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Abstract

In this age of automatization and digitization a majority of organizations relies on large, complex
software systems. For many of these organizations, it is critical that their systems behave as
expected, as unexpected behavior may result in financial loss, lawsuits, or even human casualties.
With software becoming ubiquitous, software validation is growing increasingly important. But
software verification is costly, and the resources required to thoroughly check systems are not
always available.

We propose model slicing as a technique for increasing the efficiency of bounded model checking, a
common method for software verification. Model slicing has been successfully applied to speeding
up explicit and symbolic model checking, but the question of whether it will benefit bounded
model checking, commonly implemented with highly optimized, state-of-the-art SMT-solvers, is
currently unanswered. We provide a model slicing algorithm more fine-grained than the ones
found in today’s literature, and implement it into a mode slicing tool for Rebel, a modeling
language with built-in validation engine based on bounded model checking.

To test our hypothesis we have benchmarked our tool against unsliced models. These benchmarks
show that model slicing has the potential to let us check larger problem instances and use higher
path bounds. For small and shallow problem instances, however, unsliced bounded model checking
outperforms our tool on account of the overhead of slicing. We conclude that bounded model
checking can gain a lot from model slicing, depending on model properties such as size, modularity
and expected bug depth.
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1 Introduction

In this age of automation and digitalization, the
majority of organizations relies on large and com-
plex software systems for their everyday business.
For many of these organizations it is critical that
their software systems behave as expected, since
unpredicted behavior can result in financial loss,
lawsuits, or even worse[Boe72].

Efforts in the area of software verification have
resulted in techniques for proving systems free from
a range of undesirable properties[Bey14], but con-
structing such proofs by hand is arduous and error-
prone work[DKW08]. With software systems con-
tinually growing larger, automatic verification is
the preferable—if not the only—option.

Automatic program verification, however, re-
quires considerable computational power and
time[CGJ+01]. These are resources that a large
number of businesses can not afford to spend. This
limitation renders the question of how to make au-
tomatic program verification more efficient highly
relevant.

In this work we propose a possible solution to
this question. We pose that reducing the size of
a model, without changing its semantics regarding
the property under inspection, may significantly
improve model checking efficiency. Model slicing is
a technique to extract a (smaller) sub-model from
an original model, such that the sliced model con-
tains all parts of the original that are relevant to a
given criterion[Sin13].

We test the success of our proposed solution
through a case study. For this we will use Rebel1,
a domain specific language (DSL) for specifying
systems encountered in the financial world. Rebel
was designed by CWI in collaboration with and
for the purpose of ING Bank[SSVB16]. The lan-
guage allows users to specify behavioral properties,
and tests whether a given set of programs adheres
these properties by employing model checking. To
this end, the program specifications and the given
properties are translated into a set of logic formu-
las (SMT), which are then checked for satisfiability
by the SMT solver Z3. Rebel will be further intro-
duced in section 3.

The idea of using model slicing to improve model
checking efficiency is not entirely new, and previ-
ous efforts have been shown to successfully reduce
the state space[dL01]. Our contributions are in an-
swering the two following, previously unaddressed
questions:

Can we make model slicing more fine–
grained? The slicing algorithms described in
previous work take as slicing criteria states
and transitions in the given model. The al-
gorithms find all other states and transitions

1https://github.com/cwi-swat/rebel

that these criteria depend upon directly and
indirectly. We ask ourselves whether it is pos-
sible to formulate a more fine-grained algo-
rithm, that doesn’t just look at the depen-
dences between states and transitions, but
at the dependences between specific variables
in different parts of states and transitions.
In theory, such a variable-specific algorithm
could produce smaller slices.

Can model slicing outperform optimizations
as applied by state-of-the-art SMT–
solvers such as Z3? To improve their effi-
ciency modern day SMT-solvers such as Z3 are
equipped with numerous optimizations and
heuristics[dMB08]. Currently, there is no lit-
erature describing under which circumstances
these optimizations are applied. It may be the
case that Z3 is equipped with techniques that
allow it to exclude irrelevant formulas from its
input in a way that is similar to slicing. This
means that we do not know whether the cost
of slicing will outweigh the cost of checking
the full model. By benchmarking our slicing
algorithm, we hope to find an answer to this
question.

By introducing and implementing a variable-
specific, fine-grained slicing algorithm for Rebel
specifications and benchmarking our implementa-
tion against Rebel’s original verification tool, we
hope to answer the above questions.

We design our tool to work on well-formed Rebel
programs. Thus, it takes into account only the lim-
ited type of concurrency encountered in this lan-
guage (see section 3 for definitions). To extend
the algorithm to allow full blown concurrency, the
algorithm will need to be slightly altered and ex-
tended with additional definitions for the induced
dependences.

It should be noted that we omit a formal correct-
ness proof of the slicing algorithm from this work,
but we can rest assured in the promising results of
empirical evaluations.

Another note on the scope of this research is con-
cerned with the scarce availability of realistic test
programs. At the time of this research only a very
limited number of real world entities are modeled
in Rebel. Our benchmarking thus includes only
(extensions of) a small number of existing specifi-
cations and some artificial examples.

1.1 Thesis overview

The remainder of this work is structured as fol-
lows: first, in section 2 we give an overview of pre-
vious work done in the area of optimizing program
verification. We review literature on the various
approaches to model checking, optimizing SMT-
solvers for model checking, program slicing, on

1
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which model slicing is based, and finally, we re-
view the main bodies of work done in the field of
model slicing.

Section 3 introduces the Rebel specification lan-
guage. It tells us what specifications may look like,
and how Rebel programs are verified.

The next section, section 4, shows all we need
to know to slice Rebel programs. It contains the
required definitions and algorithms to support slic-
ing, as well as the slicing algorithm itself.

The implementation of Rebel and our slicing al-
gorithm is detailed in section 5. Here, we discuss
Rascal, the language in which the both have been
implemented, and the data types we have used to
represent the formal definitions introduced in the
previous section.

Section 6 explains how we benchmarked our im-
plementation. It shows the specifications used for
benchmarking and explains why these specifica-
tions were chosen. It shows the results of bench-
marking, discusses results and mentions some ad-
ditional findings that may be of interest.

In section 7 we use the results from the previous
section to answer the two research questions stated
above.

Finally, section 8 lists some of the still open is-
sues encountered during this research.

2 Related work

This section is dedicated to giving an overview of
findings in literature from the field of optimizing
model checking.

2.1 Approaches to model checking

Model checking is a way to check if a state-based
system model adheres to a given property. Model
checking verifies whether a property holds by ex-
haustively searching a model’s entire state-space.
Generally, model checking algorithms check if the
given property holds for the model’s initial state,
then for all states reachable from the initial state,
and so forth until no new states are reachable or a
counterexample to the property is found.

According to a 2008 survey of automatic veri-
fication methods[DKW08], model checking allows
the verification of complex, temporal logic proper-
ties, but it is burdened by what is known as the
state-space explosion problem: the state-space of a
program is exponential in the number of variables
and the size of these variable’s types.

The survey distinguishes between two categories
of representations of models for model check-
ing: explicit and symbolic. The first is imple-
mented by widely known model checking tools like
SPIN[Hol97] and CMC[MPC+02]. Tools imple-
menting this approach store model states directly
and rely on graph-based algorithms for exploring
the state space. Explicit model checking suffers

greatly from the state-space explosion problem be-
cause it has to store all visited states to keep track
of its progress. Symbolic model checking was in-
troduced as a solution to this problem. It relies on
implicit representations of sets of states. A success-
ful, commonly used tool implementing this method
is NuSMS[CCGR99]. Symbolic model checking has
been shown to scale very well in comparison to ex-
plicit model checking, verifying systems with up to
1020 states compared to a few thousand[BCM+90].

In Rebel specifications, business entities are
modeled by extended finite state machines. The
translation from these machines to those used in
explicit model checking—systems of states and
transitions—- seems natural. However, since one of
Rebel’s aims is to favor efficiency when it comes to
verification (see section 3), symbolic model check-
ing, which is said to be sound, complete and effi-
cient[DKW08], may be the better candidate.

The next technique described in the survey is
bounded model checking; the approach to model
checking currently implement by Rebel.

Where explicit and symbolic model checking
verify properties for full models, bounded model
checking looks only at finite paths with a length
up to a given bound. Paths longer than this bound
are not considered. This makes bounded model
checking efficient, provided any counterexamples
are shallow, but it is not complete for programs
containing deeper loops.

Applying what we’ve learned from the above sur-
vey to Rebel, which needs to balance efficiency
and safety, symbolic model checking and bounded
model checking each have their appeal. In the fol-
lowing we will take a closer look at literature on
both.

For symbolic model checking, we consult Lin-
ear Temporal Logic Symbolic Model Checking by
K. Rozier[Roz11]. This 41-page survey provides an
overview of the history of symbolic model checking
up to the state of the art at the time of its writing
(2010).

The introduction of this work states that “Once
the system model and specification have been de-
termined, the performance of the model checking
step is often very fast, frequently completing within
minutes.” The author then introduces the state
explosion problem, stating that a system with n
variables ranging over a domain of k values re-
quires at least kn states in general. For models
using real values the state space thus becomes in-
finite. For these systems, the author recommends
using verification techniques providing weaker as-
surances or alternative techniques, such as theorem
proving. Bounded model checking is also men-
tioned as a method for reasoning about models
whose state spaces exceed the capacity of symbolic
model checking.
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Some of the statements above appear problem-
atic in the context of Rebel. Assuming that all pro-
cesses relevant to the banking domain concern val-
ues that can be modeled by 32-bit integers rather
than real numbers, we are looking at 232·n states,
with n being the number of system variables. A
model containing over 3 integer variables would
already exceed 1020 states, the upper bound of
that was mentioned as a breakthrough for state-
of-the-art model checkers earlier[DKW08]. This
upper bound was said to be solved in 22 min-
utes[BCM+90], but it should be noted that this
benchmark stems from 1992. Modern processors
would of course be quicker to return a result. Still,
it raises the question of how Rebel programs can
be modeled using smaller variable types without
losing correctness.

The next section of the survey is concerned with
specifying behavioral properties. Linear temporal
logic (LTL) and computation tree logic (CTL)2 are
introduced as logics for expressing desired program
properties in. LTL reasons about linear traces
through time, whereas CTL reasons about many
traces at once. Their expressiveness is incompara-
ble. To make the difference between the two clear,
the author states that intuitively, LTL is not capa-
ble of describing situations where distinct behav-
iors occur on distinct branches, while CTL can not
express the same behavior happening on distinct
branches at distinct times. The author notes that,
theory aside, LTL turns out to be generally more
expressive in the practice of model checking.

Both logics rely on different model checking al-
gorithms with different running times. If we let
‖M‖ be the size of the model’s state space and
‖φ‖ that of the formula representing the behavioral
property in total number of symbols (this includes
prepositions, logical connectives and temporal op-
erators), then current algorithms for CTL run in
O(‖M‖ · ‖φ‖), while algorithms for LTL require
‖M‖ · 2O(‖φ‖) time. The author notes that this
comparison is misleading, as CTL formulas tend
to be longer and more complicated. They state
that in practice the difference is slight enough not
to make computation time a factor in the decision
of which logic to use.

