
R.R.L.J. van Asseldonk

Online Learning of Sparse Network Architectures

master’s thesis

supervised by

dr. Maarten Löffler and dr. Jyrki Alakuijala

11 april 2017

Department of Information
and Computing Sciences

Google Research Europe

ica-5797780

abstract

Modern neural network architectures can have as many as hundreds of mil-
lions of parameters. This makes them power and memory-hungry, and im-
pedes running networks on resource-constrained devices such as phones.
Sparse networks can achieve performance similar to that of dense networks,
with a fraction of the parameters. However, sparsification is usually done
as an afterthought, without benefits in the learning phase. In this thesis, we
propose to simultaneously optimise network architecture and parameters.
Apart from sparsity benefits, this eliminates the need to choose a particular
network architecture in advance.

i

ii

Contents

1 Introduction 1

2 Related work 3
2.1 Metalearning . 3
2.2 Sparse approximation and quantisation 4
2.3 Constrained optimisation and regularisation 6
2.4 Unsupervised learning . 7
2.5 Online topological ordering . 9
2.6 Maximal inner product and nearest neighbour search 10

3 Networks 13
3.1 Supervised learning . 13
3.2 Parameter optimisation . 15
3.3 The space of networks . 18
3.4 Networks as functions . 20
3.5 Symmetries . 23

4 Rewiring 29
4.1 Edge utility . 30
4.2 Applications in quantisation . 34
4.3 Selecting candidate edges . 35
4.4 Optimal weight updates . 40
4.5 Putting it together . 41
4.6 Results . 45

5 Conclusion 49
5.1 Discussion and future work . 49

Bibliography 53

iii

iv

C H A P T E R 1

Introduction

Within the past decade, artificial neural networks have taken the world by storm. As
opposed to traditional programs that compute by executing instructions, an artifical
neural network computes by performing simple arithmetic operations at vertices in a
large graph, where the graph defines how values flow through the network. No single
vertex is essential to the computation in the way that an instruction in a program is. This
makes neural networks successful at tasks that are hard to express as an algorithm. Start-
ing from the more basic tasks such as digit classification, neural networks now power
many of the services that we interact with on a daily basis, such as an autocorrecting
keyboard, or text to speech in a navigation system. Networks for these applications
have grown larger and larger, and with this came an increase in power consumption
and bandwidth usage. Neural networks have mainly been used for applications that run
inside a data center due to their power-hungry nature. Out of privacy considerations,
and in order to service users who might not have a stable internet connection, there is
a desire to move away from datacenters to “on-device” networks. Operating a network
in a resource-constrained environment such as a mobile phone amplifies the problems
of power consumption — which translates directly into battery life, bandwidth usage
— which for many users is metered and limited, and storage space — which on many
phones is scarce. We need to make networks smaller and more power-efficient.

Apart from the challenges in operating neural networks, there is the issue of designing
them in the first place. Machine learning experts currently choose network architectures
based on experience and trial and error. This is a time consuming process, and there is
very little theory to guide the choice. Automating the process of designing a network
would allow neural networks to be used in more contexts, and reduce iteration times.

In this thesis, we will approach both problems with a single solution. Wewill move away
from the traditional dense networks and consider sparse networks instead, which have
less parameters, and can be less expensive to evaluate if they are sufficiently sparse. A
sparse network can have the expressive power of a large network, at the computational

1

cost of a small network. For a given amount of edges, a sparse network can be wider
and deeper than a fully-connected dense network, and so the network can express a
more complex model. Furthermore, rather than fixing the architecture of such a net-
work up front, we will learn its architecture, and optimise architecture and parameters
simultaneously. To this end, we will seek to answer the following question:

Given a fixed number of vertices and directed edges, and possibly addi-
tional constraints such as layering constraints—what is the graph forwhich
the corresponding artificial neural network performs optimally on a given
task?

In other words, given a fixed amount of compute power, what is network architecture
that uses that compute power to its full extent? Yet another way to state the question is:
given a directed graph where edges indicate potential connections, which connections
should we instantiate?

In this thesis we will answer those questions by developing a framework for learning
sparse network architectures. The proposed method is online, in the sense that we
modify the network architecture while learning parameters. Learning architecture and
learning parameters are integrated in a single process, in contrast to previous work
where architecture selection is something external. Unfortunately we were unable to
make our method outperform a static network architecture that is fixed up front. How-
ever, we made a few fruitful discoveries along the way that have applications beyond the
use case of this thesis, and we have a clear idea of how the method could be improved in
future work. Optimising network architecture and parameters simultaneously is some-
thing that has received little attention in the past, and in this thesis we make a step in
that direction.

In Chapter 2, we will give an overview of previous attempts to approach similar prob-
lems, as well as an overview of known solutions to subproblems that we will encounter.
Chapter 3 will then define networks as they are used in this thesis, along with some of
their properties, and the methods for learning network parameters. The definitions in
Chapter 3 are unusual in the sense that they can describe networks with a general archi-
tecture, including non-layered networks. However, the real contribution of this thesis
is in Chapter 4, where we will describe an algorithm that optimises network architec-
ture and parameters simultaneously, a process we call rewiring. The development of
this technique sparked many questions that we cannot hope to answer in this thesis,
and it uncovered interesting paths for future work, such as verifying our method for
deleting edges on more networks, exploring extensions to quantisation, and improving
our method for adding edges. Chapter 5 outlines the opportunities for future work, and
gives a summary of the present work.

2

C H A P T E R 2

Related work

The issues of producing a sparse network, and learning network architecture, have tra-
ditionally been approached as two different problems. Making a network sparse is done
as a one-time post-processing step, and learning architecture is an external process that
does not exploit sparsity. In both cases, network architecture is seen as something rigid,
and fixed. To the best of our knowledge, continuously adapting the edges in a network
as it learns, is something that has not been explored before. But several lines of research
can be considered a step in that direction.

An approach sometimes called metalearning is concerned with designing algorithms
that design networks for a given task. These metalearning algorithms can themselves be
based on a neural network.

A different line of research takes fully trained networks, and tries to reduce their size
in various ways, in order to reduce memory footprint, or to minimise wasted compute
power. As a side effect, the resulting networks can be sparser. Techniques here include
sparse approximation and quantisation.

Finally, an area of research focuses on constrained optimisation, which can include
sparsity constraints. This can be used to optimise network architecture and parame-
ters simultaneously, but it is often as expensive as training a fully-connected network.
The sparsity of the resulting network is only beneficial after training.

2.1 Metalearning

The problem of learning the parameters of a given neural network has been studied
extensively, but coming up with a good network architecture in the first place is still
more of an art than a science. Experts use experience and intuition to come up with a

3

network, and much of current research goes into investigating different network archi-
tectures. For a given task that the network should perform, the goal is to determine the
optimal number of layers, number of neurons per layer, which layers to connect, etc.
Occasionally, research focuses on explaining why a given architecture performs better
than some other architecture, but the process of selecting an architecture remains largely
a black box.

The field ofmetalearning is concernedwith algorithmically determining a good network
architecture for a given task. Recently several directions have been explored:

◆ [Zoph and Le 2016] train a neural network (the controller network) to construct a
child network. The child network is consequently trained to perform the original
task. The controller network is trained unsupervised by reinforcement learning.
This approach achieved state of the art performance on predicting symbols of the
Penn Treebank dataset.

◆ [Xie andYuille 2017] use a genetic algorithm to optimise the architecture of a child
convolutional network, used for an image classification task.

Both of these approaches produce intermediate child networks, which have to be fully
trained to evaluate their performance. Because these methods have to train many child
networks, they are expensive.

To mitigate the cost of fully training a child network, [Brock et al. 2017] note that the
relative performance increase during early training can be used to estimate optimum
performance. They train a network to provide initial weights for the child network, and
rank the child networks after a single training batch. This allows exploring more of the
vast space of network architectures.

To conclude, various approaches for learning network architecture have been proposed.
In all of the approaches mentioned here, the process that optimises the network archi-
tecture is isolated from the learning process of the child network. In this thesis, we will
instead optimise the network architecture and parameters simultaneously.

2.2 Sparse approximation and quantisation

State of the art networks tend to have a large memory footprint: they are deep, and
have hundreds of millions of parameters. One way to reduce the memory footprint of
such networks, is to approximate the weight matrices with something of lower rank.
An other option is to quantise parameters, usually from 32-bit floating point numbers

4

down to a set of values that can be encoded in a few bits. As a side effect of quantisation,
some parameters may become zero, effectively eliminating edges. If a sparse matrix
representation is used for the weight matrices, edges can also be pruned directly. Many
techniques to reduce the network size have been proposed.

◆ [Denton et al. 2014] replace convolution tensors in a convolutional neural net-
work with sparse approximations that are sums of outer products. The approach
is limited to convolutional nets, and takes a trained fully-connected network as
input. The advantages of the sparse approximation are limited to the evaluation
phase.

◆ [Han,Mao, andDally 2015] prune a network to reduce the number of edges by 9 to
13 times. (They also quantise weights and compress the network further.) Their
pruning procedure is to first train a fully-connected network, discard all edges
for which the weight is below a certain threshold, and then train the remaining
network again.

◆ [Hubara et al. 2016] go a step further andmakeweights binary, effectively deciding
whether to keep or drop an edge. The main reason for doing this is to avoid the
need for floating-point hardware. Quantisation is applied at every step during the
training process; not as a post-processing step. However, apart from the benefits
of being able to fit a bigger model in memory, sparsity is not exploited.

◆ [LeCun, Denker, and Solla 1990] prune edges using a more advanced method,
dubbed “optimal brain damage”. Rather than removing edges with the smallest
absolute weight, they estimate the change in loss using the second derivative of
the loss with respect to edge weight. This is a particular element of the Hessian
of the loss with respect to the weights, which is assumed to be diagonal. The
authors show that this procedure results in lower classification errors than simply
deleting edges with smallest absolute weight, when used on a handwritten digit
classification task. Thenumber of parameters can be reduced by a factor 8without
significantly affecting the loss. [Han, Mao, and Dally 2015] do reference this work,
but choose to prune based on absolute weight nonetheless.

◆ [Hassibi and Stork 1993] extend the optimal brain damage algorithm by dropping
the assumption of a diagonal Hessian, which they discovered to be an unrealistic
assumption. Their algorithm, dubbed “optimal brain surgeon”, furthermore up-
dates weights of the non-deleted edges to keep the loss low. The method assumes
a mean squared error loss function, and it does require storing the entire Hessian,
the size of which is quadratic in the number of parameters. At the time this might
have been feasible — the authors mention networks of 104 parameters.

See [Zoph, Vasudevan, et al.
2017, Figure 5] for an overview
of state of the art network
sizes.

However,
for modern networks that can have as much as 108 parameters, computing or stor-

5

ing the entire Hessian no longer seems feasible. [Dong, Chen, and Pan 2017] note
that the high cost can be somewhat mitigated by applying the optimal brain sur-
geon algorithm to one layer at a time, rather than to the entire network.

Although all approaches mentioned above produce a sparse network from a dense net-
work, this is done as a final step. Sparsity is not integrated into the learning process —
perhaps apart from [Hubara et al. 2016] in a limited way — and consequently the major
benefits are in the evaluation phase only. In this thesis, we will instead optimise the
architecture of a sparse network simultaneously with learning its parameters.

2.3 Constrained optimisation and regularisation

To limit the number of edges in a network, one approach is to enforce a sparsity con-
straint on a fully-connected network. We can view this approach as minimising a loss
function not over Rn (where n is the number of parameters of the network), but over a
subset X ⊆ Rn, called the feasible set.

Gradient descent can be adapted to this constrained setting: when the descent step
produces new parameters w ∈ Rn, replace them with the nearest point w′ ∈ X (for a
given metric onRn). This procedure is called projected gradient descent or iterative hard
thresholding: the parameters are projected onto the feasible set. Without additional as-
sumptions on f or X, projected gradient descent may get stuck in local minima.

In order for a network to be sparsely connected, many of the edge weights should be
zero, to eliminate the edge. To be able to describe the feasible sets for such parameter
vectors, we introduce the notion of s-sparsity:

Definition 2.1 ∙ A vector v = (v1 , v2 ,…, vn) ∈ Rn is called s-sparse if v i ≠ 0 for at most s
indices i ∈ {1,…, n}. Note that this definition depends on the choice of basis.

Under this definition, the set of 1-sparse vectors inRn is the union of all axes. In general,
the set of s-sparse vectors in Rn is the union of all s-dimensional hyperplanes spanned
by s basis vectors. This set is not convex if s < n.

Projected gradient descent can still work well under certain assumptions, in particular
when the feasible set X is convex. Unfortunately, sparsity constraints lead to feasible sets
that are not convex, as shown above. [Jain, Tewari, and Kar 2014] analyse convergence
of projected gradient descent in the high-dimensional case (where n is large), where the
feasible set is the set of s-sparse vectors, for some s < n. The projection step in that case
sets the n − s smallest components of the parameter vector w ∈ Rn to zero, and this

6

works reasonably well in the high-dimensional case.

A slightly different approach, without hard constraints on the parameters, is to min-
imise the sum of a differentiable loss function f ∶ Rn → R and a non-differentiable
regularisation penalty д ∶ Rn → R:

min
w ∈Rn

f (w) + д(w)

Note that this problem is closely related to the previous problem, because we can choose
д to prefer solutions close to the feasible set X. For instance, we might take д(w) =
d(w , X), the distance to the feasible set.

