modify them.

4. For code generation purposes, we need to be able to have the field
names available as strings in Haskell.

5. They are represented by a unique type, distinct from any other types
of structs.

Conditions 1 through 4 should be self explanatory, as they mimic C
structs, the fifth condition however is specific to Copilot. If we want to be
able to take a specific field of the struct, we need to translate our Haskell
definition to the equivalent C code. In order to do so, we need to know
the name of the field:

int a = struct. field;

There are roughly two ways to model structs in Copilot, both having
their advantages and disadvantages:

1. Use a single stream for a struct, modeling the struct as an indexed
list.

2. Rely on Haskell datatypes to model a struct, thus ending up with a
stream of these datatypes.

We will discuss these approaches in the next sections.

4.1.1 Indexed lists

Let us first take a look at the first approach, where we model structs by
simply using an indexed list of values. The name of the field is used as
the index, while both the value and type of the field are actually stored
as values in the list. We introduce the Type datatype, which we need to
represent the type of the field. Type therefore has a direct relation with
the types known by C. While technically we could have used Bool and
Int8 as constructor names of Type, here we prepend the names with a T,
to make a clear distinction with the regular Haskell types:

type VarName = String

data Type = TBool | TInt8 | TIntl6 |
data Value = forall a. V Type a

type Struct = [(VarName, Value)]

v :: Struct

v = extern ”v” Nothing

In order to create a list of different types of values (a heterogeneous list),
we need to hide the actual type (e.g. a Haskell-level Int or Double) behind
a constructor. In this case we use Value to combine a literal Haskell value
with its C type. By introducing an existential quantification on the value
of type a, we can omit it as a parameter to Value. As the type of Value

12

does not contain any information on the type that it contains, we can
use it to type heterogeneous lists: [Value]. Additionally, we need to
enable GHC’s ExistentialQuantification extension to be able to use
the forall keyword.

Judging by the requirements for structs we defined earlier, indexed
lists seem like a viable solution to implementing structs in Copilot:

1. It is possible to pack multiple fields together in one container.

2. By hiding the actual type using a quantified datatype like Value,
we can store values of different types. The Type datatype is used to
store the type, so we can pattern match on them if necessary.

3. Storing the elements in a list allows us to lookup specific fields by
name, and modify them.

4. The names of the fields are available as strings in Haskell, which is
necessary for generating C code that reads or updates these specific
fields.

Unfortunately though, the approach does not meet the fifth requirement,
as it uses a generic Struct type. Not only do all structs share this type,
the list does not provide us with much type-safety either. We can add
and remove items as we wish:

— A 2D wector

v2 :: Struct

v2 = [(”x”, V TFloat 1.0), ("y”, V TFloat 2.0)]
v2’ :: Struct

v2’ = (”condition” , V TBool False) : v2

While this may seem handy in some cases, this completely removes the
idea of using Haskell and its type-safety to write monitors.

4.1.2 Structs using datatypes

We need to find a way to model structs, that provides more type-safety
than lists, without violating any of the other requirements. Regular
Haskell datatypes, preferably using record-syntax, allow us to model structs
really well in Haskell:

struct Vec {
float x;
float y;

})

data Vec = Vec
{ x :: Float
, vy :: Float

}

Haskell’s type system now forces correct use of struct types: we cannot
add or remove fields to Vec, nor can we use it instead of any struct due to
its distinct type. The strict types come with a downside as well: we are
unable to write functions that are polymorphic on structs. When writing

13

© 00O U WN -

monitors this way will most likely not be a problem: monitors need to
work on specific structs, i.e. we cannot take a value of an arbitrary struct.
Internally in Copilot though, this limitation will lead to trouble. For
example, how do we implement the extern :: Typed a => String ->
Maybe [a] -> Stream a function, that reads an external struct? The
solution is easy enough, we create a Struct class of which all structs need
to be an instance:

Listing 2: Definition of the Typed class

class Typed a => Struct a where
typename :: a —> Typename a
toValues :: a —> Values a

data Typename a = TyTypedef String
| TyStruct String

type Values a = [Value]
data Value = forall a. V (Type a) String a

Line 1 Our instance of Struct needs to be an instance of Typed as well.
This class is used internally in Copilot, where streams can only hold
data of a type that is an instance of Typed. Because we want to
create a stream of our custom struct type, it needs to be an instance
of Typed.

Line 2 For code-generation purposes, we need to be able to access the
name of the struct, as used in C. This does not necessarily have to
be equal to the name of the Haskell datatype, but that would be the
most convenient. Note that typename is a function taking a value of
type a, and returning a parametrised Typename a. Sometimes GHC
is not able to infer the correct type of the parameter to Typename,
for example in cases where we immediately translate the type name
to something else like a string. Using a function for the type name
allows us to pass an explicit value, providing GHC with enough
informatin to find the correct instance.

Line 3 The names of the fields of the structs only exist at Haskell compile-
time, but we need to access them at runtime in Haskell. The solu-
tion is to bind a string to each field, containing the corresponding C
name. Instead of carrying the names of the fields around inside the
struct data (similar to the approach of Value in the indexed lists),
we opted to use a wrapper function: toValues.

Lines 5-6 In C a type of a struct can be written in two ways: by using the
struct keyword, or using a typedef. Both need to be supported in
Copilot, as both could be used by the C program we are monitoring.
The Typename datatype allows us to use either of the two, and the
output code will be written accordingly. It depends on the program
we are monitoring how the structs are defined, therefore it is up to
the programmer of the monitor to match this with the program.
By making Typename a phantom type, we make sure that the re-
sulting type is parametrised with the type of the struct it belongs

14

to. This makes it impossible to share a type name between different
types of structs, increasing type-safety a little bit.

Lines 8-10 The toValues function produces a list to describe the fields
of a struct. Because this list contains values of multiple types,
we need to create a heterogeneous list. Values is a phantom type
parametrised with the type of the struct that defines a list defining
the types of the struct’s fields.

Value is an interesting datatype in its own right in that it does not
take a parameter, yet the arguments of its constructor are parametrised.
Using the forall keyword, we create a so called quantified type, for
which the argument is inferred by GHC. The purpose of Value is
not only to hide the actual type of the value it holds, but also com-
bine this with a term-level representation of that type. We do not
want to lose this type information, so we can pattern match on it
when needed. We could have used the same definition of V as we
already did for our index list prototype. We did not choose to do
this however, as it allows us to write values that do not introduce a
type error, but is semantically illegal:

v :: Value
v =V TBool 10

The solution is to turn Type into a generic algebraic data type (GADT),
where each constructor can have a distinct result type:

data Type :: *x —> x where
TBool :: Type Bool
TInt8 :: Type Int8

TIntl6 :: Type Intl6

data Value = forall a. V (Type a) a

Because both arguments of V are bound by the same forall, we
force them to be of the same type. With these modifications, one
cannot write illegal values anymore:

v :: Value
v =V TInt8 True

* Couldn’t match expected type ‘TInt8’ with actual
type ‘Bool’
* In the second argument of ‘V’, namely ‘True’
In the expression: V TInt8 True

[N

In an equation for ‘v’: v =V TInt8 True

Surprisingly, this parametrised version of Type is already available
in Copilot, as it is used internally. In this report we prepend the
constructors with a T, to make a clear distinction with the Haskell
provided types.

15

0O Utk WN

Tk W N

Additionally, we need to extend the definition of Type with a constructor
for structs. Note that the constructor takes an argument to specify the
exact type of struct:

data Type :: % —> % where

TStruct :: (Typed a, Struct a) => a —> Type a

Now that we have seen how the Struct type class is defined, let us take a
look at a sample implementation of a simple vector datatype. This type
is represented in C by the following definition:

typedef struct {
float x;
float y;

} vec;

And in Haskell using the following instances:

Listing 3: Example instances of Struct and Typed

instance Struct Vec where
typename - = TyTypedef ”vec”
toValues v. = [V TFloat "x” (x v)
, V TFloat 7y” (y v)
]

instance Typed Vec where
typeOf = TStruct (Vec 0 0)

Line 2 We define the type name as a typedef of “vec” to match the
definition in C.

Lines 3-5 The result of toValues is a list of the fields in the same order
as defined in the data type.

Line 8 To complete the instance for Typed, we need to provide a defini-
tion to typeOf, which is used by the code generator. The interesting
part is that we need to provide TStruct with something of the cor-
rect type. The easiest solution is to provide a dummy vector, for
which the actual values inside the vector are ignored.

Now structs are real first-class in Copilot, so we treat them as such:

Listing 4: Example usage of structs

exvec :: Stream Vec
exvec = extern ”"exvec” Nothing

s Stream Vec
s = [Vec 1.0 2.0, Vec 3.0 4.0] ++ exvec

16

4.2 Arrays

Together with support for structs, support for arrays form the most im-
portant change in the new back-end. At first glance, arrays seem easier
to implement then structs, being a collection of homogeneous values. In
practice, arrays turn out to be harder to implement, mostly because we
cannot define its type as strictly as we can for structs. In addition, we
need to find a suitable representation for nested arrays like matrices. The
problem of implementing arrays in Copilot is twofold: first off we need to
find a suitable way to model arrays in Haskell. In addition we have to
write C code that semantically behaves similar to the implementation for
scalar values and arrays. We will see that this code is more complicated
however, as arrays are not first class members of the C language.

