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Executive summary 
Due to the transition towards a low-carbon energy system, more renewable energy resources are 

being integrated into the energy mix.  The intermittent nature of these resources makes balancing 

electricity supply and demand more challenging. One technique that can contribute to balancing 

supply and demand  is demand response (DR), in which final consumers provide flexibility to the 

electricity system by voluntarily changing their usual electricity consumption in response to system 

frequency. An example of an appliance that can be used as DR-asset is the domestic heat pump. 

Domestic heat pumps can be aggregated into a portfolio that delivers flexibility by a so called DR-

aggregator, an organization that enables small electricity consumers to offer flexibility by bundling 

them into a portfolio. Flexibility can be offered on different markets, amongst others the Frequency 

Containment Reserve (FCR) market, in which a DR-aggregator can offer bidirectional flexibility  

(increase or reduce demand)   on a weekly basis. The aggregator can settle a weekly bid at a chosen 

capacity, from which they are expected to deliver that capacity during the week, as a response to 

frequency fluctuations. The performance of the aggregator is expressed in terms of reliability and 

availability. Not being reliable leads to fines for Inadequate Response, whereas not having sufficient 

flexible capacity available leads to fines for Non-Availability.  

 

This research aims to investigate the potential for an aggregated portfolio of domestic heat pumps to 

deliver flexibility on the FCR market. To achieve this, a quantitative model is built in Python that 

combines historical frequency data with heat pump data from 22 weeks to simulate a switching and 

bidding process. The potential for FCR is quantitatively expressed in terms of bid size and net revenue.  

 

Three strategies are considered that the aggregator can apply to determine the weekly bid size. Firstly, 

by applying a reliable strategy, the aggregator aims to choose the bid size in such a way that it can 

always provide 100% reliability and availability. Secondly, with the optimization strategy, the 

aggregator aims for a bid size at which the fines are at an acceptable level and net revenue is 

maximized. Finally, with the opportunistic strategy, the aggregator is able to avoid fines for non-

availability by either misinforming the TSO about the portfolio capacity, or having a back-up portfolio 

that is not switched, but available for capacity. The aggregator then selects the bid size based on an 

acceptable level of fines for Inadequate Response. 

 

Results show that the net revenue that the aggregator can generate per household at current market 

conditions  is relatively low, making a project in which heat pumps deliver FCR with the methods 

described in this research financially challenging. The net revenue can be increased by selecting 

households with high-capacity heat pumps and combining heat pumps in a portfolio with other assets. 

Implementation barriers and operational costs for the aggregator are considered out of scope of this 

project, but might evolve over time and change the feasibility of the project. In addition, non-

availability fines seem to be a stronger limiting factor to the  potential for FCR compared to fines for 

inadequate response. This leads to a large difference in potential between the three strategies. Net-

revenue optimization methods used in the opportunistic and optimization strategy might jeopardize 

the integrity towards the party that procures flexibility and should therefore, if applied, be used with 

caution. Other factors that are found to influence the results are market developments, TSO 

regulations and comfort constraints of end-users.    
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List of abbreviations 
 

 

Acronym Full words Description 
AFP Available Flexible Power The available flexibility in the portfolio at a given 

moment 
BRP Balance Responsible Party Organization that bears the responsibility of 

balancing supply and demand for its portfolio of 
consumers 

CWE Central Western Europe - 
DF Dataframe Type of data collection used in data science 
DR Demand response The process through which final  consumers 

provide flexibility to the electricity system by 
voluntarily changing their usual electricity 
consumption  

DLC Direct Load Control The process of directly altering the power 
consumption of an electrical device 

ENTSO-E European Network For 
Transmission System Operators 

Joint cooperation of TSO’s through Europe 

FCR Frequency Containment Reserve Flexibility market for short term frequency 
deviations. Also known as primary reserve 
market 

IR Inadequate Response The event where the aggregator was not able to 
respond correctly to a frequency deviation. Such 
an event results in IR-fines 

NA Non-Availability The event where the power consumption of the 
portfolio is insufficient given the bid capacity, 
not reliable on frequency. Such an event results 
in NA-fines 

RFP Required Flexible Power The required capacity with which the power 
should be switched at a given moment 

TSO Transmission system operator System operator that is responsible for the High-
voltage electricity grid and the balancing 
system. In the Netherlands, this is TenneT 
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1 Introduction 
This chapter starts with introducing demand response, aggregators and the FCR market, after which 

the research question and sub questions are formulated. Then, a short introduction to the 

methodology is provided, as well as a reading guide for the report.  

 

 Problem statement 

Given the transition towards a low-carbon energy supply system, the share of electricity produced by 

renewable energy resources is likely to increase. In Europe, wind and solar energy have the highest 

potential in terms of renewable electricity generation. Both wind and solar energy resources are 

intermittent, since their production strongly depends on weather patterns (Weitemeyer et al., 2015). 

To maintain the system frequency within acceptable limits, electricity supply and demand need to be 

balanced. Traditionally, supply could be altered to match demand by dispatching generators, powered 

by fossil fuels. Given the shift towards renewable energy production, alternative methods to provide 

these grid balancing services need to be found. One of these methods is Demand Response (DR), also 

known as demand side management (Aghaei &Alizadeh, 2013). DR is defined by Eurelectric (2015) as 

“The process through which final  consumers (households or businesses) provide flexibility to the 

electricity system by voluntarily changing their usual electricity consumption in reaction to price 

signals or to specific requests, while at the same time benefiting from doing so” (p.3). 

 

For small consumers to use their flexible load for financial or balancing purposes, a new role is needed 

in the energy value chain; the role of DR aggregators. A DR-aggregator is defined by Wang et al. (2015) 

as “an intermediary between small consumers and other players (e.g., the retailers, or distribution 

companies) in the system”. Aggregators bundle the flexibility of individual consumers or businesses 

into a portfolio of devices that can be either be switched on or off, depending on the needs for 

stabilising the grid. By doing so, aggregators can enable smaller units (consumers or businesses) to 

participate indirectly on the flexibility market and get financial benefits in return. An example of a 

method that can be used to achieve this is Direct Load Control (DLC), in which the aggregator is allowed 

to directly control a set of appliances in the end-user premises. (Paterakis et. Al, 2017). 

 

In the Netherlands, short term frequency deviations can be balanced through the Frequency 

Containment Reserve (FCR) market, also known as primary reserve (TenneT, 2017). In the FCR market, 

a bidding system is applied in which parties offer a certain amount of flexible power, that they have 

to deliver whenever necessary. In return, they receive a financial compensation from the Transmission 

System Operator (TSO) for the capacity for which they are available. Any bid that is offered by an 

aggregator to the TSO has to meet certain requirements according to the regulations in place that are 

specified by the TSO (TenneT, 2017). As with most regulations, not meeting the promised bids results 

in a fine, which the DR-aggregator has to pay to the TSO. Two types of fines are enforced on the FCR-

market, fines for non-availability (NA-fines) and fines for inadequate response (IR-fines). 

 

 

In order to comply with the FCR-requirements, DR-aggregators need to choose their portfolio of DR 

assets in such a way that it can deliver the promised amount of flexibility, thereby meeting the 

prerequisites of the FCR market. With a given portfolio, aggregators can choose how much they are 

willing to bid during the next bidding period. Determining the bid size for each bid period is a strategic 
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process. If the aggregator bids too low, revenue and thus profit can be suboptimal. On the other hand, 

if the aggregator bids too high, the aggregator might not be able to deliver the bid flexibility and 

therefore risks fines. The length of the bidding period is country- and market specific. When the bid 

size is determined, the aggregator is bound to deliver that amount of flexibility during the complete 

bidding period, as response to frequency deviations (TenneT, 2017).  

 

 Research questions 

Many different technologies exist that have potential to operate as DR-asset, both in the residential 

and industrial sector, for example the domestic heat pump. Heat pumps convert electrical power into 

heat that can be used for heating households and supplying hot tap water (Stadler, 2008). Heat pumps 

are a well proven and much studied technology. In contrast to gas-fired boilers, heat pumps are most 

efficient when operating at low temperature and thus slow response heating systems (Li et al., 2012). 

This may be a positive aspect from the perspective of switching them on or off in a DR project. 

However, little research has been done on the technical and financial potential of domestic heat 

pumps on the FCR market. This research aims to investigate this technical and financial potential by 

answering the following research question: 

  

What is the technical and economic potential for a portfolio  of aggregated domestic heat pumps to 

deliver flexibility on the Dutch FCR market? 

 

In this research, financial potential includes financial revenues and fines, whereas technical potential 

includes the bid quantity. Besides the financial and technical potential, the effects of market 

developments, regulations and comfort constraints processes on the potential for heat pumps to 

deliver flexibility are still to a large extent unknown. In addition, little research has been done on 

strategic bid methods that an aggregator can implement to maximize its revenue. To provide insights 

into these aspects, the following sub-questions are answered in this thesis: 

 

1. How can an aggregator improve its bidding strategy to optimize its revenue without compromising 

its relationship with the parties that procure flexibility? (see section 4.1 and 4.2) 

2. How do market developments influence the potential for domestic heat pumps to deliver flexibility 

on the FCR market? (see section 4.4.1) 

3. How do regulations set by grid operators influence the potential to deliver flexibility on the FCR 

market? (see sections 4.4.2, 4.4.3 and  4.4.4) 
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 Introduction to the methodology 

To answer the above mentioned research questions, a quantitative model is developed in Python, in 

which historical frequency and heat pump data are used to simulate a switching and bid process. Data 

from 33 households is used and scaled up to mimic a portfolio of 20.000 households, holding 10 MW 

capacity on a 5 minutes resolution. Based on historical frequency measurements, the Required 

Flexible Power (RFP) for every 5 minutes was determined. Then, by fictively switching the heat pumps, 

the revenue and the fines were calculated for an iteratively increasing bid size. This process was 

performed for every week, leading to a revenue, fines and net revenue per week.  

 

Three strategies are considered that the aggregator can apply to determine the weekly bid size: 

1. Reliable strategy: The aggregator aims to choose the bid size in such a way that 100% availability 

and 100% reliability can be guaranteed. 

2. Optimization strategy: The aggregator aims to select the weekly bid size in such a way that the 

net revenue (revenue minus total fines) is maximized. This is done in the model by iteratively 

increasing the bid size up to the point where the increase in fines exceeds the increase in revenue.  

3. Opportunistic strategy: With this strategy, the aggregator uses revenue maximization methods 

(like with the optimization strategy), only  based on IR-fines. In this case, the net revenue is 

calculated as the revenue minus IR-fines. NA-fines are not taken into account in this strategy. In 

practice, this can be done in two ways. Firstly, by having a back-up portfolio from which the power 

consumption is not switched and secondly, by misinforming the TSO about the portfolio’s 

capacity and baseline. The opportunistic strategy is a theoretical strategy that is mainly taken into 

account to make the distinction between reliability and availability more visible. 

 

 Reading guide 

After this introduction chapter, a theoretical framework is presented in which background information 

is provided regarding heat pumps, the European and Ducth electricity system and the FCR market ant 

its specifications. In the methodology chapter, underlying methods behind this model and the 

research are described.  Chapter 4 presents the results, on which the conclusion in chapter 5 is based. 

In chapter 6, a reflection on the results, conclusion and methodology of this research is provided. 

Finally, in chapter 7, a list of literature is provided, followed by an appendix in chapter 8.   
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2 Theory 
This chapter aims to provide background information about heat pumps as a flexible DR asset (section 

2.1), the European and Dutch electricity system and its design (section 2.2) and the FCR market and 

its product specifications (section 2.3). Additionally, this chapter forms the basis for the methods for 

calculating the RFP and the fine regime, as they are implemented in the model. 

 

 Heat pumps as a flexible DR-asset 

Heat pumps can generally be divided in two categories: ground sourced heat pumps and air sourced 

heat pumps. Both types of heat pumps can provide heat in the winter and cooling in the summer. Heat 

pumps are able to extract heat from one side (soil or air) and transport it to the heating system of a 

house (Krigger, 2001). By doing this, the heat energy that is delivered to the household can be much 

higher than the electrical energy being consumed by the heat pump. The ratio between the heat 

energy delivered and the electricity being used is called the Coefficient of Performance (COP).  

 

The efficiency of a heat pump depends on the difference between the outside/ambient temperature 

and the temperature of the water that is supplied to the house. Therefore, the COP is not constant, 

but decreases with a higher difference between ambient temperatures and room temperature 

(Bertsch & Groll, 2008). Given their high efficiency, heat pumps are increasingly being used for 

domestic heat supply. Currently, the European Union counts 7,5 million heat pump installations, with 

an increase of 800.000 heat pumps each year. Even though it is widely recognized that heat pumps 

can be used as flexibility assets in DR-portfolio’s, their flexibility is currently only rarely utilized in 

practice (Fischer et. al, 2017).  