Gradient descent can be adapted to deal with the regularisation penalty in several ways,
collectively called proximal gradient descent methods. One particular example of this
problem is ℓ1-regularisation, where д(w) = λ∥w∥1. [Tibshirani 1996] proposed the lasso
(least absolute shrinkage and selection operator) algorithm to solve this problem for
particular classes of f , and noted that it tends to produce solutions where many of the
parameters are zero. In [Tibshirani 2011, p. 274], the author hints at applications in graph
selection. The sparsity can be controlled with λ, but it is not fixed up front. To achieve
a desired sparsity, we have to tune λ.

In [Mazumder, Friedman, and Hastie 2011], the authors approach the problem of fitting
a linear model with sparse coefficients. They present an optimisation algorithm based
on coordinate descent, that can deal with non-convex regularisation penalties. In co-
ordinate descent, rather than updating the entire parameter vector w at every step, only
one coordinate w i is updated per step. The idea of their algorithm is to parametrise the
regularisation loss д with some γ ∈ R, where for large values of γ, дγ ∶ Rn → R is convex,
and as γ goes to 0, дγ goes to the actual desired penalty function, which might not be
convex. The algorithm then iteratively optimises w for a given value of γ, and uses the
optimum as a starting point for optimising with a smaller γ in the next iteration.

The techniques in this section train a fully-connected network, in which some of the
parameters happen to be zero. Sparse approximation algorithms can explore the full
space of possible network architectures, but this means that the feasible problem size is
limited. Training a sparse network using these techniques generally is as expensive as
training a fully-connected network.

2.4 Unsupervised learning

So far, we have discussed supervised learning methods, where a model is made to fit a
training set of labelled input-output pairs. In unsupervised learning, such a training set

7

is not available. We cannot use the loss over a training set to quantify performance of
a model. Unsupervised methods optimise a different metric, that depends only on the
input data.

One particular example of unsupervised learning is autoencoding. Autoencoders are
used to encode input data into a format that is more suitable for subsequent processing,
by removing redundancies or noise. Autoencoders can be defined in various ways. The
following definition is very general:

Definition 2.2 ∙ Let X be a metric space. An autoencoder consists of two functions, the
encoder E ∶ X → Y , and the decoder D ∶ Y → X, such that D ○ E is close to the identity,
in the sense that for all x ∈ X, the reconstruction error d(x ,D(E(x))) is small.

The meaning of “small” depends on the kind of autoencoder. One choice is to limit E
and D to a particular class of functions, and to minimise ∑x∈X d(x ,D(E(x))). If we
have a probability distribution over X, we might instead minimise E[d(x ,D(E(x))]
where x is drawn from X according to the given distribution.

Autoencoders can be used for dimensionality reduction, by taking X = Rn and Y = Rm

for m < n. The hope is that the encoder removes redundancies and noise in the input
data, such that coordinates in Y have a more meaningful interpretation. Autoencoders
are often used as part of a larger network, but they can be trained separately: unlike
in supervised learning, no training set of labelled input-output pairs is needed. The
features in Y are entirely emergent.

In [Aroa et al. 2013], the authors give an unsupervised learning algorithm that learns a
deep autoencoder network. The learning algorithm constructs a network layer by layer,
by identifying correlations in the input data, and constructing a layer that removes these
correlations. The edge weights are chosen from {−1, 1}, and the layers are not fully-
connected. (The authors later extend the technique to real-valued weights.) Learning
in this setting can be expressed as recovering a graph, and the authors use properties of
random graphs to prove that the constructed network is a denoising autoencoder.

In the work by [Aroa et al. 2013], modifying edges of the network is an integral part of
the training algorithm. However, the process cannot be guided: the training algorithm
is unsupervised. While the resulting autoencoder can be used as part of a larger network,
and the network architecture is learned from the input data, the technique cannot learn
a network architecture to solve a particular given task (such as symbol prediction or
image classification). In this thesis, we instead want to explore supervised approaches
to learning network architecture.

8

2.5 Online topological ordering

In this thesis we will construct networks with general architectures, not necessarily lay-
ered like a traditional multilayer perceptron network. One challenge in such architec-
tures is to determine the right order of computation. In a layered network, the layers can
be evaluated one by one, starting from the input layer. Within layers no specific order
is imposed, which makes evaluating such networks very suitable for massively parallel
hardware. In a general acyclic graph, we need to topologically sort neurons to determine
a computation order. This ensures that neuron outputs are known, before these outputs
are used in subsequent computations. In a network that evolves by making small local
changes to the graph, an interesting question arises: given the changes to make, can we
efficiently update the neuron ordering?

The problem at hand is called online topological ordering. It can be formulated as follows:
given directed acyclic graph with n vertices, a total ordering of the n vertices that is
compatible with the graph structure, and a sequence of m edges to insert, produce a
total ordering of the new graph. The related problem of offline topological ordering —
given a directed acyclic graph with n vertices and m edges, produce a total ordering of
the vertices — has been well-studied. An O(n +m) solution has been known since the
1960s, and can be found in many algorithms textbooks. (See for example [Knuth 1997,
§ 2.2.3].) The online problem appears to be harder than the offline problem, with new
discoveries having been published in the last decade.

◆ [Haeupler et al. 2011] introduce two algorithms for online topological ordering.
The first algorithm, applicable to sparse graphs wherem ∝ n rather than n2, has a
time complexity of O(m3/2). The second algorithm can handle an arbitrary num-
ber of edge additions inO(n5/2) time, but this is of no interest to us, as reordering
the entire graph using an offline algorithmwould bemore efficient. Unlike the use
case envisioned in the paper, we do not need to observe the intermediate graph
after each of the m edge insertions. The algorithm for sparse graphs is based on
a traversal of the vertices between the two endpoints of an inserted edge, in the
vertex order.

◆ [Bender et al. 2011] give an O(min{m1/2 , n2/3}m) algorithm for sparse graphs,
and an O(n2 log n) algorithm for dense graphs. Their sparse-graph algorithm
assigns to every vertex a level and index, such that the combination of the two
is lexicographically a topological ordering. The algorithm is based on a two-way
search, forward andbackward from the endpoints of an inserted edge. By showing
how insertions affect the level and index of vertices, the authors are able to show
that their algorithm is efficient. This work was reprinted in 2016.

9

In short, we do not need to topologically sort a graph after every modification. For
sparse graphs, inserting m edges can be done in O(m3/2) time. We can maintain a
topological ordering of the graph as the graph is being updated. Thismeans thatmaking
small modifications to the graph during the learning process can be done efficiently.

2.6 Maximal inner product and nearest neighbour search

To select candidate edges to add to the network graph later in this thesis, we will need
to do amaximal inner product search (abbreviated mips): given a set of vectors, find the
vector that has the maximal inner product with a query vector. A related problem is the
nearest neighbour search based on cosine similarity. When all vectors in the search set
have the same norm, the two problems can be shown to be equivalent. With the rise of
recommendation systems and the revived interest in datamining recently, bothmaximal
inner product search and nearest neighbour search have been studied extensively.

◆ [Friedman, Bentley, and Finkel 1977] give an overview of early solutions to the
nearest neighbour problem, culminating in the introduction of the k-d tree in
[Bentley 1975]. The authors then go on to present an optimised algorighm to con-
struct and query the k-d tree for a nearest neighbour search. The algorithm tra-
verses the k-d tree as usual to find the leaf node that would contain the query
point, and selects the closest point from that leaf. The algorithm then backtracks,
from the leaf back to the root. If, at a split plane, there could exist points on the
unvisited side that are closer to the query point than the current closest point, that
side needs to be traversed as well. Construction of the k-d tree takes O(kn log n)
time for n points. The best-case query time is O(log n), but in the worst case,
backtracking needs to visit all nodes, causing a worst-case query time of O(n).
For nearest neighbour search, k-d trees tend to work well in low dimensions, but
performance degrades for high k.

◆ [Meiser 1988] gives an O(k5 log n) algorithm for point location query in an ar-
rangement of n hyperplanes. The hyperplanes partition Rk into regions, and the
goal of a point location query is to find the region that contains the query point.
The main contribution of this work, is that it demonstrated that point location
queries need not be exponential in k. This work was later reprinted as [Meiser
1993].

◆ [Panigrahy 2008] proposes to traverse a k-d tree multiple times with a small ran-
dompertubation applied to the query point each time. This yields an approximate
nearest neighbour of the query point, without the cost of backtracking.

10

◆ [Clarkson 1999] introduces two data structures with corresponding query algo-
rithms for nearest neighbour search. One data structure follows a divide and
conquer approach, the other is based on skip lists. Both data structures appear
efficient, with a construction time proportional to n log n and query time propor-
tional to log n. Unfortunately the bounds also include a factor that is exponential
in the dimension k. Although interesting, these data structures do not cure the
curse of dimensionality that plagued the k-d tree.

◆ [Indyk and Motwani 1988] introduce locality-sensitive hashing (abbreviated lsh)
as a solution to the approximate nearest neighbour search problem. Locality-
sensitive hashing addresses the curse of dimensionality using a familiy of hash
functions that preserve locality. The hashes of points that are near should col-
lide, so points that are near end up in the same bucket with high probability. The
algorithm constructs m ∝ n ρ hash tables, where ρ ∈ (0, 1) is a constant determ-
ined by properties of the hash function family. Points that are closer than a certain
threshold r collide in at least one of the m hash tables with high probability. To
do a query, the algorithm traverses the bucket in which the query point would fall
in all m hash tables one by one. When a bucket contains a point no further than r
from the query point, it is returned. The algorithm may fail to return a point with
some probability, but this probability can be made arbitrarily small at the cost of
increasing m. The query time is O(n ρ log n) in the number of distance computa-
tions. An updated version of this work was published as [Har-Peled, Indyk, and
Motwani 2012].

◆ [Datar et al. 2004] give a concrete locality-sensitive hash function that works for
all ℓp norms with p ∈ (0, 2]. Their hash function ha ,b ∶ Rk → Z is to take

ha ,b(v) = ⌊
⟨a, v⟩ + b

r
⌋

for a ∈ Rk and b, r ∈ R. The main contribution of the work is to show that for
particular choices of a and b, ha ,b is indeed a locality-sensitive hash function. [Li,
Mitzenmacher, and Shrivastava 2014] later show that the term b is not necessary,
and can in some cases even be harmful.

◆ Many incremental approvements have been made to to locality-sensitive hashing-
based algorithms since they were first introduced. [Christiani 2017] gives a good
overview.

The problems of maximal inner product search and nearest neighbour search, either
exact or approximate, have been studied extensively. In this section we only scratched
the surface of known results. Many more specialised results are known, for example
nearest neighbour search algorithms in two dimensions based on Voronoi diagrams,

11

or general maximal inner product search algorithms that can be applied to search sets
where vectors differ in norm. Such results are beyond the scope of this thesis. In this
thesis we will only be searching through unit vectors in high dimensions, ranging from
101 to 103. The overview above focuses on this use case, and the history leading up to
it. The key takeaway of this section is that it is possible to efficiently do an approximate
nearest neighbour search in high dimensions.

12

C H A P T E R 3

Networks

Many machine learning problems can be framed as the search for a certain function
f ∶ Rn → Rm. In supervised learning this function f is unknown, but we do know f (x)
for a number of points x ∈ Rn. We can use this knowledge to construct an approximation
of f , and training a neural network is one way of doing this. In this chapter we will
give one possible definition of “network”, and we will show how the function that the
network computes can be evaluated. The definitions given in this chapter are slightly
more involved than those for a conventional multilayer perceptron network, in order to
describe networks that are not necessarily layered.

3.1 Supervised learning

The goal in supervised learning is to construct an approximation of f ∶ Rn → Rm , given
f (x) for all x ∈ T ⊆ Rn. T is called the training set. The goal of the learning process
is to find the parameters for a function дw ∶ Rn → Rm, parametrised by w ∈ Rk for
some k ∈ Z>0, such that дw(x)≈ f (x) for all x in the training set. We will quantify this
approximation in Section 3.2. The hope is that дw will generalise — that дw(x)≈ f (x)
even for x ∉ T .

Example 3.1 ∙ One instance of this problem is linear regression. In linear regression, дw
is a linear function, and the parameters are the matrix elements.

In linear regression the function дw is simple, but a linear function might not be a good
approximation of f . If we have prior knowledge about what kind of function f should
be, we can use that knowledge to pick д. But as the problems we try to attack get more
complicated, so does f . We need to consider different classes of functions. ◻

Artificial neural networks are one class of parametrised functions that are so flexible,
that they can be made to approximate vitually any well-behaved function. Unlike poly-

13

nomials, neural networks can approximate a function well on a wide domain. Neural
networks can compute bounded functions, whereas nonzero polynomials are unboun-
ded. Moreover, algorithms are known that are able to effectively optimise the network
parameters in practice. These two properties mean that we can “learn” a good approx-
imation, even when we know little about f . Of course this does not mean that neural
networks can magically mimick any black-box computation, but they have been suc-
cesfully applied to a wide variety of problems, including image classification, speech re-
cognition, speech synthesis, facial recognition, translation between natural languages,
image transcription, identification of cancer cells, playing board games, video games,
and many more.

Example 3.2 ∙ Perhaps the canonical problem where neural networks are applied, is clas-
sification of handwritten digits. The input here are luminance values of pixels in a scan
of the digit, and the output is a vector of probabilities, one for each digit. The mnist
dataset consists of 7 ⋅ 104 labelled 28× 28 greyscale scans of digits. In that case, we try to
approximate f ∶ Rn → Rm where n = 282 and m = 10. The mnist dataset is often used
to benchmark network architectures and optimisation algorithms, but is considered a
small dataset by modern standards. Classification of handwritten digits has become a
toy problem, as even relatively simple networks readily rival human performance on the
task. [Cireşan, Meier, and Schmidhuber 2012] achieved a 0.23% test error rate with a net-
work of 2.3 ⋅ 105 parameters, and a 0.39% test error rate using only 6.6 ⋅ 103 parameters.