As we will explain in more detail in section 3,
in Rebel behavioral properties are described by a
configuration of multiple entities, possibly with re-
strictions on their variables and state. The ques-
tion that pops up after reading about LTL and
CTL is: is there a sensible translation between
these state configurations and CTL/LTL formulas?
And if not, is it desirable to change the way pro-
gram behavior is specified in Rebel to one that uses
LTL/CTL formulas? Rebel was designed to be un-

2For a solid, thorough introduction into LTL and
CTL, see [BK08].

derstandable for product owners and programmers
alike. Hence, the answer to the last question is no.

The next section of the work under considera-
tion tells us that the combined system of model
and formula can be represented efficiently using bi-
nary decision diagrams (BDDs). The author states
that choosing a Boolean encoding for an automa-
ton is “a bit of an art”, and suggests a method
where a binary encoding for every state in the sys-
tem is followed by a binary encoding of every vari-
able assignment of the system. For instance, if
a system consists of four states and two boolean
variables, the tuple (1,0,0,1) would represent the
situation where the the model is in the third state,
one of the variables is false and the other is true.
Non-binary variables are encoded using longer se-
quences. Transitions between states can be mod-
eled by pairs of states: for every bit i in the binary
representation of the start state a corresponding
variable σi is created, along with a variable σ′i rep-
resenting the value of the same bit in the resulting
state. It should be noted that the size of the re-
sulting BDD depends highly on the ordering of the
variables. Finding the most efficient ordering is an
NP-complete problem, and in the worst case BDDs
can grow exponential in size with the number of
variables. A BDD representing an automaton and
another one representing the negation of the prop-
erty formula can be combined into a single new
BDD, in which every satisfiable path constitutes a
counterexample.

The final section of the survey currently being
discussed summarizes what was previously stated,
and tells us that scalability is still the biggest issue
with symbolic model checking. The author sug-
gests that bounded model checking, though not
providing the guarantee that no counterexample of
any length exists, vastly increases the size of sys-
tems that can be verified, saying that it provides
termination within a reasonable time frame.

Considering the author’s final remarks, we
change the subject of our focus to bounded model
checking. For an introduction to the field, we
look at Bounded Model Checking by Biere et
al[BCC+03]. This work begins by motivating the
necessity of bounded model checking, stating that
“full verification of many designs is still beyond
the capacity of BDD based symbolic model check-
ers.” Although bounded model checking requires
exponential running time, the authors mention ex-
perimental results showing that BMC is capable of
solving many cases beyond the scope of BDD-based
techniques.

The work then introduces the basic idea of
bounded model checking. Rather than translating
computer programs into SMT satisfiability prob-
lems, as is Rebel’s approach, the authors reduce
bounded model checking to the boolean satisfiabil-

3



ity problem. They describe the semantics of model
checking under bounded traces, and what it means
for a formula to be valid in bounded paths. Of
special interest here is the LTL operator G, which
specifies that some property should hold globally.
As bounded model checking only checks paths up
to a bound k, paths which are not infinite loops,
can never model such a property. This removes the
duality between the operators G and F, which sig-
nifies that some property will eventually be true.
The authors supply a theorem, stating that the
semantics of bounded and unbounded existential
model checking (that is, looking for the existence
of a path satisfying some property) are equivalent
as long as a high enough bound is considered. This
make us wonder about the existence of heuristics
for selecting the right bounds.

The next section of the work under consideration
is concerned with the problem of reducing bounded
model checking to propositional satisfiability. The
scheme for translating models into formulas de-
scribed here is very similar to that of Rebel’s, as
we will see in section 3. It yields an O(|f | ·k · |M |)-
sized formula, where |M | represents the size of the
description of the initial state and the transition
relation. It should be noted that, using SAT solv-
ing and propositional logic, we run into the prob-
lem of greatly increasing the number of variables
when using data types other than booleans, as we
saw earlier in [Roz11]. These variables are needed
to represent non-binary data types, and can po-
tentially lead to an exponential explosion of the
formula’s size.

In the works on model checking that we dis-
cussed above ([Roz11; DKW08]), we saw that the
lack of completeness is one of the major downsides
of using bounded model checking. The final section
of Bounded Model Checking is dedicated to ways of
accomplishing correctness for this technique. The
authors describe three methods.

The first is aimed at cases where the property
does not contain nested operators. For every fi-
nite state system M and property p, there exists a
number CT , the completeness threshold, such that
the absence of errors up to cycle CT proves that
M |= p. Worst case, this number is O(d|V |), where
d is the size of the domain for the variable with
the largest domain in |V |, V being the set of vari-
ables in the model. If the completeness threshold
is lower, heuristics can help finding it sooner.

The second technique the authors mention is
aimed at liveness properties, which Rebel test con-
figuration can not specify currently. Hence, we
skip over this technique. The third method relies
on manually finding an inductive invariant imply-
ing the property that is being verified. As Rebel
verification should be fully automated we are not
discussing the method any further.

The article’s section on experimental results
shows that in the great majority of all bench-
marks, BMC-based model checking using SAT-
solvers proved significantly faster than the BDD-
based algorithm it was compared to. This holds
especially when the SAT-solvers were tuned specif-
ically for BMC.

The results of the above suggest that bounded
model checking is the favorable technique when ef-
ficiency is paramount. For this reason, the next
two sections are dedicated to methods for making
bounded model checking more efficient. The first
looks into the current body of work in tweaking
solvers for BMC, and the second lists ways to re-
duce model size for faster verification.

2.2 Optimizing BMC I: Tweaking SMT
solvers

In this section we consider approaches to optimiz-
ing bounded model checking that apply heuristics
on the solver-side.

The first work we look at is called Tuning SAT
Checkers for Bounded Model Checking by Ofer
Shtrichman[Sht00]. It describes four methods of
improving the efficiency of BMC by using the char-
acteristics of BMC formulas. We will describe the
four techniques below.

Constraint replication is the first method the au-
thors introduce. This technique is based on the
idea that the formula synthesized to describe the
model is almost symmetrical. If certain variable
assignments always produce at least one unsatisfi-
able clause, they can be used to to create what the
author calls conflict clauses. Imagine, for instance
that assigning 1 to x2 and 0 to y4, where x2 refers
to the value of x in the second step, will always
yield an unsatisfiable clause. This gives rise to the
conflict clause ¬x2 ∨ y4. The author claims that
these conflicts must hold for any step because of
the symmetric nature of BMC formulas. Hence, a
replicated clause which is a generalization of the
conflict clause, is added to narrow down the search
space. In the case of our running example the repli-
cated clause would be ¬xi ∨ yi+2.

The next technique the author discusses is static
ordering. The main idea here is that the variable
ordering in which possible assignments are tried
can affect the amount of backtracking that must
be done later on. The author proposes several op-
tions for ordering the variables. One is to apply a
breadth-first search backwards on the dependency
graph of the program, starting from the property
values up to the initial state. As a result, conflicts
will be solved more locally.

The next method is similar to the previous one,
and consists of combining dynamic and static vari-
able ordering. The author proposes that the first
m variables are chosen statically, and the remain-

4



der is chosen dynamically.
The final technique we see is concerned with

choosing the next branch in the search tree. Static
ordering does not tell which value to give to a se-
lected variable. The author proposes four options
for choosing a value. The first is dynamic, and con-
sists of choosing the assignment that would satisfy
the largest number of clauses. The second option
is to always choose a constant or random value.
The third is concerned with searching for a flat
counterexample: in practice variables are unlikely
to swap values more than two or three times in
a computation. So if the variable under considera-
tion has already been assigned a value in a previous
cycle, assign it the same value. The fourth and fi-
nal option is to repeat the previous assignments:
when backtracking from level n to level m, sim-
ply keep all assignments between m+ 1 and n the
same.

To evaluate the described techniques, the author
has benchmarked all possible combinations on 13
designs which were previously proven false. The re-
sults were compared to RuleBase’s benchmarks on
the same problems. RuleBase is IBM’s BDD-based
model checker which, according to the author, is
one of the strongest verification tools on the mar-
ket. The evaluation showed that the static order
strategy had the strongest impact on the solver’s
efficiency. In all cases, it performed significantly
better than normal SAT solving as done by Grasp.
In most cases, constant variable assignment proved
most efficient, which the authors explained by the
other methods’ computational overhead. In only
three of the thirteen cases, RuleBase outperformed
bounded model checking.

Static variable ordering turns out to be only
method mentioned in the above work to signifi-
cantly improve SAT solving. Unfortunately, Z3,
the SMT-solver that Rebel relies on, is hard-coded
to select unassigned variables randomly3. An op-
tion would be to fork our own implementation and
adding the functionality for users to control the or-
der of variable selection. But now let us consider
alternative ways to gain efficiency on the SMT
solver’s side.

Next, we look at the effects of compiling
bounded model checking formulas into SMT rather
than propositional formulas, as used to be the stan-
dard. We look at Bounded Model Checking of Soft-
ware using SMT Solvers instead of SAT Solvers by
Armando et al.[AMP06] The decision to work with
SMT rather than SAT is motivated by the fact that
SMT formulas can be far more compact than their
propositional counterparts.

The introduction gives a quick introduction to
SMT. Given a decidable theory T , such as lin-

3This information was extracted from Z3’s source
code, see https://github.com/Z3Prover/z3

ear arithmetics or the theory of arrays, and a
quantifier-free formula φ, an SMT solver can de-
termine whether there is a T model for φ.

The work describes an algorithm for transform-
ing programs in a basic, imperative language into
SMT. The first phase of this process consists of
preprocessing. Loops are unwound into nested if-
statements, non-recursive functions are inlined and
the program is transformed to if normal form: all
else-statements are removed and if statements
are moved inwards.

The next phase consists of encoding the result-
ing program into SMT formulas, which are solved
in the next phase. When using SAT solvers, basic
data types are converted into bit-vectors. The ad-
vantage of using SMT is that the resulting formula
is not influenced by the size of the underlying data
types.

The fourth and final step consists of building an
error trace. The paper uses the SMT solver CVC
Lite, which returns the set of formulas rendering
the synthesized formula unsatisfiable. The pro-
gram at hand is then traversed, beginning from the
first statement. Traversing the program is straight-
forward: as it is in if normal form, the algorithm
simply has to check whether the returned set sat-
isfies the guard at decision points. All encountered
statements are collected. When a violated asser-
tion is encountered, the sequence of statements
leading up to it is printed.

The authors developed a prototype implementa-
tion of the method described above, and have used
it to test effectiveness. They benchmarked this
prototype on several programs including bubble
sort, selection sort and Prim’s algorithm for finding
a minimum spanning tree for connected, weighted
graphs. They compared the results to those of a
SAT based method for the same problems. For
all the benchmarked programs the SMT method
was either slightly slower or slightly faster than
the SAT-based one. It did, however, turn out that
the SMT based method can handle much larger in-
stances of all problems, as the formulas represent-
ing the SAT-based approach grow an order of mag-
nitude faster than the SMT based method, render-
ing the system on which it runs out of memory.

Our main take-away from the above work is that
it is unlikely that switching from SMT-based model
checking to a SAT-based method will improve the
model checker’s speed. We look at other possible
ways to improve the efficiency of SMT-based veri-
fication.