 

The main drawback of using heat pumps for DR-purposes lies in the comfort constraints of the end-

users (Parkinson, 2011). To ensure the comfort of the end-users, the room temperature of the houses 

should stay within certain limits. In the model, this comfort constraint is taken into account in a 

simplified way by implementing a maximum switch time, thereby setting a limit to the time that the 

heat pumps can be switched for. How this maximum switch time is implemented in the model is 

explained in section 3.5.2.  

 

 The European and Dutch electricity system 

As part of the European synchronous power system, the Dutch power system has a nominal frequency 

set-point at 50 Hz (Koliou et. Al, 2014).  Failing to maintain the system frequency close to this nominal 

value may lead to the disconnection of different system components. This may destabilize the system, 

eventually leading to blackouts (van der Veen, 2012).   

 

In case of an imbalance in production of electricity and demand the frequency will respond as 

follows. In case the demand is higher than the production, the frequency will drop. If the demand is 

lower than the production, the frequency will increase. In order to prevent this reaction, Automatic 

Generation Control systems are used to maintain the frequency at the desired 50 Hz (Wood & 

Wollenberg, 2012). These are examples of supply side control. This research is mainly focussed on 

the  demand side of control systems. 
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The international electricity market can generally be divided in three sub-markets: wholesale, retail 

and balancing. In the wholesale market, suppliers can cover their consumption portfolio in advance 

through long-term, forward contracts. However, renewable energy production and electricity 

consumption are not entirely predictable. Therefore, in addition, daily and hourly contracts are 

required. On a smaller level, for each connection to the grid, a so called Balance Responsible Party 

(BRP) needs to be assigned. The wholesale market stops when BRPs submit their expected production 

and consumption to the TSO (Meeus et. Al, 2005). Afterwards, the balancing markets takes over, under 

the responsibility of the TSO. Balancing is defined by the European Network of Transmission System 

Operators (ENTSO-E) as “the situation after markets have closed (GC (gate closure)) in which a TSO 

acts to ensure that demand is equal to supply, in and near real time” (ENTSO-E, 2013, p. 3).  

 

The combined markets for balancing are referred to as ancillary service markets. This group of markets 

is divided by ENTSO-E (2013) in three categories: frequency containment reserve (FCR), frequency 

restoration reserve and replacement reserve. This thesis focusses on FCR. FCR is activated 

automatically as a response to frequency fluctuations and needs to be able to respond within thirty 

seconds (Lampropoulos, 2014).  

 

In the residential sector, it is common that the role of the BRP and the role of the supplier are taken 

by the same market party. A BRP bears the responsibility of balancing supply and demand for its 

portfolio of consumers. It has the obligation of reporting the expected consumption and production 

within its region to the TSO. In the case where an aggregator regulates consumption of a portfolio of 

electric assets, different strategies can be used. The aggregator can take the role of BRP, the role of 

supplier, or both (Lampropoulos et. al, 2017). However, for the model in this research, this decision is 

deemed irrelevant.  

 

 The FCR market 

This research aims specifically on the potential of domestic heat pumps to deliver flexibility on the 

FCR-market. Therefore, TenneT’s product specifications and fine regime for the FCR market will form 

an important input for the model. Both are described in detail in the next two sub-sections.  

 

 Product specifications of the FCR market 

In a study performed by Koliou et. Al (2014), it was found that DR is limited by three regulatory factors: 

a minimum bid size, minimum bid duration and binding up and downward bids. On the Dutch FCR 

market, all three factors apply and play a major role in the bid strategy that the aggregator applies. 

Therefore, all three factors are incorporated into the model. The most important specifications for the 

FCR market are described below and are based on a document describing the product specifications 

of the FCR market (Tennet, 2017).  

 

Bid period 

For the Dutch FCR market, bidding occurs on a weekly basis. This means that every week, a bid can be 

performed, with a new capacity. This capacity is valid for the entire week, meaning that the aggregator 

is expected to deliver reserve capacity based on the bid capacity and frequency. Not being able to do 

so results in a fine. 
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Minimum bid size 

The minimum bid capacity for market entrance on the Dutch FCR market is 1 MW. This means that 

bids with a capacity lower than 1 MW will be rejected. 

 

Full Activation Deviation 

The Full Activation Deviation, in this report referred to as FAD is the frequency deviation at which full 

activation of the portfolio is required.  On the Dutch FCR market, this is 200 mHz. This means that at 

a frequency deviation of 200 mHz, the portfolio should respond with 100% of the bid capacity, in the 

direction in which it is required. For any frequency deviation in between, the portfolio should respond 

proportionally. For example, when the frequency is 49.9 Hz, and the bid size of that week is 1 MW, 

the portfolio should react with 50% of the bid size, so 500 kW lower relative to the baseline.  

 

Insensitivity range 

On the Dutch FCR market, the insensitivity range is 10 mHz (or 5 mHz in both directions). This means 

that an error in frequency response of up to this range is allowed. As a result, the RFP has a upper and 

lower boundary of +- 2.5%. When the frequency is between 49.95 Hz and 50.05 Hz, reacting is not 

required.   

 

FCR full activation time 

The full activation time for the Dutch FCR market is 30 seconds, meaning that the portfolio should be 

able to deliver the bid capacity within this period of time. This is a strongly limiting factor for many 

technologies that have a high ramp up or down time. However, due to the 5-minute resolution of the 

data, the full activation time could not be taken into account in this research.  

 

 The fine regime for the FCR market 

In the case that the aggregator is not available or not able to respond adequately, the aggregator will 

be fined by the TSO. To calculate how much the resulting fine is, regulations are used that are 

described in a framework agreement concerning primary reserve (TenneT, 2013). Two types of fines 

are distinguished, NA-fines and IR-fines.  NA-fines result when the portfolio does not have sufficient 

capacity available, whereas IR-fines result when the aggregator does not respond correctly.  

 

In article 8, section 3.A of the framework agreement, the fine regime for NA-fines is described as 

follows:  

 

“In the event of Non-Availability, supplier owes TenneT a Non-Availability Payment in proportion to 

the relevant Non-Availability period (which is rounded up to whole hours). The amount of the 

payment is calculated as follows: (10 x bid price x volume non-available power = Non-Availability 

payment). The bid awarded to supplier for the relevant period of the supply contract with the highest 

bid price is used as bid price.” 

 

In this research, historical data was used from ENTSO-E  regarding FCR prices. These prices are based 

on the highest bid price in the given period. Therefore, in this research, it is assumed that the bid 

price equals the FCR price.  
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In article 9, section 1 of the framework agreement, the fine regime for IR-fines is described as 

follows: 

 

“For each event where a power change (∆P) of a technical unit is demonstrably (graph) insufficient: 

deduction of one 24-hour period payment (= sum of the awarded bids to the supplier for the week in 

question), in proportion with the primary reserve which is reserved for the technical unit in question 

(from allocation message of supplier). For every supply contract, the compensation for inadequate 

response by supplier to TenneT is maximized at 3 times the sum of the awarded bids to supplier for  

the week in question.” 

 

 

How these two fine statements are interpreted and implemented in the model to calculate the IR-

fines and NA-fines is described in section 3.5.4 of the methodology.  
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3 Methodology 
This chapter describes the methodology used in this thesis, starting with a description of the bid 

strategies that are studied (section 3.1). Next, the methods for processing heat pump data (section 

3.2.), as well as frequency data (section 3.3) are presented. Then, a description is provided of how the 

availability and NA-fines (section 3.4) and the reliability and IR-fines (section 3.5) are determined in 

the model. In addition, the methods behind the selection of the bid size for all three strategies are 

described in section 3.6. Next, a description is given of the methods behind the sensitivity analysis 

(section 3.7) and plotting and displaying the results (section 3.8). Finally, section 3.9 provides a visual 

illustration of the model.  

 

 Bid strategies 

There are multiple strategies that aggregators can choose to determine how much they should bid 

on a given market. In practice, aggregators often determine the bid size based on simple, heuristic 

methods. In this research, three different strategies were adopted, that an aggregator might apply in 

practice: The reliable, optimization and opportunistic strategy. These strategies were compared in 

terms of revenue flows and bid size.  

 

 The reliable strategy 

With this strategy, the aggregator values its relationship with the party to which it delivers flexibility 

over profit maximization. Therefore, following this strategy, the aggregator aims to deliver 100% 

reliability and 100% portfolio-availability. By doing so, the aggregator is always capable of delivering 

the requested flexibility that they bid for and will never be fined. Therefore, both IR fines as well as 

NA fines will be zero. Given the fact that the model used in this research is based on historical data, 

perfect knowledge about frequency and power consumption are assumed. This makes it possible for 

the aggregator in this model to successfully apply the reliable strategy and achieve 100% reliability 

and portfolio-availability. In practice, this strategy is the most likely strategy that any aggregator will 

aim for. However, it will not always be successfully implemented, since frequency and power 

consumption patterns can be unpredictable. In this research, the bid size that follows from the reliable 

strategy will be referred to as the “reliable bid size”. Bidding any lower than this will be irrational, 

since the net revenue will be decreased without an increase in reliability. When successfully following 

this strategy, the relationship with the party to which the aggregator delivers flexibility will be 

improved, but revenue flows will be suboptimal.  

 

 The optimization strategy 

With this strategy, the aggregator determines its bid size solely based on profit maximization. This 

means that the aggregator will choose to increase its bid size as long as the increase in revenue 

exceeds the extra fines resulting from IR or NA. By doing so, a bid size will be chosen in which the net 

revenue (income – total fines) is maximal. In this research, this bid size is referred to as the “optimized 

bid size”. Bidding any higher than the maximum bid size would be irrational, since net revenue will 

decrease. This strategy lowers the portfolio-availability and possibly the reliability and might therefore 

be suboptimal for the aggregators relationship with the party to which it delivers its flexibility 

compared to the reliable strategy.  
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 The opportunistic strategy  

With this strategy, like with the optimization strategy, the aggregator aims for profit maximization by 

increasing its bid size as long as the increase in revenue exceeds the extra fines. However, with this 

strategy, NA-fines are not taken into account. Avoiding NA-fines can be done by either misinforming 

the TSO regarding the capacity and baseline of the portfolio or having a back-up portfolio that ensures 

100% availability, but does not need to deliver flexibility. As a result, NA-fines will be zero, and the 

only limiting factor to the bid size will be the IR-fines, which the aggregator uses to optimize its net 

revenue. The bid size resulting from this strategy will be referred to as the “opportunistic bid size”. 

Since the aggregator accepts large amounts of IR-fines in order to achieve a maximum net revenue, 

this strategy is considered the least beneficial for the aggregator’s relationship with the TSO. In this 

research, this strategy is introduced as a hypothetical strategy that provides insight in the distinction 

between the two types of fines and their influence on the net revenue and bid size.  

 

 Selecting and processing heat pump data as an empirical base 

 Switching mechanisms and heat pump specifications  

In order to use the flexibility of a pool of heat pumps, it is essential to understand the response of heat 

pumps to signals sent by the aggregator. In a research performed by Fischer et. Al (2017), an analysis 

of this response is presented. In addition, a so called Smart Grid-ready (SG-ready) scheme is defined, 

consisting of 5 possible signals that the aggregator can send to control the heat pumps. Since the 

thermal behaviour of households is not taken into account in this research, a simplified version of the 

SG-ready scheme developed by Fischet et. al (2017) is being implemented. In this simplified version, 

the heat pump can either be switched to maximum capacity or to minimum capacity.  

 

Below, technical specifications are provided of the heat pumps used in this project. The heat pumps 

are air-sourced and the assumption is made that all heat pumps are equal and have the same technical 

specifications. In addition, it is assumed that the heat pumps do not have a backup heater. The 

minimum power consumption resulted from a preliminary analysis of the dataset. Since the lowest 

power consumption is 5 W, this will be considered the lower boundary. The heat pumps have a 

relatively low thermal and electrical capacity. Due to confidentiality issues, more specific information 

regarding the heat pump data used for this research can only be obtained via a request to the author 

of this report directly. 

 

Type/brand:     Inventum Ecolution Combi 50 

Maximum power required:            500 W 

Minimum power consumption:     5W 

Thermal reservoir capacity:           50 L    

Maximum output temperature:   55 °C 
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 Selection and filtering of the main dataset 

The total dataset that was available for this research consisted of 133 households, from which 9 

variables and 52 sub variables were available. 33 households contained a heat pump and were 

therefore relevant for this research. From these households, only the variable ‘INVENTUM’, with sub 

variable ‘ACTUAL_POWER_DEMAND’ were used. This describes the power demand for the heat pump 

per 5 minutes.  

 

Data was available between 2014 and 2017. However, until 01-09-2016, an aggregator was involved 

in the project, switching the heating systems of the households. Therefore, all data before this date 

was considered to be not clean and was therefore not used in this research.  The heating season is 

considered to last from the first of October until the first of May. Therefore, data from 30 weeks was 

taken into account between 01-09-2016 and 01-05 2017. However, from the end of December until 

the beginning of February, no data was available. This likely has to do with measurement equipment, 

but the exact reason for the missing data was not shared by the data provider. As a result of this 

missing data, an 8-week gap occurs in this period, leaving 22 weeks of useful data. The week-dates 

and number of available households per week are presented in section 8.1 of the appendix. 