Haskell does provide an array type, but not one that has a very precise
relation with C arrays. Let us therefore define some requirements, so we
can model C arrays as close as possible:

1. The array should be indexed only by unsigned integers, just like in
C.

2. We would like to disallow nested arrays (i.e. an array of type
Array (Array a)), but rather support real multi-dimensional ar-
rays. Nested arrays have the downside, that it is impossible to force
the sub arrays to be of equal length. The type does not force so
called rectangular arrays. Just like with lists we can define non-
rectangular arrays: [[1, 2], [4, 5, 6] 1. While this is possible
in C, it is not trivial and not really useful either.
Multi-dimensional arrays do force arrays to be rectangular, as we
use an index with multiple dimensions. These dimensions always
specify a rectangular range of numbers, and therefore a rectangular
array as well.

We could force rectangular arrays using dependent types, by spec-
ifying the length of the array with its type. The inner arrays than
would have a fixed length as well, i.e. Array 2 (Array 4 a). With-
out relying on language extensions, Haskell does not (yet) allow type
literals and dependent types, so we cannot force nested arrays to be
rectangular. We could use these extensions, but as we will see later
on, this will not completely fix our problems.

Another problem with nested arrays, is that it makes generating
C code harder. While C supports nested arrays, usage of deeply
nested arrays requires a lot of pointer operations, obfuscating our
code. The solution would be to flatten the arrays, but this introduces
another problem: it is not possible to flatten an array using a regular
function. This is similar to the problem of flattening an arbitrary
list, it is not possible to come up with a correct type for such a
function. Our best shot would be to rely on type classes, for which
we write two instances:

(a) A base case, which functions as an identity. It does not flatten
an array.

(b) An inductive case, which removes exactly one level, similar to
concat.

17

0O Utk WN -

While this approach works, it requires several language extensions as
it relies on type classes with multiple parameters. In addition we end
up with overlapping instances of the class, which is now possible due
to the multi parameter classes. This has the downside that GHC is
not able make a distinction between removing only a single nesting
level, or flattening down to any other smaller level. To workaround
is to force the result type of this expression, but this becomes very
messy when this expressions is part of another one.

In the end this approach introduces to much trouble, making us
decide to disallow nested arrays.

3. We prefer arrays to be of a fixed length, this makes it easier to
translate these arrays to C, where they normally have a fixed length
as well.

4. In addition, we prefer the length of the array to be part of its type.
Later on we will see why is this useful for code generation.

With these requirements, we can now propose a number of possible
solutions:

1. Use a dependently typed implementation to force correct lengths, as
well as correct operations on the array.

2. Have a rather simple type that mimics the well known Data.Array,
but is stricter on the values used as indices.

3. A solution that uses type-literals to store the length of the array.

4.2.1 Dependently typed arrays

Dependent types allow us to define types that have dependencies on both
other types, as well as values. This is in contrast with a traditional type
system, where we can only write types that are constructed from other
types. Using dependent types, we could for example define types that
force lists to be sorted, or natural numbers to be smaller than a specific
value. While Haskell is not a dependently typed language, it supports a
limited form of type dependency using a couple of GHC extensions.

Vectors or arrays are one of the first examples of programming in a
dependently typed language. The idea is that we define an inductive type
using a Nil and a cons case (:>), just as with lists. The main difference is
that we keep track of the length of the array by adding a natural number
to the type of arrays. Our Nil case comes with a length of 0, while (:>)
increases the length of its argument by one:

Listing 5: Implementation of dependently typed arrays

data Array (n :: Nat) a where
Nil :: Array 0 a
(:>) :: a —> Array n a —> Array (n+l) a

infixr :>

arr :: Array 3 Int
arr = 1 :> 2 :> 3 :> Nil

18

Line 1 The definition of Array takes a as a type parameter, but also has
an additional one, which is of kind Nat. In Haskell a kind, is the type
of a type. In this case, each possible natural number is a constructor
of the Nat kind.

Line 2 The Nil case constructs an empty array, which therefore has
length 0.

Line 3 (:>) takes a single element of type a, an already existing array
storing the same type, and creates an array which is exactly one
element longer. Note that the we use the +-operator here, although
similar in use as the one we already know, this takes natural numbers
as its arguments, instead of instances of the Num class. Its kind
therefore is (+) :: Nat -> Nat -> Nat.

Line 5 We define :> as an right associative infix operator, which allows
us to chain applications to construct an array, like in line 8.

Lines 7 and 8 Define a example array of length 3. Note that this com-
piles correctly, as the data of our array is actually 3 elements long.
If the length of the type and data do not match, GHC will present
us with an error message that it cannot match the two types.

As we can see, dependent types allow us to write arrays in very safe
manner. We do need to extend the definition with some helper functions,
in order to be able to do something useful with the array. Let us try to
define some auxiliary functions:

foldr :: (a —> b —> b) —> b —> Array n a —> b
foldr f b Nil =b
foldr f b (x :> xs) = f x (foldr f b xs)

Indeed this implementation satisfies what we expect from foldr. It matches
on the length of its argument. If it is empty, just return the base element,
otherwise take the first element of the array and recurse on the rest. How-
ever, other basic functions will not be as easy to implement:

append :: Array n a —> Array m a —> Array (n + m) a
append Nil ys = ys
append (x :> xs) ys = x :> append Xs ys

x Could not deduce: ((m+ nl) + 1) ~ (m + n)
from the context: n ~ (nl + 1)
One can easily see that given n ~ (n1 + 1), ((m + n1) + 1) = (m +

n) is deducible, however GHC is not able to. Currently GHC, even with
the correct extensions enabled, does not know about basic mathematical
rules, and is not able to deduce it. In contrast to a type dependent
language like Agda, GHC is not able to use other functions defined in
the file as part of its type checker. For that reason, it is not possible to
provide the knowledge GHC needs to deduce these cases, without relying
on compiler plugins. We could get very specific cases to work though, if
we would change the definition of the +-operator to either be left or right
recursive. The sad truth is that this will conflict with definitions of other
functions, like take or drop.

19

Christiaan Baaij has developed ghc-typelits-natnormalise, a plugin
to the GHC type checker that can solve equalities between types, when
these are either natural numbers, variables or arithmetic expressions. This
plugin allows us to easily write functions like append in a type-dependent
manner, however for the purpose of Copilot, we do not want to rely on
external plugins and libraries too much. Copilot is a project of which
people expect it to behave stable over several years, therefore we opted
not to use this plugin.

4.2.2 Simple arrays

As we saw in the previous section, dependently typed arrays could be a
really nice solution, if GHC actually had more support for it. Unable to
use ghc-typelits-natnormalise, we are forced to find a solution that
does not make use of these strict dependent types.

The most used array datatype for Haskell is provided by Data.Array.
This datatype provides a fixed length array, with support for multi-dimen-
sional indices. Its type takes two parameters, an index i and the type of
elements e:

data Array i e
array :: Ix i = (i, i) = [(i, e)] — Array i e

It does not export any constructors, forcing us to use the smart construc-
tors that are exported by the library. The array constructor, takes a tuple
which denotes the range of the index that is used. The Ix class is the class
of types that can be used as an index. All basic Haskell datatypes are
instances of this class, as well as tuples of those, up to a five-tuple. For a
two dimensional array, e.g. a 4x4 matrix, this would be:

mat :: Array (Int, Int) Float
mat = array ((0,3), (0,3)) [...]

Note that the array has a fixed length, defined by the range tuple, but
this is not enforced by its type, but rather by the implementation of the
smart constructor.

The Data.Array implementation is nice for regular Haskell programs,
but is not really suited for use in Copilot. First of all, we want to restrict
the possible indices to just natural numbers. This creates a stronger
connection with the C language, which ensures that we can translate
these indices to C. Second, we do not want to be able to specify a range
of indices, as we want it to always start at 0.

Our own array implementation mimics the one from Data.Array:

Listing 6: Implementation of more limited arrays

class Index i
instance Index Int
instance Index (Int, Int)

data Array i a where
Array :: Index i => i —> [(i, a)] —> Array i a

20

We removed the range argument and replaced it with a single instance
of the Index class. This argument specifies the dimension of the array.
Judging by the instances of Index, only one and two dimensional arrays
are currently supported, but more can be easily added.

The huge downside to this approach is that we never specify the actual
size of the array. It is solely based on the size of our input data. This does
not give us a lot of safety in terms of length, i.e. we could easily replace
an array of the same dimension with one that has a different length.

Later on we even found a bigger problem: the length of the array
is not encoded in its type. For external streams of arrays, we need to
write C code that copies the elements of our external array into the local
memory of the monitor. For this operation we need to know the length
of the array, so that we know how many elements we need to copy (see
section 5.4). External arrays do not have a value in Copilot, therefore it
is not possible to know the length of an external array, unless it is either
provided by the user at term level, or it is encoded in its type.

Providing the length at term level required making a lot of low level
changes to Copilot, actually adding a whole new type of stream. This
would not only be a lot of work, but an ugly solution as well. In addition,
we would still have the problem that the length of arrays is not fixed,
making our effort all in vain anyway. Therefore the only viable solution
is to add the length to the type of the array.

4.2.3 Arrays using type literals

As we saw in the previous section, in the case of Copilot, there is a need
for storing the length of the array within its type. We do prefer to rely
on fully dependent types, but GHC’s type checker is not up to the task
yet. In the end we came up with a solution that is a combination of both
approaches: we extend the arrays described in the previous section with
type literals.