In the work on bounded model checking that
was discussed above([BCC+03]), we saw that SAT-
based BMC preforms especially well in cases where
the solvers were tuned specifically for using BMC
formulas. Rebel’s current verification engine is
built on the SMT-solver Z3. To see how Z3 com-
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pares to other SMT solvers, we consult last year’s
International Satisfiability Modulo Theories Com-
petition (SMT-COMP 2016). This competition
has been held annually since 2005 to compare state
of the art SMT solvers. From the 2016 bench-
marks[CDHW] the solvers Z3 and CVC4 stand out.
Both outperform all other benchmarked solvers by
far. For the competition’s application track, which
focuses on evaluating solvers interacting with an
external framework for the purpose of model check-
ing Z3 is a clear winner. Like Z3, CVC4 does not
support user provided heuristics for variable selec-
tion4. Considering that model checking is the rea-
son we are interested in SMT solvers in the first
place, Z3 appears to remain the best choice. But
are there other techniques that could improve Z3’s
efficiency?

The 2013 paper The Strategy Challenge in SMT
Solving by Leonardo de Moura et al.[dMP13] in-
troduces the notion of strategies in SMT solving.
Although the authors state that it is difficult to for-
mally specify what the term means, they describe
strategies as “adaptations of general search mech-
anisms which reduce the search space by tailoring
its exploration to a particular class of problems”.
The authors state that although all SMT solvers
have built-in strategies, they know of none which
have theirs documented. Some of the recent SMT
solvers do have parameters allowing users to have
some control over the solver’s behavior. Z3 is one
of these solvers. The authors state that the current
version of Z3 allows 284 of such parameters.

The authors introduce the notion of tactics. Tac-
tics describe big symbolic reasoning steps, and can
be composed into strategies with tactic combina-
tors called tacticals. Tactics are formally described
as functions working sequences of formulas.

Some of Z3’s built-in tactics include simplifica-
tion and converting formulas to conjunctive normal
form. Its tacticals include the then-combinator,
which takes two tactics, applies the first on the goal
and the second on the resulting subgoals. The or-
else-combinator takes two tactics, applies the first.
If the result is failure, it applies the second. Several
tacticals for parallel application exist.

To demonstrate the benefits of using strategies,
the authors have benchmarked different strategies
to a number of different types of program families
for quantifier free linear integer arithmetic. These
evaluations show how using certain strategies can
significantly improve the time needed to solve a
problem. Other strategies, however, can slow the
process down a lot— although they may fail less
frequently.

The above work shows that applying the correct
strategy can be used to improve model checking ef-

4This also became clear from inspecting the source
code at https://github.com/CVC4/CVC4

ficiency in certain cases. However, it is not directly
clear what kind of strategies would be beneficial in
the case of formulas for bounded model checking.
This would certainly pose an interesting research
question. For now, we look at a different approach
to speeding up BMC.

2.3 Optimizing BMC II: Reducing model
size

In this section, we turn ourselves to potential op-
timizations on the model side. Since the time re-
quired for model checking depends largely on the
model’s size, a rather obvious idea would be to re-
strict the model somehow. Fortunately, this idea is
not entirely new. A technique called model slicing
allows users to distill from a model only the parts
relevant to a given criterion. Model slicing stems
from the notion of program slicing, which applies
the same idea to programs rather than models. To
better understand this technique, we turn to A Vo-
cabulary of Program Slicing-Based Techniques by
Josep Silva[Sil12]. This work is a recent (2012)
survey of program slicing techniques. For every
distinct flavor of program slicing (there are many),
it specifies what the semantics and mentions main
applications. But first, a small history:

The notion of slicing was introduced in 1981 by
Mark Weiser[Wei81] to help students understand
and debug computer programs. Weiser described
slicing as is a formalization of the process that
programmers go through mentally when debugging
their code. A program slice consists of a subset of
statements in the original program, and preserves
its the behavior with respect to the variables that
have been marked as interesting. Weiser defined
slices as executable programs consisting of a subset
of the original. A slice is based on a slicing crite-
rion, which is a pair (s, v) where s is a statement
of the original program, and v a set of variables.
Some modern techniques do not demand that the
produced slice is executable, as this is not neces-
sarily interesting for all applications.

The original definition of program slicing as
given by Weiser is now called static slicing. Static
slicing makes no assumptions about the program’s
input, and thus the resulting slice should contain
all parts relevant to any possible execution. To
compute a slice, we must know how all program
statements depend on each other. A program’s
Control Flow Graph (CFG) makes these depen-
dences explicit. However, CFGs store only con-
trol dependences and not data dependences. Thus,
to fully specify the relations between statements
graphs must be annotated with data flow informa-
tion as well. Combining these types of informa-
tion into a single graph yield Program Dependence
Graphs (PDGs), which have proven optimal for
program slicing as it allows users to build slices in
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linear time with respect to the number of nodes in
the PDG. The cost of building a PDG is quadratic
in the size of the program.

We now briefly list the various slicing techniques,
described in Silva’s survey, that may be interesting
to our application.

The first technique the survey touches on is as
the original described by Weiser. Today, it is called
static slicing. Static slicing tells us which program
statements can possibly influence a given set of
variables at a given program point. Its main ap-
plications are testing, program comprehension and
dead code removal.

Next is dynamic slicing. In contrast to static
slicing, which accounts for all possible inputs, dy-
namic slicing is used when one is interested in a
particular execution. Dynamic slices are smaller
than static slices, because the knowledge of input
values rules out certain program behaviors. Slicing
criteria for dynamic slicing are like those for static
slicing extended with input values. Dynamic slic-
ing is mainly used for debugging and testing.

Slicing can occur in two directions: forwards and
backwards. Backwards slicing is used when one
is interested in all statements that could influence
the slicing criterion, whereas forward slicing tells
us which statements are influenced by a given cri-
terion. That is, it says what other parts of a pro-
gram will be affected by a given modification in
one part. Forward slicing is mainly used for dead
code removal and software maintenance.

A generalization of forward and backward slicing
is the technique dubbed ‘chopping’. In chopping,
the slicing criterion consists of two sets of vari-
ables: the source and the sink. A slice resulting
from chopping consists of all statements being af-
fected by the source and affecting the sink. Chop-
ping with an empty source results in backwards
slicing, whereas an empty sink has the same result
as forwards slicing Chopping is used for program
analysis and debugging.

Another technique Silva describes is called hy-
brid slicing. As the name suggests, it is a com-
bination of dynamic and static slicing. Dynamic
slicing is more precise than static slicing, but it
is also more computationally expensive. Hybrid
slicing increases the precision of static slicing by
adding dynamic information into a static analysis.
This is done through a set of breakpoints, where
information about which program parts have been
executed up to the breakpoint can be entered. For
the set of executions defined by these breakpoints,
hybrid slicing tells a user which statements could
influence the slicing criterion. Its primary applica-
tion is debugging.

Slicing as originally defined by Weiser did not
take procedure calls into account, and upon later
research PDGs proved insufficient for representing

multi-procedural programs. Thus, when a pro-
gram contains procedure calls, some precision is
lost in traditional slicing. To combat this loss of
precision, interprocedural slicing was introduced.
This technique computes on a System Dependence
Graph (SDG). Like PDGs, SDGs contain control
and flow relations. Additionally, they contains in-
terprocedural flow relations and parameter rela-
tions. Later, it turned out that using PDGs to-
gether with call graphs results in the same level of
precision.

The next technique on the list is quasi-static slic-
ing. This method produces a slice with respect to
a particular set of executions. It can be used when
a set of input values are fixed, and the rest is un-
known. It answers the question: for a set of execu-
tions where some inputs have known values, what
statements can influence the slicing criterion? It’s
used for debugging and program comprehension.

Next, we consider call-mark slicing. This tech-
nique reduces the cost of dynamic slicing by re-
ducing precision. The slices that call-mark slicing
produces are smaller than static slices, but bigger
than dynamic ones. The technique uses dynamic
information when constructing the PDG: it marks
actually executed call statements, and removes un-
marked ones from the PDG. The graph can then
be traversed using standard static techniques.

Dependence-cache slicing is another technique
based on pruning the PDG with dynamic informa-
tion, but instead of removing nodes, as call-mark
slicing would, it removes edges. On average, the
technique is more precise than call-mark slices, and
also less expensive to compute.

Dicing is another slicing technique. It produces
the difference between two slices for different vari-
able sets, usually where one shows desirable behav-
ior, and one undesirable. This can be useful in the
context of debugging.

The technique of barrier slicing relies on user in-
put. It allows users to specify which parts can be
traversed and which can not during the construc-
tion of the slice. It is mainly used for program
comprehension.

Another potentially interesting technique is con-
ditioned slicing. Like quasi-static slicing, condi-
tioned slicing computes slices with respect to a set
of initial states. But instead of describing these
states by a partial input, the user must supply a
first-order logic formula. The criterion is a quadru-
ple with a subset of input values, a logic formula
on these variables, a statement and a set of vari-
ables of interest. It is mainly used in debugging
and program comprehension.

Conditioned slicing can also be done in a back-
wards direction. This places the condition any-
where in the program, and looks at the statements
required to make it true. This answers the ques-
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tion of how the program could get into the state
described by the formula. A widely used applica-
tion for backwards conditioned slicing is program
specialization and program comprehension.

A generalization of both forward an backward
condition slicing is pre-/postconditioned slicing.
This technique removes all statements except those
which can be executed according to the precon-
dition, and which can satisfy the negation of the
postcondition. It is used for program comprehen-
sion and verification.

A very interesting slicing technique, because it
differs in essence from all the ones we have seen up
to this point, is amorphous slicing. Where all tech-
niques we have encountered which preserve both
the semantics and the syntax of the original pro-
gram, Amorphous slicing makes do without this
last condition: it may apply program transforma-
tions in the process. This allows for greater sim-
plifications, resulting in smaller slices. It answers
the question: can this program be changed to only
compute a set of given variables at this program
point? It is used for program comprehension.

This brings us to concurrent slicing, which is a
technique on its own because concurrency can not
be represented by the standard graph representa-
tions. However, CFGs and PDGs can be extended
with special nodes for representing parallel execu-
tion. This introduces the notion of interference. In
contrast to control and data dependence, interfer-
ence is not transitive. This means normal slicing
algorithms fall short. Algorithms for concurrent
slicing need to take interference relations into ac-
count somehow. Various different algorithms for
concurrent slicing exist, each dealing with interfer-
ence’s lack of transitivity in its own way.

The final type of slicing that the author intro-
duces is proposition based slicing. This technique
was created to reduce finite state transition sys-
tems used in model checking. The user specifies a
formula, from which the slicing criterion is derived
automatically. The slicing criterion contains a pair
(s, v) for every statement appearing in the formula,
as well as for its predecessors and successors in the
CFG. Here, v are the variables appearing in the
formula. Additionally, such pairs of statements
are created for all statements assigning a value to
any variable in v. In contrast to other techniques
considered so far, it produces statements not rele-
vant to the final value of the variables in the cri-
terion. It answers the question of what statements
are needed to satisfy a given LTL formula.