 

 Selection of available households 

Due to unknown measurement errors, many gaps occur in the data and the start date and end date 

between which data is available varies strongly per household. Since the bid period as defined by 

TenneT is weekly, the dataset was split in files per week. Then, in order to check if a household has 

sufficient data available in a certain week, the following criterion was used: 

 

Each households needs to have at least 90% useful data available in a given week.  If a household 

does not meet this criterion, data for that household for that week will not be taken into account in 

the model. 

 

In this context, useful data means a credible numeric value. To check if it seems credible, visual checks 

were performed for every case where the power consumption was constant for longer than an hour, 

as well as for all cases where the power consumption exceeds the minimum and maximum limits (5W 

and 500W). Data that did not seem credible was deleted. Maintaining this 90%-criterion led to 

different numbers of households per week. In order to perform a fair analysis, the number of 

households were scaled up so that for every week, the number of households (and thus the portfolio 

size) was equal.  

 

 Fill and delete gaps in the data  

After filtering households with the 90% criterion in the previous section, a maximum 10% of the data 

per household per week was missing. For the model to operate effectively, no gaps may occur in the 

data. Every data point needs to have a numeric value that seems credible. To achieve this, gaps needed 

to be filled, or more data needs to be deleted when the gap is too long to fill in a representative 

manner. Two types of gaps were distinguished: 

1. Short gaps with less than 60 minutes of continuous missing data 

2. Long gaps, with more than 60 minutes of continuous missing data 
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The short gaps were filled using the python built-in function, ‘nearest’. This means that every missing 

value is replaced by the nearest measured value in the dataset. As a result, half of the gaps is filled 

with the last measured value before the gap (front fill), whereas the other half is filled with the first 

measured value after the gap (backfill). For the long gaps, this method did not seem viable, since it 

would lead to long constant periods in the dataset. Because of this, and the fact that there were only 

a small number of long gaps, data from households that contain a long gap in a certain week was 

deleted for that week.  

 

In the table below (table 1), the number of long gaps and short gaps that were filled or deleted is 

displayed. Filling of the short gaps led to no loss of data. In the case of long gaps, data was deleted for 

one household for one week. This led to the deletion of 5,2% of the dataset, which is more than the 

actual missing data (1,1%).  

 

 
Table 1: Division short gaps vs long gaps in the data set 

 
 

 Extrapolation to meet requirement for bid size 

Due to the methods described in section 3.2.3 and 3.2.4, the number of households from which data 

was available differs per week. An overview of the available households is presented in section 8.1.1 

of the appendix. In order to make the model operate efficiently, the number of households needs to 

be the same per week. In addition, the total capacity of the portfolio of heat pumps was too low to 

bid on any reserve market. For these reasons, the portfolio of households was fictively scaled up to a 

size that would be viable to operate on the FCR market. This viable size was assumed to be a 10 MW 

portfolio, consisting of 20.000 households. This was done in two steps. 

 

Each household in the model represents a column in a data-frame (DF). In order to mimic a real life 

situation, in which a large number of heat pumps is being switched by an aggregator, the number of 

households/columns needed to be increased. However, increasing the amount of columns to 20.000 

would make the model too complex to run for any program. Therefore, the first step in the process 

was to scale up the amount of columns to 100, which would mimic a realistic aggregation level. To do 

this, every column was duplicated by a factor that gets the number of columns closest to, but does 

not exceed 100. To fill the last number of columns up to 100, households were randomly selected by 

the model. As a result, each week consist of a DF with 100 columns, each representing the heat pump 

power consumption profile of a single household.  

 

To increase the total portfolio capacity, the power consumption of each column was multiplied by 

200. After doing this, the portfolio consist of 100 households, with a total of 10 MW. This is the 

equivalent of 20.000 heat pumps with a capacity of 0.5 kW each.  

Short gaps,      

< 60 minutes

Long gaps,      

>= 60 minutes

Amount 2778 36

Number of gaps 343 202

Percentage of the 

dataset 1.8% 1.1%
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 Frequency data: implementation and analysis 

 Implementation of frequency data in the model 

Frequency data was obtained from the French TSO, RTE, since this data was more easily available. 

Data was gathered for the same time period as the heat pump data was available: October 2016 – 

May 2017. Since both the Netherlands and France are connected to the Central Western Europe (CWE) 

grid (ENTSO-E, 2015), they are assumed to operate under the same frequency.  The data from RTE 

contained data on a 10 second basis, which is a higher resolution than the household data. In order to 

reduce the complexity of the model, the model operates on the lower resolution of the household 

data, which is 5 minutes. Therefore, frequency data had to be resampled from 10 seconds to 5 

minutes. To do this, two different methods were used, so that the effect of different resampling 

methods can be compared.  

 

In this research, the first method to resample the frequency data is referred to as the ‘actual method’. 

With this method, the value for every 5 minutes is taken, and all 10-second-values in between  are 

deleted. The second method is a built-in method in Python, in this research referred to as the ‘mean 

method’. Instead of taking the value per 5-minutes, this method calculates the mean for all 10-second 

intervals over a 5 minute period. To assess which resampling method gives the most representative 

results, a frequency distribution was performed for both methods and compared with the original 10-

second-interval data set. The results are presented in section 4.3.  

 

Since short term frequency deviations that occur within a 5-minute interval are flattened out by taking 

the mean, the mean method results in a frequency distribution that is more centered around 50 Hz. 

As a result, the average frequency deviation is reduced in comparison to the original dataset, leading 

to a decreased value for RFP and therefore an overestimation of the bid size and net revenue. With 

the actual-method, this is not the case, since selecting a data point for every 5 minutes results in a 

more random selection. These expectations are confirmed by the results of the frequency analysis 

(section4.3). For this reason, the actual method is considered as the most representative and is 

therefore used in this research.  

 

 Performing frequency analysis 

A factor that has a major influence on the bid size and thus the potential for FCR is the Required 

Flexible Power (RFP). The RFP is strongly dependent on frequency fluctuations. Therefore, getting 

insights in frequency deviations over time is paramount to understand how the RFP influences the 

potential for FCR. For this reason, an analysis was performed on the frequency data that was used in 

the model, over the period October 2016 – April 2017. A distinction was made between the original 

data, which was on a 10 seconds resolution, and the 5 minute-data, which was a result of resampling 

the original dataset using the mean method and the actual method, as mentioned above. The same 

analyses were performed on the three datasets (original, mean and actual), so that the impact of 

different resampling methods could be observed and the most representative resampling method 

could be used for the model. 
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First, the average deviation relative to the target frequency (50 Hz) was calculated, as well as the 

maximum deviation measured. Using these numbers, the average and maximum portfolio activation 

percentage was calculated. Then, the frequency distribution was plotted for all three datasets, 

showing the frequency on the x-axis, against the occurrence (% of the entire dataset) on the y-axis. 

Frequency measurements were rounded to two decimals. Finally, the frequency deviation was plotted 

against the occurrence in the dataset. These analyses provide insights in how the frequency is 

distributed over time, and how much flexibility is required on average and in extreme cases. Seasonal 

dependency of grid-frequency is considered out of the scope of this research. 

 

 Determine portfolio-availability and NA-fines 

In the rare event when the frequency deviation reaches the FAD, 100% flexibility is required. In these 

cases, the power consumption from the baseline should be shifted with the capacity of the bid size in 

the direction in which the frequency deviates; at a frequency of 50.2 Hz, the portfolio should be shifted 

with 100% flexibility upwards, whereas at 40.8 Hz the portfolio should be shifted with 100% flexibility 

downwards. Even though these events only seldomly occur, the aggregator is expected to always be 

prepared for such an event. Not being able to deliver 100% flexibility at any moment results in a NA-

fine. In the model used in this research, the bid size is increased in steps until the criteria for all three 

strategies are being met. For every bid size, upper and lower boundaries are defined: 

𝑃𝑢𝑝𝑝𝑒𝑟 = 𝑃𝑚𝑎𝑥 − 𝑏𝑖𝑑 𝑠𝑖𝑧𝑒 

And: 

𝑃𝑙𝑜𝑤𝑒𝑟 =  𝑃𝑚𝑖𝑛 + 𝑏𝑖𝑑 𝑠𝑖𝑧𝑒  

 

Where:  

Pupper/lower  =   The upper and lower boundaries, expressed in kW 

Pmin/max  =   The minimum or maximum power that the portfolio consumes 

Bid Size =   The bid capacity of flexibility for a specific week 

 

When the power consumption exceeds those boundaries (P > Pupper or P < Plower), the portfolio is not 

able to deliver 100% flexibility in that direction, resulting in a fine.  In that case, an NA-fine results, 

following the fine regime as described in section 2.3.2: 

𝑁𝐴𝑓𝑖𝑛𝑒 = 10 ∗ 𝐹𝐶𝑅 𝑝𝑟𝑖𝑐𝑒 ∗  
𝐸𝑁𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐸𝑤𝑒𝑒𝑘
=   10 ∗ 𝐹𝐶𝑅 𝑝𝑟𝑖𝑐𝑒 ∗  

(𝑃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 − 𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) ∗
𝑇𝑚𝑖𝑛
60

𝐵𝑖𝑑 𝑠𝑖𝑧𝑒 ∗ 168
 

 

Where: 

NAfine =   The NA-fine resulting from a non-availability event on a 5 minute resolution 

Enon-available =  The non-available energy, expressed in MW 

Eweek = The total energy volume that should be delivered (bid price * hours per 

week) 

Prequired =   The RFP 

Pavailable =  The available flexible power 

Tmin= The timerange of the NA-event, expressed in minutes. In the model, this was 

5 minutes.  
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The total NA-fines per week were calculated as the sum over all NA-fines per 5 minutes. The availability 

was then calculated as the amount of NA-events divided by the amount of data points per week (2016  

in this model, 5 minute interval). The availability therefore measures the fraction of the week in which 

the portfolio was able to deliver 100% flexibility, but does not provide information regarding the non-

available energy  or power(difference between Prequired and Pavailable).  

 

 Determine reliability and IR-fines 

To determine the reliability and IR-fines at a given bid size, an assessment needs to be made for every 

timestamp in the model whether or not the portfolio was able to respond correctly. In contrast to NA-

fines and portfolio-availability, the IR-fines and reliability strongly depend on the frequency, RFP and 

heat pump availability (HP-availability).  In the next sections, a description is given of how the RFP is 

calculated and how the HP-availability is checked and updated. In addition, the switching methods are 

described and an interpretation of the IR-fines and the fines and reliability calculations are presented.  

 

 Calculating RFP 

In order to determine how the portfolio of households should react to frequency fluctuations, 

TenneT’s FCR product specifications, as described in Section 2.3.1, are incorporated into the model. 

In this research, the required portfolio response is expressed in terms of RFP. This describes the power 

that the portfolio should shift at each moment. A positive value for RFP means that extra power 

consumption is required, whereas a negative value for RFP means that the power consumption should 

be shifted down. In both cases, the power change is relative to the baseline. If the portfolio uses X kW 

of power at moment t and the RFP at that moment has value Y, then the shifted power consumption 

should have the value of X + Y. The RFP can be calculated by: 

 

𝑅𝐹𝑃(𝑡) = 𝐵𝑖𝑑𝑠𝑖𝑧𝑒 ∗ 
𝐹𝑎𝑐𝑡𝑢𝑎𝑙  −  𝐹𝑡𝑎𝑟𝑔𝑒𝑡

𝐹𝐴𝐷
 

Since no more than 100% flexibility can be required, the RFP cannot exceed the(positive or negative) 

bid size. The upper and lower boundaries of the RFP can be calculated by: 

𝑅𝐹𝑃𝑢𝑝𝑝𝑒𝑟/𝑙𝑜𝑤𝑒𝑟(𝑡) = 𝐵𝑖𝑑𝑠𝑖𝑧𝑒 ∗ 
(𝐹𝑎𝑐𝑡𝑢𝑎𝑙 ± 𝐼𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑅𝑎𝑛𝑔𝑒)  −  𝐹𝑡𝑎𝑟𝑔𝑒𝑡

𝐹𝐴𝐷
 

Where: 

RFPupper/lower   = Upper and lower boundaries of RFP (MW) 

Bid size   = Bid capacity for that week (MW) 

Factual   = Actual measured frequency (Hz) 

Insensitivity range = Maximum measurement error (mHz) 

FAD   = Full Activation Deviation 

Ftarget   = Target frequency 
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As explained in Sections 2.2 and 2.3, the target frequency in the Netherlands is 50 Hz, the Full 

activation Deviation is 200 mHz, with an insensitivity range of 50 mHz. As a results, the RFP depends 

on the Actual frequency and the bid size. The figure below (figure 1) presents the frequency 

response for the Dutch FCR market, based on TenneT’s product specifications. On the Y-axis, the 

portfolio activation fraction is displayed, representing the percentage of the portfolio that should be 

activated at any given frequency. When this is negative, power should be shifted down, relative to 

the baseline. Multiplied by the bid size, it results in the RFP. This method is applied for every 

frequency measurement in the model, to calculate the RFP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Checking and updating HP-availability 

In the model, switching is limited to a maximum switch time, to implement comfort constraints. After 

a heat pump has been switched for the maximum switch time, it has to be non-active for a certain 

period that is n-times the maximum switch time, where ‘n’ is referred to as the ‘non-activity factor’. 