Let us take the simple definition of arrays from the previous section:

data Array i a = Index i => Array i a

We will keep using Index to denote the type of indices used, but we need
to extend it with a type-literal indicating its length. This does not come
without its problems, though:

1. The smart constructor still takes a list of tuples, combining an index
with a value. We need to check if these indices correspond to the
one given by the type.

2. We need to force the dimension specified in the type to be equal to
the ones specified in the input list; that is, if our type specifies two
dimensions, so must our input list.

3. We need to be able to retrieve the size of an array at value level,
even when we are only given a type.

Points 1 and 2 pose an interesting problem: how do we create a relation
between type literals and values? To understand that better, let us take
a look at types and kinds. Let us try to define a naive implementation

21

© 00O Ut WN -

for the Int type in Haskell. The Int does have boundaries defined by the
specific Haskell implementation that is used, but for now we will ignore
those. We can interpret each and every integer number to be a constructor
of this type. Using an algebraic datatype we come up with the following
definition in pseudo-Haskell:

data Int = ... | =2 | =1 | 0 | 1 | 2 |

Here the literal numbers are values that construct data of type Int. For
a kind however, its constructors are not values, but types itself. Our
problem is, is that there is no connection between Int and Nat. We are
unable to create data with a specific type level natural number. This is
no surprise: in Haskell types are defined at compile-time, and thus by
definition cannot depend on runtime values. However we can request the
current value based on a type:

import GHC. TypeLits (natVal)
import Data.Proxy (Proxy (..))

{— data Prozxy a = Prozy —}
{— natVal :: KnownNat n => prozy n —> Integer —}

P Proxy 2
p = Proxy

val :: Integer
val natVal p

Unable to create a value with type t, we are forced to pack it inside a
Proxy. This phantom type allows us to carry around data within its type
parameter, without providing it to the constructor. The actual value of
the parameter is inferred by the type inferencer. natVal is a function
provided by GHC, and allows us to turn a proxy of a natural number
into an integer. The KnownNat n constraint tells GHC there is a way to
translate n into an integer.

A wrapper like Proxy and natVal allow us to retrieve the length of an
array solely from its type. This provides us with the tools to check the
length of an array during runtime.

Let us define an Index class first, which serves a similar purpose to
the Ix class used by Data.Array. It does however have a second purpose:
to force the dimension of the type level length to match the term level
indices. By adding both of them as an parameter to our Index class, and
providing only correct instance of this class, we can force this relation:

Listing 7: Definition of Index and instances

data Len a = Len

class Index n i | n —> i where
index ion
fromIndex :: n —> [i]
size :: n —> Int
size n = length (fromIndex n)

instance KnownNat n => Index (Len n) Int where

22

10
11
12
13
14
15
16
17

0O Utk W

index = Len
fromIndex = idxRange

instance (KnownNat m, KnownNat n)
=> Index (Len m, Len n) (Int, Int) where
index = (Len, Len)
fromIndex (m, n) = [(m’, n’) | m" <— idxRange m

)

, n’ <— idxRange n |

Line 1 We rely on our own definition of a proxy datatype, this is just so
the user of Copilot can use the nicer Len instead of Proxy.

Line 3 In the definition of the class we rely on a functional dependency.
Here we specify that i is dependent on n, that is for every n there
is only one i. We need to provide this information, otherwise GHC
is not able to find the correct instance of the class.

Line 4 index allows us to take the type literal part from our instance.

Line 5 The fromIndex function returns the list of indices based on the
length and dimension of the array.

Lines 6 and 7 Default implementation for the length of the array.

Lines 9-11 Instance of Index for single dimensional arrays. As we can

see, the first parameter is a natural number wrapped in a proxy,
while the second argument is a single integer. This specifies that we
will use integers as an index in our data. The instance forces both
parameters to be of the same dimension.
We rely on the constructor of our proxy type Len to force the cor-
rect type on index, which is inferred. For the implementation of
fromIndex, we use a simple helper function (idxRange) which takes
a proxy containing a natural number, and returns an enumeration
starting at 0.

Lines 13-17 Another instance of the class, but this time for a two di-
mensional array. In a similar fashion we could define instances for
multiple dimensions.

The accompanying array implementation has not changed much from
the simple array implementation of the previous section. The biggest
difference is the incorporation of the new index type:

Listing 8: Implementation of Array

data Array n a where

Array :: Index n i = n —> [(i, a)] —> Array n a
array :: forall n i a. Index n i = [(i, a)] —> Array n a
array xs | length xs = | = Array idx xs
| otherwise = error ”error._message” where
idx = index
l = size idx

For clarity we have added a minimalist implementation for the smart
constructor as well:

23

Line 4 The smart constructor takes only one argument, instead of the
two of the regular constructor. The argument n is still variable,
as it depends on the length of the term level data provided to the
smart constructor. Only when the full type of the array can be fully
inferred, possible via other definitions, the variable is replaced by its
actual value.

Lines 5 and 6 In case the length of the argument equals the length that
is inferred, the array is actually created. In other cases, we can
return custom error messages for specific cases.

The smart constructor ensures the length of the data equals the length
specified by the type of the array. While this check is done at runtime
in Haskell, it is checked before C is generated, and thus provides enough
safety in the case of Copilot.

5 Code generator

Generating C code from a Copilot specification, although theoretically
not very hard, is not a straightforward task. The representation of the
EDSL within Copilot does not have a close relation to C. In addition, our
C code comes with a number of limitations. In order for our code to pass
regulations, the code must:

1. Use a constant amount of memory.
2. Be constant in execution time.

3. Not allocate memory on the heap.
4. Not use any recursive functions.
5

. Be fully reentrant, that is, it can be interrupted and safely continued
later on. In practice this means that it does not point to external
variables.

Let us take a look at the way we represent streams in C. As it is hard
to translate streams defined in Copilot directly to C, we need to come up
with a rather clever way to model them.

5.1 Modelling streams in C

As we know, streams can either be read externally from the program we
are monitoring, or generated from within our Copilot specification. First
we will focus on generated streams, as these are the most interesting. We
need to come up with a method of representing infinite streams in C. One
might think that recursive functions would be a good start, but we are not
allowed to use those. In addition, as we know, these might lead to stack
overflows, although this depends on the implementation and compiler. In
the end, the solution we took does not rely on recursive functions or loops,
in fact it is actually equal to the one already used by the Copilot-SBV
backend:

24

1. In C, each stream is represented by a buffer and an index. The
buffer serves as a storage location for the values of the stream, and
is initially filled with the values defined by the left-hand side of the
++-operator. The index is used to store the current index in this
buffer. The values inside the buffer will be overwritten over the
span of the next iterations. We could say that the buffer contains
the next n elements of the stream, starting at the current index.

Dropping m elements of a stream, as described in section 3.2, is as
easy as skipping the next m ones. Intuitively we now understand
why we can only drop the next m < n elements of a stream: the
rest of the elements is not known yet, and may depend on external
streams.

2. For updating the stream, we create a generator function. This func-
tion calculates the new value for the current index. Note that the
generator is purely written to replace the right-hand side of ++, as
the left-hand side is already known and is used as the initial value
of the buffer.

Even if we have a definition like sO = [1,2] ++ s1, the generator
for sO will rely on s1’s buffer and index. This might feel counter
intuitive, but later on we will take a look at an example to clarify
things.

Updating the stream is actually quite easy: for index ¢ and buffer b,
we just lookup and return b[i]. In case our specification uses a drop,
we just add the drop size to the index i, and make sure we do not
reach beyond the bounds of the buffer.

3. After calculating the new value, we do not write the new value to
the buffer yet, because other streams may still rely on the current
buffer. After every stream has been generated, we can safely write
all the new values their respective current indices. For our stream
this means we will be writing it to index 1.

4. After saving the new value, we increase the index by one and perform
a modulo operation to make sure the index does not reach beyond
the last element of the buffer.

5.1.1 Code example

Here we take a look at a very basic example. For readability, we do not
take a look at a complete specification, but rather at a single self recursive
stream:

onetwothree :: Stream Int32
onetwothree = [1,2,3] ++ onetwothree

Judging from the definition, we can easily tell that onetwothree is a
stream with a static part of [1,2,3], and where the rest is generated
by recursion, resulting in a stream of (1,2,3,1,2,3,1,2,3,...).

25

© 00O Ut WN

— =
N = O

Listing 9: Output of onetwothree-example

static int32_t sO_buff[3] = {1, 2, 3};
static int32_t sO0 = 1;
static size_-t sO0_.idx = 0;

static int32_.t sO_-gen () {
int32_t s0_loc;
{
size_t idx = s0_idx;
s0_loc = sO_buff[idx];
b
return sO0_loc;

}

Lines 1-3 The buffer, current value and index of the stream are defined
as static variables. To aid readability of code, these variables are de-
fined globally, so there is no need to pass them around using function
arguments.

Each stream, either explicitly or implicitly defined, is given a unique
number by Copilot. This identifier is used internally to refer to
streams, and we reuse it for the code generator. This stream has
been given the name s0, as it currently is the only stream. Other
streams may have higher numbers.

The type of the index is chosen as size_t. The C standard specifies
that this is an integer type that is at least big enough to store a
memory address. In the practically impossible event that our buffer
has the size of our integrated memory, size_t will still be big enough
to store the index of the last element of the buffer.

Line 5 The generator function for stream s0. It returns the new value
for sO on the current index.

Line 6 Inside the generator function we use a local variable to store the
result.