This, finally, concludes the survey of program
slicing. As we saw, there is a wide range of different
slicing techniques. Most answer a slight variation
of the same question. But how do we choose which
suits us the best? For instance, do we need inter-
procedural slicing, or is the intraprocedural vari-

ant sufficient because functions are inlined during
verification anyway? Amorphous slicing may pro-
duce even smaller slices than the other techniques
mentioned above. This makes it potentially it rele-
vant, but it also raises the question of how traces in
amorphous slices can be translated back into traces
on the original model for debugging. Although we
can probably come up with some inverse strategy
for this, we have to wonder whether the time such
a procedure would require outweighs what can be
gained from it. Techniques like conditioned slicing,
pre-/postconditioned slicing or proposition based
slicing may be interesting too, as they take up some
of the model checker’s work. But as it is likely that
such complex slicing techniques are less computa-
tionally efficient, it may be the case that using a
simpler algorithm to produce a bigger slice for the
highly optimized SMT solver Z3 is actually faster.
In general, we will have to find out if the added
cost of program slicing does not actually slow the
process down on account of Z3 heuristics outper-
forming it.

Another thing we will have to keep in mind is
that models are not sequential computer programs.
Thus, the techniques described in the survey are
not directly applicable to Rebel code. We will have
to look at how dependency and slicing criteria as
defined above translate to models, and think of
properties we actually demand of a slice. To ad-
dress these issues, we turn to another work. State-
Based Model Slicing: A Survey by Androutsopo-
los et al.[ACH+13] reviews existing work on slicing
state-based models (SMBs).

The work begins by motivating the importance
of state-based models in computer science. The
authors state that models are capable of conveying
certain kinds of information better than programs,
and hence the two are not interchangeable. Models
are, however, more prone to becoming too large for
practical applications. This makes model slicing an
essential technique.

As we stated before, program slicing techniques
are not directly applicable to models: state-based
models are essentially graphs, whereas programs
are sequences of statements. Cutting away parts of
a graph may results in connectivity problems that
do not occur when leaving out part of a sequence.
Additionally, program slicing algorithms generally
operate on lines of code, but SBM’s do not have
such a level of granularity: a single node in a SBM
may represent several lines of code, and inversely
a single statement may be represented by multi-
ple nodes and edges. Thus, where program slic-
ing can simply remove lines of code, SMBs must
sometimes perform extra transformations to pre-
vent nodes from being orphaned.

Another concern not addressed in normal pro-
gram slicing relates to the non-deterministic nature
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of SBMs. While non-determinism is commonly en-
countered in state-based models, most program-
ming languages tend not to allow for it. Dealing
with non-determinism in model slicing algorithms
is still an open issue.

A section of the survey that is of particular inter-
est to us is one dedicated to various approaches to
model slicing specifically for the purpose of model
checking. The authors suggest that, in this con-
text, slicing can be done on either the input lan-
guage solver’s input language (SMT-LIB in the
case of Rebel), or on the model before it is trans-
lated. This section of the survey presents results
for the latter, by mentioning promising experimen-
tal results for models in UML, EHA and RSML.

But despite this apparent success, the field of
state-based model checking is relatively unexplored
according to the authors. This is demonstrated by
the final section of the survey, where they discuss
a number of issues that are still open. One of them
is concerned with slicing non-terminating models,
which the authors state there are currently no cor-
rect ways of accounting for.

Another issue the authors point out concerns
precision. This is a real problem for hierarchi-
cal state machines in particular. Most algorithms
working on this type of model start with the lowest
level in the hierarchy and consider all states at that
level before moving up. If a state is in a slice, then
so are its superstates. But then all substates form-
ing the superstate must be included too, leading to
larger slices which are less precise.

Concurrency and communication pose another
problem: most current approaches to slicing han-
dle communication by introducing new depen-
dences, which is complex and tends to induce a
lack of precision. If the slicing algorithm assumes
transitivity of dependences here, it can be incor-
rect. As we saw in the survey [Sil12], this is an
issue for program slicing as well.

Next on the list of issues is graph connectiv-
ity. Some algorithms mark elements that should be
kept, other algorithms mark elements that should
be removed. Most algorithms do not delete states
or transitions that can cause other states to be-
come unreachable. This leads to larger, less pre-
cise slices. The authors state that only one algo-
rithm exists which removes transitions and recon-
nects the machine by merging states. Although it
is appealing to try and find the smallest possible
slice, this brings forth the problem with amorphous
slicing that we touched on earlier: as the model
will look different, can a resulting counterexample
still be used to construct a trace that is useful for
debugging the original model?

As a final issue, the authors mention the prob-
lem of slicing richer and larger state-based models:
only ‘simple’ features such as hierarchy, concur-

rency and communication are accounted for cur-
rently. This limits the expressiveness of models
that can be sliced. More research needs to be done
into techniques to account for more features.

The survey gives us some insight on the state
of the art in model slicing. A small number of
promising results in this area make us believe that
it may be possible to construct an algorithm for
slicing Rebel code, which may improve the effi-
ciency of model checking. However, the survey also
shows us that a number of questions in the area are
still unanswered. None of the model types trans-
late to Rebel in a way that is directly clear, which
leaves the possibility that the existing algorithms
and theories will not be able to account for all of
Rebel’s features.

In this section we looked at the spectrum of au-
tomatic verification techniques currently available.
This review showed that full (symbolic) model
checking is too inefficient for our purposes. For real
world systems, state of the art verification engines
need minutes or even hours rather than seconds,
which clashes with Rebel’s philosophy of provid-
ing safety assurances on the fly. Since bounded
model checking can significantly improve computa-
tion time by limiting the depth of the verification,
this method seems best suitable to our needs. But
even bounded model checking is costly in terms of
time and memory. In the literature, we found three
promising techniques for speeding BMC up. They
are listed below:

• Tweak the SMT solver to instantiate variables
in a static order based on their dependences;

• Steer the SMT solver by using strategies opti-
mized for solving BMC formulas;

• Perform model checking on a smaller model
by slicing to the specification before checking.

All of these options have shown some success
in speeding up verification. Which should we go
with? A factor in our decision is the fact that re-
searchers at CWI are currently looking into meth-
ods of making the translation from Rebel specifi-
cations to SMT-LIB more efficient by means of an
intermediate language. This is likely to have an
impact on the structure of the resulting formulas.
But as it is a work in progress, not much can be
said on what the final BMC formulas will look ex-
actly. Hence, we refrain from focusing on strategies
catered to the current SMT-LIB representation at
this point in time.

Instead, we look at model slicing. This tech-
nique limits bounded model checking to only those
parts of the specification which potentially affect
whether the property that we are trying to verify
holds. This technique has potential for speeding
up the process, as in theory verification time de-
pends on the size of the model under inspection.
In the worst case, slicing will yield the exact same
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model we started with, but this seems unlikely as
we know from practice that code tends to express
at least some degree of modularity.

3 The Rebel specification language

3.1 Rebel specifications

In this section we give an in-depth description of
the Rebel language as specified in [SSVB16]. At
times we diverge slightly from this document, as
Rebel has seen some (yet unpublished) renovation
since the writing of [SSVB16]. Our knowledge of
Rebel’s recent revisions comes directly from work-
ing with Rebel and its developers.

In Rebel, business entities—e.g., bank accounts,
transactions—are modeled by state-based ma-
chines. Rebel was designed for the domain of fi-
nance, and as such it comes with several built-in
primitive types such as Money, Currency and IBAN.

A Rebel specification of an entity consists of three
main parts: a number of fields containing state
variables, a set of event declarations and its life
cycle: a description of the allowed transitions be-
tween states.

Figure 1 shows a specification modeling a bank
account. It contains the fields balance, holding an
instance of the Money type, and accountNumber which
is an IBAN. accountNumber is the entity’s unique
identifier, which is determined by the @key exten-
sion following its type declaration.

Between line 17 and 27, the Account’s life cycle is
declared. It defines an initial state called init (de-
termined by the keyword initial) and a final state
closed, as determined by the keyword final. The
life cycle tells us which transitions between states
are allowed. Life cycle descriptions are formatted
s1 -> s2 : e1, e2, ..., en, and should be read as
‘if the machine is in state s1, the occurrence of
event e1 or e2, or . . ., or en puts the machine in
state the state s2’. Only one event can occur in
a single entity at any time. Events are treated as
atomic. In the example demonstrated in figure 1,
the occurrence of an openAccount event in the initial
state brings us to the opened state.

The Account’s events are declared between lines
7 and 15. Events can have parameters, and enti-
ties can bind these. We see this occurring in line
8 for the openAccount event. Unbound parameters
either use default values, which can be specified in
event definitions, or they obtain their value from
other parameterized function calls. Event defini-
tions are stored in dedicated library specifications.
This separation of declaration and implementation
was introduced to encourage reuse: multiple enti-
ties can inherit from a single library specification,
and a single entity can import multiple libraries.

Figure 2 shows us a specification of the
openAccount event. The event keyword specifies
that what follows is an event. Next are the event’s

Figure 1: Rebel specification of an Account

1 specification Account {
2 fields {
3 accountNumber: IBAN @key
4 balance: Money
5 }
6

7 events {
8 openAccount[minimalDeposit = EUR 50.00]
9 withdraw[]

10 deposit[]
11 interest[]
12 block[]
13 unblock[]
14 close[]
15 }
16

17 lifeCycle {
18 initial init -> opened: openAccount
19

20 opened -> opened: withdraw, deposit,
interest

21 -> blocked: block
22 -> closed: close
23

24 blocked -> opened: unblock
25

26 final closed
27 }
28 }

name, and any optional parameters between square
brackets. Behind that we see, between parentheses,
any optional event arguments. The openAccount

event has one parameter of the Money type called
minimalDeposit. It is given the default value of
EUR 0.00. This value will be used if no parame-
ter is provided. The event’s argument is called
initialDeposit and is of type Money.

Events may have pre- and postconditions. An
event can only take place if all of its preconditions
are met. In our example, the event openAccount

can only take place if the value of initialDeposit

is greater than the minimal deposit.

Postconditions describe the effect of an event.
In our example, we see new this.balance ==

initialDeposit. The keyword new here indicates
that the value of a variable will be updated. We
also see this.balance, which means that the vari-
able balance of the entity itself is indicated. This
distinction must be made to avoid clashes because,
as we will see in a bit, entities can refer to the vari-
ables and events of other entities. If the event in
our example is executed, it should hold that the
Account’s balance now has the value of the initial
deposit.

In addition to specifying sequential automata,
Rebel allows basic concurrency. We see an example
of this in figure 3. The specification shown here
models a monetary transaction between two bank
accounts. In line 5 and 6, we see the state variables
to and from, both of which are of the type IBAN

. After their type declartion we see the extension
@ref=Account. This extension, @ref=..., followed by
an entity name, signifies a reference to a concrete
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Figure 2: Rebel specification of the openAccount

event

1 event openAccount[minimalDeposit: Money =
EUR 0.00](initialDeposit: Money) {

2 preconditions {
3 initialDeposit >= minimalDeposit;
4 }
5 postconditions {
6 new this.balance == initialDeposit;
7 }
8 }

instance of one such entity. It must be referenced
by something of the type that is designated to be
its unique identifier.