During this time, the heat pump is not available for switching and has to follow the baseline 

consumption.  In the default scenario, the maximum switch time is 15 minutes and the non-activity 

factor is 2. This means that after switching for 15 minutes, the heat pump is unavailable for switching 

for 30 minutes. When the heat pump is switched for 10 minutes, it cannot be switched for 20 minutes.  

 

  

Figure 1: Frequency response of a DR portfolio 
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Checking HP-availability 

Both upward and downward HP-availability will be stored in a DF, with timestamps on the vertical axis 

and households on the horizontal axis. The HP-availability can have three different states, based on 

which it can be checked whether or not a heat pump is available for switching in that direction: 

• HP-availability > 0: In this case, the heat pump is available for switching but has been switched in 

the previous timestamp. The maximum switch time has not been reached. The value of HP-

availability indicates for how many minutes the heat pump has been switched. E.g. + 10 means 

that it is still available, but has been switched for 10 minutes already.  

• HP-availability = 0: heat pump is available for switching and has not been switched in the previous 

timestamp 

• HP-availability < 0: heat pump is not available, needs to be non-active for the amount of time that 

the negative number indicates. E.g. -10, means that it can be switched after 10 minutes from 

now.  

 

Updating HP-availability 

When the heat pump is switched, 5 minutes are added to the (=> 0) value of HP-availability for that 

household for that moment. If the maximum switch time is reached, the positive value will be 

multiplied by -1 times the non-activity factor, making it non-active for twice the maximum switch time 

in the default scenario.  

 

When the heat pump is not switched, 5 minutes are added to the value of HP-availability. If this value 

was already negative, it becomes less negative. When it becomes 0, the heat pump is available for 

switching again. However, when the heat pump is not switched and it has a positive value, the value 

will be multiplied by a factor -2. In this case, it will be non-active for twice the time that it has been 

switched. Finally, when the heat pump is not switched and the HP-availability has value 0, the HP-

availability remains zero. In this case, the heat pump will remain available for switching.  

 

In the figure  below (figure 2), different options in the default scenario are displayed. The left column 

displays the action that is being performed (switched or not switched). Then, the value and status 

before updating are displayed as well as the value and status after updating. In the ‘comments-

column’, explanation is being provided on that situation. 
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Table 2: Value availability after switching or not switching 

 
 

When a heat pump is switched in one direction, the availability-Df for that direction will be updated 

according to the ‘switched’ rules, whereas the availability-DF for the opposite direction will be 

updated according to the ‘not-switched’ rules. For every timestamp, every household needs to be 

updated.  

 

  

comments

action value status New value New status

15 Error Error Error

This situation should not be possible. When 

the maximum switch time is reached, the 

status should be set to unavailable. This 

indicates a bug in the code

10 Available -30 Unavailable

Heat pump has been switched for the 

maximum switch time, is not available for 

twice the maximum switch time

5 Available 10 Available

heat pump is still available, can be switched 

for 5 more minutes

0 Available 5 Available

heat pump is still available, can be switched 

for 10 more minutes

-5 Error Error Error

This situation should not be possible. In this 

case, a heat pump is tried to be switched that 

is unavailable. This indicates a bug in the 

code

15 Error Error Error

This heat pump should have been put to -30 

earlier, since the maximum switch time will 

now be exceeded. This indicates a bug in the 

code

10 Available -20 Unavailable

heat pump has been switched for 10 minutes, 

needs to be inactive for 20 minutes

5 Available -10 Unavailable

heat pump has been switched for 5 minutes, 

needs to be inactive for 10 minutes

0 Available 0 Available

Nothing changes, heat pump was and still is 

available

-5 Unavailable 0 Available

Inactivity time is over, heat pump is ready to 

be switched again

-10 Unavailable -5 Unavailable

Heat pump needs to be unavailable for 5 

more minutes

-30 Unavailable -25 Unavailable

Heat pump needs to be unavailable for 25 

more minutes

-35 Error Error Error

This situation should not be possible, since 

the availability cannot be lower dan -2 times 

the max Switch time. 

before updating after updating

Switched

Not 

switched
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 Selection of heat pumps to be switched 

Before switching, the model has to select the households that should be switched in a certain 

direction. Based on grid frequency, three situations can occur: 

1. Frequency > 50.00 Hz (RFP > 0): heat pumps need to be shifted upwards. Available heat pumps 

will be selected from the availability-up DF. Heat pumps that are available, but are not switched, 

will be updated according to the ‘not-switched’ principle, described in section 3.5.2. All heat 

pumps in the availability-down DF will be updated according to the ‘Not-switched’ principle as 

well.  

2. Frequency = 50.00Hz (rfp = 0): No heat pumps need to be switched. All heat pumps will be 

updated according to the ‘not-switched’ principle, in both directions.  

3. Frequency < 50.00 Hz (rfp < 0): heat pumps need to be shifted downwards. Available heat pumps 

will be selected from the availability-down DF. Heat pumps that are available, but are not 

switched, as well as all heat pumps in the availability-up DF, will be updates according to the ‘not-

switched’ principle.  

 

Depending on the three above mentioned situations, division is made in two groups of available 

households, in the direction in which they need to be switched: 

• Households with HP-availability > 0: these were switched in the previous timestamp, but are still 

available. These should be switched first, since switching households up to their maximum switch 

time is the most efficient, given the criteria explained in 4.5.1.  

• Households with HP-availability = 0: these are available and were not switched in the previous 

timestamp. These should be switched only when all heat pumps that have availability > 0 are 

switched, and there is still not enough flexibility delivered (total Available Flexible Power (AFP)  < 

RFP).  

 

To find the heat pump that should be switched, the model first iterates over the households that have 

availability > 0 in the direction that they should be switched. Within this group, the algorithm looks 

for the heat pump that has the highest contribution of flexibility related to the RFP. It calculates for 

every heat pump the absolute difference between flexibility delivered (AFP) and required flexible 

power (RFP). The heat pump with the highest flexibility potential will be chosen as the selected heat 

pump to be switched.   
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 The switching process 

For the selected heat pump, the switching process follows the following steps: 

• The flexible power delivered by the heat pump is added to the total flexible power delivered at 

that moment.  

• The heat pump is updated according to the ‘switched’ principle 

• The heat pump is removed from the list of available heat pumps. This list is generated again for 

every timestamp by the algorithm 

 

To determine whether or not sufficient flexibility can be delivered at timestamp(t), a while loop will 

be used, in which the algorithm repeatedly  executes a conditional code as long as a given condition 

is true. The condition in this case is ‘total AFP delivered < RFP’. As long as the total AFP delivered is 

smaller than the RFP, insufficient flexibility is delivered, and more heat pumps need to be switched. 

The conditional code, consisting of the three steps mentioned above, will then be repeated. When the 

conditional statement becomes false, sufficient flexibility is delivered, and the code breaks out of the 

wile loop and continue to the next timestamp. This situation will be considered as a pass, and one 

iteration will be added.  

 

However, in some cases, not sufficient heat pumps are available to deliver the RFP. In these cases, 

both lists of available households will become empty. If a situation occurs in which both lists are 

empty, and the while-condition is still not met, the code will break out of the loop and continue to the 

next timestamp. This situation will be considered as an IR-event, in which the portfolio does not 

respond adequately. In this case, one IR-event, as well as one iteration will be added. The costs for the 

IR-event can be calculated and added to the total fine.  

 

To understand whether the upward or downward flexibility potential is limiting the optimum bid size 

and therefore the revenue, a division is made between upward-IR-events and downward-IR-events. 

Upward-IR-events occur when upward flexibility is deemed insufficient, whereas downward-IR-events 

occur when downward flexibility is deemed insufficient. The fine regulation for upward-IR-events and 

downward-IR-events are the same and are described in the next section 3.5.5.  

 

When the portfolio uses on average more than half of its capacity during a week, upward flexibility is 

expected to occur more often, and upward-IR-events are more likely than downward-IR-Events. Vice 

versa, when the portfolio of heat pumps consumes only a small part of its capacity, downward-IR-

events are more likely to occur, and downward flexibility will limit the maximum bid size. 
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 Calculate revenue and IR fines 

The revenue is based on the FCR price, expressed in €/MW/week. These prices are received from 

ENTSO-E (2018) and differ per week. In the period that is relevant for this research (September 2016-

May 2017), prices range from €1,936.77/kW/week to €3,354.80/kW/week, with an average of 

€2,559.49/kW/week. A total overview of the FCR-prices per week can be found in the appendix in 

section 8.2. The revenue per week can then be calculated by: 

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑤𝑒𝑒𝑘(𝑥) =  𝐵𝑖𝑑𝑠𝑖𝑧𝑒 ∗  𝐹𝐶𝑅𝑝𝑟𝑖𝑐𝑒 

 

In this research, an IR-event is defined as a 5-minute period in which the portfolio of heat pumps was 

not able to deliver sufficient flexibility. When an IR-event occurs, a fine from TenneT will result. The 

assumption is made here that every IR-event is directly notified by TenneT and will directly result in a 

fine, following the fine regime as stated by TenneT(2013), described in section 2.3.2. According to this 

fine regime, the fine per IR-event can be calculated as the percentage of delivered flexibility that was 

too low, multiplied by the revenue of one day: 

 

𝐶𝑜𝑠𝑡 𝐼𝑅 − 𝑒𝑣𝑒𝑛𝑡 =  
𝑅𝐹𝑃𝑢𝑝𝑝𝑒𝑟

𝑙𝑜𝑤𝑒𝑟
 −

𝐹𝐿𝑃𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑅𝐹𝑃
∗

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑜𝑡𝑎𝑙,𝑤𝑒𝑒𝑘(𝑥)

7
  

Then, the total fine can be calculated by: 

𝐹𝑖𝑛𝑒𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐶𝑜𝑠𝑡 𝐼𝑅𝑒𝑣𝑒𝑛𝑡𝑊𝑒𝑒𝑘(𝑥)

𝑤𝑒𝑒𝑘𝑠

 

 

The net revenue can be calculated by subtracting the total fine costs from the total weekly revenue: 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛𝑒𝑡 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑜𝑡𝑎𝑙,𝑤𝑒𝑒𝑘(𝑥) − 𝐹𝑖𝑛𝑒𝑡𝑜𝑡𝑎𝑙 
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 Determining the reliable, optimized and opportunistic bid size 

For all three strategies, similar methods are used in the model to obtain the necessary information 

related to the specific strategy. The model iterates over a set of bid sizes until it reaches a bid size in 

which a criterion is met that is specific to one of the three strategies. For the main results, the bid size 

is increased in steps of 100 kW, starting with a minimum bid size of 100 kW. The reason for a relatively 

small bid size step is that it provides a high accuracy, resulting in smooth graphs and accurate main 

results. However, for the sensitivity analysis, a different bid size step is used to reduce the run-time of 

the model. In this section, the criteria for the three different strategies described, as well as the 

different iteration steps that are used for the sensitivity analysis. 

 

 Determining reliable bid size 

With the reliable strategy, the aggregator aims to deliver 100% reliability and 100% availability, 

meaning that no NA-fines nor IR-fines are accepted. Therefore, the bid size is increased until the 

total fines are larger than zero. In that case, the model returns the results from the previous bid size, 

in which no fines occurred.  

 

 Determining the optimized bid size 

With the optimized strategy, the aggregator aims to maximize its net revenue by increasing the bid 

size to the point where the previous net revenue is larger than the current net revenue. The 

previous net revenue is defined as the revenue minus the total fines for the most recent bid size 

iteration (current bid size minus bid size step): 

 

𝑁𝑒𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝑓𝑖𝑛𝑒𝑠 

 

 Determining the opportunistic bid size 

With the opportunistic strategy, the aggregator aims to maximize its net revenue, but avoids NA-fines 

by either communicating an incorrect baseline and portfolio capacity to the TSO, or having a back-up 

portfolio available that ensures the availability, but is not switched. With the opportunistic strategy, 

in the model, NA-fines are not taken into account. Therefore, the net revenue is defined as the 

revenue minus the IR-fines for the most recent bid size iteration (current bid size minus bid size step): 

𝑁𝑒𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐼𝑅 𝑓𝑖𝑛𝑒𝑠 
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 Bid size steps for the sensitivity analysis 

For the sensitivity analysis, the model needs to be run for different parameter values, as described in 

section 3.7. With a high bid size, many iterations are needed before the bid size is found. Using a bid 

size step of 100 kW until the results for all three strategies are finished will lead to an unnecessary 

long run-time. Therefore, a more efficient method can be used with respect to the bid size when the 

model is running the sensitivity analysis. Therefore, in the sensitivity analysis, a bid size of 1 MW is 

used, until a rough estimation of all three strategies is found. In that case, the model iterates over a 

smaller bid size range (rough estimation +- 500 kW) with a bid size step of 100 kW, to get a more 

accurate approximation of the opportunistic bid size. Implementing this method will significantly 

decrease the run-time of the model. 