Lines 7-10 A sub scope that gives the local variable a value. Each ref-
erence to a stream in the definition of sO, gets its own sub scope
here. The sub scope allows us to use generic variable names like
idx or drop for every stream, without interfering each other, which
keeps us from using prefixes. In the end having separate scopes not
only make a clear distinction between streams, but also keep variable
names nice and short.

Line 11 We simply return the local variable.

26

The generator function only calculates the new value, but does not update
the buffer. In addition, the index is not updated either. Both actions are
performed in a general step-function, which is called every iteration of our
main program. In section 5.2 we will see how this function is implemented,
but for now we will only take a look at the code specific to updating the
buffer and index. The code should be pretty self-explanatory: it calls the
generator function, stores the value in the buffer and updates the index,
which loops back to 0 if it goes beyond the bounds of the buffer.

Listing 10: Code that updates buffer and index

s0 = sO_gen();
sO_buff[s0_idx] = s0;
++(s0-idx) ;

sO0_idx = s0_idx % 3;

5.1.2 Buffer example

Although the algorithm is quite simple, it is not always easy to see why
it works. For the specific example given above, where we have a single
recursive stream without any operations applied, the code is easy to under-
stand. More complicated definitions work in the same way, but are harder
to understand. One of the best ways of understanding how the algorithm
works, is by looking at the values of the buffers over time. Showing the
contents of the buffers clearly shows where the new values are stored, and
how this effects the rest of the stream.

Code listing 11 shows a small example consisting of two streams, of
which one depends on the second stream, which is recursive. Figure 3
shows us to accompanying buffers over time. The figure shows us the first
six steps of both streams, with the first step on the left hand side. The
initial step shows us the buffers for both streams, with their initial values.
A bar above a number indicates that this is the element where the current
index points to.

In the first step, we see that there are two arrows: one pointing from
the current element of s0 to the current element of s1, and one that loops
back to the current element of si. These arrows show which element is
read by the generator functions. In the next step, we can see that the old
element has been updated with the value the arrow pointed to. In the case
of s1, this is obviously very easy: the arrow pointed to the same element,
so nothing changes. For s0 though, it is a little bit more interesting. The
arrow points to 4 from sI. In the second step, we see that 1 is actually
replaced by 4.

Listing 11: Buffer example

sO :: Stream Int32
s0 = [1,2,3] ++ sl
sl :: Stream Int32
sl = [4,5] ++ sl

27

— =

= O © 000 Utk Wi

s0: {123} —{423}—{453}— {454} — {554} —{544}->

[

{45}—){45}—){45}—>{45}—>{45}—>{45}——>
U U U U

Figure 3: Contents of the buffer over time

Gradually the initial elements of s0 are overwritten by copies of the
elements of s1, as we expect from our stream definitions. As stated before,
the bars above the elements show where the current index points to, and
thus shows the current element. Listing all these elements, will yield us
the values of the stream over time. From the figure we can now clearly
see that s0 = (1,2,3,4,5,4,5,...), and that s = (4,5,4,5,...), both
according to what we expect from the definitions.

We have seen how we can represent streams in C, which is without a
doubt the hardest and most important part of the code generator. There
are still some other parts that need to be added to the generator: the step
function, how we handle external streams, arrays and ACSL specifications.
We will discuss these in the rest of this section. Note that we will not
discuss structs here; structs are first-class members in C, and thus require
no special attention in the code generator.

5.2 Step function

The step function is really simple and straightforward, actually we have
seen most of it already in section 5.1.1. The purpose of the step function is
to check if the triggers need to be fired, and update the buffers. Imagine
we have a specification with two streams and a single trigger, the step
function might look as follows:

Listing 12: Example of the step function

static void step () {
if (trigger_guard()) trigger (trigger_arg0());
sl = sl_gen();
s0 = sO_gen ();

sl_buff[sl_idx] = sl;
sO_buff[s0_idx] = s0;
++(sl-idx);
++(s0_idx) ;

sl_idx = sl_idx % 4;
sO_idx = s0_idx % 2;

Line 2 At first we check for every trigger if its condition is true, and
execute the trigger if that is the case.

Lines 3-6 We call all generator functions, and save the outputs to the
variable for that specific stream. We cannot store the result directly

28

in a buffer, as this buffer may still be used in other generator func-
tions. Therefore we store the value in a temporary value, and update
the buffers only when all values are calculated.

Lines 7-10 After updating the buffers, it is time to update the indices
as well. We increase each index by one, and then use a modulo
operation to keep them between the bounds of the buffers.

5.3 External streams

External streams are rather easy to implement: we do not need to write a
generator function as we can just copy the value from our main C program.
We then refer to this variable when we need it. While not strictly necessary
in most cases, it is a good habit to specify a type for our external values.
The extern function is not able to return the correct type itself, as it
knows nothing about the definition of the variable in the C sources.

External streams of arrays are identical to other types of data, with
the exception that arrays are not first class in C. In C, regular data is
passed by value, while arrays are passed by reference using pointer. While
this works fine, it comes with the downside that this is a pointer to data
in the main C program. If an interrupt occurs during monitoring and
modifies this array, our monitor is not consistent anymore, which makes
our monitor non-reentrant. This can lead to all kinds of hard to find bugs
in our system. Plain datatypes and structs do not have the same problem,
as these are passed value, and thus copied by default according to the C
specification.

The solution is quite simple: we just need to copy the array, thus the
actual data the pointer points to. We do this at the start of the step
function, to ensure it happens at every iteration:

exarr :: Stream (Array (Len 3) Int8)
exarr = extern ”"exarr” Nothing

static int8_t exarr_cpy [3];

static void step () {
memcpy (exarr_cpy , exarr, sizeof(exarr_cpy));

}

Now every time we want to refer to the array, we will have to refer to the
copy instead. In case an interrupt will change the original array during
monitoring, the monitor will catch up in the next iteration.

5.4 Arrays

The general idea of the implementation of arrays is identical to other
datatypes: we use generator functions to calculate the new value of our
stream and we update the buffer. As discussed in the section about exter-
nal streams, arrays are not a first class citizen in C, therefore we cannot
treat arrays as such. Pointers to arrays however are first class, and will be

29

O~ O Ut W

used instead of simple values. Let us take a look at a simple array exam-
ple. Again we will only take a look at the global variables and generator
code for now:

array’ as = array (zip [0..] as)
arr :: Stream (Array (Len 3) Int8)
arr = [array’ [4,5,6],

array’ [1,2,3] | 4++ arr

We have defined a very simple array using a helper function array’. This
function is a wrapper around the smart constructor that automatically
defines the correct indices for the values given by its argument. In this
case it assumes that the values are given in order, which is fine. As the
definition of arr tells us, it is a stream consisting of two arrays, which
repeats itself.

Listing 13: Example generator for arrays

static int8_t sO_-buff[2][3] = {{4, 5, 6}, {1, 2, 3}};
static int8_t *s0 = sO_buff[0];
static size_t s0_.idx = 0;

static int8_t xsO_gen () {
int8_t xs0_loc;
{
size_t idx = sO_.idx;
s0_loc = sO_buff[idx];
b

return sO_loc;

Lines 1-3 The first three lines define the buffer, current value and index
as we know it. Our buffer contains arrays instead of single values,
and our current value is a pointer to the first element of the buffer.
The length of each element, three in this case, has been taken from
the type of the array.

Line 5 Our generator function now returns a pointer to the data instead
of a value. As this data might change, we need to copy it to a
temporary variable later on in the step function.

Lines 6-11 The body of our generator is actually identical to the defi-
nition for scalar values and structs. The only difference is that our
local variable is a pointer, and we return a pointer as well.

30

© 00O Utk WN

The step function on the other hand has changed quite a bit more. Al-
though we still run the generator, update the buffer and index, we added
some intermediate copying:

Listing 14: The step function for arrays

static void step () {
s0 = sO_gen () ;
int8_t sO_tmp [3];
memcpy (sO-tmp , sO, sizeof(sO_-tmp));
/* Other generator functions x/
memcpy (sO_buff[sO_idx], sO_-tmp, sizeof(sO_-tmp));
++(s0-idx) ;
sO0_idx = s0_idx % 2;

Lines 3 and 4 The generator function returns a pointer instead of data.
Normally data is copied automatically, but this pointer points to
data in a buffer. The order in which generators are called, and data
copied to the buffer might introduce problems. Copying the data and
storing it into a temporary value before the call of a new generator,
eliminates this problem.

Line 6 Here we copy the temporary data into the buffer, just as we do
with scalar values.

Line 7 and 8 Just update the index as we are used to.

5.5 ACSL specifications

While the code generator produces code that is relatively simple and well
tested, there is still a possibility for bugs. C is notorious for letting the
user modify memory directly. This gives the programmer lots of power,
but it makes it easy to introduce bugs as well. Common pitfalls in C are
pointer operations, indices of arrays and problems with integer bounds.

Frama-C' is a tool supporting several program analysers for C. We
will be using the WP plugin, which verifies properties given by an ACSL
specification.

Our ACSL specifications are rather simple: none of our functions take
arguments and most of them do not have any side-effects. Therefore we
will only use a relatively small part of the possibilities of ACSL. In this sec-
tion we will discuss some of the basics we will use. For a far more in depth
tutorial on Frama-C and ACSL, see ACSL by exzample [Vollinger, 2018].