Figure 3: Rebel specification of a Transaction

1 specification Transaction {
2 fields {
3 id: Integer @key
4 amount: Money
5 from: IBAN @ref=Account
6 to: IBAN @ref=Account
7 }
8

9 events {
10 start[]
11 book[]
12 fail[]
13 }
14

15 lifeCycle {
16 initial uninit -> validated: start
17 validated -> booked: book
18 -> failed: fail
19 final booked
20 final failed
21 }
22 }

When we declare such references to concrete in-
stances we expect all of them to run concurrently.
Rebel does not allow the sharing of fields, but a
limited form of communication is available. We
see an example of this if we take a closer look at
the definition of the Transaction’s book event in fig-
ure 4.

Figure 4: Rebel specification of the book event

1 event book() {
2 sync {
3 Account[this.from].withdraw(this.amount

);
4 Account[this.to].deposit(this.amount);
5 }
6 }

Other than pre- and postconditions, event defini-
tions allow synchronization blocks to be declared,
signified by the sync{} syntax. Statements within
these block reference the events of other entities
that are to take place synchronously with the event
that is being defined. This means that, during the
time step the event containing the sync statement is

takes place, all referenced events should take place,
too. Synchronization statements are of the shape
T[id].e(a1,...,an), where T must be the name of a
specified entity, id must be a value of the same type
as T’s unique identifier, e must be an existing event
of T, and a1 to an should be values corresponding
in type and number to e’s expected arguments.

Lines 2-5 in figure 4 show us a synchronization
block occurring in the book event of a Transaction.
Line 3 tells us that booking must be synchronized
with a withdraw event from the Account identified by
the IBAN value bound to the Transaction’s variable
from.

Figure 5 gives a graphical depiction of the way a
Transaction and its two referenced Accounts inter-
act.

3.2 Rebel TestModules

In this section we introduce TestModules, the mod-
ules used for describing certain properties of Rebel
specifications for verification. We will explain the
syntax and semantics of TestModules, show an ex-
ample and explain the mechanics of the verification
process.

If a user wants to check a specification writ-
ten in Rebel for certain properties, they can do
so by describing this behavior in a TestModule. A
dedicated language with Rebel-like syntax was de-
signed to this end. In a TestModule, a user can
describe an abstract configuration of any number
of Rebel entities, along with an integer bound. A
TestModule consists of one or more setup state-
ments, where each statement describes the instance
of an entity. A setup statement can either mention
one of the entity states described in the life cycle,
or leave the goal state unspecified. In addition to
a possible state reference, setup statements may
contain one or more predicates over the entity’s
variables. When a TestModule is checked, Rebel’s
verification engine tries to find a path—no longer
than the supplied bound—leading to a state sat-
isfying all setup statements described in the test
file.

Figure 6 shows us a Rebel TestModule. It de-
scribes a configuration called negativeBalance in
which we see a Transaction in the state booked, an
Account in the opened state with a balance smaller
than 0, and another Account required to be in the
state opened. When the check statement on line
7 is executed, the solver tries to find a path con-
sisting of at most five steps, including the initial
state, to a state where the configuration described
in negativeBalance holds.

3.3 Verifying Rebel

To verify a TestModule, all relevant specifications
and configurations must be translated into logic
formulas. These are then compiled into SMT-
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Figure 5: Graphical representation of a Transaction. The dashed lines separate concurrent automata.
The left and right automata are Accounts. The middle is a Transition. The dotted lines represent
synchronization between events.
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Figure 6: A Rebel TestModule

1 state negativeBalance {
2 booked Transaction;
3 opened Account with balance < EUR 0.00;
4 opened Account;
5 }
6

7 check negativeBalance reachable in max 5
steps;

LIB[BST10], a common input language for SMT-
solvers. Th translation into SMT-LIB consists of
three steps:

First, a predicate describing the initial state is
created. Let’s call this predicate I. This predicate
states that every entity mentioned in the TestMod-
ule is in the state marked as its initial state in its
specification. For every instance a unique ID is
generated, so multiple instances of the same entity
can be distinguished.

For the next step all valid transitions between
states are encoded into a formula as a relation on
states. Let’s call this binary predicate on states
T . It is a conjunction of smaller formulas: one for
every event e. It must hold that the first state is
the source of e, and that all of e’s preconditions
must hold in this state. The second state must be
e’s target, where the postcondition must hold. If e
contains any synchronization statements, it must
hold that all synchronized events take place simul-
taneously.

Finally, in a way very similar to how I was cre-
ated, a predicate G describing the goal state is de-
fined. This predicate states that all entities are in

the state described in the TestModule, and that
any restrictions on their variables declared there
should hold.

The three predicates I, T and G are then com-
bined into the single formula below, which is pre-
sented to Z3 for a satisfiability check:

I(s0) ∧
k∨
i=0

(( i−1∧
j=0

T (sj , sj+1)
)
∧G(si)

)
This formula describes all paths up to length k,

where k is the bound that limits the depth of model
checking, such that the first state is an initial state,
and the last state is a goal state, and all states in
between are reached through valid transitions. If
such a path exists, Z3 returns a model for it. From
this model, an error trace can be constructed upon
request. This allows the user to reconstruct the
steps leading up to the undesirable behavior.

This concludes our overview of the Rebel specifi-
cation language. The next section looks into tech-
niques for slicing programs written in Rebel.

4 Slicing Rebel specifications

Slicing Rebel specifications is a multi-step process.
We must obtain a slicing criterion from the Test-
Module, and we need to analyze all relevant speci-
fications for data- and control-flow to build a graph
on which we can run our slicing algorithm, which
returns a subset of nodes from the original specifi-
cation. In this subgraph, nodes may have become
orphaned or otherwise disconnected in such a way
that the semantics of the original specification are
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changed. We restore connection properties, and
finally we remove everything that is not in the re-
connected slice from the original specifications.

In this section we will walk through all steps of
the slicing process in the order introduced above.

4.1 Obtaining a control-flow graph from
Rebel specifications

In this section we formalize the notion of a control
flow graph for Rebel models, and we explain how
to obtain them from Rebel specifications.

A control flow graph (CFG) is a directed graph
(N,E) in which the edges signify the control flow
paths of a program[All70]. For a node n ∈ N , we
let π(n) be all direct predecessors of n, that is, all
m s.t. (m,n) ∈ E. We let σ(n) be all direct suc-
cessors of n (all m s.t. (n,m) ∈ E). We let uses(n)
be the set of all variables that are used at a n’s pre-
condition, postcondition or synchronization state-
ment. defs(n) is the set of variables that are de-
fined by either n’s arguments or any assignments in
n’s postconditions. The set of variables V consists
of all variables global to the specification—i.e. ev-
ery entity field—and all local variables—i.e. event
parameters or arguments. We define an additional
variable ε to refer to the execution of a node. This
allows us to express control dependences: the effect
other program parts may have on whether a node
is executed. This idea is based on the work of D.
Jackson[JR94], which is aimed at making program
slicing variable-specific, and the main inspiration
of our variable-specific model slicing algorithm.

The state-based machines that Rebel specifica-
tions describe already express every possible flow of
execution of an entity, yet we transform them into
a CFG to perform slicing. We do this to achieve a
more fine-grained level of slicing by breaking events
up into separate nodes. This way, irrelevant parts
of an event, and all dependences they introduce,
can be left out of the final slice. We define four
different kinds of nodes: state nodes, guard nodes,
assignment nodes and synchronization nodes.

CFGs are obtained from the life cycles of enti-
ties as follows: first, we create a state node for
every state mentioned in the life cycle. For every
event in the life cycle, we create a set of nodes: one
‘root’ node: a guard node which uses all variables
mentioned in any preconditions of the event, and
then one assignment node for every assignment in
the postcondition, which uses all variables on the
right hand side of the assignment and defines all
variables on the left hand side. Finally, we define
a synchronization node for every synchronization
statement, the uses of which are any variables used
as parameters in the statement. Together these
event nodes form a chain in the graph, linked in
the order of execution. For every synchronization
node we create an edge to the root node of the

events that are to be synchronized. Figure 7 shows
us the Rebel specification of an event, and figure 8
shows its corresponding chain of CFG nodes.

Figure 7: An event

1 event e(inc : Integer) {
2 preconditions {
3 a > b;
4 }
5 postconditions {
6 new this.a == this.a + inc;
7 new this.b == this.b + inc;
8 }
9 sync {

10 T[this.ref].e’(this.c);
11 }

Next, for every entry s1 -> s2 : e1, e2, ... ,

en in an entity’s life cycle, we create edges between
s1 and the root node of e1, ..., to en, and from
the final nodes in the chain of nodes corresponding
to e1, ... ,en to s2.

4.2 Dependences

Based on the CFG obtained from a specification,
we create yet another graph G = (N ′, E′). We
do this to make slicing variable-specific. This new
dependence graph relates instances I ⊆ N × V
to instances. The edges in the dependence graph
represent dependences between the instances. We
distinguish between seven kinds of dependences,
the union of which is taken as the set of edges
for the dependence graph. Some of these depen-
dences, such as def-use dependence, use-def depen-
dence and control dependence, are familiar from
other works on model slicing. Other types are in-
vented specifically to handle dependences induced
by the semantics of synchronization in Rebel and
the way our CFG’s were created. Amongst these
are nested control dependence and synchronization
dependence. The seven types of dependences that
make up the edges of our graph are defined below.
It should be noted that, in the following, when we

write p
d−→ q, we mean that p is d-dependent on q.

Use-def dependence, or
ud−→, connects the use

of a variable at one node to a definition at
another node. Formally, if a variable v is used
at the instance (n, v), and v is defined at the
instance (m, v), and there is a definition-clear

path5 from m to n, then (n, v)
ud−→ (m, v).

Def-use dependence, or
du−→, represents internal

dependences of a node: it describes how a vari-
able definition at one node depends on uses of

5A definition-clear path is a path [n1, . . . , nk] from
n1 to nk, such that nk uses the variable v, n1 defines
v, and this definition reaches nk (that is, it is not rede-
fined anywhere on the path between n1 and nk. Reach-
ing definitions are calculated by algorithm 1.
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Figure 8: The chain of CFG nodes corresponding to the event defined in figure 7

Guard

a > b;
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Assignment
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Assignment
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Uses: b, inc

Defs: b

Synchronization

T[this.ref].e’(this.c);

Uses: ref,c

that same node. That is, it tells us which vari-
ables were used to calculate the defined vari-
able’s new value. If n is an assignment node
representing a postcondition statement of the
form new this.v == expr(w1, . . . , wi), where
expr(w1, . . . , wi) denotes some expression over

the variables w1, . . . , wi, then (n, v)
du−→

(n,w1), . . . , (n, v)
du−→ (n,wi)

Control dependence, or
cd−→, connects the exe-

cution of a guard node to the uses of variables
occurring in any guarding expressions. This
signifies that whether the event represented by
the node can be executed depends on the val-
ues of the guarding variables. Formally, if n is
a guard node representing a precondition with
a set of expressions ranging over v1, . . . , vi,

then (n, ε)
cd−→ (n, v1), . . . , (n, ε)

cd−→ (n, vi).