 

 Sensitivity analysis 

The main results of the model show how the reliability, availability, fines and revenue flows are 

influenced by an increasing bid size. To obtain these results, multiple parameters are set with fixed 

values. The values of these parameters are based on literature, TSO documents or are in some cases 

heuristic. Since the values that are used for these parameters may influence the outcome of the 

results, it is important to investigate the effect of the parameters on the output. The sensitivity 

analysis aims to investigate this effect by running the model for different values of the parameters. By 

doing this, the ‘sensitivity’ of the output for different input values will become clear. This will give 

insight in the factors that affect the bid size and (net) revenue in the different strategies. For 

comparison, the total revenue over all weeks  was calculated for each value of the parameter. To 

determine the effect on the bid size and (net) revenue, the average bid size over all weeks will be 

compared for different parameter values. Section 3.7.1 will describe the parameters that will be 

included. In section 3.7.2, the default situation will be described, as well as values for the included 

parameters in the sensitivity analysis.  

 

 Parameters to be included  

Given sub questions 2 and 3, as described in the introduction, the sensitivity analysis focusses on two 

factors: market developments and regulations. One parameter is included for market developments, 

the FCR price. For the TSO-regulations, three parameters are included in the sensitivity analysis: the 

IR-fine regime, the NA-fine regime and the FAD. 

  

The FCR-price is a fixed price per week that the aggregator receives as a reward for its bid flexibility, 

expressed in €/MW/Week. Since the revenue is solely dependent on FCR prices and the bid size, and 

fines are strongly depended on the revenue, it is important to investigate the effect of FCR prices on 

all three strategies. Although the FCR price is constant over the week, it differs between weeks. In the 

sensitivity analysis, fixed FCR prices will be used that are the same for every week. It is expected that 

the FCR price will have a linear positive effect on the net revenue, but no effect on the bid size in all 

stratgies. Given the expected linearity of the relation, a limited number of values for FCR price will 

suffice.  

 

IR-fines are calculated by deducing one 24-hour period payment for every IR-event, in proportion with 

the primary reserve which is delivered by the technical unit in question. In the sensitivity analysis, this 

rule can easily be altered by multiplying the amount of 24-hour periods (default is one) with a varying 
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parameter

FCR price 

(€/MW/week)

NA-fine regime 

factor

IR-fine regime 

factor FAD (Hz)

default value None 10 1 0.2

1000 0.01 0.1 0.05

2000 0.1 0.5 0.1

3000 0.5 1 0.2

4000 1.0 2 0.3

5.0 5 0.5

10.0

15.0

20.0

50.0

values

factor to see the effect on the results. The maximum fine rule is not taken into account in the 

sensitivity analysis. Since three times the sum of the rewarded bids would result in serious losses, this 

point will be per definition beyond the maximum bid size point and can therefore not limit the 

situation in both strategies.  The NA-fine regimes are calculated as 10 times the FCR price multiplied 

by the volume of the non-available power. In the sensitivity analysis, the factor 10 can be replaced by 

different NA-fine regime factors, to investigate the effect on the output.  

 

Finally, the full activation deviation describes the maximum frequency deviation at which the portfolio 

should be switched to 100% in both directions. The insensitivity range described how much the 

portfolio can be off the target power without being fined. Both are expressed in mHz.  

 

 Parameter values to be included 

In the table below (table 2), the different values for all parameters that are included in the sensitivity 

analysis are displayed. The first row (bold) are the values that are taken into account in the default 

situation. For FCR price, the value in the default situations varies.   

 

 

 

  

    

Table 3:parameters and parameter values to be included in the report 
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 Plotting and displaying the results 

To create the most value out of this research, it is important to display the results in an efficient way, 

so that a complete perspective on the results is provided, without showing too many graphs and 

figures, thereby losing the attention of the reader. In the general results, the average values over 22 

weeks were displayed for all three strategies for the default situation of the model. This was presented 

in a table that forms the basis for answering the main research question. It should be noted that these 

values are averages over the heating season and are therefore not representative for a full year. Since 

displaying graphs for all weeks in this report was too much, one week was selected for which multiple 

graphs were displayed. To select the best week to display graphs for, visual inspection was performed 

on the graphs for all weeks and the week where the graphs are the most representative for all other 

weeks was selected. Week07, ranging from 2016-11-14 until 2016-11-20, seemed the most 

representative. Possible abnormalities in other weeks that do not match the graphs in week07 were 

mentioned. Graphs for other weeks can be requested by contacting the author of this report directly. 

 

For week07, the power consumption of the portfolio, as well as the minimum and maximum bid size 

were displayed, as well as upper and lower boundaries resulting from the reliable and optimized 

strategy. This graph provides insights in how the power consumption changes over time and when 

NA-events occur. Additionally, the effect of the bid size on the availability and reliability of the scenario 

was displayed for week07. This provides valuable insights in the difference between reliability and 

availability and how they develop at an increasing bid size. Finally, monetary flows were presented for 

week07, displaying the revenue, fines and net revenue for all three strategies.  

 

For the sensitivity analysis, the effects of each of the four parameters on the net revenue and on the 

bid size was presented. This was done by plotting for each parameter the value on the X-axis and the 

average bid size or net revenue over the 22 weeks on the Y-axis. To reduce the number of graphs, only 

the relevant graphs were displayed. Graphs that show no effect for any of the strategies (three 

horizontal lines) were not displayed. In that case, mentioning that the parameter has no effect on the 

bid size or net revenue was sufficient. Also, in the case where the parameter has a similar influence 

on the bid size as it has on the net revenue, only the bid size was displayed. In this case, it was 

mentioned that the effect on the net revenue showed a similar pattern.  

 



 
 Figure 2: visual illustration of the model used in this research 

 

 Model visualization 

 The model 

  In the figure below (figure 3), a visualization of the model is presented. The orange blocks represent input in the model, whereas the green block represent 

the output of the model. The blue blocks represent the processes that occur in the model.  

 



 
 

Component name Type of component Description unit

Raw heatpump data Raw data input
Describes the power that is consumed by each device without 

interference of a third party aggregator
kW

Raw frequency Data Raw data input
Describes the frequency in the grid during a given time period

Hz

Comfort constraints Manual input
Describes the maximum switch time that is set to maintain the 

comfort of the residents
Minutes

Insensitivity range + FAD Manual input
Describes the Full activation deviation and insensitivity range, 

as set by the TSO
mHz

Minimum bid size Manual input
A minimum bid size that is manually selected, which forms the 

starting point of the bid size iterations
MW

FCR prices Manual input
The price that the aggregator receives from the TSO for 

delivering FCR
€/MW/Week

Fine regime Manual input
The TSO's regulation for fines as a result for inadequate 

response
-

Required Flexible Power (RFP) Processed data
The required power change relative to het baseline at a given 

moment. Is based on frequency deviation and bid size
MW

Available Flexible Power (AFP) Processed data
The maximum up- or downward regulation potential for each 

heat device at a given time
kW

Heatpump availability Processed data
Describes whether or not, and for how long, the heat pump is 

available for switching
-

Switching process Process

The process of switching the heat pump, consisting of 

Checking availability, selecting available households, switch 

and update availability
-

Strategy Decision
The strategy that the aggregator implements to determine the 

bid size: Reliable, optimized or opportunistic
-

Verification Decision
Process that verifies whether, with a given bid size, the 

portfolio is able to respond adequatly (pass) or not (fail)
Binary

Net revenue Model parameter The revenue deduced by the fines €/Week

Revenue Model parameter
The revenue, calculated by multiplying the bid size with the 

FCR price
€/Week

Bid size Model parameter
The bid capacity in a certain week that the aggregator is bound 

to deliver
MW

Fines Model parameter
The fine that results from not being able to respons correctly

€/Week

Reliable bid size and net 

revenue
Model parameter

The bid size and net revenue when the aggregator 

implements the reliable strategy, aiming for 100% availability 

and reliability

MW or €/week

Optimized  bid size and net 

revenue
Model parameter The bid size and net revenu when the aggregator implements 

the optimized strategy, aiming for revenue maximization

MW or €/week

Opportunistic bid size and net 

revenue
Model parameter

The bid size and net revenu when the aggregator implements 

the opportunistic strategy, aiming for revenue maximization 

solely based on IR fines

MW or €/week

Input

model

Output

 

 Model compartments 

In the table below (table 3), all the model compartments are described, including the type of 

component and the unit in which it is provided. 

 

  
Table 4:Description of the model compartments 
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4 Results 
This chapter presents the results of this thesis. It starts with a comparison of the three different bid 

strategies that are studied (par. 4.1). Thereafter, results on reliability and availability are given (par. 

4.2). In par. 4.3, results of the frequency analysis are presented. This chapter ends with the results of 

the sensitivity analysis (par. 4.4). 

 

 General results, a comparison between different bid strategies 

In the table below (table 4), a comparison is shown of  the three strategies that are taken into account 

in this research. All values shown in the table are averages over the 22 weeks from which data was 

available. Values per week can be found in section 8.3 of the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 5: Main results, comparison between different bid strategies. Based on averages 
over the 22 weeks 
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By using the reliable strategy, the aggregator successfully aims for a bid size that results in zero fines 

(NA and IR). As a result, the net revenue equals the revenue and both the availability percentage as 

well as the reliability are 100%. This strategy yields the lowest bid size and net revenue from the three 

strategies. With the optimized strategy, the aggregator aims to optimize its net revenue by accepting 

both NA- as well as IR-fines. By doing so, the net revenue and the average bid size are significantly 

higher compared to the reliable strategy Due to the fact that NA-fines occur at a much lower bid size 

compared to IR-fines, the amount of IR fines when the optimized bid size is reached is negligible: only 

one IR-event occurred in week 30, resulting in a fine of €662. The reliability therefore remains at (a 

rounded) 100%, whereas the availability percentage drops to 90%. 

 

With the opportunistic strategy, the aggregator avoids €193,532 euro’s NA-fine per week by 

misinforming the TSO about the baseline and the portfolio capacity, or by having a back-up portfolio 

that is only used for ensuring availability. In the model, the Na-fines that the aggregator would receive 

are calculated, but are not being used for determining the bid size and the net revenue. Therefore, 

the bid size and net revenue are solely limited by IR-fines. The bid size in this case is increased by 575% 

relative to the reliable strategy, and by 275% relative to the optimized strategy. The net revenue is 

increased by 465% relative to the reliable strategy, and by 256% relative to the optimized strategy. In 

this case, the aggregator is only rarely able to deliver the full bid size. In the model, only in week01, 

the bid size drops below 5 MW, resulting in an availability percentage of 7.1%. In all other weeks, the 

opportunistic bid size exceeds 5 MW, thereby dropping the average availability to 0.3%.  
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 Reliability and availability, monetary flows and upper and lower 
boundaries to power consumption 

In this section, graphs are provided of the reliability, availability, as well as monetary flows and the 

upper and lower boundaries of the power consumption at a certain bid size. These graphs were 

plotted for every week in the model. To limit the amount of graphs, one week is chosen for which the 

graphs are presented. The graphs are presented for week 07, ranging from 2016-11-14 until 2016-11-

20.  

 

 Upper and lower boundaries to power consumption 

In the graph below (figure 4), the power consumption (blue line) for week 07 is displayed, as well as 

the upper and lower boundaries for the reliable bid size (3100 kW) and the optimized bid size (3800 

kW) in that week. For both bid sizes, horizontal dotted lines are plotted, representing the upper and 

lower boundaries for that bid size. The red dotted lines represent the upper and lower limit for the 

reliable bid size, whereas the green dotted line represents the upper and lower limit for the optimized 

bid size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The upper and lower boundaries are calculated by the methods explained in section 3.4 of this 

research. When the upper and lower boundaries are exceeded by the power consumption, NA-fines 

occur, since the portfolio is not able to deliver the required capacity corresponding with the bid size. 

As can be seen, with the reliable strategy, this does not happen, since the bid size is chosen in such a 

way that no fines will result, leading to an availability of 100%. The reliable bid size is therefore limited 

by the most extreme (upper or lower) values of the power consumption. With the Optimized strategy, 

the power consumption in some cases exceeds the upper or lower boundaries, resulting in NA fines.  