ACSL code are written in C comments starting with an @. These
comments can be placed either before a function definition, a function
declaration, or as an inline comment. The specifications we will use are
build around three constructs:

requires Specifies the pre-condition of a function — i.e., it must hold
before the execution of the function.

ensures When we have pre-condition, we need to specify post-conditions
as well. The ensures keyword is used to specify those.

31

© 00O U WN -

—
w N = O

assigns With C being a language with side-effects, we need to take these
into account as well. Using multiple assigns definitions, we can
define all side-effects.

The conditions themselves are written in a language that looks very much
like C expressions: we can refer to variables and use literal values and op-
erators. In addition we can use additional keywords that provide specific
ACSL functionality. We will not list those here, as we will only use a very
limited subset of them.

The C code we generate, contains basically two types of functions:
generators and the step function. We will take a look at both of them.

5.5.1 Generators

Let us take a very simple Copilot specification of a counter that increases
by one every iteration:

counter :: Stream Int8
counter = [1] ++ (counter + 1)

Listing 15: ACSL specification for a generator

/*@ requires \valid (sO_buff+(0..0));
requires 0 <= sO_idzx < 1;
assigns \nothing;
ensures \result == ((sO0_-buff[sO-idz] + 1));
*/
static int8_t sO_gen () {
int8_t sO_-loc;
{
size_t idx = sO.idx;
s0_loc = sO_buff[idx];
s

return s0_loc + 1;

}

The resulting C code should not be a surprise, we are more interested in
the ACSL specification though. Taking a closer look, we find that some
of the ACSL code is not much different from the body of the function:

Line 1 The \valid keywords checks if its argument is a valid pointer,
in our case we specify that the range (0..0) over s0_buff should
be valid, that is we will not access elements beyond the specified
range. Note that the range, unlike indexed arrays in C, is specified
inclusive. In this case the index ranges from 0 to 0, so it can only
be 0, which coincides with the size of the buffer.

Line 2 The second pre-condition forces the global variable s0_idx to be
between 0 and 1. It may seem that this definition is superfluous with
the presence of the first one, but it is not. Both the index and the
buffer are distinct variables, that are only connected because of the
way we use them. We want to be sure neither of them go beyond
bounds.

Line 3 This function has no side-effects, so we assign nothing.

32

© 00~ Ut WN -

= = e e
T W N~ O

Line 4 In our case the post-condition is simply the result of the function.
In our case, in practice the result will be semantically equal to the
body of the function. This makes it easy for us to generate the ACSL
code from the definition of the stream.

5.5.2 Step function

The specification for the step function is a little bit more complicated.

Listing 16: ACSL specification for the step function

/%@ requires 0 <= s0_idz < 1;
assigns sO;
assigns sO_buff[sO0_-idz];
assigns sO0_idx;
ensures \forall int i; 0<=1i < I
&6 i 1= \old(s0_idz) =>
sO_buff[i] == \old(sO0_-buff[i]);
*/
static void step () {
/% Possible triggers */
s0 = sO_gen () ;
sO_-buff[s0_-idx] = s0;
++(s0-idx) ;
sO0-idx = s0-idx % 1;

Line 1 Again we want to be sure that the index variables are within
bounds of the arrays they belong to.

Lines 2-4 We know that the step function updates the current value, the
buffer and the index of each stream. All of these are global variables
in our monitor, and therefore updating them is a side-effect of the
function.

Lines 5-7 The step function is a void function and does not produce
a value, therefore we do not check an equality with \result here.
However, that does not mean we cannot express a post-condition.
We know that we only update the current element in the buffer,
all other elements stay untouched. With this knowledge, our post-
condition is quite simple to understand: For every ¢ in the range of
the buffer and not equal to the old index, the buffer should stay the
same. We make use of the \old keyword to denote that we want
to refer to the original value of a variable and not the value after
execution of the function.

6 Example

This section contains a bigger, more complete example of the code gen-
erator. The purpose is to show how all the code, including the ACSL
specification, comes together. We choose not to use structs or arrays in
this example, so we can make a comparison with the older back-ends. The
output of the older back-ends can be found in the appendix.

33

© 00O U WN -

© 00O U WN -

The example monitor is a short but relatively complicated piece of
code, using the most important constructs of Copilot. Semantically the
example does not make much sense, it is just designed to give a clear
example.

Listing 17: Complete Copilot example

module Main where

import Language. Copilot
import qualified Prelude as P

{— Just one of the following back—ends —}
import Copilot.Compile.C

—import Copilot. Compile. C99

—import Copilot. Compile.SBV

temp :: Stream Int8
temp = extern ”temp” Nothing

counter :: Stream Int8
counter = [1] ++ (counter + 1)
fib :: Stream Int32

fib = [1, 1] ++ (fib + drop 1 fib)

spec = do
trigger ”alarm” (temp > 65) [arg counter]
trigger " fib” (fib > 1000) []

{— Compile the spec with a custom output name —}
main = do reify spec >>= compile (defaultParams {
prefix = Just "reportexample” })

Listing 18: Output of example

#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <stdint.h>

static int32_t sO_buff[2] = {1, 1};
static int8_t sl_buff[1l] = {1};
static int32_t sO0 = 1;

static int8_t sl = 1;

static size_t s0_.idx = 0;

static size_t sl_idx = 0;

/%@ requires \valid (sO0_buff+(0..1));
requires 0 <= sO_-idx < 2;
assigns \mnothing;
ensures \result == ((sO_-buff[sO0_idx] +
sO_buff[(s0_idz+1)%2]));
*/
static int32_t sO_gen () {
int32_t sOdropl_loc;
int32_t s0-loc;

34

{
size_t idx = s0_idx;
sO0_loc = sO_buff[idx];

s

{

size_t dropped = s0_.idx + 1;

size_t idx = dropped % 2;

sOdropl-loc = sO0_buff[idx];

5

return s0_loc + sOdropl_loc;

}

/*@ requires \valid (s1_buff+(0..0));

requires 0 <= sl_idx < 1;
assigns \nothing;
ensures \result == ((s1_buff[sl_idx] + 1));
*/
static int8_t sl_gen () {
int8_t sl_loc;
{
size_t idx = sl_idx;
sl_loc = sl_buff[idx];
IS
return sl_loc + 1;
}
/*@ requires \valid (sO_buff+(0..1));

requires 0 <= sO_idx < 2;
assigns \nothing;
ensures \result == ((sO0_-buff[sO_-idz] > 1000));
*/
static bool fib_guard () {
int32_t s0_loc;
{
size_t idx = s0O_idx;
sO0_-loc = sO_buff[idx];
e
return s0_loc > 1000;
}
/%@ assigns \nothing;
ensures \result == ((temp_cpy > 65));
*/
static bool alarm_guard () {
return temp > 65;
}
/*@ requires \valid (s1_buff+(0..0));

requires 0 <= sl_idx < 1;
assigns \nothing;
ensures \result == sl_buff[sl_idz];
*/
static int8_t alarm_arg0 () {
int8_t sl_loc;
{
size_t idx = sl_idx;
sl_loc = sl_buff[idx];

35

s

return sl_loc;

}

/%@ requires 0 <= sO0_idzx < 2;
requires 0 <= sl_idx < 1;
assigns s0;
assigns s1;
assigns sO0_buff[s0_idz];
assigns sl_buff[sl_idz];
assigns sO_idz;
assigns sl_idx;
ensures \forall int i; 0<=1i < 2
&6 i 1= \old(s0_-idz) =>
sO_buff[i] == \old(sO0_-buff[i]);
ensures \forall int i; 0<=1i < 1
&6 i I= \old(sl_idz) =>
s1_buff[i] == \old(s1_buff[i]);
*/
static void step () {
if (fib_guard()) fib();
if (alarm_guard()) alarm(alarm-arg0());
s0 = sO_gen () ;
sl = sl_gen();

sO_buff[sO_idx] = s0;
sl_buff[sl_idx] = sl;
++(s0_idx) ;
++(s1_idx);

sO_idx = sO0_idx % 2;
sl_idx = sl_idx % 1

36

7 Related work

Runtime verification became an established area of research in the early
2000s. Many early efforts focused on synthesizing safety properties (in-
formally, properties stating that “nothing bad ever happens”) from tem-
poral logic specifications. In the remainder of this section, we will briefly
mention a few of the early frameworks for generating RV monitors from
specifications.

Monitoring and Checking (MaC) was an early pioneering RV frame-

work [Kim et al., 1999b, Kim et al., 1999a, Sokolsky et al., 2005].
MaC is targeted at soft real-time applications written in Java. A distin-
guishing feature of the MaC project is that integration and monitoring
concerns are divided into separate tasks. Requirements specifications in
the form of safety properties are written in the Meta Event Definition
Language (MEDL). MEDL is a propositional temporal logic of events and
conditions interpreted over a trace of observations of a program execution.
The logic has been extended to handle dynamic indexing of properties.
The Primitive Event Definition Language (PEDL) is used to define pro-
gram events to be monitored and gives a mapping from the program-level
events to higher-level events in the abstract specification.

Another monitoring framework, also for Java, is the Java PathExplorer
(PaX) [Havelund and Rosu, 2004b, Havelund and Rosu, 2004a]. The ba-
sic architecture of PaX is similar to MaC in that it separates the in-
tegration and verification aspects of generating a monitor. PaX distin-
guishes itself in two areas. First, in addition to verifying logical prop-
erties, PaX performs error-pattern analysis by executing algorithms that
identify error-prone programming practices. Second, the specification lan-
guage is not fixed. Instead, users may define their own specification logics
in Maude [Clavel et al., 1996], a language based on rewriting logics.