Nested control dependence, or
ncd−→, defines

the control-dependence of an assignment or
synchronization node to the event’s guard
node. For any event, if m is the root node of
the chain representing it and n1, . . . , ni are its
assignment nodes and synchronization nodes,

(n1, ε)
ncd−→ (m, ε), . . . , (ni, ε)

ncd−→ (m, ε).

Def-execution dependence, or
de−→, connects

the definition of a variable to the execution of
the event node in which it is defined: ∀v ∈
defs(n), (n, v)

de−→ (n, ε). It signifies that
postconditions take effect only when events ac-
tually take place.

Parameter data dependence, or
pdd−→, is a par-

ticular kind of data dependence. When a
synchronization statement in one event forces
the synchronized execution of another, the
synchronization statement provides parame-
ters for the synchronized event. Thus, the
values of the arguments in the synchronized
events depend on the values of the parame-
ters in the synchronization statements. This
is what parameter data dependence signi-
fies. Let e(a1, . . . , ai) be an event of en-
tity T represented by the node n, and s be
a synchronization statement forcing the syn-
chronization of event e of entity T , repre-
sented by the node m and supplying e with

the parameters p1, . . . , pi, then (n, a1)
pdd−→

(m, p1), . . . , (n, ai)
pdd−→ (m, pi).

Synchronization dependence, or
sd−→, states

that the execution of a synchronization state-
ment depends on the execution of the events
that have to be synchronized with it: if these
events can not be executed, neither can the
synchronization statement itself. If m is the
node representing this synchronization state-
ment and n is the guard node representing the
event that is to be synchronized with m, then

(m, ε)
sd−→ (n, ε).

The dependency graph G′ = (N ′, E′) is con-
structed by taking N ′ = {(n, v) | n ∈ N ∧ v ∈
uses(n)∨v ∈ defs(n)∨v = ε} and E′ =

ud−→ ∪ du−→
∪ cd−→ ∪ ncd−→ ∪ de−→ ∪ pdd−→ ∪ sd−→.

4.3 Obtaining slicing criteria from
TestModules

In section 2 we saw that, in traditional model slic-
ing, a slicing criterion consists of a set of model
states or a set of transitions. As one of our aims is
to construct a model slicing algorithm that is more
fine-grained, we want our criterion to be more pre-
cise: it should be able to take variable-specific de-
pendences into account. To be able to express this,
we define our slicing criterion consist of instances
(recall that an instance consists of a variable and a
state). When an instance (v, s) is in the set of cri-
teria, we are interested in all states and transition
affecting v in state s.

Now if we recall from the previous section, every
setup statement in a TestModule may specify a
goal state and constraints on entity fields. Whether
both, only one, or two of these parts are present in
a setup statement decides what the slicing criterion
will look like. Below we explain how every possible
combination shapes the slicing criterion.

Both a goal state and variable constraints
are defined. This case is very similar to a
traditional program slicing criterion: we are
interested in a particular (set of) variable(s) at
a particular program point. If a setup state-
ment of this form is encountered, then for ev-
ery variable v constrained in the setup state-
ment we add the pair (n, v) to the criterion,
where n is the node representing the goal state
mentioned in the setup statement.

A goal state is defined without any variable
constraints. When only a goal state is de-
fined, we must take into account all paths
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begin
defs in←− ∅;
defs out←− ∅;
repeat

foreach n ∈ N do
defs in(n)←−

⋃
m∈π(n) defs out(m);

defs out(n)←− {(m, v) | (m, v) ∈ defs in(n) ∧ v /∈ defs(n)};
defs out(n)←− defs out(n) ∪ {(n, v) | v ∈ defs(n)};

end

until defs in and defs out reach a fixed-point ;

end

Algorithm 1: Calculating reaching definitions

leading up to this state. We find all states
occurring on any path from the initial state
to the goal state. For every node representing
such a state n, we add the instance (n, ε) to
the set of criteria.

No goal state is defined, but there are
variable constraints. If only variable con-
straints are defined, any state in which the
value of a goal variable can be changed is rele-
vant. Therefore we add all pairs (n, v), where
n is the target of a transition which alters the
value of the variable v, and v is in the set of
constraints.

Goal state nor variable constraints are de-
fined. All paths through the entity should be
considered. For all nodes n in the graph, (n, ε)
is added to the set of criteria.

On some occasions multiple setup statements for
one type of entity can occur in a single TestModule.
We see an example of this in figure 6, where the
goal is to find one Account opened, and another
one opened with a negative balance. In such a
scenario, we combine both criteria by taking the
union. This approach may not seem ideal: in some
cases one setup statement can result in a very small
slice, whereas the other requires the full model. It
would be preferable to create two separate entities
as this would limit the search space for at least
one of the entities. Unfortunately, this is not as
straightforward as it may seem. Imagine we did
do this, and we created a specification Account1 for
the opened Account and an Account2 for the openend

Account with balance < EUR 0.00. This would be
just fine until we consider the Transaction entity.
This entity references two Accounts. Which of these
should be Account1 and which should be Account2?
There is no way of knowing in advance, and both
assignments may have to be explored anyway. We
will discuss this some more in section 8, but for the
current implementation we simply combine both
criteria and create the bigger slice.

4.4 Slicing

Once the dependency graph is constructed and
the slicing criterion is known, slicing is straight-
forward: we calculate all instances relevant to the
slicing criterion by traversing the graph starting
from the nodes in the criterion. Algorithm 2 shows
the slicing algorithm. It is based on the slicing al-
gorithms found in other works on model checking
([Oja07; WDQ02; KLB12]).

Initially the slice is assigned to be the slicing
criterion. Every iteration of the algorithm’s loop
may add new nodes to the slice. When no new
nodes are added, the loop is exited and the al-
gorithm terminates. Note that the algorithm will
always terminate, as it operates on finite graphs:
at one point either no new nodes will be reachable
through graph edges from nodes in the slice, and
hence the value of slice stabilizes, or all nodes in
the graph will be in the slice. In this case, no new
nodes can be added in the next iteration, causing
the slice to stabilize and the algorithm to termi-
nate.

4.5 Restoring reachability relations

When the slicing algorithm finishes we get a set of
relevant instances. During the process, nodes that
belong in the slice may have become orphaned, or
the order in which nodes can be reached may have
changed. To maintain the original reachability re-
lations with respect to all nodes in the slice, certain
nodes will have to be reconnected.

We have implemented two methods for achieving
this. The first, conventional one, adds any missing
nodes that were removed by slicing back to the
graph until all nodes in the slice can be reached
in the same order as in the original. Consider, for
instance, the state-based machine in figure 9(a).
Assume that s1, s3, s4 and t4 end up in the slice,
which is depicted in figure 9(b). In the slice we
see that s4 is no longer reachable from s1, even
though both are in the slice and can reach each
other in the original. Additionally, s3 is only reach-
able by going through s4 first, even though it could
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input : A dependency graph G′ = (N ′, E′) and a set of slicing criteria C
begin

slice←− C;
repeat

foreach i ∈ slice do
slice←− slice ∪ {j | (i, j) ∈ E′};

end

until the value of slice stabilizes;

end

Algorithm 2: Slicing

reached before getting to s4 in the original. Algo-
rithm 3 describes the first approach to restoring
reachability, which traverses and adds parts from
the original CFG if they are needed to reconnect
disconnected parts of the slice. Figure 10 shows us
the result of applying this algorithm to the slice
we saw in figure 9: t1, t2, s2 and t3 are added. t1
and s2 are added because the other in-slice nodes
can only be reached by going through them in the
original graph. t3 is added because it brings us to
the in-slice node s4, and t2 is added because if we
leave it out, we can only reach in-slice node s3 by
going through s4 first, even though we can reach
it without passing here in the original.

When this restoration algorithm is applied, the
resulting slices will adhere the strong correctness
property[AAC13], which means that the following
two statements hold for the resulting slice:

• If the original model shows certain behavior
with respect to a variable in the slicing crite-
rion, then the sliced model can show the same
behavior

• If the sliced model shows certain behavior with
respect to a variable in the slicing criterion,
then the original program can show the same
behavior

One downside of this method is that it can result
in nodes not relevant to the slicing criterion be-
ing in the final slice. This gives us understandable
traces, but in theory it can result in significantly
larger slices: in our example we end up with almost
the full original slice: only t5 is removed. To min-
imize the effects of adding these nodes to the slice
on solver time, we remove all effects from events
added to the slice during this step. We only add
the guard node fore very event to the slicing crite-
rion. From here, we slice again, reconnect again,
and iterate until no new nodes are added in the re-
connecting step. This process terminates, because
eventually no new nodes will be added, or all nodes
are in the slice. Either way, the slice stabilizes and
our algorithm terminates.

Another way to minimize the effects of adding
unnecessary nodes is to apply our second method

Figure 9: Graphical example of a specification and
its slice

(a) Original specification

s1init s2

s3 s4

t1

t2
t3

t5

t4

(b) Specification after slicing

s1init

s3 s4
t4

Figure 10: Specification from slice in figure 9 after
reconnection step. All states and transitions that
are part of the slice are displayed in red.
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input : A CFG G = (N,E) and a set of in-slice nodes S
output: A set missing nodes containing all CFG nodes that need to be added to the slice to

restore reachability relations
begin

discovered←− ∅;
missing nodes←− ∅;
forall n ∈ S do

discovered←− ∅;
missing nodes←− missing nodes ∪DFS(G,n);

end
return missing nodes;

end
function DFS(G,n):

discovered←− discovered ∪ {n};
missing ←− ∅;
foreach m ∈ σ(n) do

if m /∈ S then
missing ←− missing ∪ path to next part of slice(CFG,m);

end

end
return missing nodes;

function path to next part of slice(CFG,n):
discovered←− discovered ∪ {n};
missing ←− ∅;
next←− ∅;
if n ∈ slice then

next←− next ∪ {n};
end
else

foreach m ∈ σ(n).m /∈ discovered do
missing ←− missing ∪ path to next part of slice(CFG,m);

end
if next 6= ∅ then

missing ←− missing ∪ {n};
end

end
return missing;

Algorithm 3: Restoring reachability
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Figure 11: Specification from slice in figure 9 after
amorphous reconnection step. All states and tran-
sitions that are part of the slice are displayed in
red.

s1init

s3 s4
t4

t’
t’

of amorphous reconnection. As we learned in sec-
tion 2, amorphous slicing results in a slice that
is not necessarily a subgraph of the original: new
edges may have been introduced. The idea is that
when reachability between two in-slice node is not
the same as it is in the original, new edges created
between these in-slice nodes are added. Figure 11
shows us the result for applying this method to the
slice we saw in figure 9. Algorithm 4 shows us the
computations for amorphous graph reconnection.

Slices computed in this way adhere only the
weak correctness[AAC13] property. Only one of
the statements that make up strong correctness
holds for slices reconnected amorphously:

• If the original model shows certain behavior
with respect to a variable in the slicing crite-
rion, then the sliced model can show the same
behavior

The other property required for strong correct-
ness does not hold. This means that behavior that
can be witnessed in the slice may not exist in the
model. As a result, model checking with amor-
phous slicing may produce counterexamples that
do not exist in the original model.