 

When the bid size exceeds half the portfolio capacity (5 MW), the lower boundary will become larger 

than the upper boundary, making it impossible for the portfolio to remain between the boundaries 

and deliver the required flexibility. In these cases, the availability drops to 0% and an NA fines results 

for every measurement.  The NA-fines are assumed to be avoided with the opportunistic strategy. Due 

to the fact that the boundaries resulting from the opportunistic strategy are extreme, they are not 

displayed in this figure. 

 

Figure 3: Power consumption with upper and lower limits at given bid sizes 
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 Availability and reliability against bid size 

The portfolio-availability represents the fraction of the week in which the portfolio is able to deliver 

100% flexibility, whereas the reliability represents the fraction of the week in which the portfolio 

responded correctly given the frequency and corresponding RFP. NA-fines correspond with portfolio-

availability, whereas IR-fines correspond with reliability. The major difference between portfolio-

availability and reliability is the fact that the reliability is strongly influenced by the frequency and RFP, 

whereas the portfolio-availability is solely dependent on the power consumption of the portfolio and 

the bid size.  

 

In the figure below (figure 5), the availability (blue) and reliability (green) are plotted against the bid 

size in week 07. The green dotted vertical line represents the reliable bid size, whereas the blue dotted 

vertical line represents the optimized bid size and the red dotted vertical line represents the 

opportunistic bid size. Given the difference in range between the two, both are displayed on separate 

y-axis.  

 

 
 

 

As can be seen, the availability shows a steep decrease, dropping from 100% availability at a reliable 

bid size of 3100 kW to a 0% availability at a bid size of 5,000 kW. The fact that the availability is reduced 

to 0% at a bid size of 5,000 kW can be explained by the fact that the portfolio will not be able to deliver 

100% flexibility on a symmetrical market when the bid size exceeds half the maximum capacity. 

Therefore, in the model, the availability is in all cases reduced to 0% when the bid size exceeds 5,000 

kW. In contrast to the availability, the reliability will not drop to 0%. Even at extremely high bid sizes, 

when the frequency is 50.0 Hz, zero flexibility is required and the portfolio will still be able to respond 

correctly. This frequency-dependency is the most-likely reason that the reliability shows a less-steep 

and later occurring decline compared to the availability. How often different frequency deviations 

occur is presented in section 4.3.  

 

  

Figure 4: Reliability vs availability at increasing bid sizes 
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As mentioned, NA-fines correspond with the availability, whereas IR fines correspond with reliability. 

In the figure below, both NA-fines(blue)  as well as IR-fines (green)  are plotted against the bid size, 

in a different y-axis. The vertical dotted lines represent the reliable(green), optimized (blue) and 

opportunistic (red) bid size.  

 

 
 

 

 

The above figure (figure 6) shows a positive relation between both fines and the bid size. The NA-fines 

increase linearly after 5,000 MW, whereas the IR-fines seem to increase exponentially. This difference 

can be explained by the fact that after 5,000 kW, availability drops to 0%, resulting in a NA-fine for 

every timestamp in the model. The fine is then linearly increased by the bid size. In the case of IR-fines 

however, the reliability does not drop to 0%. When the bid size is increased, not only the magnitude 

of the fine increases, but the amount of fines as well. This is most likely the main explanation for the 

non-linearity of the IR-fines. In addition, NA-fines are usually higher compared to IR-fines. This can be 

explained by the fact that, due to the non-dependency on frequency, NA-fines occur at a much lower 

bid size compared to IR-fines. Therefore, at 0% availability, NA-fines occur for every timestamp in the 

model. With IR-fines, this is not the case.  

 

  

Figure 5: IR-fines vs NA-fines at increasing bid sizes 
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 Monetary flows 

In this section, the revenue, fines and net revenue are plotted against the bid size for both the reliable 

and optimized strategy, as well as for the opportunistic strategy. With the reliable and opportunistic 

strategy, the net revenue is calculated as the revenue minus the total (NA and IR) fines. With the 

opportunistic strategy NA-fines are avoided, so the net revenue is calculated as the revenue minus 

the IR-fines. In the figure below (figure 7), the revenue(green), total fines(red) and net revenue(blue) 

are displayed for week 07. In addition, the green dotted vertical line represents the reliable bid size, 

whereas the blue dotted vertical line represents the optimized bid size.  

 

 

 
 

 

The results show that the revenue increases linearly against the bid size, since it is calculated as the 

bid price multiplied with the FCR price. Until the reliable bid size is reached, the total fines are zero 

and the net revenue equals the revenue.  After the optimized bid size is reached, the increase in fines 

exceed the increase in revenue, leading to a decreasing net revenue. For the opportunistic strategy, 

in which NA-fines are not taken into account, a similar pattern can be observed. In this case however, 

the maximum net revenue is reached at a much higher bid size. 

 

 

 

 

 

  

Figure 6: Revenue, net revenue and fines for the optimized and reliable strategy 

Figure 7: Revenue, net revenue and fines for all three strategies 
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 Frequency analysis 

In the table below, the average and maximum deviation and portfolio percentage are displayed for 

the original dataset as well as for the dataset resulting from the actual and mean resampling method.  

As can be seen, both the mean and the actual resampling method have a decreasing effect on the 

average and maximum deviation, and thus on the portfolio activation percentage. This effect is 

significantly stronger in the mean resampling method, where the average deviation is 0.014 Hz against 

0.017 Hz in the original dataset. This is probably due to the fact that when short term deviations occur 

within a 5 minute timeframe, they will not be represented in the mean value, as it is calculated by the 

mean method. For this reason, the actual resampling method is chosen as the most representative 

method. Given the small change in average deviation relative to the original dataset, the effect of the 

resampling methods on the main results are considered minimal. 

 

 

 
 

In the figures below (figure 9), two plots are shown, displaying the frequency distribution (right), and 

a distribution of the frequency deviation (left). In both cases, it is clear that higher deviations are more 

rare than lower deviations. This effect is visible to a larger extent in the mean dataset compared to 

the original dataset. Frequency deviations of 0.1 Hz, in which 50% of the portfolio needs to be 

activated, only seldomly occur.  

  

Table 6: Average and max deviation and portfolio % 

Figure 8: Frequency deviation and frequency distribution 
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 Sensitivity analysis 

The sensitivity analysis aims to answer the sub questions two, three and four, regarding the effects of 

market developments, comfort constraints and TSO regulations on the potential for domestic heat 

pumps to deliver flexibility on the FCR market. The potential for FCR is expressed in the bid size and 

the net Revenue. Average values for bid size and net revenues will be presented for different 

parameter values. Six parameters were taken into account.  

 

 FCR price 

To research the effect of market developments, the FCR price was considered the most important 

parameter. The FCR price influences both the revenue as well as the IR and NA fine regime. For the 

main results, data regarding FCR prices was gathered from ENTSO-E, resulting in a varying FCR price 

over the weeks. In contrast, in the sensitivity analysis, different values for FCR price were used to run 

the model that were fixed per week. Four different values were used as input: €1000, €2000, €3000 

and €4000 per MW per week.  

 

Results show that the FCR price has no effect on the bid size in any of the three strategies. The graph 

shows three linear horizontal lines and is therefore not deemed relevant enough to be displayed in 

this report. An explanation for the fact that the FCR price has no effect on the bid size can be that the 

FCR price has a positive linear effect on both the magnitude of the fines as well as the revenue, but 

does not change the amount of fines. Therefore, the first fine (condition for the reliable strategy) and 

the point where the net revenues decrease (condition for optimized and opportunistic strategy) occur 

at the same bid size for different values of FCR price. However, as expected, the FCR price seem to 

have a linear positive effect on the net revenue, which is displayed in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen, the FCR price has a linear positive effect on the net revenue in all three strategies. The 

slope of the linear curves differ per strategy, with the strongest visible increase in the opportunistic 

strategy against the weakest linear increase in the reliable strategy. This can be explained by the fact 

that an increase in FCR price will amplify both the fines as well as the revenue. In the opportunistic 

strategy, the difference between the revenue and the net revenue is larger than with the other two 

strategies, leading to a stronger amplification of the net revenue and thus a steeper linear slope. 

 

Figure9: The effect of FCR price on net revenue 
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Figure 10: The effect of the FAD on the bid size 

 FAD 

The FAD has a major impact on the RFP and therefore on the IR-fines. In the figure below (figure 11), 

the effect of the FAD on the bid size for all three strategies is displayed.  

 

 
 

 

 

The  FAD seems to have no visible effect on the bid size in the optimized and reliable strategy. With 

these strategies, the bid size is mainly limited by NA-fines, on which the FAD has no effect. However, 

a slight increase in the bid size is seen with the optimized strategy at low values of FAD (Section 8.4.2 

of the appendix), that are too small to be visible in the graph. Possibly, when the FAD reaches 

extreme small values, the IR-fines will have a small influence on the bid size with the optimized 

strategy. 

 

With the opportunistic strategy, the bid size is mainly limited by the IR-fines, and therefore 

influenced by the FAD. When the FAD is increased, IR-fines are decreased, leading to an increasing 

bid size. However, this relation seems partly linear, with some visible disturbances. The causes of 

these disturbances is unknown. The effect on the net revenue shows a similar pattern and is 

therefore not displayed here.  
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 NA fine regime 

An important factor regarding TSO regulations is the NA fine regime, being applicable in the case of 

non-availability. The main results are based on a NA fine regime factor of 10, as explained in section 

3.4 of the methodology. For the sensitivity analysis, the model was executed for four additional values 

of NA fine regime factor: 1, 5, 15 and 20. The effect of the NA fine regime on the bid size is displayed 

in the figure below (figure 12). 

 

 
 

 

As expected, the NA-fine regime does not influence the reliable and opportunistic bid size. With the 

reliable strategy, the bid size is limited to zero fines, making the magnitude of the fines irrelevant. 

With the opportunistic strategy, the NA-fines are not taken into account, since the aggregator is able 

to avoid NA-fines by sending falsified information to the TSO. With the optimized strategy, the NA-

fine regime shows a decreasing negative effect on the bid size. At lower values of NA-fine regime 

factor, a steep  decrease in bid size is observed, whereas less steep decreasing bid size can be observed 

at higher values of NA-fine regime factor 

 

As can be seen, when the NA-fine regime factor approaches zero, the optimized bid size will approach 

the opportunistic bid size, since the weight of the NA-fines will be smaller. On the other hand, for an 

infinitesimally high NA-fine regime factor, the optimized bid size will approach the reliable bid size, 

since a NA-fine will almost directly lead to a loss in net revenue, making it equal to the reliable strategy 

where zero fines are accepted. For the net revenue, the graph shows a similar pattern, with similar 

explanations. 

 

  

Figure 11: the effect of NA fine regime on bid sizes 
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 IR fine regime 

Like the NA fine regime factor, an IR fine regime factor is taken into account, that can be used to 

display the effect of the IR fines on the bid size and net revenue. In the figure below (figure 13), the IR 

fine regime factor is plotted against the bid size.  

 
 

 
The above figures shows that the IR fine regime factor has no effect on reliable and optimized bid size. 

With the reliable strategy, the bid size is chosen in such a way that no fines occur. The magnitude of 

the fine therefore has no influence on this process. With the optimized strategy, the bid size is 

relatively low, resulting in zero IR-fines, as mentioned in section 4.1. Therefore, the IR fine regime 

factor shows no effect on the optimized strategy. Both the optimized and the reliable strategy show a 

linear horizontal line.  

 

The opportunistic bid size is strongly limited by the IR fine regime, since NA-fines are not taken into 

account. Therefore, with this strategy, the NA fine regime factor has a negative relation to the bid size. 

This effect is nonlinear and decreasing. A large IR fine regime factor will result in a small difference 

between the bid size with the opportunistic strategy relative to the optimized and reliable strategy. 

Eventually, if the IR-fine regime factor is high enough, zero IR-fines will be accepted. In that case, the 

bid size with the opportunistic strategy will be equal to the bid size with the optimized strategy. The 

effect of the IR fine regime factor on the net revenue shows a similar pattern and is therefore not 

displayed in this section.  

  

Figure 12: The effect of the IR fine regime factor on the bid size 
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5 Conclusion  
This chapter aims to answer the research question and the main sub question. In section 5.1, general 

results are summarized to answer the main research question. Section 5.2 provides a description of 

the effects of the bid strategies, market developments and TSO regulations on the potential for FCR.  

 

 The technical and economic potential of domestic heat pumps 

The main research question concerned the technical potential (expressed in average bid size), and the 

economic potential (expressed in net revenue) for heat pumps to deliver Frequency Containment 

Reserve (FCR). The results show that both the technical and economic potential depend strongly on 

the bid strategy: 

• The net revenue resulting from this research is €0.21 per household per week h the reliable 

strategy, against €0.34 with the optimized strategy and €1.22 with the opportunistic strategy.  

• Bid sizes vary from 1,722 kW with the reliable strategy to 3,104 kW with the optimized 

strategy and 11,631 kW with the opportunistic strategy.  