Monitor Oriented Programming (MOP) [Chen et al., 2004]

[Chen and Rosu, 2005, Chen and Rosu, 2007] can be seen as having evolved
from PaX and is based on the idea that the specification and implemen-
tation together form a system. Users provide specifications in the form of
code annotations that may be written in a variety of formalisms including
extended regular expressions (ERE), Java modeling language (JML), and
several variants of linear temporal logic (LTL).

There are few instances of RV focused on C code. One exception is
RMOR, which generates constant-memory C monitors [Havelund, 2008].
RMOR does not address real-time behavior or distributed system RV,
though.

8 Discussion & Future work

The current implementation is a good start, but there are still improve-
ments to be made. First of all, we need to find a way to actually use
the accessor functions of a struct. While in Haskell we can use the func-
tions defined by the record-syntax, we still need to translate these calls to
C. Probably the easiest way to accomplish this, is by adding a new type
of operator getfield :: Struct s => (s -> a) -> s -> ato Copilot.

37

This function takes an accessor function and a struct as its argument, and
returns the correct field. For a simple vector struct, this may look as fol-
lows:

xs :: Stream Float
xs = getfield x vec

Here the getfield operator serves as a constructor for a new stream,
which can then easily be translated to C.

The second shortcoming to the current implementation of structs is
the overhead that writing an instance of the Struct and Typed class give.
The user of Copilot needs to write an instance of both classes for his
struct type. While these instances are not very hard to define, there still
is a possibility of creating bugs, as there is currently no way to force the
user to write a correct implementation of toValues. The function needs
to result in a list containing the elements of the struct, with the correct
type and values. Making a mistake here is easy, but due to the simplicity
of the function unlikely. The problem is that there is no way for GHC
to check the implementation, as lists are not a strong enough type to
force the properties of toValues. Additionally, writing instances might
give overhead, but instances can be shared among multiple projects and
monitors. After working a while with several projects, a small collection
of datatype definitions will be built, removing the need to write new ones
after a while. We could fix both problems by relying on Template Haskell,
which is a macro language for Haskell that could generate these type class
instances for us, given a simpler specification of the type.

The implementation of arrays could be improved a bit as well. First
of, it would be nice if we can get rid of the Len proxy constructor in our
array type. It does not look like this is currently possible, as we need a
way to construct natural numbers from term-level constructors in Haskell.

Second, it might be nicer to implement arrays in a fully dependently
typed manner. This way we can force correct lengths of arrays at compile
in Haskell. As we have seen, this is currently not part of Haskell, and it is
unsure if this will ever change. Our current implementation has one big
advantage over a dependently typed approach: it is possible to implement
custom error messages in the smart constructor. If the size of the given
data does not match the length of array specified by its type, we can
provide the user of Copilot with a nice error message. Relying on GHC’s
type checker will give us the standard messages of GHC not being able to
unify the two types.

Another feature still to implement is to generate a header file. Right
now, only a *.c file is generated, which is to be included by the main
program. While this is totally valid, it is good practice to only include
header files in C. Generating a header file containing function and variable
declarations should be easy enough, we already generate those for our *.c
file.

Finally there is efficiency of the generated code. Currently, multiple
uses of the same streams, will be calculated separately, even when the
results are the same. For small specifications like our examples, this is
not much of a problem, however more complicated ones might have a huge
amount of duplicate executions. We need to implement an algorithm to

38

find implicit sharing of streams, before generating any C code. When we
know how streams can be shared, we are able to write more efficient code.

9 Conclusion

We have written a new C back-end for the Copilot runtime verification
framework. We have taken the algorithm of Copilot-SBV as a starting
point, but improved on it by generating more concise code. In addition,
as our generator is specifically targeted to Copilot, it allows us to use
some invariants on the variable and functions of the output code. We still
had to identify the streams with numbers, but operations like + and drop
which where saved to temporary variables, could be named accordingly.
In the end, writing a custom designed code generator for Copilot, allowed
us to write more concise and readable code. Choosing the variables in a
way that matches its use, improved the traceability of the code as well.
However, traceability could certainly be improved in the future.

Our new back-end also has added support for structs and arrays.
Structs have shown to be rather easy to implement, once a suitable rep-
resentation in Haskell had been found. Relying on the Haskell datatypes
to model them allowed us to introduce a type-safe way of modelling C
structs in Haskell. The biggest downside was that it was up to the user to
write a small function to translate the datatype to a list of values, which
provided the code generator with necessary information about the type.

Mistakenly, arrays seemed easier to implement at first, but proved to
be a struggle to implement well. First of all, finding a suitable representa-
tion of arrays in Haskell was hard. Data.Array proved to lack type safety,
while a type-dependent implementation was not feasible due to limitations
of GHC’s type inferencer. In the end a solution combining type-literals
with runtime checking of length fixed the problem in a safe, but complex
way. A specific Index class was necessary to create a connection between
type level natural numbers and term level integers.

Finally we extended the back-end with ACSL specifications to aid in
proving the correctness of our monitor. The specifications were added to
the C code, to allow us to check the code for common mistakes like array
index and integer boundary errors using the Frama-C tool. Generating
ACSL code was surprisingly simple, but unfortunately some specifications
introduced warnings in Frama-C, which we were unable to fix. These most
likely where introduced by a bug in the tool.

The new back-end still requires some work and extra testing, before
it is suitable for day-to-day use. After these fixes, it should be able to
replace both Copilot-C99 and Copilot-SBV successfully.

39

0O Utk WN -

A Example code

This section shows output code of Copilot-C99 and Copilot-SBV, cor-
responding to the example program from section 6. For brevity we only
show the *.c files. Any other files, including *.h and Makefiles have been

omitted.

A.1 Copilot-C99

Listing 19: Copilot-C99 output

#include <stdbool.h>
#include <stdint.h>

#include "reportexample_copilot.h”

static uint64_t __global_clock = 0;

static const uint32_t __coverage_len = 1;
static uint32_t __coverage[l] = {0};
static uint32_t __coverage_index = 0;

struct { /x state x/
struct { /x reportexample_copilot x/
int32_t queue_buffer_str0 [2];
uintl6_-t queue_pointer_strO;
int32_t tmpO;
int8_t queue_buffer_strl[1];
uintl6_t queue_pointer_strl;
int8_t tmpl;
int8_t ext_temp;
} reportexample_copilot;
} state =
{ /* state x/
{ /x reportexample_copilot */
/* queue_buffer_str0 =/
{ 1L
, 1L
}7
/* queue_pointer_str0 x/ 0,
/% tmp0 x/ OL,
/* queue_buffer_strl x/
{1
}7
/* queue_pointer_strl x/ 0,
/% tmpl x/ 0,
/* ext_temp x/ O
}
s
/* reportezample_copilot.sample_var_temp */

static void __r0() {
bool __0 = true;

40

46
47
48
49
50

52
53
54
55
56

57
58
59
60
61

62
63
64
65

94
95
96

int8_t __1 = temp;

it (_0) {
__coverage [0] = __coverage[0] | (1 << 0);
}
state.reportexample_copilot.ext_temp = __1;
}
/% reporterample_copilot. update_state_s0 */

static void __r3() {

bool __0 = true;

uintl6_t __1 = state.reportexample_copilot.
queue_pointer_str0;

uintl6_-t --2 = 0;

uintl6_t -3 = __1 + __2;

uintl6_t _-_-4 = 2;

uintl6_t -5 = __3 % __4;

int32_t __6 = state.reportexample_copilot.
queue_buffer_str0[__5];

uintl6_t __.7 = 1;

uintl6_t -8 = __1 + __7;

uintl6.t -.9 = .8 % __4;

int32_t __.10 = state.reportexample_copilot.
queue_buffer_str0[_-_9];

int32_t __11 = __6 + __10;

if (-.0) {

__coverage [0] = __coverage[0] | (1 << 3);
}
state.reportexample_copilot.tmp0 = __11;
}
/* reporterample_copilot. update_state_s1 */

static void __r4 () {
bool __0 = true;
uintl6_t __1 = state.reportexample_copilot.
queue_pointer_strl;
uintl6_-t -_-2 = 0;
uintl6_t -3 = __1 + __2;
uintl6_t -4 = 1;
uintl6_-t -5 = __3 % __4;
int8_t __6 = state.reportexample_copilot.
queue_buffer_strl [__5];
int8_t __7 = 1;
int8_t __.8 = __6 + __7;
if (-.0) {
__coverage [0] = __coverage[0] | (1 << 4);
}

state.reportexample_copilot.tmpl = __8;

}

/* reporterxample_copilot. fire_trigger_fib x/
static void __r1() {

int32_t _-_0 = 1000L;

uintl6_t __1 = state.reportexample_copilot.

queue_pointer_str0;

uintl6_t _-_.2 = 0;

uintl6_t -3 = __1 + __2;

uintl6_t __4 = 2;

41

97
98

99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

144
145
146
147

uintl6_-t -5 = .3 % -_4;

int32_t __6 = state.reportexample_copilot.
queue_buffer_str0[_-_5];
bool _.7 = __.0 < __6;
if (.7) {
reportexample_fib () ;
__coverage [0] = __coverage[0] | (1 << 1);
}