◻

Figure 3.1 ∙ The digit
classification function f maps
a vector in R28 × 28 to a vector

in R10 , by mapping pixel
luminance to a probability

distribution over digits.

0 10 20

0

10

20

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

f

Example 3.3 ∙ Another problem where neural networks have been applied successfully,
is natural language processing. One approach here is to convert a (prefix of) a sentence
into a point in a vector space, such that sentences with a similar semantic meaning have
a similar representation (natural language understanding). This representation can be
used to e.g. predict the next word in the sentence, which is useful for compression, spell
checking, autocorrection, etc. A commonly used dataset for language-related problems
is the Penn Treebank, a collection of sentences taken fromEnglish newspapers, compiled

14

by the university of Pennsylvania. The sentences are annotated with trees that indicate
their syntactic structure. Another standard dataset is Enwik9, the first 109 bytes of the
English Wikipedia, compiled March 2006 by Matt Mahoney. ◻

3.2 Parameter optimisation

As we saw before, neural networks are a class of functions that are very flexible, and can
be used to approximate virtually any well-behaved function f ∶ Rn → Rm . To quantify
how good the approximation is, we need to introduce the notion of a loss function.

Definition 3.4 ∙ Suppose the codomain of the function we wish to approximate is Rm,
and let y, y′ ∈ Rm. A loss function is a function L ∶ Rm ×Rm → R≥0, such that L(y′ , y)
is small when y′ is a good approximation of y, and L(y′ , y) is large when y′ is a bad ap-
proximation of y. Metrics are often used as loss functions, but in general a loss function
need not be symmetric, and L(y, y) = 0 need not hold for all y.

Example 3.5 ∙ A loss function that was common in early machine learning research is
the squared error loss:

L(y′ , y) = ∥y − y′∥22

This particular loss function is symmetric, and satisfies L(y, y) = 0 for all y ∈ Rm. The
derivative of the squared error loss with respect to y′ is particularly simple, whichmakes
it an attractive candidate when implementing a gradient-based optimisation method by
hand, and for theoretical analysis. ◻

Example 3.6 ∙ The cross-entropy loss function is appropriate when the output of the net-
work is a probability distribution (all elements of y are in [0, 1] and the elements of y
sum to 1). It is defined as

L(y′ , y) = −⟨y, log2(y
′)⟩

Here ⟨ ⋅ , ⋅ ⟩ denotes the standard inner product and log2 is applied elementwise. The
cross-entropy indicates the expected number of bits required to identify one of m val-
ues drawn from the distribution y, when encoded in a scheme that is optimal for the
distribution y′. One needs to be careful to avoid vectors y′ that contain zero elements.

Unlike the squared error loss, the derivative of the cross-entropy loss does not vanish
when y is close to y′, when a softmax function is applied to the output layer (see Sec-
tion 3.4). This makes the cross-entropy a popular loss function for classification prob-
lems. Natural language processing literature often uses a slightly different variation of
this loss, the set perplexity. We will formulate set perplexity in Definition 3.9, after build-
ing up the loss over a batch. ◻

15

Now that we can quantify loss on a single sample, we can define the loss over a batch.
To keep the equations manageable, we will assume that we have settled on a particular
loss function L.

Definition 3.7 ∙ For f , дw ∶ Rn → Rm and x ∈ Rn, we can quantify how well дw approx-
imates f in x. Define the loss of w in x as

Lд , f ∶ Rk ×Rn Ð→ R≥0
(w , x)z→ L(дw(x), f (x))

When д and f are clear from the context, we will drop the subscript and write L(w , x).

Definition 3.8 ∙ Let T ⊆ Rn be a set of points where f (x) is known, and let f and дw be
as before. Define the loss of w on T as

LT ,д , f ∶ Rk Ð→ R≥0
w z→ ∑

x∈T
Lд , f (w , x)

When д and f are clear from the context, we will drop them from the subscript and
writeLT(w). Some authors average the loss over T , rather than summing it. This helps
to make the loss comparable across sets of different cardinalities, but in this thesis we
will omit the normalisation factor for clarity.

Related to the cross-entropy that we saw before is set perplexity, which is used often in
natural language processing literature. In this case we briefly do need to introduce a
normalisation factor.

Definition 3.9 ∙ Let T , f , дw be as before, and denote byLT the cross-entropy loss on T .
The set perplexity of дw on T is given by

2H where H = 1
∣T ∣

LT(w)

Here ∣T ∣denotes the cardinality ofT . The set perplexity can be interpreted as the number
of elements that дw has to choose from.

Example 3.10 ∙ Suppose we want to predict the second symbol of a pair based on the
first symbol. First we need to embed symbols in a vector space. The freeR-vector space
spanned by ♠,♡,♢,♣ is isomorphic to R4. This is called a one-hot encoding. We might
take

T = {(♢,♠), (♣,♢), (♡,♠), (♠,♣)(♣,♡)}

For prediction, a naive дw we can use is to ignore the first symbol, and always out-
put the marginal probability distribution. In the basis (♠,♡,♢,♣) this yields дw(x) =
(25 , 15 , 15 , 15). With this we can compute the cross-entropy loss over T (which does not

16

depend on w in this case, for д does not):

LT(w) = ⟨(1, 0, 0, 0),− log2(25 , 15 , 15 , 15)⟩ + ⟨(0, 0, 1, 0),− log2(25 , 15 , 15 , 15)⟩

+ ⟨(1, 0, 0, 0),− log2(25 , 15 , 15 , 15)⟩ + ⟨(0, 0, 0, 1),− log2(25 , 15 , 15 , 15)⟩

+ ⟨(0, 1, 0, 0),− log2(25 , 15 , 15 , 15)⟩

= − log2(25) − log2(15) − log2(25) − log2(15) − log2(15)

= 5 log2(5) − 2 log2(2) − 3 log2(1)

≈ 9.61

The set perplexity on T is given by 2H ≈ 3.79, for H = 15LT(w) = log2(5) −
2
5 . We find

that our дw performs better than random guessing (predicting a uniform distribution):
the set perplexity of 3.79 is less than the 4 symbols in the set. ◻

Optimisation
The loss gives us a target for optimisation of the function parameters: the parameters
for which д best approximates f on T are

w⋆ = argmin
w∈Rk

LT(w)

Many optimisation algorithms exists to find w⋆, or at least a local minimum. The most
common approaches are based on gradient descent, which assumes that LT is differen-
tiable.

◆ In traditional gradient descent, we iteratively improve the parameter vector w(t)

at iteration t ∈ Z>0 as

w(t+1) = w(t) − α√
t
∇LT(w(t))

for some step size α ∈ R>0. Note that w(t) is not guaranteed to converge if we
keep the step size α fixed for every update, hence the factor t−1/2.

◆ Stochastic gradient descent evaluates the gradient on a random subsetU ⊆ T, such
that ∇LU is an unbiased estimate of ∇LT .

◆ Many more advanced optimization algorithms operate on the same principle, in-
cluding momentum-based methods such as Adam, introduced in [Kingma and
Ba 2014].

◆ Second-order methods incorporate also the Hessian of LT . These methods are
not feasible for optimising large networks, due to the sheer size of the Hessian.

Many more specialised optimisation algorithms exist. Note that often, achieving the
lowest possible loss on a given set T is not the goal, due to overfitting. The role of the

17

optimisation algorithm is not to find a local minimum of the loss, but rather to find
parameters for which the loss is low enough. By imposing extra constraints on LT ,
optimisation algorithms with better convergence properties can be constructed — or
algorithms for which a convergence proof is known at all. For many optimisation algo-
rithms, convergence to a local minimum has only been proven under assumptions that
do not hold in the situations where these algorithms are typically used. For instance,
most optimisation algorithms assume thatLT is convex and has a continuous derivative,
and both of these assumptions are routinely violated. (See for instance Corollary 3.26
and Example 3.19.) In practice, optimisers reach parameters for which the loss is small
enough nonetheless. Understanding why they do, is an area of active research. The field
of optimisation is vast, and beyond the scope of this thesis.

3.3 The space of networks

Later in this thesis we will rewire edges in a network, and for this it is useful to consider
the set of all networks as a metric space. Adding and deleting edges in a directed graph
may sound like discrete operations: an edge is either present or not. But because a neural
network hasweighted edges, we can partially delete an edge. A networkwith an edge that
is present with weight zero, is equivalent to the same network where the edge is absent:
the network computes the same function in both cases. Therefore we may consider a
network of k ∈ Z>0 vertices to be a fully-connected graph, where some of the edges have
weight zero. Because the network is defined by its edge weights, the network is a point
in a space.

Definition 3.11 ∙ Let k ∈ Z>0. A weighted directed graph with k vertices, is a function
w ∶ [1,…, k]2 → R, that assigns to every pair of vertices the weight of the directed edge
between them. We say an edge between vertex i and j is present if w(i , j) ≠ 0, and
absent ifw(i , j) = 0. Denote byDigraph(k) the set of all weighted directed graphs with
k vertices.

Remark 3.12 ∙ Note that under the above definition, a weighted directed graph has the
following properties:

◆ There exists at most one edge between a pair of vertices. For the graphs that cor-
respond to neural networks this is not a limitation, as we will see later. A network
with multiple edges between vertices computes the same function as a network
with the edges combined into a single edge by summing the weights.

◆ Vertices are labelled. The following two graphs are not equal:

18

2

1

3

0.2

0.7

2

1

3

0.7

0.2

Corollary 3.13 ∙ For every k ∈ Z>0, there exists a bijection

Digraph(k)Ð→Mat(k × k,R)

w z→ (w(i , j))i j

The matrix that a graph maps to, plays a role similar to that of the adjacency matrix.
Because Mat(k × k,R) is a metric space by taking the Euclidean distance on Rk × k, it
follows that Digraph(k) is a metric space. ◻

Not every weighted directed graph corresponds to a neural network: the graph of a
neural network is acyclic. (Recurrent neural networks are sometimes called cyclic in
literature, but this is a misleading use of terminology. For the purpose of evaluation,
such networks are not cyclic.)

Definition 3.14 ∙ Let k ∈ Z>0. A network with k neurons is an acyclic weighted directed
graph w ∶ [1,…, k]2 → R together with a function b ∶ [1,…, k] → R. The vertices
of a network are also called neurons, and the function b gives the bias at every neuron.
Denote by Net(k) the set of networks with k neurons.

As with weighted direct graphs, we can map networks to matrices:

Net(k)Ð→Mat(k × k,R)

(w , b)z→ (x i j)i j where x i j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(i , j) if i ≠ j

b(i) if i = j

This function is a bijection onto its image, hence Net(k) is a metric space. The zero
matrix is in the image, and it corresponds to the network where all edges are absent,
and the bias associated with every neuron is zero. We put the biases on the diagonal in
Mat(k × k,R) for ease of notation. This is possible, because w(i , i) = 0 for all i, so no
information is lost.

Definition 3.15 ∙ A layered network with z layers is a network where the neurons can be
partitioned into z sets, A1 ,…,Az , such that for every present edge v1 → v2 it holds that

v1 ∈ A i Ô⇒ v2 ∈ A i+1

19

In other words, edges only exist between consecutive layers. See also Figure 3.2.

Figure 3.2 ∙ Left: a
fully-connected, layered

network with 4 layers. Right: a
non-layered network. Some of
the neurons in the non-layered
network can be reached from
an input neuron (coloured •)

with paths of different lengths.

Deep networks
In recent years, many advances inmachine intelligence have been attributed to so-called
“deep” neural networks. In a traditional multilayer perceptron network, the depth of the
network is equal to its number of layers. There is no clear threshold for what constitutes
a “deep” network; many authors consider a network with more than three layers to be
deep already. In our case, where networks are not necessarily layered we can define a
notion of depth in terms of paths through the graph.

Definition 3.16 ∙ Let (w , b) ∈ Net(k) be a network. The depth of (w , b) is the maximum
length d of a sequence (v1 ,…, vd) of distinct vertices, such that ∀i ∈ [1,…, d − 1] ∶
w(v i , v i+1) ≠ 0. In other words, the depth is the longest path along present (nonzero-
weighted) edges of the graph.

Treating networks as point in a metric space is a powerful technique. It gives us a way to
quantify similarity between networks, and optimisation algorithms can be understood
as constructing a path through the space. And as we will see later, networks that are near
in space, compute similar functions. In this framework, learning network parameters,
and learning network architecture, are the same thing.

3.4 Networks as functions

Now that we have defined networks as a particular kind of weighted acyclic graph, we
can define the function associated with a network. Before we can explain how networks
compute though, we need to introduce activation functions. Activation functions give
networks their power: without a nonlinear activation function, a network of any depth
would reduce to a two-layer network, and the function it computes would be a linear
map.

Definition 3.17 ∙ An activation function can be any continuous function σ ∶ R → R,

20

although for most purposes (such as optimisation of the network parameters) stronger
guarantees such as differentiability are required. Activation functions that are used in
practice are typically monotonic.