 

These values are averages over 22 weeks in the heating season, ranging from 01-10-2016 until 01-05-

2017, where 8 weeks of data were missing in December and January. Since December and January are 

usually the coldest months, they are expected to have the highest potential for delivering Frequency 

Containment Reserve with heating systems. This might slightly increase the average revenue. 

However, running the model for one full year of data would strongly decrease the average potential, 

since heat pumps do not provide heating in the summer.  

 

Even though results show that a considerable amount of revenue could be created and flexibility could 

be delivered, this has to be divided over 20.000 households. In order to make such a project 

economically feasible, marginal costs per household need to be kept extremely low. This would be 

challenging for any aggregator. However, the households in this model were equipped with small heat 

pump systems that have a peak power of only 0,5 kW. Households with larger heat pumps will be able 

to deliver more flexibility, thereby lowering the amount of households, leading to lower costs. By 

focusing on projects with high-capacity heat pumps, the amount of households and therefore the 

investment costs can be reduced.  

 

Since a strong correlation exists between outside temperature and heat pump capacity, the potential 

to deliver flexibility with heat pumps is strongly seasonally dependent. Results show that with this 

portfolio, 71% of the IR-events were IR-down events, which indicates that downward flexibility is a 

limiting factor in delivering FCR. A solution to this problem can be to create a combined portfolio with 

other assets where the upward flexibility is a strong limiting factor and that have opposite seasonal 

effects. A good example of such an asset may be cooling systems, which have a high potential in the 

summer and may have a higher downward potential.  
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 The effect of bid strategies, market developments, comfort constraints 
and regulations  

 Bid strategies (RQ 1) 

In this research, three strategies were compared on their potential for flexibility on the FCR market 

and the quality of the flexibility delivered. Results show that the bid strategy is the strongest factor of 

influence on both the potential and quality of the delivered flexibility. By successfully implementing 

the reliable strategy, the aggregator delivers 100% reliability and availability, resulting in zero fines by 

the TSO. Even though this strategy is highly beneficial for the aggregator’s relationship with the 

Transmission System Operator, it results in a poor performance in terms of average net revenue and 

bid capacity. When the aggregator applies the optimized strategy through optimization of its net 

revenue by accepting fines as long as the net revenue increases, the performance in terms of net 

revenue and bid size is significantly higher. This results in a decrease in availability to an average of 

90% while the reliability is maintained at 100%. When the aggregator applies the opportunistic 

strategy, net revenue can be increased by 465% compared to the reliable strategy, whereas the bid 

capacity can be increased by 575%. However, to achieve this, the aggregator has to avoid €194,000 

Non-Availability fines per week by either sending falsified information to the Transmission System 

Operator, or having a back-up portfolio available.  

 

 Market developments (RQ 2) 

In this research, the FCR price is considered as the most important factor that represents the market 

developments and is therefore taken into account as a parameter in the sensitivity analysis. Since the 

FCR price tends to both increase the revenue as well as the fines linearly, it has no effect on the bid 

size for any of the three strategies. However, the net revenue shows a linear positive relation to the 

FCR price. The slope between the linear increase in net revenue differs per strategy; The FCR price 

seems to have the strongest effect on the net revenue with the opportunistic strategy and the weakest 

effect with the reliable strategy. Since the FCR price is based on the highest bid in the market, it will 

be mainly based on future developments in the market for FCR.  Based on these research, no 

predictions can be made on how the future FCR market and FCR prices will develop. It is clear however, 

that these developments have a major impact on the net revenue that an aggregator can make and 

therefore on the chance of success of future FCR project through demand response.  

 

 Regulations (RQ 4) 

To investigate the effect of TSO regulations on the potential for FCR, three parameters were included 

in the sensitivity analysis; the NA-fine regime, the IR-fine regime and the FAD. Results show that the 

NA-fines have a significant influence on the bid size and net revenue in the optimized strategy, 

whereas IR-fines have a significant influence on the bid size and net revenue with the opportunistic 

strategy. Since with the reliable strategy, no 100% availability and reliability is delivered, both fine 

regimes do not influence the bid size and net revenue. Thus, it can be concluded that the effect of the 

fine regime on the potential for FCR is mainly dependent on the  strategy that the aggregator 

implements. In the current situation, non-availability is heavily punished, thereby forming a strong 

limit to the flexibility that can be delivered. By shifting the burden from NA-fines to IR-fines, more 

flexibility can be delivered with the same assets, while still being reliable when the frequency 

deviations remain the same.  
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6 Discussion and recommendations for further research 
This chapter aims to reflect on the methods, results and conclusion  that result from this research. In 

section 6.1, strengths and weaknesses of this research are described. Section 6.2 provides 

recommendations for further research.  

 

 Discussion 

 The opportunistic strategy 

Results show that NA-fines are a stronger limiting factor to the bid size and revenue than IR-fines. To 

make the effect of IR-fines on the bid size and revenue visible, an opportunistic strategy was 

implemented, in which NA-fines were not taken into account for the bid size selection process. By 

adding this strategy, more clarity is provided regarding the effect of the IR-fines and NA-fines 

separately on the bid size and revenue, and how reliability and availability develop when the bid size 

is increased. Two ways of avoiding NA-fines are mentioned: misinforming the TSO about the portfolio 

capacity and baseline, or having a back-up portfolio that ensures the availability, but is not switched. 

However, most likely, both ways will not be applied in practice often.  

 

If the aggregator would have a back-up portfolio available, it is likely that more profit can be made if 

the combined portfolio (back-up + heat pumps) is seen as a mixed portfolio with which bids can be 

placed on the FCR-market or other markets. Therefore, using it as a back-up portfolio for ensuring the 

availability of the heat pumps seems like a loss of revenue. In addition, if this is done, the delivered 

flexibility by the combined portfolio cannot be assigned only to the heat pumps, since such high bids 

could not have been made by heat pumps alone. Given the absence of viable data, a back-up portfolio 

was not taken into account in the model.  

 

The second way that is mentioned in the report is misinforming the TSO about the portfolio capacity 

and baseline. This is punishable by law (hence the fines) and might jeopardize the integrity towards 

the TSO. For these reasons, even though the net revenue is significantly higher with the opportunistic 

strategy and more flexibility can be delivered under the same circumstances, the advice resulting from 

this research will not be to apply the opportunistic strategy in real time. Even though applying the 

opportunistic strategy in practice might not be realistic, implementing it in the model resulted in 

valuable insights and can therefore still be seen as added value to the research. 

 

 Temperature boundaries 

An important factor when switching heating systems for DR, that should be taken into account, is that 

the comfort of households should not be jeopardized. Not taking this factor into account may lead to 

loss of social acceptance. In the dataset, data was provided regarding in-house temperature and 

efficiency of the heat pumps. The original research plan was to use machine learning techniques to 

deduce the relation between heat pump power consumption, outside temperature and inside 

temperature. Then, while taking certain temperature boundaries as parameters, heat pump power 

consumption and inside temperature could be simulated, mimicking a real life situation. However, the 

data turned out to be of insufficient quality to perform this kind of simulation and machine learning 

techniques. No other dataset of higher quality could be made available within the time frame of this 

research project. 
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Therefore, instead of temperature boundaries, a limit was set in this model on the length that heat 

pumps could be switched without jeopardizing the comfort of the residents. This limit was set to 15 

minutes. This is a heuristically chosen value.  By implementing this, only the power demand of the 

heat pumps was needed from the dataset. After switching on the heat pump, it needed to be non-

active for double the time that it was switched on. During this period, the power consumption of the 

heat pump follows the baseline, as it would have without any interference of a third party aggregator. 

To ensure that the temperature of a household ranges within pre-defined boundaries, a compensation 

algorithm should be implemented that, instead of following the baseline after switching, compensates 

for the loss in energy due to the switching process, by adding the same amount of energy that has 

been lost to the household. However, this would alter the baseline of the portfolio, which needed to 

be compensated for by other households.  Implementing such a compensation algorithm would make 

the model too complex given the time and resources of this research project.  Therefore, such a 

compensation algorithm is not taken into account in this research. In the current model, during the 

non-activity time, the heat pump simply follows the baseline.  

 

 Switching methods 

The model used in this research is exclusively developed for the purpose of this research. It is therefore 

not tested by external parties or peer reviewed, and is to a large extent based on heuristics. The most 

important heuristics are the switching methods needed to determine the reliability and IR-fines, as 

described in section 3.5.4 of the methodology. In order to make the steps that the model takes during 

the switching process transparent, much effort has been done to describe the switching process in as 

much detail as possible. To check whether the code was producing the right output, tests have been 

run and error statements have been built into the model. In addition, during the process, the produced 

output was compared with the expected output to check whether the model operates properly.  

 

 Limitations due to low quality data and data resolution 

An important factor for discussion in this research is the data quality and quantity. From the dataset, 

33 households have installed heat pumps and were therefore relevant for this research. The quality 

of the data regarding these 33 households was less than expected beforehand, since the data 

contained many gaps and periods with constant values. According to the methods in section 3.2, these 

gaps and constant values were either filled or deleted. With the filling method for short gaps, these 

methods are not expected to influence the output and therefore the conclusions of this research 

significantly.  However, much data has been deleted, thereby decreasing the amount of viable data. 

As a result, the sample size of the data was low. To correct for this small sample size, the portfolio of 

households have been scaled up to mimic a larger portfolio. By doing so, data has been duplicated and 

multiplied by a multiplication factor to generate a 10 MW portfolio. This process might influence the 

results of this research. With the frequency data, these problems did not occur. No gaps were found 

in the frequency data and all values seemed viable on a first evaluation.  
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Another factor that may influence the outcome of this research is the resolution of the dataset. The 

household data was provided on a 5 minutes basis, whereas the frequency data was provided on a 10 

second basis. In order to reduce the complexity of the model, the 5 minute resolution was used as the 

resolution for the model. The frequency data was therefore down sampled from 10 seconds to 5 

minutes, using the methods described in section 3.3. As a consequence, short term frequency 

fluctuations (within a 5 minute framework) have not been taken into account.  

 

 Parameters in the sensitivity analysis 

In the sensitivity analysis, for every parameter value that is taken into account, the model has to go 

through the 22 weeks once. Given the high complexity of the model, this takes time and chances for 

bugs are high. Therefore, the amount of parameters and values that could be included in the sensitivity 

analysis is limited. For this research, four parameters were included, with a total of 23 values. This 

means that the model had to be run 23 times for different values of the sensitivity analysis. Possibly, 

other parameters might have been interesting to be included in the sensitivity analysis, providing 

insights in how the model operates. For example, the effect of the maximum switch time, non-activity 

factor and the insensitivity range on the results remains unknown, and is therefore recommended for 

future research.  

 

 Other simplifications 

In the model, an IR-event or NA-event occurs when the portfolio is not able to respond properly or 

when insufficient flexibility is available on a 5 minute interval. With a higher resolution of the data, 

the dataset will consist of more data points and the amount of IR- or NA-events and therefore the 

fines are likely to increase. TSO regulation about what is considered as one IR-event or NA-event 

seemed ambiguous. In addition, the model holds the assumption that an IR-event or NA-event will 

lead to a fine in all cases. In practice however, this might not be the case, since TSOs do not have the 

capacity to discover every IR- or NA-event and respond with the fine regime adequately. An important 

FCR specification that is not taken into account in the model is that the portfolio should be able to 

respond with full capacity within 30 seconds. Due to the 5-minutes data resolution, this specification 

could not be taken into account. For these reasons, the number of IR-events and NA-events, as well 

as the resulting fines in this model are considered a rough estimation. To get more accurate results, 

more specific information regarding the fine system is required, as well as a higher resolution and a 

higher quality of the dataset. The verification process can then be altered in such a way that it more 

precisely represents the verification methods that TenneT uses and the way the fine regime is 

enforced.  

 

In this research, the number of households that were available per week ranges between 11 and 22. 

After multiplication, households were duplicated until 100 households per week were reached. As a 

result, heat pump profiles were duplicated that follow the same consumption pattern. In practice, this 

is unlikely. If 100 unique households were used in the model, the power consumption would have 

been more stable, leading to a higher potential to deliver FCR. To solve this problem, a larger dataset 

that is of higher quality is required.  
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In an advanced phase of this research, it became clear that the heat pumps were complementary to 

installed gas heating systems, from which no data was available. It was not clear how the heat pump 

system was integrated with the gas boiler so that they together provide a heat profile that delivers a 

constant comfortable temperature. This problem contributed to the decision to reject all data except 

for the power consumption variable. The assumption was made that even with a gas boiler with 

unknown behavior, the heat pump power consumption profiles could still be deemed representative 

for a heating system in which only a heat pump provides the required heat for the household.  