}

/* reporterample_copilot. fire_trigger_alarm x/
static void __r2() {
int8_t _-_0 = 65;

int8_t __1 = state.reportexample_copilot.ext_temp;
bool _.2 = __0 < __1;
uintl6_t __3 = state.reportexample_copilot.

queue_pointer_strl;
uintl6_t __4 = 0;

uintl6_-t -5 = __.3 4+ __4;
uintl6_-t -6 = 1;
uintl6.t _.7 = .5 % __6;
int8_t __8 = state.reportexample_copilot.
queue_buffer_strl [__7];
it (--2) {
reportexample_alarm (__8);
__coverage [0] = __coverage [0] | (1 << 2);
}

}

/% reporterample_copilot.update_buffer_s0 =/
static void __r5() {
bool __0 = true;
int32_t __1 state.reportexample_copilot .tmp0;
uintl6_t __2 = state.reportexample_copilot.
queue_pointer_str0;
uintl6_-t -3 = 1;
uintl6_t -4 = __2 + __3;

uintl6_-t _-.5 = 2;
uintl6_t __6 = __4 % __5;
if (--0) {
__coverage [0] = __coverage[0] | (1 << 5);
}
state.reportexample_copilot.queue_buffer_str0[_--2]
__1;

state.reportexample_copilot.queue_pointer_str0 =

}

/* reportexample_copilot.update_buffer_s1 x/
static void __r6() {
bool __0 = true;
int8_t __1 = state.reportexample_copilot.tmpl;
uintl6_-t _-_.2 = state.reportexample_copilot.
queue_pointer_strl;
uintl6_t -3 = 1;

uintl6_t __4 = __2 + __3;
uintl6_-t -5 = .4 % _-_3;
if (_0) {

42

__6;

148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196
197

__coverage [0] = __coverage[0] | (1 << 6);

}
state.reportexample_copilot.queue_buffer_strl1[__2] =
__1;
state.reportexample_copilot.queue_pointer_strl = __5;
}
static void __assertion_checks () {
}
void reportexample_copilot ()
{
{
static uint8_t __scheduling_clock = 0;
if (-_scheduling_clock = 0) {
__assertion_checks (); __r0(); /*
reportezample_copilot.sample_var_temp */
__scheduling_clock = 7,
else {
__scheduling_clock = __scheduling_clock — 1;
}
}
{
static uint8_t __scheduling_clock = 4;
if (--scheduling_clock = 0) {
_-assertion_checks (); __r3(); /x
reportezample_copilot.update_state_s0 x/
_-assertion_checks (); __r4(); /*
reportezample_copilot. update_state_s1 x/
__scheduling_clock = 7;
else {
__scheduling_clock = __scheduling_clock — 1;
}
}
{
static uint8_t __scheduling_clock = 5;
if (-_scheduling_clock = 0) {
_—assertion_checks (); --r1(); /*
reportezample_copilot. fire_trigger_fib x/
__assertion_checks (); --r2(); /*
reportezample_copilot. fire_trigger_alarm x/
__scheduling_clock = 7;
else {
__scheduling_clock = __scheduling_clock — 1;
}
}
{
static uint8_t __scheduling_clock = 7;
if (-_scheduling_clock = 0) {
__assertion_checks (); __r5(); /*

reportezample_copilot. update_buffer_s0 */

43

198

199
200
201
202
203
204
205
206
207
208
209
210
211
212

213

_—assertion_checks (); -_r6(); /*
reportezample_copilot. update_buffer_s1 */
__scheduling_clock = T7;

else {
__scheduling_clock = __scheduling_clock — 1;
}
}
__global_clock = __global_clock + 1;
}
void reportexample_step ()
{
reportexample_copilot () ;reportexample_copilot () ;
reportexample_copilot ();reportexample_copilot ();
reportexample_copilot () ;reportexample_copilot ();
reportexample_copilot ();reportexample_copilot ();
}

44

0O Utk WN

A.2 Copilot-SBV

Listing 20: reportexample_driver.c

/* Driver for SBV program generated from Copilot.

/* Edit as you see fit x/

#include "reportexample_internal .h”
#include "reportexample_copilot.h”

/* Observers x/

/* Variables x/

static SInt32 tmp.0 = 1;
static SInt8 tmp.1 =1
static SInt32 queue_0|
static SInt8 queue_1[1
static SWord32 ptr_0 =
static SWord32 ptr_-1 = 0;
static SInt8 ext_temp = O0;

void static sampleExts(void) {
ext_temp = temp;
}

void static fireTriggers(void) {
if (trigger_guard_alarm (ext_temp))
alarm (trigger_alarm_arg_0 (queue_1, ptr_1));
if (trigger_guard_fib(queue_.0, ptr_0))
fib () ;

/*@

assigns \nothing;

*/

void static updateObservers(void) {

}
/*@

assigns tmp-0;

assigns tmp_1;

*/

void static updateStates(void) {

tmp-0 = update_state_0(queue_0, ptr_-0);
tmp_-1 = update_state_1(queue_1, ptr_1);

}

/*@

assigns queue_0[ptr_0];

ensures queue_0[ptr_0] == tmp_0;
assigns queue_1[ptr_1];

ensures queue_1[ptr_1] == tmp_1;
*/
void static updateBuffers(void) {

queue_0[ptr-0] = tmp-0;

queue_1[ptr_-1] = tmp-1;

45

*/

55

56 | /x@

57 assigns ptr_0;

58 ensures ptr_0 == (\old (ptr.0) + 1) % 2;
59 assigns ptr_1;

60 ensures ptr_1 == (\old (ptr-1) + 1) % 1;
61 */

62 | void static updatePtrs(void) {
63 ptr-0 = (ptr-0 + 1) % 2;
64 ptr.1 = (ptr_-1 + 1) % 1;

65

66 | /+ Idents x/

67

68 | /x@

69 assigns \nothing;
70 | %/

71 | SBool ident_bool(SBool a) {return a;}

72 | /x@

73 assigns \nothing;

74 */

75 | SWord8 ident-word8 (SWord8 a) {return a;}
76 | /x@

77 assigns \nothing;

78 */

79 | SWord16 ident_word16 (SWordl6 a) {return a;}
80 | /x@

81 assigns \nothing;

82 */

83 | SWord32 ident_-word32(SWord32 a) {return a;}
84 | /x@

85 assigns \nothing;

86 | %/

87 | SWord64 ident_word64 (SWord64 a) {return a;}
88 | /x@

89 assigns \nothing;

90 | x/

91 | SInt8 ident_int8(SInt8 a) {return a;}

92 | /x@

93 assigns \nothing;

94 */

95 | SInt16 ident-int16(SIntl6 a) {return a;}
96 | /x@

97 assigns \nothing;

98 */

99 | SInt32 ident_-int32(SInt32 a) {return a;}
100 | /@

101 assigns \nothing;

102 | +/

103 | SInt64 ident_int64 (SInt64 a) {return a;}
104 | /x@

105 assigns \nothing;

106 */

107 | SFloat ident_float (SFloat a) {return a;}
108 | /x@

109 assigns \nothing;

110 | #/

46

111
112
113
114
115
116
117
118
119
120
121
122
123
124

—

SDouble ident_-double (SDouble a) {return a;}

void reportexample_step (void) {
sampleExts () ;
fireTriggers () ;
updateObservers () ;
updateStates () ;
updateBuffers () ;
updatePtrs () ;

}

void reportexample_testing (void) {
for (;;) reportexample_step () ;

Listing 21: trigger_alarm_arg 0.c

/% File: 7trigger_alarm_arg_-0.c”. Automatically generated
by SBV. Do not edit! =/

#include "reportexample_internal .h”

/* User given declarations: x/

/xtest 003x/

/*@

assigns \nothing;

ensures \abs(\result — queue_1[0]) <= 0.1;

*/

SInt8 trigger_alarm_arg_0 (const SInt8 sxqueue.1,
const SWord32 ptr_1)

{
const SInt8 s0 = queue_1[0];
return s0;
}
Listing 22: trigger_guard_alarm.c
/% File: 7trigger_guard_alarm.c”. Automatically generated

by SBV. Do not edit! x/
#include "reportexample_internal.h”

/* User given declarations: x/

/xtest 006%/

/*@

assigns \nothing;

ensures \result == ((ext_temp > 65));

*/

SBool trigger_guard_alarm (const SInt8 ext_temp)

{
const SInt8 sO0 = ext_temp;
const SBool s2 = s0 > 65;

return s2;

}

47

—_

= O ©0oO0 Utk WN

— =

13
14
15
16
17
18
19

20
21
22
23
24

Listing 23: trigger_guard_fib.c

/x File: "trigger_guard_fib.c”. Automatically generated
by SBV. Do not edit! x/

#include "reportexample_internal.h”

/* User given declarations: x/

/xtest 006x/

/*@

assigns \nothing;

ensures \result == ((queue_0[ptr_0] > 1000));

*/

SBool trigger_guard_fib (const SInt32 xqueue_0, const
SWord32 ptr_0)

{

const SInt32 s0 = queue_0[0];
const SInt32 sl = queue_0[1];
const SWord32 s2 = ptr_0;

const SInt32 table0[] = {
sO0, sl

}s

const SWord32 s4 = (0x00000002UL = 0) ? s2 : (s2 % O
x00000002UL) ;

const SInt32 s5 = table0[s4];
const SBool s7 = s5 > 0x000003e8L;

return s7;

Listing 24: update_state_0.c

/x File: "update_state_0.c”. Automatically generated by
SBV. Do not edit! x/

#include "reportexample_internal.h”