Example 3.18 ∙ One activation function that was popular in early machine learning re-
search, is the sigmoid activation function, given by

x z→ 1
1 + exp(−x)

It has fallen out of favour because its derivative has the undesirable property that it goes
to zero as x → ±∞. ◻

Example 3.19 ∙ An activation function that is commonly used inmodernmachine learn-
ing applications, is the function

x z→ max {0, x}

Many authors refer to this function as a rectified linear unit, or “ReLU” activation func-
tion. Its derivative does not vanish as x → ∞, but the function is not differentiable at
0. Moreover, if due to an unfortunate combination of parameters the input to this func-
tion is always negative, then the gradient of the parameters will always be zero, and the
situation will persist. Neurons with such parameters are called dead neurons. ◻

Given an activation function, we can now define the function that a network computes.

Definition 3.20 ∙ Let n,m, k ∈ Z>0 be given, such that k ≥ n and k ≥ m. Let (w , b) be
a network with k neurons, and σ an activation function. We will define the evaluation
function fw ,b ,σ ∶ Rn → Rm computed by this network, by constructing the image of
x ∈ Rn. Associate with every neuron i ∈ [1,…, k] its activation a i ∈ R :

a i = b(i) +
⎡⎢⎢⎢⎢⎣
∑
j
w(j, i)σ(a j)

⎤⎥⎥⎥⎥⎦
+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x i if i ≤ n

0 otherwise

Note that because the network is an acyclic graph, the activations can be computed dir-
ectly. If a j occurs with nonzero weight in the expression for a i , then a j does not depend
on a i . Finally, define

fw ,b ,σ(x) = (ak−m+1 , ak−m+2 , …, ak)

When the activation function σ is the sigmoid function, the value a i is also called the
logit. Some authors use this term even in combination with different activation func-
tions. The value σ(a i) is called the output of neuron i. Neuron 1,…, n are called input
neurons and neuron k −m + 1,…, k are called output neurons.

21

For simplicity, we will only consider networks without edges between input neurons,
and no input biases, i.e. w(i , j) = 0 and b(i) = 0 for all i , j ∈ [1,…, n]. In that case,
we have a i = x i for i ∈ [1,…, n]. Furthermore, we assume that k ≥ n + m, so input
and output neurons are disjoint. After all, an output neuron that is also an input is not
useful.

Note that the output of the network consists of output neuron activations, without the
activation function σ applied. The elements of the output vector are simply weighted
sums of neuron outputs and biases. Often one more function is applied to the output
vector. In classification problems for example, the output should be a probability distri-
bution over all classes, so the elements of the output vector should sum to one, which is
generally not the case for fw ,b ,σ(x). One trick to turn the output vector into a probabil-
ity distribution, is to use a construction akin to the Boltzmann distribution in statistical
physics. We take the probability p i of class i to be proportional to exp(a i) by setting

p i =
exp(a i)

∑k
j=k−m+1 exp(a j)

The function Rm → [0, 1]m that turns an output vector into a probability distribution
as above, is often called the softmax function in machine learning literature. For the
purpose of this thesis, such a function is not important, because it has no learnable pa-
rameters. The function can be folded into the loss function for the purpose of optimising
the network.

Multilayer perceptrons
Thedefinition of network in this chapter is deliberately very general. Traditionally, neur-
ons in a network have been organised into layers, where consecutive layers form a com-
plete bipartite graph. In this case, (w , b) can be represented by a weight matrix and bias
vector for every layer, and the output of the network can be computed with a few matrix
multiplications. For every layer z, we can define

fz ∶ Rnz Ð→ Rnz+1

x z→ bz +Wzσ(x)

and the evaluation function

f = fZ−1 ○ fZ−2 ○ ⋯ ○ f2 ○ f1

Here Z ∈ Z>1 denotes the number of layers, nz ∈ Z>0 is the number of neurons at layer z,
and for every z ∈ [1,…, Z−1]we have a weightmatrixWz ∈Mat(nz+1 × nz ,R) and a bias
vector bz ∈ Rnz+1 . The activation function σ is applied elementwise. One challenge of
this approach is that Z and the layer sizes nz have to be chosen up front, and there is very
little theory on how to guide this choice. Even for a given budget of neurons or edges,
it is not clear how to distribute these over layers. In this thesis we will try to automate

22

this process by incrementally improving the graph, whichmay result in a layered graph,
where consecutive layers form complete bipartite graphs, although these graphs are only
a very small subset of all possible networks. While networks as defined in this chapter
do encompass traditional multilayer perceptron networks, they can also express more
general network architectures.

The definition of network given in this chapter is very general in the structure of the
underlying graph. It is however very regular with respect to the neurons. Networks
that are used in modern machine learning applications are often less regular, and com-
posed of more elaborate building blocks. For instance, convolutional networks often
include max-pooling layers, where instead of taking a weighted sum of incoming activ-
ation, neurons take the maximum over incoming activation. Moreover, constructions
such as lstms combine multiple vectors with elementwise operations at every cell (a
building block similar to a layer of neurons). Some networks have parameters other
than edge weights and biases. In most cases though, at least some part of the network
satisfies the definition given in this chapter, and the techniques in this thesis still apply to
subgraphs. If a network includes more elaborate building blocks, we will only consider
the part of the network with traditional, homogeneous neurons.

3.5 Symmetries

In the previous section we introduced the space of networks as a subspace of Rk × k, but
not every point in this space corresponds to a distinct evaluation function. In the endwe
are interested in evaluation functions, and not necessarily their parameters. Therefore
we should look atNet(k)modulo symmetries that do not affect the evaluation function.
In this sectionwewill briefly examine a few symmetries, and their effect on optimisation.

Definition 3.21 ∙ Let (w1 , b1), (w2 , b2) ∈ Net(k) be networks with n inputs and m out-
puts, and let σ be an activation function. We say (w1 , b1) and (w2 , b2) are equivalent,
written (w1 , b1) ∼ (w2 , b2), if they have same evaluation function. That is, if

∀x ∈ Rn ∶ fw1 ,b1 ,σ(x) = fw2 ,b2 ,σ(x)

One symmetry under which evaluation functions are invariant, is permuting inner neur-
ons. Recall from Remark 3.12 that neurons in a network are labelled; they are distin-
guished by index. For input and output neurons this is important, because we attach
meaning to the different coordinates. But as far as the evaluation function is concerned,
only the structure of the graph (including edge weights) matters, and we can assign la-
bels freely to the internal neurons. In other words, we can permute the labels of internal
neurons without changing the evaluation function.

23

Lemma 3.22 ∙ The symmetric group on k elements, Sk , acts on Net(k) in the category
of vector spaces.

Proof : Let τ ∈ Sk be a permutation of k elements. Then we can define

τ∗ ∶ Net(k)Ð→ Net(k)

(w , b)z→ (w ○ (τ, τ), b ○ τ)

Here (τ, τ) denotes τ applied elementwise to both coordinates. To show that τ∗ is a
linear automorphism, we may show that it is a linear map with kernel 0. Because τ∗ is a
permutation of coordinates, it is a linear map. Furthermore, because composing with τ
only permutes coordinates,

(w ○ (τ, τ), b ○ τ) = ((i , j)↦ 0, i ↦ 0) Ô⇒ (w , b) = ((i , j)↦ 0, i ↦ 0)

hence the kernel of τ∗ is 0. We have (τ∗)−1 = (τ−1)∗. ◻

Proposition 3.23 ∙ Let (w , b) ∈ Net(k) be a network that has n inputs andm outputs. Let
τ ∈ Sk be a permutation of k elements that is the identity on [1,…, n] and [k−m+1,…, k].
Then τ∗((w , b)) ∼ (w , b).

Proof : Because τ can be written as a product of transpositions, it is sufficient to prove
the claim for a transposition ρ. Suppose that ρ transposes neuron i and j. Recall from
Definition 3.20 that the neuron activations a i and a j are weighted sums over the out-
puts of incoming neurons, and a bias. By swapping incoming edges and the biases of
neuron i and j, the transposition relabels a i such that a i has the value of a j before the
transposition, and vice versa. Because outgoing edges are also swapped, the activations
of neurons that have neuron i or j as input, remain unchanged (unless the neuron is i or
j itself). This holds even when neuron i is an input to j or when j is an input to i. This
shows that ρ∗((w , b)) ∼ (w , b). By repeatedly applying this result for the transpositions
that τ is a product of, we find τ∗((w , b)) ∼ (w , b). ◻

Networks that use the “ReLU” activation function have another symmetry. We can res-
cale the output of a neuron, by scaling all its inputs and its bias by a factor λ ∈ R>0. If
the neuron is not an output neuron, we can compensate for the change by scaling the
weights of outgoing edges by a factor λ−1. Unlike a network with, say, a sigmoid activa-
tion function, a network with “ReLU” activation has no inherent scale. We can rescale
all weights freely — apart from those feeding into output neurons.

Proposition 3.24 ∙ Let (w , b) ∈ Net(k) be a network in that has n inputs and m outputs.
Let λ ∈ R>0 and p ∈ [1,…, k −m]. Define (w′ , b′) as follows:

24

w′(i , j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λw(i , j) if j = p

λ−1w(i , j) if i = p

w(i , j) otherwise

b′(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λb(i) if i = p

b(i) otherwise

Note that w′(p, p) is well-defined because w(p, p) = 0. Then, if σ(x) = max{0, x} is
used as activation function, it holds that (w′ , b′) ∼ (w , b).

Proof : Recall from Definition 3.20 that the activation of neuron p is given by

ap = b(p) +∑
j
w(j, p)σ(a j)

If we replace (w , b) with (w′ , b′), then ap would gain a factor λ. For neurons that
depend on neuron p, the factor is cancelled by λ−1 in the weights, because σ(λap) =
λσ(ap). As a result, the activation of internal neuron ap changes with a factor λ, but
the activations of output neurons remain unchanged, hence (w′ , b′) ∼ (w , b). ◻

The above proposition sheds some light on what the “loss landscape” of a network looks
like. Any network in Net(k) with “ReLU” activation function and at least one internal
neuron is a point on a branch of a hyperbola of constant loss, with one such hyperbola
for every internal neuron. Every internal neuron almost removes one dimension from
the parameter space, because we can choose the weight of its first incoming edge to be
in {±1}. In particular, this means that local minima of the loss are not isolated points in
the parameter space, but hypersurfaces.

In the end, we are interested in an evaluation function, andnot necessarily its parameters.
Therefore, we should really consider Net(k)modulo the symmetries mentioned above
(and possibly more). However, the quotient space Net(k)/∼ is not easily parametrised,
and optimisation algorithms rely on Net(k) being a vector space. Generally, we simply
disregard the symmetries. After all, once we have some parameters (w , b) that have a
good evaluation function, we have a good evaluation function. Still, these symmetries
have implications for optimisation. Symmetries of Net(k) can shed light on the shape
of the loss function LT .

Theorem3.25 ∙ Let (w , b)⋆ ∈ Net(k) be a localminimumof the lossLT on some T ⊆ Rn .
For the sake of readability we will write wb⋆ rather than (w , b)⋆ in this theorem. Say
the network has z = k − m − n inner neurons, and suppose that LT is continuous and
not constant. Let U ⊆ Sk be the subgroup of Sk that is the identity on [1,…, n] and
[k −m + 1,…, k]. Then the elements of the orbit of wb⋆ under U ,

U ⋅wb⋆ = {τ∗(wb⋆) ∣ τ ∈ U}

are all local minima of LT .

25

Proof : Let Q ⊆ Net(k) be an open neighbourhood of wb⋆, such that for all wb ∈ Q,
LT(wb) ≤ LT(wb⋆). Let τ ∈ U . From Lemma 3.22, we know that τ∗ is a linear auto-
morphism, and therefore it is a continuous open map. It follows that τ∗(Q) is an open
neighbourhood of τ∗(wb⋆). From Proposition 3.23, it follows that

∀wb ∈ Q ∶ LT(τ∗(wb)) = LT(wb) ≥ LT(wb⋆) = LT(τ∗(wb⋆))

Hence τ∗(wb⋆) is a local minimum in τ∗(Q). ◻

Corollary 3.26 ∙ In general, U ⋅ wb⋆ is not a singleton, hence LT is not strictly convex,
because strictly convex functions have a single global minimum. Moreover, if LT is
strictly convex on an open neighbourhood of wb⋆, then LT is not convex on its entire
domain. ◻

Theorem 3.27 ∙ The multiplicative group Rk
>0 acts on Net(k) in the category of topolo-

gical spaces by applying the construction from Proposition 3.24 to each of the k neurons.
Let (w , b) ∈ Net(k) be a network with n inputs, m outputs, and q = k − n −m internal
neurons. Rq

>0 is a subgroup of Rk
>0 by embedding it as follows:

Rq
>0 Ð→ Rk

>0

(λ1 ,…, λq)z→ (1,…, 1
²

n

, λ1 ,…, λq , 1,…, 1
²

m

)

Then the elements of the orbit of (w , b) under Rq
>0 are all equivalent, and hence the

quotient map Net(k)↠ Net(k)/∼ factors as Net(k)↠ Net(k)/Rq
>0 ↠ Net(k)/∼.

Proof : Equivalence of the elements of the orbit follows from repeatedly applying Propos-
ition 3.24. Factorisation of the quotient map then follows from the universal property
of the quotient topology. ◻

The theorems in this section give a theoretical justification for a few of the empirical
observations in deep learning. In particular, we have a partial explanation of the many
local minima of the loss function. There have been a few attempts to formally explain
various other empirical observations in literature. One notable result is the work by
[Choromanska et al. 2014], which further characterises the “loss landscape”, and claims
that for sufficiently deep networks, the loss at all local minima is close to the globally
minimal loss. Although interesting, the formalism is beyond the scope of this thesis.