 

In this research, a portfolio is taken into account consisting solely of domestic heat pumps. In practice, 

it is unlikely that an aggregator will bid on the FCR market with a portfolio consisting solely of heat 

pumps. This will be suboptimal, given the high seasonal dependency and the fact that combining heat 

pumps with other DR-assets will increase the potential for FCR.  By combining the heat pumps in an 

integrated portfolio, the added revenue and flexibility delivered by the heat pumps will most likely by 

higher than with this single-type asset portfolio.  

 

 Recommendations for further research 

In order to have more accurate results, a dataset of higher quality is required. With such a dataset, 

the machine learning technique as mentioned earlier could be used to estimate the effect of heat 

pump power consumption on room temperature. With this effect known, households and their 

temperature behavior could be simulated, mimicking a real life situation to a much higher accuracy. 

This approach would solve numerous problems that occur within this research. First of all, the 

aggregation effect could be better observed, since the simulated households will not be duplicated 

and will each have a unique baseline. In addition, the maximum switch time, non-activity time and 

compensation algorithm will not be necessary, since the simulation will ensure that the temperature 

inside the households is kept within certain boundaries. Filling up gaps in the data will not be necessary 

either, since the power consumption profiles will in this case not be based on real data, but will be 

simulated. Instead of using real data to simulate the effect of power consumption on inside 

temperature, an alternative solution would be to create a thermodynamic model that simulates 

household behavior based on insulation values and outside temperature. Both solutions for simulation 

models did not seem viable in this research, due to time constraints and the absence of viable data.  

 

In the sensitivity analysis, the effects of market developments, regulations and comfort constraints on 

the potential to deliver FCR were considered. In total, six parameters were included. In future 

research, this can be expanded. In the model, bidding occurred on a weekly basis, and all data was 

divided in weekly periods. To research the effects of a change in the bid period, this could be taken 

into account as a parameter in the sensitivity analysis. Due to time limitations, this was not possible 

in this research. Furthermore, on the FCR market, a minimum bid size of 1 MW is required. To meet 

that criterion, the portfolio in the model was scaled up to a 10 MW portfolio, in which the minimum 

bid size would not form a limiting factor. In future research, the effect of the minimum bid size on 

market penetration can be researched. Additionally, an important limiting factor for delivering FCR 

seemed to be the binding of up and downward bids. As an additional parameter in the sensitivity 

analysis, a scenario could be created where up and downward bids would be decoupled, creating both 

a fictive FCR-up and FCR-down market. This was not possible within the time limits of this research. 
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Besides simulating temperature with a dataset of higher quality, further research could aim on a 

shorter resolution of the data and a more accurate implementation of the fine regulations of TenneT. 

With a shorter resolution, the effect of the 30 seconds rule could be investigated. Also, more specified 

information about when an IR- or NA-event is fined as one single event or as multiple different events 

can be implemented. In many cases however, this fine system is not defined to such a level of detail 

by the System Operator, since it is to a large extent based on trust. A smaller resolution of the data 

would require more efficient coding and more computational power, since it would drastically 

increase the computation time of the model.  

 

Results from this research show that there the NA-fines are a stronger limiting factor to the bid size 

and revenue compared to IR-fines. In practice, this means that the aggregator receives high fines for 

not being able to deliver 100% flexibility, while this situation only seldomly occurs. This raises the 

question whether the current fine regimes for the FCR market are the most effective way of 

ensuring FCR quality. Possibly, more flexibility can be unlocked with DR-assets by restructuring the 

FCR regulations and fine regime. Further research can aim on investigating the quality and potential 

of FCR by DR with a different regulation structure.  

 

In this research, availability fines are based on the most extreme values for power consumption. With 

the reliable strategy, the bid size is directly limited by extreme values of power consumption; In this 

case, when the power consumption reaches the minimum power (even for 5 minutes), the bid size is 

reduced to zero, because no downward flexibility can be delivered. To overcome this problem, an 

aggregator can apply peak shaving methods on the baseline, by creating a more constant power 

consumption profile. This will be highly beneficial for the amount of NA-fines and therefore for the 

bid size. However, creating such an algorithm was too complex given the time and resources of this 

research and is therefore considered a recommendation for further research. 

 

The scope of this research lies on the potential for domestic heat pumps to offer flexibility on the FCR 

market. Further research could build on this by extending the model to operate on other markets or 

other technologies as well. In the Netherlands, the model could be extended to secondary or tertiary 

reserve, other technologies and the effect of combining different technologies on other markets. 

Eventually, comparisons can be made between countries and their regulations, to determine how the 

balancing system can be optimized at a European level. Also, the model can be used as a tool to predict 

on which markets, with a given portfolio, the most profits can be made.   
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8 Appendix 
In the appendix, anything that is relevant for this research, but could not or should not be presented 

in the main document is presented. Section 8.1 provides a table with the number of households that 

have viable data per week. In section 8.3, an overview is given of the FCR prices per week. In section 

8.3, tables are provided with the main results per week, that form the basis behind the general results 

in section 4.1 of this report. Finally, section 8.4 provides tables with the data behind the graphs that 

are displayed in the sensitivity analysis in section 4.4.  

 

 Processing heat pump data 

 Number of households per week 

 

 

   

From To Households Without gaps Deleted

1 3-10-2016 10-10-2016 22 21 1

2 10-10-2016 17-10-2016 20 20 0

3 17-10-2016 24-10-2016 22 19 3

4 24-10-2016 31-10-2016 23 23 0

5 31-10-2016 7-11-2016 19 18 1

6 7-11-2016 14-11-2016 19 19 0

7 14-11-2016 21-11-2016 24 24 0

8 21-11-2016 28-11-2016 23 22 1

9 28-11-2016 5-12-2016 21 21 0

10 5-12-2016 12-12-2016 22 19 3

11 12-12-2016 19-12-2016 21 20 1

12 19-12-2016 26-12-2016 21 0 21

13 26-12-2016 2-1-2017 0 0 0

14 2-1-2017 9-1-2017 0 0 0

15 9-1-2017 16-1-2017 0 0 0

16 16-1-2017 23-1-2017 0 0 0

17 23-1-2017 30-1-2017 0 0 0

18 30-1-2017 6-2-2017 0 0 0

19 6-2-2017 13-2-2017 13 0 13

20 13-2-2017 20-2-2017 16 16 0

21 20-2-2017 27-2-2017 16 16 0

22 27-2-2017 6-3-2017 15 13 2

23 6-3-2017 13-3-2017 19 17 2

24 13-3-2017 20-3-2017 20 19 1

25 20-3-2017 27-3-2017 19 16 3

26 27-3-2017 3-4-2017 19 19 0

27 3-4-2017 10-4-2017 22 17 5

28 10-4-2017 17-4-2017 22 20 2

29 17-4-2017 24-4-2017 23 22 1

30 24-4-2017 1-5-2017 19 19 0

480 420 60Total

Table 7: The number of available households per week 
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 FCR prices 

In the table below, the FCR prices per week are displayed. Prices were received form Entso-e(2018), 

in €/week. When divided by the total delivered flexibility in MW, the average price in €/MW/week 

was calculated. In week9 (marked yellow), the total delivered flexibility was missing. Therefore, the 

weekly price was calculated as the average price over the other weeks. The area in the table that is 

marked red displays weeks in which price data was available, but household data was not. In these 

weeks, the price data was therefore not used.  

 

  

Week From To €/week Delivered MW €/MW/week €/kW/week

week01 05.09.2016 00:00  12.09.2016 00:00 € 146.909,04 72 € 2.040,40 € 2,04

Week02 12.09.2016 00:00  19.09.2016 00:00 € 147.194,52 76 € 1.936,77 € 1,94

week03 19.09.2016 00:00  26.09.2016 00:00 € 97.291,47 50 € 1.945,83 € 1,95

week04 26.09.2016 00:00  03.10.2016 00:00 € 154.492,58 75 € 2.059,90 € 2,06

week05 03.10.2016 00:00  10.10.2016 00:00 € 107.959,18 50 € 2.159,18 € 2,16

week06 10.10.2016 00:00  17.10.2016 00:00 € 109.591,34 50 € 2.191,83 € 2,19

week07 17.10.2016 00:00  24.10.2016 00:00 € 133.762,46 57 € 2.346,71 € 2,35

week08 24.10.2016 00:00  31.10.2016 00:00 € 85.568,34 35 € 2.444,81 € 2,44

week09 31.10.2016 00:00  07.11.2016 00:00 € 190.609,47 Missing € 2.559,49 € 2,56

week10 07.11.2016 00:00  14.11.2016 00:00 € 83.863,03 35 € 2.396,09 € 2,40

week11 14.11.2016 00:00  21.11.2016 00:00 € 180.765,03 78 € 2.317,50 € 2,32

week12 21.11.2016 00:00  28.11.2016 00:00 € 82.783,44 35 € 2.365,24 € 2,37

week13 28.11.2016 00:00  05.12.2016 00:00 € 119.525,16 50 € 2.390,50 € 2,39

week14 05.12.2016 00:00  12.12.2016 00:00 € 123.174,50 50 € 2.463,49 € 2,46

week15 12.12.2016 00:00  19.12.2016 00:00 € 120.428,16 50 € 2.408,56 € 2,41

week16 19.12.2016 00:00  26.12.2016 00:00 € 222.198,88 80 € 2.777,49 € 2,78

week17 26.12.2016 00:00  02.01.2017 00:00 € 345.544,36 103 € 3.354,80 € 3,35

week18 02.01.2017 00:00  09.01.2017 00:00 € 233.232,07 74 € 3.151,78 € 3,15

week19 09.01.2017 00:00  16.01.2017 00:00 € 158.128,09 53 € 2.983,55 € 2,98

week20 16.01.2017 00:00  23.01.2017 00:00 € 155.498,06 51 € 3.048,98 € 3,05

week21 23.01.2017 00:00  30.01.2017 00:00 € 137.729,25 43 € 3.203,01 € 3,20

week22 30.01.2017 00:00  06.02.2017 00:00 € 166.466,00 56 € 2.972,61 € 2,97

week23 06.02.2017 00:00  13.02.2017 00:00 € 147.321,34 50 € 2.946,43 € 2,95

week24 13.02.2017 00:00  20.02.2017 00:00 € 130.377,09 45 € 2.897,27 € 2,90

week25 20.02.2017 00:00  27.02.2017 00:00 € 305.020,56 95 € 3.210,74 € 3,21

week26 27.02.2017 00:00  06.03.2017 00:00 € 288.714,34 93 € 3.104,46 € 3,10

week27 06.03.2017 00:00  13.03.2017 00:00 € 279.420,96 93 € 3.004,53 € 3,00

week28 13.03.2017 00:00  20.03.2017 00:00 € 228.480,83 80 € 2.856,01 € 2,86

week29 20.03.2017 00:00  27.03.2017 00:00 € 172.768,48 65 € 2.657,98 € 2,66

week30 27.03.2017 00:00  03.04.2017 00:00 € 151.820,58 63 € 2.409,85 € 2,41

week31 03.04.2017 00:00  10.04.2017 00:00 € 123.179,15 56 € 2.199,63 € 2,20

week32 10.04.2017 00:00  17.04.2017 00:00 € 133.215,34 63 € 2.114,53 € 2,11

week33 17.04.2017 00:00  24.04.2017 00:00 € 181.813,46 84 € 2.164,45 € 2,16

week34 24.04.2017 00:00  01.05.2017 00:00 € 220.500,02 97 € 2.273,20 € 2,27

week35 01.05.2017 00:00  08.05.2017 00:00 € 195.636,88 82 € 2.385,82 € 2,39

week36 08.05.2017 00:00  15.05.2017 00:00 € 264.520,21 108 € 2.449,26 € 2,45

week37 15.05.2017 00:00  22.05.2017 00:00 € 187.978,44 77 € 2.441,28 € 2,44

week38 22.05.2017 00:00  29.05.2017 00:00 € 165.900,99 64 € 2.592,20 € 2,59

week39 29.05.2017 00:00  05.06.2017 00:00 € 223.074,92 86 € 2.593,89 € 2,59

Table 8: FCR price calculations per week 
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 Weekly results overview 

Below, the results per week are displayed for the reliable, optimized and opportunistic strategy. The 

results shown here form the basis for the average results displayed in chapter 4.1. They are based on 

the default situation.   

 

 

  

Table 9: Weekly results in the optimized strategy 
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Table 10: weekly results in the opportunistic scenario 
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Table 11: weekly results in the reliable scenario 
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 Sensitivity analysis 

 

 FCR price 
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Table 12: Net revenue for three strategies for different FCR prices 

Table13: Bid sizes for three strategies for different FCR prices 

Table 14: Net revenue for three strategies for different values of FAD 

Table 15: Bid size for three strategies for different values of FAD 
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 NA-fine regime 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 16: Net revenue for three strategies for different values of NA-fine regime 

Table 17: Bid size for three strategies for different NA-fine regime values 
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 IR-fine regime 

 
 

 

 

Table 18: Net revenue for three different strategies for different values of IR-fine regime 

Table 19: Bid sizes for three different strategies for different values of IR-fine regime 