Another obvious downside of this method is that
error traces produced in amorphous slices do not
translate directly to error traces in the original
specification. If not just verification, but error
tracing is the main goal, we recommend not us-
ing amorphous slicing. If, on the other hand, the
user is not interested in a trace, we recommend
applying amorphous slicing, as it can have a big
impact on the size of the specification that is used
for checking.

4.6 Reconstructing specifications from
slices

Once we have obtained a slice, we need to trans-
form it back into a Rebel specification so that it
may be presented to the verification engine. Re-
call that a slice consists of a set of instances:
pairs of variables and nodes. Let V be the set
of all variables occurring in the slice, and N all
nodes. That is, V = {v | (n, v) ∈ slice} and

N = {n | (n, v) ∈ slice}. We obtain the sliced
specification from the original by traversing and al-
tering it top-down. First, we check for every field,
whether it there is a corresponding variable in V .
If there is not, we remove this field from the spec-
ification.

Next, we check for every event, whether its cor-
responding guard node is in the slice. If so, we
keep the event and traverse its definition. For ev-
ery postcondition and synchronization statement
we check if the corresponding node occurs. If not,
we remove this part of the event definition.

Finally, we inspect the specification’s life cycle.
For every entry s1 -> s2 : e1, ..., en, we check
if any nodes corresponding to the events are in the
slice. We remove any event that isn’t in the slice
from the life cycle entry. If none remain at the end
of this step, we remove the entire entry.

If we are applying amorphous slicing, one ad-
ditional step remains: in addition to removing ir-
relevant parts from the specification, we may also
have to add transitions to the specification. In this
case, we add a single event e’ to the set of allowed
events. The event definition is empty: it contains
no preconditions, postconditions and synchroniza-
tion statements. For every two states having to
be connected, we add an entry connecting them
through e’ to the life cycle.

This, finally, leaves us with a Rebel specification
that can be sent to the verification engine.

5 Implementation

The algorithms presented in section 4 are imple-
mented in Rascal6. This language was designed
specifically for metaprogramming[KVDSV09a;
KVDSV09b], and it’s the language that Rebel
was built in. The slicer depends on Rebel’s own
building module for parsing source code, import-
ing relevant specifications and solving references.
The graphs used in the algorithm for slicing and
supporting algorithms were implemented using
Rascal’s built-in graph data type.

The output created by the slicer— a (set of)
Rebel specification(s)— is placed in a subfolder
called “slices”, which is placed in the same folder
as the original specification. From here, it can be
treated just like any ordinary specification. From
here, for instance, the verification engine can be
called to check the TestModule that the slice was
built for.

6 Evaluation

In this section we evaluate the slicing tool intro-
duced in the previous sections. We introduce a
set of benchmark specifications and compare the

6More information and download can be found at
https://www.rascal-mpl.org.
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input : A CFG G = (N,E) and a set of in-slice nodes S
output: A set missing edges containing edges between in-slice nodes that need to be added to the

graph to restore reachability relations
begin

discovered←− ∅;
missing edges←− ∅;
forall n ∈ S do

discovered←− ∅;
missing edges←− missing edges ∪DFS(G,n);

end
return missing edges;

end
function DFS(CFG,n):

discovered←− discovered ∪ {n};
missing ←− ∅;
foreach m ∈ σ(n).m /∈ discovered do

missing ←− missing ∪ {(n, v) | v ∈ find next part of slice(CFG,m)};
end
return missing;

function find next part of slice(CFG,n):
discovered←− discovered ∪ {n};
next←− ∅;
if n ∈ slice then

next←− next ∪ {n};
end
else

foreach m ∈ σ(n).m /∈ discovered do
next←− next ∪ find next part of slice(CFG,m);

end

end
return next;

Algorithm 4: Restoring reachability amorphously
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results of verification time compared to unsliced
models. We discuss the results of benchmarking
and enclose additional, unexpected findings.

6.1 Rebel specifications for benchmarking

To test the effectiveness of our slicing tool we
should benchmark it against unsliced specifica-
tions. Unfortunately, the amount of TestModules
(or specifications, for that matter) available at the
time of writing is small. The ones that exist are of
limited size. Rebel is still very much under devel-
opment, and hence not a lot of work has been done
in modeling actual business entities.

Thus, in order to test whether our tool allows
verification of larger scale modules, we will have to
find specifications elsewhere. Ideally, we would test
our tool on existing benchmark sets, as this would
show us how our tool holds up against the cur-
rent state-of-the-art verification tools. Looking at
the body of work on benchmarking BMC[BCC+03;
CFF+01; Sht01; BLM01], however, we learn that
these specifications tend to be proprietary. In or-
der to measure the efficiency of our tool, we will
have to create our own specifications. Since the
process of constructing specifications for real world
business entities with product owners at the bank
is an iterative and time-consuming process beyond
the scope of this work, we choose to create the
specification for benchmarking from existing spec-
ifications. This allows us to construct test for dif-
ferent aspects of the slicer, and it helps us show
theoretical best and worst cases. A major down-
side of this approach is that the best cases may not
be applicable to specifications of actual product at
all, since these may be structured very differently.

The specifications we have created for bench-
marking our tool can be sorted into two differ-
ent classes, each testing a different aspect. In one
specification, a bug (or goal state) occurs increas-
ingly deep. This allows us to measure the effects
of model size on deep searches.

The second set of benchmark specifications in-
creases a model’s size without increasing the size
of parts relevant to the goal state. This tests the
effect of different full model to relevant sub-model
ratios on model checking time. Both sets of speci-
fications are treated in more detail below.

6.1.1 Benchmark I: increasingly deep bugs

To test the effect of search depth to model check-
ing time, we construct a set of specifications in
which the goal state is located at increasing depths.
The search bound is increased accordingly. We
create a familiy of models. The models we con-
struct are simple: each contains n integer fields,
V1, V2, . . . Vn., n ∈ {1, 2, 4, 6}. The models contain
only two states: an initial state s1, and a second,
final state s2. The transition from the initial state

to the second state is parameterized with an in-
teger. It initializes all fields to the supplied inte-
ger value. From s2 to itself, we define the looping
events decrementV1 to decrementVn. Each of these
events decreases the value of its corresponding field
by 1. The code for this specification is shown in
figure 12. A graphical representation of this speci-
fication is shown in figure 14.

Figure 12: Rebel specification of benchmark I

1 specification BMI {
2 fields {
3 id : Integer @key
4 v1 : Integer

5

...
6 vn : Integer
7 }
8

9 events {
10 initialize[startAmount = m]
11 decrementV1[]

12

...
13 decrementVn[]
14 }
15 lifeCycle {
16 initial s1 -> s2 : initialize
17 s2 -> s2 : decrementV1, . . .,

decrementVn
18 }
19 }

For slicing we create a TestModule describing
a goal state in which the field v1 reaches a neg-
ative value. This module is shown in figure 13.
By increasing the initial value of v1, we force the
model checker to search deeper. We benchmark
with maximum search depth starting from 10 and
increasing up to 25. These values were chosen ex-
perimentally by increasing search depth until solv-
ing the unsliced specification started taking over
11 hours. We run one set of tests for every model
obtained by creating n fields and corresponding
events, for n ∈ {1, 2, 4, 8}:for every set the size of
the sliced model doubles.

Figure 13: Slicing criterion for bencmark I, where
the initial value for v1 is set to n

1 state negV1 {
2 s2 DeepSearch with V1 < 0;
3 }
4 check negV1 reachable in max n + 2 steps;

6.1.2 Benchmark II: incrementing model
size

The second set of benchmark specifications main-
tains a constant depth for the goal state. Instead,
it tests the effects of verifying models that are in-
creasingly large compared to their sub-parts rele-
vant to the slicing criterion.
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Figure 14: Graphical representation of the spec-
ification for benchmarking with increasingly deep
goal states

s1init s2
initialize

decrementV1,
decrementV2,

. . .
decrementVn

For this set of benchmarks, we extend the
Account entity to contain contain additional copies
of every field, event and state (apart from the ini-
tial state, of which there can be only one). If n
is the number of copied structures in the model,
figure 15 shows us the case where n = 1. For every
iteration, we double the model’s size. We check for
i = 0, i = 1 and then up to i = 63. This bound was
chosen because working with larger specifications
turned out to be infeasible for Rebel’s compiler.
Note that any state, event, variable or field refer-
enced in copy i will be suffixed with an i to prevent
name clashes.

The TestModule constructed to slice and verify
with looks for one of our extended Accounts with
a negative balance. In the sub-model created for
copy i, the balance field will have been renamed
to balance1. Hence, the only part of the model
relevant to the slicing criterion will be found in the
original model. The slice will thus look exactly the
same for every iteration.

6.2 Results

In this section we show the result of both sets of
benchmarks introduced before. All experiments
were run on an Intel Core i5 2.5Ghz machine run-
ning 64-bit Linux. Unless explicitly stated other-
wise, all benchmarks obtained were from repeating
a test 10 times and taking the average of all ob-
tained result. This was done in order to account
for the fact that Z3 employs a small amount of
randomness in solving SMT-formulas.

6.2.1 Results I: increasing search depth

Table 1 shows us the results of benchmarking with
increasingly deep goal states. We can see on one
side the time Z3 required to solve the original spec-
ification. Under the column marked ‘sliced C’ we
see the total of the time Z3 required to model check
the slice resulting from slicing on the variables in
C, the time our tool required to slice the original
and then build the slice. The average time required
to slice the specification was 0.1768 seconds. The
column marked ‘Factor’ gives us the total time re-
quired by our tool divided by the time required by

the original slicer.

The average time it took to build the slice was
0.5541 seconds. To gain more insight into how our
tool performs compared to regular model checking,
the results are plotted in figure 16.

6.2.2 Results II: increasing model size

We see the results for benchmarking with increased
model size in table 2. This table is indexed by n,
which signifies the model’s size compared to the
original specification. It shows us the time required
for model checking the original, the time required
to slice a specification of factor n, and the total
time needed to slice, build and model check the
slice. The average time it took to build the slice
was 1.535 seconds, and the average time to solve
was 0.013 seconds. The results of model checking
with and without using our tool to slice first are
plotted in figure 17.

6.3 Discussion

In this section we interpret and discuss the results
of benchmarking our slicing tool. We see that, in a
general, the results confirm our expectations that
slicing facilitates model checking on larger mod-
els or with greater bounds. This is in line with
findings from other work[CFF+01; Sht01; BLM01],
saying that BMC can extend the size of models and
search depth that can be checked within a feasible
amount of time. We do, however, encounter some
unexpected data points. These will be discussed
below.

Looking at the benchmarks for deep searches,
we see that, for the majority of search depths, the
sliced models outperform the original. The excep-
tions to this rule are found at lower depths. This is
because the cost of model slicing and building the
new slice weighs heavier than what can be gained
from checking a smaller model.

What is surprising from the results deep searches
is the large amount of outlying data points. We
expected the total solver time to increase steadily
with search depth, but instead we see that some-
times deeper searches are actually faster. For
instance, the original model was checked almost
twice as fast at depth 13 as it was at depth 12.
Even more interesting is the result found at depth
22, where the solver is about 25 times faster than
it is at detph 23. All of the sliced models display
similar jumps in model checking time.