Without knowing a lot about a network, or the particular loss function, the theorems in
this section shed some light on the nature ofLT . In particular, it is not strongly convex,
and for networks with a “ReLU” activation function, local minima are surfaces rather
than single points. It might be possible for optimisers to take advantage of symmetries
to reduce the size of the parameter space to explore, but this appears to be an area that is

26

unexplored in the literature. In fact, some literature suggests that overparametrisation
is essential for effective optimisation. The main takeaway for this thesis, is that one
particular evaluation function can be represented by many different points in Net(k).

27

28

C H A P T E R 4

Rewiring

To unify optimisation of the network parameters and optimisation of the network archi-
tecture in one process, we will rewire edges during learning. The number of edges is kept
fixed, but some edges may be deleted, and others added. Because deleting one edge and
adding another are small local changes to the graph, many of the parameters (the edge
weights) can be carried over. The learning process does not need to start from scratch.

Although it is useful to think of a network as a full graph conceptually, an implement-
ation of a full graph, or a network with fully-connected layers, does not benefit from
sparsity. As shown in sections 2.2 and 2.3, methods that do include absent edges in their
representation of the network, have no advantage over dense networks during training.
We would like to avoid storing zeros, or spending power to multiply and add zeros.

Instead of representing the network as a matrix of weights, we can explicitly store the in-
dices of incoming edges to a neuron. Fixing the number of edges in the representation
means that we can no longer represent networks that are less sparse than the chosen
sparsity. Hence, optimisation methods that construct paths through the space of net-
works which may deviate from the desired sparsity (such as the methods discussed in
Section 2.3) are no longer applicable. We can still use gradient descent methods to op-
timise the weights and biases of a given network, but if an edge is absent, it can never
become present as a result of parameter optimisation alone.

To optimise the architecture of a network while fixing the representation at a given
sparsity, we must replace edges. Deleting an edge in one place frees up space to insert
an edge elsewhere. This raises two questions: how to determine which edges to delete,
and how to determine which neurons to connect?

29

4.1 Edge utility

To determine which edges to delete, wemust determine the utility of every edge: a meas-
ure of how useful or essential an edge is to the network. If removing an edge does not
affect the output of the network by much, then perhaps that edge would be better spent
elsewhere. Furthermore, the utility should be cheap to evaluate; it should not dominate
the learning process.

Definition 4.1 ∙ Let k ∈ Z>0 and v1 , v2 ∈ [1,…, k]. Let (w , b) ∈ Net(k) be a network with
n input neurons and m output neurons, and σ an activation function. Let T ⊆ Rn be a
set to evaluate the utility on. The evaluation function fw ,b ,σ as defined in Definition 3.20
is parametrised by w, so we can computeLT(w), the loss of fw ,b ,σ on T with respect to
the parameters w, as defined in Definition 3.7. Define the utility of edge v1 → v2 on T as:

utility
T
∶ [1,…, k]2 Ð→ R

(v1 , v2)z→ LT(w′) −LT(w)

where

w′(i , j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if (i , j) = (v1 , v2)

w(i , j) otherwise

In other words, the utility of edge v1 → v2, is the change in loss that would occur if the
edgewould be deleted. (Usually an increase in loss, although some edges can be harmful,
and the loss can decrease by deleting such edge.) A similar quantity is called saliency in
[LeCun, Denker, and Solla 1990], although the authors do not give a precise definition.

The utility as defined above is expensive to compute. We have to evaluate the loss over
T twice for two networks that are similar, but not identical. Moreover, it is difficult to
take advantage of the similarity: for changes close to the input neurons, there is little
hope of reusing computed results, as eventually most neurons depend on the affected
neuron. Even a small pertubation propagates to a large part of the network. Computing
edge utility directly is infeasible, hence we need a heuristic.2

1

4

3

2

1

4

3

Figure 4.1 ∙ The utility of edge
1→ 4 in the top network is

given by the loss of the bottom
network, minus the loss of the

top network.

A naive heuristic that is sometimes used, is to take the absolute weight of an edge as an
approximation of its utility. The reasoning is that — because the activation of a neuron
is a weighted sum — terms with a smaller absolute weight will contribute less. However,
this ignores the scale of inputs, which can be very different. Recall that the neuron
activation is defined in Definition 3.20 as:

a i =∑
j
w(j, i)σ(a j) +⋯

30

Just because ∣w(j, i)∣ is small does not mean that the contribution to the sum is small,
because ∣σ(a j)∣ might be large. If σ is bounded (the sigmoid function, for example),
absolute weight at least gives us an upper bound on utility. But when σ is unbounded
(like the “ReLU” activation function), we cannot expect absolute weight to be a good
heuristic.

A good starting point for a heuristic is the Taylor series of the loss. Let us fix for the
moment all parameters apart from one, say the weight w ∈ R, associated with edge
i → j. The network now has a single parameter of which we can determine the utility.
Suppose the current parameter value is x. Then we have

LT(x + ∆) = LT(x) + ∆
∂LT

∂w
(x) + ∆2 1

2
∂2LT

∂w2 (x) + o(∆
2)

Plugging this into Definition 4.1, taking ∆ = −x, we get

utility
T
(i , j) = −x ∂LT

∂w
(x) + x2 1

2
∂2LT

∂w2 (x) + o(x
2) (4.2)

For the purpose of approximation, we will discard the o(x2) term.

The first term is cheap to compute, as it contains ∂LT/∂w, which is already computed
for the gradient descent parameter update anyway. The second term is more expens-
ive, because it involves a second derivative (the diagonal of the Hessian) which is not
normally computed. [LeCun 1987, § 3.12.2] derives an approximation of the Hessian
that can be computed using backpropagation, under the assumption that the Hessian is
diagonal, and under the assumption that

i ≠ j Ô⇒ ∂2ak
∂a i∂a j

= 0

That is, the change in activation of neuron k, when the activation of neuron i is modified
a bit, is independent of the activation of neuron j ≠ i. The cost of approximating the
second term in this way is manageable, but still expensive in comparison to the first
term.

In a local optimum of the parameters, the first term in Equation 4.2 will vanish, because
∂LT/∂w = 0. What is left is a heuristic for the utility based on the second derivative:

utility
T
(i , j) ≈ x2

1
2
∂2LT

∂w2 (x)

This heuristic is dubbed optimal brain damage by [LeCun, Denker, and Solla 1990], and
the authors show that it is a better utility heuristic than simply taking the absolute weight
∣x∣. In our setting however, we are not yet in a local optimum: we want to rewire edges
during the learning process, before the parameters have converged. Furthermore, even
for networks that are fully trained, it is not clear that ∂LT/∂w = 0. Techniques such as

31

early stopping and weight decaying (ℓ2 regularisation) are designed to avoid reaching
an optimum, to prevent overfitting on the training data. In those cases we cannot ignore
the first term. On the contrary, ∂LT/∂w will dominate outside of an optimum.

Because we expect parameters to be rarely close enough to an optimum for the second
term to matter, we propose the following utility heuristic instead:

utility
T
(i , j) ≈ −x ∂LT

∂w
(x) (4.3)

The core insight here, is that parameters are almost never close to an optimum in prac-
tice. Even though optimisation algorithms find parameters with low loss, these param-
eters are not an optimum, in the sense that ∂LT/∂w ≠ 0. Empirical evidence supports
this observation. When optimising with stochastic gradient descent or a variation such
as Adam, ∥∂LT/∂w∥2 converges to a nonzero value in practice. This is to be expected:
even if ∂LU1/∂w = 0 for some batch U1 ⊆ T , it is unlikely that ∂LU2/∂w = 0 for a dif-
ferent batch U2 ⊆ T . As a result, a linear approximation of the loss function is a good
approximation.

To verify the effectiveness of the heuristic, we can compute the true edge utility for edges
in a fully-connected network, and compare it against various heuristics. Wewill evaluate
heuristics on the following network:

The Tensorflow deep mnist network, an mnist digit classification network
described in the Tensorflow documentation. This network consists of two
convolutional layers, followed by two fully-connected layers. The first fully-
connected layer reduces the number of features from 7 ⋅ 7 ⋅64 to 1024 fea-
tures, and the second layer from 1024 features to the final 10 classes. The
activation function σ(x) = max{0, x} is used after the first fully-connected
layer. The network is trained on the training set until the loss on the test
set no longer decreases. We then evaluate utility on the test set.

A comparison of the heuristics is shown in Figure 4.2. We can observe a few things from
the plots:

◆ The two fully-connected layers of the Tensorflow deep mnist network differ not-
ably. This is explained by the first fully-connected layer being somewhat redun-
dant. The distribution of weights after learning is not very different from the ini-
tial distribution. The learning process might have stopped too early for the layer
to learn significantly, indicating that the network is overparametrised.

◆ Absolute weight provides an upper bound for utility. This makes sense: after all,

32

Figure 4.2 ∙ Comparison of
different utility heuristics
applied to the weights of the
Tensorflow deep mnist
network. Plots show the true
utility versus a heuristic for
750 weights drawn uniformly
from all weights in a layer. The
left and right columns show
weights in the first and second
fully-connected layer
respectively. Heuristics from
top to bottom: absolute weight,
our proposed heuristic, and
optimal brain damage.

0 0.1 0.2

−5

0

⋅10−5

∣w∣

ut
ili
ty

0 0.1 0.2

0

0.5

1

⋅10−3

∣w∣
ut
ili
ty

−2 0 2

⋅10−8

−5

0

⋅10−5

heuristic

ut
ili
ty

−2 0 2

⋅10−7

0

0.5

1

⋅10−3

heuristic

ut
ili
ty

0 1 2

⋅10−6

−5

0

⋅10−5

obd

ut
ili
ty

0 2 4 6

⋅10−4

0

0.5

1

⋅10−3

obd

ut
ili
ty

as a weight goes to zero, the utility of the edge goes to zero as well. However,
absolute weight is a poor heuristic for edge utility. Absolute weight classifies a
large portion of low-utility edges as useful, and many of the more useful edges as
low-utility.

◆ Our proposed heuristic performs extremely well on the first fully-connected layer,
and it still performs well on the second fully-connected layer. This agrees with the

33

hypothesis that the second fully-connected layer is closer to a parameter optimum
than the first layer: we expect our heuristic to deteriorate close to an optimum.

◆ Optimal brain damage performs poorly on the first fully-connected layer, and
somewhat better on the second fully-connected layer. Again, this agrees with
the hypothesis that the second fully-connected layer is closer to a parameter op-
timum than the first fully-connected layer: optimal brain damage works best in a
parameter optimum.

We now have a partial answer to the first question of this chapter: how to determine
which edges to delete? The utility heuristic proposed in this section is a good proxy
for how useful an edge is, and it is cheap to compute. We can estimate the utility of
every edge, rank edges by utility, and delete the n least useful ones. This cannot be the
full story though — even if an edge between two neurons is not useful, deleting it only
makes sense if we have a better candidate edge to replace it with. This will be the topic
of Section 4.3. Moreover, at a certain point we should expect the network to converge
to an architecture that is optimal for the task. In a network that uses the available edges
optimally, all edges should be useful. This means that replacing e.g. the 5% least useful
edges is not a good strategy. The estimated utility of an edge, and themerit of a potential
replacement edge, will together determine whether to delete the edge.

4.2 Applications in quantisation

As an aside, the heuristic proposed in the previous section can be used to guide quantisa-
tion in addition to guiding edge pruning. Quantisation is the process of replacing a set of
weights w ∈ Rk with an approximation qw′ for some q ∈ Q ∖ {0} and w′ ∈ Zk . Quant-
ised weights can be stored in less memory than their unquantised counterparts, and
evaluation of a quantised network might use fixed-point arithmetic rather than floating-
point arithmetic for increased performance. The job of a quantiser is to choose w′ and
q in such a way that the loss of the network does not degrade too much, while also not
spending too much memory on large integers. For small values of q the approxima-
tion can be very precise, at the cost of large elements of w′, which require many bits to
store. For large values of q, elements of w′ can be small integers that can be stored in
a few bits (e.g. 8 bits rather than the 32 bits used for floating-point weights), however
the approximation will be coarse. A quantiser makes a trade-off between increase in
loss, and reduction in storage space. To estimate the loss increase due to quantisation,
an adaptation of the utility heuristic may be used.

Example 4.4 ∙ Suppose a network has weight vector (0.2,−0.1, 0.3, 88.7) ∈ R4, and we
want to quantise to 3-bit signed integers, integers in {−4,−3,…, 3}. A quantiser may

34

propose the following two quantisations:

q = 10−1 w′ = (2,−1, 3, 3)

q = 30 w′ = (0, 0, 0, 3)

Assuming that the storage for q is negligible (because it is shared among all weights,
hence the space can be amortised), and weights are stored as fixed-width integers, both
proposals require the same amount of storage space. The decision of which quantisation
to apply should depend solely on loss increase. The first proposal reproduces the first
three elements perfectly, but the last element is off by a large margin. The second pro-
posal gets the orders of magnitude right, at the cost of losing precision in the first three
elements. Which of the two proposed schemes is preferred, depends on the utilities of
the associated weights. Perhaps the fourth weight was not very useful, so rounding it
will not affect the loss by much. If on the other hand the fourth weight was important,
the second proposed quantisation scheme might be better. ◻

The utility heuristic proposed in the previous section is a special case of a more general
problem: estimating how a change in network parameters will affect the loss. Remov-
ing an edge is the extreme case of changing the associated weight to zero. In general,
if the value of parameter w is changed from x1 to x2, we can expect a change in loss
proportional to

(x2 − x1)
∂LT

∂w
(x1) + o(x2 − x1) (4.5)

This is the more general form of Equation 4.3. Like before, we can discard the o(x2−x1)
termunder the assumption that it small, to obtain an approximation of the change in loss.
To estimate the change in loss due to quantisation, we can sum the estimated change in
loss due to changing each of the parameters.