/* User given declarations: %/
/xtest 001x/

/*xDotBegin

digraph G {

node [shape=boz]

0 [label="file:

222227 color=red, style=filled]

1 [label="0p2: +7,color=greens, style=filled]

0 —> 1

2 [label="stream: 07,color=crimson, style=filled]
1 —> 2

3 [label="drop 1:

stream: 07,color=crimson, style=filled]

1 —> 3

}
DotEndx*/

/*x@

48

26
27

28
29

30
31
32
33
34
35
36
37

38
39
40

41
43

44
45

assigns \nothing;
ensures \abs(\result — ((queue_0[ptr_0] + queue_0[(ptr_0
+ 1) % 2]))) <= 0.1;
*/
SInt32 update_state_0(const SInt32 xqueue_0, const
SWord32 ptr_0)
{
const SInt32 s0 = queue_0[0];
const SInt32 sl = queue_0[1];
const SWord32 s2 = ptr_0;
const SInt32 table0[] = {
sO, sl
b
const SWord32 s4 = (0x00000002UL = 0) ? s2 : (s2 % O
x00000002UL) ;
const SInt32 s5 = table0[s4];
const SWord32 s7 = s2 4+ 0x00000001UL;
const SWord32 s8 = (0x00000002UL = 0) ? s7 : (s7 % O
x00000002UL) ;
const SInt32 s9 = table0[s8];
const SInt32 s10 = s5 + s9;
return s10;
}
Listing 25: update_state_l.c
/% File: 7update_state_1.c”. Automatically generated by

SBV. Do not edit! x/
#include "reportexample_internal.h”

/* User given declarations: */
/xtest 001x/

/*DotBegin

digraph G {

node [shape=boz]

0 [label="file:

222227 color=red, style=filled]

1 [label="0p2: +7,color=green), style=filled]

0 —> 1

2 [label="stream: 17,color=crimson, style=filled]
1 —> 2

3 [label="const: 1”7,color=redl, style=filled]

1 —> 3

}

DotEndx*/

/x@

assigns \nothing;

ensures \abs(\result — ((queue_1[0] + 1))) <= 0.1;

*/

SInt8 update_state_1(const SInt8 xqueue_1, const SWord32
ptr_1)

49

29
30
31
32
33

const SInt8 s0 = queue_1[0];
const SInt8 s3 = s0 + 1;

return s3;

50

References

[SAE, 1996] (1996). SAE ARP4761 Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and
Equipment.

[Baudin et al., 2015] Baudin, P., Cuoq, P., Filliatre, J.-C., Marché, C.,
Monate, B., Moy, Y., and Prevosto, V. (2015). ACSL: ANSI/ISO C
Specification Language, version 1.10.

[Bertot and Castran, 2010] Bertot, Y. and Castran, P. (2010). Interactive
Theorem Proving and Program Development: Coq’Art The Calculus of
Inductive Constructions. Springer Publishing Company, Incorporated.

[Butler, 2008] Butler, R. W. (2008). A primer on architectural level fault
tolerance. Technical Report NASA /TM-2008-215108, NASA Langley
Research Center.

[Caspi et al., 1987] Caspi, P., Pialiud, D., Halbwachs, N., and Plaice, J.
(1987). LUSTRE: a declarative language for programming synchronous
systems. In 14th Symposium on Principles of Programming Languages,
pages 178-188.

[Chen et al., 2004] Chen, F., D’Amorim, M., and Rosu, G. (2004). A for-
mal monitoring-base framewrok for software development analysis. In
Proceedings of the 6th International Conference on Formal Engineering
Methods (ICFEM’04), LNCS, pages 357—373. Springer.

[Chen and Rosu, 2005] Chen, F. and Rosu, G. (2005). Java-MOP: a mon-
itoring oriented programming environment for Java. In 11th Intl. Conf.
on Tools and Algorithms for the construction and analysis of systems
(TACAS’05), volume 3440 of LNCS, pages 546-550. Springer.

[Chen and Rosu, 2007] Chen, F. and Rosu, G. (2007). MOP: an efficient
and generic runtime verification framework. In Object Oriented Pro-
gramming, Systems, Languages, and Applications, pages 569-588.

[Claessen and Hughes, 2000] Claessen, K. and Hughes, J. (2000).
QuickCheck: A lightweight tool for random testing of Haskell programs.
In ACM SIGPLAN Notices, pages 268-279. ACM.

[Clarke et al., 1999] Clarke, E., Grumberg, O., and Peled, D. (1999).
Model Checking. MIT Press.

[Clavel et al., 1996] Clavel, M., Eker, S., Lincoln, P., and Meseguer, J.
(1996). Principles of maude.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract
interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles, California. ACM
Press, New York, NY.

[Dwyer et al., 2008] Dwyer, M., Diep, M., and Elbaum, S. (2008). Re-
ducing the cost of path property monitoring through sampling. In Pro-
ceedings of the 23rd International Conference on Automated Software
Engineering, pages 228-237.

o1

[Floyd, 1967] Floyd, R. W. (1967). Assigning meanings to programs. Pro-
ceedings of Symposium on Applied Mathematics, 19:19-32.

[Frama-C webpage, 2018] Frama-C webpage (Accessed May 2018).
Frama-C. Accessed November, 2018. http://frama-c.com/index.
html.

[Goodloe and Pike, 2010] Goodloe, A. and Pike, L. (2010). Monitoring
distributed real-time systems: A survey and future directions. Technical
Report NASA /CR-2010-216724, NASA Langley Research Center.

[Halbwachs et al., 1993] Halbwachs, N., Lagnier, F., and Raymond, P.
(1993). Synchronous observers and the verification of reactive systems.
In Third International Conference on Algebraic Methodology and Soft-
ware Technology, pages 83-96. Springer Verlag.

[Havelund, 2008] Havelund, K. (2008). Runtime verification of C pro-
grams. In Testing of Software and Communicating Systems (TestCom,/-
FATES), pages 7-22. Springer.

[Havelund and Rosu, 2004a] Havelund, K. and Rosu, G. (2004a). Effi-

cient monitoring of safety properties. International Journal on Software
Tools for Technology Transfer, 6(2).

[Havelund and Rosu, 2004b] Havelund, K. and Rosu, G. (2004b). An
overview of the runtime verification tool Java PathExplorer. Formal
Methods in System Design, 24(2):189-215.

[Hawkins, 2008] Hawkins, T. (2008). Controlling hybrid vehicles with
Haskell. Presentation. Commercial Users of Functional Programming
(CUFP). Available at http://cufp.galois.com/2008/schedule.html.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer
programming. Commun. ACM, 12(10):576-580.

[Kim et al., 1999a] Kim, M., Sokolsky, O., and Viswanathan, M. (1999a).
Runtime assurance based on formal specifications. In International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications, pages 279-287.

[Kim et al., 1999b] Kim, M., Viswanathan, M., Ben-Abdallah, H., Kan-
nan, S., Lee, 1., and Sokolsky, O. (1999b). Formally specified monitor-
ing of temporal properties. In 11th Euromicro Conference on Real-Time
Systems, pages 114—-122.

[Knight, 2002] Knight, J. C. (2002). Safety critical systems: Challenges
and directions. In Proceedings of the 24th International Conference on
Software Engineering, ICSE 02, pages 547-550. ACM.

[Laprie, 1995] Laprie, J.-C. (1995). Dependability—its attributes, impair-
ments and means. In Predictability Dependable Computing Systems,
pages 3—24. Springer.

[Leveson, 2012] Leveson, N. G. (2012). Engineering a Safer World: Sys-
tems Thinking Applied to Safety. MIT Press.

[Owre et al., 1992] Owre, S., Rushby, J., and Shankar, N. (1992). PVS:

A prototype verification system. In Kapur, D., editor, cade92, volume
607 of Inai, pages 748-752. SV.

92

[Pike et al., 2010] Pike, L., Goodloe, A., Morisset, R., and Niller, S.
(2010). Copilot: A hard real-time runtime monitor. In Runtime Veri-
fication (RV), volume 6418, pages 345-359. Springer.

[Pike et al., 2011] Pike, L., Niller, S., and Wegmann, N. (2011). Runtime
verification for ultra-critical systems. In Proceedings of the 2nd Intl.
Conference on Runtime Verification, LNCS. Springer.

[Pike et al., 2013] Pike, L., Wegmann, N., Niller, S., and Goodloe, A.
(2013). Copilot: Monitoring embedded systems. Innovations in Systems
and Software Engineering, 9(4).

[RTCA, 2011] RTCA (2011). Formal methods supplement to do-178c and
do-278a. RTCA, Inc. RCTA/DO333.

[RTCA, 2011] RTCA (2011). Software considerations in airborne systems
and equipment certification. RTCA, Inc. RCTA/DO-178C.

[Sha, 2001] Sha, L. (2001). Using simplicity to control complexity. IEEE
Software, pages 20-28.

[Sokolsky et al., 2005] Sokolsky, O., Sammapun, U., Lee, I., and Kim, J.
(2005). Run-time checking of dynamic properties. 144(4):91-108.

[Vollinger, 2018] Véllinger, A. C. R. C. L. G. K. H. T. L. H. W. P. J.
S. K. (2018). Acsl by example.

[Wegmann et al., 2015] Wegmann, N., Pike, L., and Niller, S. (2015). An
introduction to copilot.

93