7This test was run only twice due to time con-
straints.

8This and all consecutive depths for this specifica-
tion were solved only thrice.

9Timed out after 41956.39 seconds. None of the
deeper searcher reached a result within this time frame.

10This and all consecutive depths for this specifca-
tion were solved only once.

21



Figure 15: Graphical representation of an Account extended with 1 copy
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Figure 16: Plotted results for benchmarking deep
searches
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Figure 17: Plotted results for benchmarking
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One of the causes for these jumps in solver time
may be concerned with formula order: the order in
which entity events are declared in the SMT-LIB
encoding sometimes varies per depth. Addition-
ally, states in the original model are encoded by
integer values in the formula encoding the specifi-
cation. The integer values assigned to each state
may differ. Although we have not been able to find
literature on the effects of formula order on SAT-
or SMT-solving time, we have found data showing
other Z3 users experiencing different solver times
due to changing formula order11.

These minor differences in the SMT-encodings
of our specifications do not always seem to explain
the jumps in solver time, though: for the formulas
created for the deep specification with respect to
the variables v1 and v2, for instance, the order of
events and the state encodings are the same, but
solver time still makes some interesting jumps. We
have no explanations for this.

Another result we did not fully expect is con-
cerned with the factors between solving the original
model and solving the sliced ones. We expected the
differences in model checking times to scale with
the differences in model size more predictably—
i.e., for the slice with only the events decrementV

1 and decrementV2, we had expected that the time

required to check the model would about 1
4

d
—d

being the search depth— of the time it would take
to solve the original: at every decision point in the
model, the slice has a quarter as many options as
the original. This factor does not apply, and we
assume that this is on account of one or more of
Z3’s optimizations.

11https://stackoverflow.
com/questions/37237426/
is-z3s-search-time-sensitive-to-formula-order
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Table 1: Results for benchmarking deep searches. Each set of variables in the top row indicates which
fields and corresponding transitions were in the benchmarked specification. The columns marked SD
give the standard deviation of solver time.

v1, . . . , v8 v1, v2, v3, v4 v1, v2 Sliced
Depth Time SD Time SD Time SD Solve Total SD
10 0.721 0.009 0.141 0.003 0.16 0 0.021 0.749 0.003
11 0.904 0.003 0.214 0.008 0.595 0.007 0.033 0.761 0.005
12 1.466 0.029 0.542 0.004 2.455 0.021 0.03 0.758 0
13 0.869 0.003 0.631 0.211 0.835 0.007 0.025 0.753 0.005
14 9.727 0.465 1.39 0.043 13.26 0.057 0.03 0.758 0
15 44.321 0.203 3.28 0.023 1.83 0 0.03 0.758 0
16 53.344 0.413 15.179 0.065 0.555 0.007 0.03 0.758 0
17 93.212 0.494 25.398 0.745 11.605 0.007 0.05 0.778 0
18 224.951 4.704 45.86 0.628 6.785 0.0212 0.03 0.758 0
19 946.768 27.975 131.824 2.813 5.61 0.127 0.05 0.778 0
20 1446.41 33.77 761.46 21.4 5.24 0.014 0.04 0.768 0
21 12537.8357 358.213 2676.213 32.914 41.185 0.304 0.032 0.759 0.004
22 518.53 2.623 2479.2038 49.248 827.8 4.172 0.07 0.798 0
23 N/A9 N/A 1805.17 67.629 1559.6210 N/A 0.063 0.79 0.009
24 N/A N/A 5260.59 71.953 1939.09 N/A 0.049 0.777 0.016
25 N/A N/A 11802.32 440.686 452.47 N/A 0.111 0.839 0.02

Table 2: Results for benchmarking Accounts of in-
creasing size. The column marked SD gives the
standard deviation for the solver time. The stan-
dard deviation for solving the sliced specification
was 0.005.

Sliced Original
n Slice Total Factor Time SD
1 0.127 1.426 71.3 0.02 0
2 0.167 1.681 33.62 0.05 0
4 0.335 1.884 13.956 0.135 0.005
8 0.791 2.219 3.3169 0.669 0.006
16 1.652 3.038 0.502 6.047 0.063
32 4.183 5.884 0.088 67.06 2.99
64 21.444 23.402 0.028 841.607 60. 71

The results from the benchmark set for Accounts
of increasing size are less surprising, as there are no
unexpected outliers to be found here. We see that
initially, slicing is the more expensive procedure.
But after we have increased the model size by a
factor of 16, slicing becomes significantly faster.
The total time required to wait for factor 64 is 23
seconds, whereas the original takes over 14 minutes
to solve. We expect the difference in efficiency to
increase with bigger factors.

The main reason we have not been able to test
with bigger model sizes has to do with a surprising
bottleneck: after a certain size, it became increas-
ingly difficult for the IDE to cope. Models with 32
and 64 copies of the original Account specification
took tens of minutes to be parsed and used. Dur-
ing this time, the IDE was unresponsive to other
queries. Hence, working with models of this scale

is not realistic.

The results answer, to some extent, the ques-
tion of whether model slicing can be applied to
optimize bounded model checking. Unfortunately,
they do not tell us how our tool compares to one
taking coarser dependences into account. We do
not know if or at which point model slicing with
this level of granularity outperforms the more tra-
ditional approach.

7 Conclusion

The work presented here was performed with the
aim to answer the two questions stated below:

• Can we make model slicing more fine-grained?

• Can bounded model checking benefit from
model slicing?

In our attempt to answer these questions, we cre-
ated a slicing algorithm taking into account finer
dependences than we have seen in other works on
model checking. This algorithm is described in
section 4. We implemented this algorithm into
a model slicing tool for Rebel specifications, and
compared the model checking time for sliced spec-
ifications with that of unsliced specifications. The
results are demonstrated and discussed in sec-
tion 6.

In the following two sections we answer our re-
search questions separately based on the findings
in the previous sections.
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7.1 Can we make model slicing more
fine-grained?

In section 4 we introduced a slicing algorithm
which takes into account more fine-grained depen-
dences than those we have seen in other model slic-
ing algorithms so far. We did this by taking inter-
variable dependences into account, and by creat-
ing multiple nodes for complex transitions. We
saw that this algorithm requires additional types
of dependences on top of the ones introduced in
these aforementioned other works. We saw that
these additional dependences require some extra
calculations, but they are not inherently difficult
to compute, and once the dependences are now
and added as edges into the dependence graph, the
same slicing algorithms can be applied as we have
seen in other works. We have not benchmarked
the resulting slices against sliced produced by al-
gorithms relying on the coarser dependences that
we see in other works.

To conclude: we can say that model slicing can
easily be more fine-grained, but it should be noted
that we do not know whether the calculations re-
quired for the additional dependences outweigh the
cost of model checking slices produced by coarser
model slicing algorithms.

7.2 Can bounded model checking benefit
from model slicing?

In section 6 we benchmarked our slicing tool and
compared the results against the model checking
time required for unsliced specifications. We saw
that the initial overhead of slicing was not worth
the while for small slices and superficial counterex-
amples, but the results also showed that slicing was
actually very beneficial on larger specifications and
deep occurrences of goal states. The set of deep
benchmarks showed that there is a very clear rela-
tion between model size and solver time as search
depth increases, although we saw some outliers
that we are not able to explain. We conclude that
slicing may not always be beneficial, but in cases
it can help to verify larger models and search with
greater bounds within a given time-limit.

8 Future Work

During our research we encountered problems and
questions that we could not solve within the scope
of this work. In this section we list these ques-
tions as recommendations for future research, and
supply potential starting points where we can.

8.1 Comparing our model slicing
algorithm against coarser ones

In this worked we benchmarked the time required
for model checking our fine-grained slicing algo-
rithm against unsliced specifications. The applica-
tion of our tools appears to be beneficial for the

tests we performed, as it allowed us to check larger
models and perform deeper searches. However, the
algorithm has not been compared to the results of
the coarser algorithms described in previous works
on model slicing. It is yet to be seen whether the
overhead of slicing more precisely is worth the ef-
fort. To this end we recommend either generalizing
our tool to operate on different kinds of dependence
graphs, or inversely to implement the algorithm
we described into existing model slicing tools. Ei-
ther way, the results should be benchmarked ex-
tensively.

8.2 Heuristics for combining criteria for
multiple setup statements for the
same entity

In section 4 we saw that, when multiple setup
statements for a single entity occur in a TestMod-
ule, we have to take the the union of all induced
slicing criteria. The reason we can not create sep-
arate slices for every setup statement, as we saw
explained in more detail in the referenced section,
is that it is not clear for any other entities referenc-
ing the entity for which multiple setup statements
occur, which of the slices they should refer to. As
we are forced to generate the largest, most general
slice for all instances, we potentially end up with
a larger search space than we would need if we
could create separate slices We can think of theo-
retical examples where we could gain tremendous
amounts of time by checking the smaller slices.

To combat this problem, we recommend re-
searching whether it may be beneficial to analyze
when the creation of separate slices does not induce
the aforementioned problem. One way to go about
this is to see whether the entity under considera-
tion is referenced by other entities at all. Addi-
tional research might involve constructing heuris-
tics for referring to the correct slice in the case
when entities are referenced by other entities. This
is likely to be non-trivial, as it requires deep insight
into the criteria and the function of the referenced
entities.

8.3 Additional benefits of model slicing

When exploring related work on the subject of
(model) slicing, we saw that this technique is be-
ing used for a variety of applications in addition
to model checking: it is used for debugging, com-
prehension, testing and promoting re-usability. We
recommend exploring whether any of these appli-
cations could be advantageous for Rebel developers
and product owners at ING Bank.

8.4 Additional optimizations for model
checking

To further improve the efficiency with which
bounded model checking can be performed, we
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recommend implementing additional optimizations
lateral to model slicing.

In section 2 we explored other approaches, and
in addition to model slicing both the application
of solver strategies and tuning the SMT-solver
showed potential. We described related work on
tuning SAT-solvers, which showed that assigning
values to variables in order of their relative depen-
dences can significantly speed up model checking
time. Since our algorithm calculates these depen-
dences anyway, we propose propagating the result-
ing ordering to the SMT-solver and changing Z3’s
source code to take it into account.

8.5 Better benchmarking: bigger, more
realistic case study

At the time of this research, only a very limited
set of specifications was available. For benchmark-
ing the effects of increasing model size and search
depth we have had to rely on fabricated specifica-
tions, but such artificial examples do not necessar-
ily correspond to realistic specifications in under-
lying structure. To gain better insight into the
applicability of our tool for optimizing bounded
model checking in practice, we recommend exten-
sively benchmarking it against a set of real world
specifications. To this end, developers and prod-
uct owners should come together to model their
full systems.

8.6 Proving correctness

In this work we have not given a correctness proof
for the model slicing algorithm we created. Al-
though it is very similar to related model slicing
algorithms which have been proven correct, and
although the results of empirical evaluations are
positive, a formal proof of correctness desirable.
For this, we recommend looking at the correct-
ness proofs present in other works on model slicing,
which rely on the notion of simulation, and creat-
ing additional cases for the dependences that our
algorithm takes into account.
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