To conclude, the observation that parameters are almost never at an optimum, is useful
beyond pruning edges. Not being in a parameter optimum means that a linear approx-
imation of the loss as function of the parameters is a good approximation, and this can be
used to guide many decisions, be it which edge to prune, or which quantisation scheme
to apply.

4.3 Selecting candidate edges

Now that we know which edges in a network are least useful, we need to find candidate
edges on which resources would be better spent. When sparsifying an existing fully-
connected network, we know exactly which edges are useful: the ones that remain after
deleting the least useful edges. But if wewish to evolve the architecture of a networkwith

35

a fixed number of edges, we have to determine in advance whether an edge is going to
be useful. This is difficult in at least one sense — if it were possible in general to predict
which edges are useful, we would not need to learn network parameters at all. By Theo-
rem 3.25, the optimal architecture of a network is not unique, and so the best candidate
edges depend on the current parameter values — values that change during training.
Nonetheless, in some cases we can say that a candidate edge would be beneficial. In this
section we will identify such beneficial candidate edges.

Before we can identify candidate edges, we need to take a step back to look at batch
learning. When we do gradient descent, we typically do not compute∇LT , the gradient
of the loss over the full training set T . Instead, we compute ∇LU over U ⊆ T , a batch,
where U is a random subset of T . Then ∇LU is an unbiased estimate of ∇LT . Recall
thatLU is defined as a sum overU in Definition 3.8, and consequently its gradient with
respect to the parameters can be written as a sum over U :

∇LU = ∇ [∑
x∈U

L(⋅ , x)] = ∑
x∈U
∇L(⋅ , x)

Suppose U has p elements, and the loss function is for a network with k parameters.
Then we get kp partial derivatives. For every parameter w, we get a vector δ ∈ Rp of
derivatives, and we have

∂LU

∂w
=

p

∑
i=1

δ i = ⟨δ, 1⟩

where 1 ∈ Rp is the vector of ones. If w is at an optimum, ∂LU/∂w = 0, and hence
⟨δ, 1⟩ = 0. But that does not mean that the elements of δ are zero! In a sense, ∥δ∥
indicates how much samples in the batch disagree about the parameter value. The key
point is that in batch learning we get the partial derivative of the loss with respect to the
parameter for every sample in the batch.

To understandwhere adding edgesmightmake sense, we first need to understandwhich
neurons are responsible for errors in the network. Rather than studying the derivative
of LU with respect to one of the network parameters, we can take the derivative with
respect to one of the neuron activations a i . In a network with biases, this derivative
happens to be equal to the derivative of LU with respect to the bias b(i), but consider
just the neuron activation for now. As before, we get such a derivative for every sample
in the batchU , so we again get a vector δ ∈ Rp of derivatives. Here the elements of δ can
be interpreted as the error of the neuron, for the given sample. Again, in an optimum
the total neuron error over the test set is zero, ⟨δ, 1⟩ = 0 — but the individual errors for
every sample need not be.

Now that we have a measure of neuron error, we can use that to determine whether to
connect two neurons. For every sample in the batch, neuron j has a particular output
σ(a j). As a slight abuse of notation, we will denote by σ(a j) ∈ Rp the vector of outputs,

36

one element for every sample in the batch. Wenowhaveneuronoutputs σ(a j)of neuron
j, and errors δ ∈ Rp at neuron i. If they are somehow correlated — if neuron j is active
only when neuron i is wrong — then it might make sense to add an edge j → i. More
formally, if ⟨σ(a j), δ⟩ ≠ 0, then it might be worthwhile to add the edge, and the greater
the absolute value of the inner product, the more lucrative it would be to add the edge.

Neuron activation and error need not have an inherent length scale, so the inner product
in itself is not a good measure of correlation. (See Proposition 3.24.) Fortunately, be-
cause we can choose the weight for the new edge, the length scales are not important.
Therefore the cosine similarity is a good measure of correlation.

Definition 4.6 ∙ Let (w , b) ∈ Net(k) be a network with n imputs and m outputs, and let
T ⊆ Rn be a test set of p elements. Let i , j ∈ [1,…, k] be two neurons in the network.
Denote by δ ∈ Rp the vector of derivatives of the loss with respect to a j , for all samples
in T . Define the correlation of neuron i and j on T as

corr
T
(i , j) = ⟨σ(a i), δ⟩

∥σ(a i)∥ ⋅ ∥δ∥

The norm used here is the Euclidean norm.

For neurons connected by an edge, we expect their correlation to be zero at a parameter
optimum. If not, then by changing the weight of the edge and bias of the neuron, we
can reduce the norm of the error. Therefore, correlation is a good way to rank absent
edges, but correlation does not say anything about how useful present edges are. This
makes correlation a useful heuristic for deciding which edges to add, while we can use
the utility heuristic from the previous section to decide which edges to remove.

Armed with neuron correlations, we can answer the second question of this chapter:
how to determine which neurons to connect? We should connect neurons that have a
large absolute correlation. The sign of correlation is not relevant — it can be cancelled
by the sign of the edge weight. What remains is a matter of acting on the knowledge:
given utility estimates of all present edges, and correlations for all absent edges, which
particular edges should we delete, and which particular edges should we add? In other
words: given the current graph of the network, propose a better graph based on utility
and correlation.

Proposing a new graph can be done in many ways. Supposing the number of incoming
edges per neuron is fixed, the following rewiring strategies come to mind:

◆ Delete x% of the edges with the lowest utility. For a neuron j that now has an
available incoming edge, connect the edge to the neuron i for which ∣ corr(i , j)∣
is maximal. If neuron j has more than one available edges, connect them to the
next most correlated neurons.

37

◆ For x% of the neuron pairs (i , j) with largest absolute correlation, delete the in-
coming edge from neuron j with the lowest utility, and replace it with an edge
i → j. This does affect neuron correlations and the utilities of the remaining
neurons, but a single local change should be small enough for the estimates to
still be valid. On the other hand, we cannot expect the estimates to still be valid
after rewiring half the network. [LeCun, Denker, and Solla 1990, Figure 1] shows
how their optimal brain damage estimate holds up as more and more edges are
removed, and we expect to see a similar curve. The number of edges that can be
rewired before estimates need to be updated would have to be determined empir-
ically.

◆ In both cases, rather than taking a fixed percentage, we could take a number that
decreases as training progresses, or we could set a threshold on the utility or cor-
relation.

In general, an algorithmwould have to balance the expected utility of a new edge against
the utility of the edge that will be removed. A rewiring strategy is a particular choice
of making this trade-off. Furthermore, algorithmic complexity may play a role here.
Estimating edge utility can be done at no additional algorithmic cost, but for instance
deleting a percentage of least useful edges would require O(n log n) comparisons for n
edges, as we would need to identify O(n) least useful edges. (For a fixed number of
least useful edges we could do it in O(n) time instead, but for large n this is ineffective,
because the fraction of edges rewired is negligible.) Moreover, instantiating a percentage
of absent edges would require computing the O(k2) correlations for k neurons, and
selecting the most correlated pairs would require O(k2 log k) comparisons. This may
seemworse thandeleting a percentage of edges, but recall that a fully-connected network
of k neurons has O(k2) edges. Taking a fixed fraction of edges does not eliminate the
k2 scaling, nor does dividing the network into fully-connected layers. It seems that
rewiring would come at significant algorithmic cost.

Despite the apparent computational cost, in practice the constants matter: this is why
we try to make networks sparser in the first place. For 10 5 edges, performing a few steps
of gradient descent is typicallymore expensive than sorting edges by utility, even though
gradient descent performs a number of multiplications that is linear in the number of
edges. Furthermore, some of the cost can be amortised over multiple rewiring runs. For
example, we may decide to rewire the 2% least useful edges, but implement that using a
threshold, and compute the new threshold (the 2nd percentile of edge utility) only every
fifth rewiring round, assuming that the distribution of edge utility does not change by a
lot. Finally, if the number of edges to rewire is small, then we can use the maximal inner
product search techniques from Section 2.6 to do better. Suppose we rewire only O(k)
edges rather than O(k2) edges per round. A few edges per neuron seems reasonable —
rewiring should be a small change to the network after all. Suppose furthermore that the

38

decision of which edges to remove was not based on correlations, so there was no need
to compute correlations so far. Then we can efficiently find a highly correlated neuron
using an approximate nearest neighbour search. By using the geometric structure of the
problem, rewiring is not a bottleneck in practice.

Inner product search and nearest neighbour search
In the case of a maximal inner product search through a set of unit-norm vectors, inner
product search and nearest neighbour search turn out to be equivalent.

Proposition 4.7 ∙ Let u ∈ Rn be a unit norm query vector (the needle), and S ⊆ Rn a set
of unit vectors (the haystack). Then it holds that

argmax
v ∈ S

⟨u, v⟩ = argmin
v ∈ S

∥u − v∥

Here ∥ ⋅ ∥ denotes the Euclidean norm.

Proof : Note that instead of minimising ∥u − v∥, we may also minimise ∥u − v∥2. By
expanding the square, we get

argmin
v ∈ S

∥u − v∥2 = argmin
v ∈ S

n
∑
i=1
(u i − v i)2

= argmin
v ∈ S

n
∑
i=1

u2
i − 2u iv i + v2i

Because u and v are unit vectors, we have

= argmin
v ∈ S

2 −
n
∑
i=1

2u iv i

= argmax
v ∈ S

n
∑
i=1

u iv i

= argmax
v ∈ S

⟨u, v⟩

◻

Figure 4.3 ∙ For a set of unit
vectors, the vector with the
smallest angle to a given vector,
is the nearest neighbour.

This equivalence is useful, because it means that we can find correlated neurons using a
nearest neighbour search, in addition to using an inner product search. This opens op
the opportunity of using a more specialised algorithm. Algorithms to find the nearest
neighbour and approximate nearest neigbour have been outlined in Section 2.6. In our
case, we want to find the maximal absolute correlation. To solve the absolute maximal
inner product problem, we can perform the query twice, once with query vector u, and
oncewith−u. To conclude, nearest neighbour search can be used to implement rewiring
efficiently.

39

4.4 Optimal weight updates

When we rewire, we want the changes to be small, local changes, so most of the pa-
rameters can be carried over, and learning does not have to start from scratch. Still,
by changing the graph, we make a “jump” in the parameter space Net(k). An optim-
iser constructs a path through this space, and by changing the graph, we interrupt this
path. The jump can be much larger than the typical step taken by the optimiser. For
momentum-based optimisers such as Adam [Kingma and Ba 2014], this can be an is-
sue. We have to restart the optimisation process, albeit with a warm start. The goal of
rewiring is not to immediately reduce the loss. On the contrary, the goal is to find an
architecture for which an optimiser is able to later reach a lower loss. Therefore, it is
important to choose edge weights for the new edges carefully, to minimise the effects of
changes.

Especially for edges close to the inputs, new edge weights matter. If due to a change in
the graph, the output of the neuron changes, that change cascades, and the output of the
network may be vastly different. Denote by a i ∈ Rp the activation of neuron i before
rewiring, for all p samples in a batch. Denote by a′i ∈ Rp the activation of neuron i after
rewiring. Then we have a difference ∆ i = a′i − a i . It seems reasonable to demand that
the expected value of neuron i does not change: ⟨∆ i , 1⟩ = 0. Here 1 ∈ Rp denotes the
vector of ones. This in itself is not a strong guarantee though: whatever the new weight,
we can achieve ⟨∆ i , 1⟩ = 0 by adjusting the bias of neuron i. This leaves us with onemore
degree of freedom (the weight of a new edge) that we can use to minimise e.g. ∥∆ i∥1,
∥∆ i∥2, or ∥∆ i∥∞. In other words, we get to minimise the change in neuron activation
for each individual sample in the batch.

Recall from Definition 3.20 that for a given network (w , b) ∈ Net(k), the neuron activ-
ation for a non-input neuron i is given by

a i = b(i) +∑
j
w(j, i)σ(a j)

We know which edges have been removed, and we know which edges have been added.
Suppose for the moment that no more than one edge has been added. Then we get

∆ i = ∆b(i) +w(r, i)σ(ar) −∑
s
w(s, i)σ(as)

where r is the neuron that the new edge connects to, s ranges over the neurons s for
which the edge s → i has been deleted, and ∆b(i) is the change in bias of neuron i. This
expression extends to vector form where the elements of ar and as represent the values
for different samples in the batch, σ is applied elementwise, and ∆b(i) is replaced with
∆b(i) ⋅ 1, where 1 ∈ Rp is the vector of ones. More abstractly, we have a problem of the
following form:

minimise ∥∆∥ = ∥β1 + αu − v∥ given ⟨∆, 1⟩ = 0

40

where α, β ∈ R and 1, u, v ∈ Rp . Here ∥ ⋅ ∥ denotes the ℓ2-norm. Solving the constraint
for β, we find

β = ⟨v − αu, 1⟩
p

Define
ū = p−1⟨u, 1⟩ 1 and v̄ = p−1⟨v , 1⟩ 1

In other words, the elements of ū and v̄ are the means of the elements of u and v respec-
tively. Then we can express ∥∆∥ as

∥∆∥ = ∥v̄ − αū + αu − v∥ = ∥α(u − ū) − (v − v̄)∥

The part α(u − ū) defines a line, and to minimise ∥∆∥, we want to find the point on this
line closest to v − v̄. It follows that

α = ⟨u − ū, v − v̄⟩
∥u − ū∥2

(4.8)

In the case of multiple new edges, we have multiple new weights to choose. Here the
problem generalises to finding the closest point on the hyperplane spanned by the vec-
tors

V = {u − ū ∣ u = σ(ar), r ∈ A}

where A is the set of neuron indices of new incoming edges. For a single new incoming
edge, the hyperplane is a line, and the new weight is given by Equation 4.8. In general,
the point on the hyperplane closest to v − v̄ is a linear combination of vectors in V , and
the coefficients are the optimal new weights.

By choosingweights of new edges as described in this section, we can ensure that neuron
outputs changes as little as possible after rewiring. This avoids cascading of changes,
which ensures that the weights of dependent neurons remain relevant. This in turn
means that the new, modified network, starts the learning process from reasonable pa-
rameters. This means that optimisation has a warm start, it does not need to start from
scratch.

4.5 Putting it together

In the previous sections we have outlined how to identify the least useful edges in a
network, how to propose new candidate edges, and how to pick a weight for new edges
to disturb the network as little as possible. The combination of these enables optimising
the network architecture during the learning process. When putting all of this together
in an implementation, a few interesting issues arise.

41

Firstly, we need a way to evaluate a non-layered network. In a layered network evalu-
ation order is determined by the layer ordering. In a network that is not strictly layered,
we can still order neurons into layers, in such a way that edges only go from a layer to
the layers after it, with no internal edges within a layer, and no edges to earlier layers.
An example is shown in Figure 4.4. The layers define a partial order on the neurons: we
have i < j if neuron i is in a layer before j. Neurons in the same layer are unordered
among eachother. By picking any order for the neurons within a layer, we can extend
the partial order to a total order. This is shown at the bottom of Figure 4.4, with i < j
if i is left of j. The total order can be maintained as an array containing neuron indices,
and this defines an evaluation order. To exploit parallelism, it is possible to instead store
the layer structure (top right in Figure 4.4), and evaluate all neurons within a layer in
parallel. An initial evaluation order can be obtained by topologically sorting all neurons.

Figure 4.4 ∙ A network, not
layered (top left). Input and

output neurons coloured • and
• respectively. We can arrange

neurons into layers, where
neurons can only have edges

to neurons in a later layer (top
right). This defines a partial

order. We can extend the
partial order to a total order by
enumerating neurons in layer

order. One possible total order
is shown at the bottom.

1 4 7 8 10

2 5 11

3 6 9

1 2 3 4 5 6 7 9 8 10 11

3

2

1 4

5

6

7

9

8

11

10

Now that we have a way to evaluate the network, we need a way to optimise its param-
eters. Gradient descent or a more sophisticated variant (as outlined in Section 3.2) is
suitable for this; this is no different from traditional multilayer perceptron networks.
The derivative of the loss with respect to the network parameters can be computed us-
ing backpropagation in the reverse evaluation order.

Example 4.9 ∙ Consider the following network (w , b) ∈ Net(5), with one input neuron
(1) and one output neuron (5).

1 2

3

4 5

A total order on the neurons compatible with the network architecture, would be (1, 2, 3,
4, 5), so we use this as evaluation order. Suppose the activation a1 of neuron 1 is given.
Then the other neuron activations are given by

42

a2 = b(2) +w(1, 2) σ(a1)

a3 = b(3) +w(1, 3) σ(a1)

a4 = b(4) +w(2, 4) σ(a2) +w(3, 4) σ(a3)

a5 = b(5) +w(3, 5) σ(a3) +w(4, 5) σ(a4)

If we store neuron activations in an array, we could fill it in the evaluation order, without
ever reading uninitialised values. For derivatives, the order is backwards. Recall from
Definition 3.7 that L(w , x) = L(дw(x), f (x)) for some loss function L. In this case
x ∈ R, a1 = x, дw(x) = a5, and f (x) is the target output of the network. If we fix x and
f (x), we can compute derivatives of L using the chain rule, in the reverse evaluation
order. Denote by σ ′ the derivative of the activation function σ . Then we have:

∂L
∂a4
= ∂L
∂a5

∂a5
∂a4
= ∂L
∂a5

w(4, 5) σ ′(a4)

∂L
∂a3
= ∂L
∂a5

∂a5
∂a3
+ ∂L
∂a4

∂a4
∂a3
= (∂L

∂a5
w(3, 5) + ∂L

∂a4
w(3, 4)) σ ′(a3)

∂L
∂a2
= ∂L
∂a4

∂a4
∂a2
= ∂L
∂a4

w(2, 4) σ ′(a2)

∂L
∂a1
= ∂L
∂a3

∂a3
∂a1
+ ∂L
∂a2

∂a2
∂a1
= (∂L

∂a3
w(1, 3) + ∂L

∂a2
w(1, 2)) σ ′(a1)

Note again: if we store the derivatives in an array, we could fill it in the reverse evaluation
order, without ever reading uninitialised values. Derivatives of the loss with respect to
the weights and biases can be expressed in terms of the above derivatives. ◻

When deciding which edges to rewire, we must take care not to introduce cycles in the
graph of the network. We can use any of the strategies proposed in Section 4.3, but edges
that would introduce a cycle should not be considered as candidates for rewiring, even if
such an edge would connect highly correlated neurons. There are two ways of avoiding
cycles:

◆ We can discard edges thatwould introduce a cycle in advance. If for a fixed neuron
j we want to consider candidate edges i → j, then we can mark all neurons that
depend on neuron j, and exclude marked neurons from the candidates. Such a
process needs to visit O(k) neurons, where k is the number of neurons in the
graph. The evaluation order can be used to reduce the number of neurons to visit:
neurons that come before j in the evaluation order cannot depend on j.

◆ We can insert an edge, and detect cycles later, when we restore the evaluation
order. If it turns out that no such order exists, the edge should not have been
inserted. This approach can be more efficient than the former, because cycle de-
tection is a side effect of updating the evaluation order, which needs to to be done
anyway.

43

Once we have a candidate edge to rewire, the next task is to update the evaluation or-
der. We could of course topologically sort all neurons again, but this seems wasteful:
we already had an ordering of neurons before rewiring, and we know which edges were
removed and added. Can this knowledge be used to update the evaluation order more
efficiently? Removing edges does not invalidate the evaluation order, therefore we only
need to update the evaluation order for inserted edges. This problem is called online
topological ordering, and solutions have been discussed in Section 2.5. Accordingly, it
is possible to efficiently update the evaluation order after rewiring, using online topolo-
gical ordering algorithms.

Example 4.10 ∙ Consider again the network from Example 4.9. Suppose that after a
number of training steps, we find that corr(3, 2) is high, and the estimated utility of
edge 3 → 4 is the lowest of the network. Then we may want to delete edge 3 → 4 and
insert edge 3→ 2, as shown below.

1 2

3

4 5

This invalidates the previous evaluation order (1, 2, 3, 4, 5), for neuron 2 now depends
on 3, but 2 comes before 3 in the evaluation order. We only need to reorder the part of
the evaluation order between 2 and 3 (inclusive): all neurons before 2 can be considered
as having edges into a subgraph composed of neuron 2 and all neurons after it, and
an internal change to this subgraph does not affect the complement of the subgraph.
Similarly, all neurons after neuron 3 can be considered as having edges from a subgraph
composed of neuron 3 and all neurons before it, and an internal change to this subgraph
does not affect the ordering of its complement. The new evaluation order would be
(1, 3, 2, 4, 5). ◻

In this section we have shown how the ideas from the previous sections come together.
We can train a sparse non-layered network, and incrementally improve its architecture
by rewiring edges. Doing so involves deciding which edges to delete, by estimating their
utility, and determining which edges to insert, based on correlation between neurons.
For training and evaluation we need an evaluation order, which we can keep up to date
using online topological ordering. In the next section we will show the results of this
approach.

44

4.6 Results

We implemented the framework outlined in this thesis, and applied it to predicting char-
acters of the Enwik9 dataset. Characters are lowercased and numbers and punctuation
are removed, which leaves 27 symbols (the Latin alphabet and the space). The input to
the network is a one-hot encoding of the past 20 symbols (so the network has 540 input
neurons), and the output is a prediction of the next symbol, as a probability distribution
over the 27 symbols (so the network has 27 output neurons). Performance of the network
is quantified using the cross-entropy loss function. For a fully-connected network, 1700
neurons is where the returns of adding more neurons start to diminish, so we use a total
of 1700 neurons for the sparse network as well. The number of incoming edges to each
neuron is fixed, and the same for all neurons in the network. This has implementation
advantages: edges can be stored in a fixed-size array, and there is no need for the extra
indirection of a heap-allocated dynamically sized array. We examine various sparsities:
either 58, 29, or 15 incoming edges per neuron, so the network is fairly sparse. The activ-
ation function used is σ(x) = max{0, x}. To intialise the network, neurons are added to
the graph one by one, and connected to neurons sampled uniformly from the graph so
far. We train the network with the Adam optimiser [Kingma and Ba 2014] using a batch
size of 512. Every 2048 training steps, the network is rewired. For new edges, we initial-
ise the Adam parameters mt and vt to zero, and we also reset Adam’s timestep t to zero
after every rewiring round. The rewiring strategy is to rewire incoming edges of neuron
i, if there exists another neuron j such that corr(j, i) exceeds a threshold, which we vary
to control how many edges get rewired. The incoming edge with the lowest utility is re-
placed. Although our approach eliminates the need to choose a network architecture in
advance, it still has many hyperparameters, such as the number of neurons, the number
of edges per neuron, and when to rewire.

Because we optimise using stochastic gradient descent, the training loss is noisy. To get
a grip on how rewiring affects the loss in general, we train 12 instances of the network,
all with a different random seed. Training losses are grouped per 64 training steps, and
we show the median, 25th percentile, and 75th percentile, of the 64 ⋅ 12 loss values. The
results are shown in Figure 4.5.

We make a few observations:

◆ Rewiring does not improve performance in any of our measurements.

◆ Even aftermany training steps, there are still plenty of correlated neurons that pass
the rewiring threshold. Training does not in itself eliminate correlation between
neurons.

◆ Rewiring too many edges too often can make the loss diverge: the loss does not

45

Figure 4.5 ∙ Cross-entropy
training loss of a character

prediction network. From top
to bottom, a network with 1160

non-input neurons and
respectively 58, 29, and 15

incoming edges per neuron.
The lines indicate the median
loss over 64 training steps and
12 different seeds, the shaded

areas indicate the 25th and
75th percentile.

• Rewiring disabled
• Rewiring 0.0089% of edges
• Rewiring 0.097% of edges
• Rewiring 0.93% of edges

With 15 edges per neuron,
rewiring 0.93% of edges (•)

diverged immediately, and as
such is not shown in the graph.

0.5 1 1.5 2 2.5 3 3.5 4

⋅104

2

2.2

2.4

2.6

2.8

training step

L
T

(5
8
ed
ge
sp

er
ne
ur
on

)

0.5 1 1.5 2 2.5 3 3.5 4

⋅104

2.2

2.4

2.6

2.8

training step

L
T

(2
9
ed
ge
sp

er
ne
ur
on

)

0.5 1 1.5 2 2.5 3 3.5 4

⋅104

2.5

2.6

2.7

2.8

2.9

3

training step

L
T

(1
5e

dg
es

pe
rn

eu
ro
n)

46

recover before the next rewiring round. This happens to the • coloured graph,
where about a percent of edges are rewired.

◆ The denser networks perform better than sparser networks.

One thing that stands out is that the network takes a while to recover after rewiring. This
is not a problem in itself, as long as there are sufficient training steps to recover. As the
loss converges to a minimum, the time to recover increases, and rewiring is no longer
useful. This makes sense: at a certain point we should settle on a particular network
architecture. We cannot keep on rewiring all the time. A threshold on correlation alone
is not sufficient to reduce the number of rewired edges as training progresses.

Furthermore, there is a tension between rewiring few edges often, and making larger
changes infrequently. Making frequent small changes to the network better integrates
learning parameters and architecture into one process. However, it is not clear how to
select the edges to rewire in this case: newly added edges will have a low utility, because
their weights have not been learned yet, and the rest of the network has not adapted to
the new edges. These edges would need to be excluded from rewiring for a while, but
it is not clear for how long: waiting until convergence makes rewiring less frequent, but
rewiring too early could mean that the same edges, or edges of the same neurons, get
rewired all the time. Figuring out how to make frequent small local changes that do not
interfere with one another, would be an interesting topic for future research.

Figure 4.6 ∙ Cross-entropy
training loss of a sparse
character prediction network
with 1160 non-input neurons,
rewiring disabled. The lines
indicate the median loss over
64 training steps and 12
different seeds, the shaded
areas indicate the 25th and
75th percentile.

• 15 edges per neuron
• 29 edges per neuron
• 58 edges per neuron
• 116 edges per neuron
• 232 edges per neuron
• 464 edges per neuron0.5 1 1.5 2 2.5 3 3.5 4

⋅104

1.8

2

2.2

2.4

2.6

training step

L
T

47

The effect of sparsity is shown in Figure 4.6. This figure shows the training loss for net-
works of various sparsities while keeping the number of neurons fixed. The networks
are constructed in the same way as earlier in this section, and no rewiring is applied.
The graph shows that for a fixed network architecture, denser networks perform signi-
ficantly better than sparser networks. However, sparsification of a dense network could
still result in a better network than training the sparse network from scratch, especially
by pruning using the utility heuristic from Section 4.1. This area of research has been
explored in literature (see also Section 2.2) so we make no attempt to further investigate
the effects here. Rather, these results form the baseline for Figure 4.5.

From the results in this section we can conclude that we have not found the optimal
hyperparameters for our method yet. There are many directions to explore still, and our
results give a direction of where to look: we should make a more conscious decision
about when to rewire and how much. Moreover, the task we chose is perhaps not the
kind of task where sparsity is most beneficial. A one-hot encoding of 27 symbols is
still relatively dense. Predicting words rather than characters, with a vocabulary of e.g.
10,000 words, might be a better fit. What the results do confirm, is that making small
changes to the graph of the network is possible without paying too much in loss, if the
change is small enough.

48

C H A P T E R 5

Conclusion

In this thesis, we have proposed a novel method of simultaneously optimising the archi-
tecture of a sparse neural network, and its parameters. Along the way we formalised net-
works based on general acyclic graphs that are not necessarily layered. We introduced a
new heuristic to estimate the utility of edges in a network, which apart from being integ-
ral to ourmethod, has applications in sparsification and quantisation of neural networks.
We introduced a criterion for inserting edges in a sparse network, and we showed how
combining all of these relates to the geometric problem of nearest neighbour search,
and the graph problem of online topological ordering. Finally, we implemented the
technique and evaluated its performance on a character prediction task.

5.1 Discussion and future work

In Section 4.1 we proposed a new heuristic for estimating edge utility. Our initial invest-
igation shows that the heuristic outperforms simpler heuristics such as absolute weight,
and more sophisticated heuristics such as optimal brain damage, when applied to the
Tensorflowdeepmnistmodel. One of the key observationswas that network parameters
are sufficiently far from an optimum even after training. A first-order approximation of
the loss is valid, and better than a second-order approximation with first term omitted.
It remains to be seen how these results generalise to other networks, and what happens
when techniques such as dropout are applied. On the one hand, dropout is supposed
to reduce reliance on single neurons, thereby evening out the utility distribution. On
the other hand, dropout is a regularisation technique that prevents overfitting, and so it
explicitly avoids a minimum of the loss on the test set to achieve better generalisation.
Investigating how our utility heuristic performs on other networks and in combination
with regularisation techniques, would be an interesting step for future work.

As an aside to the utility heuristic in Section 4.1, we hinted at applications in quantisation

49

in Section 4.2. Doing a full analysis of how the method stacks up to other quantisation
objectives (such as minimising the ℓ2 norm of the difference in weights, rather than
minimising the estimated change in loss) is beyond the scope of this thesis. Improving
quantisation methods would be valuable in its own right.

In Section 4.3 we proposed a way to select candidate edges to insert based on correlation
between neuron error and output. In Section 4.4 we determined how to select a weight
for new edges. We offered an explanation of why adding the proposed edges makes
sense in the short term, but in Section 4.6 we show that — in our current implementa-
tion — rewiring does not find a better network architecture than the initial architecture.
The ineffectiveness of our method can have multiple reasons, and one of them could be
that the proposed candidate edges are not the right edges to connect. Further investiga-
tion might be done to validate this hypothesis. For example, one could sparsify a dense
network, delete a few edges, and see if our method proposes to insert the deleted edges
again. If it does so, the method at least takes steps towards a local optimum. More gen-
erally, investigating different ways to propose candidate edges would be an interesting
line of research for future work.

In Section 4.6 we presented the results of our method when applied to a character pre-
diction task. In this case, our method to learn network architecture was unabled to
improve upon a static network architecture. However, we only explored a small portion
of the hyperparameter space, and perhaps the task we chose is not the kind of task where
sparsity is most beneficial. Furthermore, more work is needed to decide when to rewire
and when to stop rewiring, and to decide how many edges to rewire. In its current form
our method of rewiring edges does not outperform static networks, but future research
could change this. We confirmed that making small changes to the graph of the network
enables optimisation with a warm start: the parameters are closer to an optimum than
random parameters.

To conclude, in this thesis we presented a technique that — given a budget of neurons
and edges — optimises a network to perform a given task. More work is required to
make our approach competitive, but along the way we had some interesting results that
have applications in sparsification and quantisation. In general, optimising network
architecture and parameters simultaneously is an area that has received little attention,
and it would be worth exploring further.

Acknowledgements

In addition to my supervisors who guided me throughout this project, Maarten Löffler
at Utrecht University and Jyrki Alakuijala at Google, this project would not have been

50

possible without the help ofmany others. In particular, I would like to thank JanWassen-
berg for his c++ reviews; Krzysztof Potempa for his algorithms expertise, and for re-
viewing early drafts of this thesis; Robert Obryk for countless valuable discussions, his
knowledge of just about any topic imaginable, and his experience with Google infra-
structure; Thomas Fischbacher for his Python reviews and his experience with Google
infrastructure; and Zoltan Szabadka for continuing to focus on quantifiable results.

51

52

Bibliography

Aroa, Sanjeev, Aditya Bhaskara, Rong Ge, and Tengyu Ma (Oct. 23, 2013). “Provable
Bounds for Learning Some Deep Representations”. In: arXiv: 1310.6343 [cs.lg].

Bender, Michael A., Jeremy T. Fineman, Seth Gilbert, and Robert Endre Tarjan (Dec. 4,
2011). “A New Approach to Incremental Cycle Detection and Related Problems”. In:
arXiv: 1112.0784 [cs.ds].

Bentley, Jon Louis (1975). “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Communications of the ACM 18.9, pages 509–517. doi: 10.1145/361002.
361007.

Brock, Andrew, Theodore Lim, J.M. Ritchie, and Nick Weston (Aug. 17, 2017). “Smash:
One-Shot Model Architecture Search through Hypernetworks”. In: arXiv: 1708.05344
[cs.lg].

Choromanska, Anna, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun (Nov. 30, 2014). “The Loss Surfaces of Multilayer Networks”. In: arXiv: 1412.
0233 [cs.lg].

Christiani, Tobias (Aug. 25, 2017). “Fast Locality-Sensitive Hashing for Approximate
Near Neighbor Search”. In: arXiv: 1708.07586 [cs.ds].

Cireşan, Dan, Ueli Meier, and Jürgen Schmidhuber (Feb. 13, 2012). “Multi-column Deep
Neural Networks for Image Classification”. In: arXiv: 1202.2745 [cs.cv].

Clarkson, Kenneth Lee (1999). “Nearest Neighbour Queries in Metric Spaces”. In: Dis-
crete & Computational Geometry 22.1, pages 63–93. doi: 10.1007/pl00009449.

Datar, Mayur, Nicoleand Immorlica, Piotr Indyk, and Vahab S. Mirrokni (2004).

53

http://arxiv.org/abs/1310.6343
http://arxiv.org/abs/1112.0784
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1708.07586
http://arxiv.org/abs/1202.2745
https://doi.org/10.1007/pl00009449

“Locality-sensitive Hashing Scheme Based on p-Stable Distributions”. In: Proceedings
of the Twentieth Annual Symposium on Computational Geometry. ACM, pages 253–
262. isbn: 1-58113-885-7. doi: 10.1145/997817.997857.

Denton, Emily, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus (Apr. 2,
2014). “Exploiting Linear StructureWithinConvolutionalNetworks for Efficient Eval-
uation”. In: arXiv: 1404.0736 [cs.cv].

Dong, Xin, Shangyu Chen, and Sinno Jialin Pan (May 22, 2017). “Learning to Prune
Deep Neural Networks via Layer-wise Optimal Brain Surgeon”. In: arXiv: 1705.07565
[cs.ne].

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel (1977). “An Algorithm
for Finding Best Matches in Logarithmic Expected Time”. In: ACM Transactions on
Mathematical Software 3.3, pages 209–226. doi: 10.1145/355744.355745.

Haeupler, Bernhard, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert
Endre Tarjan (May 12, 2011). “Incremental Cycle Detection, Topological Ordering,
and Strong Component Maintenance”. In: arXiv: 1105.2397 [cs.ds].

Han, Song, Huizi Mao, and William J. Dally (Oct. 1, 2015). “Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding”. In: arXiv: 1510.00149 [cs.ne].

Har-Peled, Sariel, Piotr Indyk, and Rajeev Motwani (2012). “Approximate Nearest
Neigbors: Towards Removing the Curse of Dimensionality”. In: Theory of Computing
8.14, pages 321–350. doi: 10.4086/toc.2012.v008a014.

Hassibi, Babak andDavid G. Stork (1993). “SecondOrder Derivatives for Network Prun-
ing: Optimal Brain Surgeon”. In: Advances in Neural Information Processing Systems 5.
Edited by S. J. Hanson, J. D. Cowan, and C. L. Giles. Morgan-Kaufmann, pages 164–
171. isbn: 1-55860-274-7.

Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio
(Sept. 22, 2016). “Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations”. In: arXiv: 1609.07061 [cs.ne].

Indyk, Piotr and Rajeev Motwani (1988). “Approximate Nearest Neigbors: Towards Re-
moving the Curse of Dimensionality”. In: Proceedings of the Thirtieth Annual ACM
Symposium onTheory of Computing. ACM, pages 604–613. isbn: 0-89791-962-9. doi:
10.1145/276698.276876.

54

https://doi.org/10.1145/997817.997857
http://arxiv.org/abs/1404.0736
http://arxiv.org/abs/1705.07565
http://arxiv.org/abs/1705.07565
https://doi.org/10.1145/355744.355745
http://arxiv.org/abs/1105.2397
http://arxiv.org/abs/1510.00149
https://doi.org/10.4086/toc.2012.v008a014
http://arxiv.org/abs/1609.07061
https://doi.org/10.1145/276698.276876

Jain, Prateek, Ambuj Tewari, and Purushottam Kar (Oct. 20, 2014). “On Iterative Hard
Thresholding Methods for High-Dimensional M-Estimation”. In: arXiv: 1410 . 5137
[cs.lg].

Kingma, Diederik P. and Jimmy Ba (Dec. 22, 2014). “Adam: A Method for Stochastic
Optimization”. In: arXiv: 1412.6980 [cs.lg].

Knuth, Donald Ervin (1997).TheArt of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd edition. Addison Wesley. isbn: 0-201-89683-4.

LeCun, Yann (1987). “Modèles Connexionnistes de l’Apprentissage”. PhD thesis. Uni-
versité Pierre-et-Marie-Curie (Paris 6).

LeCun, Yann, John S. Denker, and Sara A. Solla (1990). “Optimal Brain Damage”. In:Ad-
vances in Neural Information Processing Systems 2. Edited by D. S. Touretzky. Morgan-
Kaufmann, pages 598–605. isbn: 1-55860-100-7.

Li, Ping,MichaelMitzenmacher, andAnshumali Shrivastava (Mar. 31, 2014). “Coding for
Random Projections and Approximate Near Neighbor Search”. In: arXiv: 1403.8144
[cs.lg].

Mazumder, Rahul, JeromeH. Friedman, and Trevor Hastie (2011). “SparseNet: Coordin-
ate Descent with Non-Convex Penalties”. In: Journal of the American Statistical Asso-
ciation 106.495, pages 1125–1138.

Meiser, Stefan (1988). “Point Location in Arrangements”. In: Computational Geometry
and its Applicataions. Edited byHartmutNoltemeier. Springer, pages 71–84. isbn: 978-
3-540-45975-0. doi: 10.1007/3-540-50335-8_25.

Meiser, Stefan (1993). “Point Location in Arrangements of Hyperplanes”. In: Information
and Computation 106.2, pages 286–303. doi: 10.1006/inco.1993.1057.

Panigrahy, Rina (2008). “An Improved Algorithm Finding Nearest Neighbor Using Kd-
trees”. In: Latin American Symposium on Theoretical Informatics. Edited by Eduardo
Sany Laber, Claudson Bornstein, Loana Tito Nogueira, and Luerbio Faria. Springer,
pages 387–398. isbn: 978-3-540-78772-3.

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In: Journal
of the Royal Statistical Society 58.1, pages 267–288.

Tibshirani, Robert (2011). “Regression Shrinkage and Selection via the Lasso: A Retro-
spective”. In: Journal of the Royal Statistical Society 73.3, pages 273–282.

55

http://arxiv.org/abs/1410.5137
http://arxiv.org/abs/1410.5137
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1403.8144
http://arxiv.org/abs/1403.8144
https://doi.org/10.1007/3-540-50335-8_25
https://doi.org/10.1006/inco.1993.1057

Xie, Lingxi and Alan Yuille (Mar. 4, 2017). “Genetic CNN”. In: arXiv: 1703.01513 [cs.cv].

Zoph, Barret and Quoc V. Le (Nov. 5, 2016). “Neural Architecture Search with Rein-
forcement Learning”. In: arXiv: 1611.01578 [cs.lg].

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le (July 21, 2017). “Learn-
ing Transferable Architectures for Scalable Image Recognition”. In: arXiv: 1707.07012
[cs.cv].

❧

56

http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

	Introduction
	Related work
	Metalearning
	Sparse approximation and quantisation
	Constrained optimisation and regularisation
	Unsupervised learning
	Online topological ordering
	Maximal inner product and nearest neighbour search

	Networks
	Supervised learning
	Parameter optimisation
	The space of networks
	Networks as functions
	Symmetries

	Rewiring
	Edge utility
	Applications in quantisation
	Selecting candidate edges
	Optimal weight updates
	Putting it together
	Results

	Conclusion
	Discussion and future work

	Bibliography

